Автохолодильник компрессорный и Пельтье своими руками
Нежелание питаться всухомятку во время длительных путешествий на автомобиле оправдывает популярность использования автомобильного охлаждающего оборудования. Его можно купить или с целью экономии сделать самому. Сборка автохолодильника своими руками требует технической подготовки, навыков, понимания принципа действия хладотехники.
Создание холодильника для автомобиля отличается трудоемкостью, затратностью, но имеет ряд общих принципов. Планируя постройку изделия, вы должны:
- посчитать расходы;
- решить, насколько вы хотите охлаждать продукты;
- подобрать тип агрегата, зависящий от:
- длительности ваших поездок;
- количества продуктов;
- температуры за бортом;
- энергопотребления оборудования и емкости аккумулятора автомобиля.
Монтаж холодильника делится на три этапа:
- Постройка корпуса.
- Изготовление охлаждающих элементов, зависящих от вида оборудования. В авто используют холодильники:
- компрессорные;
- абсорбционные;
- термоэлектрические;
- сумки-холодильники.
Рассмотрим некоторые типы холодильников для автомобиля подробнее.
На элементах Пельтье
Относится к термоэлектрическому типу оборудования. Элемент Пельтье, положенный в основу системы охлаждения, использует принцип разницы температур верхней (нагретой) и нижней (охлажденной) частей. Устройство передает тепло из камеры наружу. Эффективность работы оборудования зависит от температуры воздуха вокруг, эффективности термоизоляции корпуса, объема камеры.
Изготовление автохолодильника своими руками на элементах Пельтье оправдано экономией денег и универсальностью оборудования. Его можно подключать к штатной системе авто 12В, сети переменного тока 220В. Первый вариант не требует монтажа дополнительных блоков питания, вентиляторов, обойдется значительно дешевле.
Достоинства холодильника Пельтье:
- небольшие размеры и вес;
- простота использования;
- долговечность;
- экономная эксплуатация;
- постоянное поддержание температурного режима.
Минусы:
- охлаждение воздуха на 10-15 градусов ниже температуры окружающей среды;
- для достижения заданных параметров охлаждения требуется более одного часа.
Компрессорный
Это металлическая морозильная камера с термоизоляцией, оснащенная компрессором и испарителем. Принцип действия похож на работу традиционного домашнего агрегата. Жидкий хладагент становится газом в испарителе, забирает тепло. С помощью компрессора вещество удаляется, конденсируется, снова становится жидкостью под давлением.
Преимущества сборки автохолодильника компрессорного своими руками:
- экономия. Промышленные аналоги техники дорого стоят;
- охлаждение продуктов до 18°С градусов мороза;
- быстрое достижение нужных характеристик холода внутри камеры;
- экономичность;
- вместительность;
- универсальность.
Водители часто отказываются от изготовления охлаждающего оборудования, работающего по этому принципу, но выбор типа на основании цены ошибочен. Если вам достаточно иметь рядом прохладную бутылку воды, можно довольствоваться недорогими вариантами. Когда нужно везти быстро портящиеся продукты, детское питание или предстоит долгий переезд, лучше использовать компрессор.
Сравнительный анализ типов автомобильных холодильников позволяет сделать вывод, что наиболее оптимальным вариантом являются компрессорные устройства. Хотя они дороже термоэлектрических. Это компенсируется эффективностью работы, экономичностью и возможностью замораживать продукты, независимо от жары на улице. Абсорбционные системы обходятся так же, как компрессорные. Однако уступают по степени охлаждения.
Автомобильный холодильник своими руками | Самоделки своими руками
Самодельный автомобильный холодильник на элементе пельтье сделанный своими руками.Самоделка пригодится для любителей путешествовать на своём автомобиле. Компактный холодильник можно сделать своими руками, конструкция его предельно проста, сам холодильник подключается в гнездо прикуривателя и питается от сети 12 V.
В роли охладителя у нас будет элемент Пельтье, это небольшая пластина из полупроводникового материала, при подключении её к электрической сети, одна сторона платины начинает нагреваться, а противоположная остывать. Вот остывающая сторона пластины и будет охлаждать наш мини холодильник.
На рисунке показана схема охлаждающего устройства автомобильного холодильника.
Итак, для изготовления холодильника понадобятся материалы:
- Для корпуса – лист пенополистирола размером 1200×600х50 мм.
- Элемент Пельтье (можно приобрести в интернет магазинах или в радиомагазине).
- Радиатор с кулером для процессора компьютера – 2 шт.
- Термопаста.
- Регулятор температуры.
- Монтажная пена или клей для пенополистирола.
- Провод со штекером для гнезда прикуривателя автомобиля.
Первым делом нужно сделать корпус холодильника, для этого канцелярским ножом разрезаем лист пенополистирола как показано на рисунке.
Склеиваем коробку, в качестве клея подойдёт монтажная пена.
Изготовим и установим охладитель.
Элемент Пельтье с обоих сторон покрываем тонким слоем термопасты, для хорошего отвода тепла. Крепим радиаторы друг к другу стандартными защёлками (посредине между радиаторами расположен элемент Пельтье).
Проверка работоспособности устройства, дополнительно подключён цифровой регулятор температуры.
В коробке делаем отверстие и крепим устройство охлаждения, щели нужно уплотнить герметиком.
Чтобы регулировать температуру в автомобильном холодильнике, можно подключить регулятор температуры с датчиком.
Самодельный автомобильный холодильник внутри стабильно держит температуру +6 градусов при внешней температуре воздуха +30 градусов.
Как сделать автохолодильник своими руками
Летняя пора ассоциируется с морем и путешествиями на природу. Для поездки в живописные места, где не развита инфраструктура, понадобится запас продуктов питания. Некоторые виды пищи могут быть скоропортящимися, поэтому для их хранения понадобится автохолодильник. Это устройство компактной конструкции, устанавливающееся в авто и предназначающееся для обеспечения сохранности пищевой продукции во время перевозки. Чтобы сэкономить средства, можно сделать автохолодильник своими руками и наслаждаться прохладительными напитками в зной.
Плюсы и минусы самодельного автохолодильника
Автомобильный холодильник своими руками характеризуется положительными свойствами:
- небольшая стоимость;
- потребляет немного энергии;
- компактный размер;
- агрегат пожаробезопасен;
- автономная работа.
Минусов в самодельном агрегате немного – это время, необходимое на изготовление морозильника, и навыки мастера.
Создание мобильного автохолодильника
Чтобы сделать холодильник автомобильный своими руками, рекомендуется выполнить ряд поэтапных действий. Для непродолжительного путешествия можно создать охлаждающее оборудование из фанеры, фольги и листового пенопласта (или другого термоматериала). Хладагенты, работающие автономно, поддерживают необходимую температуру. Чтобы наслаждаться отдыхом на лоне природы длительное время, понадобится холодильник с отдельным модулем, отвечающим за охлаждение. Перед тем как сделать автохолодильник своими руками, мастер должен изучить алгоритм его производства.
Оно осуществляется следующим образом:
- подготавливается влагостойкая фанера;
- наружные стенки оформляются с помощью заменителя кожи;
- на внутреннюю часть конструкции монтируется теплоизоляционный материал;
- в ящик устанавливается меньшая емкость – здесь будут храниться продукты.
Шар плотной теплоизоляции толщиной не менее 2 см.
Сделать автохолодильник своими руками можно только с охладителем. Для его сборки нужен следующий материал:
- элементы пельтье;
- селитра.
В процессе соединения селитры с водой выделяется холод. Для создания хладоэлементов на основе этих ингредиентов 40 % емкости заполняется гексогеном и по надобности добавляется жидкость. Охладительные элементы создаются путем заморозки бутылки с водой, заполненной на 50 %, и помещения в нее селитры.
Часто создается автохолодильник своими руками из элемента пельтье. Деталь 4 х 4 см основывается на термоэлектрике и вырабатывает 50 Вт. Количество составных частей зависит от габаритов конструкции. Один термоэлемент рассчитан на 10 л морозильника. Все детали склеиваются между собой термопастой, герметизируются и изолируются. Готовый охладитель вставляется в заднюю стенку. Там же закрепляется батарея. Чтобы прибор работал эффективнее, с внешней стороны монтируется вентилятор, благодаря которому поддерживается температурная разница – 20°.
Функционирует автохолодильник пельтье с помощью бензина. Его расход 0.5 л в час. Это значимая растрата топлива, поэтому стоит продумать необходимость охладителя с элементами пельтье.
Когда мобильный холодильник монтируется своими руками, для его подключения используется проводка для автомобилей. Ее длина должна быть не более 2 м. При создании универсального прибора рекомендуется применять удлинитель. Сечение провода рассчитывается, исходя из размеров устройства и мощности, которую он будет потреблять. Кабель фиксируется с помощью клемм (220 В) либо прикуривателя (12 Вт).
Изготовление компрессорного автохолодильника
Если создать компрессорный автохолодильник своими руками, то автолюбитель получит две камеры одновременно. Они применяются для транспортировки замороженной продукции на большие дистанции. Автомобильный компрессорный холодильник идентичен бытовой модели с разницей в объемах.
Он состоит из следующих рабочих узлов:
- компрессора;
- испарителя;
- конденсатора.
Хладагент вращается по кругу. Под воздействием давления он из компрессора движется в испарительный блок, где закипает и забирает тепло из морозилки. После этого хладагент перемещается в конденсатор, где происходит его охлаждение. Тепло, которое выделяется, выводится наружу. После окончания цикла, процесс повторяется. Специалисты делают автомобильный компрессорный холодильник нескольких видов.
Самые известные типы:
- автономные;
- электроприводные;
- с приводом от мотора.
Прежде чем сделать автомобильный холодильник с компрессором, надо определить положительные и отрицательные стороны модели.
Плюсы таких агрегатов:
- быстрый набор холода;
- вместительная камера;
- экономичность.
Минусы генераторных автомобильных холодильных установок – устройство чувствительно к движению и большой размер.
Чтобы знать, как сделать автомобильный холодильник своими руками, нужно тщательно изучить информацию о его устройстве и обладать определенными навыками. Любая ошибка в монтаже холодильного прибора приведет к его поломке.
У нас на сайте Vnedorognik можно заказать автохолодильники брендов: Elements, ARB, OSION, VCCF-40 с разными объемами камер. Проводить ремонт автомобильного такого холодильника самостоятельно не рекомендуется – наши холодильные установки на гарантии. Заказывайте автомобильный холодильник путем заполнения заявки на сайте либо звоните по указанному номеру телефона. Наши менеджеры оперативно отвечают на звонки и предоставляют необходимую информацию.
Пельтье элемент своими руками как сделать
Как сделать элемент Пельтье своими руками?
Холодильное оборудование и комплексы для охлаждения воздуха являются неотъемлемыми элементами повседневной жизни. Однако стандартные объемные конструкции на базе хладагентов нецелесообразны для мобильного применения, к примеру, в сумках-холодильниках. В таких случаях используются приборы, основанные на работе эффекта Пельтье, о котором мы детально расскажем в данном материале.
В основе элемента Пельтье или термоэлектрического охладителя лежит термопара из двух элементов с p- и n- типом проводимости, которые соединяются коммутационной медной пластиной. Детали в большинстве случаев изготовляются из висмута, теллура, сурьмы и селена. Такие устройства применяются в системах охлаждения бытового применения, также они имеют свойство вырабатывать энергию.
Что это такое?
Явление и термин Пельтье предполагают открытие, сделанное в 1834 году французским ученым Жаном-Шарлем Пельтье. Суть открытия состоит в том, что постоянно выделяется или поглощается тепло на участке, где происходит контакт двух разнонаправленных проводников, по которым течет электроток.
Классическая теория объясняет данное явление таким образом: при помощи электротока между металлами переносятся электроны, ускоряющиеся или замедляющиеся, в зависимости от контактной разности потенциалов на проводниках из металла с разным уровнем проводимости. Элементы Пельтье таким образом способствуют превращению кинетической энергии в тепловую.
На втором проводнике происходит обратный эффект, где необходимо пополнение энергии на основании фундаментального закона физики. Происходит такая ситуация благодаря процессу теплового колебания, в результате которого металл второго проводника охлаждается.
При помощи современных технологий можно изготовить модуль Пельтье с максимальным термоэлектрическим эффектом.
Устройство и принцип работы
Современные модули Пельтье являют собой конструкцию, в которой присутствуют две пластины-изолятора, а между ними в строгой последовательности соединены термопары. Стандартная схема данного элемента для лучшего понимания его функционирования приведена на рисунке.
Обозначения элементов конструкции:
- А – контакты, при помощи которых осуществляется подсоединение к источнику питания;
- В — горячая поверхность;
- С — холодная сторона;
- D – проводники из меди;
- E – полупроводник р-перехода;
- F – полупроводник типа n.
Элемент изготовляется так, что обе поверхности находятся в контакте с p-n или n-p переходами, исходя из полярности. Контакты p-n нагреваются, а n-p температура снижается. В результате на концах элемента появляется разница температур DT. Такой эффект означает, что тепловая энергия, которая перемещается между элементами модуля, регулирует температурный режим в зависимости от полярности. Также следует отметить, что в случае изменения полярности меняются горячая и холодная поверхности.
Технические характеристики
Технические параметры элемента Пельтье предполагают такие значения:
- холодопроизводительность (Qmax) – рассчитывается на базе предельного тока и разницы температурного режима между концами модуля. Единица измерения – Ватт;
- предельная температурная разница (DTmax) – измеряется в градусах, данная характеристика приводится для оптимальных условий;
- Imax – предельная сила электротока, требуемая для обеспечения большей разницы температуры;
- предельное напряжение Umax, которое требуется для электротока Imax для достижения максимальной температурной разницы DTmax;
- Resistance – внутреннее сопротивление устройства, измеряется в Омах;
- СОР – коэффициент эффективности или КПД модуля Пельтье, который отражает соотношение охлаждающей и потребляемой мощностей. В зависимости от особенностей устройства, для недорогих устройств показатель находится в пределах 0,3-0,35, для более дорогих моделей он варьируется до 0,5.
Преимуществами мобильного элемента Пельтье являются небольшие габариты, обратимость процесса, а также возможность использования в качестве переносного электрогенератора или холодильника.
Недостатками модуля являются дороговизна, невысокий КПД в рамках 3%, большие затраты электроэнергии и необходимость постоянного поддержания разницы температурных режимов.
Применение
Даже учитывая невысокий коэффициент эффективности, пластины в модуле Пельтье широко применяются в измерительных, вычислительных приборах, а также в переносной бытовой технике. Приведем перечень устройств, в которых модели являются неотъемлемой частью:
- переносные холодильные устройства;
- небольшие генераторы электричества;
- комплексы охлаждения в ПК и ноутбуках;
- кулеры для подогрева и охлаждения питьевой воды;
- осушители воздуха.
Как подключить
Подключить модуль Пельтье можно самостоятельно, это не потребует много времени и усилий. На контакты выходов требуется подать постоянное напряжение, которое указано в инструкции по эксплуатации прибора. Красный провод подсоединяется к плюсу, а черный – к минусу. Обратите внимание, что при изменении полярности поменяются местами нагреваемая и охлаждаемая поверхности.
Перед подключением рекомендуется проверить работоспособность элемента. Одним из простых и надежных способов, как проверить устройство, является тактильный метод: для этого необходимо подсоединить устройство к источнику электротока и прикоснуться к разным контактам. У нормально функционирующего устройства одни контакты будут теплыми, а другие – охлажденными.
Также можно выполнить проверку при помощи мультиметра и зажигалки. Для этого нужно подсоединить щупы в контактам устройства, поднести зажигалку к одной стороне и наблюдать за показаниями мультиметра. Если элемент Пельтье работает в стандартном режиме, в процессе нагрева на одной стороне будет вырабатываться электроток, а данные о напряжении отобразятся на экране мультиметра.
Как сделать элемент пельтье своими руками
Элемент Пельтье нецелесообразно изготовлять в домашних условиях в связи с небольшой стоимостью и необходимостью специальных знаний для создания работоспособного элемента. Однако своими руками можно собрать эффективный мобильный термоэлектрический генератор, который пригодится на даче или в туристическом походе.
С целью стабилизации электрического напряжения потребуется собрать самостоятельно стандартный преобразователь на микросхеме ИМС L6920.
На вход устройства необходимо подать напряжение 0,8-5,5 В, а на выходе он будет выдавать 5 В, этого значения достаточно для зарядки аккумулятора мобильных устройств в стандартном режиме.
Если применяется стандартное электронное устройство Пельтье, тогда потребуется ограничение предельного значения температуры нагреваемой поверхности до 150 градусов. Для простоты контроля температуры целесообразно применять котелок с кипящей водой, тогда модель не будет нагреваться свыше 100 градусов.
Источник: https://odinelectric.ru/knowledgebase/kak-sdelat-element-pelte-svoimi-rukami
Эффект и элемент Пельтье – установка своими руками и термоэлектрические процессы
То, что все электронные устройства в процессе работы нагреваются, не секрет.
И этот самый нагрев негативно влияет на качество работы, поэтому для охлаждения приборов в их конструкцию устанавливаются специальные элементы, которые носят имя французского изобретателя Жан-Шарля Пельтье.
Устройство это миниатюрное, но именно оно отвечает за охлаждение конденсаторов. Установить элемент Пельтье своими руками не проблема, с этим справится даже новичок, главное – знать, в каком месте схемы его припаять.
Элемент Пельтье
Немного истории
Жан-Шарль Пельтье был часовщиком. Жил он в девятнадцатом веке, когда электротехника и физика были на подъеме. Все, кто хотя бы немного понимал, как работают физические законы, старались в домашних условиях делать опыты. Пельтье не стал исключением. В 1834 году он решил провести один опыт, поместив каплю воды между двумя электродами: один был изготовлен из сурьмы, второй из висмута. После чего через электроды пропустил электрический ток.
Каково его было изумления, когда вода превратилась в лед. Ведь то, что под действием электрического тока любые материалы нагревались, было известно. Но чтобы произошел обратный эффект, это была новость. Французский часовщик так и не понял, что изобрел что-то новое, которое оказалось на границе двух областей науки – электричества и термодинамики. В то время для него произошло просто волшебство.
Правда, проблемы охлаждения в те времена мало кого интересовали, поэтому эффект Пельтье так и остался невостребованным. И только через два века, когда в промышленности и быту стали использовать электронные устройства, для которых требовались миниатюрные приборы охлаждения, о Пельтье и его эффекте вспомнили.
Достоинства и недостатки
Что же получилось, в конце концов? А получился тот самый элемент Пельтье, который обладал большими достоинствами:
- Компактность устройства, которое давало возможность установить его на электронное плато.
- Полное отсутствие движущихся деталей, что увеличивало его срок эксплуатации.
- Возможность соединять несколько элементов в каскадной схеме, которая позволяет снизить достаточно большие температуры.
Внимание! Если поменять полярность подключения, то эффект Пельтье будет совершенно противоположного действия. То есть, устройство будет не охлаждать, а нагревать.
Есть у этого элемента и свои недостатки.
- Небольшой коэффициент полезного действия. Это влияет на то, что придется к нему подводить большой ток, чтобы получить заметный перепад температур.
- Сложность отвода тепловой энергии от охлаждаемой плоскости.
Физические процессы в элементе Пельтье
Чтобы разобраться в том, что происходит в данном устройстве, необходимо погрузиться в сложность физических законов и математических выкладок. Простому обывателю в этом разобраться будет сложно, поэтому объясним все по-простому.
Все действие происходит на уровне атомной решетки материала. Поэтому для удобства объяснения заменим его любым газом, который состоит из фононов (это его частицы). Итак, температура газа зависит от нескольких показателей:
- температуры окружающей среды;
- от металла, а точнее, от его свойств.
Поэтому получаем в предположении, что металл представляет собой смесь фононного и электронного газа. Оба газа находятся в термодинамическом равновесии. При соприкосновении двух металлов с разной температурой происходит перемещение холодного электронного газа в теплый металл. Что и образует разность потенциалов.
Термоэлектрический эффект Пельтье
На границе контактов двух металлов, то есть на переходе, электроны забирают энергию у фононов и передают ее фононам другого металла. Если поменять полярность подключения, то процесс пойдет в обратную сторону.
Перепад температур будет увеличиваться до тех пор, пока в металле есть свободные электроны с высоким потенциалом. Когда они закончатся, настанет своеобразное равновесие температур в обоих металлах.
Вот так можно описать по-простому картину эффекта Пельтье.
Итак, из всех процессов, протекающих в элементе Пельтье, можно сделать вывод, что эффективность его работы зависит от точного подбора двух металлов со своими свойствами, от силы тока, который будет протекать через прибор, и от того, как быстро будет отводиться тепло из теплой зоны.
Практическое применение
Что касается практического применения, то здесь пришлось ученым провести ряд опытов, которые показали, что достигнуть увеличения теплоотвода можно одним способом – увеличить количество соединений двух разных материалов.
При этом спаи материалов можно увеличивать до бесконечности. Конечно, это утрированное высказывание, но на практике количество пар, чем больше, тем лучше.
Но все же основное назначение этого охлаждающего устройства – снижение температуры в микросхемах и небольших приборах.
Итак, где сейчас применяется термоэлектрический модуль Пельтье?
- В приборах ночного видения, а точнее, в матрицах, которые принимают инфракрасное излучение.
- В цифровых фотоаппаратах, а точнее, в приборах зарядной связи (ПЗС), а еще точнее, в их микросхемах. Все дело в том, что эти микросхемы требуют глубокого охлаждения, чтобы увеличилась эффективность регистрации картинки.
- В телескопах, где устройства Пельтье охлаждают детекторы.
- В системах точного времени для снижения температуры кварцевых электрогенераторов.
Эффект Пельтье сегодня применяется для охлаждения микропроцессоров
И это только малый список, который с недавних пор расширился за счет бытовых приборов, компьютерной техники и автомобилей (кондиционеры, охладители воды и прочее). Хотелось бы отметить высокопроизводительные микропроцессоры, в которых для снижения температуры устанавливаются высокоскоростные элементы Пельтье. И если раньше для охлаждения использовались только вентиляторы, то дополнительная установка модуля решила проблему эффективности и снижения шума.
По поводу этого возникает еще один немаловажный вопрос, будет ли проведена замена традиционных систем охлаждения в бытовых холодильниках модулями Пельтье? Сегодня это невозможно за счет низкого КПД устройства. Да и себестоимость мощных модулей пока очень высока. Но кто знает, что ждет нас в будущем.
Может быть, через лет 5-10 эффект Пельтье будет использован и в бытовых холодильниках. Тем более ученые проводят сегодня опыты с кластратами – это так называемые твердотельные растворы, сильно похожие по строению и свойствам на гидраты. Именно с их помощью можно будет снизить цену охладительному модулю.
Удивительный факт
Термоэлектрическая технология данного типа обладает одной очень интересной особенностью. Эта особенность состоит в том, что можно не только получать тепло или холод из электрического тока, но и, наоборот, из тепла или холода получать электричество. То есть, в обратном случае получаем элемент Пельтье как генератор электроэнергии.
Конечно, электрогенераторы пока в стадии теории, но ведь и француз в свое время не знал, как использовать свое открытие. Так что будем надеяться, что это в скором будущем пригодится.
Заключение по теме
Итак, как видите, эффект Пельтье сегодня применяется в электронике повсеместно. Границы использования будут в скором времени расширены, это подтверждают опыты и доклады ученых. Поэтому стоит ожидать в будущем совершенно новые возможности не только в электронной техники, но и бытовой. К примеру, бесшумно работающие холодильники и компьютеры. Сегодня же радиолюбители устанавливают модули Пельтье своими руками в разные схемы, тем самым решая задачи охлаждения плат.
Источник: https://onlineelektrik.ru/eoborudovanie/edvigateli/effekt-i-element-pelte-ustanovka-svoimi-rukami-i-termoelektricheskie-processy.html
Фонарь на элементах Пельтье своими руками
Перевёл alexlevchenko92 для mozgochiny.ru
Каждый элемента Пельтье генерирует всего 0,1 В при контакте с кожным покровом. Для того, чтобы увеличить это напряжение нужно: соединить три элемента в последовательную цепь. Кроме того нужно использовать «Похититель джоулей» для повышения генерируемого напряжения. Если вы будете использовать эту самоделку, что сделана своими руками в качестве USB зарядки, вам нужно будет использовать модуль усиления напряжение до 5 вольт.
Шаг 1: Материалы
- 3 элемента Пельтье;
- 2 вида медных проводов;
- NPN транзистор, любой маркировки;
- 4.7 Ом резистор, любого типа;
- T12 люминесцентная трубка;
- Чёрная краска;
- Картон;
- Алюминиевая фольга;
- Скотч.
Шаг 2: Изготавливаем корпус
Отмерим 10 см трубы и обрежем её. С помощью маркера отметим места, где будут устанавливаться элементы Пельтье и вырежем квадраты с помощью ножниц или канцелярского ножа.
Шаг 3: Окрашиваем корпус
Покрасим трубу в чёрный цвет.
Шаг 4: Изготавливаем картонный диск
Нарисуем круг того же диаметра, что и труба. Вырежем его, а потом сделаем два небольших надреза на каждой его стороне. Приклеим его к одному концу трубы, который располагается ближе к трём квадратным отверстиям.
Шаг 5: Припаиваем элементы
Укоротим выводы среднего элемента. Расположим их в правильном положении. Возьмём два других элемента и укоротим по одному проводу с каждой стороны, оставив вторые провода не тронутыми. После всех операций спаяем их вместе в сборку.
Шаг 6:
Установим элементы Пельтье в вырезанные отверстия корпуса.
Шаг 7: Прокладываем проводку
Припаяем дополнительные провода на отрицательные и положительные спайки. После чего просунем их в два отверстия в стороне трубки и протянем через пазы в картоне.
Шаг 8: Тороид
Скрутим два медных провода вместе. Обернём проволоку вокруг тороида, пока не покроем всю поверхность. Не имеет значения, в каком направлении будут идти провода. Зачистим концы проводов ножом или наждачной бумагой.
Шаг 9: Подключаем «Похититель джоулей»
Чтобы проверить схему, возьмём две запасные перемычки и подключим одну к левой (отрицательной) стороне резистора, а другую к красному и зеленому проводам. Подключим провод от светодиода на отрицательную сторону батареи 1,5 В и прикрепим другую перемычку к положительной стороне батареи. Светодиод должен засветиться.
Шаг 10: Пайка схемы
Припаяем красный и зелёный провода вместе с каждой стороны тороида. Возьмём один свободный провод тор. и припаяем его к одной стороне резистора. Припаяем средний вывод транзистора к другой стороне резистора. Возьмём две перемычки, припаяем их к боковым выводами транзистора. Теперь, спаяем другой свободный провод от тор. к правой «ноге» транзистора. Наконец, припаяем светодиод к двум свободным перемычкам, с отрицательной стороны к правому выводу транзистора.
Шаг 11: Соединяем элементы Пельтье с «Похитителем джоулей»
Возьмём отрицательный вывод от Пельтье и припаяем его к правому выводу транзистора. После чего положительный вывод припаяем к двум проводам тороида, скрученным вместе.
Шаг 12: Финальные детали
С помощью алюминиевой фольги полностью закроем всё пространство над элементами. С помощью термоклея закрепим светодиод на торцевой крышке, в маленьком отверстии. Если заглушка не имеет отверстия, сделайте его. Вырежем круглый диск из алюминиевой фольги с отверстием в центре, и приклеим его на диод. Поздравляем! Все готово!
