17Фев

Аккумулятор из чего состоит: Из чего состоит аккумулятор

Содержание

Из чего состоит автомобильный аккумулятор

АКБ – это источник электричества, предназначенный для накопления и последующей передачи энергии. Является ключевым элементом в современном транспортном средстве. Аккумулятор обеспечивает питание бортовых устройств, когда не работает генератор. Основной задачей считается запуск двигателя.

Установка батареи осуществляется в подкапотном пространстве. Схема внешнего крепления используется для грузовых автомобилей. Поскольку для работы устройства применяется высокоактивная кислота, обеспечивается высокий уровень защиты. При обслуживании аккумулятора важно соблюдать многочисленные правила безопасности.

Устройство АКБ

Внутренняя конструкция практически не изменялась на протяжении последнего столетия. Если рассматривать стандартную современную батарею, то она представляет собой шесть аккумуляторов меньшего размера в одном корпусе. Данные элементы получили название банок. Каждая из них находится в отдельном отсеке и соединяется с другими перемычками из свинца.

Используется последовательная схема подключения. Система обеспечивает напряжение на уровне 12,6 – 13,2 В. Подробнее остановимся на том, из чего состоит АКБ.

Корпус и крышка

Чаще всего для изготовления данных частей конструкции используется полипропилен. Пластик обладает высокой прочностью и устойчив к воздействию кислотного состава. Дополнительными преимуществами считается сохранение свойств в широком диапазоне температур (от -30 до 60°С). Поскольку в ходе зарядки образуется незначительное количество газов, корпус обладает системой отвода за счет клапанов. Более современный подход предусматривает систему лабиринтной вентиляции (методом конденсации кислотных паров).

Отрицательная пластина

Получила название анод, изготавливается из губчатого свинца или его сплава с сурьмой. Добавление примесей способствует замедлению разрядки. Сейчас получают распространение аккумуляторы, где пластины содержат незначительный объем кальция. Это позволило увеличить емкость почти на 70%.

Использование чистого свинца имеет свои преимущества. Сюда следует отнести повышение мощности и пускового тока.

Положительная пластина

Называется катод и, чаще всего, обладает пористой структурой. Здесь к свинцу добавляют олово, тантал или серебро. Указанные присадки способствуют увеличению стойкости к коррозии. В процессе производства катодов применяются следующие технологии:

  1. Power Frame. Используются внутренние направляющие элементы и рама опорного типа, что увеличивает надежность конструкции. Метод считается наиболее продвинутым.

  2. Power Pass. Устанавливаются вертикальные направляющие – это упрощает конструкцию и снижает стоимость.

  3. Chess Plate. Жилки электродов расположены в шахматном порядке.

Чтобы повысить площадь поверхности, которая взаимодействует с кислотным составом, на решетку пластин наносится активная масса или специальная обмазка.

Электролит

В большинстве случаев, это раствор серной кислоты в дистиллированной воде. Ключевой характеристикой является плотность состава. Она увеличивается при полном заряде батареи и снижается в момент разрядки. Существуют составы с повышенным показателем плотности, которые предназначаются для эксплуатации в условиях низких температур. Чтобы электролит со временем не густел, используются разнообразные присадки.

Сепараторы

Элементы из нейтральных типов пластика, которые разделяют пластины анода и катода. Если электроды замкнутся, это приведет к неисправности всего аккумулятора. Для изготовления сепараторов применяется эбонит и ревертекс. На современных моделях используется микроволокно. Такие разделители можно сделать тоньше и прочнее.

Как работает батарея

Принцип функционирования основывается на химических взаимодействиях. Внутри аккумулятора постоянно протекает реакция. Во время заряда химическая энергия преобразуется в электрическую, а при разряде происходит обратный процесс.

Формула реакции представлена ниже.


Постараемся подробнее разобраться в химических процессах при разряде:

  1. На аноде происходит окисление свинца, а на катоде восстановление его диоксида.

  2. Оба электрода вступают в реакцию с составом серной кислоты. Ее результатом становится образование сульфата свинца.

  3. Серная кислота выделяет водород. Данный газ взаимодействует с кислородом, который образуется на катоде.

  4. Реакция газов приводит к появлению воды. Она взаимодействует с серной кислотой, что уменьшает показатель плотности электролита.

Когда происходит зарядка, процесс выполняется в обратном порядке. Серная кислота в электролите восстанавливается, плотность состава повышается.

Здесь же вырисовывается главная проблема системы. Если допустить слишком глубокую разрядку, процесс станет необратимым. Внутри аккумуляторной батареи останутся только сульфат свинца и вода. Реакция не сможет начаться заново.

Виды аккумуляторов

Общая схема работы АКБ остается неизменной. Несмотря на это, имеется большое количество особенностей в конструкции, типе электролита и других моментах. Перечислим главные виды батарей для авто.

  1. АКБ с жидким электролитом. В процессе работы требуют периодического обслуживания. Необходимо проверять уровень состава и его плотность, а также следить за емкостью устройства. Срок службы составляет около 5 лет. Несмотря на ряд недостатков, низкая стоимость и простота эксплуатации делают их самыми востребованными в наши дни.

  2. EFB. Используется кислотный электролит в связанном состоянии. Свинцовые пластины «завернуты» в стекловолокно. Поскольку этот материал впитывает электролит, площадь реакции увеличивается. Удается повысить емкость и другие параметры, без изменения габаритов самого устройства. По сравнению с предыдущей моделью, стоимость не сильно возрастает. В процессе использования почти не требуется проводить обслуживание.

  3. AGM. Изготавливается герметичный корпус, в котором расположены клапаны для отвода излишков газа. Применение стекловолокна замедляет процесс образования сульфидов. Особенности конструкции делают АКБ нечувствительным к полной разрядке. Главным преимуществом считается срок службы до 10 лет. Нужно учитывать высокую стоимость устройств данного класса.

