Автогенератор – 1. Принципы работы автогенератора

Содержание

1. Принципы работы автогенератора

Введение

Для передачи сигналов электросвязи необходимо иметь генератор электрических колебаний высокой частоты- устройство, преобразующее энергию источника постоянного напряжения в энергию колебаний. Существуют генераторы с внешним возбуждением, в которых незатухающие колебания получают от внешнего источника, и генераторы с самовозбуждением (автогенераторы), для которых внешний источник не нужен. Колебания, получаемые в автогенераторах, называют автоколебаниями. Эти колебания могут быть гармоническими (синусоидальными) или релаксационными (несинусоидальными). Автогенераторы применяют не только в передающей, но и в приемной аппаратуре: в преобразователях частоты, демодуляторах и т.д. Независимо от назначения автогенераторов, они должны удовлетворять следующим общим требованиям: иметь достаточно высокое постоянство (стабильность) частоты колебаний и выходной мощности, а также возможно близкую с синусоидальной форму выходного напряжения. Для выполнения этих требований в схемах автогенераторов применяют ряд специальных мер.

1.1 Структурная схема автогенератора

В простейшем случае высокочастотные колебания можно получать с помощью обычного колебательного контура. Предположим, что контур получил от постоянного источника некоторый первоначальный запас энергии. При этом в нем возникают свободные (собственные) затухающие колебания. Чтобы сделать их незатухающими, необходимо все время пополнять запас энергии в контуре, поскольку часть её процессе колебаний необратимо преобразовать в тепло.

Реализовать источник энергии, необходимый для получения незатухающих колебаний в контуре, можно с помощью устройства рис. №1

Рис.№1. Структурная схема LC-автогенератора

Схема содержит усилительный элемент 1 (электронную лампу или транзистор), нагрузкой которого является колебательная система 2, например, колебательный контур с сосредоточенными параметрами. Часть напряжения с контура через цепь обратной связи 3 поступает на вход усилительного элемента. Устройство получает питание от источника напряжения 4.

Напряжение свободных колебаний, поступающих через элемент 3 на вход элемента 1, усиливается им и вновь подается на колебательную систему. Это напряжение должно быть после усиления достаточным для компенсации потерь в контуре. Кроме этого, цепь обратной связи должна вызывать такой сдвиг фазы колебаний, поступающих на вход элемента 1, при котором контур будет своевременно, т.е. в такт со свободными колебаниями в нем, получать энергию. При одновременном выполнении указанных условий данное устройство создает (генерирует) незатухающие колебания, т.е. представляет собой автогенератор.

1.2 Процесс самовозбуждения

В момент включения источника питания во всех цепях генератора проходят кратковременные импульсы токов. Так как одиночный импульс образует сплошной спектр колебаний, частота одного из них обязательно совпадает с собственной частотой колебательной системы генератора. Это колебание возбудит колебательную систему, и по цепи обратной связи на управляющий электрод усилительного элемента поступит напряжение данной частоты. Под действием этого напряжения выходной ток усилительного элемента станет изменяться с той же частотой. Переменная составляющая тока, проходя через колебательную систему, будет усиливать возникшие в ней колебания. Амплитуда колебаний будет нарастать до тех пор, пока энергия, поступающая в колебательную систему, станет равной энергии потерь, после чего схема переходит в стационарный режим, характеризующийся постоянной или стационарной амплитудой колебаний.

Если контуру сообщить некоторый первоначальный запас энергии, в нем возникают затухающие колебания. При подключении к контуру нагрузки, имеющий активное сопротивление, скорость затухания колебаний увеличивается, что свидетельствует об увеличении потерь в нем. Следовательно, можно считать, что если энергия потребляется от контура, в него как бы вноситься положительное активное сопротивление R+, увеличивающее сопротивление потерь контура Rп. Если же энергия поступает в контур, это эквивалентно уменьшению потерь в контуре, т.е. как бы внесению в него отрицательного активного сопротивления R-.

