18Апр

Резиновые подушки двигателя – виды, устройство и принцип работы

Подушки двигателя, фото опоры | РтиИваз

Назначение подушки двигателя автомобилей ВАЗ…

Здравствуйте уважаемые, читатели блога RtiIvaz.ru. Подушки резиновые крепления глушителя мы уже рассмотрели в предыдущей статье. Сегодня в рубрики авто ремкомплектов поделюсь с вами знаниями о резиновых подушках двигателя.

На каждом современном автомобиле мотор устанавливается на подушки двигателя из эластичной резины служащие для устранения вибраций кузова машины и уменьшения шумности его работы.  У каждого мотора свой вес и инженеры рассчитывают прочность каждой опоры исходя из приходящейся на нее нагрузки. При изготовлении подушек производители используют натуральный каучук, специальный сорт резины СКИ-3 первой группы, высокой сортности, специальный клей, а также качественную сталь.

Для уменьшения вибрации до минимума в подушках, установленных на автомобилях классических моделей ВАЗ 2101-07, применяют демпферные элементы, в качестве которых используются пружины и каучуковые отбойники. Задней опорой силового агрегата этих моделей является траверза крепления коробки переключения передач, с вмонтированной комбинированной подушкой. Она представляет собой две стальные пластины, между ними навулканизирован слой специальной резины.

Задняя подушка имеет две разновидности в зависимости от типа применяемой на автомобиле КПП. Для 4-х скоростной КПП один вид траверзы и самой подушки и другой конфигурации для 5-ти ступенчатой КПП. Крепление двигателя для Нивы ВАЗ-2121 отличаются от подушек, применяемых на классических моделях ВАЗ тем, что выполнены с большим запасом прочности и немного больше размером. Они полностью взаимозаменяемы с классическими моделями, следовательно могут быть установлены на любые модели в случае необходимости.

Так как движки классических моделей устанавливается на жесткую балку, также жестко закрепленную на лонжеронах кузова, к резиновому креплению классики предъявлялись минимальные требования. Появление переднеприводных моделей ВАЗ потребовало разработки новых опор двигателя, которые бы отвечали повышенным требованиям. На классике это были в прямом смысле слова подушка двигателя, так как двигатель лежал на их основании, а в переднеприводных моделях двигатель уже не лежит, а опирается на них, которые теперь уже имеют назначение опоры.

Помимо того, что опора должна гасить вибрацию от мотора, она должна еще и выдерживать большой его вес, поэтому к опорам уже предъявляются более жесткие требования. Это относится как к самой конструкции опоры, так и к материалу ее изготовления. Помимо этого производители стараются наносить несколько степеней защиты от подделок, чтобы гарантировать покупателю качественное изделие.

Опора двигателя испытывает нагрузки различной направленности и всегда в работе, даже когда автомобиль находится без движения, так как постоянно держит вес всего агрегата. При трогании автомобиля вперед идет одна нагрузка на опоры, при движении назад противоположная по силе нагрузка. Опора гасит нагрузки от резкого ускорения и торможения, наезда на препятствия или попадания в глубокую выбоину и множество других знакопеременных нагрузок.

Исходя из всего сказанного, приобретать комплект резиновых креплений двигателя необходимо только заводского производства, изготовленные по технологии и у проверенных продавцов, гарантирующих их качество изготовления работоспособные в интервале температур от -45 холода до 70 градусов жары.
Фотографии подушек двигателей автомобилей ВАЗ, их конструкторские номера по каталогу:
Рассмотрим фото авто комплектов хитроумных подушек снижающих вибрацию кузова и колебание двигателя, узнаем их конструкторские номера по каталогу, на какие автомашины подходят. Давайте не будем терять время начнем с классики 2101-2107.

Лада 2101-2107

Фото переднего крепления движка в сборе для автомобилей семейства классики 2101-2107. Ремкомплект ВАЗ состоит из резиновых эластичных хитроумных деталей снижающих шум и вибрацию, на которых держится сам мотор.

  • Конструкторский номер: 2101-1001020СБ количество 2-штуки

КПП 2101-2107

Фото задней опоры подвески двигателя в сборе резинового пяти ступенчатой коробки передачи Лады 2101-2107, которая соединена с движком. Мотор классики-2101; 2103; 2105; 2107 держится на трех эластичных резиновых опорах, двух передних боковых правого и левого, также заднего «КПП» коробки. Они бывают еще на четырех ступенчатую коробку передач отличающиеся по своей форме всего лишь небольшим изгибом.

  • Конструкторский номер: 2107-1001045 количество 1-штука

Лада 2108-2115

Смотрим фотоснимок опоры переднего мотора так называемой «Балды» семейства передний приводных автомобилей Лады от 2108 — до 2115.

  • Конструкторский номер: 2108-1001015-10РУ количество 1-штука

Лада 2108-2115

Перед вашим взором фотография опоры мотора, бокового семейства передний приводных автомобилей ВАЗ от 2108 — до 2115.

  • Его конструкторский номер: 2108-1001040-10 количество 1-штука

КПП 2108

Фото крепления резинового коробки передачи ВАЗ 2108-2115, которая соединена с движком. В общем, мотор автомобилей — 2108; 2109; 2113; 2114; 2115 держится на трех опорах двигателя переднего так называемого «балды», бокового, также заднего «КПП» с ручкой.

  • Его конструкторский номер: 2108-1001031-10РУ количество 1-шт

Лады 2110-2112

Фотоснимок круглых подушек с ограничителями боковых правых и левых опор для силовых агригатов ВАЗ 2110-2112; 2170 Отличается друг от друга всего лишь длиной болта, а так все одинаково. С длинным болтом правые, а кротким соответствено левые.

  • Конструкторский номер: 2110-1001242ЛПУ количество 2-штуки

КПП 2110-2112

КПП 2110-2112

Фотографии задних опор с ручкой в сборе коробки передачи «КПП» ВАЗ-2110; 2111; 2112 в собранном, также разобранном виде.

  • Его конструкторский номер: 2110-1001286Р количество 1-шт

Лада 2112

Подушка передняя дополнительная «гитара» или его еще называют «серьгой» на 16-клапанный двигатель ВАЗ-2112.

  • Конструкторский номер: 2112-1001300РУ количество 2-шт

Вот мы рассмотрели все опорные подушки двигателей автомобилей ВАЗ, кроме внедорожника Нивы-2121. Меняйте их вовремя, пожалуйста, не откладывая в долгий ящик, так как от них во многом зависит долговечность работы автомашины.

А на десерт посмотрите видео рассказ Василия Залознова Автосфера Омск…


Видео Youtube:






Удачи на просторах дорог!

Вам так же будет интересно почитать:

Замена подушки двигателя Лада 14

Надежная стойка стабилизатора поперечной устойчивости

Зазоры клапанов автомобиле ваз 2107

Большой сальник и маленький

www.rtiivaz.ru

Симптомы порванной подушки двигателя: на что обратить внимание

Опора двигателя (подушка двигателя) предназначается для того, чтобы уменьшить вибрационные нагрузки и колебательные движения ДВС в подкапотном пространстве, а также свести к минимуму передачу таких нагрузок на кузов транспортного средства.
Другими словами, двигатель крепится к несущим элементам кузова автомобиля не напрямую, а при помощи специальных опор, которые также называют подушками.

Если просто, подушка двигателя является прокладкой между двигателем и кузовом. Естественно, любые проблемы, которые связаны с подушками мотора, приводят к тому, что эффективность работы опор двигателя падает и возникает сильный дискомфорт. Также по ряду причин в значительной степени может осложниться эксплуатация ТС.

Далее мы поговорим о том, какие признаки указывают на то, что опора силового агрегата порвалась, а также как проводится диагностика и проверка подушек двигателя.

Читайте в этой статье

Подушка двигателя: на что влияет и как устроена

На разных отечественных и иностранных автомобилях до 80-х годов опора двигателя фактически представляла собой плотную резину, которая прикручивалась к двигателю и кузову. Такое решение повсеместно использовалось на автомобилях, которые в то время были в подавляющем большинстве с задним приводом. При этом простые опоры неплохо справлялись со своими задачами.

Однако в дальнейшем кузова стали легче, уменьшилась толщина стали, изменились требования к пассивной безопасности и т.д. В результате подушки превратились в более сложное изделие из металла и резины. На элитных моделях авто появились гидравлические опоры двигателя, которые способны обеспечить максимум комфорта по сравнению с другими аналогами.

Итак, двигатель современного легкового автомобиля с приводом на передние колеса зачастую крепится на 4 или 5 опор. Как правило, две подушки расположены на КПП, остальные крепятся к силовому агрегату. Сам двигатель и коробка имеют жесткое соединение.

Что касается ДВС, принято выделять правую подушку, а также переднюю и заднюю. Правая подушка двигателя закреплена на переднем правом лонжероне. Такая опора располагается сверху. Передняя подушка двигателя зачастую крепится к передней балке, расположена снизу. Задняя подушка также находится внизу, может быть прикреплена к днищу или к подрамнику. Кстати, на многих моделях задняя опора конструктивно отсутствует.

Если говорить о конструкции, резинометаллические опоры двигателя могут отличаться по форме и материалам изготовления, однако зачастую в основе лежит металлический цилиндр, в который впрессован сайлент-блок.

Основной задачей является надежная, но не жесткая фиксация ДВС, при этом подушка одновременно поглощает вибрации и гасит возникающие колебания. В результате улучшается управляемость ТС, сам двигатель получается менее вибронагруженным, от вибраций в меньшей степени страдает навесное оборудование, колебания не сильно передаются на кузов автомобиля и т.д.

Порванная подушка двигателя: признаки

Как и любая другая деталь, опора силовой установки также имеет ограниченный срок службы и со временем выходит из строя. В среднем, подушки на современных авто рассчитаны как минимум на 100-120 тыс. км, хотя на практике данные элементы могут нуждаться в замене как раньше, так и намного позже данного срока.

Обычно причиной проблем становится резиновая вставка, которая попросту растрескивается и рвется от нагрузки. Реже трещины появляются в металлической части опоры, разбиваются места установки крепежей и т.д.

Так или иначе, на неисправность подушек мотора обычно указывают такие симптомы:

  1. Сам двигатель работает ровно, однако водитель ощущает явное усиление вибраций по кузову, на руле, на ручке КПП и т.д.;
  2. В момент начала движения с места, а также во время торможения можно услышать пощелкивание или приглушенные стуки в подкапотном пространстве;
  3. При езде по неровной дороге слышны удары спереди автомобиля, такие удары во многих случаях ощущаются на рычаге КПП, переключение передач на «механике» в этот момент может быть затруднено;

Чтобы проверить подушки двигателя, не обязательно сразу обращаться на СТО и загонять автомобиль на стенд. Обычно неисправность можно установить и локализовать самостоятельно даже при наличии не слишком богатого опыта по ремонту и обслуживанию авто.

Самым простым способом первичной диагностики является раскачивание двигателя руками в подкапотном пространстве, после чего по стуку можно локализовать порванную или треснувшую опору.

Еще одним приемом в рамках диагностики подушек двигателя является прием, когда сначала открывается и фиксируется капот, затем машину заводят и подают на первой передаче рывками вперед. Аналогичным образом автомобиль подается и назад. В это время помощник снаружи следит за колебаниями ДВС.

Чтобы провести более тонкую проверку, сначала необходимо заранее выяснить, где точно расположены опоры на конкретной модели. Затем потребуется доступные для обзора элементы предварительно осмотреть. Трещины, разрывы и другие повреждения обычно видны и хорошо просматриваются.

Для полноценной визуальной оценки нижних подушек нужно быть готовым к тому, что машину нужно будет поставить в гараж со смотровой ямой, заехать на эстакаду или воспользоваться подъемником.

Рекомендуем также прочитать статью о том, как заменить подушку двигателя. Из этой статьи вы узнаете о том, как производится замена опоры двигателя, а также какие тонкости и нюансы следует учитывать в рамках данной процедуры.

Если поверхностная диагностика ничего не показывает, тогда следует снова задействовать помощника. Один человек монтировкой сдвигает опору, тогда как другой следит за тем, не появляются ли разрывы в резиновой вставке в тот самый момент, когда опора перемещается. Бывает, что некоторые трещины без раскачки сразу не видны.

После обнаружения порванной подушки двигателя, поврежденный элемент следует заменить. Не рекомендуется пытаться выпрессовать резиновую вставку из цилиндра в целях экономии на запчасти, так как такой кустарный ремонт зачастую не приносит желаемых результатов.

Что касается самой замены, верхнюю подушку заменить достаточно просто. Автомобиль нужно поднять на домкрате, произвести демонтаж старой подушки и установить новую. Если же приходится менять нижние опоры, также важно учитывать, что двигатель после снятия этой подушки опускается вниз. Это значит, что потребуется дополнительный упор, который подпирает ДВС, позволяя направить подушку и правильно закрепить данный элемент.

Советы и рекомендации

Важно понимать, что самые сильные нагрузки подушки испытывают в момент резкого старта автомобиля с места, а также при интенсивном торможении. Еще ресурс опор сокращает езда по ямам, когда кузов и двигатель раскачиваются, особенно на высокой скорости.

Что касается диагностики и ремонта, проверять и менять подушки двигателя нужно своевременно, так как повышение вибраций не только влияет на комфорт, но и крайне негативно сказывается на самом двигателе, кузове и оборудовании. Другими словами, если даже одна подушка порвана, далее эксплуатировать автомобиль с подобной неисправностью настоятельно не рекомендуется.

Читайте также

krutimotor.ru

Опора двигателя. Система крепления двигателя автомобиля на опорах. — Словарь автомеханика

Опора двигателя – крепежное устройство, с помощью которого силовой агрегат монтируется на автомобиль. Кроме функции крепежа выполняет функцию подушки. По этому опору часто еще называют подушка двигателя, а в английском варианте звучит как engine mount. Также в зависимости от конструкции опору могут называть «гитарой», поскольку форма напоминает этот музыкальный инструмент.

Как правило, используется не одна, а несколько (чаще всего три) опор. Их задача – поглощение вибраций работающего мотора и удерживание его в максимально статичном положении. Так как ДВС в работе обязательно будет вибрировать, и этот факт не зависит от степени его мощности и совершенства. Крепления двигателя на опору-подушку позволяет не только повысить комфортабельность езды, но и защитить силовой агрегат от ударов и толчков при перемещении по неровностям.

Изначально опоры были простыми металлическими крепежными элементами, притягивающими двигатель к несущей конструкции жестко. Фактически использовался только кронштейн опоры двигателя в современном понимании. Потом в механизм были добавлены резиновые подушки, повысившие упругость крепления, благодаря чему удалось обеспечить более эластичную подвеску мотора. Такая резинометаллическая опора двигателя широко применяется и сегодня.


Где находится опора двигателя

Многие авто владельцы даже не знают как выглядят опоры не то что где находятся. Поскольку если не лазить под автомобиль, то опорные подушки скрыты от глаз, из подкапота хорошо видно разве что верхнюю. Места установки и количество точек опор под двигатель на кузове автомобиля зависит от типа и расположения под капотом мотора и коробки передач, а также самой марки авто. Главной задачей установки крепления – надежность и минимальные смещения по сторонам во время работы. Классическая схема установки двигателя на опорах в 3-х точках снизу и 2-х точках сверху. К стати не только ДВС машины смонтирован на таких подушка, а и коробка передач также крепится на резинометаллических опорах. По этому нужно четко разделять где двигатель, а где коробка.


Виды опор

Современная опора крепления двигателя может быть резинометаллической или гидравлической.

У резинометаллических опор конструкция предельно проста: пара пластин из стали или другого металла с не слишком толстой между ними прокладкой, выполненной из хорошей износостойкой резины. Это самая дешевая и популярная сейчас подушка двигателя. В некоторых моделях в подушки дополнительно вмонтированы пружины, повышающие жесткость и буферы, позволяющие несколько смягчить самые сильные удары. Все чаще новые автомобили производятся с подушками из полиуретана, в силу его большей износостойкости. Именно полиуретановая подушка опоры двигателя используется в спортивных автомобилях, так как повышает оптимизировать жесткость. Резинометаллическая подушка крепления двигателя может быть разборной или неразборной.

Устройство гидроподушки двигателя.

Гидравлическая опора двигателя считается гораздо более современной конструкцией. Такие системы способны подстраиваться под работу двигателя в различных условиях и максимально эффективно гасить любые вибрации. Подушка опоры двигателя также выполнена из трех основных элементов, но здесь это пара камер, между которыми располагается мембрана. Каждая из камер заполняется антифризом или гидравлической жидкостью. Задача подвижной мембраны – устранять незначительную вибрацию, возникающую на холостом и малом ходу по ровной дороге. Скоростные вибрации устраняются гидравлической жидкостью. Под воздействием изменяющегося давления, она перемещается между камерами, повышая жесткость опоры, что позволяет гасить даже самые сильные вибрации.

Гидравлическая подушка двигателя в отличие от резинометаллической опоры, может иметь различную конструкцию. На данный момент распространены следующие их виды опор двигателя:

  • механически управляемые опоры, которые способны очень эффективно гасить один из видов вибраций (холостого хода, скоростные, сильные сотрясения), поэтому для каждой модели автомобиля они настраиваются по-разному;
  • управляемые электроникой опоры, которые преимущественно монтируются на дорогих автомобилях, но способны автоматически изменять характеристики жесткости для эффективного противодействия всем типам рабочих вибраций;
  • динамические опоры, основанные на применении магнитной металлизированной жидкости, меняющей вязкость под воздействием магнитного поля, которое в свою очередь управляется автомобильной электроникой, за счет чего и достигается адаптивность настроек опор.

Впрочем, только опора крепления двигателя первого типа может считаться широко распространенной, поскольку остальные слишком сложны и дорогостоящи для применения на по-настоящему массовых автомобилях.


Особенности эксплуатации

При возникновении излишней вибрации двигателя проверьте целостность подушки опоры двигателя.

Подушка двигателя является деталью, подверженной износу, так как она работает всегда, когда запущен мотор. Наибольшим испытанием для опор является запуск двигателя, трогание с места, а также остановка авто. В такие моменты нагрузка на опоры является самой большой. Износ или поломка данной детали ведет к повышению нагрузки на двигатель и повышению вероятности его поломки.

Трещины и порывы на опорной подушке видны если для этого специально производить плановый осмотр, но такие симптомы как повышенная вибрация с отдачей в руль при работе двигателя или переключение передач с толчками, а если износится подушка та что возле КПП, то и выбивать скорость может. То тут явные факты на лицо, нужно в строчном порядке нужно покупать комплект новых опор и приступать к замене.

Появление трещин или отслоения резиновой части опоры от металлической – весомый аргумент для замены.

Имея под рукой набор ключей, домкрат и смотровую яму в принципе поменять можно и самостоятельно без особых навыков, хотя встречаются случаи где процедура по замене опор двигателя весьма занятное дело.

Следить за состоянием резинометаллических опор несложно: нужно просто проверять целостность резиновой прокладки и регулярно удалять с нее грязь и масло, подтягивать болты крепления.

В среднем опора двигателя служит около 100 тыс. км пробега. Но надлежащий уход позволяет пролит строк эксплуатации, причем не только за самим креплениям ДВС, но и состоянием мотора в целом.

Если автомобиль оборудован гидравлическими опорами, для их тестирования необходимо открыть капот и завести двигатель. Далее необходимо проехать пару сантиметров вперед и назад. Если с опорами что-то не так, двигатель сместится с места при старте и вернется на место при остановке, что будет сопровождаться хорошо слышимыми звуками.

В не зависимости от того какие опорные подушки держат двигатель на вашем автомобиле, совет для всех общий. Не стоит резко рушать, давая тем самым максимальную нагрузку на опоры, пересекать выбоины и горбы на не больших скоростях, дабы колебания мотора были минимальными, а следовательно и вибрации нуждающиеся в поглощении опорами двигателя, будут не значительными.

etlib.ru

Неисправность подушки двигателя: признаки поломки

Комфорт в салоне автомобиля во многом зависит не только от правильно сделанной качественной шумо- и виброизоляции. Даже при наличии таковой дискомфорт все-таки может возникать. Часто автомобилисты сталкиваются с вибрациями мотора. Они могут возникать из-за нарушений в работе двигателя или же в результате поломок крепежных деталей мотора. Особенно часто на эти проблемы жалуются владельцы автомобилей от «Автоваза», где установлены шестнадцатиклапанные силовые агрегаты. Автовладельцы сталкиваются со странным стуком в двигательном отсеке. Он непостоянный. Может появляться, затем пропадать при разгонах или при движении по неровной дороге. Виной тому — неисправность подушки двигателя. Признаки этого явления – вибрации. Но это еще не все.

Типовые причины шумов в двигателях

Если в процессе езды на автомобиле стал отчетливо слышен характерных стук из-под капота, точнее, из-под нижней части мотора или в районе трансмиссии, если в процессе переключения со 2-й на 4-ю передачу шумы и вибрации увеличиваются, то это может быть связано с нарушениями в работе подвески либо с работой двигателя. В зависимости от состояния дорожного покрытия эти звуки могут нарастать.

Подушка двигателя

Подушкой называют прокладку между двигателем и кузовными элементами. На автомобилях советского производства данное изделие выглядело очень просто. Это прочная резиновая вставка с местами под крепеж. Современная опора силового агрегата может быть в различном исполнении. Выделяют гидравлические подушки, резинометаллические детали. Зачастую двигатель и КПП на автомобилях с передним приводом закреплены с помощью четырех либо пяти таких опор. Так, две из них находятся под коробкой передач, а остальные – под мотором. Резинометаллическая опора может выглядеть по-разному.

Часто это цилиндр из стали или алюминия, внутри которого находится резиновый сайлентблок. Также встречается так называемая лампа из алюминиевых сплавов со вставкой из резины.

Стандартное расположение подушек

Правая опора располагается сверху и крепится к лонжерону кузова автомобиля. Передняя закреплена чаще всего на балке мотора, увидеть ее можно снизу.

Заднюю подушку можно найти закрепленной на днище либо на переднем подрамнике кузова. Что касается задней опоры, то на определенных двигателях ее и вовсе может не быть. Опора для коробки передач идет в качестве общей. Она устанавливается ближе к задней стороне мотора.

Типовые неисправности

Если автомобиль длительное время эксплуатируется в условиях серьезных нагрузок или перепадов температур, то все это не лучшим образом сказывается на состоянии опор двигателя. Со временем резина теряет свою эластичность. Кроме того, подушка может расслоиться или растрескаться, а то и вовсе разрушиться. Но стоит учесть, что срок службы этих деталей достаточно большой – более 100 000 км. Высокой нагрузке опоры подвергаются в момент трогания автомобиля и в процессе торможения. Если автовладелец любит ездить достаточно быстро, с резкими рывками на старте, тогда опоры не прослужат своего заданного срока. Также среди типовых неисправностей можно выделить поломку металлического алюминиевого кронштейна. Это часто случается при наездах на различие препятствия. Если в двигателе наблюдаются течи масла, то оно обязательно попадет на резиновую часть опоры. Данная смазка может разъесть сайлент-блок, и опора выйдет из строя. Также не лучшим образом на резиновую часть подушки влияет и охлаждающая жидкость. Пробои в системе нужно сразу ликвидировать.

Не перегревайте двигатель. Помимо треснутой ГБЦ еще и тосол из расширительного бачка попадет на резинотехнические детали. Это не лучшим образом скажется на их ресурсе. Важно помнить, что эксплуатировать автомобили со сломанными опорами не только неприятно, но и в некоторых случаях небезопасно.

Как определить, что опора агрегата вышла из строя

Часто начинающие водители не знают, как диагностировать неисправность подушки двигателя. Признаки такой поломки часто путают с чем-то другим. Первый сигнал о поломке опоры – это неприятные звуки вроде щелчков или стуков в передней части авто в начале движения или при торможении. Еще один признак выявляется при движении по неровным дорогам. Такая езда обязательно сопровождается характерными ударами в передней части автомобиля. Также о неисправности подушки может сказать и внезапно появившаяся вибрация. Иногда при движении по плохим дорогам может отдавать в рычаг КПП. Это все говорит о том, что есть неисправность подушки двигателя. Признаки эти необходимо учесть и затем выполнить диагностику. Порой определить поломку опоры бывает очень сложно. Обычно автолюбители списывают вибрации на то, что мотор недостаточно прогрет и часто на них просто не обращают должного внимания. Характерный признак, который расскажет о выходе детали из строя, – скрип.

Способы диагностики

Итак, владелец полагает, что вышла из строя подушка двигателя. Симптомы неисправности подтвердились.

Далее необходимо проверить состояние опор. Для того чтобы удостовериться в целостности этих деталей, понадобится домкрат и любые опоры – пни из дерева, поддоны, покрышки. Подойдет что угодно. Также желательно заготовить монтировку или же толстую палку. Давайте рассмотрим, как определить неисправность подушки двигателя. Для этого рекомендуется установить автомобиль на максимально ровную поверхность. Затем машину нужно поднять при помощи домкрата, далее под двигателем следует установить подготовленную опору. Это может быть бревно или еще что-нибудь. Домкрат лучше убрать.

Визуальный осмотр

Проверить, в каком состоянии находятся опоры силового агрегата, можно визуально. Для этого владелец должен лечь под автомобиль и осмотреть опоры. При осмотре можно выявить затвердевшую резину, трещины и порывы, расслоение – это на самом деле отсоединение металла от резины.

Проверка люфтов

Этим вариантом пользуются, если налицо неисправность подушки двигателя, признаки все есть, но вот визуально что-то обнаружить не удалось. Необходимо проверить наличие люфтов на креплении опор двигателя к кузову.

Для полноценного осмотра специалисты рекомендуют с помощью палки либо монтировки покачать подушки из стороны в сторону. Если удалось обнаружить большой люфт в местах, где опора двигателя крепится к кузову, тогда можно выполнить самостоятельный ремонт. Но также можно поехать на СТО и устранить проблему там.