  4. Электролит представляет собой желе особого состава. Еще одним нововведением считается возможность устранить сепараторы. В качестве разделителя пластин используется сам электролит. Это многократно увеличивает срок службы. Переворачивание больше не является серьезной проблемой, а снижение емкости замедленно. Стоимость в несколько раз превышает цену обычных моделей.

Следует понимать, что существуют и другие способы классификации АКБ.

Характеристики аккумуляторов

Существует большое количество параметров, на основании которых осуществляется выбор устройства. Рассмотрим подробнее основные характеристики.

Пусковой ток

Возникает в момент поворота ключа зажигания и измеряется в Амперах. Измерение проводится в стартере машины. Значение определяется при температуре -18 °С, на протяжении 30 секунд с момента включения мотора. Чем выше пусковой ток, тем эффективнее происходит запуск транспортного средства в мороз.

Емкость

Основной параметр, который определяет время подачи энергии на подключенные устройства. Поскольку именно этот критерий является главным при выборе, он указывается на самом устройстве и упаковке. Следует учитывать, что емкость не полностью определяет энергию АКБ. Чем больше напряжение, тем выше уровень накопленной энергии.

Полярность

На верхней части батареи находятся клеммы для подключения нагрузки. Полярностью называется порядок расположения токовыводящих элементов. Поскольку существует два полюса (положительный и отрицательный), допускается два варианта:

  1. Прямая полярность. Клемма «+» находится справа, а «-» слева. Часто применяется в отечественной сфере автомобилестроения.

  2. Обратная полярность. Токовыводящие элементы имеют порядок от «-» к «+». Такой подход используется на иномарках.

Для удобства, многие производители закрашивают «+» в красный цвет.

Корпус

На современном рынке принято разделять российские, американские, европейские и азиатские типы корпусов. Основные элементы всегда будут совпадать, отличия заключаются в габаритах и других деталях (расстояние между клеммами).

Существует ряд особенностей:

  • европейские и американские модели имеют одинаковые габариты;

  • у азиатских устройств клеммы выступают, что должно учитываться при определении высоты;

  • АКБ по европейским стандартам предусматривает размещение токовыводящих элементов в специальном углублении;

  •  российский стандарт описывается буквенными обозначениями (А, З, Э, Т, М, П).

Рекомендуется изучить соответствующий материал перед покупкой.

Особенности клемм

Всеобщее распространение получили три стандарта – европейский, азиатский и американский. У типа Euro положительная клемма имеет диаметр 19,5 мм, отрицательная – 17,9 мм. Для азиатского стандарта показатели составляют 12,7 и 11,1 мм, соответственно. Американский тип использует особую схему подключения. Болт соединяется с проводом и продевается в отверстие клеммы.

Способ установки

Конструкция аккумулятора предусматривает крепление снизу или сверху. Это еще одна ключевая детали во время выбора. Крепление сверху выполняется за счет монтажной рамки. Указанный способ часто встречается на транспортных средствах из Азии. Нижний тип крепления популярен в европейских машинах. В основании имеется выступ, который прижимается к платформе специальной пластиной или болтом.