В колебательную систему автогенератора энергия поступает от усилительного элемента (отрицательное сопротивление) и одновременно потребляется цепью обратной связи и нагрузкой (положительное сопротивление). Следовательно, в колебательную систему вноситься некоторое эквивалентное сопротивление R

эк=R+ — R. Если же знак этого сопротивления положительный (Rэк>0), потери в колебательной системе увеличиваются и колебания быстро затухают; если знак отрицательный (Rэк<0) и кроме этого < Rп, происходит частичная компенсация потерь и скорость затухания колебаний уменьшается. При Rэк<0 и > Rп энергия, поступающая в колебательную систему, больше энергии потерь, что приводит к непрерывному росту амплитуды колебаний. В стационарном режиме работы автогенератора отрицательное вносимое сопротивление становиться равным (по модулю) сопротивлению потерь колебательной системы. Это означает, что поступающая в неё энергия полностью компенсирует потери, вследствие чего амплитуда автоколебаний становится постоянной.

studfile.net

Автогенератор. Большая энциклопедия техники

Автогенератор

Автогенератор – это генератор, вырабатывающий электромагнитные колебания. Автогенератор самопроизвольно возбуждает колебания, преобразуя их из энергии источников питания. Он не зависит от внешних воздействий, поэтому носит название генератора с самовозбуждением.

Принцип работы автогенератора заключается в том, что источник энергии через резонатор, посредством переходного колебательного процесса, воздействует на активный элемент. Для этого необходимо, чтобы источник энергии обязательно был включен. Активный элемент превращает энергию источника в энергию колебаний, которые передаются в резонатор. Амплитуда колебаний увеличивается при выполнении условия самовозбуждения генератора – мощность, которую потребляет резонатор, меньше мощности активного элемента. Возрастающая амплитуда приводит к энергетическому балансу. Активный элемент с ростом амплитуды становится нелинейным и таким образом приостанавливает возрастание отдаваемой мощности. Это приводит к уравновешиванию отдаваемой и потребляемой мощности. Если малые отклонения не влияют на равновесие, то происходит установка стационарного режима колебаний. Частота и амплитуда колебаний не изменяются во времени, характеризуются параметрами активного элемента и колебательной системы, происходящей в автогенераторе. Именно эта характеристика отличает автогенераторы от каких-либо других каскадов радиопередатчиков.

Первый ламповый автогенератор был построен в 1912 г. Ли де Форестом. Но в связи с тем, что он вовремя не успел запатентовать свое изобретение, в 1913 г. официальным изобретателем такого автогенератора стал Г. Армстронг. Тяжба между ними продолжалась до 1934 г., правда оказалась на стороне Фореста, но в радиотехнике принято считать, что ламповый генератор сконструировал Армстронг. Явились и другие претенденты на получение патента данного изобретения, такие как Р. Фессендер, А. Мейснер, Г. Раунд, Р. Хартли и Э. Колпиц, но их устройства не получили широкого распространения.

Благодаря ламповому генератору можно было осуществлять обратную связь по одному каналу, так как он генерировал колебания одной частоты. Существует множество видов автогенераторов, одинаковым началом для которых служит автоколебательная система, генерирующая автоколебания.

Одноконтурный автогенератор содержит соответственно один колебательный контур.

В трехточечном автогенераторе напряжение обратной связи убирается с колебательного контура в трех точках: путем отвода от катушки; в другом варианте путем подключения контура либо к транзистору, либо к электронной лампе тремя проводами.

Подобный механизм работы наблюдается у автогенератора с емкостной обратной связью, также работающего по трехточечной схеме. Напряжение обратной связи в этом генераторе убирается с контура колебаний через емкостный делитель напряжения, т. е. с подключением контура к электронной лампе или транзистору.

Особенность внутреннего кольцевого автогенератора заключается в том, что его частота зависит от рабочей температуры, напряжения питания и условий производства микроконтроллера, изменяется под воздействием этих факторов. При выборе кольцевого автогенератора как источника основных синхроимпульсов он перезапускается для того, чтобы обеспечить синхронизацию процесса.

Чтобы максимально приблизить режим транзистора к режиму усилителя мощности, исследователи разработали транзисторные и диодные автогенераторы. Они различаются по типам активного элемента. В транзисторных автогенераторах по цепи обратной связи на вход транзистора поступают колебания из собственного резонатора. В диодных обратная связь происходит без вмешательства специальных элементов, а стационарные колебания производятся благодаря определенным процессам в генераторных диодах.