Признаки выхода из строя опоры двигателя «Лады Приоры»

Автомобили ВАЗ практически ничем конструктивно не отличаются от автомобилей любых других производителей. То же самое касается устройства и расположения таких деталей, как подушки двигателя. Признаки неисправности («Приора» в том числе) можно выявить характерными вибрациям мотора. Это проявляется на холостых и на более высоких оборотах. Двигатель будет дергаться неестественно.

Это сигнал владельцу о необходимости проверки опор или их замены. Второй признак – это подергивания руля. Колебания рулевого колеса зависят от частоты работы силового агрегата. Еще о вышедших из строя подушках может сказать коробка передач. При движении будут выбиваться передачи.

«Форд»

Вибрации на кузове автомобиля на холостых оборотах и в процессе движения говорят о том, что вышли из строя или повреждены подушки двигателя. Признаки неисправности («Форд Фокус 2» в том числе) могут быть и другими. На автомобилях «Форд Фокус» используется две опоры. Правая — гидравлическая, левая – опора коробки передач. В случае повреждений рекомендуется выполнять замену обоих элементов.

Естественно, можно заменить только поврежденную и вибрации пройдут, однако новая опора будет подвергаться значительно большим нагрузкам и выйдет из строя гораздо раньше своего срока. В качестве замены стоит приобретать оригинальные детали. Недорогие аналоги служат менее 20 тысяч километров.

«Мазда Демио»

Признаки неисправности левой подушки двигателя «Мазды Демио» — это стуки и вибрации. На опоры приходится серьезная нагрузка. Стоит внимательно следить за состоянием подушек, неисправная деталь может повредить мотор. В этом автомобиле три подушки: левая, правая и нижняя. Вторая находится около маслозаливной горловины мотора. Под аккумулятором расположена левая опора. Нижняя находится прямо напротив стыка двигателя и автоматической КПП. Способы диагностики неисправности в данном случае те же, что и для любых других автомобилей – это визуальный осмотр и проверка люфтов.

Начинающие автовладельцы часто задаются вопросом, почему при движении дергается АКПП. На это есть множество причин. А может ли АКПП прыгать из-за неисправности подушек двигателя? Да, может. Иногда меняется поведение автомобиля. Поэтому если замечены посторонние вибрации, толчки, гул, характерный шум, то лучше всего проверить опоры.

fb.ru

Подушка двигателя: принцип действия, назначение, устройство

Основным предназначением опоры двигателя является компенсация вибрационных и колебательных движений, передаваемых работающим механизмом кузову автомобиля. Без нее невозможна комфортная поездка, процесс будет напоминать полет на старом «кукурузнике».

Следует отметить, что подушка двигателя представляет собой специальную прокладку, отделяющую мотор от элементов кузова. Старые советские легковые машины оснащались таким изделием, выполненным из цельного отрезка резины, дополненного крепежными деталями на противолежащих сторонах. К тому же, к выпуску автомобилей с передним приводом производители приступили только в 1985 году.

Сегодня опора двигателя — это чаще всего резинометаллическая прокладка. Существуют и гидравлические изделия, но благодаря ощутимой стоимости их применяют лишь для дорогих машин.

Признаки неисправности

Когда при пересечении препятствий в районе коробки передач наблюдается характерный стук, нарушающий шумоизоляцию в салоне, скорее всего, следует уделить внимание замене подушки двигателя. Кроме того, о дефекте такой прокладки свидетельствует сильная вибрация, передающаяся на корпус легкового автомобиля. Если работающий мотор начинает стучать о раму, значит, необходима срочная замена опоры двигателя.

Обратить внимание на состояние подушек следует, когда при торможении и в начале движения машины появляются щелчки и прочие посторонние звуки спереди. Беспокойство должно вызывать, если в салоне возникает грохот при преодолении ям и выбоин на дороге. Если движение по пересеченной местности сопровождается отдачей на рычаг переключения скоростей, опора подлежит немедленной замене.

А также свидетельством признаков неисправности подушек двигателя является значительное возрастание уровня вибрации при запуске или выключении механизма. Игнорировать подобные симптомы категорически не рекомендуется. Последствия могут оказаться весьма неприятными, в конечном итоге выражаясь деформацией подвески и кузова, преждевременным износом трансмиссии.

Поэтому, если в автомобиле наблюдаются признаки неисправности подушек двигателя, то вышедшие из строя прокладки подлежат замене.

Самостоятельная диагностика подвески

При невозможности или нежелании посещения автосервиса существует возможность собственноручного определения неисправности. Самостоятельная проверка состояния подушек двигателя выполняется с использованием следующих приспособлений:

  1. гидравлического или пневматического домкрата. Это устройство способствует облегчению доступа к проверяемым подушкам;
  2. специальной страховочной опоры. В подобном качестве чаще всего применяют деревянный брусок;
  3. монтировки или достаточно прочной палки, выполняющей роль рычага.

Последующие манипуляции рекомендуется осуществлять в такой очередности:

  • машину загоняют в гараж или другое помещение. Необходимым условием считается ровная поверхность пола;
  • домкратом, установленным под передним колесом, приподнимают автомобиль. Для заднеприводных машин подъемное устройство располагают под задним колесом;
  • опора устанавливается под мотором так, чтобы обеспечить отсутствие нагрузки на крепления двигателя. Убедившись в устойчивости положения автомобиля, домкрат опускают.

Используя подкат, устраиваются под машиной и проводят визуальный осмотр. Такой способ осмотра позволяет легко обследовать подушки двигателей на признаки неисправности, приобретенные подушками двигателя в процессе эксплуатации.

Даже неопытный автолюбитель способен увидеть симптомы расслоения опоры, трещины и разрывы на изделии, а также самостоятельно определить, что прокладка вышла из строя в результате чрезмерного затвердевания резины. В таких случаях настоятельно рекомендуется срочно произвести замену подушки двигателя.

Для обнаружения возможного люфта в месте соединения мотора с передней балкой машины или кузовом визуального осмотра недостаточно. Здесь понадобится использование монтировки. Подобный рычаг применяют для того, чтобы двигатель отклонять в разные стороны. Отсутствие люфта свидетельствует об исправности опор, ремонт подушек не требуется.

Устранить подобный симптом можно следующим образом:

  • снова поднять автомобиль домкратом;
  • удалить страховочную опору;
  • проверить качество фиксации подушки двигателя и, при необходимости, затянуть крепление гаечным ключом или трещоткой.

Таким путем избавляются от люфта.

Самостоятельная замена опор двигателя

Для того, чтобы содержать свой автомобиль в идеальном порядке, необходимо регулярно проверять техническое состояние. Поскольку поломка одной детали способна вывести из строя весь дорогостоящий агрегат, необходимо своевременно заменять неисправный механизм.

Предлагаем вам подробную инструкцию, как поменять непригодные подушки двигателя своими руками:

  1. обесточив аккумулятор снятием клемм, автомобиль приподнимают на достаточную высоту для обеспечения комфортного доступа к мотору. После применения домкрата машину надежно фиксируют деревянными брусками;
  2. используя то же подъемное устройство, поднимают мотор, освобождая от нагрузки требуемую деталь;
  3. крепление подушек двигателя осуществляется определенным количеством болтов, которые надлежит снять, предварительно раскрутив;
  4. после удаления негодной детали, новая запчасть устанавливается на подходящее место. Крепежными элементами в виде болтов надежно фиксируют гидроопору двигателя. Следует отметить, что работающий мотор во время затягивания крепежа позволит обезопасить автомобиль от последующей чрезмерной вибрации;
  5. завершение установки подушки опоры двигателя сопровождается возвращением на положенные места всех демонтированных деталей.

Отдельно отметим, что все предложенные манипуляции рекомендуется выполнять в паре с помощником. Постороннее участие потребуется для направления рычагом двигателя во время установки опоры на требуемое место.

Осмотр и замена верхней подушки является достаточно простым процессом. Доступность манипуляций обеспечивается возможностью обойтись без ямы. Кроме того, необязательно поднимать автомобиль.

Заключение

Регулярная проверка состояния подушек крепления двигателя способствует предотвращению многих проблем в перспективе. Своевременная замена негодной опоры обеспечивает комфортное нахождение пассажиров в салоне легкового автомобиля.

Если вас заботит исправность всех узлов и систем машины, рекомендуется периодически проверять подушки. Как показало предыдущее исследование, все необходимые манипуляции можно выполнить самостоятельно, без помощи специалистов автосервиса.

avtodvigateli.com

Признаки неисправности подушек двигателя, как определить неисправность

Чтобы автомобиль пришел в движение, ему нужен двигатель. Данный агрегат устанавливается в передней части кузова (в большинстве случаев). Крепится он на подрамник либо на лонжероны. Однако вибрации, что отдает двигатель при работе, сильно отдаются на кузов. Чтобы их сгладить, его устанавливают посредством резиновых подушек. Они являются неким буфером. Со временем все резинотехнические изделия приходят в негодность. Не исключением являются и опоры ДВС. Что такое подушки двигателя, признаки неисправности и методы устранения – далее в нашей статье.

Характеристика

Что собой являет данная деталь? Подушка двигателя – это прокладка между элементами кузова и силовым агрегатом. Такая устанавливается на все без исключения автомобили. На советских «Жигулях» подушка представляла собой прочный кусок резины с крепежными элементами по двум сторонам. На более современных «девятках» и «восьмерках» (а впоследствии и всех ВАЗах с переднеприводной компоновкой) устанавливались уже полноценные резинометаллические опоры.

Так, силовой агрегат крепился на четырех подушках. Две из них находятся на коробке передач, а остальные – на двигателе. Во избежание излишних нагрузок коробка с мотором жестко закреплены. Любой перекос ведет за собой изменение геометрии первичного вала. В итоге вся вибрация сильно передается на рычаг коробки и саму трансмиссию.

Где находятся подушки? На двигателе данный элемент устанавливается с нескольких сторон:

  • Передняя подушка. Крепится к передней балке силового агрегата.
  • Задняя подушка. Устанавливается к переднему подрамнику. Располагается в районе днища.
  • Правая опора. Находится сверху, у переднего лонжерона кузова.

Также отметим, что задняя опора есть не на всех автомобилях. Эту функцию выполняет сама коробка передач.

В таком случае она близко крепится к мотору. Сами подушки выполнены в разной форме. Зачастую являют собой алюминиевый или стальной цилиндр с сайлентблоком внутри. Для закрепления на кузове используется так называемая «лапа». Она тоже имеет резиновую проставку. Именно так устроены современные подушки двигателя. Симптомы, как диагностировать деталь, что влияет на износ — рассмотрим в ходе данной статьи.

Почему изнашивается?

Многие автомобилисты задаются этим вопросом. Признаки неисправности подушек двигателя могут быть разными. В первую очередь это связано с естественным износом, который возникает из-за вибраций. Ресурс данных элементов составляет порядка 150 тысяч километров. Чем сильнее вибрации, тем больше нагрузка на опору (особенно если в двигателе не работает один из цилиндров).

Если вы думаете, что ресурс напрямую зависит от километража, вы ошибаетесь. Подушка изнашивается даже тогда, когда автомобиль стоит в гараже. Со временем резина рассыхается. Появляются микротрещины. Еще один негативный фактор – это масло. Нужно вовремя менять сальники, дабы исключить подтеки.

Масло негативно влияет на ресурс подушки двигателя. Признаки неисправности ВАЗ 2110 могут заключаться и в манере езды. Так, при резком старте с пробуксовкой на опору возлагается колоссальная нагрузка.

Как определить быстро неисправность подушки двигателя?

Определить исправность элемента можно не открывая капот.

Во время движения вы заметите характерные признаки неисправности подушек двигателя:

  • Появляются характерные стуки и щелчки при старте и торможении автомобиля (в передней части).
  • При движении по неровной дороге на кузов передаются сильные удары.
  • На холостых оборотах появляется излишняя вибрация.
  • Удары отдаются на коробку передач при движении (особенно когда автомобиль едет по ямам).
  • Сильная вибрация рулевого колеса на всех режимах работы двигателя.

Определяем состояние опор визуально

Не всегда вышеперечисленные признаки будут указывать именно на неисправность опор двигателя. Так, если наблюдаются удары в передней части кузова, нужно визуально осмотреть элемент. Где он находится, мы уже знаем. Итак, открываем капот и смотрим на состояние резинового буфера.

На нем не должно быть разрывов и трещин. Для лучшего удобства, рекомендуется использовать смотровую яму (особенно если это передняя и задняя опора). Подвигайте ее из стороны в сторону. Люфта между цилиндром и сайлентблоком быть не должно. Если это так, признаки неисправности подушек двигателя подтвердились. Деталь подлежит замене.

Как поменять своими руками?

Для этого вам понадобится набор инструментов (головки и рожковые ключи), домкрат и ремонтные подставки (поскольку двигатель будет находится «на весу»). Итак, поддомкрачиваем автомобиль с правой стороны. Подвешиваем мотор на цепи. Откручиваем болты (всего их 3), что крепят опору к двигателю и кузову. Далее снимаем кронштейны и вынимаем элемент наружу. Устанавливаем новую деталь на место.

Для замены задней опоры поддомкрачиваем кузов с левой стороны. Однако, в отличие от предыдущего случая, нам придется подвесить и коробку передач. Используем деревянную подложку, дабы не повредить поддон. Откручиваем болты крепления подушки и достаем ее наружу. На место старой устанавливаем новую и производим сборку в обратной последовательности.

Полезные советы

Автомобилисты рекомендуют производить замену опоры в теплую погоду. Зимой подушка сильно «дубеет», и снять ее можно только после предварительного нагрева (это фен либо паяльная лампа). Если опора не выходит, рекомендуется использовать смазку типа ВД-40 либо ее аналог от производителя «Маннол». Обычная смазка для этого не подойдет.

Нередко в полость старой подушки попадают пыль и влага, вследствие чего на цилиндре возникают коррозионные процессы. Снять подушку не представляется возможным. Если вы меняете заднюю опору, учитывайте направление, указанное стрелкой на детали. Она должна устанавливаться по ходу движения автомобиля. В противном случае есть риск, что элемент не выдержит нагрузок и оборвется.

Заключение

Итак, мы выяснили основные признаки неисправности подушек двигателя. Опора ДВС – очень ответственная деталь в автомобиле. Поэтому нужно знать, как выявить ее неисправность и как поменять деталь на новую. Надеемся, данная статья помогла вам в решении данного вопроса.

fb.ru

Вибрация после замены подушек двигателя: причины и методы «лечения»

14.11.2019

(Голосов: 2, Рейтинг: 5)

Вопросы, рассмотренные в материале:

  • Как определить, что подушка двигателя неисправна
  • Как осуществить замену подушки двигателя
  • Каковы причины появления или усиления вибрации после замены подушек двигателя
  • Что делать, если после замены подушек двигателей появилась вибрация

 

Работа любых автомобильных двигателей сопровождается шумами. Звуки и вибрация, поступающие в салон и воздействующие на кузов авто, могут стать причиной дискомфорта водителя и пассажиров. Чтобы этого не происходило, двигатель оснащается специальными опорами (подушками), за счет которых мотор и трансмиссия крепятся к раме, подрамнику или кузову транспортного средства. Они необходимы для поглощения вибраций и удержания ДВС в фиксированном положении. Износ и поломка опор требует их замены. В статье поговорим о том, почему в ряде случаев вибрации после замены подушек двигателя продолжаются или появляются вновь.

Причины неисправности подушки двигателя

Каких-либо особых причин, по которым опоры двигателя выходят из строя, не существует. Однако специалисты рекомендуют не оставлять без внимания ряд косвенных факторов, способных привести к поломке подушек.

  • Неправильное функционирование подвески.

    Для повышения управляемости и улучшения внешнего вида автомобилей автовладельцы порой прибегают к установке низкопрофильной резины и жестких амортизаторов на свои транспортные средства. Однако стоит авто попасть колесом в яму, как эффект из положительного становится отрицательным. Возникающие при этом вибрации не могут быть погашены жесткой подвеской, поэтому они передаются шаровым опорам, рычагам, а также подушкам мотора. Подвергается нагрузке и кузов транспортного средства.

  • Манера езды.

    Состояние большей части элементов и узлов автомобиля напрямую зависит от манеры езды автовладельца. Если он предпочитает резкие ускорения и торможения, то опоры двигателя выйдут из строя быстрее.

  • Состояние дорожного полотна.

    Езда по бездорожью или плохим дорогам скажется на состоянии подушек двигателя, какой бы аккуратной ни была манера езды автовладельца. Негативному воздействию подвергнется полностью вся подвеска транспортного средства. 

  • Естественный износ.

    Подушки двигателя выполнены из резинометаллического материала, который отличается высокой износостойкостью. Нормальные условия эксплуатации авто позволят спокойно проезжать до 200 тыс. км, не сталкиваясь с их износом. Особо аккуратные водители могут ездить не один десяток лет без замены подушек двигателя.

    Но опоры ДВС подвергаются также негативному воздействию перепадов температур, что в итоге приводит к потере резиной свойств эластичности. Материал начинает трескаться и расслаиваться, не позволяя подушке эффективно выполнять свои основные функции по гашению вибраций и посторонних шумов.

    Долговечность опор снижается также за счет следующего: в процессе эксплуатации авто детали двигателя, включая подушки, покрываются слоем моторного масла, снижающего эластичность резины и уменьшающего ресурс узла.Такое же воздействие на опоры оказывают тосол, бензин и тормозная жидкость.

    Рекомендуем
    «Замена масла в двигателе Хендай: алгоритм действий» Подробнее

    Изначально естественный износ не окажет существенного влияния на подушки двигателя, но с течением времени под воздействием вибрации происходит разрушение любых механизмов. Если оставить износ опор без внимания, то в конечном итоге двигатель может быть сорван с креплений, что относится к весьма серьезным последствиям.

Как определить, что подушка двигателя неисправна

Чтобы заметить неисправность подушек двигателя, достаточно открыть капот и понаблюдать за поведением ДВС. Некоторый его подъем при нажатии на акселератор скорее всего будет свидетельствовать о том, что подушки под трансмиссией износились. Как только одна из опор достигает критического уровня износа, двигатель начинает крениться в сторону неисправного элемента.


Первичная диагностика, которая сможет ответить на вопрос, требуется ли замена подушек двигателя, может быть выполнена автовладельцем самостоятельно. Процедура достаточно проста и не требует обязательного обращения в автосервис.

Самым простым вариантом проверки является ручная раскачка двигателя. При этом необходимо обращать пристальное внимание на посторонние шумы. Обнаружив источник звуков, можно определить, какая из опора повреждена.

Для другого способа диагностики придется привлечь помощника. Необходимо открыть капот, завести автомобиль, перевести селектор на первую передачу, подавать авто вперед небольшими рывками. После чего перевести рычаг КПП в положение заднего хода и аналогичным образом подать машину назад. Задача помощника заключается в визуальной оценке колебаний ДВС.

Более точно диагностировать состояние и необходимость замены подушек двигателя можно, определив их расположение. В первую очередь опоры нужно осмотреть визуально, отмечая наличие или отсутствие заметных повреждений. Чтобы упростить работу, авто лучше поставить на яму или эстакаду.

При отсутствии результатов визуального осмотра вновь потребуется прибегнуть к посторонней помощи. Используя монтировку, помощнику необходимо перемещать исследуемые подушки, а водителю осматривать их на предмет наличия трещин или разрывов резиновой части. Довольно часто незаметные при обычном визуальном осмотре повреждения становятся очевидными в момент перемещения элементов.

Неисправная подушка двигателя нуждается в замене. Заменить только резиновый элемент опоры не удастся, положительный результат в данном случае достигнут не будет.

Как осуществить замену подушки двигателя

Выполнять замену подушек двигателя необходимо в отапливаемом боксе или гараже (как минимум в теплое время года), поскольку работа с резиновыми элементами на морозе будет осложнена повышением жесткости материала в результате воздействия холодного воздуха. Для облегчения работы автомобиль стоит поставить на смотровую яму или эстакаду. Во избежание короткого замыкания следует снять клеммы с аккумулятора.

Местонахождение опор и варианты их крепления зависят от автомобиля. В ряде случаев операция не представляет сложностей, в других, напротив, подобраться к элементам достаточно проблематично. Опишем процесс замены подушек двигателя на примере ВАЗ-2110.

  • Замена правой подушки двигателя.

    Для выполнения замены необходим набор инструментов и приспособлений, включая домкрат, набор ключей, ремонтные подпорки. Транспортное средство потребуется поднять, воспользовавшись домкратом, установить подпорки. Затем следует немного приподнять силовой агрегат, прибегнув к помощи деревянной дощечки, размещаемой между домкратом и защитой картера. Дощечка поможет распределить усилия и минимизировать риск деформации поддона. В процессе поднятия ДВС важно следить за радиатором и кожухом вентилятора.

    Для крепления опор к раме используются сквозные болты. После удаления болтов демонтаж старой подушки не представит никаких сложностей. 

    После замены подушки двигателя необходимо собрать детали в обратной последовательности. Резьбу болта не помешает обработать смазкой, тогда в следующий раз открутить его будет проще.

  • Замена левой подушки двигателя.

    После замены правой подушки двигателя, нужно проверить, в каком состоянии находится левая опора. Оно минимизирует вибрации со стороны трансмиссии. Домкрат необходимо переместить из-под силового агрегата к коробке, положить под нее дощечку и немного поднять. Таким образом с подушки снимается нагрузка, соответственно облегчается ее демонтаж. Для этого понадобятся торцевой ключ на 15 и удлинитель. В первую очередь следует открутить гайку шпильки опоры и убрать верхний ограничитель.

    Чтобы удалить шпильку, нужно слегка опустить трансмиссию. Для крепления опоры к кузову используется два болта на 13. После их откручивания подушку можно подвинуть в сторону ДВС. После этого необходимо удалить верхний ограничитель. Монтаж выполняется в обратной последовательности. Главное, чтобы шпилька точно вошла в овальное отверстие кронштейна КПП, в противном случае она начнет проворачиваться, что не позволит ее затянуть.

  • Замена задней опоры двигателя.

    Задняя опора ДВС является разборной, что позволяет приобрести сам элемент без кронштейна. Однако оценка состояния старого крепления крайне важна, наличие трещин и других признаков износа будет свидетельствовать о необходимости замены подушки двигателя в сборе.

    Замена задней опоры выполняется по ранее описанному алгоритму. Удаляются гайки, крепящие опоры к кузову и трансмиссии. Демонтируется подушка, оценивается состояние кронштейна. Если признаков его износа нет, то можно приобрести опору без крепления.

    Рекомендуем
    «Дымит двигатель после замены масла: почему и что делать в этом случае» Подробнее

    Для замены подушки двигателя нужно закрепить кронштейн тисками, выкрутить центральную гайку, демонтировать опору, затем поставить новую и затянуть гайку. Установить подушки в подкапотное пространство в обратной последовательности.

  • Замена передней опоры двигателя.

    Сильнее всего изнашивается передняя опора. Выход ее из строя грозит сильными вибрациями, поступающими на кузов. При появлении первых признаков неисправности, стоит выполнить замену подушки ДВС. Операция достаточно простая, предполагающая откручивание гаек крепления к кузову, снятие опоры и монтаж новой, сборка деталей в обратном порядке. 

    Иностранные автомобили обычно имеют аналогичное количество опор, отличающихся размерами и формой. Эта разница особенно заметна по фронтальной подушке. Чем плотнее скомпонованы узлы и агрегаты ДВС, тем больше деталей придется демонтировать, чтобы заменить подушку.

    После замены требуется запуск двигателя. Правильно проведенные ремонтные работы будут характеризоваться минимальной вибрацией либо ее полным отсутствием. Появление сильной вибрации после замены подушки двигателя потребует повторной проверки правильности установки деталей и качества их крепления.

Впрочем, вибрация после замены подушек двигателя может быть вызвана иными причинами.

Причины появления или усиления вибрации после замены подушек двигателя

Элементы мотора работают на высоких скоростях, в процессе их взаимодействия возникает трение, вызывающее сильные вибрации, гасящиеся за счет подушек. Концерн ВАЗ комплектует свои авто элементами, изготовленными из плотной резины. Современные иномарки оснащаются гидравлическими компенсаторами вибраций. Их износ влечет за собой посторонние шумы и вибрации, отрицательно влияющие на работу двигателя.

С вибрациями после замены подушки двигателя можно столкнуться довольно часто. Износ опор ДВС происходит очень редко. Однако в процессе демонтажа силового агрегата существует риск их повреждения. Это происходит из-за:

  • неправильной регулировки ДВС во время монтажа;
  • применения неоригинальных или некачественных опор;
  • нарушения расположения кронштейнов;
  • ненадежной фиксации креплений.


В некоторых моделях автомобилей вибрации подушек являются характерными проблемами, вызванными используемыми инженерными решениями или особенностями регулировки.

Так как причиной вибраций ДВС могут быть проблемы с рабочими элементами и узлами, выявить причину поломки визуально достаточно сложно. Обратить внимание стоит на следующие моменты:

  • поступление вибраций на кузов авто во время ровной работы ДВС;
  • нехарактерные звуки (стуки, щелчки), появляющиеся во время торможения и в начале движения;
  • передачу вибраций на селектор КПП при езде по неровной дороге.

Такие симптомы могут появиться и тогда, когда замена опор не выполнялась, поэтому прежде чем приступать к ремонту, стоит выполнить диагностику элементов ДВС.

Что делать, если после замены подушек двигателя появилась вибрация

Если вибрация после замены опор ДВС вызвана использованием неоригинальных деталей, то требуется купить и установить новые. Если причиной вибраций являются ненадежные крепления, необходимо закрепить элементы. При нарушении геометрии крепежного кронштейна требуется правильно разместить крепление либо заменить его на новое.