Error

Sorry, the requested file could not be found

More information about this error

Jump to. .. Jump to…Новостной форумВстречи с АТб-18А2Встреча с АВСб-18Z1,2Лекции по дисциплинеhttps://meet.google.com/art-hjtd-cgjМатериалы по дисциплинеЗадание №1Ответы на задание №1 (Внешние световые приборы)Задание №2Ответы на задание №2 (рулевое управление)Задание №3Ответы на задание №3 (Определение токсичности отработавших газов)Задание №4Ответы на задание №4 (Определение шумности выхлопа)Итоговый тест по дисциплинеВстреча с АВСб-18Z 16.03.2022Ссылка на встречи АТб-17А2МУ Диагн сист впрыскаВопросы к экзам по СИСТ ПИТ и УПРМУ по выполнению контрольной работыСписок АВСб18Z1Список АВСб18Z2Выполненная КРПракт №1 ОСПУАД (Бенз)Ответы на задание №1Практ №2 ОСПУАД (Диз)Ответы на задание №2Практ №3 ОСПУАД (Газ)Ответы на задание №3Итоговый тест по дисциплинеЗадание №1Отправка задания «Практика АТб-19″Материалы по практикеЗадание №2 до 20.04.20Ответы на задание №2Задание №3 до 04.05.20Ответы на задание №3Задание №4Ответы на задание №4Расписание занятий АТб-19А1Задание для отчета по учебной практике 1 курсОтчеты по практикеРАсписание на летнюю (соср) уч практикуВласов Тех обсл и ремонт а/мЗадание на уч. практику 2 (Летняя)Отчеты по учебной практике 2 (Летняя)Задание для отчёта по прктике АТб-19А1Материалы по практикеОтчеты по учебной практике №3Задание по практике№1Отправка задания «Практика АТб-18″Ответы на задание №2Задание №2 до 16.04.20Материалы по практикеЗадание №3 до 30.04.20Ответы на задание №3Задание №4 до 14.05.20Ответы на задание №4Расписание занятий АТб18А1Расписание занятий АТб18А2Задание №5 до 29.05.20Ответы на задание №5Задание для отчёта по прктике АТб-18А1Задание для отчёта по прктике АТб-18А2Отчёты по практикеЗадание АТб-17А2Отправка задания «СТВДА»Лекции и материалы СТВДАЗадание СТВДА по теме №3 до 15.04.20Ответы на задание по теме №3Расписание занятий АТб17А2Задание СТВДА по теме №4 на 29.04.20Ответы на задание по теме №4Задание СТВДА по теме №5 на 13.05.20Ответы на задание по теме №5Лекции и материалы ЭиЭОАЗадание №1Задание №2Задание №3Вопросы к экз по ЭиЭОАИтоговый тестВстреча с АТб-19А1 15.11.21Лекция — Неисправности стартеровЛекции и материалы ЭиЭСАЗадание №1Задание №1Отправка вопросов по ЭОАЗадание №2Задание №2Задание №3Задание №3Задание №4Задание №4Вопросы к экз по ЭиЭСАИтоговый тестВстреча с АТб-18Z1,2 16. 03.2022 в 17:05Диагностирование системы впрыска топлива с электронным управлением: Методические указания по выполнению лабораторной работыУстройство, функционирование и диагностирование электронной системы управления бензинового двигателя. Учебное пособиеЯковлев В.Ф. Диагностика электронных систем автомобиля. Учебное пособие (2003)Лекция 1. Общие сведения об электронных системах управления двигателемЛекция 2. Датчики электронных систем управления двигателемЛекция 3. Исполнительные элементы системы управления бензинового двигателяИсполнительные элементы системы управления бензинового двигателя. Часть 1Исполнительные элементы системы управления бензинового двигателя. Часть 2Исполнительные элементы системы управления бензинового двигателя. Часть 3Практическое занятие 1. Исследование характеристик датчиков электронной системы управления ДВСПрактическое занятие 2. Исследование функционирования электронной системы управления ДВСПрактическое занятие 3. Исследование влияния неисправностей элементов электронной системы управления ДВСЛабораторная работа №1Лабораторная работа №2Лабораторная работа №3Лабораторная работа №4Лабораторная работа №5Лабораторная работа №6Лабораторная работа №7Лабораторная работа №8Отправка лабораторных работВопросы к зачету по дисциплинеЗадание для контрольной работыОтправка контрольной работыПерезачет по дисциплинеСписок АТб18Z1Список АТб18Z2Итоговый тест по дисциплинеМатериалы по дисциплинеКР Сист упрОтправка КР по ДЭСАВопросы к зачету по дисциплине ДЭСАЗадание для АТб-17Z1-3Ссылка на встречи в период сессии (с 17. 03.21)Задание на практ работу №1Выполненные задания по практической работе №1Задание на практ работу №2Выполненные задания по практической работе №2Задание на лабор работуОтчеты по лабор работеИтоговый тест по дисциплинеДля АТб-17А2 https://meet.google.com/vzc-kyyj-rchОтправка задания для зачетаВопросы к зачету по дисциплине ЭСАЭлектронные и микропроцессорные системы автомобилейУчеб пособиеИтоговое тестирование по дисциплинеОтправка заданий для зачетаКадровое обеспечение системы автосервисаас предприятияВопросы для зачетаВстречи с ПОб-19ZЭлектронные и микропроцессорные системы автомобилейУчеб пособиеКР ДЭиЭСКонтрольная работаВопросы к зачету по дисциплине ДЭиЭСОтветы на вопросы по дисциплинеИтоговый тест по дисциплинеВстреча с ДВСб-19А1 Вопросы по дисциплине ЭиЭСУСИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ И ЗАЖИГАНИЯ АВТОМОБИЛЕЙ Методические указания к лабораторным работам-5Задание для заочВопросы к экз по ЭиЭСУДВстреча с ДВСб-18А1 17.09.21Материалы по дисциплинеЗадание для ДВСб-18А1 на 01.11Ответы на задание ДВСб-18А1 на 01. 11.21Задание для ДВСб-18А1 на 29.11Лекции ДВСб-19А1Техническая диагностика (Лекции)Контрольные тесты по дисциплинеВопр ТехнДиагн — ДВСбМетод указ для контрольной работыЗадание для ДВСб-19Z1ДВСб-19Z1ДВСб-19Z1Контрольная работаМетод указанияТесты остат знанийВопросы для зачетаЗадание для заочСистемы двигателей ЛекцииВстречи АВСб-19ZРекомендуемая литератураОбсуждение тем по дисциплинеТеоретический материалПрактическое задание №1Ответы на практическое №1Практическое задание №2Ответы на практическое №2Практическое задание №3Ответы на практическое №3Практическое задание №4Ответы на практическое №4Итоговый тест по дисциплинеВопросы итог Оценка кач и сертЛекции Оценка кач и сертифРекомендуемая литератураТеоретический материалОбсуждение тем по дисциплинеЗадание для заочОтветы на заданиеВажно!Ссылка на встречи ЭТКм-20МАZ1Литература по дисциплинеКР Совр элек сист автКонтрольная работаЗадание практ №1Задание практ №1Задание практ №2Задание практ №2Задание практ №3Задание практ №3Задание практ №4Задание практ №4Задание практ №5Задание практ №5Вопросы по дисциплине СЭСАОтветы на вопросы для зачетаИтоговый тест по дисциплинеПракт задание №1Практ задание №1Итоговый тест по дисциплинеЗадание АТб 20А1Отчеты по практикеДневники по практикеОтчеты по практикеДневники по практикеЗадание АТб 17 А2Приказ на практику Атб-18А1,2По дисциплинеТехническая диагностика (Лекции)Задание №1 для ДВС-19А1 на 06. 11.21Задание №1 для ДВСб-19А1 на 06.11.21Контрольные тесты по дисциплинеВопр ТехнДиагн — ДВСбБилеты Теор Диаг ДВСбМУ. Опред осн хар диаг парРасписание занятий ДВСб-18А1Практ зан №2Ответы на Задание №2Практ зан №3Ответы на задание №3Практ зан №4Ответы на задание №4Лабораторная работа №1Лабораторная работа №2Лабораторная работа №3Лабораторная работа №4Итоговый тест по дисциплинеДля АТб-18 А2 https://meet.google.com/srz-xyjq-fncТеоретические материалыВопросы по дисциплинеРасписание АТб18А2Практическое задание №1Практич задание №1Практическое задание №2Практическое задание №2Практическое задание №3Практическое задание №3Практическое задание «Алгоритм общения с клиентом»Лекционный материалМатериалы по семестровому заданиюЗадание для заочниковОтветы на задание для заочниковВопросы для экзаменаСсылка на встречуСсылка на занятия с АВСб-20ZРаздел 1. Основы организации сервисных услуг по техническому обслуживанию и ремонту автомототранспортных средствРаздел 2. Производственная инфраструктура предприятияРаздел 3. Бизнес-планирование предприятий автомобильного сервисаРаздел 4. Организация работы с потребителемРаздел 5. Организация и нормирование труда в автосервисном предприятииТеоретические материалыПрактическая работа 1 АВСб-20ZПрактическая работа 1 АВСб-20ZПрактическая работа 2 АВСб-20ZПрактическая работа 2 АВСб-20ZПрактическая работа 3 АВСб-20ZПрактическая работа 3 АВСб-20ZЗадание для АТб-20А2 на 01-06.11.21Задание по лекциям на 01-06.11.21 АТб-20А2Задание по практическим на 01-06.11.21 для АТб-20А2Тесты ООФАСВсё для экзаменаОтветы на вопросы экзаменаПрактическая работа №1 (АТб-20А2)Практическая работа №2Итоговый тестСсылка на встречу в Google MeetНСб-21Т1 Задание для отчета по учебной практике 1 курсАТб-21А Задание для отчета по учебной практике 1 курсОтчеты по практике АТб-21А (Задание №1)Отчеты по практике НСб-21Т (Задание №1)Титульный образецСписок использованных источников. Правила оформленияЗадание для заочного ф-таМатериалы по дисциплинеВидеоматериалы по дисциплинеЗадание №1Задание №2Видеовстречи ДВСбИтоговый тест по дисциплинеМатериалы по дисциплинеЗадание к лабораторнойЗадание к лабораторнойЗадание на практ работу №1Практическое задание №1Задание на практ работу №2Практическая работа№2Опрос 1 Контр. неделяВопросы к зачету по дисциплине ЭСУДСписок рек литературыНорм-прав регул в АТЭТеоретические материалыЛабораторные работыОтчеты по лабор рабВстречи с АВСб-19ZИтоговый тест по дисциплинеПрактическое задание (Технологическая карта) ДВСб-19А1Внимание! Наша кафедра теперь называется «Автомобильный транспорт»Задание произв практика (по получ)Приказ на практику АВСб-18ZОтчеты по практикеДневники по практике