Автогенераторы различаются также по режимам возбуждения. При включении напряжения питания возникает условие самовозбуждения – генерация происходит самопроизвольно, независимо от внешнего воздействия. Такой режим носит название мягкого. При таком режиме возбуждения колебаний состояние покоя в автогенераторе нестабильно. При изменении условий можно перейти к жесткому режиму возбуждения. В отличие от мягкого режима колебания возбуждаются только при наличии внешнего воздействия. Оно создает колебания с амплитудой, превышающей пороговое значение. Примером может служить радиоимпульс, воздействующий на автогенератор от внешнего источника. Еще одним отличием от режима мягкого возбуждения колебаний является то, что состояние покоя в автогенераторе при жестком режиме устойчиво, стабильно.

Вырабатываемые автогенераторами электромагнитные колебания передаются по цепи обратной связи переменного напряжения с выхода на вход самого автогенератора. Обязательным условием этой системы является рост колебательной энергии, в значительной мере превосходящий потери. Вместе с этим амплитуда колебаний также увеличивается. Именно этот принцип объединяет все вышеперечисленные автогенераторы.

Применяются автогенераторы в радиопередающих устройствах.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Автогенератор — Википедия

Материал из Википедии — свободной энциклопедии

Автогенератор — электронный генератор с самовозбуждением.[1]

Автогенератор вырабатывает электрические (электромагнитные) колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери (когда петлевой коэффициент усиления больше 1). При этом амплитуда начальных колебаний будет нарастать.

Такие системы называют автоколебательными системами или автогенераторами, а генерируемые ими колебания — автоколебаниями. В них генерируются стационарные колебания, частота и форма которых определяются свойствами самой системы.

Автогенераторы применяются, например, в радиопередающих устройствах.

Существует 2 режима работы автогенератора: мягкий и жесткий режимы.

Мягкий режим характеризуется безусловным быстрым установлением стационарного режима при включении автогенератора.

Жесткий режим требует дополнительных условий для установления колебаний: либо большой величины коэффициента обратной связи, либо дополнительного внешнего воздействия (накачки).

Технические характеристики

Основными техническими характеристиками автогенератора являются диапазон рабочих частот, стабильность частоты, мощность на выходе. Из них наиболее важной является допустимая нестабильность частоты автоколебаний. Для целей радиопередачи относительная нестабильность частоты может лежать в интервале 10−6…10−15{\displaystyle 10^{-6}…10^{-15}}[2].

Видео по теме

История

В 1912 году Мейснер (Майснер) (Германия) изобрёл автогенератор на электронной лампе с трансформаторной положительной обратной связью.

Позже были разработаны автогенераторы «индуктивная трёхточка» и «ёмкостная трёхточка».

См. также

Примечания

Ссылки

Литература

  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

wiki2.red

Автогенератор — Википедия

Материал из Википедии — свободной энциклопедии

Автогенератор — электронный генератор с самовозбуждением.[1]

Автогенератор вырабатывает электрические (электромагнитные) колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери (когда петлевой коэффициент усиления больше 1). При этом амплитуда начальных колебаний будет нарастать.

Такие системы называют автоколебательными системами или автогенераторами, а генерируемые ими колебания — автоколебаниями. В них генерируются стационарные колебания, частота и форма которых определяются свойствами самой системы.

Автогенераторы применяются, например, в радиопередающих устройствах.

Существует 2 режима работы автогенератора: мягкий и жесткий режимы.

Мягкий режим характеризуется безусловным быстрым установлением стационарного режима при включении автогенератора.

Жесткий режим требует дополнительных условий для установления колебаний: либо большой величины коэффициента обратной связи, либо дополнительного внешнего воздействия (накачки).

Технические характеристики

Основными техническими характеристиками автогенератора являются диапазон рабочих частот, стабильность частоты, мощность на выходе. Из них наиболее важной является допустимая нестабильность частоты автоколебаний. Для целей радиопередачи относительная нестабильность частоты может лежать в интервале 10−6…10−15{\displaystyle 10^{-6}…10^{-15}}[2].

История

В 1912 году Мейснер (Майснер) (Германия) изобрёл автогенератор на электронной лампе с трансформаторной положительной обратной связью.

Позже были разработаны автогенераторы «индуктивная трёхточка» и «ёмкостная трёхточка».

См. также

Примечания

Ссылки

Литература

  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

wikipedia.green

Автогенератор — Википедия. Что такое Автогенератор

Материал из Википедии — свободной энциклопедии

Автогенератор — электронный генератор с самовозбуждением.[1]

Автогенератор вырабатывает электрические (электромагнитные) колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери (когда петлевой коэффициент усиления больше 1). При этом амплитуда начальных колебаний будет нарастать.