Шаг 13: Оглядываясь назад
Если хотите, можете использовать некоторые из этих советов в своих фонариках. Благодаря им они будет работать намного лучше и эффективнее.
- Элементы должны быть расположены, как можно ближе друг к другу;
- Можно установить аккумуляторы;
- Добавить к нему USB вход, для зарядки устройства;
- Создать больше напряжения можно путем охлаждения другой стороны элемента Пельтье льдом.
Спасибо за внимание! Светлого всем будущего!
(A-z Source)
Источник: http://mozgochiny.ru/electronics-2/fonar-na-elementah-pelte-svoimi-rukami/
Что можно сделать из элементов Пельтье?
Элементы Пельтье – казалось бы, давно уже не новость, однако многие не полностью представляют принцип их работы, и не знают, что можно сделать из модулей и зачем они нужны. Изобретатель Игорь Белецкий покажет несколько наглядных экспериментов, чтобы у вас сложилось понимание того, на что способны эти пластинки.
Их легко приобрести в интернете и заказать доставку по почте. Купить Пельтье лучше всего в этом китайском магазине. Есть и специальный кулер охлаждения.
На фото: Модуль Пельтье
Самый популярный модуль Пельтье TEC1-12706
Самым популярным среди практиков, увлеченных идеями свободной природной энергии и производителей технических устройств является элемент размером 40 на 40 миллиметров с маркировкой TEC1-12706. Это означает, что он состоит из 127 пар малюсеньких термоэлементов – полупроводников разного типа, которые попарно соединены при помощи медных перемычек в последовательную цепь и рассчитаны на постоянный ток до 5 А при напряжении 12 вольт.
Схема Элемента Пельтье
Некоторые думают что модули Peltier, это что-то типа солнечных панелей – ведь они такие же плоские, торчат проводки, и те и другие могут генерировать электрический ток. Увы, это не совсем так на самом деле. Чтобы понять, как функционируют загадочные пластинки, посмотрите видео И. Белецкого, описание в текстовом формате ниже.
Электроника для самоделок в китайском магазине.
Эффекты Пельте и Зебека – функции модуля
У этого девайса есть целых два режима работы – 1. выработка холода и тепла; 2 – генерация электрического тока.
1. Итак, знаменитый эффект Пельтье (тепло и холод). Это когда вы подводите к элементу постоянный ток и замечаете, что одна из его сторон стала теплее, а другая холоднее. Таким образом он работает как тепловой насос. Очень полезное свойство. Спору нет.
2. Но оказалось, что имеет место и обратный процесс – так называемой эффект Зебека, а именно возникновение электрического тока при установлении и поддержании определенной разности температур на сторонах самого модуля (пластинки).
Примечание. Никогда не перегревайте элементы, если хотите и далее проводить эксперимент с ними. Полупроводники в модуле спаяны припоем, температура плавления которого может лежать в пределах от восьмидесяти до двухсот градусов. А учитывая, где сегодня производится большинство этих элементов, можно только догадываться на каких соплях их спаяли.
Схема. Как создается электричество при нагреве сторон Пельтье
Вся неприятность в том, что этот элемент будет нормально работать только при эффективном охлаждении.
Тест с получением электричества
Например, мы хотим проверить эффект Зебека. Поставим сверху кружку с кипятком. Тем самым не превышено 100 градусов, допустимых по нагреву.
Наблюдаем появление напряжения. Интересно, что если изменить направление тепловой потока через модуль, то изменится направление постоянного тока. Но со временем на второй стороне благодаря теплопроводности элемента Пельтье температура тоже поднимется и напряжение, естественно, упадет.
Чтобы эффект был постоянным, нужен постоянный отвод тепла. Для этого модуль размещают на массивным радиаторое и желательно с активным охлаждением. Показатели явно лучше, как вы понимаете. Это требует дополнительных энергозатрат.
Допустим, вы хотите сделать из этого элемента походную зарядку для мобильников. Тогда на природе радиатор можно поместить в холодную воду, возможно даже проточную или ледяную, что несомненно еще лучше. Применение этих модулей зимой при хорошем дармовом минусе – наиболее перспективно.
Правда, одного элемента для зарядки телефона явно будет маловато. А вот два – это уже лучше. Естественно, если увеличить нагрев, то выходная мощность тоже возрастет. Но это очень рискованный шаг, который можно сделать только ради эксперимента. Работа такого генератора будет длиться недолго.
Теперь перейдем к эффекту Пельтье, то есть к производству холода.
Холодильник на модулях Пельте – насколько он эффективен?
Для эксперимента будет использован автомобильный холодильник. Полезный объем его 20 литров. Обратите внимание – заявленная мощность – 48 ватт при токе 4 ампера и постоянном напряжении 12 вольт. А это значит, что внутри стоит всего лишь 1 маленький элемент Пельтье. Для тех кто не в теме откроем секрет – такую же мощность имеет обычный домашний холодильник, размеры которого в разы больше. Ну да ладно, сейчас не об этом. Проверим его эффективность.
Например поставим ему минимальную задачу охладить стаканчик с водой, имеющей комнатную температуру 26 градусов. Для работы холодильника будем использовать блок питания, идеально подходящий по своим параметрам. Дополнительно в цепь будем помещен ваттметр. Он будет в реальном времени отображать ток, напряжение и мощность. Но самое главное – потребление, так называемый ватт в час. Таким образом мы сможем примерно оценить энергозатраты нашего холодильника.
Включаем и видим, все прекрасно работает. Вот ток 4,29 А. Напряжение 11,15 Вольт. Мощность 47,9 Ватт. 0,1 Ватт-часов.
Пока процесс идет, проведем более наглядный эксперимент, который покажет, что же именно происходит в холодильнике. Когда подадим на элемент постоянный ток, он начнет перекачивать тепло с одной стороны на другую.
Кстати, если поменять направление тока, то изменится и направление перекачки тепла, что весьма удобно. Главное не забываем об активном охлаждении, потому что пятьдесят ватт электрической мощности нагревает элемент мгновенно. Чем эффективнее мы отведем тепло с горячий стороны, чем холоднее на другой.
Как видите, на самой поверхности модуля вода замерзает очень быстро, ну еще бы – столько энергии сжирает.
Но вернемся к нашему холодильнику. Спустя один час работы температура воздуха внутри упала до пятнадцати градусов, а у воды опустилась до 20. Удивило, что за час работы он съел четко 48 ватт. Через два часа у воздуха было 13 градусов, а у воды 17.
И наконец, после трех часов работы температура воздуха остановилась на 13-ти градусах, а в стакане с водой была 15 и ниже 12 она уже не опустится. Ну так себе холодильник, учитывая что он был забит напитками не полностью. Но при этом этот монстр потребил 140 Ватт.
Для домашней сети может и не много, но для автомобильного аккумулятора это уже весьма ощутимо. Поэтому здесь и стоит всего лишь один элемент. Потому что больше никакой аккумулятор просто не потянет. А это значит, что кпд такого модуля ничтожно мал – буквально считанные проценты, что опять же зависит от производителя.
Такой холодильник больше напоминает хороший термос. Если бы взяли из дома холодные продукты, то он бы просто не позволил им быстро нагреться. Делать такие холодильники большими энергетически невыгодно.
В каких случаях пельтье эффективен?
Кстати это относится и к самодельщикам, пытающихся делать на этом принципе автомобильные кондиционеры. Есть более эффективные технологии, а вот использовать элементы Пельтье для охлаждения чего-то маленького и компактного – просто идеальное решение.
Есть целый спектр таких устройств, например охлаждать процессоры или микросхемы различных малогабаритных приборов. В этом скорее всего и есть самый главный плюс таких элементов. Они миниатюрны и минимальны по весу. По сравнению с теми же фотоэлементами у Пельтье минусов конечно больше, ну а самый эффект безусловно заслуживает внимания.
В конце концов все зависит от решаемых задач а если энергия халявная, то высокий КПД не так уж и важен.
До скольки градусов можно охладить элемент? Об этом в отдельном видео.
Заключение
Популярные среди радиолюбителей и инженеров модули Пельтье – электронные элементы, активно использующиеся для систем охлаждения и получения электроэнергии.
На их основе разрабатываются источники питания для освещения или зарядки девайсов в походных условиях, мобильные компактные холодильники для автомобилей. Существуют попытки применения для охлаждения компьютерных процессоров.
Работа устройств основана на 2 механизмах: при нагреве одной стороны пластины Пельтье и охлаждении второй, вырабатывается электроток; при подаче электричества на контакты одна сторона пластины охлаждается, вторая – нагревается.
Источник: https://izobreteniya.net/chto-mozhno-sdelat-iz-elementov-pelte/
Как сделать элемент пельтье своими руками
Элемент Пельтье стал известен миру давно. Еще в 18 веке французский часовщик Жан-Шарль Пельтье совсем случайно для самого себя открыл новый эффект на границе двух металлов: висмута и сурьмы. Он заключался в резком изменении температуры помещенной между контактами капли воды, которая при подведении тока превратилась в лед. Это свойство стало новым для часовщика, потому что до того момента еще ни один ученый мира не излагал в своих материалах подобной информации.
Эффект хоть и был интересен, но не нашел практического применения в то время, что было связано с небольшим количеством электронной техники, которой требовалось бы интенсивное охлаждение. Спустя 2 столетия об открытии ученого вспомнили, потому что возникла острая необходимость изготовить устройство, которое могло бы обеспечить качественное охлаждение кристалла греющегося микропроцессора.
В результате многочисленных исследований в этой области и огромного количества практических опытов ученые выяснили, что термоэлектрическая пара может вырабатывать достаточное количество холода для нормальной работы практически любого микропроцессора. А благодаря небольшим размерам их научились встраивать в корпуса микросхем, обеспечивая, таким образом, собственный внутренний генератор холода.
Открытие Жан-Шарля Пельте стало огромным толчком для целой отрасли по производству мобильных холодильных установок. Сегодня свойство термоэлектрического элемента используется в следующей технике:
- переносные холодильники;
- автомобильные кондиционеры;
- портативные охладители;
- фотоаппараты, телескопы и многое другое.
Активно используют для охлаждения микропроцессоров и прочих элементов электронной техники. Кроме прямого эффекта охлаждения, элемент Пельтье многие стали использовать в качестве генератора. Примером чего может стать фонарик на 3 элементах.
Знают немногие, что для осуществления радиосвязи с командованием солдаты ставили на огонь специальный котелок и заваривали чай, готовили кашу и прочие бытовые вещи, а в это время осуществляли передачу необходимой информации по переносной радиостанции.
Как изготовить элемент Пельтье своими руками?
Многих интересует вопрос, что такое Пельтье элемент своими руками, как сделать его в домашних условиях? Для этого потребуется высокоточное дозированное добавление разных веществ и материалов.
Изготовить в домашних условиях подобное устройство невозможно, потому что требуется иметь технологии и обладать необходимыми методами обработки металлов. Также требуются особо чистые материалы в таких же лабораториях, чего в домашних условиях добиться невозможно.
Поэтому на вопрос, как сделать термоэлектрический модуль Пельтье, можно ответить однозначно. Никак. Но для построения эффективной системы охлаждения вполне достаточно имеющихся навыков.
Изготовление элемента Пельтье из диодов
Существует мнение о том, что можно сделать термоэлектрический модуль на диодах. Дело в том, что каждая пара разнородных полупроводников – это два материала с p и n -проводимостями. А диод как раз таковым и является. Чтобы выявить изменение проводимости при нагреве, необходимо выбирать определенные элементы. Но для получения низкой температуры на поверхности устройства никакие диоды не помогут. При подаче большого тока можно добиться лишь разогрева.
Радиолюбители используют в качестве датчика температуры диоды малой мощности в стеклянном корпусе. При подключении их в обратном направлении и разогреве переход начинает открываться и пропускать ток в обратном направлении. Но при этом вырабатывать электричество он не будет.
Как устроен элемент Пельте?
Термоэлектрический модуль Пельтье в упрощенном виде представляет собой пару пластин из разных металлов, которыми могут быть висмут, сурьма, теллур или селен. Между ними расположена пара полупроводников с разной проводимостью n и p -типа.
Все образованные разными металлами термоэлектрические пары соединены последовательно в единую цепь.
В результате образуется своего рода матрица из большого количества отдельных термопар, расположенных между двумя керамическими пластинами.
Образованный термопарами термоэлектрический модуль изготовлен в едином корпусе небольших размеров. При их последовательном или параллельном соединении можно добиться усиления эффекта охлаждения или выработки электрической энергии.
В режиме охладителя положительный вывод матрицы подключается к первой паре с проводником n -типа, отрицательный контакт подведен к проводникам p -типа. В качестве внешних обкладок используется специальная керамика, изготовленная на основе оксида и нитрида алюминия.
Это обеспечивает наилучшие показатели теплоотдачи на обеих сторон как при высоких, так и при низких температурах.
Число термопар в модуле ничем не ограничено и может быть до нескольких сотен. Чем их больше, тем лучше ощущается эффект охлаждения. Для повышения эффективности работы элемента Пельтье к его холодной стороне крепится радиатор с наибольшей площадью теплоотдачи. Разница в температуре между обкладками должна составлять не менее двух десятков градусов.
При подаче напряжения на обкладки одна из сторон становится горячей, а другая холодной. При смене полярности питающего напряжения температура пластин меняется местами.
Учитывая сложность и технологичность, сделать своими руками термоэлектрический элемент не представляется возможным. Но все же встречаются умельцы, которые предлагают свои разработки. Эффект наблюдается, но для повышения КПД без специальной исследовательской лаборатории получить невозможно. Даже можно найти видео по этой теме с пошаговым руководством.
Источник: https://ostwest.su/instrumenty/kak-sdelat-jelement-pelte-svoimi-rukami.php/
Пельтье (элемент) своими руками как сделать?
Элементом Пельтье принято называть преобразователь, который способен работать от разности температур. Происходит это путем протекания электрического тока по проводникам через контакты. Для этого в элементах предусмотрены специальные пластины. Тепло от одной стороны переходит в другую.
На сегодняшний день указанная технология является востребованной в первую очередь из-за значительной мощности теплоотдачи. Дополнительно устройства способны похвастаться компактностью. Радиаторы для многих моделей устанавливаются слабенькие. Связано это с тем, что тепловой поток довольно быстро остывает. В результате нужная температура поддерживается постоянно.
Подвижных частей указанный элемент не имеет. Работают устройства абсолютно бесшумно, и это является несомненным преимуществом. Также следует сказать, что эксплуатироваться они способны очень долго, а случаи поломок возникают крайне редко. Самый простой тип состоит из медных проводников с контактами и соединительными проводами. Дополнительно с охлаждающей стороны имеется изолятор. Изготовляют его, как правило, из керамики или нержавеющей стали.
Зачем нужны элементы Пельтье?
Элементы Пельтье чаще всего используются для изготовления холодильников. Обычно речь идет о компактных моделях, которые могут применяться, к примеру, автомобилистами в дороге. Однако на этом область применения устройств не подходит к концу. В последнее время элементы Пельтье активно начали устанавливать в звуковую, а также акустическую технику. Там они способны выполнять функции куллера.
В результате охлаждение усилителя устройства происходит без какого-либо шума. Для портативных компрессоров элементы Пельтье являются незаменимыми. Если говорить о научной отрасли, то ученые применяют данные устройства для охлаждения лазера. При этом можно добиться значительной стабилизации волны изучения у светодиодов.
Недостатки моделей Пельтье
Казалось бы, такое простое и эффективной устройство лишено недостатков, однако они имеются. В первую очередь специалисты сразу отметили малую пробивную способность модуля.
Это говорит о том, что у человека возникнут определенные проблемы, если он захочет охладить прибор, который работает от сети с напряжением 400 В. В данном случае частично поможет решить эту проблему специальная диэлектрическая паста.
Однако пробой тока все равно будет высоким и обмотка элемента Пельтье может не выдержать.
Дополнительно указанные модели не советуют применять для точной электроники. Поскольку в конструкции элемента имеются металлические пластины, то чувствительность транзисторов может нарушаться. Последним недостатком элемента Пельтье можно назвать малый коэффициент полезного действия. Достигнуть значительной разности температур указанные устройства не способны.
Модуль для регулятора
Сделать элемент Пельтье своими руками для регулятора довольно просто. Для этого следует заранее заготовить две металлические пластины, а также проводку с контактами. В первую очередь для установки готовят проводники, которые будут располагаться у основания. Обычно их закупают с маркировкой «РР».
Дополнительно для нормального контроля температуры следует предусмотреть полупроводники на выходе. Они необходимы для того, чтобы быстро отдавать тепло на верхнюю пластину. Для установки всех элементов следует использовать паяльник. Чтобы доделать элемент Пельтье своими руками, в последнюю очередь подсоединяют два провода. Первый монтируется у нижнего основания и фиксируется у крайнего проводника. Соприкосновения при этом с пластиной следует избегать.
Далее крепят второй провод у верней части. Фиксация осуществляется также к крайнему элементу. Для того чтобы проверить работоспособность устройства, применяют тестер. Для этого два провода нужно подсоединить к прибору. В результате отклонение напряжения должно составить примерно 23 В. В данной ситуации многое зависит от мощности регулятора.
Холодильники с терморезистором
Как сделать элемент Пельтье своими руками для холодильника с терморезистором? Отвечая на этот вопрос, важно отметить, что пластины для него подбираются исключительно из керамики. При этом проводников используется около 20 штук. Это необходимо для того, чтобы перепад температуры был более высоким. Повысить коэффициент полезного действия можно до 70 %. В данном случае важно рассчитать энергопотребление устройства.
Сделать это можно исходя из мощности оборудования. Холодильник на жидком фреоне в этом случае походит идеально. Непосредственно элемент Пельтье устанавливается возле испарителя, который располагается рядом с мотором. Для его монтажа потребуется стандартный набор инструментов, а также прокладки. Они необходимы для того, чтобы оградить модель от пускового реле. Таким образом, охлаждение нижней части устройства будет происходить намного быстрее.
Чтобы добиться получения разницы в температурах (эффект Пельтье) своими руками, проводников может понадобиться не менее 16 штук. Главное при этом — надежно изолировать провода, которые будут подключаться к компрессору.
Для того чтобы сделать все правильно, нужно в первую очередь отсоединить осушитель холодильника. Только после этого есть возможность соединить все контакты. По завершении установки предельное напряжение следует проверить при помощи тестера.
При нарушении работы элемента в первую очередь страдает терморегулятор. В некоторых случая происходит его короткое замыкание.
Модель для холодильника 15 В
Делается холодильник Пельтье своими руками с малой пропускной способностью. Крепятся модули в основном возле радиаторов. Для того чтобы надежно их закрепить, специалисты используют уголки. К фильтру элемент не должен прислоняться, и это следует учитывать.
Чтобы доделать термоэлектрический модуль Пельтье своими руками, нижнюю пластину в основном выбирают из нержавеющей стали. Проводники, как правило, применяются с маркировкой «ПР20». Нагрузку они максимум способны выдерживать на уровне 3 А. Максимальное отклонение температуры способно достигать 10 градусов. В этом случае коэффициент полезного действия может составлять 75 %.
Элементы Пельтье в холодильниках 24 В
Используя элемент Пельтье, холодильник своими руками сделать можно только из проводников с хорошей герметизацией. При этом они для охлаждения должны укладываться в три ряда. Рабочий ток в системе обязан поддерживаться на уровне 4 А.. Проверить его можно при помощи обычного тестера.
Если использовать керамические пластины для элемента, то максимального отклонения температуры можно добиться в 15 градусов. Провода к конденсатору устанавливаются только после того, как будет подложена прокладка. Закрепить ее на стенке устройства можно разными способами. Главное в данной ситуации — не использовать клей, который чувствителен к температурам свыше 30 градусов.
Элемент Пельтье для автомобильного охладителя
Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.
Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой «ПР20». Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.
Модуль Пельтье (элемент) своими руками делается для кулера довольно просто. Пластины для него важно подбирать только керамические. Проводников в устройстве используют не менее 12. Таким образом, сопротивление будет выдерживаться высокое.
Соединение элементов стандартно осуществляется при помощи пайки. Проводов для подключения к прибору должно быть предусмотрено два. Крепиться элемент обязан в нижней части кулера. При этом с крышкой устройства он может соприкасаться.
Для того чтобы исключить случаи коротких замыканий, всю проводку важно зафиксировать на решетке либо корпусе.
Кондиционеры
Модуль «Пельтье» (элемент) своими руками делается для кондиционера только с проводниками класса «ПР12». Их выбирают для этого дела в основном из-за того, что они хорошо справляются с низкими температурами. Максимум модель способна выдавать напряжение 23 В. Показатель сопротивления при этом будет находиться на уровне 3 Ом. Перепад температуры максимум достигает 10 градусов, а коэффициент полезного действия — 65 %. Укладывать проводники между листами можно только в один ряд.
Изготовление генераторов
Изготовить генератор, используя модуль Пельтье (элемент), своими руками можно. Производительность устройства поднимется в целом на 10 %. Достигается это за счет большего охлаждения мотора. Максимум нагрузка прибором выдерживается 30 А.
За счет большого количества проводников сопротивление способно составлять 4 Ом. Отклонение температуры в системе равняется примерно 13 градусов. Крепится модуль непосредственно к ротору. Для этого в первую очередь следует отсоединить центральный вал. Во многих случаях статор не мешает.
Чтобы обмотка ротора не нагревалась от индуктора, используют керамические пластины.
Охлаждение видеокарты на компьютере
Для охлаждения видеокарты следует подготовить не менее 14 проводников. Лучше всего подбирать медные модели. Коэффициент проводимости тепла у них довольно высокий. Для подключения устройства к плате используются провода немодульного типа. Монтируется модель возле кулера видеокарты. Для ее закрепления обычно используют маленькие металлические уголки.
Для фиксации их можно воспользоваться обычными гаечками. Появление излишнего шума при эксплуатации говорит том, что устройство работает не должным образом. В данном случае необходимо проверит целостность проводки. Также нужно осмотреть проводники.
Элемент Пельтье для кондиционера
Чтобы качественно сделать элемент Пельтье своими руками для кондиционера, пластины используют двойные. Минимальная их толщина должна составлять не менее 1 мм. В таком случае можно надеяться на температурное отклонение в 15 градусов.
Производительность кондиционеров после оснащения модулей в среднем увеличивается на 20 %. Многое в данной ситуации зависит от температуры окружающей среды. Также следует учитывать стабильность напряжения от сети.
При небольших помехах нагрузка устройством выдерживается примерно 4 А.
При пайке проводников их следует размещать не слишком близко друг к другу. Чтобы правильно доделать модули Пельтье своими руками, входные и выходные контакты надо устанавливать только на одну из двух пластин. В таком случае прибор получится более компактным. Грубой ошибкой в данной ситуации будет подключать модуль непосредственно к блоку. Это приведет к неминуемой поломке элемента.
Установка модуля на конденсатор
Чтобы установить модуль Пельтье своими руками, важно оценить мощность конденсатора. Если она не превышает 20 В, то элемент следует монтировать с проводниками, на которых указана маркировка «ПР30» или «ПР26». Для того чтобы закрепить модуль Пельтье (элемент) своими руками на конденсаторе, используют маленькие металлические уголки.
Лучше всего их устанавливать по четыре на каждую из сторон. По производительности конденсатор, в конечном счете, способен прибавить плюс 10 %. Если говорить о теплопотерях, то они будут незначительными. Коэффициент полезного действия прибора в среднем равняется 80 %. Для высоковольтных конденсаторов модули не рассчитаны. В данном случае не поможет даже большое количество проводников.
Источник: https://FB.ru/article/192230/pelte-element-svoimi-rukami-kak-sdelat
Элементы Пельтье своими руками: как сделать в домашних условиях и практическое применение
Элемент Пельтье – это специальный термоэлектрический преобразователь, который работает по одноименному принципу Пельтье – возникновении разности температур во время подачи электрического тока. В английском языке чаще всего упоминается как ТЕС, что в переводе означает термоэлектрический охладитель.
Как работает элемент Пельтье
Работа элемента Пельтье базируется на контакте двух токопроводящих материалов, которые обладают разным уровнем энергии электронов в зоне проводимости.
При подаче электрического тока через подобную связь, электрон приобретает высокую энергию, чтобы потом перейти в более высокоэнергетическую зону проводимости другого полупроводника.
В момент поглощения этой энергии осуществляется охлаждение места охлаждения проводников. Если же ток протекает в обратном направлении – то это приводит к нагреванию места контакта и к обычному тепловому эффекту.
Если с одной стороны сделать хороший отвод тепла, например, при использовании радиаторных систем, то холодная сторона сможет обеспечить очень низкую температуру, которая на десятки градусов будет ниже температуры окружающего мира. Величина тока пропорциональна степени охлаждения. Если же сменить полярность электрического тока, то стороны (тёплая и холодная) просто поменяются местами.
В контакте с металлической поверхностью элемент Пельтье становится настолько малым, что его практически невозможно заметить на фоне омического нагрева и других эффектов теплопроводности. Именно поэтому на практике применяется два полупроводника.
Количество термопар может быть самым разнообразным – от 1 до 100, за счёт чего можно сделать элемент Пельтье практически с любыми показателями холодильных мощностей.
Как сделать элементы Пельтье для холодильника?
Элементы Пельтье своими руками для холодильника изготавливаются также просто и быстро. Первое, что нужно учесть перед работами, это – материал пластины. Это должна быть прочная керамика. Что касается проводников, то их нужно подготовить не меньше 20-ти штук, что позволит добиться максимального перепада температур. При правильном расчете коэффициент полезного действия может быть увеличен на 70%.
Многое зависит от мощности используемого оборудования. Если холодильник работает на основе жидкого фреона, то проблем с мощностью никогда не будет.
Элемент Пельтье, который был изготовлен своими руками устанавливается непосредственно возле испарителя, который установлен вместе с мотором. Для подобного монтажа вам понадобится запастись самым стандартным набором инструментов и прокладками.
Они будут применены для элемента модели от пускового реле. С помощью подобного решения охлаждение в нижней части устройства произойдёт намного быстрее.
Стоит помнить, что перед тем как сделать элемент Пельтье для холодильника своими руками, вам нужно запастись достаточным количеством электрических проводников. Для того чтобы добиться разницы в температурах при разработке элемента своими руками, используйте не меньше 16 проводов.
Обязательно обеспечьте им качественную изоляцию и только тогда подключайте к компрессору. Убедившись в надёжности и безопасности связи между проводами можно переходить к их соединению. После завершения установки ещё раз проверьте силу предельного напряжения с помощью тестера.
Если работа элемента была нарушена, это первым делом скажется на терморегуляторе. Иногда случается его короткое замыкание.
Помимо холодильников, элементы Пельтье активно применяются и в автомобильных охладителях. Сделать качественный автомобильный холодильник своими руками тоже достаточно просто. Для этого необходимо найти хорошую керамическую пластину с толщиной не меньше 1.1 миллиметра. Провода должны быть немодульными. В качестве проводников лучше всего использовать медные провода с пропускной способностью не меньше 4 Ампера.
В связи с этим максимальное отклонение температур будет доходить до десяти градусов, что считается нормой. В частых случаях используются проводники с маркировкой «ПР20», которые сумели отличиться максимальной надёжностью и стабильностью работы. К тому же они подходят для различных типов контактов. При соединении устройства с конденсатором стоит применить паяльник.
Как сделать элемент Пельтье для кулера питьевой воды?