Skip Statistics

Откуда берутся батарейки? И куда они идут?

Каждый день вы используете аккумулятор определенного типа. Ваш телефон работает от перезаряжаемой литий-ионной батареи, как и большинство других ваших электронных устройств. Материнская плата вашего компьютера содержит неперезаряжаемый литиевый элемент типа «таблетка», известный как батарея CMOS. Двигатель внутреннего сгорания вашего автомобиля запускается от перезаряжаемой аккумуляторной батареи, обычно свинцово-кислотной. Список можно продолжить.

Примечание редактора: это сообщение было обновлено 25 октября 2022 г. и посвящено часто задаваемым вопросам.

Батареи имеют ограниченный срок службы. Аккумуляторы AirPods будут работать от 18 месяцев до трех лет. В 2021 году по всему миру было продано около 300 миллионов настоящих беспроводных наушников (TWS), и эксперты ожидают дальнейшего роста рынка. В результате мы можем ожидать, что более 450 миллионов таких батарей выработают свой ресурс к концу 2023 года, а затем и больше. И это только наушники.

Всемирный экономический форум Литий-ионные аккумуляторы, размещенные на мировом рынке (уровень ячеек, метрические тонны).

Литий-ионные аккумуляторы уже используются в бытовой электронике, например в наушниках, а также в электромобилях. Bloomberg New Energy Finance (BNEF) прогнозирует, что к 2030 году доля электромобилей в продажах составит 34% по сравнению с 4% в 2020 году. Этот быстрый рост спроса приводит к адаптации добычи и производства на начальном этапе.

Вам может быть интересно, является ли такой рост устойчивым и как мы справимся со всеми отходами. Это то, что мы здесь, чтобы выяснить.

В отличие от одноразовых литиевых батарей, литий-ионные батареи можно перезаряжать.

Откуда берутся батарейки?

Итальянский физик Алессандро Вольта изобрел первую настоящую батарею в 1800 году. В 1859 году Гастон Планте изобрел первую перезаряжаемую батарею. Литий-ионные аккумуляторы не появлялись на рынке до 1980 года. И потребовалось еще 11 лет, прежде чем они были впервые коммерциализированы Sony.

Этот безопасный, компактный и энергоемкий аккумулятор положил начало мобильной революции, питая видеокамеры, ноутбуки, смартфоны и большинство другой портативной бытовой электроники, которую мы знаем сегодня. В 2019 году, ученые, которые изобрели литий-ионный аккумулятор, получили Нобелевскую премию по химии.

Давайте углубимся в материальный состав литий-ионных аккумуляторов, который превратил их в эти мощные двигатели перемен.

Из чего сделаны батареи?

Батарея представляет собой набор из одной или нескольких ячеек. Каждая заполненная электролитом ячейка содержит два электрода, каждый с токосъемником, которые расположены на противоположных концах батареи, с сепаратором между ними. Замыкание цепи между электродами запускает серию электрохимических реакций, которые создают электрический ток и разряжают батарею. Хотя основные компоненты и процессы одинаковы во всех типах аккумуляторов, материалы сильно различаются.

ScienceDirect Схематическая диаграмма типичной литий-ионной батареи (а) и весовые проценты ее основных компонентов (б).