Такие системы называют автоколебательными системами или автогенераторами, а генерируемые ими колебания — автоколебаниями. В них генерируются стационарные колебания, частота и форма которых определяются свойствами самой системы.

Автогенераторы применяются, например, в радиопередающих устройствах.

Существует 2 режима работы автогенератора: мягкий и жесткий режимы.

Мягкий режим характеризуется безусловным быстрым установлением стационарного режима при включении автогенератора.

Жесткий режим требует дополнительных условий для установления колебаний: либо большой величины коэффициента обратной связи, либо дополнительного внешнего воздействия (накачки).

Технические характеристики

Основными техническими характеристиками автогенератора являются диапазон рабочих частот, стабильность частоты, мощность на выходе. Из них наиболее важной является допустимая нестабильность частоты автоколебаний. Для целей радиопередачи относительная нестабильность частоты может лежать в интервале 10−6…10−15{\displaystyle 10^{-6}…10^{-15}}[2].

История

В 1912 году Мейснер (Майснер) (Германия) изобрёл автогенератор на электронной лампе с трансформаторной положительной обратной связью.

Позже были разработаны автогенераторы «индуктивная трёхточка» и «ёмкостная трёхточка».

См. также

Примечания

Ссылки

Литература

  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

wiki.sc

АВТОГЕНЕРАТОР

АВТОГЕНЕРАТОР

Автогенератор — это генератор, вырабатывающий электромагнитные колебания. Автогенератор самопроизвольно возбуждает колебания, преобразуя их из энергии источников питания. Он не зависит от внешних воздействий, поэтому носит название генератора с самовозбуждением.

Принцип работы автогенератора заключается в том, что источник энергии через резонатор, посредством переходного колебательного процесса, воздействует на активный элемент. Для этого необходимо, чтобы источник энергии обязательно был включен. Активный элемент превращает энергию источника в энергию колебаний, которые передаются в резонатор. Амплитуда колебаний увеличивается при выполнении условия самовозбуждения генератора — мощность, которую потребляет резонатор, меньше мощности активного элемента. Возрастающая амплитуда приводит к энергетическому балансу. Активный элемент с ростом амплитуды становится нелинейным и таким образом приостанавливает возрастание отдаваемой мощности. Это приводит к уравновешиванию отдаваемой и потребляемой мощности. Если малые отклонения не влияют на равновесие, то происходит установка стационарного режима колебаний. Частота и амплитуда колебаний не изменяются во времени, характеризуются параметрами активного элемента и колебательной системы, происходящей в автогенераторе. Именно эта характеристика отличает автогенераторы от каких-либо других каскадов радиопередатчиков.

Первый ламповый автогенератор был построен в 1912 г. Ли де Форестом. Но в связи с тем, что он вовремя не успел запатентовать свое изобретение, в 1913 г. официальным изобретателем такого автогенератора стал Г. Армстронг. Тяжба между ними продолжалась до 1934 г., правда оказалась на стороне Фореста, но в радиотехнике принято считать, что ламповый генератор сконструировал Армстронг. Явились и другие претенденты на получение патента данного изобретения, такие как Р. Фессендер, А. Мейснер, Г. Раунд, Р. Хартли и Э. Колпиц, но их устройства не получили широкого распространения.

Благодаря ламповому генератору можно было осуществлять обратную связь по одному каналу, так как он генерировал колебания одной частоты. Существует множество видов автогенераторов, одинаковым началом для которых служит автоколебательная система, генерирующая автоколебания.
Одноконтурный автогенератор содержит соответственно один колебательный контур.

В трехточечном автогенераторе напряжение обратной связи убирается с колебательного контура в трех точках: путем отвода от катушки; в другом варианте путем подключения контура либо к транзистору, либо к электронной лампе тремя проводами.

Подобный механизм работы наблюдается у автогенератора с емкостной обратной связью, также работающего по трехточечной схеме. Напряжение обратной связи в этом генераторе убирается с контура колебаний через емкостный делитель напряжения, т. е. с подключением контура к электронной лампе или транзистору.

Особенность внутреннего кольцевого автогенератора заключается в том, что его частота зависит от рабочей температуры, напряжения питания и условий производства микроконтроллера, изменяется под воздействием этих факторов. При выборе кольцевого автогенератора как источника основных синхроимпульсов он перезапускается для того, чтобы обеспечить синхронизацию процесса.