Кулер питьевой воды – это очень важное и необходимое устройство, которое вовремя охлаждает или нагревает питьевую воду. Чтобы ускорить процесс охлаждения, можно применить элемент Пельтье. Сделать его можно так же просто, как и для холодильника или автомобильного охладителя:
- В качестве пластины стоит использовать исключительно керамическую поверхность.
- В устройстве применяется не меньше 12 проводников, которые смогут выдерживать высокое сопротивление.
- Для подключения нужно использовать два провода (желательно медные). Элемент устанавливается в нижней части кулера. К тому же он может соприкасаться с крышкой устройства. Но чтобы предотвратить возможные короткие замыкания фиксируйте всю проводку на решетке либо корпусе.
Элемент Пельтье для кондиционеров своими руками
Если речь идёт об элементе Пельтье для кондиционеров, то он может быть изготовлен только из проводника «ПР12». Дело в том, что этот тип проводников отлично выдерживает аномальные температуры и способен выдавать до 23В напряжения. Сопротивление при этом должно колебаться в пределах 3 Ом. Максимальные перепады температур будут достигать 10 градусов и КПД – 65 процентов. Проводники нужно укладывать в один ряд.
Стоит отметить, что элемент Пельтье может служить в качестве охладителя для видеокарты персонального компьютера. Для изготовления охладителя нужно взять 14 проводников, желательно из меди. Чтобы подключить элемент Пельтье к видеокарте ПК нужно задействовать немодульный проводник. Само устройство монтируется рядом с встроенным кулером на видеокарте. Для закрепления можно использовать маленькие металлические уголки, а для фиксации обычные гаечки.
Если при работе замечаются какие-то интенсивные шумы и прочие неестественные звуки, стоит проверить работоспособность проводки и осмотреть каждый проводник.
Источник: https://elektro.guru/elektrooborudovanie/avtonomnoe-elektrichestvo/elementy-pelte-svoimi-rukami.html
Элемент Пельтье
Все вы знаете, что с помощью электрического тока можно нагревать какие-либо предметы. Это может быть паяльник, электрочайник, утюг, фен, различного рода обогревашки и тд. Но слышали ли вы, что с помощью электрического тока можно охлаждать? “Ну а как же, например, бытовой холодильник” – скажите вы. И будете не правы. В бытовом холодильнике электрический ток оказывает только вспомогательную функцию: гоняет фреон по кругу.
Но существуют ли такие радиоэлементы, которые при подаче на них электрического тока вырабатывают холод? Оказывается существуют ;-). В 1834 году французский физик Жан Пельтье обнаружил поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников.
Или, иными словами, в этом месте наблюдалась пониженная температура. Ну и как положено в физике, чтобы не придумывать новое название этому эффекту, его называют в честь того, кто его открыл. Открыл что-то новое? Отвечай за базар)).
С тех пор зовется такой эффект эффектом Пельтье.
Ну и как тоже ни странно, элемент, который вырабатывает холодок, называют элементом Пельтье. Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого основан на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. ThermoElectric Cooler — термоэлектрический охладитель).
Элемент Пельтье (практика)
Выглядеть он может по-разному, но основной его вид – это прямоугольная или квадратная площадка с двумя выводами. Сразу же отметил сторону “А” и сторону “Б” для дальнейших экспериментов
Почему я пометил стороны?
Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание “разности температур”? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.
Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать мультиметр, который шел в комплекте с термопарой
Сейчас он показывает комнатную температуру. Да, у меня тепло ;-).
Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный – на минус и подаем чуток напряжения, вольта два-три. Я узнал, что у меня сторона “А” охлаждается, а сторона “Б” греется, пощупав их рукой. Если перепутать полярность, ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.
Итак, номинальное (нормальное) напряжение для работы элемента Пельтье – это 12 Вольт. Так как я подключил на красный – плюс, а на черный – минус, то у меня сторона Б греется. Давайте замеряем ее температуру. Подаем напряжение 12 Вольт и смотрим на показания мультиметра:
77 градусов по Цельсию – это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.
Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор. Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.
Подаем 12 Вольт и замеряем температуру стороны А:
7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.
Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример – это фонарик, работающий от тепла руки
Мощность элемента Пельтье
Элемент Пельтье сам по себе считается очень энергозатратным. Регулировка температуры его сторон достигается напряжением. Чем больше напряжение, тем большую силу тока он потребляет. А чем больше силы тока он потребляет, тем быстрее набирает температуру. Поэтому, можно регулировать холодок, тупо меняя значение напряжения).
Вот некоторые значения по потреблению электрического тока элементом Пельтье:
При напряжении в 1 Вольт он кушает 0,3 Ампера. Неплохо)
Повышаю напряжение до 3 Вольт
Кушает уже почти 1 Ампер.
Повышаю до 5 Вольт
Чуть больше полтора Ампера.
Даю 12 Вольт, то есть его рабочее напряжение:
Жрет уже почти 4 Ампера! Грабеж).
Давайте грубо посчитаем его мощность. 4х12=48 Ватт. Это даже больше, чем 40 Ваттная лампочка, которая висит у вас в кладовке).
Если элемент Пельтье такой прожорливый, целесообразно ли из него делать бытовые холодильники и холодильные камеры? Конечно же нет! Такой холодильник у вас будет жрать Киловатт 10 не меньше! Но зато есть один маленький плюс – он будет абсолютно бесшумен :-). Но если нет никакой возможности, то делают холодильники даже из элементов Пельтье.
Это в основном мини холодильники для автомобилей. Также элемент Пельтье некоторые используют для охлаждения процессора на ПК. Получается очень эффективно, но по энергозатратам лучше все-таки ставить старый добрый вентилятор.
Где купить
На Али можно найти даже мини-кондиционер из элемента Пельтье вот по этой ссылке.
На Али этих элементов Пельтье можете выбрать сколь душе угодно!
Вот ссылка на них
Источник: https://www.RusElectronic.com/element-peltje/
Элемент пельтье своими руками
В английском языке термин упоминается как ТЕС — термоэлектрический охладитель. Элемент пельтье своими руками представляет собой температурно электрический преобразователь, который работает по принципу возникновения разницы температур в момент подачи электрического тока. Возможно ли собрать его самостоятельно и какое применение ему найти?
Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.
Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:
- Компактность, удобство установки на самодельное электронное плато.
- Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
- Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.
Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.
Рассмотрим на примере схем, как сделать пельтье своими руками:
- Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
- Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Рисунок 1. Элемент пельтье своими руками: универсальная схема
Далее стоит следовать простой инструкции, как сделать пельтье своими руками:
- Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
- При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
- Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.
Описание технологии и принцип действия
Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.
Рисунок 2. Принцип действия элемента
При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).
При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.
Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:
- Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
- При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
- При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
- Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.
Технические характеристики элемента пельтье
Компонент получил широкое применение в различных холодильных схемах.
Источник: https://nowifi.ru/vyzhivanie-v-dikoy-prirode/105-element-pelte-svoimi-rukami.html
Как сделать своими руками генератор из элементов Пельтье
Элемент Пельтье стал известен миру давно. Еще в 18 веке французский часовщик Жан-Шарль Пельтье совсем случайно для самого себя открыл новый эффект на границе двух металлов: висмута и сурьмы. Он заключался в резком изменении температуры помещенной между контактами капли воды, которая при подведении тока превратилась в лед. Это свойство стало новым для часовщика, потому что до того момента еще ни один ученый мира не излагал в своих материалах подобной информации.
- Как изготовить элемент Пельтье своими руками?
- Изготовление элемента Пельтье из диодов
- Как устроен элемент Пельте?
- Особенности элемента Пельтье
- Формульное отображение
- Генераторный режим элемента Пельтье
- Переносная термоэлектрическая печка с генераторным режимом
Эффект хоть и был интересен, но не нашел практического применения в то время, что было связано с небольшим количеством электронной техники, которой требовалось бы интенсивное охлаждение. Спустя 2 столетия об открытии ученого вспомнили, потому что возникла острая необходимость изготовить устройство, которое могло бы обеспечить качественное охлаждение кристалла греющегося микропроцессора.
В результате многочисленных исследований в этой области и огромного количества практических опытов ученые выяснили, что термоэлектрическая пара может вырабатывать достаточное количество холода для нормальной работы практически любого микропроцессора. А благодаря небольшим размерам их научились встраивать в корпуса микросхем, обеспечивая, таким образом, собственный внутренний генератор холода.
Открытие Жан-Шарля Пельте стало огромным толчком для целой отрасли по производству мобильных холодильных установок. Сегодня свойство термоэлектрического элемента используется в следующей технике:
- переносные холодильники;
- автомобильные кондиционеры;
- портативные охладители;
- фотоаппараты, телескопы и многое другое.
Активно используют для охлаждения микропроцессоров и прочих элементов электронной техники. Кроме прямого эффекта охлаждения, элемент Пельтье многие стали использовать в качестве генератора. Примером чего может стать фонарик на 3 элементах.
Знают немногие, что для осуществления радиосвязи с командованием солдаты ставили на огонь специальный котелок и заваривали чай, готовили кашу и прочие бытовые вещи, а в это время осуществляли передачу необходимой информации по переносной радиостанции.
Особенности элемента Пельтье
К особенностям элемента на основе биметаллических пар следует отнести:
- Компактность. По сравнению с термоэлектрическим эффектом, которым обладает устройство, элемент Пельтье имеет незначительные габариты, но при этом позволяет на десятки градусов понизить температуру микропроцессора, что существенно упрощает системы охлаждения.
- Не требует использования вентиляторов. Благодаря отсутствию движущихся и вращающихся компонентов все устройство не создает лишнего шума и помех, которые могут сильно повлиять на работу компонентов.
- Благодаря каскадному соединению нескольких термоэлементов можно добиться повышенной эффективности охлаждения процессора с минимальными затратами.
- Кроме охладителя, элемент Пельтье можно также использовать в качестве устройства экстренного нагрева, если поменять полярность на обкладках.
Формульное отображение
Эффект Пельтье заключается в протекании тока через контакт двух металлов с разной проводимостью. В результате выделяется тепло или холод, что зависит от направления протекания тока.
В формульном выражении эффект Пельтье можно изобразить:
Q п=П12 j , где П12 – это коэффициент Пельтье. Показатель зависит от типа используемого металла, его термоэлектрических свойств.
Кроме преимуществ, в устройстве можно выделить и некоторые недостатки, к которым следует отнести:
Невысокий КПД. Для того чтобы получить значительный перепад температур, необходимо к обкладкам подводить достаточно большой ток.
Для эффективного отвода тепловой энергии необходимо предусматривать радиатор.
Генераторный режим элемента Пельтье
Открытие Жака-Шарля Пельтье буквально перевернуло мир, так как устройство может использоваться в качестве универсального генератора тепла и холода. Кроме этих функций, был отмечен еще один немаловажный эффект – генераторный режим. Если теплую сторону устройства нагревать, а холодную охлаждать, то на выводах возникает разница потенциалов, и при замыкании цепи начинает течь ток.
Генератор на основе элемента Пельтье можно сделать своими руками и для этого не потребуется особых навыков. Но стоит понимать, что используемый китайскими разработчиками материал не обладает идеальными характеристиками, позволяющими получать максимум энергии. Доступных термоэлектрических модулей в продаже хватит для:
- зарядки мобильных устройств;
- питания светодиодного освещения;
- изготовления автономного радиоприемника и прочих целей.
По этой теме можно найти массу видео с подробным описанием всех этапов. Поэтому если вы хотите сделать термоэлектрический модуль для получения энергии, то это вполне реально.
Первым делом необходимо заказать необходимое количество элементов Пельтье с учетом их характеристик. Устройство с мощностью 10 Вт на том же e — Bay стоит 15$. И этого вполне достаточно будет для зарядки смартфонов. Далее, необходимо обеспечить эффективное теплоотведение.
Для этих целей можно сконструировать систему жидкостного охлаждения с естественной циркуляцией. А горячую сторону нагревать любым источником тепла, в том числе открытым огнем.
В результате любой радиолюбитель может сделать сам великолепный термоэлектрический генератор, который можно взять с собой в поход, на рыбалку или дачу.
Один стандартный элемент-ячейка вырабатывает 5 В и 1 Вт мощности, чего вполне достаточно для небольшого освещения. Например, для изготовления фонарика с подогревом от тепла рук. В продаже имеются и готовые элементы с выходным напряжением до 12 В.
Переносная термоэлектрическая печка с генераторным режимом
Сегодня можно найти массу способов, как сделать своими руками достаточно эффективный термоэлектрический генератор на основе элемента Пельтье. Как один из них – портативная печка с топкой из старого компьютерного блока питания. К одной из сторон корпуса прикрепляется сам термоэлектрический элемент Пельтье через термопасту с радиатором внушительных размеров. Такая установка позволит получить тепло в любом удобном месте, приготовить пищу и зарядить телефон.
Источник: https://instrument.guru/svoimi-rukami/generator-iz-elementov-pelte.html
Холодильник Пельтье — это… Что такое Холодильник Пельтье?
Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.
Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler). Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.
Принцип действия
В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.
При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используются контакт двух полупроводников.
Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Протекающий электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.
Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К.
Достоинства и недостатки
Достоинством элемента Пельтье является небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования.
Недостатком элемента Пельтье является очень низкий коэффициент полезного действия, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Кроме того элементы Пельтье с размерами более 60 мм x 60 мм практически не встречаются. Несмотря на это, элементы Пельтье нашли широкое применение, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.
Применение
Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например элементы Пельтье применяются в маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров и кроме того необходимая мощность охлаждения невелика.
Кроме того элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.
Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров, с тем чтобы стабилизировать длину волны излучения.
В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30 — 40 К ниже, чем с помощью обычных компрессионных охладителей ( до -80 для одностадийних холодильников и до -120 для двухстадийных).
Ссылки
Wikimedia Foundation. 2010.
Теплопроводность керамики элемента пельтье. Элементы Пельтье — охлаждение и нагрев
Явление возникновения термо-ЭДС было открыто немецким физиком Томасом Иоганном Зеебеком в далеком в 1821 году. А заключается это явление в том, что в замкнутой электрической цепи, состоящей из соединенных последовательно разнородных проводников, при условии что их контакты находятся в условиях различных температур, возникает ЭДС.
Данный эффект, названный по имени его первооткрывателя эффектом Зеебека, называют теперь просто термоэлектрическим эффектом .
Если цепь состоит всего из пары разнородных проводников, то такая цепь называется . В первом приближении можно утверждать, что величина термо-ЭДС зависит лишь от материала проводников и от температур холодного и горячего контактов. Таким образом, в небольшом интервале температур термо-ЭДС пропорциональна разности температур холодного и горячего контактов, а коэффициент пропорциональности в формуле называется коэффициентом термо-ЭДС.
Так например, при разности температур в 100°С, при температуре холодного контакта 0°С, пара медь-константан обладает термо-ЭДС величиной в 4,25мВ.
Между тем, термоэлектрический эффект имеет в своей основе три составляющих:
Первый фактор — различие у разных веществ зависимости средней энергии электронов от температуры. В результате, если при нагреве проводника на одном его конце температура выше, то там электроны приобретают большие скорости, чем электроны на холодном конце проводника.
Кстати, у полупроводников с нагревом растет и концентрация электронов проводимости. Электроны с высокой скоростью устремляются к холодному концу, и там происходит накопление отрицательного заряда, а на горячем конце получается нескомпенсированный положительный заряд. Так возникает составляющая термо-ЭДС, называемая объемной ЭДС.
Второй фактор — у разных веществ контактная разность потенциалов зависит от температуры по-разному. Это связано с различием энергии Ферми у каждого из проводников, сведенных в контакт. Контактная разность потенциалов, возникающая при этом, оказывается пропорциональной разности энергий Ферми.
Получается электрическое поле в тонком приконтактном слое, причем разность потенциалов с каждой стороны (у каждого из сведенных в контакт проводников) будет одинаковой, и при обходе цепи по замкнутому контуру, результирующее электрическое поле будет равно нулю.
Но если температура одного из проводников будет отличаться от температуры другого, то в связи с зависимостью энергии Ферми от температуры, изменится и разность потенциалов. В результате возникнет контактная ЭДС — вторая составляющая термо-ЭДС.
Третий фактор — фононное увеличение ЭДС . При условии, что в твердом теле имеет место температурный градиент, количество фононов (фонон — квант колебательного движения атомов кристалла), движущихся в направлении от горячего конца к холодному будет преобладать, в результате чего вместе с фононами большое количество электронов будет увлекаться в сторону холодного конца, и там станет накапливаться отрицательный заряд, пока процесс не придет в равновесие.
Это дает третью составляющую термо-ЭДС, которая в условиях низких температур может в сотни раз превосходить две упомянутые выше составляющие.
В 1834 году французский физик Жан Шарль Пельтье открыл обратный эффект. Он обнаружил, что при прохождении электрического тока через контакт (спай) двух разнородных проводников выделяется или поглощается тепло.
Количество поглощаемого или выделяемого тепла связано с видом спаянных веществ, а также с направлением и величиной протекающего через спай электрического тока. Коэффициент Пельтье в формуле численно равен коэффициенту термо-ЭДС, умноженному на абсолютную температуру. Это явление известно теперь как .
В сути эффекта Пельтье в 1838 году разобрался русский физик Эмилий Христианович Ленц. Он экспериментально проверил эффект Пельтье, поместив каплю воды на место спая образцов сурьмы и висмута. Когда Ленц пропускал через цепь электрический ток, вода превращалась в лед, но когда ученый изменил направление тока на противоположное, лед быстро растаял.
Ученый установил таким образом, что при протекании тока не только выделялось джоулево тепло, но происходило также поглощение или выделение дополнительного тепла. Это дополнительное тепло получило название «тепло Пельтье».
Физическая основа эффекта Пельтье заключается в следующем. Контактное поле в месте спая двух веществ, созданное контактной разностью потенциалов, либо препятствует прохождению пропускаемого через цепь тока, либо способствует ему.
Если ток пропускается против поля, то требуется работа источника, который должен затратить энергию на преодоление контактного поля, в результате чего и происходит нагрев места спая. Ежели ток направлен так, что контактное поле поддерживает его, то работу совершает контактное поле, и энергия отнимается у самого вещества, а не расходуется источником тока. В результате вещество в месте спая охлаждается.
Наиболее выразителен эффект Пельтье у полупроводников, благодаря чему стали возможными модули Пельтье или термоэлектрические преобразователи .
В основе элемента Пельтье два полупроводника, контактирующие между собой. Эти полупроводники отличаются энергией электронов в зоне проводимости, поэтому при протекании тока через место контакта, электроны вынуждены приобретать энергию, чтобы смочь перейти в другую зону проводимости.
Так, при перемещении в более высокоэнергетическую зону проводимости другого полупроводника, электроны поглощают энергию, охлаждая место перехода. При обратном направлении тока электроны отдают энергию, и происходит нагрев дополнительно к джоулеву теплу.
Полупроводниковый модуль Пельтье состоит из нескольких пар , имеющих форму маленьких параллелепипедов. Обычно в качестве полупроводников используют теллурид висмута и твердый раствор кремния и германия. Полупроводниковые параллелепипеды соединены между собой попарно медными перемычками. Эти перемычки служат контактами для теплообмена с керамическими пластинками.
Перемычки расположены так, что с одной стороны модуля только перемычки обеспечивающие переход n-p, а с другой стороны — только перемычки обеспечивающие переход p-n. В результате, при подаче тока, одна сторона модуля нагревается, другая — охлаждается, а если полярность питания сменить на противоположную, то сторона нагрева и охлаждения соответственно поменяются местами. Таким образом, при прохождении тока происходит перенос тепла с одной стороны модуля на другую, и возникает разность температур.
Если теперь одну сторону модуля Пельтье нагревать, а другую охлаждать, то в цепи возникнет термо-ЭДС, то есть будет реализован эффект Зеебека. Очевидно, эффект Зеебека (термоэлектрический эффект) и эффект Пельтье — две стороны одной медали.
Сегодня можно легко приобрести модули Пельтье по относительно доступной цене. Наиболее популярны модули Перьтье типа ТЕС1-12706, содержащие 127 термопар, и рассчитанные на питание 12 вольт.
При максимальном потреблении в 6 ампер, достижима разница температур в 60°С, при этом заявляемый производителем безопасный диапазон рабочих температур — от -30°С до +70°С. Размер модуля 40мм х 40мм х 4мм. Модуль может работать как в режиме охлаждения-нагревания, так и в .
Есть и более мощные модули Пельтье, например TEC1-12715, рассчитанный на 165 Вт. При питании напряжением от 0 до 15,2 вольт, с силой тока от 0 до 15 ампер, данный модуль способен развить разность температур в 70 градусов. Размер модуля также 40мм х 40мм х 4мм, однако диапазон безопасных рабочих температур шире — от -40°С до +90°С.
В таблице ниже приведены данные по модулям Пельтье, широко доступным сегодня на рынке:
Андрей Повный
Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).
В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…
Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.
Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).
Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:
Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…
Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.
Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.
Ну а с оставшимся сухим льдом можно поступить следующим образом:
PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.
Элементом Пельтье принято называть преобразователь, который способен работать от разности температур. Происходит это путем протекания электрического тока по проводникам через контакты. Для этого в элементах предусмотрены специальные пластины. Тепло от одной стороны переходит в другую.
На сегодняшний день указанная технология является востребованной в первую очередь из-за значительной мощности теплоотдачи. Дополнительно устройства способны похвастаться компактностью. Радиаторы для многих моделей устанавливаются слабенькие. Связано это с тем, что тепловой поток довольно быстро остывает. В результате нужная температура поддерживается постоянно.
Подвижных частей указанный элемент не имеет. Работают устройства абсолютно бесшумно, и это является несомненным преимуществом. Также следует сказать, что эксплуатироваться они способны очень долго, а случаи поломок возникают крайне редко. Самый простой тип состоит из медных проводников с контактами и соединительными проводами. Дополнительно с охлаждающей стороны имеется изолятор. Изготовляют его, как правило, из керамики или
Зачем нужны элементы Пельтье?
Элементы Пельтье чаще всего используются для изготовления холодильников. Обычно речь идет о компактных моделях, которые могут применяться, к примеру, автомобилистами в дороге. Однако на этом область применения устройств не подходит к концу. В последнее время элементы Пельтье активно начали устанавливать в звуковую, а также акустическую технику. Там они способны выполнять функции куллера.
В результате охлаждение усилителя устройства происходит без какого-либо шума. Для портативных компрессоров элементы Пельтье являются незаменимыми. Если говорить о научной отрасли, то ученые применяют данные устройства для охлаждения лазера. При этом можно добиться значительной стабилизации волны изучения у светодиодов.
Недостатки моделей Пельтье
Казалось бы, такое простое и эффективной устройство лишено недостатков, однако они имеются. В первую очередь специалисты сразу отметили малую пробивную способность модуля. Это говорит о том, что у человека возникнут определенные проблемы, если он захочет охладить прибор, который работает от сети с напряжением 400 В. В данном случае частично поможет решить эту проблему специальная диэлектрическая паста. Однако пробой тока все равно будет высоким и обмотка элемента Пельтье может не выдержать.
Дополнительно указанные модели не советуют применять для точной электроники. Поскольку в конструкции элемента имеются металлические пластины, то чувствительность транзисторов может нарушаться. Последним недостатком элемента Пельтье можно назвать малый коэффициент полезного действия. Достигнуть значительной разности температур указанные устройства не способны.
Модуль для регулятора
Сделать элемент Пельтье своими руками для регулятора довольно просто. Для этого следует заранее заготовить две металлические пластины, а также проводку с контактами. В первую очередь для установки готовят проводники, которые будут располагаться у основания. Обычно их закупают с маркировкой «РР».
Дополнительно для нормального контроля температуры следует предусмотреть полупроводники на выходе. Они необходимы для того, чтобы быстро отдавать тепло на верхнюю пластину. Для установки всех элементов следует использовать паяльник. Чтобы доделать элемент Пельтье своими руками, в последнюю очередь подсоединяют два провода. Первый монтируется у нижнего основания и фиксируется у крайнего проводника. Соприкосновения при этом с пластиной следует избегать.
Далее крепят второй провод у верней части. Фиксация осуществляется также к крайнему элементу. Для того чтобы проверить работоспособность устройства, применяют тестер. Для этого два провода нужно подсоединить к прибору. В результате отклонение напряжения должно составить примерно 23 В. В данной ситуации многое зависит от мощности регулятора.
Холодильники с терморезистором
Как сделать элемент Пельтье своими руками для холодильника с терморезистором? Отвечая на этот вопрос, важно отметить, что пластины для него подбираются исключительно из керамики. При этом проводников используется около 20 штук. Это необходимо для того, чтобы перепад температуры был более высоким. Повысить можно до 70 %. В данном случае важно рассчитать
Сделать это можно исходя из мощности оборудования. Холодильник на жидком фреоне в этом случае походит идеально. Непосредственно элемент Пельтье устанавливается возле испарителя, который располагается рядом с мотором. Для его монтажа потребуется стандартный набор инструментов, а также прокладки. Они необходимы для того, чтобы оградить модель от пускового реле. Таким образом, охлаждение нижней части устройства будет происходить намного быстрее.
Чтобы добиться получения разницы в температурах (эффект Пельтье) своими руками, проводников может понадобиться не менее 16 штук. Главное при этом — надежно изолировать провода, которые будут подключаться к компрессору. Для того чтобы сделать все правильно, нужно в первую очередь отсоединить осушитель холодильника. Только после этого есть возможность соединить все контакты. По завершении установки предельное напряжение следует проверить при помощи тестера. При нарушении работы элемента в первую очередь страдает терморегулятор. В некоторых случая происходит его
Модель для холодильника 15 В
Делается холодильник Пельтье своими руками с малой Крепятся модули в основном возле радиаторов. Для того чтобы надежно их закрепить, специалисты используют уголки. К фильтру элемент не должен прислоняться, и это следует учитывать.
Чтобы доделать термоэлектрический модуль Пельтье своими руками, нижнюю пластину в основном выбирают из нержавеющей стали. Проводники, как правило, применяются с маркировкой «ПР20». Нагрузку они максимум способны выдерживать на уровне 3 А. Максимальное отклонение температуры способно достигать 10 градусов. В этом случае коэффициент полезного действия может составлять 75 %.
Элементы Пельтье в холодильниках 24 В
Используя элемент Пельтье, холодильник своими руками сделать можно только из проводников с хорошей герметизацией. При этом они для охлаждения должны укладываться в три ряда. Рабочий ток в системе обязан поддерживаться на уровне 4 А.. Проверить его можно при помощи обычного тестера.
Если использовать керамические пластины для элемента, то максимального отклонения температуры можно добиться в 15 градусов. Провода к конденсатору устанавливаются только после того, как будет подложена прокладка. Закрепить ее на стенке устройства можно разными способами. Главное в данной ситуации — не использовать клей, который чувствителен к температурам свыше 30 градусов.
Элемент Пельтье для автомобильного охладителя
Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.
Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой «ПР20». Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.
Как сделать элемент для кулера питьевой воды?
Для фиксации их можно воспользоваться обычными гаечками. Появление излишнего шума при эксплуатации говорит том, что устройство работает не должным образом. В данном случае необходимо проверит целостность проводки. Также нужно осмотреть проводники.
Элемент Пельтье для кондиционера
Чтобы качественно сделать элемент Пельтье своими руками для кондиционера, пластины используют двойные. Минимальная их толщина должна составлять не менее 1 мм. В таком случае можно надеяться на температурное отклонение в 15 градусов. Производительность кондиционеров после оснащения модулей в среднем увеличивается на 20 %. Многое в данной ситуации зависит от температуры окружающей среды. Также следует учитывать стабильность напряжения от сети. При небольших помехах нагрузка устройством выдерживается примерно 4 А.