Давайте посмотрим на компоненты, обычно встречающиеся в перезаряжаемой литий-ионной батарее:

  • Анод: литий, хранящийся в углеродных структурах, позднее в графите
  • Катод: оксид лития-никеля, оксид лития-кобальта и/или оксид лития-марганца
  • Токоприемники: медь, алюминий
  • Электролит (жидкий): соли лития и органические растворители, обычно алкилкарбонаты
  • Сепаратор: синтетические полимеры, особенно мембраны на основе полиолефинов

Откуда берутся материалы для изготовления батарей?

Хотя большинство литий-ионных аккумуляторов производится в Китае, материалы, из которых они производятся, разбросаны по всему миру. Вот наиболее распространенные источники этих материалов:

Материал Натуральные резервы Top Producers (2020) Экстракция
Материал

LITHIUM

Earrileves

Globals


9008

Globals
0081008181818181818181008
81008
008
008
008
008
008
.9008
008
0081008181818181818 гг. %)
Чили (12%)
Австралия (8%)
Китай (6%)

Ведущие производители (2020)

Австралия (49%)
Чили (22%)
Китай (17%)
Аргентина ( 8%)

Добыча

Добывается из природного рассола в подземных озерах (Южная Америка) или месторождений полезных ископаемых в твердых породах (Австралия).

Материал

Графит

Натуральные резервы

Глобал: 800 миллионов тонн
Турция (28%)
Китай (22%)
Бразилия (22%)
Mozambique (8%). (2020)

Китай (62%)
Мозамбик (11%)
Бразилия (9%)
Турция (<1%)

Добыча

Добыча из метаморфических пород.

Материал

Никель

Природные запасы

В мире: 94 млн тонн )

Ведущие производители (2020)

Индонезия (30%)
Филиппины (13%)
Россия (11%)

Добыча

Добыча из латеритов и сульфидных месторождений. Никель также встречается в марганцевых корках и конкрециях на дне океана.

Материал

Кобальт

Природные запасы

Мировые (наземные): 25 миллионов тонн
Мировые (океаническое дно): 120 миллионов тонн
Куба (7%)
Россия (4%)

Ведущие производители (2020)

Конго (68%)
Россия (4,5%)
Австралия (4%)

Добыча

Обычно побочный продукт никеля или добычи меди.

Материал

Манганазер

Натуральные резервы

Глобал: 1,3 млрд. Тонн
Южная Африка (40%)
Бразилия (20%)
Австралия (18%)
Габон (5%)
9003

. Производители (2020)

Южная Африка (28%)
Австралия (18%)
Габон (15%)
Бразилия (6%)

Добыча

Добывается из руды и в основном используется в производстве стали.

Материал

Медь

Природные заповедники

Глобальные (установленные): 2,1 миллиарда тонн
Глобальные (неоткрытые): ок. 3,5 млрд тонн
Чили (23%)
Перу (11%)
Австралия (10%)
Китай (3%)

Ведущие производители (2020)

Чили (29%)
Перу (11%)
Китай (9%)

Добыча

Добывается по всему миру, в том числе на рудниках США в Аризоне, Юте, Нью-Мексико, Неваде, Монтане, Мичигане и Миссури.

Материал

Алюминий (бокситы)

Природные запасы

В мире: от 55 до 75 миллиардов тонн бокситов
Африка (32%)
Океания (23%)
Южная Америка и Карибский бассейн (21%)
Азия (18%)

Ведущие производители (2020)

Австралия (30%)
Гвинея (22%)
Китай (16%)

Добыча

руда, добываемая из верхнего слоя почвы.

Все добытые полезные ископаемые проходят переработку, часто не в странах их происхождения.

Горнодобывающая промышленность не является непосредственным источником органических растворителей и синтетических полимеров, содержащихся в литий-ионных батареях, хотя их основные компоненты извлекаются из земли. Вот упрощенное описание их производства:

  • Алкилкарбонаты, как и диэтилкарбонат, синтезируются из фосгена, газа и спиртов, таких как этанол или метанол.
  • Мембраны на основе полиолефинов синтезируются из полимеров, полученных из нефти или природного газа.

Какие проблемы с добычей полезных ископаемых?

Вся добыча полезных ископаемых имеет социальные и экологические последствия. Добыча кобальта в Демократической Республике Конго, например, часто связана с нечеловеческими условиями, а также рабским и детским трудом. Следовательно, такие производители, как Tesla, стремятся использовать литий-ионные батареи без кобальта. Хотя источники добычи других полезных ископаемых могут иметь меньше социальных последствий, они по-прежнему требуют разрушения окружающей среды, истощают водные ресурсы и способствуют загрязнению воздуха, воды и почвы.

Горнодобывающая промышленность разрушает окружающую среду, истощает водные ресурсы и способствует загрязнению воздуха, воды и почвы.

Извлечение материала — это только первый шаг. Для обработки таких минералов, как литий, обычно требуются токсичные химикаты. Нефтеперерабатывающие заводы обычно утилизируют отходы в хвостохранилищах или прудах-испарителях. Отсюда ядовитые жидкости могут просачиваться в окружающую среду, загрязняя почву и воду. Даже обработанная вода может содержать следы минералов, которые могут неблагоприятно воздействовать на людей и животных.

ScienceDirect Относительные показатели воздействия литий-ионных аккумуляторов на основе оксида лития-марганца (LMO) или фосфата лития-железа (LFP).

Несмотря на то, что многие материалы, используемые в литий-ионных батареях, имеются в изобилии, их не всегда легко извлечь. По мере истощения запасов природных ресурсов горнодобывающим предприятиям придется использовать менее благоприятные источники, что только усилит негативное воздействие добычи и переработки и может привести к увеличению судоходных путей. В конце концов, цены на ресурсы заставят производителей переключаться на другие химические составы аккумуляторов, например, с оксида лития-марганца на фосфат лития-железа.