Наиболее частой причиной вибраций после замены подушек двигателя является неверно отрегулированное положение силового агрегата. Настроить его положение можно, меняя положения верхней и нижней опор (распорок крутящего момента), отвечающих за надежную фиксацию мотора в момент переключения передач, наборе или сбросе скорости.

Рекомендуем
«Масло уходит из двигателя: разбираемся в нормах расхода и неполадках» Подробнее

Для устранения вибрации после замены опор ДВС необходимо поднять авто при помощи домкрата, снять правое переднее колесо, ослабить нижнюю и верхнюю опоры (они должны быть подвижными). Используя деревянную дощечку, слегка поднять силовой агрегат. Взяв линейку или рулетку, надо поднять ДВС и оценить расстояние между точками A и B, которое должно равняться 11,9см (4.7″). Прежде чем поднимать верхнюю, нижнюю или среднюю опоры, необходимо отметить маркером местонахождение старых опор.

Вибрация после замены подушек двигателя может быть вызвана такими причинами, как пропуск зажигания, разность компрессий, свечи, высоковольтные провода зажигания и т. п. Эти проблемы могут никак не проявляться ранее, но обостриться после замены опор.


Чтобы избежать подобных неприятностей, стоит выполнить диагностику ДВС, прежде чем приступать к замене элементов.

Почему после замены подушек двигателя появляется вибрация: мнения автовладельцев

  • «Аж зубы стучали!».

    После замены подушек двигателя появилась сильная вибрация. Причем от режима она не зависела. Несколько месяцев мучился, в сервис постоянно обращался. Работники сервиса в конце концов сказали, что колесо повело из-за удара, ничем они мне помочь не могут. Но я знаю, что до замены вибраций не было. В общем, посмотрел под капот, оказалось, что кронштейн (вилка) передней подушки иначе стоит. Работники сервиса перевернули кронштейн и поставили его вверх ногами. И получилось, что внутренняя часть подушки прикасалась к корпусу коробки. После того как нормально поставил, вибрация почти прекратилась.

  • «Причины могут быть разные».

    Причины вибрации после замены подушек двигателя могут быть различными. Не всегда дело в некачественных деталях. Я читал, что мотор надо сначала опустить, только потом затягивать. Кто-то утверждает, что для того, чтобы движок опустился, на газ надо понажимать, а потом уже болты подтягивать. Некоторые говорят, что надо ямой пользоваться, а двигатель подпирать.

  • «Нужно проверить обороты двигателя».

    При сильной вибрации после замены опор ДВС посмотрите на места их крепления, не касаются ли они движка и кузова. Если касаний нет, то надо обратить внимание на напряжение подушек. Особо внимательно посмотрите на правую боковую. Если с ней что-то не так, сразу под замену. Обороты двигателя оценить надо. При низких оборотах вибрации будут даже с нормальными опорами.

  • «Нужно брать сразу комплект».

    Пока не сделал замену подушек двигателя, вообще вибраций не было. После этого появились. Обратился в другой сервис, оказалось фронтальную с задней перепутали. Переустановили правильно, вибрация сошла на нет. Знакомый советовал делать замену сразу всех, причем выбирать одного производителя. Тогда не будет никаких вибраций. Они, кстати, могут усиливаться, если жесткость и степень износа разные. 

  • «Скупой платит дважды».

    Проверял машину, оказалось, одна подушка порвалась. Купил неоригинальную, так зимой в морозы такая вибрация началась! На себе испытал истину про скупого, который дважды платит. Пришлось, снова приобретать, но теперь уже оригинальные. Дороговато, конечно, зато тишина, спокойствие и никаких вибраций.


rad-star.ru

4Апр

Замена передней опоры двигателя – Замена опор (подушек) двигателя (всех трёх) — Лада 2109, 1.5 л., 1995 года на DRIVE2

Замена передней опоры двигателя — Dodge Stratus, 2.4 л., 2004 года на DRIVE2

Полный размер


Продолжаю обслуживание машины, которой уделял недостаточно внимания в последние годы — наступил своего рода период расплаты.

Аж 4 года назад я уже менял опоры, и тогда по неопытности я установил переднюю и заднюю опоры CONCORD.
Задняя рассыпалась практически моментально, при том что она физически не подходила без колхоза.
Ей на замену 3 года назад я поставил новую оригинальную 04593337AB. На данный момент она уже прошла 27000миль, и вроде до сих пор живая.
Что касается передней CONCORD, то 3 года назад (год с момента установки) я не стал её менять, так как она была вполне живая и не вызывала нареканий, благо основную работу берет на себя задняя.
И вот, примерно пол года назад я случайно обнаружил, что передней подушке настал привет.
При этом с каждым днем вибрация и посторонние звуки постепенно усиливались, а значит пора менять и её.
Никаких аналогов я теперь даже не рассматривал, т.к. уже достаточно «наелся» от неоригинальных подушек.
Заказал оригинальную 04593383AB, подождал недельку, и вот она пришла…


И только через пару месяцев решился на её замену, т.к. были разного рода опасения, но, забегая вперед, опасался я зря.
Поднял машину, установил её на опоры, домкратом зафиксировал положение двигателя.
Открутил гайку и вытащил крепежный болт из подушки (у меня болт 15мм, гайка 17мм. Скорее всего неродные).

Полный размер

Передняя подушка


Ну а далее открутил 3 болта из подратиаторной планки и опора стала подвижной.

Полный размер

Три нижние болта


Теперь самое интересное — вытащить старую подушку из кронштейна и каким-то образом установить новую.
Я провозился со старой подушкой около часа: и пытался поднимать двигатель, пытался её выбить, пытался её позиционировать по разному — ничего не помогло.
Уже было отчаялся, и был удивлен т.к. истории про замену передней опоры обычно выглядят как «Вчера заменил переднюю опору — доволен». И вс

www.drive2.ru

Замена передней опоры двигателя — Mazda Capella, 1.8 л., 1999 года на DRIVE2

Всем привет! История началась с того, что как то в один прекрасный весенний день увидел у себя порванную переднюю опору двигателя(((

Полный размер

Порвалась передняя опора

И тут начались поиски опор двигателя. Спасибо Mesam за консультации по поводу выбора запчастей.
Подушку решили брать оригинал, присмотрел на Exist’е опору GE6T39050 MAZDA цена опоры 2013 ₽ (1 день ожидания), почитав форумы понял, что если порвалась передняя опора то опора коробки не жилец. Поэтому решил купить еще опору двигатель под коробку. Вычитав там же на форумах и послушал советы решил взять аналог т.к. данная подушка не особа важная. В общем в корзину полетела опора коробки Febest MZM-626464 ₽.
И пока ожидал зарплату Mesam (за что, ему огромное спасибо) скинул ссылку на пост 686. Почитав данный пост, посмотрел картинки с google и вправду опора от Capella похожа на опору от MPV. Но цена на опору от MPV дешевле почти в 2 раза Mazda L081-39-050A — 1 197 ₽ (3 дня ожидания).

Полный размер

Приехали опоры

Полный размер

Опора от MPV

В итоге приехала опора от MPV, немного переживал, когда снимал, что не подойдет. Но сняв понял, что они идентичны. Перед съемом передней опоры попытался найти на просторах инета мануал как поменять переднюю опору. В итоге нашел только правую и левую…передней нету. Решил посмотреть как меняются на других маздах этих годов…посмотрел видео Demio. Немного опечалился, когда сказали в видео что нужно снимать подрамник ставить двигатель и коробку на широкую палку и домкратом подпирать…Ну что делать, пошел снимать. И каково было мое удивление, когда открутил 3 гайки и подушка сама выпала, не какого подрамника снимать не пришлось)))

В общем принцип снятия передней опоры двигателя очень прост.
Понадобиться:
— Головка на 17
— Вороток + усилитель + WD-40
— Ключ на 10
— Ключ на 8
— Крестовая отвертка
— 2 домкрата

А теперь собственно, сам алгоритм замены подушки в картинках (может ко

www.drive2.ru

Замена передней опоры двигателя. — Mitsubishi Lancer, 1.6 л., 2007 года на DRIVE2

Всем доброго вечера. В предыдущей записи www.drive2.ru/l/5761144/ писал о проблеме с вибрацией двигателя. Грешил на все. Поменял свечи, катушки с проводами (взял у друга adjeka26). Ничего не помогало. Грешил на опору двигателя переднюю. Т.к. она изрядно порвана. Опора заказана и едет ко мне. Тут у меня выскакивает ошибка Р0303 — пропуски зажигания в третьем цилиндре. Двигатель стал очень вялым, на холодную даже подтраивал. Я за 200 км от дома. Кой как доехал до дома. Машина все хуже и хуже тянет. Думал на все, мысленно подготовил себя к разборке мотора. По дороге к дому, пять раз выскакивала ошибка Р0303. Китайский ЕЛМ помогал. По приезду домой решил поменять форсунки. Т.к. свечи, катушки и провода менялись уже. Друг Жека adjeka26 дает свои запасные форсунки и о чудо машина вновь как и прежде поехала. Все пришло в ному! Никакой вибрации на холостом, ничего. Свои форсунки попробую восстановить, если нет то на разборку. мож завалялись у кого? Рассмотрел бы вариант покупки.
Опора к тому времени пришла и у меня в руках. Покупка опоры это целая история. При заказе, узнав цену оригинала, о.уел. 1700р. Аналог, китайский фебест 1500 Ужас. 500-600 только сайлентблок опоры. Тут мой братюня (продавец в ЕМЕКСЕ) говорит что подходит опора с Черри ФОРА. Он уже продавал ее на лансер 9. Ну и ее заказал. Цена 350 РЭ. По цене нормально. Для китайского ОРИГИНАЛА.
Вот она.

.

.

.

.

Единственное отличие, это центральное отверстие чуть меньше.

.


На оригинале оно 16мм.

.

На опоре черри 12мм. Болт 10 мм.

.


Я вообще не понимаю зачем в оригинальной опоре такое большое отверстие.
Моей подушке совсем плохо.

www.drive2.ru

Замена передней опоры/подушки двигателя — Volkswagen Passat, 2.0 л., 1995 года на DRIVE2

Замена передней опоры/подушки двигателя Passat B4

Начал грешить на переднюю подушку двигателя, так как при разгоне на участках, где колеса буксуют по льду и после появляется сцепление с асфальтом происходил как буд то удар (ощущение что движка гуляла) чего раньше не замечал. Покачал движку руками — чувствуется, что передняя подушка как то легко ходит и даже смешается немного в стороны, поэтому было решено заменить.
Приобретено:
Опора двигателя передняя Lemforder 14360 02 — 5 825 тенге

Lemforder 14360 02


Lemforder 14360 02


Lemforder 14360 02


Lemforder 14360 02


Lemforder 14360 02 в разобранном виде


Приступаем к замене
Тут можно найти инструкцию по замене
В принципе ничего сложного нет.
Опишу как это делал я:
Так как нет ямы для удобства подложил под колеса доски потолще:

Подставляем домкрат под коробку (я ставлю так что доска касается 3х точек)

Откручиваем верхний и нижний болт опоры, и поднимаем немного домкрат.


Выкручиваем правый болт, крепящий кронштейн к КПП,

Выкручиваем нижний болт стартера, и немного ослабляем верхний

Теперь можно сдвинуть кронштейн и спокойно извлечь опору

www.drive2.ru

Замена передней опоры двигателя (передняя подушка) — Mazda Familia, 1.5 л., 2001 года на DRIVE2

Вообще проще простого, легче лёгкого! 😀
1. Найти эстакаду или яму
2. Открутить 3 гайки
3. Вытащить старую опору
4. Собрать в обратном порядке уже с новой подушкой

Даже лыжу, оказывается, отвинчивать не надо 🙂 Надо будет только чуток двигатель рычагом поддомкратить, чтобы болт встал в новую подушку и всё 🙂

___
Бесплатную эстакаду без замков всяких я нашёл случайно, катаясь на велосипеде, поэтому как получил посылку (подушку) сразу поехал менять 🙂

Полный размер

Только пришлось привязать машину тросом 😀 Так как эстакада очень скользкая и имеет крутой наклон.

Полный размер

Побрызгал WD-40 на всякий, подождал 3 минуты и всё легко открутилось.

Полный размер

Старая передняя опора двигателя

Вот две подушки для сравнения:

Полный размер

Полный размер

Новая передняя опора двигателя

После ремонта глянул как поживает задняя подушка. Глазами не видно, пришлось фотографировать со вспышкой. Оказывается и её под замену. Уже заказал.

Полный размер

Задняя опора двигателя

Артикулы по каталогу:
Передняя — B25D39050C
Задняя — B25G39040D

Заказывал аналог от Tenacity, так как они идут с кранштейнами вместе. А то до них заказал аналог по этому же артикулу — а пришёл лишь сайлентблок от опоры двигателя… а самостоятельно нет возможности запресовать сайлент в опору.
___

Результат:
1) Чуть меньше дребезжит капот, но не ушла вибрация полностью (совсем перестанет после замены задней подушки)
2) Стал намного реже и тише звук непонятный откуда, но скорее всего из щели в глушителе при разгоне внатяг.
Это скорее всего, пр

www.drive2.ru

Замена передней опоры двигателя — Toyota Ipsum, 2.0 л., 1998 года на DRIVE2

Пришло время выйти из строя передней подушке. Симптомы: мелкая вибрация на «D», сильная вибрация на «R», металлический щелчок при трогании в районе катализатора. Заехал в магазин, приобрёл подушку и поехал менять. Продавцы рекомендовали заменить в их же сервисе, но я как-то лучше сам. Заехал в гараж на яму, снял пыльники (пластиковая защита). Домкратом приподнял двигатель, открутил 4 болта на «лыже», открутил ось подушки и тут ступор у меня: почему балка не падает? Так как я в первый раз снимаю «лыжу», то не знал, что ее держит еще 5 болт, он спрятан под заглушкой. Да, еще надо открутить гайку «на 10», она держит хомут трубки. Собственно и всё! Выкрутил болты подушки, установил новую, собрал все в обратном порядке. Работы минут на 30. Единственно, что мне стало интересно, зачем я снимал «лыжу», если болты, которые держат подушку выкручиваются снизу балки. Кстати, тоже под заглушками. Я думал, что сверху, и к ним не подлезть, не снимая
«лыжу».Зато изнутри балки вычистил 2 кг песка, машина легче стала. Первый заезд — щелчок пропал, вибрация пропала, переключения передач вообще не слышно.

Раскошелился взял оригинал. Продавец сказал тайваньская подушка жесткая и будет мелкая тряска.

Нужен ли там домкрат или нет, но на всякий случайпоставил

Вот он этот хитрый болт. Может если бы яма была побольше — я бы эту заглушку заметил.

Сразу не заметишь, что она порвана

Гаечка держащая хомут

Вот таким образом я хотел открутить подушку))) Но повертев ее, увидел снизу заглушки, а под ними болты

Ставим новую

На месте

Виновница сегодняшнего мероприятия

www.drive2.ru

Лада 2108 ส็็็็็็็็็็็ Yellow Card › Бортжурнал › Замена передней опоры двигателя на усиленную опору нового образца

Так как автомобиль мой 88г.в. то и точки крепления опор на кузове все тоже 88года.
А именно несостыковка идет по передней и задней опорах.
Если с задней все просто — сайлентблок раньше был меньше, потом его увеличили и вместе с тем увеличили расстояние между шпилек крепления опоры к кузову. — эту проблему я решил установкой опоры Createch, рассверлив в ней отверстия ближе к сайлентблоку.
С передней было посложнее. Телевизор родной и крепкий, а вот кронштейн опоры старый. Но у меня с девятки остался кронштейн, который я и переварил. Отчет не полный, т.к. не фоткал процесс сварки и сборки. А только начало и отличия.
1) снимаем бампер.


2) снимаем ресивер, рампу и впускной коллектор, дабы снять радиатор. Ведь у нас же 16в под капотом!

3) домкратим двигатель, снимаем старую опору (в ней сайлентблок меньше, такие опоры редко встретишь в продаже. и примеряем новую, желтую!

Несостыковочка.


4) Варим новый кронштейн, примерив его по размерам.

Размещена рядом для сравнения.

Не маленькая разница

6) красим и собираем все назад. Я еще вварил один усилиель — уголок к кронштейну опоры.

Переднюю опору использовал Техномастер, которую мне презентовал azer-az, пришлось только сайлентблок на БРТ поменять, а то тот уставший был.
Те, кто тоже хочет купить «желтую» опору, будьте осторожны. Под техномастер делают подделку ТЮНИНГ АВТО, у которых тоньше железо, от чего опоры лопаются, а владелец автомобиля бежит за новым поддоном и опорой.

Цена вопроса: 0 ₽ Пробег: 188500 км

www.drive2.ru

13Мар

2 и 4 тактные двигатели принцип работы – В чём отличия 2х и 4х тактных двигателей

В чём отличия 2х и 4х тактных двигателей

Начнем с принципа действия. Любой двигатель внутреннего сгорания имеет поршень, который через шатун крутит коленчатый вал (и в конечном итоге колеса), движимый энергией сгорания паров топлива в смеси с воздухом (горючей смеси).

Принцип работы двухтактного двигателя

Принцип работы 2т двигателя

В 2Т двигателе процесс наполнения цилиндра свежей горючей смесью, сжатия ее, воспламенения, рабочего хода (когда энергия сгорания с силой движет поршень вниз, вращая коленчатый вал) и выпуска выхлопных газов происходит за два такта.

Поршень идет вверх, сжимая топливную смесь. Происходит воспламенение горючей смеси.

  • Второй такт, рабочий ход.

Расширяющиеся газы толкают поршень вниз. Когда он находится внизу, он открывает выпускные и впускные окна в стенках цилиндра. Выхлопные газы выходят в глушитель, их место занимает свежая топливная смесь и повторяется первый цикл.

Все это происходит за один оборот коленчатого вала.

Принцип работы четырехтактного двигателя

В 4Т двигателе процесс наполнения цилиндра свежей горючей смесью, сжатия ее, воспламенения, рабочего хода и выпуска выхлопных газов происходит за четыре такта.

Принцип работы 4т двигателя

  • Первый такт, впуск.

Поршень идет вниз, клапан впуска открывается, и топливная смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.

  • Второй такт, сжатие.

Поршень идет вверх, оба клапана закрыты, топливная смесь сжимается. Когда поршень находится вверху, свеча воспламеняет горючую смесь.

  • Третий такт, рабочий ход (расширение).

Горячие газы быстро расширяются, толкая поршень вниз (оба клапана закрыты).

  • Четвертый такт, выпуск.

По инерции коленвал продолжает свое вращение (для равномерности вращения на коленвале установлены грузы — щеки коленвала), поршень идет наверх. Одновременно открывается выпускной клапан, и отработавшие газы выходят в выхлопную трубу. В верхнем положении поршня выпускной клапан закрывается.

Эти 4 такта происходят за два оборота коленчатого вала.

Видео «как работает 4х тактный двигатель»

  FAQ по вопросам связанным с 2т и 4т двигателями

Говорят, двухтактный двигатель мощнее и мотоцикл с ним динамичнее. Так ли это?

Да. 2Т двигатель за два оборота коленчатого вала успевает два раза использовать энергию сгорания топлива. Многие считают, что он в два раза мощнее двигателя 4Т. Но обратите внимание, в 2Т двигателе часть цилиндра занимают впускные и выпускные окна, значит количество горючего, которое потом сгорит, меньше в объеме, чем у двигателя 4Т, где цилиндр цельный. В двигателе 2Т из-за простоты конструкции смазка коленчатого вала производится маслом, добавленным в бензин. Масло в рабочей смеси снижает выделяемую энергию (масло горит хуже). Из-за особенностей впуска-выпуска горючей смеси и выхлопных газов в двигателе 2Т больше горючей смеси «улетает в трубу», не сгорая. В 4Т двигателе этот процесс за счет более сложного механизма впуска-выпуска минимален. В результате — 2Т двигатели, действительно, мощнее (но не в два раза), но более высокая мощность у них достигается в более узком рабочем диапазоне оборотов коленчатого вала (то есть вы стартуете с места, скутер еле разгоняется, потом наступает так называемый «подхват», скутер «выстреливает», но быстро увядает) и вам для динамичной езды все время придется поддерживать определенные обороты двигателя. Как Вы понимаете, чем мощнее 2Т двигатель, тем уже диапазон оборотов, тоньше настройки и двигатель дороже. Насладиться в полной мере преимуществами 2Т двигателя могут или спортсмены (где важнее выжать все и сейчас), или обладатели бензопил и газонокосилок (которым чем проще и дешевле, тем лучше).

4Т двигатель менее мощный, значит, на таком мотоцикле неинтересно ездить?

Из предыдущего ответа следует, что даже несколько менее мощный 4Т двигатель обладает более благоприятной характеристикой — он «эластичен». Сразу с начала движения, он обеспечит мотоциклу «паровозную тягу», то есть Вы плавно и уверенно без «провалов» и «подхватов» набираете скорость, и уверенный набор скорости будет доступен Вам во всем диапазоне оборотов коленчатого вала. Недостаток мощности скажется только в верхнем рабочем диапазоне оборотов двигателя, то есть когда Вы «шпарите» на пределе. Как раз близко к этому режиму движения 2Т двигатель и выдаст максимальную мощность.

4Т двигатель более надежен?

Безусловно. Ведь в 2Т двигателе поршень, поршневые кольца и цилиндр фактически являются расходным материалом из-за особенностей конструкции — в цилиндре-то отверстия. Многие мотоциклисты укатывают поршень 2Т двигателя за сезон, а цилиндр — за два. В 4Т двигателе Вы об этом забудете. 4-5 сезонов на одном поршне 4Т двигателя — норма.
Из-за более качественной смазки (масло подается к ответственным частям не в смеси с бензином, а путем разбрызгивания или подачи под давлением), 4Т двигатель рассчитан на больший ресурс. Более сложный клапанный механизм впуска-выпуска газов четче работает, требует несложного и не частого обслуживания.

Для составления статьи были использованы материалы с сайта vd-sc.clan.su, изображения взяты с сайта honda-electric.ru

motorcycle-x.ru

Принцип работы 2х тактного и 4х тактного двигателей

При выборе силового оборудования необходимо уделить особое внимание типу двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный.

Принцип действия двигателя внутреннего сгорания основан на использовании такого свойства газов, как расширение при нагревании, которое осуществляется за счет принудительного воспламенения горючей смеси, впрыскиваемой в воздушное пространство цилиндра.

Зачастую можно услышать, что 4-х тактный двигатель лучше, но чтобы понять, почему, необходимо более подробно разобрать принципы работы каждого.

Основными частями двигателя внутреннего сгорания, независимо от его типа, являются кривошипно-шатунный и газораспределительный механизмы, а также системы, отвечающие за охлаждение, питание, зажигание и смазку деталей.

Передача полезной работы расширяющегося газа осуществляется через кривошипно-шатунный механизм, а за своевременный впрыск топливной смеси в цилиндр отвечает механизм газораспре6деления.

Четырехтактные двигатели — выбор компании Honda

Четырехтактные двигатели экономичные, при этом их работа сопровождается более низким уровнем шума, а выхлоп не содержит горючей смеси и значительно экологичней чем у двухтактного двигателя.  Именно поэтому компания Honda при изготовлении силовой техники использует только четырехтактные двигатели. Компания Honda уже многие годы представляет свои четырехтактные двигатели на рынке силовой техники и добилась высочайших результатов, при этом их качество и надежность ни разу не подвергались сомнению. Но всё же, давайте рассмотрим принцип работы 2х и 4х тактных двигателей.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: сжатие и рабочий ход.

Сжатие. Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное, а затем выпускное окно, после чего газ, находящийся в цилиндре, начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем сжатии.

Рабочий ход. После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Дальнейшее движение поршня приводит к сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания.

Основным недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает принести пользу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты, что приводит к частичному выбросу горючей смеси в атмосферу. Еще идёт постоянный расход масла, так как 2х тактные двигатели работают на смеси бензина и масла. Очередное неудобство — в необходимости постоянно готовить топливную смесь. Главными преимуществами двухтактного двигателя остаются его меньшие размеры и вес по сравнению с 4х тактным аналогом, но размеры силовой техники позволяют использовать на них 4х тактные двигатели и испытывать намного меньше хлопот в ходе эксплуатации. Так что уделом 2х тактных моторов осталось различное моделирование, в частности, авиамоделирование, где даже лишних 100г имеют значение. 

Принцип работы четырехтактного двигателя

Работа четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов.

Во время впускного этапа поршень двигается вниз, открывается впускной клапан, и в полость цилиндра поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь.

При сжатии поршень движется от НМТ к ВМТ, оба клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня от ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан.

Во время выпускного этапа продукты сгорания, вытесняемые поршнем, движущимся от НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов четырехтактные двигатели внутреннего сгорания более экономичны и экологичны — ведь выброс неиспользованной топливной смеси исключен. В работе они значительно тише, чем 2х тактные аналоги, и в эксплуатации намного проще, ведь работают на обычном АИ-92, которым вы заправляете свою машину. Нет необходимости в постоянном приготовлении смеси масла и бензина, ведь масло в данных двигателях заливается отдельно в масляный картер, что значительно уменьшает его потребление. Вот именно поэтому компания Honda производит только 4х тактные двигатели и достигла в их производстве колоссальных успехов.

honda-electric.ru

Чем отличается двухтактный двигатель от четырехтактного по конструкции и принципу работы

🏠 » » Какое отличие двухтактного двигателя от четырехтактного и что такое 4mix и 2mix

Практически у каждого владельца частного дома имеются бензиновые помощники, облегчающие выполнение разных работ — укос травы, распиливание деревьев, уборка снега. Во главе рассматриваемых агрегатов лежат двигатели внутреннего сгорания, созданные Этьеном Ленуаром в 1860 году. В современных бензоинструментах устанавливаются ДВС, которые делятся на два основных вида — двухтактные и четырехтактные. Какое отличие двухтактного двигателя от четырехтактного, и какие еще есть виды бензомоторов, узнаем подробно из материала.