При пайке проводников их следует размещать не слишком близко друг к другу. Чтобы правильно доделать модули Пельтье своими руками, входные и выходные контакты надо устанавливать только на одну из двух пластин. В таком случае прибор получится более компактным. Грубой ошибкой в данной ситуации будет подключать модуль непосредственно к блоку. Это приведет к неминуемой поломке элемента.
Установка модуля на конденсатор
Чтобы установить модуль Пельтье своими руками, важно оценить мощность конденсатора. Если она не превышает 20 В, то элемент следует монтировать с проводниками, на которых указана маркировка «ПР30» или «ПР26». Для того чтобы закрепить модуль Пельтье (элемент) своими руками на конденсаторе, используют маленькие металлические уголки.
Лучше всего их устанавливать по четыре на каждую из сторон. По производительности конденсатор, в конечном счете, способен прибавить плюс 10 %. Если говорить о теплопотерях, то они будут незначительными. Коэффициент полезного действия прибора в среднем равняется 80 %. Для высоковольтных конденсаторов модули не рассчитаны. В данном случае не поможет даже большое количество проводников.
Элемент Пельтье – это специальный термоэлектрический преобразователь, который работает по одноименному принципу Пельтье – возникновении разности температур во время подачи электрического тока. В английском языке чаще всего упоминается как ТЕС, что в переводе означает термоэлектрический охладитель.
Как работает элемент Пельтье
Работа элемента Пельтье базируется на контакте двух токопроводящих материалов, которые обладают разным уровнем энергии электронов в зоне проводимости. При подаче электрического тока через подобную связь, электрон приобретает высокую энергию , чтобы потом перейти в более высокоэнергетическую зону проводимости другого полупроводника. В момент поглощения этой энергии осуществляется охлаждение места охлаждения проводников. Если же ток протекает в обратном направлении – то это приводит к нагреванию места контакта и к обычному тепловому эффекту.
Если с одной стороны сделать хороший отвод тепла, например, при использовании радиаторных систем, то холодная сторона сможет обеспечить очень низкую температуру, которая на десятки градусов будет ниже температуры окружающего мира. Величина тока пропорциональна степени охлаждения. Если же сменить полярность электрического тока, то стороны (тёплая и холодная) просто поменяются местами.
В контакте с металлической поверхностью элемент Пельтье становится настолько малым, что его практически невозможно заметить на фоне омического нагрева и других эффектов теплопроводности. Именно поэтому на практике применяется два полупроводника.
Количество термопар может быть самым разнообразным – от 1 до 100 , за счёт чего можно сделать элемент Пельтье практически с любыми показателями холодильных мощностей.
Практическое применение
В наше время элементы Пельтье активно применяются для:
- холодильников;
- кондиционеров;
- автомобильных охладителей;
- кулеров для воды
- видеокарт ПК;
Элемент Пельтье получил широкое применение в различных холодильных системах, в том числе и среди холодильников и кондиционеров. Возможность достигать очень низких температур делает его превосходным решением для охлаждения электрических приборов или технического оборудования, подвергающегося нагреву. Сегодня разработчики применяют элементы Пельтье в акустических и звуковых системах, где они выполняют роль обычного куллера. Отсутствие интенсивных звуков делает процесс охлаждения практически бесшумным, что является прекрасным преимуществом элемента.
В наше время подобная технология пользуется большой популярностью за счёт очень мощной теплоотдачи . К тому же, современные элементы Пельтье отличаются очень компактными габаритами, а их радиаторы способны хранить нужную температуру на протяжении длительного времени. Ещё одним преимуществом элементов Пельтье является их долговечность, т.к. они состоят из цельных неподвижных элементов, что уменьшает вероятность поломок. Конструкция самого распространённого типа выглядит очень просто и включает в себя два медные проводника с контактами и соединительными проводами, также изолирующий элемент, который изготовляется из нержавеющей стали или керамических материалов.
Учитывая простоту конструкции, сделать элемент Пельтье своими руками в домашних условиях совсем несложно. Его можно будет использовать для холодильников или прочих приборов . Перед началом работ вам нужно подготовить две металлические пластины и проводку с контактами. Изначально подготовьте проводники, которые необходимо установить у основания элемента. Как правило, применяются проводники с маркировкой «РР».
Также стоит заранее позаботиться об полупроводниках на выходе. Они будут применяться для отдачи тепла на верхнюю пластину. В процессе установки задействуйте паяльник. На конечном этапе нужно присоединить два провода. Первый устанавливается у основания и прочно закрепляется возле крайнего проводника. Важно учесть, чтобы любые соприкосновения с пластиной были устранены.
Второй проводник прикрепляется у верхней части. Фиксируется он таким же образом, как и первый – к крайнему проводнику. Чтобы проверить функциональность устройства стоит применить тестер. Просто соедините два провода к прибору и проверьте вольтаж. Отклонение напряжения будет составлять где-то 23 В .
Как сделать элементы Пельтье для холодильника?
Элементы Пельтье своими руками для холодильника изготавливаются также просто и быстро. Первое, что нужно учесть перед работами, это – материал пластины. Это должна быть прочная керамика. Что касается проводников, то их нужно подготовить не меньше 20-ти штук , что позволит добиться максимального перепада температур. При правильном расчете коэффициент полезного действия может быть увеличен на 70%.
Многое зависит от мощности используемого оборудования. Если холодильник работает на основе жидкого фреона, то проблем с мощностью никогда не будет. Элемент Пельтье, который был изготовлен своими руками устанавливается непосредственно возле испарителя, который установлен вместе с мотором. Для подобного монтажа вам понадобится запастись самым стандартным набором инструментов и прокладками. Они будут применены для элемента модели от пускового реле. С помощью подобного решения охлаждение в нижней части устройства произойдёт намного быстрее.
Стоит помнить, что перед тем как сделать элемент Пельтье для холодильника своими руками, вам нужно запастись достаточным количеством электрических проводников. Для того чтобы добиться разницы в температурах при разработке элемента своими руками, используйте не меньше 16 проводов . Обязательно обеспечьте им качественную изоляцию и только тогда подключайте к компрессору. Убедившись в надёжности и безопасности связи между проводами можно переходить к их соединению. После завершения установки ещё раз проверьте силу предельного напряжения с помощью тестера. Если работа элемента была нарушена, это первым делом скажется на терморегуляторе. Иногда случается его короткое замыкание.
Помимо холодильников, элементы Пельтье активно применяются и в автомобильных охладителях. Сделать качественный автомобильный холодильник своими руками тоже достаточно просто. Для этого необходимо найти хорошую керамическую пластину с толщиной не меньше 1.1 миллиметра. Провода должны быть немодульными. В качестве проводников лучше всего использовать медные провода с пропускной способностью не меньше 4 Ампера .
В связи с этим максимальное отклонение температур будет доходить до десяти градусов, что считается нормой. В частых случаях используются проводники с маркировкой «ПР20», которые сумели отличиться максимальной надёжностью и стабильностью работы. К тому же они подходят для различных типов контактов. При соединении устройства с конденсатором стоит применить паяльник.
Как сделать элемент Пельтье для кулера питьевой воды?
Кулер питьевой воды – это очень важное и необходимое устройство, которое вовремя охлаждает или нагревает питьевую воду. Чтобы ускорить процесс охлаждения , можно применить элемент Пельтье. Сделать его можно так же просто, как и для холодильника или автомобильного охладителя:
- В качестве пластины стоит использовать исключительно керамическую поверхность.
- В устройстве применяется не меньше 12 проводников, которые смогут выдерживать высокое сопротивление.
- Для подключения нужно использовать два провода (желательно медные). Элемент устанавливается в нижней части кулера. К тому же он может соприкасаться с крышкой устройства. Но чтобы предотвратить возможные короткие замыкания фиксируйте всю проводку на решетке либо корпусе.
Элемент Пельтье для кондиционеров своими руками
Если речь идёт об элементе Пельтье для кондиционеров, то он может быть изготовлен только из проводника «ПР12». Дело в том, что этот тип проводников отлично выдерживает аномальные температуры и способен выдавать до 23В напряжения. Сопротивление при этом должно колебаться в пределах 3 Ом. Максимальные перепады температур будут достигать 10 градусов и КПД – 65 процентов. Проводники нужно укладывать в один ряд .
Стоит отметить, что элемент Пельтье может служить в качестве охладителя для видеокарты персонального компьютера. Для изготовления охладителя нужно взять 14 проводников, желательно из меди. Чтобы подключить элемент Пельтье к видеокарте ПК нужно задействовать немодульный проводник. Само устройство монтируется рядом с встроенным кулером на видеокарте. Для закрепления можно использовать маленькие металлические уголки, а для фиксации обычные гаечки.
Если при работе замечаются какие-то интенсивные шумы и прочие неестественные звуки, стоит проверить работоспособность проводки и осмотреть каждый проводник.
Как сделать автомобильный холодильник своими руками • 🚘Авто Новости Онлайн
Сделать автомобильный холодильник своими руками лучше всего на элементах Пельтье. Устройство такого холодильника значительно проще, чем привычного для нас агрегата с компрессором и фреоном в качестве хладагента. Несмотря на то что компрессорный холодильник имеет более высокий КПД, чем работающий на основе эффекта Пельтье, последний предпочтительней использовать в автомобилях. Так как он обладает другими немаловажными преимуществами: меньшими габаритами и бесшумной работой.
Компрессорная климатическая техника все же используется в автомобилях, например, кондиционер. Объясняется это тем, что кондиционер охлаждает большой объем и его не удастся сделать на основе эффекта Пельтье. К тому же кондиционер должен отводить тепло из салона автомобиля дальше, чем позволяет конструкция элемента Пельтье. Если вам достался старый домашний кондиционер, не спешите радоваться, так как вряд ли вам удастся сделать из него автомобильный холодильник.
Охлаждение без компрессора
Эффект Пельтье заключается в том, что при протекании электрического тока через контакт двух полупроводников с различными типами проводимости (p-n переход) в зависимости от направления тока происходит либо его охлаждение, либо нагревание. Объясняется это взаимодействием электронов с тепловым колебанием атомов кристаллической решетки. А при прохождении тока через последовательно соединенные переходы тепловая энергия, поглощенная одним p-n переходом, выделяется на другом.
Если расположить элемент Пельтье так, чтобы один p-n переход был внутри контейнера с хорошей теплоизоляцией, а другой снаружи, то получится небольшой холодильник, которому достаточно питания от автомобильного прикуривателя. Еще один холодильник, работающий без компрессора, – абсорбционный. Сделать холодильник в машину можно и из такого старого агрегата. Но в этом случае конструкция будет зависеть, от того, что вам досталось, поэтому непременно нужно будет поменять нагреватели и терморегуляторы на 12 вольтовые.
Делаем корпус
Для изготовления корпуса вам понадобятся материалы:
- МДФ толщиной 10 мм.
Алюминиевый уголок 1,5×1,5 см.Вытяжные заклепки 3×15 мм.Мебельные шарниры – 2 шт.Замок-защелка типа лягушка.Вспененная фольгированная теплоизоляция толщиной 10 мм.Клеенка на тканевой основе.Клей «жидкие гвозди».Клей ПВА.Герметик.Поролоновый уплотнитель для окон.
Один элемент Пельтье не сможет значительно охладить большой объем, поэтому для одного термоэлектрического элемента не делайте корпус больше чем 40×40×30 см.
Для распила оргалита используйте электрический лобзик или дисковую пилу, если же их нет в вашем арсенале, подойдет и обычная ножовка с мелким зубом. Из листов МДФ при помощи уголков и вытяжных заклепок соберите коробку, которая будет корпусом вашего мини-холодильника. Уголки располагайте изнутри, чтобы заклепки удерживались надежней. Все полости в стыках между деталями конструкции заполните герметиком. После высыхания герметика оклейте внутреннюю поверхность получившегося ящика утеплителем. Используйте для этого «жидкие гвозди».
На верхние торцы стенок наклейте поролоновый уплотнитель. МДФ очень гигроскопичен, поэтому перед оклейкой корпуса его необходимо загрунтовать. Вместо грунтовки разведите водой немного ПВА (в 1 часть клея добавьте 2 части жидкости). Загрунтуйте корпус, дайте ему просохнуть и оклейте его клеенкой. Не оклеивайте дверцу, так как она является радиатором, а оклейка ухудшит ее теплоотдачу.
Монтаж охладителя
Для этого понадобится:
- Элемент Пельтье.
Электрический вентилятор с рабочим напряжением 12 В и крепление для него.4 винта М 3×15 с гайками.Разъем для подключения к гнезду прикуривателя.Два медных, многожильных, изолированных провода. Сечение определите исходя из суммарной мощности элемента Пельтье и вентилятора.Термопаста.Листовой алюминий толщиной 3–4 мм.
Сначала нужно изготовить из алюминия два радиатора, смонтировать между ними охлаждающий элемент и отделить их друг от друга листом теплоизоляции. Эта конструкция будет по совместительству дверкой холодильника. При наружных размерах корпуса 40×40×30 см верхний радиатор должен быть 40×40 см, так как он будет закрывать бокс, а нижний 38×38 см, потому что он должен входить внутрь. Отрежьте от листа утеплителя квадрат 38×38 см, в его центре прорежьте отверстие по размеру охлаждающего элемента и приклейте его к меньшему радиатору на «жидкие гвозди». Припаяйте провода питания к выводам элемента (на вывод красного цвета нужно подавать «+», а на черный «землю»).
Положите большой радиатор вниз, а на него, теплоизоляцией вверх, маленький так, чтобы их центры совпадали. В сантиметре от каждого угла выреза в теплоизоляции просверлите по отверстию Ø 3 мм одновременно в двух радиаторах. Смажьте охлаждающий элемент с обеих сторон теплопроводящей пастой и положите на свободный от утеплителя участок меньшего радиатора охлаждающей стороной к металлу. Накройте его большим радиатором так, чтобы ранее сделанные отверстия совпали, и стяните получившийся сэндвич винтами с гайками до сжатия теплоизоляции и касания радиаторами охладителя. Контролируйте сжатие с помощью штангенциркуля измеряя расстояние между радиаторами. Толщина элемента равна 3,8 мм. После уменьшения зазора до этой величины стягивание пластин радиаторов следует прекратить.
Прикрепите получившуюся дверку к шарнирам, а их к корпусу таким образом, чтобы при ее закрывании меньший радиатор входил внутрь корпуса. Для вывода проводов из корпуса наденьте на них подходящий по диаметру отрезок резиновой трубки.
В верхней пластине рядом с контактами подключения питания охладителя просверлите отверстие размером немного меньше наружного диаметра трубки. Выведите через него провода, оставив трубочку в отверстии, чтобы провод не терся о его края. Прикрепите вентилятор к дверце так, чтобы он был направлен на нее, и подключите его к той же паре проводов. Осталось прикрепить защелку и какую-нибудь ручку для переноски устройства и генератор холода готов.
Выбор сечения провода
Чтобы узнать ток, который потребляет построенный кондиционер, сложите номинальный ток вентилятора с аналогичным параметром охлаждающего элемента. После этого остается только выбрать из справочника соответствующие этому току сечение провода. Фрагмент справочника достаточный для принятия решения в этом случае мы приводим ниже. При длине подключения до 2 м:
Сейчас читают:
Похожие статьи
- ток до 1,5 А, сечение провода – 0,3 мм2;ток – 2,5 А, сечение – 0,5 мм2;ток – 3,5 А, провод – 0,7 квадратов;ток – 7,5 А, провод 1,5 квадрата;ток – 10 А, провод – 2 мм2.
При длине подключения 3 м:
- Iном до 1,5 А, провод – 0,4 мм2;Iном – 2,5 А, провод – 0,8 мм2;Iном – 3,5 А, провод – 1,1 квадрата;Iном – 7,5 А, сечение – 2,3 мм2;Iном – 10 А, сечение – 3,2 квадрата.
Если ваш кондиционер потребляет больший ток, чем тот, на который рассчитан предохранитель прикуривателя, придется подключить его к клеммам аккумулятора через собственную плавкую вставку. Зато вы сэкономите на разъеме для подключения к гнезду прикуривателя.
Сечение одножильного провода S после измерения его диаметра d можно посчитать по формуле – S=π*(d/2)2. Для определения сечения многожильного провода нужно посчитать количество жилок под изоляцией, вычислить сечение одной и умножить на их количество.
Если у вас нет штангенциркуля, диаметр одножильного провода вы можете определить с помощью обычной линейки. Для этого намотайте на отвертку 10 витков провода виток к витку и измерьте линейкой длину получившейся намотки. Поделите результат на 10, и получите диаметр провода.
Требования к питанию
Питание устройства должно быть постоянным током напряжение не более 15 В. Небольшие пульсации не мешают работе. Значит, в особых условиях самодельный кондиционер не нуждается и его можно просто подключать к бортовой сети автомобиля с 12 вольтовым электрооборудованием. Для владельцев автомобилей с напряжением бортовой сети 24 В можно порекомендовать соединять два охлаждающих элемента последовательно.
Преимущества и недостатки термоэлектрических охлаждающих устройств
Термоэлектрический охлаждающий кондиционер на основе эффекта Пельтье обладают следующими преимуществами:
- Высокая удельная мощность охлаждения. При размерах 40×40×3,8 мм один элемент может отводить тепловую энергию мощностью до 57 Вт.Бесшумность работы.Невысокая стоимость. Один элемент стоит не более 3 долларов.Высокая надежность. Время непрерывной работы до выхода из строя достигает 200 тыс. часов.
Недостатки кулеров Пельтье:
- Низкий КПД. Поэтому при большом охлаждаемом объеме тяжело добиться значительной разницы температур противоположных поверхностей.Кондиционер потребляет сравнительно большую мощность. Потребляемый одним элементом ток достигает 6 А.Часть потребляемой мощности расходуется на нагревание радиатора, отдающего тепло в атмосферу.
Сделанный своими руками холодильник, разумеется, не заметит кондиционер либо климат-контроль, но в любом случае облегчит поездки в жаркую погоду.
Источник
Автохолодильник (на элементах Пельтье) своими руками
Пришла пора жаркая погода, а на отдыхе всегда хочется прохладных напитков. Немного помогает термо-пакет, позволяющий поддерживать температуру продуктов, взятых из домашнего холодильника.
Однако большинство из вас отправляется на природу на личном автомобиле и часто приобретает товары по дороге.
В этой статье автор Youtube Channel Techinar расскажет, как он сделал небольшой портативный холодильник с напряжением 12 В, который можно подключить к прикуривателю в машине.
Этот проект относительно прост в изготовлении и не требует сварки.
Материалы.
— Термоэлектрические модули Peltier Tec1-12706
— цифровой термостат 12 дюймов W1209
— цифровой термостат 12 дюймов W1209WK
— теплопроводный клей
— Thermalcaste
— вилка (с предохранителем) для прикуривателя
— Радиаторы для компьютерных процессоров, вентиляторы
— Неодимовые магниты
— Белая светодиодная лента
— Самоклеящаяся пленка Oracal
— Лист пенополистирола толщиной 20 мм
— листовой алюминий, плита
— Ламинат, QSB плита, ДВП, Цветное оргстекло
— клей «Жидкие гвозди», силиконовый герметик, аэрозольная краска
— Провода, припой, термоусадочная трубка, клеммы, разъем питания, переключатель, уплотнительная резина
— наждачная бумага, шурупы, болт М10.
Инструменты, использованные автором.
— цифровой инфракрасный бесконтактный термометр
— электрический лобзик
— болгарка, отрезной диск
— шлифовальная насадка для дисков
— Электрический паяльник с регулируемой температурой
— Нож для снятия ножа
— отвертка, сверла по металлу, метчики
— зажимы, комбинированная угловая линейка, маркер, отвертка, нож, карандаш.
Производственный процесс.
Итак, сердцем этого устройства будут служить два 12В термоэлектрического модуля Peltier Tec1-12706, с заявленной холодопроизводительностью 50 Вт и потребляемым током от 4 до 6 А.
Размеры этих модулей 40х40х3,75 мм.
Для эффективной и долговечной работы модулей им необходимо хорошее охлаждение «горячей» стороны. Для этого автор будет использовать старые радиаторы с вентиляторами для компьютерных процессоров.
Материал внешней части корпуса следует выбирать так, чтобы он не боялся влаги (возможно образование конденсата). Автор решил сделать его из обрезанного ламината, склеив три полосы.
Из этого листа с помощью электролобзика вырезаются панели боковых стенок, крышки, днища и фасада дверей.
Перегородка для задней части корпуса вырезана из плиты QSP (она меньше OSB).
Для соединения деталей конструкции между собой автор дополнительно приклеивает и прикручивает к внутренним сторонам небольшие ламинатные планки короткими шурупами.
В итоге есть такие стенки корпуса.
Все эти элементы совмещены между собой, швы заделаны силиконом.
Обратите внимание, верх и низ корпуса немного выступают вперед, необходимо установить дверцу.
Радиатором охлаждения, который будет располагаться на внутренней задней стенке холодильника, послужит алюминиевый лист толщиной 5 мм.
Из этого материала вырезаются эти уголки и полосы. После обрезки их гранями специальным ножом снимается фаска, а поверхности обрабатываются болгаркой с дисковой шлифовальной насадкой.
Теперь в углах высверливаются центрирующие отверстия под саморезы. Уголки сидят на силиконе, крепятся к корпусу.
Аналогичным образом закрываются открытые концы ламината.
В дверной панели автор вырезал окошко для контроллера, а также сделал вставку из синего оргстекла.
Поддерживать заданную температуру будет 12 в цифровом термостате W1209.
У него кнопки управления слишком короткие, и нажать на них без изготовления удлинителей или перенести на лицевую панель не получится. Поэтому автор удалил реле и две клеммные колодки. Провода от датчика температуры припаяны к плате напрямую.
Кроме того, реле перенесли ближе к термоэлементам, потому что потребляемый ток очень большой, и чем короче и толще будут провода, тем лучше. Также были платы за питание.
В стекле мастер просверлил отверстия для кнопок, контроллер закрепил пластиковой перемычкой и горячим клеем.
Стекло по периметру и дверная коробка уплотнены силиконом.
Кстати, чтобы не заморачиваться с разрезанием окна и боязнью платы можно использовать врезной вариант термостата W1209WK. На одном циферблате отображается текущая температура, а на втором — установленная.
Теперь нужно организовать дверную подвеску.
В нижнем углу дверцы приклеена шпилька, внизу ответное отверстие под нее. А в верхнем углу дверцы просверливается отверстие, в которое вкладывается пружина от зажигалки, и вставляется цилиндрический стержень.
С помощью этой защелки дверь фиксируется на своем месте.
Теплоизоляционным материалом будет пенополистирол толщиной 20 мм.Из нее автор вырезает шесть прямоугольных деталей.
С нижней стороны утеплителя двери вырезал углубление под датчик температуры.
Для выравнивания поверхности датчик приклеивается к алюминиевой пластине с помощью специального теплопроводящего клея.
Все внутренние поверхности покрыты белой пленкой Oracal (оклейка возможна в любом рекламном агентстве).
При желании можно использовать скотч из алюминиевой фольги, он немного улучшит теплоизоляцию.
Затем устанавливается облицовка алюминиевых уголков, и отрезается лишняя пленка.
Радиатором охлаждения послужит прямоугольная алюминиевая пластина, к которой автор прикрепляет два параллелепипеда из алюминиевой пластины толщиной 16 мм. Эти стойки нужны, чтобы элементы Пельтье находились за теплоизоляционным слоем пенополистирола.
В стойках просверливают отверстия для крепления к радиатору и нарезают в них резьбу М3.
Перед установкой термопаста предварительно подключается к стыку опоры и радиатора.
В итоге получается такая конструкция. Элементы Пельтье зажаты между радиаторами, учитывая расположение «горячей» и «холодной» сторон, на соединения наносится термопаста.
Изоляционные пластины закреплены внутри корпуса на силиконе, швы также заделаны.
Автор предоставил фонарик в верхней части холодильника. Это одна секция из трех светодиодов, заключенная в коробку от лезвия ножа.
По периметру корпуса наклеивается штатная уплотнительная резинка для окон.
Элементы Пельтье и вентиляторы подключены параллельно и будут включать команду термостата с помощью реле.
Лампа и плата термостата подключаются непосредственно к разъему питания.
Задняя стенка из ДВП, окрашенная аэрозольной краской. Вентиляторы закреплены таким образом, что они находятся напротив радиаторов.
В верхней части стены сделано отверстие для выхода горячего воздуха, защищенное куском москитной сетки.
Также в двери автор установил пару неодимовых магнитов, а также сделал регулируемые площадки на болтах.Такая конструкция позволит регулировать силу нажатия дверцы.
При включении холодильника от 12 в блоке питания ток около 7,5 А. через некоторое время снижается до 6,35 А.
Начальная температура напитков была 26 градусов.
Автор вынес холодильник на улицу, где температура превышает 27 ° C, и подключил его к автомобильному аккумулятору.
Для измерений автор использует бесконтактный термометр.
Через час при небольшой температуре на контроллере была 15,7 ° С (при том, что датчик расположен далеко от радиатора, а теплоизоляция в этом месте не очень толстая).
Сам радиатор остыл до 6,7 ° C, а напитки — до 10,5.
Вот такой получился холодильник для машины, гаража, мастерской.
Для удобства подключения холодильника в автомобиле рекомендуется использовать вилку прикуривателя.
Конечно, аналог Переносной автомобильный холодильник можно купить на Алиэкспресс, одна из самых дешевых моделей стоит около 2600 рублей. Это устройство также оснащено функцией подогрева, поэтому его можно использовать в холодное время года для подогрева еды или напитков.
Авторская версия имеет почти вдвое больший объем надставки и вмещает четыре по 2 литра с напитком.
Благодарю автора за рекомендацию по изготовлению портативного холодильника на элементах Пельтье!
Конечно, размер холодильника можно сделать как больше, так и меньше. Вы также можете увеличить мощность, установив дополнительные элементы Пельтье или используя элементы большей мощности.
Хорошего настроения, здоровья и интересных идей!
Авторские права можно найти здесь.
Эффект Пельтье — обзор
3.3.1 Термоэлектрические микроохладители
Термоэлектрические охладители (ТЭО), также называемые охладителями Пельтье, представляют собой небольшие электронные тепловые насосы, использующие эффект Пельтье, так что, когда изменение температуры происходит вблизи соединения между разнородными проводниками, через соединение проходит ток. , что приводит к передаче тепла через переход, поскольку тепло переносится носителями заряда. Типичный модуль TEC состоит из ряда чередующихся полупроводниковых термоэлементов n- и p-типа в форме слитков, которые электрически соединены последовательно с металлическими соединительными лентами, зажатыми между двумя электрически изолирующими, но теплопроводными керамическими пластинами, как показано на рисунке 24. (Роу, 1995).Когда на термоэлемент n-типа подается положительное постоянное напряжение, электроны текут от элемента p-типа к верхнему металлическому разъему, а затем к элементу n-типа. Поскольку тепло поглощается электронами в верхнем переходе и эта тепловая энергия уносится от перехода через эффект Пельтье, температура холодной стороны (чипа) снижается. Электроны, переносящие тепловую энергию, перемещаются к нижнему разъему, где избыточное тепло выделяется через внешний теплоотвод. Если смещение изменить на противоположное, устройство будет работать как тепловой насос.Преимуществами ТЕС в целом являются (1) способность локально снижать рабочую температуру микросхемы, (2) возможность интеграции на системном уровне со встроенной электроникой, (3) высокая надежность (> 250 000 ч), (4) без движущихся частей (бесшумный), (5) маленький и легкий, и (6) без газа или химикатов.