К сожалению, проблема не только в производстве.

Куда девать батарейки?

Слишком много батарей по-прежнему попадает на свалку, хотя это зависит от их типа. В то время как 90% свинцово-кислотных аккумуляторов перерабатываются, по оценкам экспертов, только около 5% литий-ионных аккумуляторов в настоящее время перерабатываются. Многие другие прячутся в ящиках или оказываются в мусорном ведре. Это проблема.

Почему нельзя выбрасывать аккумуляторы в мусор

Литий-ионные аккумуляторы могут стать причиной возгорания при воздействии тепла, механических воздействий или других отходов. После воздействия элементы, содержащиеся в батареях, могут попасть в окружающую среду и загрязнить почву и грунтовые воды. Хотя это не должно представлять проблемы на хорошо управляемом домашнем объекте, экспортируемый мусор может оказаться на более щадящей свалке. Рича и др. обратите внимание, что «больший риск представляет собой потерю ценных материалов».

Waste360 Зарегистрированные пожары на предприятиях по переработке отходов и переработке отходов в США и Канаде в период с февраля 2016 г. по апрель 2020 г.

Достаточно концентрированные природные ресурсы лития, кобальта, никеля и других элементов исчерпаны. Как обсуждалось выше, их добыча имеет необратимые последствия. К тому времени, когда эти материалы попадают в наши гаджеты, мы платим высокую социальную и экологическую цену за ущерб, нанесенный их цепочкам поставок.

Вскоре спрос на некоторые материалы превысит объем добычи. Одно из недавних исследований прогнозирует, что спрос на литий и кобальт может превысить производство уже к 2025 году. Если вы примете во внимание, что в среднем отработанные электроды литий-ионных аккумуляторов содержат больше лития, чем природные руды, вы быстро придете к выводу, что даже разряженные аккумуляторы иметь ценность.

Поскольку спрос превышает возможности добычи, переработка превращается из этического обязательства в экономически выгодную альтернативу и, возможно, в необходимость.

Куда потребители могут безопасно утилизировать батареи?

Аккумуляторы являются основным компонентом бытовой электроники, такой как смартфоны, ноутбуки или наушники. Когда батарея умирает, это часто означает конец жизни устройства. Это особенно верно для настоящих беспроводных наушников, таких как AirPods. Во многих случаях вам придется утилизировать весь гаджет, а не только аккумулятор.

iFixit Литий-ионные батареи, содержащиеся в AirPods, практически невозможно извлечь.

Многие производители предлагают программы утилизации электронных отходов. Например, если у вас есть старый iPhone, Apple может обменять его на кредит в магазине. Магазины электроники, такие как Best Buy , будут бесплатно принимать товары и перерабатывать их. Если вам нужно утилизировать использованные бытовые батареи, Агентство по охране окружающей среды рекомендует искать на Earth911 местного поставщика услуг по переработке. Наконец, Call2Recycle предлагает пункты приема аккумуляторов и мобильных телефонов по всей территории США 9.0003

Как и в случае с другими электронными устройствами или батареями, вы можете найти места, где старые наушники принимают или обменивают. Помимо переработки наушников, вы также можете попробовать отремонтировать, повторно использовать или продать их. Когда вы будете готовы купить новую пару, подумайте об экологически чистых наушниках.

Что происходит с батареями, сданными на переработку?

Двумя наиболее распространенными методами переработки литий-ионных аккумуляторов являются пирометаллургия, процесс, основанный на нагревании, и гидрометаллургия, выщелачивание металлов химическими веществами. Каждый метод переработки имеет свой собственный набор проблем.

Пирометаллургия представляет собой энергоемкий комплекс операций с образованием токсичных газов и возможностью извлечения только некоторых элементов; литий и алюминий, например, теряются в шлаке, побочном продукте твердых отходов. Гидрометаллургия работает при гораздо более низких температурах и имеет более высокую скорость восстановления, но это гораздо более сложный процесс, в котором используются ядовитые химикаты, которые создают собственную проблему удаления отходов. Чтобы максимизировать извлечение ресурсов, эти два метода часто используются в тандеме, но все же извлекают не более 50% исходных материалов для аккумуляторов, поскольку они, как правило, сосредоточены на наиболее ценных металлах и пренебрегают другими.

ScienceDirect Общая схема методов и процессов переработки отработанных литий-ионных аккумуляторов.

Усовершенствованные процессы рециклинга на основе гидрометаллургии обещают значительно приблизить коэффициент извлечения к 100%. Li-Cycle — одна из первых компаний, которая сосредоточилась исключительно на переработке литий-ионных аккумуляторов. Его процесс включает в себя децентрализованную разборку батарей на их основные строительные блоки с последующим измельчением в инертные продукты. Оттуда такие материалы, как пластик, медь и алюминий, попадают в местные потоки вторичной переработки. Оставшийся промежуточный продукт, влажный мелкий порошок, называемый черной массой, отправляется в центральный узел, где он очищается для извлечения ценных материалов, таких как графит, кобальт, никель, литий и медь. По оценкам Li-Cycle, он может восстановить до 95% материалов с нулевым направлением на свалку, без сточных вод и без прямых выбросов.

Большинство процессов переработки литий-ионных аккумуляторов сосредоточены на ценных материалах, таких как кобальт, марганец и никель, из которых состоит катод литий-ионного аккумулятора. К сожалению, литий сложно регенерировать, а значит, добывать его по-прежнему дешевле. Это может измениться в ближайшие годы, особенно если литий подорожает или когда более продвинутые процессы переработки станут более доступными.