Что такое ДВС на бензоинструментах

Двигателем внутреннего сгорания именуется агрегат, осуществляющий трансформацию топлива в механическую энергию. Сегодня ДВС применяется везде — от инструментов до автомобилей и прочих видов техники. Принцип работы ДВС обусловлен тем, что в конструкцию подается горючая смесь, основывающаяся на бензине с воздухом. За создание нужной консистенции горючей смеси отвечает карбюратор.

Горючая смесь подается в цилиндр, где осуществляется ее воспламенение. Сгорание смеси способствует тому, что создается полезная энергия, снимаемая с коленчатого вала в виде вращательных движений. Главное достоинство ДВС в том, что он обладает высокой мощностью, если сопоставить с электродвигателями. Большинство бензоинструментов — триммеры, мотокосы, мотоблоки, бензопилы и т.п., оснащаются двигателями внутреннего сгорания двухтактного типа. Более мощные бензоинструменты оснащаются ДВС четырехтактного типа. Чем же отличаются двухтактные и четырехтактные двигатели, какой принцип работы они имеют, а также их плюсы и минусы описаны в материале.

Что называют тактом в ДВС

Тактом на ДВС называется действие, которое совершается внутри механизма. Перемещение поршня в верхнем или нижнем направлении — это и есть такты. Причем один такт — когда поршень движется вверх, выполняя соответствующую работу. Движение поршня вниз, который возвращается от силы, возникающей при сгорании топлива, называется рабочим ходом.

Первый такт, с которого начинается работа мотора — это заполнение цилиндра топливной смесью. Следующий этап — это сжатие поступившей смеси в двигатель. Далее происходит воспламенение, и в завершении отвод сгоревших газов. Это четыре такта, которые выполняются в двигателях четырехтактного типа. Коленвал в четырехтактных агрегатах совершает два оборота при одном воспламенении топлива.

Двухтактные моторы функционируют в два цикла — транспортировка топливной смеси в цилиндр с последующим ее воспламенением, и отведение выхлопных газов из цилиндра. В двухтактных агрегатах коленвал совершает один оборот при сжигании одной порции топливной смеси. Это главное отличие рассматриваемых агрегатов друг от друга.

ДВС 2-х и 4-х тактного типа по виду топлива бывают бензиновыми и дизельными. Чтобы выяснить подробно, какие достоинства и недостатки имеются в рассматриваемых двигателях 2-х и 4-х тактного типа, рассмотрим их конструкцию и принцип работы.

Двухтактный ДВС его конструктивные особенности и описание принципа работы

Большинство бензопил и бензокос оснащаются приводными устройствами двухтактного типа. Два такта — это этап сжатия топливной смеси и рабочий ход поршня (когда он опускается вниз). Чтобы понять, чем отличается двухтактный двигатель от четырехтактного, рассмотрим изначально строение мотора. Основные детали двигателя — это цилиндр, поршень, коленчатый вал и шатун. За сжигание топлива отвечает свеча зажигания, а транспортировка смеси и отвод газов происходит посредством впускного и выпускного каналов. Конструктивная схема двухтактного двигателя отображена на фото ниже.

Двигатель двухтактного типа имеет упрощенное строение в отличие от четырехтактного. Принцип работы у него простой, и начинается с того, что осуществляется перемещение поршня из нижней мертвой точки в верхнюю. В стенках цилиндра присутствует три отверстия — впускной, выпускной и продувочный канал. Впускной расположен ниже, чем выпускной, а продувочный находится между ними, как показано на фото выше. Впускной и продувочный канал соединяется с кривошипно-шатунной камерой. Далее подробное описание принципа работа ДВС.

Первый такт. Первоначально топливо из карбюратора транспортируется в камеру КШМ. Через продувочное отверстие в цилиндр из камеры КШМ засасывается предварительно-поступившая топливно-воздушная смесь. Прекращается подача смеси тогда, когда поршень перекрывает отверстие продувочного канала. Далее движение поршня осуществляет перекрытие выпускного канала. Часть топливно-воздушной смеси при этом уходит в выпускной канал. После перекрытия выпускного канала начинается процесс сжатия горючей смеси. Эта смесь состоит из бензина, масла и воздуха. При достижении поршнем верхней мертвой точки, происходит воспламенение смеси за счет создания искры свечей зажигания.

В тот момент, когда в верхней части цилиндра осуществляется сжатие, в нижней части камеры КШМ создается разрежение. Это разрежение позволяет засосать очередную порцию топлива из карбюратора для следующего воспламенения. Засасываемое топливо в камеру кривошипно-шатунного механизма одновременно выполняет смазывание коленчатого вала и шатуна. Именно поэтому в состав горючей смеси добавляется специальное масло для двухтактного мотора. Двухтактные двигатели не имеют масляного картера, что является одним из главных их отличий от четырехтактных. Все эти процессы совершаются в один такт.

Второй такт. Сгоревшие газы толкают поршень вниз, тем самым осуществляется рабочий ход. Когда открывается выпускное отверстие, в него выходят выхлопные газы, поступающие по каналу в глушитель. Опускающийся вниз поршень создает давление в камере КШМ. За счет этого давления осуществляется выдавливание топливно-воздушной смеси ТПС из камеры КШМ в продувочный канал. В цилиндр следующая порция ТПС выталкивается сразу при открытии доступа к продувочному отверстию. При заполнении рабочей камеры цилиндра порцией топливной смеси происходит одновременное вытеснение оставшихся отработанных газов. Заканчивается второй такт при достижении поршнем нижней мертвой точки.

Визуальный процесс работы двухтактного двигателя представлен на анимированном изображении ниже.

У такого типа ДВС есть свои достоинства и недостатки, которые описаны ниже. Зная строение и принцип работы двухтактного двигателя, разберемся с четырехтактными моторами.

Четырехтактный двигатель его устройство и как он работает

Агрегаты четырехтактного типа имеют более сложное строение, но при этом они отличаются высокой производительностью и большим сроком службы. Их работа состоит из 4 циклов, о чем упоминалось выше. Это такт впуска топливной смеси, ее сжатие, рабочий ход и выпуск сгоревших газов. В отличие от двухтактных, на 4-х тактных моторах имеется масляный картер, посредством которого осуществляется смазывание вращающихся и трущихся деталей. Чтобы понимать, о чем идет речь, ниже представлена схема устройства четырехтактного двигателя внутреннего сгорания.

На схеме выше обозначены основные конструктивные элементы двигателя внутреннего сгорания 4-тактного типа:

  1. Цилиндр — основание, в котором осуществляется перемещение поршня
  2. Поршень — главный рабочий элемент всех двигателей внутреннего сгорания. Поршень имеет кольца, посредством которых обеспечивается сжатие топливной смеси
  3. Шатун — соединительный элемент между коленчатым валом и поршнем
  4. Коленчатый вал — находится в кривошипно-шатунной камере
  5. Палец шатуна — соединительный элемент между коленчатым валом и шатуном
  6. Камера сгорания — в этой камере происходит сжатие топлива и его воспламенение
  7. Впускной клапан — при его открытии в камеру сгорания поступает топливная смесь из карбюратора
  8. Выпускной клапан — открывается для выведения выхлопных газов из камеры сгорания
  9. Свеча зажигания — воспламеняет топливную смесь

Принцип работы аналогичен с двухтактными моторами, но есть некоторые отличительные особенности. Рассмотрим далее принцип работы четырехтактного мотора по циклам.

Первый такт. Транспортировка воздушно-топливной смеси в камеру сгорания выполняется при открытии впускного клапана. Поршень при этом находится в верхней мертвой точке. Открытие клапана выполняется посредством кулачков газораспределительного механизма. Засасывание топливной смеси происходит до момента, пока поршень не достигнет нижней мертвой точки. Коленчатый вал при этом совершает пол оборота.

Второй такт. Начинается он с того, что поршень движется с нижней мертвой точки в верх. При этом осуществляется сжатие поступившей на предыдущем этапе топливно-воздушной смеси. Как только поршень достигает верхней мертвой точки, возникает искра, создаваемая свечой зажигания. Вместе с первым тактом, коленчатый вал совершает один оборот.

Третий такт. От силы давления, сформировавшегося от сжигания смеси, обеспечивается перемещение поршня из верхней мертвой точки в нижнюю. Такое перемещение поршня после сгорания газов называется рабочим ходом. Выхлопные газы на третьем этапе находятся в камере до момента, пока поршень не достигнет нижней мертвой точки. После этого начинается завершающий этап.

Четвертый такт. Поршень перемещается с нижней мертвой точки в верхнюю, тем самым осуществляя высвобождение камеры сгорания от находящихся в ней выхлопных газов. Для этого происходит открытие выпускного клапана, который также при помощи кулачка соединен с газораспределительным механизмом. После этого цикл повторяется.

Анимированное изображение принципа работы четырехтактного двигателя показано на схеме ниже.

Четырехтактные моторы являются более совершенными, выносливыми и надежными по сравнению с двухтактными.

Основные отличия между двухтактным и четырехтактным ДВС

Одно из основных отличий рассматриваемых агрегатов в наличии газораспределительного механизма на 4-тактном моторе. На 2-тактных устройствах газораспределительного механизма нет. Вместо него имеются отверстия в стенках цилиндра, через которые и происходит подача готовой топливно-воздушной смеси, а также отвод выхлопных газов.

ГРМ не только увеличивает вес и размер двигателя, но еще и существенно влияет на его стоимость. Отсутствие ГРМ приводит к тому, что двигатель имеет только два цикла работы. Наличие каналов в стенках цилиндра приводит к увеличенному износу колец и поршня двигателя. Именно поэтому двухтактные двигатели имеют небольшой ресурс работы. Далее рассмотрим конструктивные отличия между 2-тактным и 4-тактным моторами.

  1. Потребление топлива — несмотря на то, что двухтактный агрегат имеет простое строение, в плане потребления бензина он проигрывает четырехтактному. Связано это с количеством тактов. В то время, как 4-цикловый агрегат совершает 2 оборота коленчатого вала, потребляя при этом одну порцию топлива, двухтактный двигатель при этом делает только один оборот. Увеличение расхода топлива составляет примерно 1,5 раза. Кроме того, не стоит забывать, что 2-тактный агрегат имеет несовершенную систему, и в процессе работы наблюдается потеря топливной смеси, выбрасываемой в глушитель. Это часть смеси, которая «вылетает в трубу» при движении поршня вверх в момент сжатия
  2. Тип топлива — моторы 4-тактного типа работают на чистом бензине, который в карбюраторе смешивается с воздухом. Агрегаты 2-тактного типа работают на смеси масла с бензином. Использование чистого бензина недопустимо, что повлечет за собой быстрый выход из строя цилиндропоршневой группы
  3. Система смазки — многие знают, что именно по этому принципу рассматриваемые агрегаты отличаются. В 4-тактном моторе имеется отдельная система смазки, состоящая не только из емкости, но еще и масляного насоса, фильтров и трубопроводной магистрали. Система смазки не взаимосвязана с механизмом подачи топлива, что говорит не только об эффективности, но и продолжительном сроке службы. Двухтактные моторы работают на бензине с маслом. Пропорции смешивания бензина с маслом для бензопилы и бензокосы описаны на сайте. Бензин вместе с малом подается в двигатель, где осуществляется смазка механизма. Стоит отметить, что далеко не все двухтактные моторы имеют общую систему смазки, но встречаются еще и агрегаты с раздельным механизмом, где смешивание происходит автоматически в зависимости от количества оборотов
  4. Тип смазывающих веществ или отличие масла для двухтактного мотора от 4-тактного. Для двухтактных двигателей используются специальные масла «сгорающего» типа. Это масло смешивается с бензином, и попадают в систему КШМ, обеспечивая смазку движущихся деталей. После этого масло в составе с бензином поступает в цилиндр, где воспламеняется и сгорает. Это масло называется двухтактным, и выпускается оно красного или зеленого цвета. Цвет не играет большой роли, и говорит о применении присадок в составе. Четырехтактные моторы работают на чистом бензине, так как они имеют отдельный механизм, отвечающий за смазку КШМ. В таких моторах используется обычное моторное масло, которое нельзя смешивать с бензином, и заливать в двухтактные агрегаты. Это приведет к быстрому засорению электродов свечи и выходу из строя ДВС. Получается, что отличие масла для двухтактных двигателей от четырехтактных заключается в консистенции и составе. На 2-цикловых ДВС используются сгораемые типы масел, которые перед тем, как сгореть, смазывают всю систему

По системе смазки четырехтактных двигателей нужно отметить, что они бывают двух типов — с сухим и мокрым картером. Различаются они по способу смазки. В мокром типе происходит подача масла из картера на КШМ. Насос перекачивает масло из картера, являющегося частью двигателя.

На ДВС с сухим картером используется отдельный бак с маслом. Из него масло насосом перекачивается в систему КШМ, обеспечивая смазку деталей. Скапливающееся масло обратно транспортируется в бак при помощи дополнительного насоса.

Зная основные конструктивные и принципиальные отличия рассматриваемых механизмов, следует разобраться с их достоинствами и недостатками, которые имеются у обоих вариантов.

Плюсы и минусы ДВС

Для начала рассмотрим все имеющиеся достоинства и недостатки двухтактных моторов, которые несмотря на свою конструкцию, пользуются большой популярностью. К их преимуществам относятся:

  1. Простота конструкции
  2. Высокая скорость набора оборотов
  3. Невысокая стоимость, что делает инструменты, оснащенные такими агрегатами очень популярными
  4. Простота обслуживания, что обусловлено отсутствием ГРМ и отдельной системы смазки
  5. Малый вес и габариты, что делает инструменты с такими ДВС удобными и практичными

Теперь разберемся со всеми недостатками, которые имеются у двухтактных двигателей:

  • Шумность работы
  • Низкая экологичность, что обусловлено выделением в атмосферу не сгоревшего топлива
  • Низкий ресурс работы
  • Необходимость смешивания бензина с маслом при каждой дозаправке. Кроме того, нельзя долго хранить разведенное топливо, иначе происходит его порча
  • Большой расход топлива
  • Небольшая мощность в сравнении с четырехтактными

У 4-тактных агрегатов достоинств намного больше, однако такие недостатки, как сложность конструкции, большой вес и цена оставляют негативный отпечаток. Далеко не каждый может позволить себе покупку, к примеру, снегоуборщика с 4-тактным мотором, который стоит в 2 раза больше, чем аналог с более примитивным агрегатом. Все недостатки 2-тактных моторов — это есть преимущества четырехтактных.

В силу большого количества недостатков обоих видов двигателей, производители запатентовали выпуск модернизированных моделей ДВС, которые получили название 4-MIX и 2-MIX. Наверняка вы сталкивались с тем, что при ремонте или замене деталей двигателя бензопилы или бензокосы, обнаруживалось наличие механизма ГРМ, но при этом инструмент заправляется разведенным бензином с маслом, как указывает производитель. Все верно, это говорит о том, что ваш инструмент оснащен двигателем 4-mix. Более подробно об этих типах двигателей узнаем далее.

Что такое ДВС 4-mix и для чего он предназначен

Если вы задаетесь вопросом, что такое двигатель 4-mix или почему бензокоса Штиль заправляется бензино-масляной смесью, а в инструкции указано, что она четырехтактная, то именно здесь вы найдете ответ. Компания Stihl запатентовала новый тип двигателя, который получил название 4-MIX. Его особенность в том, что он совмещает в себе достоинства двухтактного и четырехтактного моторов. Как же устроен такой тип двигателя, и самое интересное, как обеспечивается смазка КШМ, узнаем в деталях. Ниже представлена схема ДВС 4-mix.

На схеме видно, что такой двигатель оснащен ГРМ, и работает агрегат в 4 такта. При этом, чтобы сэкономить на стоимости бензоинструмента, производители не используют отдельную систему смазки. Смазка КШМ осуществляется вместе с топливом, как это свойственно для двухтактных моторов. Поступление бензина с маслом в камеру КШМ осуществляется из емкости, где располагаются коромысла впускного и выпускного клапанов.

Эта емкость соединяется с камерой КШМ при помощи каналов, в которых располагаются направляющие  клапанов, соединенные одной частью с коромыслом, а второй с кулачком на распредвале.

В герметичную камеру клапанов засасывается топливно-воздушная смесь из карбюратора, которая направляется по каналам к кривошипно-шатунному механизму. Чтобы иметь представление, как работает ДВС 4-mix, рассмотрим пошаговую работу каждого такта.

  1. Первый такт начинается с того, что поршень из верхней мертвой точки движется вниз, одновременно всасывая через открывающийся впускной клапан порцию топливно-воздушной смеси. Эта смесь всасывается из карбюратора и камеры клапанов. Двигающийся поршень вниз создает давление в камере КШМ, что позволяет выдавливать скопившуюся топливно-воздушную смесь через каналы направляющих клапанов. В итоге цилиндр заполняется смесью бензина с маслом и воздухом
  2. Когда поршень достигает нижней точки, начинается процесс сжатия топлива. Смесь воспламеняется от искры, создаваемой свечой зажигания, как только поршень достигает верхней мертвой точки. В то время, как в цилиндре сжимается смесь, под поршнем создается разрежение или вакуум. За счет вакуума происходит засасывание очередной порции топлива из карбюратора в камеру КШМ через емкость клапанов. Поступившая смесь в камеру КШМ осуществляет смазку рабочих деталей
  3. После сгорания топлива, поршень движется вниз — происходит рабочий ход. В это время под поршнем возрастает давление, которое выталкивает засосавшую смесь обратно в камеру клапанов. Смесь заполнить рабочую часть цилиндра не может, так как впускной клапан закрыт. От избытка давления смесь в некотором количестве выталкивается обратно в карбюратор. Это приводит к тому, что часто на двигателях 4-mix воздушные фильтры влажные. Это вовсе не проблема с карбюратором, а нормальное явление. Количество выбрасываемой смеси не такое большое, как на двухтактных двигателях, где выталкивание смеси происходит через выпускной канал. Кроме того, оседающее топливо на фильтре не выбрасывается в атмосферу, а конденсируясь, снова всасывается в двигатель. Рабочий ход или третий такт заканчивается когда поршень достигает нижней мертвой точки
  4. Завершающий этап — открытие выпускного клапана. Через клапан выдавливается сгоревшее топливо в виде выхлопных газов. Под поршнем снова создается разрежение, вследствие которого происходит засасывание очередной порции топливно-воздушной смеси из карбюратора, поступающего в камеру КШМ

Так происходит работа ДВС 4-микс, которые получили большую популярность. Среди преимуществ таких моторов следует выделить следующие факторы:

  • Практически полное сгорание топлива, что положительно влияет на норму токсичности
  • Простая система смазки, исключающая необходимость использования масляного картера и насоса
  • Сниженный вес, который немного больше, чем весит двухтактный агрегат
  • Пониженный уровень шума по сравнению с двухтактными моторами
  • Высокая мощность
  • Низкое потребление топлива
  • Хорошее ускорение и тяговое усилие

Это интересно! Бензоинструменты от компании Stihl, оснащенные ДВС 4-mix, имеют улучшенную систему запуска за счет применения механизма декомпрессии. Эта система реализуется за счет приоткрытия впускного клапана во время старта. Обеспечивается приоткрытие клапана при помощи металлического выступа на кулачке механизма ГРМ. Работает система декомпрессии только при запуске мотора, а когда он уже запущен, то язычок за счет центробежной силы скрывается в кулачке.

В итоге компании Stihl удалось совместить все достоинства 4-х и 2-х тактных двигателей, создав при этом агрегат под названием 4-mix. Простота конструкции, неприхотливость, доступная стоимость, высокая мощность и прочие достоинства присущи для этого современного типа двигателей внутреннего сгорания.

Что такое двигатели внутреннего сгорания 2-MIX и X-torq

Компания Stihl предлагает также бензиновые инструменты с двухтактным двигателем модернизированной версии. Этот двигатель получил название 2-mix — двухтактная модель усовершенствованного типа. Аналогичную модель двигателя выпустила компания Husqvarna, и назвала его X-torq. Принцип работы двигателей одинаков, а отличия присутствуют только в конструкции. Схема работы ДВС 2-MIX представлена ниже.

На схеме видно, что топливно-воздушная смесь, поступающая от карбюратора, разделяется на два потока. Зеленой стрелкой показана смесь, которая всасывается в камеру КШМ, осуществляя тем самым смазку деталей. Ее всасывание происходит во время движения поршня вверх, когда создается разрежение. Поток смеси, указанный стрелкой синего цвета, подается непосредственно в камеру цилиндра, где происходит его сжатие и воспламенение. Всасывание топливно-воздушной смеси в цилиндр происходит при движении поршня вниз. Что примечательного в такой схеме работы двигателя?

Разделение потока позволило снизить выбросы топливной смеси в атмосферу, выходящей вместе с выхлопными газами. Это достигается за счет того, что рабочая область цилиндра заполняется смесью, обогащенной воздухом. Этот воздух выталкивает выхлопные газы, и в некотором количестве также выводится из камеры сгорания. Более насыщенный топливом поток поступает в камеру КШМ, обеспечивая эффективную смазку деталей.

В итоге модернизация двухтактного мотора способствовала тому, что снились потери топлива, а значит и уменьшился расход. Кроме того, выхлоп стал более чистым, так как в составе смеси отсутствует бензин с маслом, а система КШМ получила более эффективную систему смазки. При этом стоимость такого двигателя не сильно отличается от обычного двухтактного. Схема работы такого типа агрегата показана на видео.

Есть ли особые требования к качеству топлива для обычного двухтактного мотора и 2-mix? Разницы нет никакой, кроме того, на таких двигателях применяются одинаковые типы карбюраторов. Отличие карбюратора только в наличии дополнительной проставки, посредством которой происходит разделение потока топливной смеси на 2-MIX моторах.

Подводя итог, надо отметить, что отличия между рассматриваемыми типами двигателей имеются, и они достаточно существенные. Однако менее надежные 2-тактные агрегаты продолжают активно пользоваться популярностью за счет своей простой конструкции и невысокой стоимости. Зная конструкцию и принцип работы, не составит большого труда произвести ремонт двигателя таких инструментов, как бензопилы, мотокосы, мотоблоки, снегоуборщики, лодочные моторы и прочие.

moiinstrumentu.ru

Принцип работы 2-х и 4-х тактных двигателей


ПРИ КОПИРОВАНИИ СТАТЬИ АКТИВНАЯ ССЫЛКА НА НАШ САЙТ ОБЯЗАТЕЛЬНА. 

Принцип работы 2-х тактного двигателя, его достоинства и недостатки.

    Чем 4-х тактный мотор лучше двухтактного? Как выбрать лодочный мотор? Какой мотор лучше 2-х или 4-х тактный? Для начала рассмотрим устройство двигателей.    

Тактом рабочего цикла ДВС является ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала.При 4-тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-тактном — за один

При 4-тактном процессе (рис слева) присутствуют 4 такта: впуск — сжатие — расширение — выпуск. Сначала открывается впускной клапан, поршень идёт вниз, под действием создающегося разрежения в цилиндр поступает свежая топливовоздушная смесь или воздух — это такт впуска. Затем клапан закрывается, поршень идёт вверх — происходит сжатие. Следующий такт: сжатая смесь воспламеняется искрой или в сжатый воздух форсунка впрыскивает топливо, которое самовоспламеняется, поршень под действием этого идёт вниз — это расширение, или рабочий ход поршня. Двигатель совершает полезную работу именно в течение такта расширения. Потом поршень идёт вверх, открывается выпускной клапан, через который продукты сгорания топлива выходят в атмосферу — это такт выпуска.  

В случае с двухтактным процессом  (рис справа) всё уже не так просто. Такты условно называются сжатие и расширение. Как видно, места отдельным тактам впуска и выпуска здесь не нашлось. Это не случайно. Хотя в двухтактном двигателе процессы впуска и выпуска присутствуют, для их осуществления необходимо, чтобы давление на входе в цилиндр было выше атмосферного. То есть нужен принудительный наддув. Те, кто знаком с двухтактными мотоциклетными бензиновыми двигателями, могут возразить: на мотоциклах нет никаких турбо- или механических компрессоров. Отдельного компрессора в мотоциклетном двухтактнике действительно нет. Функция компрессора возложена на картер двигателя. В простых мотоциклетных (также и в лодочных) моторах нет клапанов в головке цилиндра, вместо них существуют впускные и выпускные окна в стенках цилиндра, перекрываемые телом поршня. Впускные окна связаны с карбюратором не напрямую, а через перепускные каналы, выходящие в картер. В течение хода поршня вверх, нижний край открывает окно, на котором находится карбюратор, рабочая смесь под действием разрежения, создаваемого идущим вверх поршнем, устремляется в картер. Когда поршень идёт вниз, он перекрывает это окно, рабочая смесь начинает сжиматься. Поршень идёт далее вниз, открывая перепускные окна, рабочая смесь под давлением подаётся в цилиндр, где вытесняет отработанные газы в выпускное окно. Поршень идёт снова вверх, и процессы под его днищем повторяются, а в это время в цилиндре происходит сжатие рабочей смеси. Затем сжатая смесь воспламеняется свечой, и поршень идёт вниз, совершая такт расширения, или рабочий ход.  

Преимущества и недостатки двух и четырех тактных ЛОДОЧНЫХ моторов.

Двухтактные преимущества

  1. Меньший вес. Пример: 15 л.с. 2х тактный — 36 кг, 4-х тактный — 50 кг. Казалось — бы 50 кг. — легко. Все не так просто. Вес мотора распределен крайне неравномерно. Примерно 80% весит голова (сам двигатель) 20% нога. Не нужно также забывать и о большем у 4-х тактников размере головы. Все это + одна маленькая не всегда удобная ручка для переноски делает этот процесс крайне затруднительным.