Рис. 24. Схема простого охладителя Пельтье.
( Источник : Lasance, C.J.M., Simons, R.E., 2005. Достижения в области высокоэффективного охлаждения для электроники. Electronics Cooling 11, 22–39, http: // www.electronics-cooling.com/articles/.)Термоэлектрические характеристики материала при заданной абсолютной температуре T характеризуются безразмерной добротностью, ZT = σ S 2 T / λ , где S , σ и λ относятся к коэффициенту Зеебека, а также к электрической и теплопроводности материала соответственно. Самая сложная задача в любом термоэлектрическом приложении — найти материалы, которые обеспечивают низкую теплопроводность, чтобы уменьшить тепловые потери из-за теплопроводности между горячей и холодной стороной, и высокую электрическую проводимость, чтобы минимизировать джоулев нагрев и обеспечить большую теплопроводность. для приложенного электрического поля.Для металлов и металлических сплавов отношение теплопроводности к электропроводности является константой (закон Видемана – Франца – Лоренца). Таким образом, металлы с наивысшими возможными коэффициентами Зеебека (~ 10 мкВ K -1 ) дают эффективность только в доле 1%. В ходе исчерпывающего и долгого путешествия по поиску подходящего материала теллурид висмута (Bi 2 Te 3 ) и его сплавы из синтетических высоколегированных полупроводников показали наивысшее значение ZT (около 1 при комнатной температуре).С помощью этих материалов была достигнута мощность теплового насоса в диапазоне от нескольких милливатт до нескольких десятков ватт, а максимальная разница температур составляет около 70 ° C для отвода тепла в резервуар с комнатной температурой. На рисунке 25 показаны теоретический КПД и КПД термоэлектрических охладителей и генераторов для различных значений ZT , которые сравниваются с другими технологиями охлаждения и выработки электроэнергии (Chen and Shakouri, 2002). Однако ТЭО, изготовленные из обычных соединений теллурида висмута ( ZT ~ 1), не могут конкурировать с механическим охлаждением в крупномасштабной технологии охлаждения.Несмотря на свою низкую эффективность, ТЭО используются в таких областях, как (1) охлаждение полупроводниковых лазеров, инфракрасных детекторов, устройств с зарядовой связью, анализаторов крови и микропроцессоров, где требуется точное управление охлаждением ниже температуры окружающей среды и (2) небольшие переносные холодильники и холодильники для пикников (Lasance and Simons, 2005).
Рис. 25. Сравнение термоэлектрической технологии с другими методами преобразования энергии для (а) охлаждения и (б) выработки электроэнергии.
( Источник : Chen, G., Шакури, А., 2002. Теплопередача в наноструктурах для твердотельного преобразования энергии. ASME J. Heat Transf. 124, 242–252.)Наряду с низкой эффективностью, относительно высокая стоимость производства термоэлектрических материалов также ограничивает широкое применение ТЭО для охлаждения электроники или в качестве источника охлаждения для охладителей потребительских товаров (Phelan et al. , 2001 г.), хотя по мере увеличения объемов и создания новых элементов ТИК цены падают и находят все больше приложений ТИК.Обычные методы выращивания кристаллов, такие как метод Бриджмена, для получения теллурида висмута налагают значительные ограничения на размеры термоэлектрических элементов из-за низкого выхода продукции. Слабые связи, удерживающие вместе соседние кристаллы, разваливаются во время обработки пластины. Большое количество исследований было направлено на разработку элементов Пельтье меньшего размера, поскольку охлаждающая способность ТЭО обратно пропорциональна длине его ножки. Обзор последних промышленных усилий можно найти в другом месте (Chu and Simons, 1999; Lasance and Simons, 2005).Биршенк и Джонсон (2005) из Marlow Industries сообщили о новых мелкозернистых микролегированных материалах теллурида висмута, которые могут обеспечивать высокую теплоемкость свыше 40 Вт / см −2 . Nanocoolers Inc. утверждает, что разработала технологию тонкопленочного ТЭО в масштабе пластины, с помощью которой небольшие охладители Пельтье изготавливаются монолитно (Ghoshal, 2005b). Небольшой гибкий термоэлектрический модуль с габаритными размерами 16 мм × 20 мм × 0,05 мм был изготовлен с использованием медной фольги в качестве шаблона (Qu et al. , 2001). На тонкую медную фольгу, предварительно покрытую узорчатым эпоксидным слоем, наносят гальваническое покрытие несколько полосок термопар с микро-Sb – Bi.В качестве еще одного жизнеспособного метода было использовано импульсное осаждение слоев для выращивания высококачественной термоэлектрической тонкой пленки Ca 3 CO 4 O 9 , сформированной поверх аморфного слоя SiO x самоорганизующимся способом (Hu и др. , 2005). Объемный термоэлектрический материал (кубический AgPb m SbTe 2 + m ) с ZT ~ 2,2 при 800 K был синтезирован с использованием стандартного процесса кристаллизации слитков, но при комнатной температуре ZT меньше 1 (Hsu и другие., 2004). Чтобы разработать микромасштабное устройство TEC, Snyder et al. (2003) разработал новый электрохимический процесс, подобный МЭМС, для изготовления термоэлектрического микроколлера, содержащего 126 термоэлементов n-типа и p-типа (Bi, Sb). 2 Te 3 термоэлементов длиной 20 мкм и диаметром 60 мкм. с металлическими перемычками, как показано на рисунке 26. Было продемонстрировано как охлаждение, так и выработка электроэнергии с помощью этого устройства. Однако характеристики еще не были оптимизированы отчасти потому, что электроосажденные термоэлектрические материалы имеют дефектную структуру, которая эффективно снижает их коэффициенты Зеебека.
Рис. 26. (a) Типичное термоэлектрическое устройство, в котором более сотни пар n – p соединены электрически последовательно, но термически параллельно между горячей и холодной стороной. Схема (b) и микрофотографии с помощью сканирующего электронного микроскопа (c) электрохимического термоэлектрического микроустройства, изготовленного с помощью МЭМС.
( Источник : перепечатано с разрешения Macmillan Publishers Ltd.: Снайдер, Дж. Дж., Лим, Дж. Р., Хуанг, К.-К., Флериал, Дж .-П., 2003. Термоэлектрическое микроустройство, изготовленное с помощью электрохимического устройства, подобного МЭМС. процесс.Nat. Матер. 2, 528–531. copyright 2003.)Параллельно с поиском материалов с высоким содержанием ZT , были проведены обширные исследования термоэлектрических свойств низкоразмерных структур, которые показывают многообещающие перспективы в будущих микрокулерах. Новаторская работа Хикса и Дрессельхауса (1993) по наноструктурированным сверхрешеточным материалам для улучшения термоэлектрической добротности вызвала новый интерес и вдохновила большую часть недавних исследований по этой теме. Сверхрешетки состоят из чередующихся тонких слоев различных термоэлектрических материалов, периодически уложенных друг на друга (Böttner et al., 2006). Многие объемные материалы с относительно хорошими термоэлектрическими свойствами были исследованы с помощью сверхрешеточных ТЭО: полупроводники V – VI, такие как Bi 2 Te 3 / Sb 2 Te 3 (Beyer et al. , 2002; Venkatasubramanian и др. , 2001), полупроводники IV – VI, такие как PbTe / PbSe (Бейер и др. , 2002; Harman и др. , 2000), полупроводники IV – IV, такие как Si / Ge (Zeng et al. al. , 1999), и полупроводник V – V, такой как Bi / Sb (Cho et al., 2001). По сравнению с исследованиями объемных материалов, которые направлены на снижение теплопроводности, наноструктуры предоставляют средства для изменения как электронного, так и фононного транспорта за счет использования квантового и классического размерного и интерфейсного эффекта (Chen and Shakouri, 2002). Сообщалось о выдающихся примерах наноструктурированных материалов с высоким ZT (до 2,4) с использованием тонкопленочных сверхрешеток (Венкатасубраманиан и др. , 2001) и сверхрешеток с квантовыми точками (Харман и др., 2002). Venkatasubramanian et al. (1999) использовали низкотемпературную металлоорганическую эпитаксию для формирования гетерогенной сверхрешеточной структуры Bi 2 Te 3 / Sb 2 Te 3 с одним из отдельных слоев размером всего 10 Å. Ожидаемая диаграмма зон гетероструктуры типа квантовых ям с различными короткими периодами (10–50 Å) показана на рисунке 27 (а), и эта сверхкороткая сверхрешетка обеспечивает значительно более высокую подвижность в плоскости и в то же время больше фононное обратное рассеяние на границе раздела, что снижает теплопроводность.С ZT ~ 2,4 для их устройства p-типа, COP, показанный на рисунке 27 (b), должен быть сопоставим с типичными механическими холодильными системами (COP = 2 ~ 4) в сочетании с аналогичной конструкцией ZT n-типа. , с оценкой плотности мощности охлаждения до 700 Вт / см −2 при 353 K, что более чем в 300 раз больше, чем у объемного материала (Venkatasubramanian et al. , 2001). Харман и др. . (2000) использовали молекулярно-лучевую эпитаксию для выращивания легированного Bi (n-типа) PbSe 0.98 Te 0,02 Самоорганизованные сверхрешетки из квантовых точек / PbTe показали значительно более высокое значение ZT (~ 2), чем их соответствующие объемные материалы. Считается, что увеличение значений ZT может быть результатом дельта-функции в состояниях электронной плотности, повышенного рассеяния фононов (Harman и др. , 2002) и, возможно, фильтрации энергии электронов (Shakouri, 2004). ). Совсем недавно Zhang et al. (2006a) продемонстрировал трехмерный кремниевый микрохолодильник, который мог охлаждать максимум до 1.2 ° C при комнатной температуре и простая интеграция микрокуллера в кремниевый чип для удаления горячих точек.
Рис. 27. (a) Предполагаемая зонная диаграмма Bi 2 Te 3 / Sb 2 Te 3 граница раздела сверхрешетки и (b) потенциальный КПД как функция ZT с другими технологиями охлаждения.
( Источник : перепечатано с разрешения Macmillan Publishers Ltd.: Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., 2001.Тонкопленочные термоэлектрические устройства с высокими показателями эффективности при комнатной температуре. Nature 413, 597–602, авторское право 2001.)Прямое профилирование коэффициента Зеебека, S , через полупроводниковый p – n-переход с нанометровым разрешением было исследовано с помощью сканирующей термоэлектрической микроскопии, чтобы лучше понять влияние малых размеров. и наноразмерные структуры на S (Lyeo et al. , 2004). Тщательное знание зависимости наноструктур от коэффициентов Зеебека, а также тепловой и электрической проводимости поможет спроектировать и оптимизировать эти термоэлектрические охладители на сверхрешетках.Теоретические трактовки со строгими обзорами прогресса исследований низкоразмерных термоэлектрических материалов можно найти в других источниках (Böttner et al. , 2006; Chen, 2006; Chen and Shakouri, 2002; Chen et al. , 2003; DiSalvo, 1999; Шакури, 2004; Тритт, 2001). В качестве примера прогресса группа Маджумдара из Калифорнийского университета в Беркли недавно исследовала термоэлектрические свойства соединений металл-молекула с помощью сканирующей туннельной микроскопии и представила возможность разработки недорогих и эффективных молекулярных ТЕС (Reddy et al., 2007).
Для чего ДЕЙСТВИТЕЛЬНО годится термоэлектрический охладитель …
Сказки… вечные двигатели… Не все сказки — вечные двигатели, но все вечные двигатели, безусловно, сказки. Однако, прежде чем я углублюсь в специфику термоэлектрических охладителей, уместно подготовить почву для этой конкретной категории сказок.
Есть два классических типа «машин» с вечным двигателем, которые называются (не очень творчески) машинами «типа 1» и «типа 2» (или в равной степени творчески, машины «1-го типа» и «2-го типа»).Машины типа 1, скорее всего, вам сразу знакомы. Они нарушают Первый закон термодинамики , который гласит, что энергия не может быть создана или уничтожена, а только преобразована из одной формы в другую. Как правило, машины Типа 1 включают в себя какой-то вращающийся механизм, который благодаря явно продуманной конструкции позволяет всегда генерировать крутящий момент в постоянном направлении (или, возможно, в чередующемся направлении, но в среднем в одном направлении). В отсутствие трения (или нагрузки) они будут двигаться вечно без какой-либо дополнительной энергии.Машины типа 1 настолько легко найти, что Патентное ведомство США не принимает заявки на машины этого типа без работающей модели. В редких случаях, когда он предоставляется, «ум» неизменно заключается в том, чтобы спрятать где-нибудь небольшой источник энергии, а работа патентного инспектора — быть умнее изобретателя и найти его! Наиболее вопиющие примеры машин типа 1 — это когда изобретатель фактически утверждает, что ведет нагрузку, даже если для машины нет источника энергии. Более хитрые примеры не скрывают того факта, что у них есть источник энергии, они просто утверждают, что выдают больше энергии, чем получают.Например, несколько лет назад меня попросили оценить «генератор свободной энергии с нулевым зацеплением», который утверждал, что вырабатывает больше электроэнергии, чем вводимая ветряная турбина. (В этом случае я считаю, что изобретатель не был не вводил в заблуждение намеренно, но он совершенно не знал, как измерить электрическую мощность!)
Машины типа 2 более тонкие. Они нарушают Второй закон термодинамики , который гласит, что энтропия не может быть уменьшена (в закрытой системе). Энтропия — это концепция, которую немного сложно понять, не говоря уже о количественной оценке, но очень часто ее можно свести к простому наблюдению, что тепло никогда не может пассивно перетекать из более холодного места в более горячее.Если это происходит, значит, вы либо упустили что-то важное, либо у вас есть настоящий вечный двигатель типа 2. Я вспоминаю (смущающе) экзамен на моем первом курсе термодинамики в бакалавриате. Нас попросили оценить любопытную (и подозрительно звучащую) штуку, называемую «вихревой трубкой». В вихревой трубе сжатый воздух подается в основание Т-образной трубы, и, что удивительно, холодный воздух выходит из одной ветви Т, а горячий воздух выходит из другой ветви Т. Я был достаточно подозрительным, чтобы поймите, что это означало, что некоторая энергия каким-то образом двигалась «вверх» от температуры входящего потока к более горячей выходной ветви.Постановка задачи была очень конкретной и включала массовые расходы, температуры и давления, поэтому я приступил к вычислениям, показывающим, что даже несмотря на то, что чистая энергия не создавалась, чистая энтропия выходящих воздушных потоков была меньше, чем энтропия набегающего воздушного потока, что доказывает его невозможность. Оказывается, вихревые трубки — это реально! Я сделал ошибку в расчетах, хотя профессор был достаточно великодушен, чтобы отдать мне частичную заслугу, по крайней мере, за то, что я подумывал о поиске нарушения 2-го закона.Я хочу сказать, что второй закон необходимо учитывать всякий раз, когда вы пытаетесь «перекачать» энергию из холодного места в более горячее.
Введите Термоэлектрические охладители (или ТЕС) . Это маленькие умные гаджеты, в которых используется хорошо зарекомендовавший себя эффект Пельтье. Они похожи на обратные термопары. Вы, наверное, сами где-то видели их в виде охладителя пива или чего-то подобного. Они явно работают (и запатентованы). Одна из самых замечательных особенностей них — то, что у них нет движущихся частей, и они могут быть полностью бесшумными.Вы подаете электричество на клеммы устройства, и одна «сторона» устройства становится холодной («внутренняя» в случае холодильника на колесах), в то время как другая сторона (или снаружи) становится горячей. Очевидно, что если температура окружающей среды находится где-то между этими двумя крайними значениями, тепло обязательно будет вытекать из горячей стороны в окружающую среду, а тепло будет поступать в холодную сторону устройства из окружающей среды (или чего бы то ни было, например ваше пиво). Если вы обратите внимание, вы сделаете два вывода: 1) это может быть действительно умный способ охлаждения электроники без использования вентиляторов или жидких охлаждающих жидкостей; и 2) если это не нарушает 2-й закон, есть один важный момент, который мы еще не удосужились рассмотреть (и он может укусить нас в конце концов).
Вот эта штука. Она называется КПД Карно тепловой машины. При применении он дает вам быструю оценку, основанную на задействованных температурах, количества дополнительного тепла, которое вам нужно добавить в систему охлаждения, чтобы переместить часть этого тепла из более холодного места в более горячее. (Фактически, это то, что позволяет вам избежать нарушения 2-го закона). В качестве аргумента может оказаться, что для вывода 1 Вт из разветвления вам нужно добавить еще 1 Вт, а это означает, что ваш последний радиатор должен отклонять 2 Вт в окружающую среду вместо исходной 1 Вт.Откуда берется лишняя энергия? Через эти милые, тихие электрические клеммы. Приложение вольт, умноженное на количество подаваемого ампера, равняется дополнительной энергии, которой раньше не было.
Ага, вот в чем загвоздка! Конечно, вы можете создать миниатюрный охладитель Пельтье и снизить температуру перехода (T j , «внутренняя часть» электронного компонента) до чего-то более прохладного, чем окружающая среда, или даже — не будем жадничать — просто сделать ее ниже это было без кулера! Проблема в том, что когда вы включаете кулер, вы получаете , добавляя энергии ко всей системе, чтобы получить более низкое значение T j .С точки зрения макромасштабного термического аналитика, это обычно неправильно, потому что чаще всего у вас уже были проблемы с отводом всего тепла из вашей системы. (Действительно, эта проблема заключается в том, почему ваш T j был горячее, чем вы хотели вначале.) Например, сопротивление вашей печатной платы может быть в 2 раза ниже, чем было раньше (больший теплоотвод, больший вентилятор и т. Д.) , чтобы отклонить тепло, добавил кулером, чтобы получить более низкую Т j .Но если бы вы могли это сделать, то у вас должно было бы быть только , сделавшее , то есть без , добавляющего кулер — и вы все равно снизили бы свой T j на кучу!
Теперь я могу подумать о нескольких ситуациях, когда TEC может быть отличным выбором, но вы должны быть очень уверены в своих расчетах. Во-первых, когда у вас очень небольшая локализованная концентрация тепла и вы можете позволить себе снизить температуру в этом месте за счет небольшого нагрева всего остального вокруг него.Во-вторых, когда вам действительно нужно контролировать температуру определенного устройства в электронной системе, например, датчика изображения (где так называемый «темновой ток» является серьезной проблемой и быстро увеличивается с температурой). В последнем случае у вас должен быть некоторый запас в «тепловом бюджете» вашей системы, потому что с точки зрения системы вам нужно будет избавиться от некоторого дополнительного тепла.
Мой совет — очень внимательно подумайте, действительно ли TEC подходит для решения вашей проблемы с охлаждением электроники.И использование его для охлаждения пива тоже может быть не лучшим выбором, если вы собираетесь тщательно подумать об охлаждении своей электроники! Ты будешь судьей!
Модули Пельтье для термоэлектрического охлаждения
Термоэлектрическое охлаждение быстро стало применяться на практике для многих типов электронного оборудования. Устройства, представленные на рынке сегодня, компактны, эффективны и — благодаря усовершенствованной внутренней конструкции — преодолевают традиционные проблемы надежности, которые ограничивали возможности для этого типа устройств в прошлом.
Поддержание стабильной температуры электронных компонентов, таких как лазерные диоды или датчики изображения, жизненно важно для обеспечения правильной работы таких инструментов, как мощные лазеры, лабораторные эталоны, спектроскопы или системы ночного видения. В некоторых случаях может потребоваться охлаждение до температуры ниже температуры окружающей среды. Простое пассивное охлаждение, использующее комбинацию радиатора и принудительной подачи воздуха, не может удовлетворить любое из этих требований; реакция на изменения тепловой нагрузки может быть медленной и неточной, а охлаждение зависит от температурного градиента, когда температура источника тепла выше температуры окружающей среды.
В качестве альтернативы обычно используемым методам пассивного охлаждения термоэлектрическое охлаждение может предложить множество преимуществ. К ним относятся точный контроль температуры и более быстрая реакция, возможность безвентиляторной работы (в зависимости от характеристик радиатора), снижение шума, экономия места, снижение энергопотребления и возможность охлаждения компонентов до температур ниже окружающей среды.
Элементы Пельтье: принципы и устройство
Внутренняя структура элемента Пельтье состоит из полупроводниковых таблеток, изготовленных из материалов теллурида висмута N-типа и P-типа.Матрица гранул электрически соединена последовательно, но термически расположена параллельно, чтобы максимизировать теплопередачу между горячей и холодной керамическими поверхностями модуля (рис. 1).
Рисунок 1. Внутренняя структура типового элемента Пельтье (Источник изображения: устройства CUI)
Термоэлектрическое охлаждение использует эффект Пельтье, который наблюдается как тепло, которое либо поглощается, либо выделяется между соединениями двух разнородных проводников при прохождении тока.Термоэлектрический модуль, содержащий элемент Пельтье, расположенный между двумя керамическими пластинами с высокой теплопроводностью, с источником питания, способен эффективно перекачивать тепло через устройство от одной керамической пластины к другой. Более того, направление теплового потока можно изменить, просто изменив направление тока на противоположное.
Приложение постоянного напряжения заставляет положительные и отрицательные носители заряда поглощать тепло от одной поверхности подложки и передавать и отдавать его подложке на противоположной стороне.Следовательно, поверхность, на которой поглощается энергия, становится холодной, а противоположная поверхность, на которой выделяется энергия, становится горячей.
Строительство холодильного агрегата
Для создания практичного термоэлектрического охлаждающего устройства модуль Пельтье встраивается в систему, которая обычно состоит из металлического блока с высокой теплопроводностью, такого как алюминиевый сплав, и ребристого радиатора (рис. 2). Металлический блок используется для прикрепления охлаждаемого устройства, такого как лазерный диод или датчик изображения, к холодной стороне охлаждающего элемента.Толщина блока выбирается для сохранения плоскостности и, таким образом, обеспечения постоянного теплового соединения с холодной пластиной элемента Пельтье, учитывая, что чрезмерная толщина приведет к нежелательной тепловой инерции. Радиатор прикреплен к противоположной стороне или горячей пластине элемента Пельтье, чтобы отводить извлеченное тепло в окружающую среду. На каждую поверхность наносится тонкий слой термопасти или другого термоинтерфейса (ТИМ).
Рисунок 2: Элемент Пельтье, алюминиевый блок и радиатор собраны для создания системы охлаждения (Источник изображения: устройства CUI)
Выбор модуля и контроллера
Полная термоэлектрическая система охлаждения включает элемент Пельтье и теплоотвод, датчики температуры для контроля горячих и холодных пластин и блок контроллера, обеспечивающий подачу правильного тока для поддержания желаемой разницы температур в модуле.
Контроллер и модуль Пельтье выбраны таким образом, чтобы тепло от охлаждаемого компонента в сочетании с джоулевым нагревом подаваемого тока могло рассеиваться без превышения максимальной теплоемкости (Q макс. ) или максимальной разницы температур (ΔT макс. ), указанные в таблице данных модуля Пельтье. Также следует учитывать максимальную разницу температур и максимальный ток, чтобы выбранный модуль Пельтье мог поддерживать желаемую разницу температур при работе с подходящим током.Как правило, он должен составлять менее 70% от максимального номинального тока, чтобы гарантировать, что джоулевое нагревание остается в контролируемых пределах, и система может реагировать на кратковременное повышение температуры холодной пластины без возникновения теплового разгона.
Расчет тока и поглощения тепла
Если желаемая разница температур и рабочее напряжение источника питания известны, тепловыделение и рабочий ток могут быть рассчитаны на модуле с использованием функциональных диаграмм, представленных в техническом описании.
В качестве примера функциональные схемы, показанные на рисунке 3, можно использовать для определения накачиваемого и подаваемого тока для температуры горячей пластины (Th) 50 ° C, температуры холодной пластины 10 ° C и напряжения питания 12 В.
Рисунок 3: Расчет настройки с использованием функциональных диаграмм таблицы данных (Источник изображения: устройства CUI.)
Для определения рабочего тока и поглощения тепла:
- Найдите ΔT:
ΔT = T h — T c — 50 ° C — 10 ° C = 40 ° C
- Используйте функциональную диаграмму для T h = 50 ° C, чтобы найти ток для поддержания ΔT = 40 ° C при подаваемом напряжении:
Из диаграммы I = 3.77 А
- Найдите тепловую насосную мощность по функциональной диаграмме при I = 3,77 A и ΔT = 40 ° C:
Из диаграммы Q c = 20,75 Вт
Термическая усталость модулей Пельтье
Термоэлектрические охладители могут быть подвержены термической усталости. Традиционно изготовленные блоки содержат обычные паяные соединения между электрическим межсоединением (медью) и полупроводниковыми элементами P / N, а также паяные или спеченные соединения между межсоединением и керамической подложкой (Рисунок 4).Хотя эти методы соединения обычно создают прочные механические, термические и электрические связи, они негибкие и могут разрушаться и в конечном итоге выходить из строя при повторении циклов нагрева и охлаждения, которые типичны для нормальной работы модуля Пельтье.
Рисунок 4: Пайка и спекание обычного модуля Пельтье (Источник изображения: CUI Devices.)
КомпанияCUI Devices разработала структуру arcTEC ™ для модулей Пельтье для борьбы с эффектами термической усталости.Структура arcTEC заменяет обычную пайку между медным электрическим межсоединением и керамической подложкой на холодной стороне модуля на теплопроводящую смолу. Эта смола обеспечивает эластичную связь внутри модуля, которая допускает расширение и сжатие, возникающие во время повторяющихся циклов термоциклирования. Эластичность этой смолы снижает напряжения внутри модуля, обеспечивая при этом лучшее тепловое соединение и превосходное механическое соединение, и не показывает заметного ухудшения характеристик с течением времени.
Кроме того, специальный припой SbSn (сурьма-олово) заменяет припой BiSn (висмут-олово), обычно используемый между полупроводниковыми элементами P / N и медным межсоединением (Рисунок 5). Припой SbSn имеет более высокую температуру плавления 235 ° C по сравнению со 138 ° C для BiSn, что обеспечивает превосходные характеристики термической усталости и лучшую прочность на сдвиг.
Рисунок 5: Улучшения структуры arcTEC повышают надежность и тепловые характеристики (Источник изображения: CUI Devices.)
Повышение надежности и тепловых характеристик
Чтобы обеспечить дополнительное повышение надежности, элементы P / N структурных модулей arcTEC изготовлены из кремния премиум-класса и в 2,7 раза больше, чем у других модулей. Это обеспечивает более равномерное охлаждение, избегая неравномерных температур, которые способствуют сокращению срока службы. На рисунке 6 показано влияние на распределение температуры путем сравнения инфракрасных изображений обычного модуля Пельтье (вверху) и структурного модуля arcTEC (внизу).Превосходные P / N элементы структурных модулей arcTEC также помогают сократить время охлаждения более чем на 50%.
Рисунок 6: Улучшенное распределение температуры в структурных модулях arcTEC (внизу) по сравнению с обычными модулями (вверху) (Источник изображения: CUI Devices.)
Увеличенный ожидаемый срок службы структурных модулей arcTEC может быть продемонстрирован путем анализа изменения внутреннего сопротивления модулей Пельтье, подверженных термоциклированию. Поскольку изменение сопротивления в модулях Пельтье тесно связано с разрывом связи, анализ тенденции дает полезный индикатор срока службы.Результаты, показанные на Рисунке 7, дополнительно демонстрируют значительное улучшение ожидаемого срока службы, которое стало возможным благодаря структуре arcTEC.