Аккумуляторы должны войти в круговую экономику

Производство перезаряжаемых аккумуляторов из добытых полезных ископаемых имеет социальные и экологические последствия, а природные ресурсы ограничены. Поскольку спрос на эту технологию продолжает расти, как производители, так и потребители должны активизировать свою деятельность по переработке отходов. Производителям необходимо придумать конструкции, облегчающие извлечение батарей, их разборку и извлечение отдельных материалов. Между тем, потребители должны ответственно утилизировать отработавшие батареи или старую электронику, чтобы убедиться, что они попадают в подходящие потоки вторичной переработки.

Извлекая аккумуляторы со свалки, мы можем восстановить ценные материалы и повторно использовать их для дальнейшего производства. По мере того, как мы увеличиваем объемы переработки, мы снизим нашу зависимость от природных ресурсов. Это ворота в экономику замкнутого цикла.

Часто задаваемые вопросы о батареях

В 2021 году Австралия произвела больше всего лития (55 000 тонн), за ней следуют Чили (26 000 тонн) и Китай (14 000 тонн). Интересно, что Боливия обладает самыми большими ресурсами лития из всех (21 млн тонн), за ней следует Аргентина (19 млн тонн).млн тонн) и Чили (9,8 млн тонн). Эти цифры были взяты из «Сводок по минеральным товарам за 2022 год» (PDF), опубликованных Министерством внутренних дел США и Геологической службой США.

Это буквально движущаяся мишень. Рынок электромобилей (EV), который включает в себя автомобили, скутеры и велосипеды, быстро растет, как и его воздействие на окружающую среду.

Например, глобальные продажи электромобилей выросли более чем вдвое с 2020 по 2021 год. В 2021 году было продано 6,6 млн электромобилей, каждый из которых содержит около 8 кг лития, поэтому на рынок электромобилей приходится не менее 58% мирового производства лития (9).0,7 млн ​​кг) в 2021 году. Социальные и экологические последствия одинаковы для всех литий-ионных аккумуляторов, т. е. разрушение среды обитания, чрезмерное использование воды, загрязнение, негуманные условия добычи и т. д.

Производители давно опасаются, что аккумуляторы из переработанных материалов может иметь более короткий срок службы или быть более подверженным отказам батареи, что может иметь разрушительные последствия для электромобиля. Однако новое исследование, опубликованное в журнале Joule, посвященное новому методу переработки катода, дорогого ключевого компонента литий-ионных аккумуляторов, показало, что эти аккумуляторы служат дольше и заряжаются быстрее. Катод литий-ионного аккумулятора, изготовленный из переработанных материалов, более пористый, что предотвращает растрескивание катода, что является признаком деградации литий-ионного аккумулятора.

Из чего сделаны аккумуляторы для электромобилей?

Нам говорят, что электромобили «проще», чем бензиновые или дизельные, но при этом они намного дороже.

В этой статье мы рассмотрим один из самых сложных (и дорогих) компонентов электромобиля. Мы объясним, из чего сделаны аккумуляторы для электромобилей, как они сделаны и что с ними происходит, когда они перестают соответствовать своему назначению.

Из чего сделан аккумулятор электромобиля?

Не волнуйся, это не будет похоже на школьный урок химии. Однако важно отметить, что существуют разные типы аккумуляторов для электромобилей, в которых используются различные металлы с разными преимуществами и недостатками.

Двумя основными типами аккумуляторов для электромобилей являются литий-ионные (Li-on), которые используются большинством производителей электромобилей (Mercedes, Jaguar и т. д.), и никель-металлогидридные (NiMH), которые используются Toyota. .

NiMH

NiMH аккумуляторы дешевле литий-ионных аккумуляторов и способны выдерживать более холодный климат.

Как правило, они склонны к «эффекту памяти» при зарядке до полной потери запасов энергии. Это означает, что они «вспомнят» о том, что они были заряжены через более короткий период, поэтому они будут работать в течение более короткого времени между зарядками, чем раньше.

Li-on

Литий-ионные аккумуляторы имеют много общего с аккумуляторами в мобильных телефонах. В большинстве современных смартфонов используются литий-ионные аккумуляторы для быстрой зарядки. Электромобили используют их в большем масштабе.

Самый популярный химический состав литий-ионных аккумуляторов с наиболее высокой энергоемкостью называется литий-никель-марганец-оксид кобальта, сокращенно NMC. Все чаще производители, такие как Tesla, обращаются к альтернативным химическим веществам, таким как менее энергоемкий, но более дешевый литий-железо-фосфат (LFP).

Из-за более высокой плотности энергии по сравнению с NiMH литий-ионные аккумуляторы производятся с рекордной скоростью, чтобы удовлетворить спрос на новые электромобили.

Согласно данным Аргоннской национальной лаборатории, один литий-ионный аккумулятор электромобиля (известный как NMC532) может содержать около 8 кг лития, 35 кг никеля, 20 кг марганца и 14 кг кобальта.

К сожалению, получение кобальта и никеля является дорогостоящим и вредным для окружающей среды, что делает сокращение количества металлов, которые необходимо добывать, ключевой проблемой для исследователей аккумуляторов для электромобилей.

Как изготавливаются батареи?

Аккумуляторы для электромобилей можно разделить на три уровня: элементы, модули и блоки. BMW i3 имеет 96 аккумуляторных батарей. При этом 12 ячеек объединяются в единый модуль, а 8 модулей составляют единый аккумуляторный блок.

Аккумулятор представляет собой базовую ионно-литиевую батарею, способную вырабатывать электрическую энергию путем зарядки и разрядки. Батарейные элементы бывают цилиндрическими, призматическими и пакетными, но все они имеют одну и ту же основную функцию (вы можете узнать больше об этом в нашем посте о том, как работают аккумуляторы для электромобилей)

Аккумуляторные элементы затем объединяются в раму (модуль), которая защищает элементы от внешних ударов, тепла или вибрации. Аккумуляторная батарея — это окончательная форма аккумуляторной системы, установленной в электромобиле. Аккумуляторы для электромобилей обычно свариваются и склеиваются вместе, что затрудняет их разборку в конце срока службы.