Чтобы максимально приблизить режим транзистора к режиму усилителя мощности, исследователи разработали транзисторные и диодные автогенераторы. Они различаются по типам активного элемента. В транзисторных автогенераторах по цепи обратной связи на вход транзистора поступают колебания из собственного резонатора. В диодных обратная связь происходит без вмешательства специальных элементов, а стационарные колебания производятся благодаря определенным процессам в генераторных диодах.

Автогенераторы различаются также по режимам возбуждения. При включении напряжения питания возникает условие самовозбуждения — генерация происходит самопроизвольно, независимо от внешнего воздействия. Такой режим носит название мягкого. При таком режиме возбуждения колебаний состояние покоя в автогенераторе нестабильно. При изменении условий можно перейти к жесткому режиму возбуждения. В отличие от мягкого режима колебания возбуждаются только при наличии внешнего воздействия. Оно создает колебания с амплитудой, превышающей пороговое значение. Примером может служить радиоимпульс, воздействующий на автогенератор от внешнего источника. Еще одним отличием от режима мягкого возбуждения колебаний является то, что состояние покоя в автогенераторе при жестком режиме устойчиво, стабильно.

Вырабатываемые автогенераторами электромагнитные колебания передаются по цепи обратной связи переменного напряжения с выхода на вход самого автогенератора. Обязательным условием этой системы является рост колебательной энергии, в значительной мере превосходящий потери. Вместе с этим амплитуда колебаний также увеличивается. Именно этот принцип объединяет все вышеперечисленные автогенераторы.

Применяются автогенераторы в радиопередающих устройствах.

  • Предыдущее: АВТОВЫШКА
  • Следующее: АВТОГРЕЙДЕР
Категория: Промышленность на А


enciklopediya-tehniki.ru

Автогенератор — Карта знаний

  • Автогенератор — электронный генератор с самовозбуждением.Автогенератор вырабатывает электрические (электромагнитные) колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери (когда петлевой коэффициент усиления больше 1). При этом амплитуда начальных колебаний будет нарастать.

    Такие системы называют автоколебательными системами или автогенераторами, а генерируемые ими колебания — автоколебаниями. В них генерируются стационарные колебания, частота и форма которых определяются свойствами самой системы.

    Автогенераторы применяются, например, в радиопередающих устройствах.

    Существует 2 режима работы автогенератора: мягкий и жесткий режимы.

    Мягкий режим характеризуется безусловным быстрым установлением стационарного режима при включении автогенератора.

    Жесткий режим требует дополнительных условий для установления колебаний: либо большой величины коэффициента обратной связи, либо дополнительного внешнего воздействия (накачки).

Источник: Википедия

Связанные понятия

Мультивибра́тор — релаксационный генератор электрических прямоугольных колебаний с короткими фронтами. Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например, усилителя, охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра). Стабилизатор переменного напряжения (англ. Voltage regulator) — устройство, на выходе которого обеспечивается стабильное переменное напряжение той же частоты, что и питающее напряжение.:6Стабилизированный источник переменного напряжения (англ. Power conditioner) — устройство, на выходе которого обеспечивается переменное стабильное напряжение с частотой, не зависящей от частоты питающего напряжения.:6Кроме стабилизаторов, на выходе которых напряжение соответствует номинальному напряжению на входе… Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей.

Упоминания в литературе

Как видно из выражения (1.9), величина емкости конденсатора сглаживающего фильтра обратно пропорциональна длительности фронта импульса tф. Следовательно, уменьшая эту величину при заданном уровне пульсаций, получим возможность применять конденсаторы меньшей емкости, снизить массу и габариты источника питания. Одним из способов повышения эффективности этого параметра является применение в схеме автогенератора с насыщающимся трансформатором единого базового резистора Rб. Вариант схемы автогенератора с таким резистором представлен на рис. 1.9.