Рисунок 7: Оценка надежности путем мониторинга изменения сопротивления (Источник изображения: устройства CUI.)
Заключение
Хотя физика термоэлектрического охлаждения была понятна на протяжении многих поколений, появление подходящих модулей Пельтье, готовых к использованию в коммерческих электронных продуктах, является относительно новым явлением.Предлагаются многочисленные преимущества, в том числе более быстрый отклик, улучшенная температурная стабильность и большая гибкость для управления температурой критически важных устройств, таких как интегральные схемы, лазерные диоды или датчики. Ожидается, что по мере знакомства дизайнеров с продуктами и методами проектирования появится много новых и инновационных приложений для модулей Пельтье.
Следует проявлять осторожность при выборе модулей Пельтье и проектировании схемы управления, чтобы модули работали в пределах их тепловых ограничений.Самые совершенные на сегодняшний день модули Пельтье, разработанные с гибкими внутренними соединениями и гранулами P / N высокой чистоты, позволили добиться дальнейшего улучшения теплового отклика и надежности.
ресурсов
- Посмотреть полный портфель модулей Пельтье от CUI Devices
- Узнайте больше о термоэлектрическом охлаждении с помощью модуля Пельтье PTM от CUI Devices.
- Подробнее о структуре arcTEC CUI Devices
Отказ от ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.
Охлаждение на эффекте Пельтье
Термоэлектрические охладители воздух-воздух
Что такое эффект Пельтье и как он охлаждается?
Шарль Пельтье впервые обнаружил, что ток, протекающий между двумя переходами, сделанными из разных проводящих материалов, вызывает нагрев и охлаждение в 1834 году! Материалы, которые он тогда использовал, были висмут и медь. Температура повышалась в одном направлении и охлаждалась в другом. Конечно, это явление называется эффектом Пельтье.
Появление полупроводников сделало возможным создание очень маленьких охладителей Пельтье. Использование полупроводников типа P и N в матрице между двумя листами теплопроводящих пластин создает тот же эффект, что и оригинальные эксперименты с медью и висмутом.
Традиционные охлаждающие устройства
Кондиционеры, тепловые насосы, охладители для болот, градирни — это термины, которые большинство из нас слышали при описании методов охлаждения коммерческих зданий и домов. Особенно, если вы живете в теплом климате, где охлаждение почти необходимо.А как насчет охлаждения электронных компонентов, электрических шкафов, небольших помещений, таких как автомобили и кемперы? Часто нецелесообразно использовать системы на основе воды или фреона для охлаждения.
Существует уже давно существующая альтернатива охлаждению небольших участков твердотельной электроникой. Использование эффекта Пельтье — один из наиболее практичных методов. В качестве термоэлектрического кондиционера эти устройства можно использовать там, где нельзя использовать обычные охладители.
Как изготавливаются охладители Пельтье?Можно получить небольшие обычно керамические охладители и сконструировать собственный охладитель с эффектом Пельтье.Теплопроводящие пластины будут становиться горячими и холодными при подаче постоянного тока на сборку. Без возможности рассеять температуру, создаваемую с обеих сторон, создаваемая температура может вывести устройство из строя. Необходимы дополнительные компоненты.
Радиатор необходим для отвода тепла с одной стороны зажатых компонентов. Поверхность на горячей стороне быстро нагревается, когда другая сторона охлаждается. В обратном направлении лед может быть создан на другой поверхности за короткий промежуток времени.За счет добавления радиаторов с обеих сторон передача тепла и охлаждения имеет более практическое применение.
В небольших масштабах устройства можно использовать для отвода тепла от электронных компонентов, таких как микросхема ЦП в компьютерном устройстве. Для больших физических пространств, таких как электрический шкаф, для практического применения вентиляторы должны быть подключены с одной или с обеих сторон.
Независимо от того, должна ли быть установлена система управления большого или малого размера для предотвращения перегрева устройства и контроля температуры.
Каковы области применения и особенности охладителей Пельтье? Типовые области применения термоэлектрических охладителей воздух-воздух:
- Панели управления / внешние корпуса
- Аналитические / медицинские инструменты
- Промышленное оборудование
- Охлаждение продуктов питания и напитков
- Телекоммуникационные шкафы
- Ветряные мельницы
- Охладители воды / вина
- Космические аппараты и спутники
- Корпуса для банкоматов
Термоэлектрические охладители отмечены по:
- Без хладагентов
- Компактный дизайн
- Работа при постоянном токе
- Надежная твердотельная конструкция
- Признано ETL и соответствует требованиям RoHS
- Прочность
- Сокращение времени ремонта и простоя
- Наличие в наличии
Контроль температуры внутри наружных электронных шкафов.
Для наружных шкафов, установленных там, где существуют такие условия, необходимы системы терморегулирования для предотвращения падения температуры ниже точки росы.
Где существуют эти условия? Многие нефтегазовые предприятия расположены в местах, где температура и влажность значительно меняются в зависимости от времени года. Техас, Северная Африка, Ближний Восток — это лишь некоторые из них. На юге Ирака и других нефтяных месторождениях на Ближнем Востоке температура может варьироваться от 125 F до 25 F.Эти температуры включали широкий диапазон влажности и точек росы.
Нагреватели часто используются для поддержания влажности внутри шкафа ниже точки росы. Эти обогреватели устанавливаются в нижней части шкафа, где естественная конвекция переносит тепло через шкаф. Иногда используется вентилятор, чтобы тепло равномерно распределялось по всем поверхностям. Нагреватели с точечной поверхностной проводимостью также могут использоваться для выбранных компонентов, которые могут быть более восприимчивыми к образованию конденсата на их поверхностях.
Летом естественной конвекции и принудительной подачи воздуха недостаточно для поддержания рабочих температур электронного оборудования ниже их критических пороговых значений. Воздухоохладители Пельтье в сочетании с вентиляторами могут сделать это в более отдаленных районах. Нет необходимости в воде или фреоне в пустыне, где одного мало, а другого трудно обслуживать.
Системы контроля температурыВлажность, создающая влагу в шкафах при изменении температуры, может быть проблемой.Одно из решений — включить датчик для определения влажности воздуха.
Датчик влажности (или гидростат) определяет влажность воздуха. Датчик влажности, гигростат, измеряет и сообщает как влажность, так и температуру воздуха. Отношение влажности воздуха к максимальному количеству влаги при определенной температуре воздуха называется относительной влажностью. Относительная влажность становится важным фактором в борьбе с конденсацией.
Когда датчик определяет, что влажность становится слишком высокой по сравнению с температурой, он может включить нагревательные элементы для повышения температуры.Повышение температуры снижает относительную влажность в шкафу и снижает вероятность образования конденсата. Эти типы контуров управления можно найти в вашем домашнем холодильнике, предотвращающем образование конденсата на внутренних стенках и продуктах питания. Обычные бытовые морозильные камеры не имеют защиты от конденсации из-за более низкой температуры, и вы обнаружите лед (конденсат) на поверхности упаковок внутри.
Та же концепция применяется в наружных электронных шкафах, таких как банкоматы, киоски, средства управления светофорами, в промышленных приложениях, таких как нефтегазовая промышленность, ветряные мельницы и т. Д., Установленных в удаленных местах.
Какие элементы управления и устройства доступны в DBK USA .Оребренный воздухонагреватель ПТК Поверхностные нагреватели ПТК Нагреватели конвекции ПТК
Нагреватели вентилятораПТК контролируют термоэлектрические охладители
ПельтирЭксперименты по охлаждению на эффекте Пельтье — Устройства Пельтье
Скачать PDF YouTubeОхлаждающее устройство Пельтье — это термоэлектрический полупроводниковый компонент, который может обеспечивать охлаждение без движущихся частей.Он очень прост в использовании, он может быть как очень холодным, так и очень горячим!
Сегодня мы проведем несколько экспериментов с обычным и недорогим охлаждающим устройством Пельтье.
Введение
Возможность охлаждения воздуха или теплообмена имеет решающее значение во многих ситуациях. От компьютерных микросхем, которые не должны перегреваться, до космических аппаратов, которые должны выдерживать экстремальные температуры, разработка систем охлаждения — это большой бизнес.
Большинство из нас знакомо с кондиционированием воздуха.За счет снижения температуры и влажности они позволяют нам жить и работать в условиях, которые в противном случае были бы неудобными или даже невыносимыми. Даже в прохладном климате кондиционеры используются в центрах обработки данных для поддержания комфортной рабочей температуры оборудования (и персонала).
В обычных системах кондиционирования воздуха используется хладагент или хладагент, который циркулирует по трубам, насосам, испарителям и конденсаторам, чтобы отводить тепло и отводить его наружу. Он эффективен и действенен, но при этом занимает много места.
Существуют также приложения, в которых обычное кондиционирование воздуха нецелесообразно или даже невозможно.
Введите устройство Пельтье. Этот полупроводниковый компонент может осуществлять теплообмен без каких-либо движущихся частей. Он идеально подходит для охлаждения компьютерных микросхем, а также для создания небольших охлаждающих устройств для личного пользования. Он также используется в космических кораблях, поскольку обычное кондиционирование воздуха не работает в условиях низкой гравитации.
Мы не будем строить космические корабли в мастерской, по крайней мере, сегодня.Но мы можем использовать недорогие устройства Пельтье, обеспечивающие охлаждение для небольших проектов, или просто для интересных и увлекательных экспериментов.
Эффект Пельтье
В 1834 году французский физик Жан Шарль Атаназ Пельтье обнаружил, что прохождение тока через два разнородных металла может вызвать повышение или понижение температуры на стыке двух металлов.
Пельтье экспериментировал с проволокой из меди и висмута. Он обнаружил, что когда ток течет от меди к висмуту, на стыке выделяется тепло.Он также обнаружил, что верно и обратное: когда между висмутом и медью протекает ток, соединение становится холоднее.
Это явление стало известно как Эффект Пельтье .
Эффект Зеебека
Эффект, тесно связанный с эффектом Пельтье, — это эффект Зеебека .
Эффект Зеебека назван в честь немецкого физика Томаса Иоганна Зеебека, который открыл этот эффект в 1821 году, однако на самом деле он наблюдался еще в 1794 году итальянским ученым Алессандро Вольта.Если это имя звучит знакомо, Вольта — действительно джентльмен, в честь которого назван Вольт.
Эффект Зеебека по сути противоположен эффекту Пельтье. Эффект Зеебека описывает преобразование тепла непосредственно в электричество на стыке различных типов проводов.
Устройство Пельтье также можно использовать в качестве устройства Зеебека и наоборот, хотя эффективность обоих ограничена. Оба эффекта Пельтье и Зеебека попадают в категорию Термоэлектрические эффекты .
Современные устройства Пельтье
Вместо использования разнородных металлов в современных устройствах Пельтье используются полупроводники.
Полупроводниковый охладитель Пельтье состоит из набора «ножек», состоящих из полупроводникового материала P- или N-типа. «Ножка» создается путем создания нескольких слоев материала подложки, уложенных таким образом, чтобы иметь некоторую высоту.
Эти «ножки» расположены в виде матрицы с чередованием материалов типа P и N.
Проводящий лист помещается под и над матрицей для обеспечения электрических соединений.Затем вся сборка помещается между теплопроводным изолятором, обычно керамическим.
Это тип устройства Пельтье, с которым мы будем экспериментировать сегодня.
Проблемы с модулями Пельтье
МодулиПельтье — очень полезные охлаждающие устройства, но они далеки от совершенства.
Самая большая проблема с модулем Пельтье — его неэффективность. Охладитель Пельтье далеко не так эффективен, как обычное устройство на основе охлаждающей жидкости. Хотя их можно использовать для создания небольших кондиционеров, было бы непрактично использовать их для охлаждения всего здания.
Еще одна проблема — срок службы. Модуль Пельтье не прослужит вечно, эффективность всех термоэлектрических охладителей будет снижаться по мере старения. Честно говоря, обычные системы кондиционирования воздуха также страдают тем же недостатком.
TEC1-12706 Охладитель Пельтье
Устройство Пельтье, которое мы собираемся использовать, представляет собой очень распространенный модуль, охладитель Пельтье TEC1-12706.
Это небольшое устройство размером 40 мм x 40 мм, я измерил толщину своего модуля на 3,75 мм.Это модуль Пельтье стандартного размера, и вы обнаружите, что 40 мм x 40 мм также являются стандартным размером радиатора.
Модуль имеет два вывода: красный и черный. Это для его питания, я использовал 12-вольтовый блок питания для своего модуля. Поскольку модули Пельтье не очень эффективны, вам понадобится хороший ток, чтобы управлять им, я рекомендую использовать блок питания на 6 ампер.
Считывание номера детали
В эксперименте можно использовать и другие модули Пельтье.Эти модули имеют стандартизированную схему номеров деталей, как показано ниже.
Номер детали моего устройства распадается следующим образом:
- TE — это аббревиатура от «Thermoelectric»
- C — Указывает размер модуля. Модуль «C» — это модуль стандартного размера, а модуль «S» — меньшего размера.
- 1 — Указывает количество ступеней или слоев полупроводникового материала. В этой серии большинство имеет только один слой, но модули Пельтье доступны с большим количеством слоев.
- 127 — Количество пар, «пара» — это пара соединений P-N.
- 06 — Номинальный ток устройства в амперах. Обратите внимание, что эти модули не имеют номинального напряжения.
TEC1-12706 Эксплуатация
На моем модуле сторона с маркировкой — это холодная сторона, однако это может быть нестандартно, поэтому я советую вам протестировать свой модуль.
Кстати, вы можете изменить полярность напряжения, подаваемого на модуль Пельтье.В результате тепло будет излучаться с другой стороны модуля. Это хороший способ узнать, если вы устанавливаете модуль в обратном порядке.
Одна вещь, которую вы обнаружите очень быстро, — это то, что вы ДОЛЖНЫ использовать радиатор на горячей стороне, модуль сгорит сам, если вы этого не сделаете, а холодная сторона вообще не станет очень холодной.
Модули Пельтье также не рассчитаны на температуру, при которой они охлаждаются. Вместо этого модуль рассчитан на разницу температур между горячей и холодной сторонами.Таким образом, чем холоднее вы можете сохранить горячую сторону, тем холоднее будет холодная сторона.
Эксперименты с модулем Пельтье
Мы собираемся провести несколько экспериментов с модулем Пельтье. Хотя ни один из этих экспериментов (за исключением, пожалуй, последнего) не имеет практического значения, они дадут вам хорошее представление о степени охлаждения, которую вы можете получить от модуля Пельтье.
Они также покажут вам, как важно использовать хороший радиатор и мощный блок питания.
Быстрое включение
Первый эксперимент посвящен самому простому!
Все, что мы собираемся сделать, это очень ненадолго включить наш модуль, чтобы посмотреть, насколько нагревается горячая сторона.Я подчеркнул «очень кратко», и я имею в виду, что пара секунд — это все, что нужно при подходящем источнике питания.
Сначала я замерил температуру модуля перед его включением. Обратите внимание, что я поместил модуль на приспособление, чтобы удерживать его, вы же не хотите держать его в руке, когда проводите этот эксперимент! Поскольку это может быть ОЧЕНЬ жарко!
В моем случае он показал 20,8 по Цельсию, что примерно соответствует температуре окружающей среды в мастерской, когда я проводил измерения.
Затем я подал питание от своего настольного 12-вольтового блока питания.Это привело к тому, что горячая сторона модулей сразу же нагрелась, и я отключил питание примерно через 2 секунды. Затем я сделал еще одно измерение температуры.
Как видите, буквально за пару секунд температура резко повысилась!
Из-за того, что я держал модуль, «холодная» сторона была совсем не такой холодной, мой джиг отводит тепло в обе стороны. И поскольку модуль Пельтье создает разницу температур, он не был бы таким холодным, даже если бы я использовал устройство для изоляции двух сторон.
Во всяком случае, этот эксперимент показывает, насколько важно иметь радиатор на горячей стороне. Что мы и будем делать дальше.
Изготовление льда в мастерской!
Для этого эксперимента я установил модуль Пельтье на большой радиатор горячей стороной к радиатору. Я использовал термопасту на радиаторе, чтобы обеспечить хорошую теплопроводность между ним и модулем Пельтье.
Затем я установил всю сборку в поддон с водой, чтобы и вода, и алюминиевый поддон могли расширить возможности теплоотвода.
Я подал питание на модуль Пельтье и заметил, что он сразу же начал охлаждаться. Затем я взял пару капель воды и положил ее на модуль.
Я немного подождал и увидел воду на модуле.
Примерно через 90 секунд я заметил, что вода начала замерзать. Я позволил эксперименту продолжить работу, наблюдая за процессом замораживания.
Примерно через три минуты вода полностью замерзла!
Чтобы заморозить воду, необходимо понизить температуру минимум до нуля по Цельсию.Я подозреваю, что из-за того, что он так быстро замерз, фактическая температура была ниже этой.
Это убедительно доказывает, что модуль Пельтье действительно сильно остывает.
Генерирующая мощность
В последнем эксперименте с модулем Пельтье я собираюсь использовать модуль для чего-то, для чего он не предназначен.
Помните эффект Зеебека? Это был дополнительный эффект эффекта Пельтье, он создает электричество из тепла.
Оказывается, модуль Пельтье может действовать как устройство Зеебека, хотя и очень неэффективное.
Я проверил эту теорию, нагревая «горячую сторону» моего модуля с помощью теплового пистолета, в то время как я наблюдал выходное напряжение с помощью измерителя, подключенного к двум выводам.
Мне удалось получить около 1,5 вольт на моем модуле после того, как я его нагрел. Недостаточно, чтобы с ним что-то делать, тем более, что я подозреваю, что он был очень слабым.
Теоретически можно было бы подключить несколько модулей последовательно для увеличения напряжения и параллельно для увеличения тока.Но для практических целей это просто научное любопытство.
Если вы действительно хотите получать электроэнергию из тепла, есть много способов сделать это лучше!
Охладитель Пельтье в сборе
Кулеры Пельтье в сборе доступны на eBay и в ряде других источников. Они очень недороги и могут использоваться в практических целях, например, для создания крошечной холодильной установки или персонального холодильника.
По крайней мере, эти узлы являются отличным источником запчастей по очень низкой цене.Тот, который я получил, имел три вентилятора, модуль Пельтье, несколько радиаторов и тепловых трубок. Он даже поставлялся с новым 12-вольтовым 6-амперным блоком питания. Многое, если учесть, что он стоит примерно столько же, сколько стоит сам блок питания!
Поскольку все на сборке работает от 12 вольт, заставить устройство работать было очень легко.
После подключения я попытался получить показания температуры с «холодной стороны», то есть с помощью маленького вентилятора.
Было непросто получить чтение, но в конце концов я получил одно из 17.4 Цельсия. В предыдущих попытках мне удавалось получить значение 15 градусов.
Одна вещь, которую я заметил, заключалась в том, что на радиаторе «холодной стороны» образовывалась конденсация, которая могла быть вызвана влагой из воздуха, конденсирующейся на холодной поверхности. Таким образом, устройство также действовало как небольшой осушитель воздуха!
Это отличные устройства, с которыми можно поэкспериментировать, не спускайте глаз с eBay, чтобы выбрать себе такое.
Заключение
Модули Пельтьеочень просты в использовании и при соответствующем радиаторе действительно могут снизить температуру.Они могут обеспечивать охлаждение полупроводников или холодных напитков без каких-либо движущихся частей.
Надеюсь, эта статья и прилагаемое к ней видео дадут вам несколько идей для ваших собственных интересных проектов!
ресурсов
PDF-версия — PDF-версия этой статьи, отлично подходит для печати и использования на рабочем месте.
СвязанныеСводка
Название статьи
Эксперименты с охлаждением на эффекте Пельтье
Описание
Узнайте об эффекте Пельтье и о том, как использовать обычный и недорогой охладитель Пельтье для охлаждения ваших электронных проектов.Мы проведем несколько экспериментов с модулем Пельтье, в том числе с его использованием для изготовления льда!
Автор
Мастерская Dronebot
Имя издателя
Мастерская Dronebot
Логотип издателя
Часто задаваемые вопросы и техническая информация — TE Technology
Нажмите на интересующий раздел:
Часто задаваемые вопросы по термоэлектрикам
1.Как работает термоэлектрический модуль?
Термоэлектрические модули — это твердотельные тепловые насосы, работающие на эффекте Пельтье (см. Определения). Термоэлектрический модуль состоит из массива полупроводниковых элементов p- и n-типа, которые сильно легированы электрическими носителями. Элементы скомпонованы в массив, который электрически соединен последовательно, но термически соединен параллельно. Затем этот массив прикрепляется к двум керамическим подложкам, по одной с каждой стороны элементов (см. Рисунок ниже).Давайте посмотрим, как происходит теплопередача, когда электроны проходят через одну пару элементов p- и n-типа (часто называемую «парой») внутри термоэлектрического модуля:
Полупроводник p-типа легирован определенными атомами, которые имеют меньше электронов, чем необходимо для завершения атомных связей внутри кристаллической решетки. При приложении напряжения электроны проводимости стремятся завершить атомные связи. Когда электроны проводимости делают это, они оставляют «дыры», которые по существу являются атомами внутри кристаллической решетки, которые теперь имеют локальные положительные заряды.Затем электроны непрерывно падают и выбрасываются из отверстий и переходят к следующему доступному отверстию. Фактически, именно дыры действуют как носители электричества.
Теперь электроны движутся намного легче в медных проводниках, но не так легко в полупроводниках. Когда электроны покидают p-тип и входят в медь с холодной стороны, в p-типе образуются дыры, поскольку электроны выпрыгивают на более высокий энергетический уровень, чтобы соответствовать энергетическому уровню электронов, уже движущихся в меди.Дополнительная энергия для создания этих отверстий поступает за счет поглощения тепла. Между тем, вновь созданные отверстия перемещаются вниз к меди на горячей стороне. Электроны из меди с горячей стороны переходят в p-тип и падают в отверстия, высвобождая избыточную энергию в виде тепла.
Полупроводник n-типа легирован атомами, которые обеспечивают больше электронов, чем необходимо для завершения атомных связей внутри кристаллической решетки. При приложении напряжения эти лишние электроны легко перемещаются в зону проводимости.Однако для того, чтобы электроны n-типа соответствовали уровню энергии поступающих электронов из меди с холодной стороны, требуется дополнительная энергия. Дополнительная энергия поступает за счет поглощения тепла. Наконец, когда электроны покидают горячую сторону n-типа, они снова могут свободно перемещаться в меди. Они опускаются до более низкого энергетического уровня и при этом выделяют тепло.
Приведенное выше объяснение неточно, поскольку оно не охватывает всех деталей, но служит для объяснения словами, что в остальном является очень сложным физическим взаимодействием.Суть в том, что тепло всегда поглощается на холодной стороне элементов n- и p-типа, а тепло всегда выделяется на горячей стороне термоэлектрического элемента. Насосная мощность модуля пропорциональна току и зависит от геометрии элемента, количества пар и свойств материала.
Вернуться к началу
2. Какое математическое уравнение описывает работу термоэлектрического модуля?
| На рисунке выше изображена термоэлектрическая пара.Он показывает некоторые термины, используемые в математическом уравнении: | ||
| L = высота элемента | A = площадь поперечного сечения | Qc = тепловая нагрузка |
| Tc = температура холодной стороны | Th = температура горячей стороны | I = приложенный ток |
| Дополнительно есть: | ||
| S = коэффициент Зеебека | R = удельное электрическое сопротивление | K = теплопроводность |
| В = напряжение | N = количество пар | |
| Вот основные уравнения: Qc = 2 * N * [S * I * Tc -1/2 * I ^ 2 * R * L / A — K * A / L * (Th — Tc)] V = 2 * N * [S * (Th -Tc) + I * R * L / A] | ||
Первый член Qc, S * I * Tc, представляет собой охлаждающий эффект Пельтье.2 * R * L / A представляет эффект джоулева нагрева, связанный с прохождением электрического тока через сопротивление. Джоулевое тепло распределяется по всему элементу, поэтому 1/2 тепла идет в сторону холодной, а 1/2 тепла идет в сторону горячей. Последний член, K * A / L * (Th-Tc), представляет эффект Фурье, при котором тепло переходит от более высокой температуры к более низкой температуре. Таким образом, охлаждение Пельтье снижается за счет потерь, связанных с электрическим сопротивлением и теплопроводностью.
Для напряжения первый член S * (Th-Tc) представляет напряжение Зеебека.Второй член, I * R * L / A, представляет напряжение, зависящее от закона Ома.
Эти уравнения очень упрощены и предназначены для демонстрации основной идеи, лежащей в основе выполняемых расчетов. Фактические дифференциальные уравнения не имеют решения в замкнутой форме, поскольку S, R и K зависят от температуры. К сожалению, допущение постоянных свойств может привести к значительным ошибкам.
TE Technology использует специальное собственное программное обеспечение для моделирования, которое учитывает температурную зависимость термоэлектрических свойств материала, а также все соответствующие конструктивные аспекты всей системы.Программа использует данные о свойствах материалов из реальных результатов испытаний термоэлектрических модулей, поэтому дает очень точные результаты. Когда мы создаем индивидуальный кулер для вашего приложения, такая высокая точность означает, что вам обычно нужен только один прототип для проверки эффективности охлаждения.
Вернуться к началу
3. В чем преимущества термоэлектрического агрегата перед компрессором?
Термоэлектрические модули не имеют движущихся частей и не требуют использования хлорфторуглеродов.Поэтому они безопасны для окружающей среды, по своей сути надежны и практически не требуют обслуживания. Они могут работать в любом положении и идеально подходят для охлаждающих устройств, которые могут быть чувствительны к механической вибрации. Их компактный размер также делает их идеальными для приложений с ограниченным размером или весом, где даже самый маленький компрессор будет иметь избыточную мощность. Их способность нагревать и охлаждать за счет простого реверсирования потока тока полезна для приложений, где необходимо как нагрев, так и охлаждение или где критически важен точный контроль температуры.
Вернуться к началу
4. В каких отраслях используется термоэлектричество?
Термоэлектрические охладители используются в самых требовательных отраслях промышленности, таких как медицина, лаборатории, аэрокосмическая промышленность, полупроводники, телекоммуникации, промышленность и бытовая техника. Диапазон применения варьируется от простых холодильников для еды и напитков для послеобеденного пикника до чрезвычайно сложных систем контроля температуры в ракетах и космических аппаратах.
Термоэлектрический охладитель позволяет снизить температуру объекта ниже температуры окружающей среды, а также стабилизировать температуру объектов выше температуры окружающей среды.Термоэлектрический охладитель отличается от радиатора, поскольку он обеспечивает активное охлаждение, в отличие от радиатора, который обеспечивает только пассивное охлаждение.
Термоэлектрические охладители могут использоваться в приложениях, требующих отвода тепла от милливатт до нескольких тысяч ватт. Однако в термоэлектрике существует общая аксиома: чем меньше, тем лучше. Термоэлектрический охладитель имеет наибольший смысл при использовании в приложениях, где даже самая маленькая система парокомпрессора обеспечит гораздо большее охлаждение, чем необходимо.В этих ситуациях термоэлектрический охладитель может стать решением, которое меньше, меньше весит и более надежно, чем сравнительно небольшая компрессорная система.