2. Цена. 4-х тактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже 2-х тактников.

3. Удобство перевозки 2-х тактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.

4. 2-х такт мотор живее реагирует на ручку газ. В 4-х тактниках для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в 2-х тактных только один. Частый вопрос: А правда ли что 4-х такная 15 л.с. бежит быстрее чем такая же 2-х тактная? Ответ: нет не правда. У обеих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один мотор должен ехать быстрее второго?

Двухтактные лодочные моторы — недостатки

   1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для 2х такта — 300 грамм на одну лошадинную силу, для 4х такта — 200 грамм на 1л.с. в час при полном «газе». Больший расход связан с тем, что цикл выброса отработанных газов и впуска свежего топлива у двухтактников совмещен, поэтому часть свежего топлива выбрасывается вместе с отработанными газами в выхлоп. В этом же и экологическая проблема т.е. часть бензина, смешанного с маслом просто выливается в воду. Поэтому 2-х такные моторы (кроме моторов с системой поуровнего впрыска) запрещены в странах ЕС и США. 

2. Шумноть. На максимальных оборотах 2-х тактные моторы как правило работают немного громче 4х тактников.

3. Комфорт. 4-х тактные моторы не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и 2-х и 4-х тактники вибрируют примерно одинаково) и не так дымят как 2-х тактники. Дым образуется в основном из-за згорания масла, которое добавляется непосредственно в бензин у 2-х таных моделей. Дымность важный момент, особенно если вы любите тролить. Часто это очень напрягает особенно в тихую безветренную погоду. 

4. Долговечность. Довольно спорный пункт. Бытует мнение, что 2-хтактные моторы менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от  4-х тактных двигателей, где трущиеся элементы буквально плавают в масле. Но с другой стороны 4-х тактный мотор по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.  

Какой же мотор выбрать?

  Взвесьте все за и против изложенные выше и сделайте выбор самостоятельно. Однозначного ответа на вопрос: какой из моторов лучше Вы не найдете ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники. Личное мнение автора: основной параметр — вес. При выборе уделите этому наибольшее внимание.  

 

sail.com.ua

Чем отличается двухтактный двигатель от четырехтактного

Чем отличается двухтактный двигатель от четырёхтактного? Самое заметное отличие — это режимы воспламенения горючей смеси, что сразу можно заметить по звуку. Двухтактный мотор обычно издаёт пронзительный и очень громкий гул, тогда как четырёхтактному свойственно более спокойное мурлыканье.

Применение

В большинстве случаев разница состоит также в основном предназначении агрегата и его топливной эффективности. В двухтактных двигателях зажигание происходит при каждом обороте коленчатого вала, поэтому по мощности они в два раза превосходят четырёхтактные, в которых смесь воспламеняется только через оборот.

Четырёхтактные моторы экономичнее, зато тяжелее и дороже. Они обычно устанавливаются на автомобили и спецтехнику, в то время как на таких устройствах, как газонокосилки, мотороллеры и лёгкие катера, чаще встречаются более компактные двухтактные модели. А вот бензиновый генератор, например, можно найти как двухтактный, так и четырёхтактный. Двигатель скутера также может относиться к любому типу. Принцип работы этих двигателей в основном один и тот же, отличие только в способе и эффективности преобразования энергии.

Что такое такт?

Переработка топлива в обеих разновидностях моторов осуществляется посредством последовательного выполнения четырёх различных процессов, известных как такты. Скорость, с которой двигатель через эти такты проходит, — это именно то, чем отличается двухтактный двигатель от четырехтактного.

Первым тактом является впрыск. При этом поршень движется вниз по цилиндру, а впускной клапан открывается, чтобы впустить воздушно-топливную смесь в камеру сгорания. Далее идёт такт сжатия. Во время этого такта впускной клапан закрывается, а поршень движется по цилиндру вверх, сжимая находящиеся там газы. Такт рабочего хода начинается, когда происходит зажигание смеси. При этом искра от свечи воспламеняет сжатые газы, что приводит к взрыву, энергия которого толкает поршень вниз. Последним тактом является выпуск: поршень поднимается вверх по цилиндру, а выпускной клапан открывается, позволяя выхлопным газам выйти из камеры сгорания, чтобы можно было начать процесс снова. Возвратно-поступательные движения поршня вращают коленчатый вал, крутящий момент от которого передаётся на рабочие части устройства. Так происходит преобразование энергии сгорания топлива в поступательное движение.

Работа четырёхтактного двигателя

В стандартном четырёхтактном двигателе зажигание смеси происходит на каждом втором обороте коленчатого вала. Вращение вала приводит в действие сложный набор механизмов, обеспечивающих синхронное выполнение последовательности тактов. Открытие впускных или выпускных клапанов осуществляется с помощью кулачкового вала, который попеременно нажимает на коромысла. Возврат клапана в закрытое положение выполняется с помощью пружины. Чтобы избежать потери компрессии, необходимо, чтобы клапаны плотно прилегали к головке блока цилиндров.

Работа двухтактного двигателя

Теперь посмотрим, чем отличается двухтактный двигатель от четырехтактного по принципу работы. В двухтактных двигателях все четыре действия выполняются за один оборот коленчатого вала, во время хода поршня от верхней мёртвой точки к нижней, а затем обратно вверх. Выпуск отработанных газов (продувка) и впрыск горючего интегрированы в один такт, в конце которого происходит воспламенение смеси, и полученная энергия толкает поршень вниз. Такая конструкция устраняет необходимость использования клапанного механизма.

Место клапанов занимают два отверстия в стенках камеры сгорания. Когда поршень за счёт энергии сгорания перемещается вниз, выпускной канал открывается, позволяя отработанным газам выйти из камеры. При движении вниз в цилиндре образуется разрежение, за счёт которого через расположенный ниже впускной канал внутрь втягивается смесь воздуха и топлива. При движении вверх поршень перекрывает каналы и сжимает находящиеся в цилиндре газы. В этот момент срабатывает свеча зажигания, и весь описанный выше процесс повторяется снова. Важно то, что в двигателях такого типа зажигание смеси происходит при каждом обороте, что позволяет извлечь из них больше мощности, по крайней мере, в краткосрочной перспективе.

Соотношение массы и мощности

Двухтактные двигатели лучше подходят для устройств, от которых требуются быстрые и резкие всплески энергии, а не равномерная работа в течение длительного времени. Например, гидроцикл с двухтактным двигателем разгоняется быстрее, чем грузовик с четырёхтактным, однако он предназначен для кратковременных поездок, в то время как грузовик может проехать сотни километров, прежде чем ему понадобится отдых. Невысокая длительность работы двухтактников компенсируется низким отношением массы к мощности: такие двигатели обычно весят намного меньше, поэтому быстрее запускаются и достигают рабочей температуры. Для их перемещения также требуется меньше энергии.

Какой мотор лучше

В большинстве случаев четырёхтактные двигатели могут работать только в одном положении, тогда как двухтактные в этом отношении менее требовательны. Это во многом связано со сложностью движущихся частей, а также конструкцией масляного поддона. Такой поддон, обеспечивающий смазку двигателя, обычно присутствует только в четырёхтактных моделях и имеет огромную важность для их работы. У двухтактных двигателей обычно нет такого поддона, поэтому их можно эксплуатировать практически в любом положении без риска выплёскивания масла или прерывания процесса смазки. Для таких устройств, как бензопилы, циркулярные пилы и другие переносные инструменты, такая гибкость очень важна.

Топливная эффективность и экологическая составляющая

Часто выясняется, что компактные и быстрые двигатели сильнее загрязняют воздух и потребляют больше топлива. В нижней точке движения поршня, когда камера сгорания наполняется горючей смесью, некоторое количество топлива теряется, попадая в выпускной канал. Это можно увидеть на примере подвесного лодочного мотора; если присмотреться, вы разглядите вокруг него разноцветные маслянистые пятна. Поэтому двигатели такого рода считаются неэффективными и загрязняющими окружающую среду. Хотя четырёхтактные модели несколько тяжелее и медленнее, зато в них топливо сжигается полностью.

Стоимость приобретения и обслуживания

Меньшие по размеру двигатели обычно являются менее дорогими, как с точки зрения первоначальной покупки, так и в техническом обслуживании. Однако они рассчитаны на менее длительный срок службы. Хотя есть некоторые исключения, большинство из них не предназначено для непрерывной работы в течение более чем нескольких часов и рассчитано на не очень длительный срок эксплуатации. Отсутствие отдельной системы смазки также приводит к тому, что даже лучшие моторы такого типа относительно быстро изнашиваются и приходят в негодность из-за повреждения движущихся деталей.

Отчасти из-за отсутствия системы смазки в бензин, предназначенный для заливки в двухтактный двигатель скутера, например, необходимо добавлять определённое количество специального масла. Это ведёт к дополнительным затратам и хлопотам, а также может стать причиной поломки (если вы забудете подлить масла). Мотор 4-тактный в большинстве случаев требует минимума обслуживания и ухода.

Какой мотор лучше

В этой таблице кратко описывается, чем отличается двухтактный двигатель от четырехтактного.

Четырёхтактный двигатель

Двухтактный двигатель

1.

Один такт рабочего хода на каждые два оборота коленчатого вала.

Один такт рабочего хода на каждый оборот коленчатого вала.

2.

Приходится использовать тяжёлый маховик для компенсации вибраций, возникающих при работе двигателя из-за неравномерного распределения крутящего момента, так как воспламенение горючей смеси происходит только на каждом втором обороте.

Нужен гораздо более лёгкий маховик и двигатель работает достаточно сбалансировано, так как крутящий момент распределяется намного равномернее из-за того, что воспламенение горючей смеси происходит при каждом обороте.

3.

Большой вес двигателя

Вес двигателя намного меньше

4.

Конструкция двигателя усложнена за счёт клапанного механизма.

Конструкция двигателя гораздо проще за счёт отсутствия клапанного механизма.

5.

Высокая стоимость.

Дешевле, чем четырёхтактный.

6.

Невысокий механический КПД из-за трения большого количества деталей.

Более высокий механический КПД из-за уменьшения трения за счёт небольшого количества деталей.

7.

Более высокая производительность благодаря полному удалению отработанных газов и впрыскиванию свежей смеси.

Сниженная высокая производительность из-за смешивания остатков отработанных газов со свежей смесью.

8.

Более низкая рабочая температура.

Более высокая рабочая температура.

9.

Водяное охлаждение.

Воздушное охлаждение.

10.

Меньший расход и полное сгорание топлива.

Более высокий расход топлива и смешивание свежего впрыска с остатками выхлопных газов.

11.

Занимает много места.

Занимает меньше места.

12.

Сложная система смазки.

Гораздо более простая система смазки.

13.

Низкая шумность.

Более высокая шумность.

14.

Система газораспределения с клапанным механизмом.

Вместо клапанов используются впускные и выпускные каналы.

15.

Высокая тепловая эффективность.

Менее высокая тепловая эффективность.

16.

Низкое потребление масла.

Более высокое потребление масла.

17.

Меньший износ движущихся деталей.

Повышенный износ движущихся деталей.

18.

Устанавливается в автомобили, автобусы, грузовики и т. д.

Используется в мопедах, скутерах, мотоциклах и т. д.

В ней также приведены положительные и отрицательные качества каждого из этих двух типов.

fb.ru

Двухтактный двигатель, устройство, принцип работы, секреты мощности

Спектр применения распространяется на моторизованные агрегаты, бензопилы, небольшие моторные лодки, мотоциклы. Двухтактный двигатель обладает небольшими габаритами, большой мощностью и малым коэффициентом полезного действия. Для данного типа агрегатов топливная экономичность принципиально не имеет значения. Ныне таковые используются как пусковые моторы для приведения во вращение крупных дизельных ДВС, например, тракторов.

Устройство

Двухтактный двигатель отличается простотой конструкции, отсутствием газораспределительного механизма, малыми габаритами. Конструктивно схема представляет собой блок цилиндра, внутри которого на подшипниках размещен коленчатый вал. На шейку вала ложится головка шатуна с вкладышами и фиксируется корончатыми гайками. Верхняя же головка шатуна соединяется с поршнем посредством металлической полой втулки (пальца). Поршень с расположенными на нем компрессионными кольцами исключает проникновение сгоревших газов в камеру сгорания.

За счет перемещения поршня вверх-вниз происходит вращение вала. Далее вращение передается к главной передаче того или иного агрегата.

Двухтактный двигатель охлаждается через наружные ребра блока.

Охлаждение происходит и за счет топлива, содержащего определенное количество масла. То есть смазка сочленений поршень–цилиндр и коленвал – шатун осуществляется смесью, которая заранее разбавлена специальным маслом. Оно, сгорая с топливом не должно оставлять выхлопных отложений под поршнем.

Принцип работы

Процесс зиждется на рабочем цикле, который происходит за оборот коленчатого вала. Принцип работы двухтактного двигателя заключается в том, что при перемещении вверх, поршень сжимает имеющуюся под поршнем смесь, попавшую туда через впускное окно. Искра от свечи зажигания как бы взрывает горючее, резко повышая температуру и давление газов. В результате такого теплового давления поршень принудительно перемещается вниз. При этом открываются выпускное и чуть позже переходное окно, впрыскивая свежую порцию топлива. Кстати, горючее в двухтактный двигатель обязательно дополняют маслом, составляя смесь бензина и масла определенной пропорции. Делается это для смазки поршня, стенки цилиндра и кривошипно–шатуного узла. Топливная смесь попадает в картер через окно, которое открывается за счет вакуума, создаваемого движением поршня от НМТ к ВМТ. Одновременно поршень открывает отверстие, выбрасывая отработанные выхлопные газы. В определенный период посредством поршня открывается продувочное окно для заполнения цилиндра свежей порцией топливной смеси.

Повышение мощности

Чтобы повысить мощность двигателя нужно:

  • Повысить площадь выпускного отверстия с условием продолжительного пребывания его в открытом положении, чтобы выпустить максимальное количество газов.
  • Повысить эффективность продувки. Это нужно для того, чтобы через впускные отверстия горючее успевало впрыскиваться в камеру сгорания. Иначе в картере будет наблюдаться скопление топливной смеси. Во избежание оного, рекомендуется выпускные окна увеличить, что приведет к качественной наполняемости цилиндра.
  • Использовать на карбюраторе вихревой (нулевой) диффузор, который за меньший период времени подаст больше смеси.
  • Установить на глушителе, так называемый резонатор, соответствующий оборотам мотора. Этот узел способствует возврату доли смеси назад в цилиндр. Подобные нюансы возникают, когда двухтактный двигатель выбрасывает часть горючего из камеры через выпускное отверстие (окно).

Для полного заполнения подпоршневого объема следует просмотреть и состояние каналов впускных, выпускных на предмет уменьшения всевозможных заусенец, рисок, шероховатостей. Эти изъяны литья способствуют торможению потока, уменьшению наполнения камеры, снижению мощности.

Эффективным увеличением мощности двигателя считается фрезерование с последующим тонким шлифованием головки блока. Трудоемкость процедуры сводится к измерению объема литража, подбору октанового числа топлива.

Ради повышения мощности мотора можно было бы уменьшить вес вращающихся деталей, например, маховика, коленвала, срезав элементы противовеса. Но горький опыт подсказывает не идти на авось, поскольку самодеятельность приведет к биению маховика, его вибрации, особенно во время низких оборотов мотора. Но если очень хочется, можно снять тонкую стружку с последующей обязательной балансировкой махового колеса. Что касается коленчатого вала, то есть риск потерять центр тяжести вала со всеми вытекающими последствиями.

Тяговые возможности

Итак, двухтактные двигатели и их тяговые возможности соотносятся с открытием заслонки дросселя. То есть с ускорением оборотов возрастает его тяговая способность, что существенно действует на разгон. Значит, чтобы нарастить разгон нужно увеличить рабочий объем цилиндра. Конечно, тяга может привести к максимальной скорости. Работая на низких скоростях, хорошая тяга обеспечивает приемистость, быстрый разгон с легким преодолением дорожных препятствий, поворотов. Все это относится к повышению тяги на низких оборотах. Одним из предпосылок увеличения тяги следует отнести установку специальных клапанов и увеличение продолжительности пребывания их в открытом состоянии.

Проблема с продувкой камеры сгорания

Однако известно, что повышенные обороты свидетельствуют о большей мощности. В двухтактных моторах из-за больших скоростей вращения, камера сгорания не может качественно и быстро продуваться, поскольку окна остаются открытыми непродолжительное время.

Использование камерной продувки предусматривает впрыскивание топлива в цилиндр из картера. Топливо всасывается и находится в картере при перемещении поршня вверх. При движении же вниз вырабатываемое избыточное давление производит продувку камеры сгорания. Такая схема целесообразна с точки зрения малого количества используемых деталей, например, отсутствие: газораспределительного вала, клапанов, продувочного насоса, узлов смазки.

Другая особенность продувки камеры связана с режимом холостого хода мотора, при котором имеет место небольшой угол открытой заслонки. Эта ситуация не обеспечивает полную очистку от выхлопных газов за оборот вала. Поэтому на холостом ходу двигатель демонстрирует неустойчивую работу. Дело в том, что вспышка смеси приводит к дополнительным холостым оборотам. Но смесь под цилиндром от искры не воспламеняется из-за бедности топлива.

В двигателях с одним поршнем нашло широкое применение контурная продувка (щелевая). Схема предусматривает газораспределение через щели в стенке внизу цилиндра. То есть впускные и продувочные отверстия при такте сжатия и рабочего хода поршня должны находиться в закрытом положении. Контурная продувка камеры сгорания (подпоршневое пространство) представляет собой своеобразный продувочный насос. Этот фактор приводит к сокращению узлов двигателя, создавая предпосылки использования их на газонокосилках, мотоблоках, лодках, прочих легких мобильных устройствах.

autolirika.ru

Двухтактный двигатель- Принцип работы и отличия от четырехтактного двигателя

Сегодня невозможно представить современную жизнь без двигателя внутреннего сгорания. Передвижение на собственном авто, поездки на общественном транспорте, покупка товаров, полет на самолете и другие действия. Эти процессы, так или иначе, связаны с двигателем.

Несмотря на количество всевозможных конструкций, и разновидностей силовых установок, поршневые моторы, на сегодня, распространены больше остальных. Количество тактов для выполнения рабочего цикла, делит агрегат на двухтактный и четырёхтактный двигатель. Эти типы моторов составляют большинство, среди разнообразия выпускаемой техники.

Разница между моторами возникает с точки зрения применения. Для установки на автомобильную технику, чаще используют четырехтактный агрегат, двухтактный двигатель применяют в том случае, если габариты и вес играют решающую роль.

Мотоцикл Suzuki RM125 с одноцилиндровым двухтактным двигателем

Создание двухтактного двигателя

Много предположений о том, кто первым создал двигатель внутреннего сгорания. Доподлинно известно, что первый двухтактный двигатель, работающий на газу, изобретен и сконструирован бельгийцем Жаном Жозефом Этьеном Ленуаром, произошло это событие в 1858 году.

Двигатель Ленуара (выставлен в музее)

На тот момент уже создана паровая машина, и изобретение бельгийца превосходило её по характеристикам. Мотор намного легче, проще, потреблял меньше топлива. Несмотря на преимущества, силовая установка имела много недоработок и уступала в надёжности. После того как Николас Отто, презентовал четырёхтактный двигатель, который на тот момент продуман детальней, о моторе работающем по принципу двух тактов, забыли, и длительный период времени нигде не использовали.

Во время Великой Отечественной войны силовая установка устанавливалась на самолёты. В нашем регионе моторы известны благодаря использованию на мотто технике. Трёхцилиндровые агрегаты, выполняющие два такта, используются на мотоциклах компаний Suzuki и Kawasaki. Сегодня двигатели эксплуатируются в авиации, здесь лидер австрийская фирма Rotax, выпускающая моторы для использования на небольших самолетах.

Двухтактный двухцилиндровый двигатель Rotax 582 UL

 

После ужесточения требований к экологическим нормам и выбросам двухтактный двигатель перестал применяться для установки на классический автомобильный транспорт. Однако, на лёгкой технике, как: скутера, снегоходы, катера заменить маленький и лёгкий агрегат не просто. Здесь конкурентов у двухтактной установки попросту нет.

Особенности двухтактного двигателя

Силовой агрегат, использующий два такта, хорош, поскольку прост и надёжен. Отличие двухтактного и четырехтактного двигателя заключается в выполнении рабочего цикла. Этот цикл заключается в двух тактах: сжатие и расширение, тогда как в четырёхтактном моторе присутствует такт впуска нового топлива и такт выпуска отработанного топлива. Интересен тот факт, что два эти такты присутствуют и у двухтактной силовой установки, иначе агрегат не смог бы работать, однако они объединены с процессами сжатия и расширения.

Выполняемый цикл наглядно демонстрирует, чем отличается двухтактный двигатель от четырехтактного мотора. Процесс двухтактного мотора проходит за оборот вала. Такая особенность добивается увеличения мощности установки в сравнении с оппонентом, в полтора раза. Несмотря на увеличение мощности, показатель отдачи занижен, а это отрицательный момент.

Кроме того, особенность приводит к выделению объёма тепла в процессе работы, что сильно перегревает мотор. Двухтактные силовые агрегаты нуждаются в интенсивном охлаждении. Положительный момент, работая, поршень совершает в два раза меньше движений, чем поршень четырехтактного механизма, это сокращает износ деталей и элементов.

Особенность агрегата, не присутствует механизм смазки. Масло подаётся непосредственно с горючим. С этой целью в бензобак добавляют смесь бензина и масла, соотношение один к пятидесяти, либо смешивают смазку с горючим в трубопроводе при впуске. Масло сгорает с бензином и выводится с продуктами отработки.

Отличительный момент и само горение. У четырёхтактного агрегата на это отводится один такт. В двухтактных установках сгорание происходит за доли секунды, поэтому для достижения эффекта механизм нуждается в настройках.

Двухтактные моторы нашли себя еще в одной отрасли, судостроение. Так же цилиндровые силовые установки применяют на скутерах, выпускаемых в больших количествах.

Принцип работы двухтактного двигателя

Что бы понять, почему четырёхтактные моторы вытеснили младших братьев на автомобильной технике, разберемся, как работает двухтактный двигатель.

Последовательность действий рабочего цикла силовой установки:

  • Такт сжатия.

    Процесс сопровождается перемещением поршня снизу вверх. Движение провоцирует поступление горючего через отверстия продувки в агрегат, впоследствии, юбка поршня перегораживает эти отверстия. Дальнейшее движение сопровождается закрытием каналов выпуска, в которые выталкивались отходы горения. Между поршнем и верхней частью цилиндра, образуется пространство сгорания, в котором создаётся избыточное давление. Одновременно, в пространстве под поршнем, возникает разряжение, и пространство используется для перетекания обновлённой дозы горючего. Достигнув верхней точки, заряд загорается.

Схема двухтактного двигателя

  • Такт расширения.

    Воспламенившись, порция создаёт избыточное давление, которое жмёт на дно поршня и заставляет перемещаться. Процесс сопровождается поочерёдным открытием окон, сначала на выпуск, потом на продувку. Спуск создаёт избыточное давление под поршневой камеры, под его воздействием горючее снова поступает в цилиндр, выдавливая оставшуюся отработку и наполняя пространство для повторения предыдущего такта.

Принцип работы двухтактного двигателя позволяет обходиться без системы газораспределения, делая легче и надёжней конструкцию агрегата. Обратная сторона, качество процесса газообмена. Двухтактный режим невозможен без продувки, процесс которой сопровождается выходом не сгоревшего топлива вместе с отработанными газами наружу. Это ведет к перерасходу горючего и повышенной токсичности выхлопа агрегата.

Стоит заметить, что выше описанная схема характерна для карбюраторных моторов. В случае с дизелем или инжектором, в цилиндр через отверстия продувки подаётся чистый воздух. Горючая смесь поступает посредством впрыска, эту работу выполняют форсунки.

Способы продувки цилиндров

Очевидно, что процесс продувки, механизм, квалифицирующийся, как сложный. Правильно выполненная продувка напрямую влияет на показатели мощности и коэффициента полезного действия. Для улучшения характеристик, конструкторы постоянно стараются усовершенствовать и довести процесс до идеала.

Как можно продуть цилиндр:

  • «Контурная» продувка.Вид продувки прост и поэтому распространён. Недостаток то, что применение связано с перерасходом топлива. Разновидности контурной продувки: возвратно-петлевая, дефлекторная, высотная.

  • «П-образная» продувка.Принцип «П-образной» заключается в применении только на моторах с двумя цилиндрами. При проведении, один цилиндр участвует в процессе впуска газов, второй выпускает отработку. Эффект продувки ощущается в топливной экономичности, процесс сопровождается неравномерным нагревом пары, отвечающей за выпуск.

  • «Клапанно-щелевая» продувка.Отличается тем, что требует наличия газораспределительного механизма для управления клапанами. Клапан используется, как для предоставления горючего, так и для вывода отработанных паров. Продувка предусматривает отвод отработки посредством клапана в головке цилиндров и поступление горючего через отверстия. Преимущество, что продувка повышает топливную экономичность и минимизирует показатель токсичности выпускаемых паров. Недостаток, сложность конструкции и нарушения режимов, связанных с повышением температуры работы агрегата.

  • «Прямоточная» продувка.Используется в силовых установках с количеством поршней равным двум. При этом расположение цилиндра находится в горизонтальном положении. Поршни двигаются, друг навстречу другу. В движении каждый поршень освобождает и перекрывает клапан: один поршень впускает порцию горючего, второй удаляет порцию отработки из цилиндра. Камера сгорания образуется в момент сближения поршней друг с другом. Эффект этого варианта продувки максимален: удаляет сгоревшие газы и экономит горючее. Минус, требуется сложный механизм кривошипов и шатунов, показатели температуры двигателя требуют применения охладителей и устойчивых материалов для изготовления деталей.