Связанные понятия (продолжение)

Фильтр в электронике — устройство для выделения желательных компонентов спектра электрического сигнала и/или подавления нежелательных. Отрицательная обратная связь (ООС) — вид обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое противодействует первоначальному изменению. Аттенюа́тор (фр. attenuer — смягчить, ослабить) — устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного сигнала, но также его можно рассматривать и как измерительный преобразователь. ГОСТ 28324-89 определяет аттенюатор как элемент для снижения уровня сигналов, обеспечивающий фиксированное или регулируемое затухание. Вторичный источник электропитания — устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи… Усилитель — устройство для усиления входного сигнала (например, напряжения, тока или механического перемещения, колебания звуковых частот, давления жидкости или потока света), но без изменения вида самой величины и сигнала, до уровня достаточного для срабатывания исполнительного механизма (или регистрирующих элементов), за счёт энергии вспомогательного источника. Элемент системы управления (или регистрации и контроля). Усили́тель постоя́нного то́ка (УПТ) — усилитель электрических сигналов, обычно электронный усилитель, диапазон усиливаемых частот которого включает нулевую частоту («постоянный» ток). Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки. Яче́йка Блэ́кмера (англ. Blackmer cell) — схема электронного управляемого напряжением усилителя (УНУ, амплитудный модулятор) с экспоненциальной характеристикой управления, предложенная и доведённая до серийного выпуска Дэвидом Блэкмером в 1970—1973 годы. Четырёхтранзисторное ядро схемы образовано двумя встречно включёнными токовыми зеркалами на комплементарных биполярных транзисторах. Входной транзистор каждого из зеркал логарифмирует входной ток, а выходной транзистор антилогарифмирует сумму логарифма… Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора. Умножи́тель напряже́ния ба́за-эми́ттер (умножитель Vбэ) — двухвыводной электронный источник опорного напряжения, пропорционального напряжению на прямо смещённом эмиттерном переходе биполярного транзистора (Vбэ). Простейший умножитель Vбэ состоит из резистивного делителя напряжения, задающего коэффициент умножения, и управляемого им биполярного транзистора. При подключении умножителя Vбэ к источнику тока падение напряжения на умножителе, как и само Vбэ, комплементарно абсолютной температуре: с ростом… Синтезатор частот — устройство для генерации электрических гармонических колебаний с помощью линейных повторений (умножением, суммированием, разностью) на основе одного или нескольких опорных генераторов. Синтезаторы частот служат источниками стабильных (по частоте) колебаний в радиоприёмниках, радиопередатчиках, частотомерах, испытательных генераторах сигналов и других устройствах, в которых требуется настройка на разные частоты в широком диапазоне и высокая стабильность выбранной частоты. Стабильность… Импульсный трансформатор (ИТ) — трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Амплиту́дно-часто́тная характери́стика (АЧХ) — зависимость амплитуды выходного сигнала некоторой системы от частоты её входного гармонического сигнала. Иногда эту характеристику называют «частотным откликом системы» (frequency response). И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме, то есть регулирующий элемент периодически открывается и закрывается. Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью…

Подробнее: Стабилитрон

Исто́чник, или генера́тор, опо́рного напряже́ния (ИОН) — базовый электронный узел, поддерживающий на своём выходе высокостабильное постоянное электрическое напряжение. ИОН применяются для задания величины выходного напряжения стабилизированных источников электропитания, шкал цифро-аналоговых и аналого-цифровых преобразователей, режимов работы аналоговых и цифровых интегральных схем и систем, и как эталоны напряжения в составе измерительных приборов. Точности измерения, преобразования и стабильность… Автоматика ликвидации асинхронного режима (автоматика прекращения асинхронного хода) (АЛАР), (АПАХ) — автоматическая система управления в электроснабжении, является автоматикой энергосистем, поддерживая их устойчивость (глобально). Датчик давления — устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газа, пара). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический сигналы или цифровой код. Сглаживающий фильтр — устройство для сглаживания пульсаций после выпрямления переменного тока. Простейшим сглаживающим фильтром является электролитический конденсатор большой ёмкости, включённый параллельно нагрузке. Нередко параллельно электролитическому конденсатору устанавливается плёночный (или керамический) ёмкостью в доли или единицы микрофарада для устранения высокочастотных помех. Мультивибратор Ройера или генератор Ройера (Встречается написание Роера), как правило транзисторный релаксационный генератор колебаний с формой импульсов близкой к прямоугольной, использующий трансформатор или индуктивность с насыщающимся сердечником. Схема изобретена в 1954 году Джоржем Роером (George H. Royer). Запатентована в 1957 году (US2783384). Предусили́тель-корре́ктор, или усилитель-корректор (УК), или фо́нокорре́ктор — специализированный электронный усилитель тракта воспроизведения граммофонной записи, восстанавливающий исходный спектр записанного на пластинке звукового сигнала и усиливающий выходное напряжение головки звукоснимателя до типичного уровня линейного выхода — от 0,775 В (0 dBu) в бытовой аналоговой аппаратуре до 2 В (8 dBu) в цифровой и радиотрансляционной аппаратуре). Исторически звукозаписывающая промышленность использовала…