Однако в последние годы наблюдается тенденция к созданию все более крупных термоэлектрических систем. По мере того, как источники питания становятся менее дорогими, это привело к снижению стоимости полной термоэлектрической системы (охладитель, источник питания и регулятор температуры), поэтому системы с более высокой мощностью теперь более востребованы на рынке. Системы с мощностью в диапазоне 200-400 Вт становятся все более распространенными, хотя они все еще не так распространены, как системы меньшего размера, в которых охлаждающая способность ниже 100 Вт.
Большие термоэлектрические системы киловаттного диапазона были созданы для специализированных применений, таких как охлаждение на подводных лодках и железнодорожных вагонах или охлаждающие технологические ванны в специализированных областях, таких как производство полупроводников. В случаях, когда термоэлектрические охладители используются для таких больших приложений, обычно была веская причина, по которой система парокомпрессора не использовалась (например, необходимо минимизировать вибрацию или требуется точный контроль температуры).В этом случае могут быть оправданы дополнительные затраты и повышенное энергопотребление термоэлектрического охладителя.
Типичные области применения термоэлектрических охладителей:
Лазерные диоды
Приборы лабораторные
Температурные бани
Корпуса для электроники
Холодильники
Телекоммуникационное оборудование
Вернуться к началу
5. Каков КПД термоэлектрического модуля?
С технической точки зрения, слово «эффективность» относится к соотношению объема работы, выполняемой машиной, к количеству потребляемой мощности.В тепловых насосах этот термин используется редко, потому что можно удалить больше тепла, чем количество потребляемой мощности для перемещения этого тепла. Для термоэлектрических модулей обычно используется термин «коэффициент полезного действия», а не «эффективность». Коэффициент полезного действия (COP) — это количество перекачиваемого тепла, деленное на количество подаваемой электроэнергии.
COP зависит от тепловой нагрузки, входной мощности и требуемого перепада температур. Обычно КПД находится в пределах 0.3 и 0,7 для одноступенчатых приложений. Тем не менее, COP выше 1,0 может быть достигнуто, особенно когда модуль перекачивает против положительной разницы температур (то есть, когда модуль отводит тепло от объекта, который более теплый, чем окружающая среда). На рисунке ниже показан нормализованный график зависимости COP от I / Imax (отношение входного тока к спецификации модуля Imax). Каждая строка соответствует постоянному DT / DTmax (отношение требуемой разности температур к спецификации модуля DTmax).
Вернуться к началу
6. Хочу сделать свой охлаждающий узел. Как мне выбрать подходящий модуль для моей системы?
Вы можете использовать нашу программу выбора модулей в Peltier-Thermoelectric-Cooler-Module-Selector. Подробные инструкции по использованию программы вместе с вашей тепловой моделью можно скачать здесь. Мы видели базовые характеристики других программных модулей и рекомендации, основанные на определенных предположениях, которые в противном случае могут привести к значительным ошибкам.Наша программа выбора модулей не делает никаких предположений относительно конструкции вашей системы — рекомендации основаны на рабочих температурах модуля, тепловой нагрузке и DTmax. Это делает процесс выбора более точным, поскольку вы знаете, какие предположения делаются. Имейте в виду, что правильный выбор модуля — это итеративный процесс, который требует времени и исследований. Если вы не хотите тратить время и деньги на выбор собственного модуля, разработку собственной системы, наличие необходимой квалифицированной рабочей силы для ее сборки и т. Д., то у нас есть настоятельно рекомендуемая альтернатива: стандартные (или нестандартные) системы охлаждения. Вся тяжелая работа уже сделана нами, когда вы покупаете сборку у TE Technology.
Однако, если вы уверены, что хотите создать свой собственный охлаждающий узел, вот краткое описание того, что здесь происходит:
Сначала вы должны определить ваши рабочие температуры и количество тепла, которое вам нужно отвести. Основываясь на этих параметрах, программа выбора модулей поможет вам выбрать модуль с наименьшим энергопотреблением, наименьшим размером или их комбинацию.
Затем вы анализируете свою тепловую систему на основе размера, рабочего напряжения и тока для выбранного модуля. На этом этапе вы убедитесь, что рабочие температуры и тепловая нагрузка, которые вы использовали для выбора модуля, реалистичны. Если анализ показывает, что ваши цифры были реалистичными, значит, вам конец. В противном случае вы должны ввести новую тепловую нагрузку и рабочие температуры и повторить процесс до тех пор, пока выбранный модуль не будет соответствовать вашим окончательным требованиям.
Вернуться к началу
7.Насколько надежны термоэлектрические системы?
Термоэлектрические системы обладают высокой надежностью при условии их правильной установки и эксплуатации. Тем не менее, конкретную надежность термоэлектрических охладителей, как правило, трудно определить, поскольку интенсивность отказов в значительной степени зависит от конкретного применения. Термоэлектрические модули, которые находятся в устойчивом состоянии (постоянная мощность, тепловая нагрузка, температура и т. Д.), Могут иметь среднее время наработки на отказ (MTBF), превышающее 200 000 часов.Однако приложения, связанные с циклическим термоциклированием, показывают значительно худшие значения среднего времени безотказной работы, особенно когда охладители TE подвергаются циклическому нагреву до высокой температуры. При термоциклировании более подходящей мерой надежности является не время, а количество циклов.
Все материалы расширяются или сжимаются при нагревании или охлаждении. Разные материалы расширяются с разной скоростью. Скорость расширения определяется свойством материала, которое называется коэффициентом теплового расширения (КТР). Как правило, по мере того, как холодная сторона модуля становится холоднее, он сжимается, а по мере того, как горячая сторона становится более горячей, он расширяется.Это изгибает термоэлектрические элементы и их паяные соединения. Кроме того, поскольку модуль изготовлен из нескольких различных материалов, возникает дополнительное напряжение просто потому, что сами материалы расширяются / сжимаются с разной скоростью. После многократного термоциклирования паяные соединения в модуле устают, и электрическое сопротивление увеличивается. Мощность охлаждения снижается, и в конечном итоге модуль выходит из строя. Таким образом, «точка отказа» является функцией рабочей температуры, продолжительности температурных циклов и того, сколько деградаций может выдержать конкретная система, прежде чем рабочие характеристики станут неприемлемыми.Все термоэлектрические модули (независимо от производителя) испытывают одинаковые нагрузки при работе, но то, как они выдерживают эти нагрузки, зависит от качества сборки — выбор производителя с хорошими, прочными паяными соединениями является обязательным! (Конечно, мы уделяем особое внимание тому, чтобы наши модули имели паяные соединения высочайшего качества.)
Аналогичное явление происходит, когда модуль припаян или приклеен эпоксидной смолой к радиатору. Точка «нулевого напряжения» (то есть точка, где нет внутреннего напряжения в результате несоответствия КТР) замерзнет между керамической подложкой и радиатором, когда припой или эпоксидная смола станут жесткими при некоторой температуре, которая обычно отличается от рабочая температура.Другими словами, модуль подвергается предварительному напряжению, когда модуль и припой снова остывают до комнатной температуры (при условии, что модуль припаян к радиатору).
Поскольку сборка подвергается термическому циклу, не только сам модуль испытывает усталостное напряжение, но и линия соединения между модулем и радиатором. Опять же, разные материалы будут расширяться с разной скоростью. Радиатор, припой (или эпоксидная смола) и модуль будут расширяться по-разному. Это может быть особенно неприятно, потому что облигация потенциально может потерпеть неудачу на локальных участках.В этих местах модуль может перегреться, что усугубит проблему. Вот почему мы не рекомендуем паять (или покрывать эпоксидной смолой) модуль на его радиаторе. Если вы припаиваете (или наносите эпоксидную смолу) модули, мы рекомендуем выполнить термический цикл всей сборки, чтобы обеспечить достаточный срок службы.
TE Technology не публикует данные о надежности термоэлектрических охладителей для общего пользования. Данные о надежности действительны только для условий, в которых проводился тест, и не обязательно применимы к другим конфигурациям.Существует множество параметров и условий применения, которые влияют на надежность. Сборка кулера, методы монтажа, источник питания, системы и методы контроля температуры, а также температурные профили — это всего лишь несколько факторов, которые в совокупности могут привести к частоте отказов от чрезвычайно низкой до очень высокой. Опять же, «точка отказа» специфична для каждого приложения.
Также возможен компромисс между тепловыми характеристиками кулера, стоимостью его изготовления и надежностью в отношении термоциклирования или других факторов.Например, наша линейка стандартных охлаждающих агрегатов оптимизирована для нашего типичного клиента — эти клиенты не используют систему в условиях многократного термоциклирования и, следовательно, не хотят платить (стоимостью или производительностью) за охладитель, оптимизированный для термоциклирования.
Свяжитесь с нами, если ваше приложение связано с термоциклированием. Возможно, мы сможем предоставить результаты непатентованных тестов, которые в некоторой степени могут быть применимы; в противном случае мы можем помочь вам с программой тестирования, чтобы у вас были данные для определения того, насколько система охлаждения будет подходить для вашего приложения.Чтобы оценить истинную надежность, мы рекомендуем испытать все системы охлаждения в реальных условиях эксплуатации.
Ниже приведены лишь несколько комментариев, касающихся общих тенденций в отношении надежности:
a) Термоэлектрические модули демонстрируют относительно высокую механическую прочность на сжатие, но сравнительно низкую прочность на растяжение и сдвиг. Следовательно, TE-модуль не должен использоваться для поддержки веса, который, в частности, мог бы подвергнуть его растягивающему или сдвиговому напряжению. Кроме того, в приложениях, где будут присутствовать удары и вибрация, термоэлектрический модуль следует зажать между двумя пластинами, а не использовать припой или эпоксидную смолу для крепления модуля к радиатору.При правильной установке термоэлектрические модули успешно справляются с требованиями к ударам и вибрации в аэрокосмической, военной и аналогичной средах. Кроме того, наша заливка обеспечивает повышенную механическую прочность. Фактически, наша заливка была изначально разработана для того, чтобы модули могли выдерживать нагрузки при запуске баллистических ракет. Для получения дополнительной информации нажмите здесь. Кроме того, загрузите tem_ (термоэлектрический_модуль) _mounting_procedure.pdf [Adobe PDF Document] для получения дополнительных сведений о правильных методах монтажа.
Аналогично, при использовании нескольких модулей в сборке они должны иметь общую высоту с точностью до 0.025 мм. В противном случае из-за неравномерного усилия зажима модуль может треснуть.
b) Влага не должна попадать внутрь термоэлектрического модуля, чтобы предотвратить как снижение эффективности охлаждения, так и возможную коррозию материалов модуля. Дополнительные сведения см. В разделе «Повышение влажности для защиты от влаги».
c) Применение, которое требует значительных изменений температуры или термоциклирования, может вызвать термическую усталостную нагрузку. Опять же, термоэлектрические модули не следует устанавливать с помощью припоя или эпоксидной смолы.Такие способы монтажа могут вызвать концентрацию напряжений из-за различий в коэффициентах теплового расширения. Мы настоятельно рекомендуем монтировать модули зажимом (с применением сжатия) с использованием термопасти или гибкого монтажного материала, такого как прокладка для теплопередачи, в качестве интерфейса между модулем и пластиной. В любом случае жесткий монтаж не рекомендуется для модулей размером более примерно 15 мм.
Чтобы свести к минимуму влияние термоциклирования, минимизируйте температурный диапазон цикла и минимизируйте количество тепловых циклов.Если термоциклирование является обязательным, вам следует выбрать физически небольшой модуль с большой площадью основания гранул. (Таблетка — это термоэлектрический элемент, используемый в модуле. В номере детали модуля второе число определяет ширину каждой гранулы в мм, что, в свою очередь, определяет площадь основания гранулы.) Таким образом, чем меньше размер модуля, тем больше он обычно надежен, и чем больше размер гранулы, тем надежнее он становится. Кроме того, при необходимости модули можно настроить так, чтобы они лучше справлялись с термоциклированием.
г) Методы контроля температуры также влияют на надежность термоэлектрического модуля. Для обеспечения большей надежности всегда следует выбирать линейное управление или управление с широтно-импульсной модуляцией (частота не менее 300 Гц), а не управление включением / выключением. Контроллер типа ВКЛ / ВЫКЛ в основном вызывает термоциклирование, поэтому его следует избегать.
e) Воздействие высоких температур следует минимизировать, насколько это возможно, для повышения надежности. Стандартные модули рассчитаны на максимальную температуру 80 ° C. Высокотемпературные модули рассчитаны на модули 200 ° C.Однако эти температурные пределы несколько произвольны. Все модули, независимо от производителя, будут подвержены воздействию высоких температур. Некоторые, конечно, более устойчивы к изменениям, чем другие.
Модуль состоит из никелированных медных проводников для электрического соединения термоэлектрических гранул друг с другом. Медь имеет тенденцию диффундировать в термоэлектрический материал, и это может ухудшить характеристики. Таким образом, добавляется никелирование, которое служит диффузионным барьером для меди.К сожалению, никель не является идеальным барьером, и атомы меди все равно будут диффундировать, хотя и гораздо медленнее, чем если бы никелевый барьер вообще не был. Скорость диффузии обычно увеличивается экспоненциально с температурой: чем выше рабочая температура, тем быстрее будет происходить диффузия с соответствующим ухудшением характеристик. Однако, в частности, с модулем 80 ° C при температуре 85 ° C компоненты припоя могут начать мигрировать по плоскостям скола термоэлектрического материала из-за предполагаемой незначительной эвтектической реакции.Это приводит к механически слабому паяному соединению и физическому расширению таблетки.
Температурные характеристики модулей зависят от технологии их изготовления. В модуле 80 ° C используется припой, плавящийся при 140 ° C. Имеет отличные электрические контакты. Модуль 200 ° C также имеет два никелевых барьера: слой никеля на медном выступе и слой никеля на концах таблетки. Припой плавится при 232 ° C.
f) Дополнительную информацию можно найти, загрузив публикации, касающиеся надежности, на странице Загрузки.
г) Не все термоэлектрические модули одинакового качества! У разных производителей разные методы, и мы наблюдаем очень разное качество при сравнении модулей одинакового размера и емкости от разных производителей. Неправильная пайка, неправильная металлизация керамики и неправильное никелирование — это лишь некоторые из потенциальных проблем, которые могут снизить надежность. Будьте внимательны при выборе поставщика модуля!
Вернуться к началу
8.Будет ли TE Technology заниматься контрактным производством?
TE Technology выполняет контрактное производство для компаний, которые имеют существующую термоэлектрическую конструкцию и хотели бы найти компанию для производства своей детали. У нас есть собственные современные возможности обработки, а также полный отдел испытаний для контроля окружающей среды. Когда компании складывают затраты на инженеров-термоэлектриков, сборщиков, инвентарь и производственную площадь вместе с затратами на проектирование, обслуживание и калибровку необходимого оборудования для термоэлектрических испытаний, они обнаруживают, что это дороже, чем само сырье.Благодаря аутсорсингу эти заказчики сокращают накладные расходы, получая при этом выгоду от неизменно превосходного качества сборки. Независимо от того, насколько мал или велик ваш уровень производства, если вы хотите изучить этот вариант, отправьте нам спецификации вашего термоэлектрического охлаждающего узла с указанием количества, которое вам требуется, и мы будем рады предоставить вам предложение.
Вернуться к началу
9. Могу ли я использовать термоэлектрический охладитель в качестве нагревателя?
Термоэлектрические охладители действительно могут использоваться для очень эффективного и действенного нагрева.Поскольку термоэлектрические охладители представляют собой твердотельные тепловые насосы, они могут активно перекачивать тепло из окружающей среды в дополнение к тепловому эффекту, обусловленному электрическим сопротивлением самого охладителя. Итак, термоэлектрический охладитель может быть эффективнее резистивного нагревателя (в определенных пределах). Нагрев может быть настолько эффективным, что вы легко можете заставить модуль достичь точки плавления припоя! Необходимо следить за тем, чтобы модуль не перегревался.
Если вы заинтересованы в использовании одного из наших стандартных охлаждающих агрегатов для охлаждения и / или обогрева, пожалуйста, проконсультируйтесь с нами, чтобы определить, какой из них будет работать лучше всего.
Если вы заинтересованы в создании собственной сборки, вы можете использовать графики производительности охлаждения термоэлектрического модуля, чтобы оценить, сколько нагрева можно сделать. Общая тепловая нагрузка рассчитывается, сначала оценивая разницу температур в модуле и принимая входной ток для любого конкретного модуля. Это определяет активное количество тепла, которое модуль может перекачивать из окружающей среды. Сочетание этого с общей потребляемой мощностью определяет, сколько общего нагрева может сделать модуль.Затем вы должны повторить предположение о разнице температур на основе теплового сопротивления модуля и от модуля и соответствующих передаваемых тепловых нагрузок.
Модуль может обеспечивать обогрев, при котором разница температур в модуле превышает его DTmax. Однако в таких случаях модуль не может перекачивать какое-либо активное тепло, и тогда модуль будет действовать по существу как резистивный нагреватель.
Если вы планируете циклическое изменение температуры, вы можете использовать один из наших биполярных контроллеров температуры.Эти контроллеры автоматически определяют, требуется ли нагрев или охлаждение, только на основе заданного значения. (Пожалуйста, просмотрите также FAQ № 7, чтобы узнать о надежности модуля.) Если вам нужно только обогрев или охлаждение выше или ниже окружающей среды, может работать контроллер только для нагрева / только для охлаждения.
Вернуться к началу
10. Насколько большим или маленьким может быть термоэлектрический охладитель?
Существуют практические ограничения на индивидуальные размеры модуля или охлаждающего узла. Микромодули, например, дороже в производстве, потому что они менее подходят для автоматизированной обработки.Для модулей большего размера коэффициенты теплового расширения и стоимость, как правило, ограничивают термоэлектрические модули определенными физическими размерами.
Для охлаждающих устройств минимальный размер может быть ограничен минимальными требованиями, необходимыми для обеспечения достаточного теплоотвода. Максимальный размер ограничен требованиями монтажных пластин. Если плиты становятся слишком большими, становится слишком трудно поддерживать достаточную плоскостность поверхности. Как правило, когда требуется большая охлаждающая способность, чем та, которую может обеспечить охладитель обычно самого большого размера, используется несколько охладителей, а не один гигантский охладитель.Примерно говоря, самый большой индивидуальный кулер имеет площадь примерно 254 мм x 177 мм, как наш стандартный CP-200. Однако всегда есть исключения; это просто общие рекомендации.
Вернуться к началу
11. Как лучше всего питать термоэлектрический охладитель?
a) В идеале термоэлектрические охладители должны работать только от постоянного тока для достижения наилучших характеристик. Однако коэффициент пульсации 10% приведет только к ухудшению разницы температур только на 1%.Большинство источников питания имеют лучшую фильтрацию, поэтому пульсации не могут быть проблемой.
б) Следует проявлять осторожность, чтобы не перегрузить кулер. Превышение мощности охладителя может привести к непреднамеренному превышению номинальных температур и вызвать повреждение охладителя.
c) Потребляемая мощность для максимальной эффективности кулера не соответствует его максимальному рабочему напряжению и току. Когда желательна максимальная эффективность, прикладываемая мощность обычно должна составлять от 1/3 до 2/3 от спецификаций Vmax и Imax модуля (модулей), используемых в сборке.
d) Если используется регулятор температуры, он должен быть линейного типа или типа с широтно-импульсной модуляцией (ШИМ), чтобы минимизировать любые вредные эффекты циклического изменения температуры. Следует проявлять осторожность, чтобы использовать достаточно быструю частоту ШИМ, чтобы внутри устройства не возникало тепловых циклов. Контроллеры TE Technology используют частотный диапазон примерно от 300 Гц до 3000 Гц.
Вернуться к началу
12. Как точно термоэлектрический охладитель может поддерживать температуру?
Есть много факторов, которые влияют на общую стабильность системы или снижают ее.Однако термоэлектрический охладитель может обеспечить очень высокую степень температурной стабильности, поскольку степень охлаждения, которую он обеспечивает, пропорциональна приложенному току. Один из наших клиентов сообщил о стабильности в пределах +/- 0,0003 ° C. Однако достижение такого уровня стабильности требует значительных усилий. В конечном итоге ответ на этот вопрос зависит от контроллера и его разрешения, времени отклика конкретного охлаждающего узла и времени отклика охлаждаемого объекта.
Вернуться к началу
13. В каких диапазонах температур может работать термоэлектрический охладитель?
В подавляющем большинстве случаев разница температур в модуле TE составляет менее 60 ° C, а от охлаждаемого объекта до окружающей среды — менее 45 ° C. Одно специальное приложение, которое мы создали, предусматривало охлаждение до 145 К. Однако это потребовало очень особых усилий для достижения минимального количества перекачки тепла. В любом случае диапазон температур будет зависеть от множества факторов, в основном от количества ступеней.Устанавливая модули друг на друга, каждый модуль или ступень действует как электронный радиатор для модуля над ним. По мере увеличения количества ступеней достижимая разница температур также увеличивается. К сожалению, мощность теплового насоса снижается.
Вернуться к началу
14. Какую температуру окружающей среды выдерживают термоэлектрические охладители?
Максимальная температура окружающей среды будет зависеть от желаемой надежности, радиатора, количества рассеиваемого тепла и номинальной температуры модуля или других компонентов системы (таких как вентиляторы и изоляционные материалы).Обычно максимальная температура окружающей среды ограничивается приблизительно 50 ° C для стандартных кулеров, в которых используются радиаторы с вентиляторным охлаждением. Однако кулеры, в которых используются высокотемпературные модули, могут работать и при более высоких температурах окружающей среды. Однако большинство имеющихся в продаже вентиляторов имеют максимальную рабочую температуру от -10 ° C до +70 ° C. Обязательно проконсультируйтесь с нами, чтобы проверить, возможна ли работа при более высоких температурах окружающей среды.
Вернуться к началу
15. Как определить, подходит ли термоэлектрическое охлаждение для моего приложения?
Термоэлектрическое охлаждение идеально подходит для очень небольших систем охлаждения.Термоэлектрики также идеальны, когда требуется как нагрев, так и охлаждение, а также когда требуется точный контроль температуры. Термоэлектрические системы также идеально подходят для применения в аэрокосмической отрасли, поскольку охладитель может быть установлен в любом положении и при этом нормально функционировать. Однако по мере увеличения тепловой нагрузки преимущества термоэлектрического охлаждения по сравнению с компрессорными системами уменьшаются. При оценке только на основе тепловой нагрузки компрессорная система, вероятно, будет более рентабельной, если тепловая нагрузка превышает примерно 200 Вт.
Вернуться к началу
16. Почему TE Technology должна производить систему для моего приложения?
TE Technology обладает техническими знаниями во всех областях, относящихся к термоэлектрике. Каждый продукт имеет более чем сорокалетний опыт работы в термоэлектрической технике. Кроме того, у нас есть специализированное испытательное оборудование, уникальное для термоэлектрической промышленности, которое позволяет получать быстрые (недорогие) и точные результаты испытаний 100% наших продуктов (щелкните здесь, чтобы получить дополнительную информацию).Мы предоставляем надежные, долговечные, экономичные системы и поставляем их вовремя. Наши обширные запасы, современная обработка и обширные глобальные ресурсы обеспечивают дополнительную гибкость от прототипа до промышленного производства.
Вернуться к началу
17. Какой тип тестирования рекомендует TE Technology?
TE Technology рекомендует тестировать все продукты в «наихудших» условиях их фактического или смоделированного применения. Мы хотим, чтобы наши клиенты чувствовали себя комфортно, потому что система охлаждения будет соответствовать всем их требованиям к пригодности и надежности.Хотя мы не можем сказать нашим клиентам, подходят ли определенные продукты или надежны ли они для их конкретных требований, мы можем тестировать продукты и собирать данные, чтобы клиенты могли принимать обоснованные решения. TE Technology обладает обширным испытательным оборудованием, включая: камеры с регулируемой температурой; вольеры с повышенной влажностью; оборудование для термоциклирования; оборудование для измерения температуры; и термоэлектрические тестеры. TE Technology предлагает свои ценные услуги по тестированию, чтобы вашей компании не пришлось «изобретать велосипед».Кроме того, мы можем помочь нашим клиентам в разработке индивидуальных экспериментов по тестированию продуктов. Просто позвоните нам, и мы будем рады обсудить наши различные услуги по тестированию и стоимость.
Вернуться к началу
18. Какая защита от перегрева мне нужна?
Если приобретается охлаждающий узел, мы также рекомендуем использовать защиту от перегрева / понижения температуры, чтобы свести к минимуму возможное повреждение охладителей во время работы. Это может произойти, если жидкость (в охладителе жидкости) замерзнет или если охлаждающая среда (воздух, жидкость и т. Д.)) уменьшается, и охладитель перегревается. Некоторые клиенты используют наши стандартные контроллеры температуры, такие как TC-48-20, которые имеют схему защиты от перегрева, которая может снизить вероятность возникновения таких ситуаций. Другие заказчики предпочитают включать эту защитную схему в источник питания. Конечно, мы в TE Technology рады помочь нашим клиентам в выборе типа защиты, который может быть наиболее эффективным для их систем. Обратите внимание, что стандартные кулеры не оснащены защитой от перегрева / понижения температуры, если не указано иное.Если это не указано, ответственность за обеспечение такой защиты или запрос на включение защиты от превышения / понижения температуры лежит на покупателе. Мы разработали и интегрировали многие из этих средств защиты в продукцию на нашем предприятии. Просто свяжитесь с нами, чтобы обсудить ваши варианты.
Вернуться к началу
19. Как работают контроллеры с широтно-импульсной модуляцией (ШИМ)?
С помощью ШИМ питание устройства TE быстро переключается на «ВКЛ» и «ВЫКЛ» с постоянной частотой.Это создает прямоугольный «импульс» мощности с постоянным периодом времени. Время включения или ширину импульса можно изменять для создания среднего выходного напряжения (Vaverage), которое требуется устройству TE для поддержания заданной температуры (рисунок 19.1)
Рисунок 19.1
Импульсы «ВКЛ» и «ВЫКЛ» возникают так быстро, что модулю не хватает времени для изменения температуры в ответ на каждый электрический импульс. Вместо этого модуль предполагает разницу температур относительно Vaverage.При правильной настройке контроллера термоциклирование исключается. Таким образом, эти контроллеры не снижают надежность модуля из-за термоциклирования так же, как термостатический или медленный контроллер включения-выключения.
Все контроллеры TE Technology требуют минимального напряжения для работы встроенного микропроцессора. Минимальное напряжение может быть от 9 до 50 В постоянного тока, в зависимости от контроллера. Если термоэлектрическая нагрузка также может приводиться в действие этим входным напряжением, тогда для приложения необходим только один источник питания.Все стандартные термоэлектрические охлаждающие узлы TE Technology спроектированы таким образом, что узел и контроллер могут работать от одного источника питания.
При работе от одного источника питания входное напряжение контроллера температуры будет определять выходное напряжение во время «ВКЛ» части сигнала, а Vaverage будет варьироваться от 0 В до В + в зависимости от отношения времени «ВКЛ» к « Время отключения. В формах волны, показанных выше, V + равно входному напряжению от источника питания, и во время цикла «ВКЛ» форма волны V + будет приложена к термоэлектрической нагрузке.Следовательно, при использовании одного источника питания вы должны выбрать входное напряжение, которое не превышает Vmax охлаждающего узла или термоэлектрического модуля (ов). Если вы делаете свою собственную систему охлаждения из термоэлектрических модулей, максимальное рабочее напряжение (входное напряжение контроллера) обычно не превышает 75% от Vmax модуля. Конечно, если вы подключаете несколько модулей последовательно или в последовательно-параллельную комбинацию, Vmax модульной системы будет Vmax каждого модуля, умноженного на количество модулей, подключенных последовательно.В этом случае входное напряжение обычно составляет не более 75% от модульной системы.