Двухтактный двигатель 5 ТДФ с прямоточной продувкой

Отличие двухтактного двигателя от четырёхтактного

Авто владельцы задаются вопросом: что лучше двухтактный или четырехтактный двигатель. Однозначного ответа нет, у каждого механизма положительные и отрицательные стороны, зависящие от предъявляемых к мотору требований.

Казалось бы, мощность мотора выполняющего два такта, в сравнении с равнозначным мотором, выполняющим четыре такта, больше, а значит он лучше. Однако, реальность сложней. На практике, возникают дополнительные утраты: частичное попадание и смешивание газовой отработки со свежим горючим, выброс части топлива при продувке. Результат, при выполнении одинакового цикла, агрегат, выполняющий два такта, по показателю экономичности уступает агрегату с четырьмя тактами.

Различен способ смазки силовых установок на четыре и два такта. Установка на два такта смазывается посредством смешивания масла для мотора и бензина. В четырёхтактном агрегате предусмотрен механизм смазки с использованием насоса, который расходует масла столько, сколько требует эксплуатация установки.

Двухтактные моторы не имеют клапанов, роль детали играет поршень, он открывает и закрывает отверстия впуска и выпуска. Отсутствие механизмов газораспределения упрощает силовой агрегат, делая обслуживание простым. Мощность установки, выполняющей два такта, считается выше, так как её цикличность выше. Однако, не полностью используя поршневой ход, потери мощности при продувке и остатках отработанных газов снижают показатель мощности.

Что бы было легче определить, какой двигатель лучше, двухтактный или четырёхтактный, представим краткое описание обоих силовых установок в виде таблицы:

Четырёхтактная силовая установкаДвухтактная силовая установка
Рабочий процесс – оборотов коленчатого вала два.Рабочий процесс – оборотов коленчатого вала один.
Воспламенение рабочей жидкости происходит каждый раз при совершении второго оборота, как следствие, неравномерное распределение импульса и использование противовеса для устранения биений.Воспламенение рабочей жидкости происходит каждый раз при совершении оборота, как следствие, равномерное распределение импульса, работа мотора сбалансирована лучше.
Агрегат тяжёлый.Агрегат лёгкий.
Сложная конструкция силовой установки, присутствует газораспределительный механизм.Простота конструкции, отсутствие клапанов.
Агрегат дорогой.Стоимость ниже четырёхтактного.
Сложные устройства и механизмы приводят к заниженному показателю механического коэффициента полезного действия.Механический коэффициент полезного действия выше, чем у агрегата с четырьмя тактами.
Полное удаление паров отработки, следствие, повышенный показатель производительности.Остатки отработки смешиваются с новым горючим, из-за чего производительность мотора ниже.
Рабочая температура ниже.Рабочая температура мотора выше из-за нарушения смесеобразования.
Охлаждение жидкостное.Охлаждение воздушное.
Расход топлива ниже.Показатель расхода топлива увеличен, обусловлено смесеобразованием и продувкой.
Габариты силовой установки увеличены.Габариты силовой установки ниже.
Требует применения сложных механизмов смазки.Механизм смазки прост.
Работа агрегата менее шумная.Агрегат работает с большим шумом.
Клапанный механизм газораспределения.Функцию механизма газораспределения выполняет поршень и каналы.
Показатель использования тепла эффективен.Показатель использования тепла не эффективен.
Расход масла занижен.Показатель расхода масла завышен, поскольку часть смазки выбрасывается с отработанными газами.

Применять двигатель, выполняющий два такта при работе, целесообразно в моменты, когда речь не идёт об экономии топлива и смазки, а на первом месте стоят габариты и вес установки.

В то же время, в конструкции двухтактного двигателя кроется потенциал, который никак не удается реализовать на практике. Расчетный показатель мощности и экономичности в этом агрегате высок, сложность реализовать возникает из-за тонкости настроек. Возможно, в скором будущем благодаря применению электронных датчиков и механизмов контроля и настроек, двухтактным агрегатам удастся занять лидирующие позиции на автомобильном рынке.

motoran.ru

12Мар

Двигатель ест масло но не дымит причины – Почему двигатель ест масло, но не дымит: причины

Почему двигатель ест масло, но не дымит: причины

В процессе эксплуатации ТС с разными типами двигателей (бензин, дизель) автовладельцы часто сталкиваются с тем, что расход масла увеличивается. При этом хорошо известно, что в случае проблем с ЦПГ к расходу смазки обычно добавляется дымление двигателя.

Однако бывает и так, что уровень масла постепенно понижается, но синего или сизого масляного дыма из выхлопной трубы нет. В этой статье мы поговорим о том, почему может быть увеличен расход масла, но не дымит двигатель.

Читайте в этой статье

В двигателе увеличен расход масла, но мотор не дымит: основные причины

Чтобы разобраться, почему двигатель ест масло, но не дымит, нужно изучить возможные причины повышенного расхода смазки.

Прежде всего, если масляного дыма нет, но расход масла выше нормы, на первый взгляд может показаться, что с цилиндропоршневой группой нет проблем.

С одной стороны, это большой плюс, так как нет острой необходимости ремонтировать двигатель. При этом если масло куда-то уходит, силовая установка все равно нуждается в диагностике. Давайте разбираться.

Как правило, увеличенный расход смазочной жидкости без явного дымления двигателя водители часто списывают на плохое качество масла. Еще некоторые склонны полагать, что после езды на высоких оборотах увеличение расхода и вовсе является нормой.

Сразу отметим, как в первом, так и во втором случае допускаются определенные потери, но если масло приходиться доливать литрами на 2-3 тыс. км. пробега, тогда дело никак не в качестве смазки и особенностях эксплуатации авто.

  • Другими словами, имеются проблемы, которые нужно устранять. Чаще всего основной причиной является утечка масла. При этом далеко не всегда имеется явная течь, когда после стоянки можно заметить капли смазки под машиной. По этой причине на месте стоянки нужно положить под автомобиль лист белого картона.

Обнаружение желтоватых пятен на листе укажет на то, что течет моторное масло или трансмиссионное на авто с МКПП, тогда как красноватые пятна будут указывать на утечки смазки из коробки «автомат» или ГУР. Также проверка может ничего не дать, то есть лист окажется чистым.

  • В этом случае утечку также нельзя исключать, но при этом определение места утечки будет еще более затруднено. Итак, есть ли пятна под авто или нет, переходим к следующему этапу, который предполагает визуальный осмотр подкапотного пространства и ДВС.

Нужно сразу осмотреть прокладку клапанной крышки, так как эта проблема очень распространена. Если заметны потеки масла по внешней стороне двигателя, тогда неполадка очевидна. Решение — замена прокладки крышки клапанов или установка клапанной крышки на свежий герметик.

В том случае, когда потеков из-под крышки не видно, нужно спуститься под автомобиль и осмотреть прокладку поддона. Указанная прокладка может быть изношена. Также при эксплуатации не следует исключать вероятность ударов по поддону, что нарушает герметичность соединения и приводит к утечкам смазки.

При этом само состояние сальников при наружном осмотре определить сложно. Верным признаком утечки масла является «запотевание» сальников, сильное замасливание в месте их установки и т.д.  При этом менять сальники двигателя нужно быстрее. Дело в том, что кроме потерь смазки масло может попадать на другие детали и узлы.

  • Часто смазка течет из-под датчика давления масла. В этом случае проблема обычно не решается обычной затяжкой датчика, устраняется течь заменой устройства. Также утечка смазки может быть по причине того, что масляный фильтр некачественный или установлен неправильно.

Кстати, на многих ДВС датчик давления масла расположен над масляным фильтром. Визуально можно ошибочно принять течь датчика за утечки из-под корпуса фильтра масла, однако замена маслофильтра на новый ничего не дает. По этой причине перед принятием решения о замене фильтра нужно убедиться в том, что датчик исправен.

  • Отдельного внимания в рамках диагностики заслуживает заглушка распредвала, которую можно встретить на двигателях с двумя распределительными валами или ДВС с одним распредвалом, которые не имеют трамблера.

В этом случае масло протекает через уплотнительное кольцо, при этом замены требует вся заглушка. Указанный элемент бывает как пластмассовым, так и изготавливается из резины. На практике резиновые заглушки более долговечны.

Единственное, если пластиковую заглушку можно поменять быстро и легко, то резиновая требует более точной установки на место, чтобы избавиться от течи и добиться нужной герметичности.

  • Если мотор оснащен трамблером, масло может протекать через уплотнительное кольцо. Замена такого кольца не является сложной, однако далее нужно будет выставлять УОЗ.

Более сложным случаем является такой, когда масло попадает в трамблер. Основным признаком является характерный треск (трещит подшипник), а также сбои в работе трамблера. В этом случае трамблер потребует разборки, чистки и замены подшипника вместе с сальником.

Что в итоге

Как видно, если масло уходит, но мотор не дымит, тогда основной проблемой зачастую является течь. Еще можно упомянуть выдавливание масла через сапун и т.п. При этом далеко не всегда утечку можно обнаружит при визуальном осмотре. В некоторых случаях может потребоваться частичная разборка, снятие защитных кожухов в подкапотном пространстве и т.д.

Рекомендуем также прочитать статью о том, почему нет давления масла в двигателе. Из этой статьи вы узнаете о причинах падения давления масла в системе смазки, последствиях низкого давления масла, а также о способах определения и устранения причин.

Что касается ремонта, в ряде случаев неполадку можно устранить быстро и с минимальными затратами. Однако если начинают течь сальники коленвала (особенно задний СКВ), тогда замена предполагает выполнение целого комплекса работ и требует определенных профессиональных навыков.

Читайте также

krutimotor.ru

причины, что делать, ест масло, но не дымит

Повышенное потребление моторного масла может свидетельствовать о наличии в автомобиле серьезных неполадок. Причем возникнуть такая проблема может как в новых, так и в старых транспортных средствах. Разберемся, почему двигатель ест масло и что делать, чтобы избежать серьезных поломок средства передвижения.

Симптомы и особенности утечки масла

Проверка уровня масла

Существует три основных симптома, по которым можно понять, почему двигатель есть масло. Во-первых, это постоянное заметное снижение должного уровня смазки, который проверяется специальным масляным щупом. Во-вторых, наличие темных луж на асфальте под моторным отсеком транспортного средства после длительных и не очень простоев. В-третьих, наличие синего дыма в выхлопах автомобиля. Однако, возможна ситуация, при которой двигатель ест масло, но не дымит.

Ошибочно считать, что утечка масла характерна только для старых автомобилей. Безусловно, наибольший процент проблем встречается именно на тех транспортных средствах, которые отъездили не одну сотню тысяч километров. Неполадки чаще всего возникают вследствие утраты износостойкости деталей, подверженных наибольшим силовым перегрузкам, или из-за недобросовестного технического обслуживания автомобиля. Несвоевременная замена расходных материалов или вовсе пренебрежение данной процедурой может послужить причиной большой потери смазочной жидкости.

Вероятность столкнуться с чрезмерным потреблением масла на новых автомобилях возрастает тогда, когда они попадают в руки сервисных мастеров, не имеющих достаточного опыта и должной квалификации в подобных делах. Кстати, неправильно подобранная вязкость ГСМ может также послужить причиной повышенного потребления. Но, поговорим обо всем по порядку.

Какие детали “помогают” маслу убегать?

Существует несколько наиболее слабых мест в двигательной системе, которые могут способствовать возникновению рассматриваемой нами проблемы. Когда двигатель жрет масло, причины могут быть следующие:

Маслосъемные кольца

  • стенки блока цилиндров. Большой километраж автомобиля или некомпетентный уход за ним могут вызвать серьезный износ стенок блока цилиндров. Подобная проблема также возникает и при длительной работе мотора на закоксованных маслосъемных кольцах. Затвердевшие частицы расцарапывают металлические поверхности и истончают их. В результате, через образующиеся отверстия начинается активная утечка масла.
  • маслосъемные кольца. Устанавливаются они у основания поршня и не позволяют излишкам защитного слоя проникать в камеру сгорания. Если кольца выходят из строя, двигатель жрет масло в большом количестве, а причины такой утечки кроятся в постоянных перегревах двигателя и закоксовке самих колец. Перегрев может возникать из-за низкого уровня охлаждающей жидкости или ввиду продолжительной работы мотора на повышенных оборотах. Использование низкокачественной смазочной защиты может послужить причиной образования твердых частиц – закоксовки – на двигающихся механизмах установки. Отложения будут нарушать герметичность конструкции, в следствие чего масло начнет проникать в камеру сгорания. Там, смешиваясь с топливной смесью, оно будет улетучиваться через систему выхлопов.
  • маслосъемные колпачки. Их задача аналогична задаче вышеупомянутых колец с той лишь разницей, что располагаются они на клапанах. Они точно также начинают пропускать масло в рабочую зону, когда их износ превышает допустимый уровень. Закоксовка и перегрев – основные причины износа элементов.
  • прокладка под клапанную крышку. Каждый съем клапанной крышки должен сопровождаться обязательной заменой прокладки. Причем ее размер и форма должны четко соответствовать двигательным параметрам. Неправильная установка данного элемента вызовет протечку масляного материала и его повышенный расход.
  • прокладка блока цилиндров. Аналогичная проблема может встретиться и здесь. Причем вытекать в данном случае масло может двумя способами: по внешней оболочке мотора или внутрь блока цилиндров. Для второго случая характерно смешивание защитного материала с охлаждающей жидкостью и образование белой пены. Кроме того, о проблеме может говорить регулярное снижение уровня масла и превышение допустимого объема антифриза. Чтобы правильно диагностировать поломку, необходимо заглянуть в бочок с охлаждающей жидкостью: если там присутствует масляное пятно, настало время менять прокладку блока цилиндров.

Когда видимых симптомов протечки нет

Существуют ситуации, когда причина нарушенного потребления моторного масла кроется не в изношенных деталях:

  1. Если вы заливаете в движок масло, вязкость которого не соответствует требованиям производителя, можете быть уверены – проблемы рано или поздно себя проявят. Дело в том, что автопроизводитель производит подбор нужного вещества путем продолжительных испытаний. По сути, он облегчает водителям задачу при покупке нужной жидкости и позволяет экономить средства. Если смазка слишком вязкая, двигатель будет с трудом проворачивать коленчатый вал, испытывая сильную перегрузку. Перегрузка вызовет необходимость сжигания большего количества топливной смеси, а, значит, экономия в данном случае не уместна. При чрезмерно жидкой пленке часть элементов, а может и вся система, будут работать без должного уровня защиты. Это чревато серьезным перегревом системы, быстрым износом рабочих механизмов и повышенной утечкой масляной жидкости.
  2. Двигатель жрет масло при агрессивном стиле вождения. И причина этому не в нарушениях герметичности системы или износе работающих механизмов, а в расширении металлических элементов при перегреве. В момент резкого старта мотор начинает активно прокачивать масло по системе, но для этого ему требуется больше усилий. Большие усилия приводят к резкому перегреву элементов и их последующему расширению, а здесь уже вполне понятно, почему защитная смазка оказывается в камере сгорания.

Устраняем проблемы

Схема изучения этикетки автомасла

Если вы заметили, что двигатель ест масло, а причины этому – износ маслосъемных колпачков, колец, конструктивных прокладок или потёртость стенок блока цилиндров, то требуется незамедлительная замена указанных элементов. Своевременное обслуживание автомобиля позволит вам не только сэкономить средства, предотвратив серьезный капитальный ремонт, но и на ранних стадиях диагностировать другие возможные проблемы с двигательной системой или автомобилем в целом.

При подборе нужной автомобильной смазки всегда опирайтесь на рекомендации производителя. Ни в коем случае нельзя заливать под капот ту жидкость, вязкость которой запрещает использовать мануал к автомобилю.

Кроме того, если вы хотите добиться экономного расхода ГСМ, избегайте резких стартов и торможений. Безусловно, мгновенно нарастающая мощь мотора повышает в крови водителя адреналин, но у машины оно вызывает перегрев и активное потребление технических жидкостей. Если отказаться от экстремального вождения вы не можете, то не удивляйтесь, что расход масла в разы будет превышать установленные производителем нормы.

О чем следует помнить?

Если вы хотите продлить жизнь своего автомобиля, то заботиться о нем нужно очень внимательно. Во-первых, следует отказаться от сомнительных мастерских. Гаражные эксперты, бесспорно, обладают определенным опытом в области обслуживания транспортных средств, но их познания ограничиваются небольшим количеством автомобильных марок. Кроме того, гарантию на свою работу вам никто не даст, да и доказать причастность лжемастера в случае серьезной поломки будет тяжело.

Сравнение вязкости моторных масел

Лучше и экономнее всего, конечно, производить всю работу по автомобилю самостоятельно. Так вы будете иметь полное представление о состоянии транспортного средства и о качестве всех заливаемых в него жидкостей. Кроме того, выполняя работу для себя, вы не будете устанавливать новые детали абы как, а сделаете это на совесть.

Если двигатель ест масло в большом объеме, но у вас нет возможности диагностировать автомобиль самостоятельно, что делать в этом случае? Везти автомобиль к официальному представителю. Только там ему будет оказана должная помощь.

И напоследок

Теперь вы знаете, почему двигатель есть масло. Своевременная диагностика проблемы позволяет оградить себя от серьезных поломок в будущем. Иными словами, если вы обнаружили, что масло сильно быстро уходит, незамедлительно ищите причину этого. Регулярная доливка к устранению утечки не приведет, но по карману ударит заметно.

Также помните, что проверять уровень масла нужно регулярно. Не реже раза в неделю. А если совсем недавно вы проводили техосмотр машины, то и вовсе два-три раза в неделю. Элементарная неправильная установка сливной пробки может оставить весь движок в беззащитном состоянии.

proavtomaslo.ru

На что обратить внимание, если мотор подъедает масло, но не дымит

Часто автовладельцы сталкиваются с такой распространенной проблемой как подъедание мотором масла. Чаще всего подобные неисправности сопровождаются появлением характерного сизого дыма из выхлопной трубы. Но что делать в том случае, если масло уходит из двигателя, при этом полностью отсутствует характерный чёрный или сизый дым. На какие возможные места утечек следует обратить внимание в данном случае и как восстановить автомобиль, решив имеющиеся проблемы.


Допустимый естественный угар масла

Все без исключения двигатели современных автомобилей будут иметь так называемый естественный угар масла. Это связано с особенностями эксплуатации мотора, причём у отдельных моделей этот показатель составляет не более 100 грамм на 1000 километров пробега, тогда как другие моторы подъедают 300-500 грамм на 1000 километров пройденного пути. Решить подобные проблемы попросту не представляется возможным, а такая потеря масла допускается автопроизводителем и даже не признается гарантийным случаем.

А вот если мотор стал кушать по литру масла на 1000 километров пробега, то автовладельцу необходимо бить тревогу, выполнять первоначально самостоятельный осмотр двигателя, а в последующем вести машину в сервис, проводить её диагностику и соответствующий ремонт. В каждом конкретном случае неисправности будут отличаться, для решения отдельных проблем нужно будет просто заменить прохудившуюся прокладку, тогда как у других машин потребуется уже менять клапанную группу и выполнять дорогостоящий капитальный ремонт.


Почему двигатель ест масло?

В первую очередь автовладельцу, который столкнулся с проблемой быстрой потери масла мотором, необходимо обратить внимание на состояние клапанной крышки. Часто отмечаются проблемы с прокладками, которые изнашиваются, не держат высокое давление, после чего масло начинает сочиться по двигателю. Если автовладелец не обращает внимание на такие неисправности, отмечается масляное голодание двигателя, что, в конечном счете, приводит к его повышенному износу и необходимости выполнять сложный и дорогостоящий ремонт.

Также двигатель может терять маслом по распредвалу и сальникам коленвала. Наличие таких подтёков свидетельствует о серьезном износе. Такие проблемы следует устранять как можно быстрее, что исключает появление еще более сложных и дорогостоящих в ремонте неисправностей. К сожалению, такой ремонт будет иметь высокую стоимость, часто требуется менять не только сальники, но и сам распредвал, что существенно увеличивает расходы автовладельца.

Терять масло мотор может также по соединению масляного фильтра или датчика давления. Если мастера в сервисе некачественно выполнили замену масла и не закрутили фильтр, то при высокой температуре масло под давлением может гнать через такие проблемные места, а заметить подтеки под автомобилем в подобном случае будет попросту невозможно.


Решения возможных проблем

Автовладельцу, вне зависимости от причины потери моторного масла, следует сразу же, как только появились подобные проблемы, обращаться в специализированные мастерские. В отдельных случаях можно определись характер неисправности одним лишь визуальным осмотром мотора, тогда как в других случаях требуется вскрывать двигатель, при этом такая диагностика будет уже иметь высокую стоимость.

Куда хуже, если причиной потери масла мотора являются проблемы с головкой блока цилиндров. В подобном случае требуется растачивать крышку или полностью менять её, при этом стоимость таких запчастей будет сопоставима со стоимостью капитального ремонта двигателя. Подобные проблемы отмечаются при перегреве мотора и длительной эксплуатации на повышенной температуре.

Автовладельцу нужно помнить о том, что экономить на диагностике и качестве ремонта не следует. Если мотор начал терять масло, то подобные проблемы сами уже не исчезнут. Чем дольше автовладелец будет пренебрегать такими неисправностями, тем в последующем дороже обойдется ремонт машины.

Выводы

Терять масло мотор может по различным причинам, при этом вовсе не обязательно машина будет дымить характерным сизым дымом. Автовладельцу необходимо осмотреть машину на предмет наличия подтёков по прокладкам, также осматриваются сальники распредвала и коленвала. Следует сразу же обращаться в мастерские, где мастера определят имеющиеся неисправности и полностью восстановят ваш автомобиль.

30.06.2019

cartechnic.ru

Почему двигатель перерасходует масло, но не дымит

Самостоятельно обнаружить причину, почему двигатель перерасходует масло, но не дымит достаточно сложно. Мы опишем наиболее распространенные варианты возникновения такой проблемы.

Допустимый расход

О том, что автомобиль потребляет масла сверх нормы можно говорить, если расход смазочной смеси не соответствует объему, указанному производителем. Этот параметр определяется объемом двигателя (зависит от количества поршней в силовом агрегате). Таблица 1 иллюстрирует приблизительный расход автомасла на угар при исправном моторе с учетом применения качественного смазывающего материала.

Таблица 1. Объем моторной жидкости, уходящий на угар при 8-10 тыс. пробега авто*.

Объем мотора, л.Количество масла на угар, мл.
1-1,6150-200
1,8-2,5180-250
2,5-3,5200-300

*В таблице представлены усредненные значения, точные цифры посмотрите в инструкции по эксплуатации к вашему автомобилю. Для некоторых моделей нормой будет расход в разы выше.

Если ваш автомобиль потребляет больше моторной смеси, чем количество, указанное в таблице 1, то необходимо выяснить, куда уходит масло.

Автомобилисты часто спрашивают: «Почему движок жрет масло, но не дымит?». Такое явление достаточно странное — дым является одним из критериев подтверждающим перерасход моторной жидкости. Если водитель утверждает: машина ест много масла, но не дымит, то он заблуждается — характерный сизый дым появляется только при нагруженном двигателе, при этом он полностью исчезает на нейтральной или парковочной передаче. Попросите кого-то сесть за руль вашего авто и вы убедитесь что при разгоне или переключении передач транспортное средство дымит — в камеру сгорания мотора попадает масло. Наиболее распространенные причины, по которым машина ест моторное масло и по утверждению хозяина не дымит нисколько, мы приведем ниже.

Также посмотреть почему мотор перерасходует масло и при этом не дымит, можно на видео:



Износ поршневых колец

Выньте щуп, измеряющий уровень масла, заведите мотор и посмотрите: выделяются ли картерные газы из отверстия щупа. Если через отверстие выходит белый или синий дым, то моторная смесь попадает в цилиндры, газы поступают к картеру через поршневые кольца. Если характерный синий дым отсутствует, проверьте компрессию в цилиндрах.

При износе поршневых колец возможен расход автомасла до 1 л на 1 тыс. км. Выделяют несколько видов износа поршневых колец:

  1. Истирание внешней стороны кольца, которая трется о стенки цилиндра. Это приводит к увеличению зазора между цилиндром и кольцом.
  2. Уменьшение толщины кольца, оно делается тоньше, свободно перемещается по канавке поршня. Уменьшенные поршневые кольца начинают забрасывать моторную смесь к камере сгорания, увеличивая расход жидкости. Такой износ колец приводит к очень большому потреблению масла мотором.
  3. Применение некачественного автомасла, приводящее к закоксовыванию поршневых колец и уменьшению компрессии во всех цилиндрах силового агрегата.

Ухудшение состояния маслосъемных колпачков, износ вкладышей

Посмотрите на работу силового агрегата на холостых оборотах. Если колпачки изношены- авто ест много масла. При этом, но на холостом ходу не дымит или выделяется незначительное количество дыма. Если при сильном нажатии на педаль акселератора появляются большие клубы синего дыма, то это свидетельствует об износе колпачков.

В большинстве случаев, перерасход моторной смеси через изношенные колпачки не возникает, масла приходится доливать меньше 500 мл на 1 тыс. км. При большем расходе масла, нужно заменять поршневые кольца.

Об ухудшении состояния колпачков также свидетельствует бархатный нагар на свечах и перебои в работе мотора. Возникают такие явления, если отвердевают манжеты маслосъемных колпачков или при их значительном износе, при этом они не дают нужного уплотнения, приводят к свободной течи масла под направляющую втулку, вдоль стержня клапана.

Если проверяя уровень масла в моторе, вы заметили блестящие мелкие частицы в моторной жидкости, то это свидетельствует об износе вкладышей.