Подробнее: Фонокорректор

Классы электронных усилителей и режимы работы активных усилительных приборов (ламп или транзисторов) традиционно обозначаются буквами латинского алфавита. Буквенные обозначения классов усиления могут дополнительно уточняться суффиксом, указывающим на режим согласования мощного каскада с источником сигнала (AB1, AB2 и т. п.) и с нагрузкой (F1, F2, F3). Устройства, совмещающие свойства двух «однобуквенных» классов, могут выделяться в особые классы, обозначаемые сочетанием двух букв (AB, BD, DE и устаревший… Измери́тельный усилитель — электронный усилитель, применяемый в процессе измерений и обеспечивающий точную передачу электрического сигнала в заданном масштабе. Пропорционально-интегрально-дифференцирующий (ПИД) регулятор — устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе — интеграл сигнала рассогласования…

Подробнее: ПИД-регулятор

Переменный конденсатор (конденсатор переменной ёмкости, КПЕ) — конденсатор, электрическая ёмкость которого может изменяться механическим способом, либо электрически, под действием изменения приложенного к обкладкам напряжения. Переменные конденсаторы применяются в колебательных контурах и других частотозависимых цепях для изменения их резонансной частоты — например, во входных и гетеродинных цепях радиоприёмников, в цепях коррекции АЧХ усилителей, генераторах, антенных устройствах. Ёмкость переменных… Фа́зовый дете́ктор, фазовый компара́тор (ФД) — электронное устройство, сравнивающее фазы двух входных сигналов равных или близких частот. Тахогенера́тор (от др.-греч. τάχος — «быстрый», «скорость» и лат. generator «производитель») — электрическая микромашина, измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в однозначно связанный со скоростью электрический сигнал. Гетероди́н (от греч. ἕτερος — иной; δύναμις — сила) — маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приёмниках прямого преобразования, волномерах и пр. Бандга́п (англ. bandgap, запрещённая зона) — стабильный транзисторный источник опорного напряжения (ИОН), величина которого определяется шириной запрещённой зоны используемого полупроводника. Для легированного монокристаллического кремния, имеющего при Т=0 К ширину запрещённой зоны Eg=1,143 эВ, напряжение VREF на выходе бандгапа обычно составляет от 1,18 до 1,25 В или кратно этой величине, а его предельное отклонение от нормы во всём диапазоне рабочих температур и токов составляет не более 3 %. Бандгапы… Ваттметр (ватт + др.-греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Дио́д Га́нна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, в полупроводниковой структуре не имеет p-n-переходов и используется для генерации и преобразования колебаний в диапазоне СВЧ на частотах от 0,1 до 100 ГГц. Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) — система управления частотой вращения ротора асинхронного (или синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя. Варика́п (акроним от англ. vari(able) — «переменный», и cap(acitance) — « ёмкость») — электронный прибор, полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Отсле́живание то́чки максима́льной мо́щности (ОТММ, англ. maximum power point tracking, MPPT) — способ, использующийся для получения максимальной возможной мощности на выходе фотомодулей, ветроустановок, магдино, электродвигателей, работающих в режиме рекуперативного торможения. Для ОТММ используются цифровые устройства, анализирующие вольт-амперную характеристику для определения оптимального режима работы фотомодуля(или иного источника тока). Цель устройства отслеживания точки максимальной мощности… Частотоме́р — радиоизмерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения. Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений. Автоматическая регулировка усиления, АРУ (англ. Automatic Gain Control, AGC) — процесс, при котором выходной сигнал некоторого устройства, как правило электронного усилителя, автоматически поддерживается постоянным по некоторому параметру (например, амплитуде простого сигнала или мощности сложного сигнала), независимо от амплитуды (мощности) входного сигнала. В аппаратуре, использующейся для прослушивания радиовещательного эфира, АРУ также называют устарелым термином автоматическая регулировка громкости… Клистро́н — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ-поля. Электри́ческий импеда́нс (ко́мплексное электри́ческое сопротивле́ние) (англ. impedance от лат. impedio «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала. Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°). Ква́рцевый резона́тор (жарг. «кварц») — электронный прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы.

kartaslov.ru