Что произойдет, если вы захотите использовать термоэлектрический модуль при напряжении меньше, чем требуется для работы микропроцессора контроллера? В этом случае следует использовать регулятор температуры, который позволяет питать микропроцессор и термоэлектрическую нагрузку от двух независимых источников питания. В этой конфигурации микропроцессор может питаться от небольшого источника с более высоким напряжением, а термоэлектрическая нагрузка может питаться от источника, который теоретически составляет всего 0 В.Снова обращаясь к приведенным выше сигналам, это позволяет пользователю выбрать V +, который подходит для низковольтной термоэлектрической нагрузки, при этом обеспечивая микропроцессору достаточное напряжение для работы. Все регуляторы температуры TE Technology могут быть оснащены двумя источниками питания.
КонтроллерыPWM бывают двух основных типов, и разница между ними определяет, может ли контроллер автоматически реверсировать мощность для достижения как нагрева, так и охлаждения, или он должен быть настроен либо на охлаждение, либо только на нагрев.В базовом контроллере только охлаждение / только нагрев имеется один транзистор, последовательно соединенный с термоэлектрическим модулем и источником питания (рисунок 19.2). Этот транзистор действует как переключатель S, который либо закрывается, либо открывается для включения или выключения питания термоэлектрического модуля. Пользователь должен сообщить контроллеру, если подача большей мощности на термоэлектрический модуль приведет к тому, что датчик температуры станет теплее или холоднее. Если пользователь хочет изменить конфигурацию контроллера с охлаждения на нагрев, провода, идущие от контроллера к термоэлектрическому модулю, должны быть физически перевернуты, а контроллер необходимо перенастроить так, чтобы он знал, что применение большей мощности теперь имеет обратное влияют на температуру датчика.Преимущество этого типа управления состоит в том, что он проще и дешевле.
Рисунок 19.2
Вторая разновидность контроллера — это биполярный контроллер. Биполярный контроллер имеет 4 транзистора, действующих как переключатели, которые могут автоматически менять направление тока на термоэлектрический модуль. Эта схема известна как H-мост, потому что термоэлектрический модуль и транзисторы образуют на схеме букву «H».
В контроллере этого типа, когда все переключатели (обозначенные от S1 до S4) разомкнуты, ток через модуль не течет (Рисунок 19.3). Замыкающие переключатели S1 и S4 заставляют ток течь в одном направлении (рисунок 19.4). В качестве альтернативы замыкающие переключатели S2 и S3 (S1 и S4 теперь разомкнуты) позволяют реверсировать ток (рисунок 19.5). Этот тип схемы управления является более сложным и, следовательно, более дорогим, но это единственное практическое решение, когда приложение может потребовать как нагрева, так и охлаждения для поддержания желаемой температуры.
Рисунок 19.3
Рисунок 19.4
Рисунок 19.5
Вернуться к началу
20. Что следует учитывать при использовании чиллера?
Стандартные охладители жидкостиTE Technology были разработаны для охлаждения воды и инертных газов. Этот тип теплообменника идеально подходит для низкой стоимости и высокой производительности. Это позволяет использовать большее количество проходов для потока, чем можно было бы получить в других теплообменниках, в которых используется одна змеевидная трубка, вдавленная в пластину.
При использовании этого типа обменника следует учитывать некоторые особенности.Любая жидкость, которую вы используете в охладителях, будет контактировать с анодированным алюминием, медью и эпоксидной смолой, которая используется для соединения медных трубок. Некоторые жидкости, добавки и ингибиторы коррозии разрушают эпоксидную смолу и разъедают металлические поверхности. Поэтому, если вы планируете использовать какие-либо другие жидкости и / или добавки, вам следует тщательно протестировать устройство в реальных рабочих условиях и температурах, прежде чем использовать его в своем продукте, чтобы убедиться, что он не будет поврежден. Следует отметить, что коррозия металлических поверхностей может нанести ущерб не только теплопередаче, но и другим компонентам системы.Например, охлаждение морской воды в морском аквариуме может привести к попаданию меди в воду. Это может повредить рыбу или даже убить ее, поэтому этот тип охладителя жидкости не рекомендуется для этого применения. В любом случае вам следует протестировать кулер, чтобы убедиться в его пригодности для применения.
Отметим, что стандартные охладители жидкости проходят испытания под давлением 410 кПа (60 фунтов на кв. Дюйм). Однако рекомендуется, чтобы рабочее давление не превышало 205 кПа (30 фунтов на кв. Дюйм). Это следует иметь в виду, если вы непреднамеренно охладите воду до температуры ниже точки замерзания, поскольку вода будет расширяться при замерзании, и это потенциально может привести к повреждению эпоксидных соединений или разрыву самой медной трубки.Вам также может потребоваться учитывать температуру при транспортировке и хранении. Если не опорожнить охладитель перед хранением или транспортировкой, это может привести к замерзанию и повреждению. Опять же, если вы используете добавку для понижения стандартной точки замерзания воды (или какой-либо другой жидкости), добавку следует проверить на совместимость.
Термоциклирование также потенциально может вызвать проблемы с теплообменником (а также с термоэлектрическими модулями, которые рассматриваются в отдельном FAQ). Алюминий, эпоксидная смола и медь имеют разные коэффициенты теплового расширения.Следовательно, быстрые изменения температуры могут вызвать напряжение термической усталости, которое может привести к утечкам.
TE Technology может заменить стандартный жидкостный теплообменник в охлаждающем узле жидкостным теплообменником, в котором жидкость будет контактировать только с одним материалом. Мы можем предложить теплообменники с цельной змеевидной трубкой из нержавеющей стали, запрессованной в алюминиевую пластину. Эти теплообменники можно прикрепить к некоторым из наших стандартных холодильных пластин, эффективно превратив их в чиллер для жидкости.Кроме того, в качестве индивидуального устройства медные трубки с эпоксидной связью в нашем стандартном жидкостном теплообменнике могут быть заменены приваренными алюминиевыми торцевыми крышками и резьбовыми фитингами для входа и выхода жидкости. Этот метод устраняет проблемы совместимости с эпоксидной смолой и проблемы термоциклирования из соображений теплообменника. TE Technology также производит жидкостные теплообменники со складчатыми ребрами и жидкостные теплообменники, изготовленные из твердого блока материала, такого как нержавеющая сталь или медь. Если вас интересуют нестандартные устройства, обратитесь на завод.
Наконец, стандартная производительность чиллеров основана на предположении, что вода течет со скоростью 1,6 л / мин (25 галлонов в час). Производительность изменится, если будет использоваться другая жидкость и / или другой расход. Проконсультируйтесь с TE Technology, и мы сможем определить для вас производительность в различных условиях эксплуатации.
Вернуться к началу
21. Каков процесс производственных испытаний всех охлаждающих узлов в TE Technology?
TE Technology проводит многочисленные испытания на уровне компонентов и систем, чтобы гарантировать качество и стабильность термоэлектрических систем охлаждения, которые мы производим.Каждый шаг — это звено в цепочке обеспечения качества, которая была разработана на основе многолетнего опыта создания десятков тысяч охлаждающих устройств.
Процесс начинается с тестирования 100% термоэлектрических (ТЭ) модулей на их термоэлектрические свойства. Каждый модуль тестируется на нашей собственной термоэлектрической испытательной системе. Эта система измеряет свойства термоэлектрического материала: удельное электрическое сопротивление, теплопроводность, коэффициент Зеебека и добротность. Эти измерения гарантируют, что полупроводники, используемые в модулях, обеспечивают постоянные тепловые и электрические свойства при использовании в охлаждающем узле.Система также проверяет сопротивление переменного тока всего модуля. Эта проверка важна, поскольку она подтверждает, что паяные соединения в модуле не повреждены. Например, типичный модуль на 127 пар содержит 254 термоэлектрических элемента и 508 спаек. Если какой-либо из этих паяных переходов сломается, весь модуль будет бесполезен. Более того, если последовательно подключено более одного модуля, все модули, подключенные последовательно, также будут бесполезны. Важно помнить, что иметь «мертвый» модуль в системе намного хуже, чем если бы его вообще не было.Мало того, что мертвые модули не смогут обеспечить какое-либо полезное охлаждение, они также обеспечат путь утечки тепла с горячей стороны охлаждающего узла обратно на холодную сторону.
Затем компоненты охлаждающего узла проверяются, чтобы убедиться, что они обладают физическими характеристиками, необходимыми для эффективного отвода тепла от радиатора через модуль ТЕ, а затем в радиатор. Для этого проверяются физические параметры теплообменников и ТЕ-модулей.Поверхности теплообменников измеряются на предмет плоскостности и чистоты поверхности в областях, которые контактируют с ТЕ-модулями. Если в охлаждающем узле будет использоваться более одного модуля, высота модулей согласуется, поэтому разница в высоте между ними не превышает 0,025 мм. Модули также проверяются, чтобы убедиться, что керамические подложки являются плоскими и параллельными в соответствии со спецификацией.
На данный момент компоненты были проверены, чтобы убедиться, что все компоненты имеют достаточное качество для использования в сборке.Однако одно это еще не гарантирует, что в результате будет получен хороший охлаждающий узел. Есть еще много проблем, которые могут возникнуть в процессе сборки. Три основных проблемы и их тестовые решения заключаются в следующем:
1) Один или несколько модулей TE случайно помещены в охладитель вверх дном: модули TE неизменно имеют провода, подключенные к горячей стороне модуля. Без питания модуля это единственный способ отличить горячую сторону от холодной стороны модуля.Когда модули подключаются к жгуту, можно непреднамеренно перевернуть модуль, чтобы он нагрелся, а не охладился. Это становится легче сделать, если модуль залит эпоксидной смолой, а модуль лишь немного толще, чем его подводящие провода. Поэтому в процессе сборки модули размещаются на радиаторе и на короткое время запитываются малым током. Затем сборщик проверяет правильность ориентации охлаждающих сторон модулей, касаясь каждого модуля и убедившись, что он работает в режиме охлаждения, а не в режиме нагрева.
2) Короткое замыкание провода ТЕ-модуля на теплоотвод или холодный сток: если лишний шарик припоя или жила провода контактирует с теплоотводом или холодным стоком, напряжение, подаваемое на термоэлектрики, может быть замкнуто на металлические поверхности охладитель, таким образом, создает потенциально опасную ситуацию для любого, кто прикасается к устройству, когда оно находится под напряжением. TE Technology проверяет отсутствие коротких замыканий, измеряя высокое потенциальное сопротивление между проводкой модуля и открытыми металлическими поверхностями.
3) Неадекватные термоинтерфейсы: рассмотрим типичную систему охлаждения, в которой холодный радиатор, модули ТЕ и радиатор скреплены вместе винтами. Винты затянуты до определенного уровня, который, в свою очередь, преобразуется в определенное сжимающее усилие на модуль, обеспечивая тесный тепловой контакт между модулями TE и поверхностями радиатора и пластин холодного отвода. Однако, если есть заусенец в любом из резьбовых отверстий, если на винте есть деформированная резьба, если винт слишком длинный или резьбовое отверстие слишком короткое, крутящий момент не преобразуется в надлежащую силу сжатия.Если под термопастой будет видна грязь или прядь волос, термоинтерфейс будет испорчен. Визуальный осмотр этой проблемы практически невозможен; тем более, что обычно по периметру модулей окружает пароизоляционная прокладка. TE Technology разработала уникальный тест качества теплового перехода для решения этой проблемы. С помощью вышеупомянутого термоэлектрического испытательного оборудования к термоэлектрическим модулям подается небольшой ток и создается разница температур между радиатором и холодным стоком.Затем ток отключают, и разность температур уменьшается. Модули TE действуют как малые генераторы энергии во время спада, поэтому, отслеживая соответствующую скорость спада напряжения, можно измерить качество термоинтерфейсов внутри сборки. Также проверяется сопротивление охладителя переменному току, чтобы убедиться, что паяные соединения в модулях не были повреждены в процессе сборки.
Эти тесты занимают всего несколько минут и проводятся на 100% сборок, произведенных TE Technology.Поскольку тест термоинтерфейса проходит так быстро, он стоит намного меньше, чем полный тест производительности, который является единственным способом проверить тепловые переходы в сборке.
Таким образом, для каждой сборки выполняются следующие тесты:
· Термоэлектрические свойства проверены для каждого модуля.
· Сопротивление переменного тока проверяется на каждом модуле, чтобы убедиться, что паяные соединения внутри модуля не повреждены.
· Физические размеры и отделка всех компонентов проверены.
· Модули проверяются на правильность полярности / ориентации проводки во время сборки.
· Высокопотенциальное сопротивление между проводкой модуля и открытыми металлическими поверхностями проверяется на отсутствие коротких замыканий.
· Термические интерфейсы проверены, поэтому надлежащая теплопередача гарантирована.
· Сопротивление переменному току каждой завершенной сборки проверяется, чтобы убедиться, что паяные соединения в модулях не были повреждены во время сборки.
Таким образом, следуя этой цепочке шагов, TE Technology может обеспечить стабильную производительность для каждого охлаждающего узла, который мы производим. Чтобы узнать больше об этих методах испытаний, просмотрите технические документы в разделе загружаемых публикаций в разделе загружаемых публикаций.
Вернуться к началу
22. Как работает система номеров деталей модуля TE Technology?
Номера компонентов модуляTE Technology состоят из трех различных компонентов — кода категории, конфигурации элемента и суффикса заливки.
Существует пять различных двухбуквенных кодов категорий. Ниже приводится список различных категорий модулей:
TE = стандартный, микро- и многоступенчатый
л.с. = высокая производительность
CH = центральное отверстие
VT = высокая температура
SP = последовательный / параллельный
За категорией модуля следует конфигурация элемента. Конфигурация элемента состоит из разных чисел, разделенных дефисом. Конфигурация может содержать до шести разных номеров в зависимости от категории модуля.
Обычно первое число указывает количество пар на ступень (см. Исключение ниже), за ним следует ширина элемента (в мм) и высота элемента (в мм). Например, CH-19-1.0-1.3 представляет собой модуль с центральным отверстием, который имеет 19 пар с элементами шириной 1,0 мм и высотой 1,3 мм. В этом примере высота элемента 1,3 мм НЕ включает толщину медной токопроводящей шины, припаянной с каждой стороны элемента. Размеры 1,0 мм и 1,3 мм относятся к самому полупроводниковому элементу.
Чтобы терминология была понятной, помните, что «элемент» — это один из полупроводниковых блоков внутри термоэлектрического модуля. Внутри модуля элементы всегда используются парами — один элемент N-типа и один элемент P-типа. Затем формируется «пара» из одного элемента N-типа и одного элемента P-типа, соединенных последовательно (электрически). Таким образом, для каждой пары в модуле будет два элемента. Иногда для обеспечения физической прочности, когда провода входят в модуль, в углу модуля добавляется избыточный элемент N-типа или P-типа, но они не учитываются для увеличения количества пар.
Кроме того, в конфигурацию некоторых высокопроизводительных или высокотемпературных модулей может быть добавлен четвертый номер, например HP-127-1.4-1.5-72. Это последнее число указывает DTmax материала, если он больше, чем тот, который используется для стандартных модулей. Следовательно, DTmax в этом случае составляет 72 ° C.
| Исключение : конфигурация элементов для многоступенчатых модулей немного отличается. Здесь первое число — это количество этапов, за которым следует количество пар на этап.В скобках указано количество пар на этапе. Последняя цифра — это высота элемента. Например, ТЭ-2- (127-127) -1,15 — это двухступенчатый модуль, состоящий из двух 127 парных ступеней с высотой элементов 1,15 мм. |
Последним компонентом номера детали модуля является суффикс заливки. Модуль может либо не иметь суффикса, который указывает на то, что этот модуль не заполнен (TE-63-1.4-1.15), либо он может иметь заглавную букву «P» (TE-63-1.4-1.15P), которая означает, что этот модуль залит. .Это означает, что по периметру модуля нанесен герметизирующий состав (Moisture Protection Ruggedizing).
Вернуться к началу
23. Как лучше всего прикрепить датчик температуры при измерении температуры или при использовании регулятора температуры?
Правильно прикрепить датчик температуры к какой-либо детали сложнее, чем кажется. Ознакомьтесь с нашим техническим руководством: приложение датчика [документ Adobe PDF].
Вернуться к началу
Термины и определения
| Температура окружающей среды: | Температура воздуха или окружающей среды, окружающей термоэлектрическую систему охлаждения; иногда называется комнатной температурой. |
| Активная тепловая нагрузка: | Количество тепла, выделяемого чем-либо, независимо от того, существует ли разница температур. Например, это может быть отходящее тепло от включенного электронного устройства.Обычно это входная мощность устройства (напряжение * ток) за вычетом любой выходной мощности. Другой пример — тепло, выделяемое экзотермической химической реакцией. См. Также «Пассивная тепловая нагрузка». |
| Сопротивление переменному току (ACR): | Электрическое сопротивление термоэлектрического модуля. «Переменный ток» относится к переменному току и служит напоминанием о том, что измерение с помощью обычного омметра (который использует сигнал постоянного тока) приведет к ошибочным результатам. На самом деле, даже омметр переменного тока также может давать ошибочные результаты (хотя и не такие серьезные по сравнению с типичными омметрами).Поэтому TE Technology использует специально разработанное испытательное оборудование для точного измерения этого параметра. |
| BTU (британская тепловая единица): | Количество тепла, необходимое для подъема одного фунта воды на один градус по Фаренгейту при стандартной температуре 39,2 ° F и давлении в одну атмосферу. 1 британская тепловая единица = 1055 Дж. |
| кубических футов в минуту: | Объемный расход газа, обычно воздуха, выраженный в английской системе единиц.Обычно это относится к количеству воздуха, проходящего через ребра радиатора с принудительной конвекцией. |
| COP (коэффициент полезного действия): | COP — это отношение отведенного (или добавленного в случае нагрева) тепла к входной мощности. |
| DTmax: | Максимально достижимая разница температур между холодной и горячей сторонами термоэлектрических элементов в модуле при приложении Imax и отсутствии тепловой нагрузки на модуль.Этот параметр основан на том, что температура горячей стороны элементов в модуле составляет 300 К. В действительности, практически невозможно удалить все источники тепла для достижения истинного DTmax. Таким образом, число служит только стандартизированным показателем охлаждающей способности термоэлектрического модуля. |
| Удельное электрическое сопротивление: | Удельное электрическое сопротивление относится к величине тока, который объект будет пропускать через свой объем, вызванного разностью напряжений в этом объеме.Типичная единица измерения — Ом * м. Удельное электрическое сопротивление — это внутреннее свойство материала. При умножении на длину объекта и делении на площадь поперечного сечения объекта получается электрическое сопротивление объекта. |
| Тепловой насос: | Количество тепла, которое термоэлектрическое устройство способно отводить или «откачивать» при заданном наборе рабочих параметров. |
| Радиатор / холодный радиатор: | Радиатор — это устройство, которое крепится к горячей стороне термоэлектрического модуля.Он используется для облегчения передачи тепла от горячей стороны модуля к окружающей среде. К холодному модулю прилагается холодная мойка. Он используется для облегчения передачи тепла от охлаждаемого объекта (жидкости, газа, твердого тела) к холодной стороне модуля. Самый распространенный радиатор (или холодный радиатор) — это алюминиевая пластина, к которой прикреплены ребра. Вентилятор используется для перемещения окружающего воздуха через радиатор, чтобы забирать тепло от модуля. В другом стиле используется пластина со встроенной в нее трубкой.По трубке проходит жидкость, которая забирает тепло от модуля. |
| Imax: | Ток, который создает DTmax, когда горячая сторона элементов внутри термоэлектрического модуля удерживается на уровне 300 К. |
| Характеристики материала: | Спецификации материаловв контексте термоэлектричества — это тепловые и электрические свойства полупроводников, которые помогают определить, как полупроводник будет вести себя.Сюда обычно входят такие параметры, как коэффициент Зеебека, удельное электрическое сопротивление и теплопроводность, если они указаны для полупроводникового материала N-типа или P-типа. После сборки термоэлектрического модуля (Пельтье) свойства материала модуля могут быть протестированы в целом. Если указано для термоэлектрического модуля, могут быть измерены средние свойства всех элементов в модуле (с использованием метода испытаний с низким энергопотреблением). и используется для проецирования таких параметров, как DTmax, Imax, Vmax и Qmax.Тестирование модуля тепловым тестом на полной мощности было бы непрактичным, так как это потребовало бы помещения термоэлектрического модуля в охлаждающий узел и тестирования тепловых характеристик этого узла (отнимает много времени, дорого). Спецификации материалов для модуля не полностью определяют, как сам модуль будет вести себя в сборке, поскольку эти свойства материала позволяют прогнозировать тепловые характеристики полупроводниковых элементов без учета (1) паразитных потерь из-за уплотнения по периметру (заливки) и ( 2) температура на подложках повышается и понижается.По этой причине прогнозируемые кривые охлаждения будут показывать несколько более низкие значения для максимальных V, I, Q и DT. |
| Пассивная тепловая нагрузка: | Тепло, передаваемое за счет разницы температур. Например, это тепло, которое проникает через изолированные стенки шкафа, когда в шкафу холоднее, чем температура окружающей среды. Другой пример — тепло от солнечного излучения. |
| Эффект Пельтье: | Явление, при котором прохождение электрического тока через соединение, состоящее из двух разнородных металлов, приводит к охлаждающему эффекту.Когда направление тока меняется на противоположное, происходит нагрев. |
| Qмакс: | Количество тепла, которое элементы ТЕ могут отвести, когда разница температур между элементами в модуле равна нулю, температура горячей стороны элементов составляет 300 K, и модуль питается током Imax. . |
| Коэффициент Зеебека: | Коэффициент Зеебека — это мера потенциала электрического напряжения, который существует в электрическом проводнике, концы которого поддерживаются при двух разных температурах, а ток не течет.Это внутреннее свойство, и его единицы измерения равны В / К. Термопары, используемые для измерения температуры, используют этот принцип. |
| Удельная теплоемкость: | Количество тепловой энергии, необходимое для повышения температуры определенного вещества на один температурный градус. Типичные единицы — Дж / кг / К. |
| Коэффициент теплового расширения: | Мера изменения размеров материала из-за изменения его температуры.Общие единицы измерения включают сантиметр на сантиметр на градус Цельсия и дюйм на дюйм на градус Фаренгейта. |
| Теплопроводность: | Теплопроводность — это количество тепла, которое объект будет передавать через свой объем, когда в этом объеме возникает разница температур. Это внутреннее свойство, и типичные единицы измерения включают Вт / м / К и БТЕ / ч / фут / ° F. При умножении на площадь поперечного сечения объекта и делении на длину объекта получается теплопроводность объекта. |
| Тепловой интерфейс: | Физический интерфейс между двумя объектами, через который передается тепло. В случае термоэлектриков это относится к физическому соединению модуля с радиатором / радиатором. Обычно между модулем и радиатором используется термопаста. Иногда может быть припой. В других случаях это может быть теплопроводящая прокладка. |
| Термическое сопротивление: | Мера, относящаяся к повышению температуры на единицу приложенного тепла.Все среды, через которые проходит тепло, имеют соответствующее тепловое сопротивление. Общие термические сопротивления — это сопротивление теплоотвода и сопротивление термоинтерфейса. Термоэлектрические охладители лучше работают с радиаторами, имеющими низкое тепловое сопротивление. |
| Термоэлектрический модуль: | Электронный компонент на основе полупроводников, который работает как небольшой тепловой насос. При подаче низковольтного источника постоянного тока на ТЕ-модуль тепло будет перемещаться через модуль от одной стороны к другой.Таким образом, одна сторона будет охлаждена, а противоположная — нагрета. Следовательно, ТЕ-модуль можно использовать как для нагрева, так и для охлаждения. |
| Коэффициент Томсона: | Если концы электрического проводника удерживаются при двух разных температурах, создается потенциал напряжения, потому что электроны на горячем конце проводника будут дрейфовать к холодному концу проводника. Когда применяется внешний ток, так что электрические носители текут от холодного конца к горячему, электрические носители должны поглощать тепло, чтобы поддерживать равновесие с температурой.Если бы внешний ток применялся от горячего к холодному, носители выделяли бы тепло для поддержания температурного равновесия. Коэффициент Томсона — это мера напряжения на разность температур, а при приложении внешнего тока — это мера тепла, выделяемого или поглощаемого на единицу разницы температур на единицу тока. Обычно эффект Томсона присущ материалу. Однако эффект Томсона также может быть применен к проводнику извне, изменяя свойства материала по длине проводника.Это действительно может улучшить характеристики охлаждения по сравнению с обычным изотропным материалом. Эффект Томсона действительно более сложен, чем описанный выше. Трудно описать словами то, что точно описывает математика. |
| Vмакс .: | Напряжение, которое создается при DTmax при приложении Imax, и температура горячей стороны элементов внутри термоэлектрического модуля составляет 300 К. |
| Знак отличия (Z) | Z — это прямая мера охлаждающей способности термоэлектрического модуля.2 / R / K, где S — коэффициент Зеебека, R — удельное электрическое сопротивление, а K — теплопроводность термоэлектрического материала. Однако Z зависит от температуры, поэтому при сравнении одного модуля с другим они должны основываться на одинаковых температурах горячей стороны. |
Вернуться к началу
Техническая информация по узлам охлаждения
Инструкции ниже находятся в документах Adobe PDF. На большинстве компьютеров уже установлен Acrobat Reader.Если у вас нет, вы можете получить бесплатную программу Adobe Acrobat Reader здесь. (ссылка откроется в новом окне)
1. Щелкните здесь, чтобы просмотреть простой график, изображающий монтаж охлаждающего узла с использованием монтажных отверстий (более подробная информация по монтажу и размеры вырезов доступны в Руководстве по эксплуатации термоэлектрического охлаждающего узла, ссылка ниже).
2. Щелкните здесь, чтобы просмотреть инструкции по монтажу охлаждающего узла с использованием резьбовых втулок.
3. Щелкните здесь, чтобы просмотреть инструкции по установке термостата для защиты от перегрева (с использованием резьбовых втулок).
4. Щелкните здесь, чтобы просмотреть инструкцию по эксплуатации термоэлектрического охлаждающего узла (TCA).
Вернуться к началу
Техническая информация о модулях TE
Приведенные ниже процедуры находятся в документах Adobe PDF. На большинстве компьютеров уже установлен Acrobat Reader. Если у вас нет, вы можете получить бесплатную программу Adobe Acrobat Reader здесь. (ссылка откроется в новом окне)
1. Щелкните здесь, чтобы просмотреть процедуру монтажа стандартных и металлизированных модулей (инструкции по использованию термопасты и / или паяльных модулей).
2. Щелкните здесь, чтобы получить информацию о заливке (герметизации модуля) для защиты от влаги и повышения прочности.
Вернуться к началу
Технические документы и документация компании
Мы стремимся оставаться в авангарде термоэлектрических технологий и разработок в глобальном масштабе. При этом наш инженерно-технический персонал опубликовал широкий спектр технических документов по таким темам, как проектирование и проектирование, надежность и испытания материалов и устройств. Мы приглашаем вас изучить этот раздел и познакомиться с термоэлектрическим полем.
Информация для заказа [Adobe PDF]
Полный список наших загружаемых публикаций и литературы компании можно просмотреть, выбрав пункт меню «Загрузки» или щелкнув здесь.