Заключение

Возрастание потребления автомасла может быть вызвано не только увеличением расхода жидкости на угар, но и течью моторной смеси, которая возникает в таких ситуациях:

  1. Износ прокладки крышки клапанов. Возникает из-за растрескивания резинки по причине ее старения или если она была посажена без герметика при ремонте.
  2. Повреждение прокладки поддона картера при механическом воздействии.
  3. Ухудшение сальников на распределительном или коленчатом валах.
  4. Разрушение уплотнительной резинки масляного фильтра.

При исключении указанных пунктов, масло уходит на угар в моторе из-за износа поршневой группы или маслосъемных колпачков в этом можно убедиться, измерив компрессию мотора.

Уменьшение компрессии в одном цилиндре указывает на закоксовывание колец. При увеличенном показателе компрессии и большом расходе моторной смеси можно говорить о сильном износе силового агрегата. В такой ситуации показатель компрессии является ложным: параметр увеличивается за счет попадания большого количества автомасла в камеру сгорания.

pro-zamenu.ru

появился большой расход масла и сильно дымит. — DRIVE2

www.bibi.ru/diagnostikadvigatela.html
Диагностика двигателя: если двигатель масло ест, нет компрессии, синий дым из выхлопной трубы и присадки для двигателя, к маслу: появился большой расход масла и сильно дымит.

1. определить состояние колец. 2. в каком состоянии колпачки маслосъемные. 3. износ двигателя по показаниям компрессии и расходу масла. 4. состояние свечей. 5. состояние вкладышей.

1. Вынуть щуп уровня масла. Завести двигатель и наблюдать, выходят ли картерные газы из отверстия щупа, особенно в момент, когда двигатель только начинает заводиться. Если двигатель масло ест и расход масла большой, то выход синего (сизого, почти белого) дыма свидетельствует о попадании масла в цилиндры, о прорыве газов в картер через кольца (это говорит о том, что кольца и цилиндры имеют износ). Если двигатель не сильно дымит, желательно произвести замер компрессии в цилиндрах. Напишите нам, если показания компрессии известны, мы подскажем вам что можно предпринять и какую присадку в масло для двигателя лучше использовать чтобы сократить дымность вашего двигателя. Если компрессии нет совсем — только разбирать, если нет компрессии в отдельных цилиндрах или она снизилась, можно восстановить бустерами в цилиндры.
2. В каком состоянии колпачки маслосъемные.
Если вы проводите диагностику двигателя и он работает на холостых оборотах и не дымит или немного дымит, а потом появляется большой «клуб» синего дыма из выхлопной трубы, при сильном нажатии на педаль акселератора — стал сильно дымить, значит, колпачки маслосъемные надо менять. 3. Износ двигателя по показаниям компрессии.
ДИАГНОСТИКА начинается с того, что вы замеряете компрессию и сравниваете её с исходной величиной по тех. паспорту автомобиля. Не путайте компрессию двигателя со степенью сжатия. Значения в паспорте на автомобиль нужно увеличить на 30 процентов — именно эту величину и должен иметь ваш двигатель при замере компрессии манометром. В паспорте 9 — значит не менее 12 вы должны иметь компрессию. Двигатели с компрессией 9 не производятся уже давно.
Если вы не знаете исходную величину компрессии, то ориентируйтесь на расход масла особенно если он большой или начал расти — это более важный показатель, чем величина компрессии. Если компрессия вашего двигателя значительно упала только в одном цилиндре, это свидетельствует о закоксованности колец. Например 10 5 10 10
Достаточно хорошо увеличивают подвижность колец и раскоксовывают бустеры в цилиндры. После применения бустеров именно в этот цилиндр, компрессия с 5 вернется к 10.

При высоком показании компрессии и одновременно большом расходе масла, показания компрессии выглядит ложными их величина как у нового двигателя и даже чуть выше. Этот эффект получается за счет излишнего попадания масла в камеру сгорания. В этом случае у двигателя сильный износ.
Для удаления масла из цилиндров нужно использовать не менее 10 бустеров в этот цилиндр, расход масла сократится и увеличится мощность двигателя. Показания компрессии станут натуральными.

4. Состояние свечей. Можно встретить и такое, что при повышенном расходе масла на некоторых двигателях свечи сухие (нет масла на юбке свечи), а компрессия высокая. Это говорит о том, что маслосъемные колпачки нуждаются в замене.

5. Состояние вкладышей. Проводя диагностику двигателя, внимательно посмотрите на состояние вкладышей. Если на щупе уровня масла видны блестящие мелкие частички в масле, значит, происходит повышенный износ вкладышей и блестят мелкие частички износа — мелкой стружки. В таком случае двигатель нуждается в ремонте.

Что делать, если двигатель начал дымить?
План:
Виды дыма и причины его появления:
1.Белый дым.
2.Сизый или синий дым (масляный дым)
3. Черный дым.
4.Присадки в масло для увеличения компрессии и почему их лучше не использовать, потому что есть лучшее :бустеры в цилиндры, в масло не попадают и поэтому очень эффективны и не меняют состав масла.

Дымит, трясет, коптит и барахлит — есть решение:

Частенько при пуске холодного двигателя появляются густые клубы дыма. Если вы заметили такое за своим железным конем, значит стоит присмотреться к нему повнимательнее. В случае, когда после прогрева дым исчез, можете вздохнуть спокойно. Немного износились кольца и бустеры их восстановят. Но если дым идет постоянно, значит есть какие-то неполадки (а возможно и серьезные проблемы). В первую очередь обратите внимание на цвет дыма, это поможет определить, какая именно система вашего автомобиля нуждается в лечении.

Дым белого цвета при холодном запуске — абсолютно нормальное явление (это даже не дым, а водяной пар). При низких температурах (ниже -10 градусов) может дымить даже хорошо прогретый движок. Если после прогрева белый дым из выхлопной трубы не исчез (а температура плюсовая), значит в цилиндры попадает охлаждающая жидкость. Чаще всего это бывает связано с пробоем прокладки головки цилиндров, однако бывают и более тяжелые случаи (например, трещины в головке или блоке).

Запустите двигатель, если уровень жидкости в расширительном бачке нестабилен, быстро повышается, на поверхности есть масляная

www.drive2.ru

Почему двигатель ест масло, но не дымит: причины

В процессе эксплуатации ТС с разными типами двигателей (бензин, дизель) автовладельцы часто сталкиваются с тем, что расход масла увеличивается. При этом хорошо известно, что в случае проблем с ЦПГ к расходу смазки обычно добавляется дымление двигателя.

Однако бывает и так, что уровень масла постепенно понижается, но синего или сизого масляного дыма из выхлопной трубы нет. В этой статье мы поговорим о том, почему может быть увеличен расход масла, но не дымит двигатель.

В двигателе увеличен расход масла, но мотор не дымит: основные причины

Чтобы разобраться, почему двигатель ест масло, но не дымит, нужно изучить возможные причины повышенного расхода смазки.

Прежде всего, если масляного дыма нет, но расход масла выше нормы, на первый взгляд может показаться, что с цилиндропоршневой группой нет проблем.

С одной стороны, это большой плюс, так как нет острой необходимости ремонтировать двигатель. При этом если масло куда-то уходит, силовая установка все равно нуждается в диагностике. Давайте разбираться.

Как правило, увеличенный расход смазочной жидкости без явного дымления двигателя водители часто списывают на плохое качество масла. Еще некоторые склонны полагать, что после езды на высоких оборотах увеличение расхода и вовсе является нормой.

Сразу отметим, как в первом, так и во втором случае допускаются определенные потери, но если масло приходиться доливать литрами на 2-3 тыс. км. пробега, тогда дело никак не в качестве смазки и особенностях эксплуатации авто.

  • Другими словами, имеются проблемы, которые нужно устранять. Чаще всего основной причиной является утечка масла. При этом далеко не всегда имеется явная течь, когда после стоянки можно заметить капли смазки под машиной. По этой причине на месте стоянки нужно положить под автомобиль лист белого картона.

Обнаружение желтоватых пятен на листе укажет на то, что течет моторное масло или трансмиссионное на авто с МКПП, тогда как красноватые пятна будут указывать на утечки смазки из коробки «автомат» или ГУР. Также проверка может ничего не дать, то есть лист окажется чистым.

  • В этом случае утечку также нельзя исключать, но при этом определение места утечки будет еще более затруднено. Итак, есть ли пятна под авто или нет, переходим к следующему этапу, который предполагает визуальный осмотр подкапотного пространства и ДВС.

Нужно сразу осмотреть прокладку клапанной крышки, так как эта проблема очень распространена. Если заметны потеки масла по внешней стороне двигателя, тогда неполадка очевидна. Решение — замена прокладки крышки клапанов или установка клапанной крышки на свежий герметик.

В том случае, когда потеков из-под крышки не видно, нужно спуститься под автомобиль и осмотреть прокладку поддона. Указанная прокладка может быть изношена. Также при эксплуатации не следует исключать вероятность ударов по поддону, что нарушает герметичность соединения и приводит к утечкам смазки.

  • Следующим элементом для проверки становятся сальники. Течь может как передний сальник коленчатого вала, так и задний. Также нередко подтекают и сальники распределительного вала.

При этом само состояние сальников при наружном осмотре определить сложно. Верным признаком утечки масла является «запотевание» сальников, сильное замасливание в месте их установки и т.д.  При этом менять сальники двигателя нужно быстрее. Дело в том, что кроме потерь смазки масло может попадать на другие детали и узлы.

Например, если ГРМ оснащен ремнем, а не цепью, тогда смазка  может размягчить резину, из которой изготовлен ремень, что приводит к его обрыву со всеми вытекающими последствиями.

  • Часто смазка течет из-под датчика давления масла. В этом случае проблема обычно не решается обычной затяжкой датчика, устраняется течь заменой устройства. Также утечка смазки может быть по причине того, что масляный фильтр некачественный или установлен неправильно.

    Что в итоге

    Как видно, если масло уходит, но мотор не дымит, тогда основной проблемой зачастую является течь. Е

autoexpert.today

Почему двигатель ест масло: причины, что делать, ест масло, но не дымит

Повышенное потребление моторного масла может свидетельствовать о наличии в автомобиле серьезных неполадок. Причем возникнуть такая проблема может как в новых, так и в старых транспортных средствах. Разберемся, почему двигатель ест масло и как избежать серьезных поломок средства передвижения.

Ошибочно считать, что утечка масла характерна только для старых автомобилей. Безусловно, наибольший процент проблем встречается именно на тех транспортных средствах, которые отъездили не одну сотню тысяч километров. Неполадки чаще всего возникают вследствие утраты износостойкости деталей, подверженных наибольшим силовым перегрузкам, или из-за недобросовестного технического обслуживания автомобиля. Несвоевременная замена расходных материалов или вовсе пренебрежение данной процедурой может послужить причиной большой потери смазочной жидкости.

Вероятность столкнуться с чрезмерным потреблением масла на новых автомобилях возрастает тогда, когда они попадают в руки сервисных мастеров, не имеющих достаточного опыта и должной квалификации в подобных делах. Кстати, неправильно подобранная вязкость ГСМ может также послужить причиной повышенного потребления. Но, поговорим обо всем по порядку.

Какие детали «помогают» маслу убегать?

Существует несколько наиболее слабых мест в двигательной системе, которые могут способствовать возникновению рассматриваемой нами проблемы:

Маслосъемные кольца

  • стенки блока цилиндров. Большой километраж автомобиля или некомпетентный уход за ним могут вызвать серьезный износ стенок блока цилиндров. Подобная проблема также возникает и при длительной работе мотора на закоксованных маслосъемных кольцах. Затвердевшие частицы расцарапывают металлические поверхности и истончают их. В результате, через образующиеся отверстия начинается активная утечка масла.
  • маслосъемные кольца. Устанавливаются они у основания поршня и не позволяют излишкам защитного слоя проникать в камеру сгорания. Если кольца выходят из строя, двигатель жрет масло в большом количестве, а причины такой утечки кроятся в постоянных перегревах двигателя и закоксовке самих колец. Перегрев может возникать из-за низкого уровня охлаждающей жидкости или ввиду продолжительной работы мотора на повышенных оборотах. Использование низкокачественной смазочной защиты может послужить причиной образования твердых частиц — закоксовки — на двигающихся механизмах установки. Отложения будут нарушать герметичность конструкции, в следствие чего масло начнет проникать в камеру сгорания. Там, смешиваясь с топливной смесью, оно будет улетучиваться через систему выхлопов.
  • маслосъемные колпачки. Их задача аналогична задаче вышеупомянутых колец с той лишь разницей, что располагаются они на клапанах. Они точно также начинают пропускать масло в рабочую зону, когда их износ превышает допустимый уровень. Закоксовка и перегрев — основные причины износа элементов.
  • прокладка под клапанную крышку. Каждый съем клапанной крышки должен сопровождаться обязательной заменой прокладки. Причем ее размер и форма должны четко соответствовать двигательным параметрам. Неправильная установка данного элемента вызовет протечку масляного материала и его повышенный расход.
  • прокладка блока цилиндров. Аналогичная проблема может встретиться и здесь. Причем вытекать в данном случае масло может двумя способами: по внешней оболочке мотора или внутрь блока цилиндров. Для второго случая характерно смешивание защитного материала с охлаждающей жидкостью и образование белой пены. Кроме того, о проблеме может говорить регулярное снижение уровня масла и превышение допустимого объема антифриза. Чтобы правильно диагностировать поломку, необходимо заглянуть в бочок с охлаждающей жидкостью: если там присутствует масляное пятно, настало время менять прокладку блока цилиндров.

Когда видимых симптомов протечки нет

Существуют ситуации, когда причина нарушенного потребления моторного масла кроется не в изношенных деталях:

  1. Если вы заливаете в движок масло, вязкость которого не соответствует требованиям производителя, можете быть уверены — проблемы рано или поздно себя проявят. Дело в том, что автопроизводитель производит подбор нужного вещества путем продолжительных испытаний. По сути, он облегчает водителям задачу при покупке нужной жидкости и позволяет экономить средства. Если смазка слишком вязкая, двигатель будет с трудом проворачивать коленчатый вал, испытывая сильную перегрузку. Перегрузка вызовет необходимость сжигания большего количества топливной смеси, а, значит, экономия в данном случае не уместна. При чрезмерно жидкой пленке часть элементов, а может и вся система, будут работать без должного уровня защиты. Это чревато серьезным перегревом системы, быстрым износом рабочих механизмов и повышенной утечкой масляной жидкости.
  2. Двигатель жрет масло при агрессивном стиле вождения. И причина этому не в нарушениях герметичности системы или износе работающих механизмов, а в расширении металлических элементов при перегреве. В момент резкого старта мотор начинает активно прокачивать масло по системе, но для этого ему требуется больше усилий. Большие усилия приводят к резкому перегреву элементов и их последующему расширению, а здесь уже вполне понятно, почему защитная смазка оказывается в камере сгорания.

Устраняем проблемы

Схема изучения этикетки автомасла

Если вы заметили, что двигатель ест масло, а причины этому — износ маслосъемных колпачков, колец, конструктивных прокладок или потёртость стенок блока цилиндров, то требуется незамедлительная замена указанных элементов. Своевременное обслуживание автомобиля позволит вам не только сэкономить средства, предотвратив серьезный капитальный ремонт, но и на ранних стадиях диагностировать другие возможные проблемы с двигательной системой или автомобилем в целом.

При подборе нужной автомобильной смазки всегда опирайтесь на рекомендации производителя. Ни в коем случае нельзя заливать под капот ту жидкость, вязкость которой запрещает использовать мануал к автомобилю.

Кроме того, если вы хотите добиться экономного расхода ГСМ, избегайте резких стартов и торможений. Безусловно, мгновенно нарастающая мощь мотора повышает в крови водителя адреналин, но у машины оно вызывает перегрев и активное потребление технических жидкостей. Если отказаться от экстремального вождения вы не можете, то не удивляйтесь, что расход масла в разы будет превышать установленные производителем нормы.

О чем следует помнить?

Если вы хотите продлить жизнь своего автомобиля, то заботиться о нем нужно очень внимательно. Во-первых, следует отказаться от сомнительных мастерских. Гаражные эксперты, бесспорно, обладают определенным опытом в области обслуживания транспортных средств, но их познания ограничиваются небольшим количеством автомобильных марок. Кроме того, гарантию на свою работу вам никто не даст, да и доказать причастность лжемастера в случае серьезной поломки будет тяжело.

Сравнение вязкости моторных масел

Лучше и экономнее всего, конечно, производить всю работу по автомобилю самостоятельно. Так вы будете иметь полное представление о состоянии транспортного средства и о качестве всех заливаемых в него жидкостей. Кроме того, выполняя работу для себя, вы не будете устанавливать новые детали абы как, а сделаете это на совесть.

Если двигатель ест масло в большом объеме, но у вас нет возможности диагностировать автомобиль самостоятельно, что делать в этом случае? Везти автомобиль к официальному представителю. Только там ему будет оказана должная помощь.

И напоследок

Своевременная диагностика проблемы позволяет оградить себя от серьезных поломок в будущем. Иными словами, если вы обнаружили, что масло сильно быстро уходит, незамедлительно ищите причину этого. Регулярная доливка к устранению утечки не приведет, но по карману ударит заметно.

Также помните, что проверять уровень масла нужно регулярно. Не реже раза в неделю. А если совсем недавно вы проводили техосмотр машины, то и вовсе два-три раза в неделю. Элементарная неправильная установка сливной пробки может оставить весь движок в беззащитном состоянии.

Загрузка…

dorpex.ru

2Мар

Водородный двигатель для автомобиля – Водородный двигатель для автомобиля: описание, преимущества, принцип работы

Водородный двигатель для автомобиля: описание, преимущества, принцип работы

Первым разработчиком, представившим водородный двигатель для автомобиля широкой публике, был концерн «Тойота». Ещё в 1997 году ими был презентован внедорожник FCHV, который тогда так и не запустили в серийное производство.

Хорошей альтернативой бензину может стать водородный двигатель

Сегодня ведут исследования и другие компании, среди них:

  • Honda Motor,
  • Volkswagen,
  • General Motors,
  • Daimler AG,
  • Ford Motor,
  • BMW и так далее.

Как работает водородный двигатель?

Машины на водородном двигателе можно разделить на три группы:

  • авто с двумя энергоносителями, обладающее высокоэкономичным двигателем, который может работать как на чистом водороде, так и на смеси его с бензином. КПД такого двигателя 90–95%, тогда как дизельного — 50%, а бензинового — 35%. Такие автомобили соответствуют стандарту «Евро-4»;
  • водородный автомобиль со встроенным электродвигателем, который питает основной топливный элемент, установленный на борту. Сейчас созданы авто с КПД выше 75%;
  • обычные автомобили, работающие на смеси или чистом водороде. Выхлоп намного чище, а КПД «подрастёт» примерно на 20%.

Как работает водородный двигатель? Выделяют 2 типа силовых установок по принципу работы:

  • водородные двигатели внутреннего сгорания. Используется роторный двигатель;
  • силовые установки на топливных водородных элементах — их принцип работы построен на химической реакции. Корпус элемента имеет мембрану, проводящую только протоны и разделяющую камеры с электродами — анодом и катодом. В камеру анода подводят водород, в камеру катода подводят кислород. Электроды покрывают слоем катализатора, например, это платина. Молекулярный водород теряет электроны под воздействием катализатора. Протоны через мембрану проводятся к катоду, под воздействием катализатора в результате соединения с электронами образуется вода. Из камеры анода электроны уходят в электрическую цепь, которая подсоединена к двигателю. Так образуется ток для питания мотора.

Достоинства водородного двигателя:

  • продукт горения водорода — вода. А значит, это самое экологически чистое топливо;
  • мощность, приёмистость и иные показатели двигателя выше, чем у стандартного — электроэнергия обеспечивает их сполна;
  • низкий уровень шума;
  • простота обслуживания — не нужна сложная трансмиссия, а трущихся деталей меньше;
  • низкая себестоимость эксплуатации транспорта;
  • меньший расход топлива и большая скорость заправки;
  • более высокий запас хода;
  • водород имеет большой потенциал в качестве альтернативного вида топлива, так как он может быть получен из различных источников, в том числе солнечной энергии или ветра;
  • основное сырьё — вода — бесплатное.

Недостатки водородного двигателя:

  • Использование топливных элементов в обычном двигателе чревато пожаром или взрывом из-за его устройства.
  • Стоимость их также весьма высока.
  • Вес автомобиля увеличивается в результате использования преобразователей тока и мощных аккумуляторов.
  • Процесс получения из воды водорода пока тоже недёшев, как и транспортировка нового топлива.
  • Прогнозируются и экологические проблемы — увеличение в атмосфере количества водорода может пагубно сказаться на озоновом слое Земли.
  • Производство аккумуляторов – также вредный для окружающей среды процесс.
  • Одной из проблем транспортных средств на водороде является высокая стоимость платины, необходимой для химической реакции в двигателе.
  • Отсутствие водородных заправочных станций делает водородные автомобили неконкурентоспособными по сравнению с обычными автомобилями.
  • Не решён вопрос о хранении. На сегодняшний день предлагается хранить в сжиженном виде либо под высоким давлением, но исследования продолжаются.

Водородные топливные элементы

В разные годы водородные топливные элементы использовались:

  • для тракторов,
  • локомотивов,
  • подводных лодок,
  • вертолётов,
  • в автомобиле для гольфа,
  • на мотоцикле.

Для автомобилей с водородным двигателем и автобусов используются элементы на протонно-обменной мембране (PEM), они компактны и мало весят.

Авто на водороде

  • Тойота, приручившая водород, — Fuel Cell Sedan — это комфорт и вместительность стандартной модели. Для того чтобы увеличить пространство в салоне и багажнике, сжатые резервуары водорода расположены в полу автомобиля. Предназначена машина для пяти пассажиров, цена составит 67500 $.
  • Технологии космоса в обычной жизни. BMW Hydrogen 7 уже доказал свои возможности на практике, порядка ста автомобилей BMW Hydrogen 7 были тестированы выдающимися деятелями культуры, политики, бизнеса и средств массовой информации. Опыт испытания в реальных условиях показал, что переход на водород полностью совместим с комфортом, динамикой и безопасностью, которые вы могли бы ожидать от BMW. Авто можно переключать с одного вида топлива на другой. Максимальная скорость 229 км/ч.
  • Генератор энергии Honda FCX Clarity. По словам разработчиков, можно подключить к трансформатору и снабжать электричеством все бытовые приборы. Баки с водородом находятся под задними сидениями, а после полной заправки топлива ей хватит на 500 км. Цена от 62807 $.
  • Часть автобусов MAN работает на водороде.

Водородные двигатели будущего

  • Новое сотрудничество в автомобильном секторе начали General Motors (GM) и Honda Motor. Обе компании планируют совместно разрабатывать водородные топливные элементы в течение следующих семи лет. Обмен ноу-хау поможет снизить затраты на технологии и делает основной целью реагирование на увеличение объёма глобальных требований, предъявляемых к сокращению выбросов, стандарт «Евро-4» имеет строгие рамки.
  • Силовая установка автомобиля может послужить и электростанцией для дома, обеспечивая его энергией в течение 5 дней.
  • Каждый производитель в ближайшее время рассчитывает продавать минимум тысячу экокаров за год, ожидаемая цена 97000 $.
  • К 2050 году водород как источник топлива покроет треть производимой энергии.

А вот Илон Маск (глава SpaceX и Tesla) к новому топливу относится крайне критично, считая его создание маркетинговым ходом. Маск заявил, что использование технологий не решит реальных транспортных проблем и что в литий-ионных батареях плотность хранения энергии превышает все водородные разработки. А как думаете вы?

carextra.ru

Двигатель внутреннего сгорания на водороде: устройство и принцип работы

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Читайте в этой статье

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

krutimotor.ru

Водородный двигатель: устройство и принцип работы

Двигатель внутреннего сгорания уже давно является далеко не единственным силовым агрегатом, который устанавливается на автомобили: альтернативой ему в последнее время всё чаще становятся моторы, использующие в качестве движущей силы электричество, и водородные установки. Именно о последнем механизме и пойдет речь ниже.

Краткая история создания

Двигатель на водороде был создан в начале XIX века усилиями французского изобретателя. Спустя 35 лет в Англии был оформлен официальный патент на подобный агрегат, а в 1852 году немецкие инженеры доработали устройство, сделав возможной его работу на воздушно-водородной смеси.

Особое распространение моторы на водороде приобрели в годы ВОВ, когда бензин оказался в большом дефиците. Затем интерес к данному виду топлива поутих до топливного кризиса, случившегося в 70-е годы.

В последнее же время за развитие экологически безопасного топлива ратуют защитники природы и просто люди, неравнодушные к дальнейшей судьбе планеты и будущих поколений.

Принцип работы водородного двигателя

Функционирование двигателя на водородном топливе отличается от действия двигателя внутреннего сгорания, прежде всего, особенностями подачи и воспламенения смеси топлива, но принцип работы остаётся таким же.

Бензин горит медленно, а в случае с водородом время впрыска сдвигается к моменту возвращения поршня к крайнему положению, давление же может быть низким.

Водородный двигатель в идеальных условиях и вовсе способен работать без поступления воздуха: в камере сгорания останется после сжатия пар, который снова станет водой (это обеспечит радиатор). Однако на практике добиться этого сложно, т. к. на авто придётся устанавливать электролизер (специальное устройство, отделяющее водород от воды с целью осуществления реакции с кислородом).

Водородные топливные элементы

Эти устройства напоминают традиционные аккумуляторы с более высоким КПД, достигающим 45%.

В корпус помещается мембрана, проводящая исключительно протоны и разделяющая две камеры (анодную и катодную): в первую поступает водород, во вторую – кислород. Электроды покрываются катализатором (в его качестве часто применяют платину), при воздействии которого начинается процесс потери электронов водородом.

Протоны, проходящие в тот же период времени в катодную камеру, соединяются с приходящими извне электронами, что происходит опять же вследствие наличия катализатора.