Что происходит, когда батарея разряжена?

Когда срок службы аккумулятора электромобиля подходит к концу, он может перестать быть «зеленой» альтернативой бензину или дизельному топливу, как это было раньше.

На самом деле, если аккумулятор электромобиля окажется на свалке, он может выделять вредные токсины и тяжелые металлы. Это может заставить вас задуматься, действительно ли электромобили лучше для окружающей среды?

Согласно текущим оценкам, средний срок службы батареи электромобиля составляет от 10 до 20 лет или от 200 000 до 400 000 миль, после чего ее необходимо заменить.

Хотя для обычного пользователя этого более чем достаточно, вполне вероятно, что аккумуляторы для электромобилей будущего смогут пойти еще дальше. Tesla уже объявила о своей «батарее на миллион миль», а следующая крупная инновация в батареях для электромобилей — «твердотельная батарея» — может значительно сократить срок службы батареи.

До тех пор, к счастью, есть другие способы использовать старые батареи электромобилей, которые больше не подходят для использования в автомобиле.

Можно ли перепрофилировать аккумуляторы электромобилей?

Nissan Leaf впервые появился на рынке в 2010 году. Несколько месяцев спустя Nissan в партнерстве с Sumitomo Corp создала 4R Energy Corp. Ее миссия: разработать способ переработки, переработки, перепродажи и повторного использования аккумуляторов в электромобилях. Вместо того, чтобы продавать аккумуляторы для электромобилей по цене металлолома, они будут использоваться для питания других вещей.

Более десяти лет спустя срок службы некоторых оригинальных аккумуляторов Nissan Leaf подходит к концу. Аккумуляторы классифицируются как «A», «B» или «C» в зависимости от их состояния и полезности.

Аккумуляторы класса «А» могут быть повторно использованы для новых высокоэффективных аккумуляторов для электромобилей. Аккумуляторы класса «В» могут использоваться для питания заводского оборудования, такого как вилочные погрузчики, или в качестве устойчивого решения для хранения энергии в домах или коммерческих объектах, использующих солнечную энергию. Можно использовать даже батареи класса «С», как правило, в качестве резервного источника энергии в магазинах, которым требуется круглосуточное питание.

Согласно 4R, это может продлить срок службы батареи электромобиля до 15 лет.

Вскоре такие «циклические» энергетические решения появятся и на массовом рынке. В 2019 году Nissan представил аккумуляторную батарею Nissan Energy Roam, в которой используются литий-ионные аккумуляторные элементы от автомобилей Leaf первого поколения, способные хранить до 700 Втч электроэнергии.

Этого может быть недостаточно для питания электромобиля, но при использовании для накопления энергии от солнечной панели мощностью 400 Вт батарея «Roam» легко сможет обеспечить недельную мощность для прицепа-дома.

Nissan не единственный в игре по перепрофилированию. Audi использует старые аккумуляторы для электромобилей для замены аккумуляторов для вилочных погрузчиков на своем заводе в Ингольштадте, в то время как Volkswagen планирует создать портативные зарядные станции для электромобилей, способные одновременно заряжать до четырех автомобилей, предлагая потенциальное решение проблемы неудобных поломок электромобилей.

В Швеции старые аккумуляторы для автобусов Volvo используются для балансирования энергетических потребностей жилищного кооператива Riksbyggen Viva в Гётеборге.

Можно ли перерабатывать аккумуляторы электромобилей?

Да! Renault уже занимается переработкой аккумуляторов для электромобилей в сотрудничестве с компанией по переработке отходов Veolia и международной химической компанией Solvay.

Другие производители начинают следовать их примеру в своих собственных схемах утилизации автомобильных аккумуляторов, так как это не только лучше для окружающей среды, но и снижает зависимость от сырья, которое обычно можно получить только из-за пределов Европы.

В любом случае в большинстве случаев добывать металлы дешевле, чем перерабатывать их из аккумуляторов электромобилей. Утилизация батареи — опасное дело — неправильное обращение с элементом Tesla может привести к короткому замыканию, воспламенению и выделению токсичных паров.

Но с учетом того, что к 2030 году на наших дорогах будет около 145 миллионов электромобилей, утилизация и переработка аккумуляторов становится все более серьезной проблемой — так что же делается?

Постепенно правительства продвигаются к установлению определенного уровня переработки. В 2018 году правительство Китая ввело новые правила, поощряющие повторное использование компонентов аккумуляторов электромобилей. Комиссия ЕС предложила установить квоту на переработку 25 % литий-ионных аккумуляторов к 2025 г. и увеличить ее до 70 % к 2030 г.

Это многообещающее начало, но впереди нас ждут препятствия. Одним из самых прибыльных ресурсов для переработчиков является кобальт. Тем не менее производители автомобилей, такие как Tesla, уже заявили о своем желании отказаться от этого дорогостоящего элемента.

Отказ от кобальта частично обусловлен разрушительным воздействием добычи кобальта на окружающую среду, гуманитарными последствиями в таких странах, как ДРК, и более низкой стоимостью альтернативных химических элементов для батарей, таких как литий-железо-фосфат (LFP). Но без таких ресурсов, как кобальт, в ближайшем будущем может быть меньше стимулов к переработке.

В любом случае, вне зависимости от того, перепрофилируются или перерабатываются батареи электромобилей, большинство экспертов сходятся во мнении: выбрасывать аккумуляторы электромобилей на свалку не имеет ни экономического, ни экологического смысла.