Устройство водородного двигателя внутреннего сгорания

Такой движок практически ничем не отличается от пропанового агрегата, поэтому часто владельцы таких машин просто перенастраивают двигатели (но это и приводит к снижению КПД).

Как работает машина с водородным двигателем? В ней установлен генератор: внутри него протекает реакция окисления водорода, в конце которой получаются азот, пар и электрический ток (углекислый газ в продуктах распада отсутствует).

Автомобиль с таким силовым агрегатом можно сравнить с электрокаром, но с более компактным аккумулятором. На рабочий режим элемент выходит спустя пару минут после запуска, а вот на прогрев до рабочей температуры может уйти и час (на точное время влияет температура окружающей среды). Появляется вода, а электроны из анодной камеры попадают в электрическую цепь, подключенную к движку. Иными словами, получается ток, питающий автомобильный водородный двигатель.

Минусы водородного мотора

Водородные двигатели для автомобилей при всех плюсах не лишены недостатков:

  1. Высокая стоимость, на которую влияют, во-первых, электрический генератор, во-вторых, необходимые для эксплуатации авто баки из углепластика.
  2. Низкая энергетическая эффективность. У электромобиля КПД равняется 70%, у водородного топлива – 30%, если же водород получать из нефти, этот показатель увеличится примерно в 2 раза, но тогда появится углекислый газ.
  3. Малое количество заправок. Если в Европе они хотя бы есть, то в России такие заправочные станции в принципе отсутствуют.
  4. Необходимость периодической проверки баллонов, заправленных водородом, в целях безопасности.
  5. Увеличение веса машины и, как следствие, ухудшение маневренности.

Безусловно, защита окружающей среды имеет огромное значение, но пока что автолюбители не готовы жертвовать собственным комфортом и деньгами ради экологии.

Видео о том как работает водородный двигатель

moj-vnedorozhnik.ru

Водородный двигатель: типы,устройство,принцип работы,фото,видео. | НЕМЕЦКИЕ АВТОМАШИНЫ

 

 

Первым разработчиком, представившим водородный двигатель для автомобиля широкой публике, был концерн «Тойота». Ещё в 1997 году ими был презентован внедорожник FCHV, который тогда так и не запустили в серийное производство

Сегодня ведут исследования и другие компании, среди них:

  • Honda Motor,
  • Volkswagen,
  • General Motors,
  • Daimler AG,
  • Ford Motor,
  • BMW и так далее.

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ

Наука непрерывно развивается. Каждый день придумываются новые концепты. Но только лучшие из них воплощаются в жизнь. Сейчас существует всего два типа водородных двигателей, которые могут быть рентабельными и производительными.

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

На данный момент тяжело сказать, какая из двух технологий по созданию водородных двигателей победит. У каждой есть свои плюсы и минусы. В любом случае работы в данном направлении не прекращаются. Поэтому, вполне возможно, что к 2030 году машину с водородным двигателем можно будет купить в любом автосалоне.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

 

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Минусы водородного мотора

Водородные двигатели для автомобилей при всех плюсах не лишены недостатков:

  1. Высокая стоимость, на которую влияют, во-первых, электрический генератор, во-вторых, необходимые для эксплуатации авто баки из углепластика.
  2. Низкая энергетическая эффективность. У электромобиля КПД равняется 70%, у водородного топлива – 30%, если же водород получать из нефти, этот показатель увеличится примерно в 2 раза, но тогда появится углекислый газ.
  3. Малое количество заправок. Если в Европе они хотя бы есть, то в России такие заправочные станции в принципе отсутствуют.
  4. Необходимость периодической проверки баллонов, заправленных водородом, в целях безопасности.
  5. Увеличение веса машины и, как следствие, ухудшение маневренности.

Безусловно, защита окружающей среды имеет огромное значение, но пока что автолюбители не готовы жертвовать собственным комфортом и деньгами ради экологии.

Рекомендации по созданию водородного двигателя своими руками

В обычных условиях выделить гидроген из воды практически невозможно. Для успешного протекания процесса необходимо использование специальных катализаторов. На сегодняшний день применяются такие их разновидности:

  1. достаточно простая конструкция, управляемая весьма примитивным механизмом, выполняется в виде цилиндрических банок. К сожалению, элементарное устройство данного катализатора негативно отразилось на производительности водородного двигателя. Её максимальная величина характеризуется показателем 0,7 л газа, выделяемого за одну минуту. Такой вид катализатора подходит для ДВС на водороде с небольшой ёмкостью, а именно до 1,5 литров. Увеличение количества банок способствует возможности эксплуатации силового агрегата большего объёма;
  2. наилучшей эффективностью обладает катализатор, представленный обособленными ячейками. Такая система характеризуется максимальным коэффициентом полезного действия;
  3. на долгосрочную эксплуатацию рассчитаны открытые пластины или сухой катализатор. Благодаря свободному доступу воздуха из окружающей среды создаётся возможность наиболее эффективного охлаждения. Из перечисленных разновидностей система имеет средний показатель производительности, выражающийся величиной, колеблющейся в пределах 1-2 л газа, выделяемого из воды на протяжении одной минуты.

Конструкторские бюро и исследовательские институты не прекращают изыскания по разработке водородных двигателей, обладающих приемлемой производительностью при максимальном КПД. Уже сегодня практикуется применение гибридных устройств, в которых успешно сочетаются различные источники питания. Оптимальной считается комбинация водорода с бензином. Также учёные продолжают поиски идеального катализатора, способного обеспечить наибольшую производительность.

Формирование водородного агрегата

Для начала надлежит обеспечить устройство трубопровода с добавочными ёмкостями Датчик уровня жидкости, закреплённый в центре крышки, препятствует ложному срабатыванию во время движения вверх-вниз. Этим прибором управляется система автоматической подпитки.

Датчик давления регулирует подкачку воды, включая т отключая её при показателях соответственно 40 и 45 psi. При достижении нагрузки в 50 psi приводится в действие предохранитель, в конструкции которого предусмотрены две функционально значимые части:

  • вентиль аварийного сброса используется в экстремальных ситуациях;
  • разрывной диск, принцип работы которого заключается в активации при показателе давления в 60 psi, обеспечивая сохранность системы.

 

Особое внимание следует уделить качественному отводу тепла. Для этой цели подбирается наиболее холодная свеча.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

ТРУДНОСТИ ЭКСПЛУАТАЦИИ ВОДОРОДНЫХ ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов.К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

ПЕРСПЕКТИВЫ РАЗВИТИЯ

Автомобилестроение – далеко не единственная область, где могут применяться водородные двигатели. Водный, железнодорожный транспорт, авиация, а также различная вспомогательная спецтехника могут использовать силовые установки подобного типа.

Интерес к внедрению технологии водородных двигателей проявляют как дочерние предприятия, так и крупные автоконцерны (BMW, Volskwagen, Toyota, GM, Daimler AG и прочие). Уже сейчас на дорогах можно встретить не только опытные образцы, но и полноценные представители модельного ряда, приводимые в движение с помощью водорода. BMW 750i Hydrogen, Honda FSX, Toyota Mirai и многие другие модели отлично зарекомендовали себя во время дорожных испытаний. К сожалению, высокая стоимость водорода, отсутствие инфраструктуры заправочных станций, а также достаточного количества квалифицированных сотрудников, оборудования для ремонта и обслуживания не позволяют запустить такие автомобили в массовое производство. Оптимизация всего цикла использования гремучего газа являются первоначальной задачей области развития водородной энергетики.

 

 

seite1.ru

Водородные Автомобили в России. ᐈ Каталог авто на водородном топливе| Электромобили.Ру

Эффективное, но дорогое топливо

Публика уже привыкла к борьбе за популярность гибридов, машин с ДВС или электрокаров. Последние пока что занимают самую выгодную позицию, а может ли появиться еще кто-то эффективнее и экологичнее? Тогда стоит вспомнить о транспорте на водородном топливе. Такие машины очень похожи на электрические авто отсутствием вредных выхлопов, однако главное достоинство в заправке — для наполнения баллона водородом до отказа нужно около 10 минут, а хватит горючего на дистанцию в 500 км. Кажется, намного выгоднее, чем электромобиль, однако так ли это на самом деле?

История водородных автомобилей

Еще в 1990-х годах производители углубились в разработку транспортных средств, которые передвигаются на топливных элементах. Основная причина поиска альтернативного горючего — введение новых стандартов выбросов CO2 и энергетический кризис. Единственные экологически чистые автомобили того времени — электрокары, имели несколько ограничений: длительная зарядка аккумулятора, небольшой запас хода, дорогостоящие комплектующие. В итоге компании начали искать другой способ привести машину в действие.

В качестве основного топливного элемента выбрали водород. Химические свойства, экологичность и распространенность в окружающей среде подтолкнули инженеров к мысли, что работа с этим веществом может принести доход и внушительные перспективы. Водородные машины должны были проезжать такие же дистанции, как и бензиновые аналоги, с той же мощностью и скоростью. Однако основная сложность была в другом — как изготовить необходимый двигатель и направить энергию топливного элемента в правильное русло?

Оказывается, первый ДВС на водороде был придуман еще в позапрошлом веке. Большинство экспертов склоняются к исследованиям французского естествоиспытателя Франсуа де Риваз, который в начале XIX века получал водород электролизом воды. В современном мире крупные производители почти одновременно выпустили водородные автомобили с похожей базовой технической “начинкой”.

Принцип работы автомобилей на водородных элементах

Механизм работы и типы моторов очень похожи на деятельность электромобилей, но главное отличие в способе создания энергии. Машины на топливных элементах тоже используют электричество для движения, но получают его не от заряда розеткой. Энергия вырабатывается в процессе физико-химических реакций, которые происходят в самом агрегате. Принцип работы состоит в следующем:

  • автомобиль заправляется водородом, который контактирует с кислородом и катализатором. В результате вырабатывается электрический ток, который насыщает энергией двигатель и батарею.

Подобный транспорт заправляют на специальных станциях, которые самостоятельно вырабатывают водород с помощью электролиза воды. Обслуживание автомобиля означает замену водородных элементов, которые исчерпали свой ресурс. Обычно заменяют катализаторную мембрану, которая помогает вырабатывать электричество.

Преимущества использования автомобилей на водородном двигателе

  • Расширение продукции. Разработка и производство прототипа может обойтись в 1 млн долларов. Если создавать концепт для автовыставки, то такое транспортное средство не обязательно должно ездить. Для крупных автомобильных концернов эта сумма небольшая, но какой может быть результат. Вполне возможно, что через пару лет водородные технологии будут на высоте.
  • Неисчерпаемость. Мировой океан содержит 1,2×1013 тонн водорода, при этом суммарная масса элемента — 1% от общей массы планеты. Однако самое главное достоинство водорода в том, что при сгорании он превращается в воду. Происходит круговорот веществ в природе.
  • Экологичность. Когда водород используется в качестве топлива, то не происходит парниковый эффект (в результате выделяется вода). Водород быстро улетучивается и не создает никаких застойных зон.
  • Безопасность. Весовая теплотворная способность элемента в 2,8 раза выше, чем у бензина. А это значит, что водород воспламеняется в 15 раз меньше, чем углеводородное горючее.

Недостатки владения водородными автомобилями

Рассмотреть минусы транспорта на топливных элементах можно на примере первого массового водородного авто Toyota Mirai. Как оказалось, у машин подобной модификации, есть и темная сторона.

  • Стоимость. Сегодня японский автомобиль на водороде продается почти за 70 000$ в среднем, а это цена базовой версии Tesla Model S в США. Toyota Mirai дороже Chevrolet Volt или Toyota Prius в 2-3 раза. При этом компания еще и теряет доход, поскольку инсайд-информация указывает на реальную стоимость автомобиля в 100 000$. Еще один водородный автомобиль Hyundai Tucson (iX35) Fuel Cell вышел совсем недавно лимитированной серией. Модель оценили в 144 000$.
  • Заправка. Сегодня 1 кг водорода стоит почти 8$, а если брать расход 1-1,3 кг на дистанцию в 100 км, то стоимость поездки можно сравнить с движением на бензиновом автомобиле. Гибридный или дизельный агрегат будет даже выгоднее. В это время на 100 км на электромобиле можно потратить меньше 2$. При этом водород труднодоступен. Даже в мегаполисах не так легко найти подходящую заправочную станцию. Все потому, что этот бизнес и не очень выгодный. Для строительства небольшой водородной АЗС необходимо почти 300 000$, а для станции среднего размера — 2 000 000$. Небольшая заправка может заправить за сутки около 30 машин, а на большая почти 250 агрегатов. Это небольшие цифры при затратах на содержание подобных станций. Еще существуют и крупные АЗС, но они могут обойтись в 10 000 000$. Такие предприятия строятся рядом с заводами по выработке водорода, или же на станции должно быть большое хранилище. Все это сложное и дорогое строительство.
  • Габариты и вес. Модель на топливных элементах Toyota Mirai имеют длину 4900 мм и вес в 1850 кг, вместимость до 4 пассажиров и багажное отделение в 361 л. Параметры указывают на то, что водородное авто тяжелое и не особо просторное. Лишний вес образуется из-за сложной конструкции: топливные ячейки, электрический преобразователь и дополнительный аккумулятор. Небольшой салон получается из-за массивных баллонов для водорода. Ситуация с электромобилем немного легче — хотя и присутствует крупная АКБ, зато конструкция проще.

Каковы будущие перспективы FCEV?

Идея использовать двигатели на топливных элементах потихоньку развивается не только в умах производителей, но и на деле. Особенно радужные перспективы применения водородных моторов для общественного транспорта. В Германии ездят сотни городских и туристических автобусов на водороде. В 2017 году был анонсирован выпуск первого поезда на водородном топливе, который сможет заменить дизельные составы.

Однако многие эксперты считают, что когда будет придуман способ быстрой зарядки электромобиля, то водородные машины могут отойти на второй, или даже третий план. Все дело в том, что решение всех проблем, связанных с транспортом на водороде займет намного больше времени, чем строительство сверхбыстрых станций. Первая такая “заправочная” станция появилась в США в 2017 году, а в 2018 году несколько предприятий должны открыться в Европе. Но пока станции для электрокаров не так быстро распространяются, водородные автомобили набирают популярность.

elektro-mobili.ru

Почему мы никогда не будем ездить на водородных автомобилях: engineering_ru — LiveJournal

Недавно Toyota объявила о том, что передаёт все свои патенты, связанные с автомобилями на топливных элементах в публичное пространство, и теперь они доступны для использования совершенно бесплатно. Новость умиляет тем, что патентов набралось аж 5 680 штук, задумайтесь только, как старались корпоративные юристы, патентуя всё вплоть до округлостей на кнопках. Но дело не только в этом, ведь в прошлом году именно Tesla стала первой, кто в мире патентных троллей и бесконечных судов открыл свои патенты. К слову, их у компании, выпускающей самый известный электромобиль, было меньше трёх сотен.


Toyota Mirai — первый в мире автомобиль на водородных топливных
элементах, который можно будет купить, а не взять в лизинг.

Но я хочу поговорить не столько об этом событии, сколько о том, почему даже появление первого автомобиля на топливных элементах, который можно купить, ничего не меняет для водородных автомобилей, и почему эта ветвь развития является абсолютно тупиковый. Илон Маск, CEO Tesla Motors, называет топливные элементы (fuel cells) «fool cells» (элементы одурачивания), аккумуляторные эксперты сходятся в том, что все в индустрии знают, что топливные элементы это ерунда, просто не все признают это, я же сосредоточусь на фактах.


Из-за падения цен на нефть стоимость галлона (3.76 литра) бензина в США упала
до $2, но даже во время дорогой нефти цена не поднималась выше $4.

1. Водород дорог.
Это просто факт. Сейчас рыночная цена на газ — $8.96 за эквивалент галлона бензина, 0.997 кг (данные за октябрь 2014 г.). Бак Toyota Mirai вмещает 5 кг водорода. Таким образом, одна заправка обошлась бы вам в $45 и её хватило на 480 км по методике тестирования EPA (данные ещё не проверены EPA, но вряд ли эта цифра окажется больше), что выливается в $9.38 за 100 км. Для сравнения, Toyota Prius проедет те же 100 км, потратив $2.76, а Tesla Model S — $2.99, если использовать ту же методику EPA и текущие средние американские цены.


К 2017 году Toyota планирует довести годовой выпуск Mirai до 2 100 штук.
Хотя существует множество оценок, предполагающих, что при больших объемах производства стоимость водорода снизится до $3 за кг (и приблизится к текущей цене на бензин), даже сама Toyota менее оптимистична в своих прогнозах: стоимость бака для Mirai снизится до $30 в будущем. Сейчас в США производится 7.31 миллионов кг ворода в день, в год около 2 600 миллионов килограмм. При среднегодовом пробеге около 21 500 км, его бы хватило для 12 миллионов автомобилей, то есть даже если бы водородных автомобилей в США продавали 10% от всех новых авто в течении 10 лет, производство лишь удвоилось, что не дало бы такого радикального снижения цены.


Предприятие по паровой конверсии природного газа в водород.
2. Производство водорода «грязнее» электрогенерации
Сейчас 95% водорода производится из углеводородов с помощью реакции паровой конверсии или частичного окисления. Остаётся от природного газа или углеводородов CO2, тот самый с которым все страны дружно борятся развитием альтернативной энергетики и альтернативных автомобилей. Если вспомнить, что в Европе и Азии, в отличие от США, нет своего природного газа, для того чтобы из него делать водород, то всё становится ещё печальней. Сейчас использование водорода ставит в прямую зависимость от цены на газ, что не сильно отличается от нефтяной зависимости, электричество же генерируется из десятка различных источников. Теоретически, водород можно получать электролизом, но сейчас такой газ для США будет в 3 раза дороже получаемого из метана. Более того, так как получение электричества не экологически чистый процесс, а конверсия электричества в водород, затем обратно из водорода в электричество в топливных элементах имеет низкий суммарный КПД, выбросы будут значительно выше, чем для электромобилей.


Реакция паровой конверсии метана: в качестве
побочного продукта выделяется пресловутый CO2

Для получения одного килограмма водорода требует 52.5 кВтч на электролизере с 75% эффективностью. Таким образом, Toyota Mirai, используя водород, полученный с помощью электролиза будет тратить 54,69 кВтч на 100 км. Даже огромная, более чем 2-х тонная Model S потребляет 23.75 кВтч на 100 км, а Mirai заметно меньше и не может похвастаться разгоном до сотни за 4 секунды. Добавьте к этому транспортировку водорода, компрессию, строительство электролизеров, строительство водородных заправок и станет понятно, что даже теоретически это не путь по уменьшению вредных выбросов в атмосферу.


Водородная заправочная станция стоит $2 млн. и
способна заправить лишь 30 автомобилей за сутки.

3. Водородная инфраструктура очень дорога и не развита.
Одна водородная заправочная станция обходится в $2 миллиона. Калифорния уже потратила $100 миллионов на водородные заправочные станции. Высокую цену станции подтверждают и европейские источники, например только господдержка на одну станцию в Великобритании составляет £1 млн. Вы думаете, зато такая станция может обслужить сотни машин? Нет, станции рассчитаны на заправку максимум 30 автомобилей в день. С одной стороны больше и не надо, откуда там взяться хотя бы двум, но с другой стороны суперзарядка Tesla Motors на 6-12 стоек обходится компании в $100k — $150k, а более продвинутая версия с солнечными батареями на крыше и аккумуляторами на 500кВтч для сохранения солнечной энергии в «целых» $300k. Надо ли добавлять, что такая станция в действительности может обслужить больше сотни машин в день.


Всего за год без какой-то государственной помощи Tesla Motors сделала
возможными дальние поездки на Model S по Западной Европе.

Сейчас в США 13 водородных заправочных станций. В 2015 году планируют открыть ещё пару десятков. Я думаю, не ошибусь, если скажу, что эти планы следуют за водородными автомобилями на протяжении последних 10 лет. Правда, одна лишь компания Tesla Motors, используя часть прибыли от продажи своих электромобилей без государственных грантов, за один месяц, декабрь 2014 года открыла 54 своих суперзарядки, 12 из них в США, каждая на 6-8 зарядочных стоек. За год в Европе открыто более 120 суперзарядок, такое же количество водородных станций обошлось бы в четверть миллиарда долларов.


Водородный Hyundai Tucson стоит $144 400, и даже такая высокая
цена не означает, что он не субсидируется производителем.

4. Водородные автомобили дороги.
Хотя Toyota Mirai будет продаваться на американском рынке за $62 000, большинство экспертов сходится во мнении, что эта цена субсидирована производителем (1, 2) Точных цифр от самой Тойоты нет, косвенно же это подтверждается высказыванием главы R&D компании о том, что автомобили на топливных элементах смогуть быть конкурентными по цене с электромобилями к 2030 году и стоимостью топливных элементов. Субсидирование производителем подтверждает и цена в $144 400 Hyundai Tucson на топливных элементах, продающийся в Южной Коррее. Но даже после такой большой субсидии со стороны производителя, покупатели не торопятся покупать автомобили на топливных ячейках.


Баки из углепластика со сжатым под давлением 680 атмосфер
водородом располагаются под днищем Toyota Mirai.

5. Нет ни одного преимущества водородных автомобилей перед электромобилями.
Большую часть недостатков я уже перечислил. Оставлю за бортом безопасность: хотя я бы побоялся ездить на двух баллонах с водородом под днищем, производитель утверждает, что это безопасно, так давайте поверим ему. Попробуем найти хоть какие-то преимущества автомобилей на водороде перед электромобилями. Запас хода? У Toyota Mirai — 480 км, у Tesla Model S — 424 км, Tesla Roadster после обновления в следующем году сможет проехать почти 640 км, все цифры по одной и той же методике тестирования EPA, «яблоки с яблоками», что называется. А есть же ещё и плагин-гибриды, которые дают симбиоз экономичности электромобилей с возможностью движения на обычном топливе на дальние расстояния. В общем, запас хода после появление Tesla уже не аргумент.


Tesla Model S P85D разгоняется от 0 до 100 км/ч за 3.3 секунды, в то время как
водородные автомобили довольствуются лишь динамикой самых слабых «дизелей».

Динамика? Разгон Toyota Mirai (от $62 000 в США) около 10 секунд до сотни, электромобиль BMW i3 (от $42 000 в США) набирает ту же скорость за шесть с половиной секунд, a Model S P85D разгоняется до сотни как McLaren F1. Остаётся единственное преимущество — скорость заправки за 3 минуты. Это могло бы быть козырем, если когда-нибудь водородных заправок стало как бензиновых. До этого момента преимущество у электромобилей — постоянная зарядка дома или на работе обеспечивает полностью заряженный автомобиль без необходимости куда-то специально заезжать. А быстрая зарядка даёт возможность полностью зарядиться за время обеда с семьёй при поездках на дальние расстояни. Если же спор идёт за абсолютные цифры, быстрая замена батареи позволяет через 1,5 минуты продолжить движение с «полным баком».


Honda тоже планирует выпустить автомобиль на топливных элементах
в конце 2015 года, правда пока он больше похож на концепт.

Резонно возникает вопрос: а зачем тогда это всё Toyota и другим компаниям. Тут надо уточнить, что кроме японского гиганта интерес к автомобилям на топливных элементах в разное время возникал лишь у Honda, Hyundai и немцев (Audi, VW, Mercedes, BMW). Остальные автомобильные производители были к ним равнодушны. В то же время и от этих компаний всё чаще слышится снижение интереса (VW, BMW, Hyundai) к автомобилям на топливных ячейках. Итак,


Сомневаюсь, что недавно представленный
водородный концепт Mercedes F 015 вообще ездит.

Зачем автомобильные компании продолжают делать водородные автомобили?
а) Диверсификация
Разработка и создание рабочего прототипа может стоить всего $1 млн. Создание концепта для автосалона ещё проще — он не обязан ездить. Для компаний с десятками миллиардов долларов оборота — это просто капля в море. А вдруг стрельнет, а вдруг именно эта технология окажется перспективной через 5 лет.

б) Сотрудничество между компаниями
Honda и BMW активно сотрудничают с Toyota и было бы в каких-то случаях не этично и не дальновидно не поддерживать её.


Электрический Fiat 500e продаётся лишь в Калифорнии, США для соответствия
экологическому законодательству. В Европе об этой машине никто не слышал.

в) Соответствие экологическим требованиям
Экологические требования в развитых странах ужесточаются каждый год. Например, для Калифорнии несколько производителей выпускает электромобили только для того, чтобы соответствовать CARB-законодательству. Сейчас законодательство изменилось так, что выпустить один автомобиль на водородных топливных элементах стало выгоднее в 5 раз, чем электромобиль. Добавьте сюда поддержку установки заправочной инфраструктуры постоянными грантами и вы получите готовый рецепт существования автомобилей не нужных самим производителям.


За 15 лет все автомобили Toyota получили гибридные версии.
г) Маркетинг
15 лет назад Toyota создала уникальный для того времени автомобиль, гибрид Toyota Prius. Вначале его производство было даже убыточным для компании, но позже продажи увеличились, себестоимость снижалась, и сейчас слово гибрид и экономичность для всех ассоциируется, главным образом, с Toyota. Продажи гибридных автомобилей составляют приличную долю доходов компании и спустя 15 лет стали высокомаржинальными. И тут появляются электромобили и плагин-гибриды. В этом сегменте конкуренция быстро нарастает, хотя доля продаж ещё заметно меньше, чем у обычных гибридов. В то же время доля обычных гибридов начинает падать, а электромобили и плагин-гибриды растут каждый год. При этом у Toyota нет никаких серьёзных наработок в этом сегменте.

Что надо сделать? Правильно, нужно сделать «poker face», говорить, что всё это ерунда, и дальше продавать Prius-ы миллионами.

engineering-ru.livejournal.com

Водородный двигатель, «Тойота». Toyota Mirai с водородным двигателем

На сегодняшний день практически все мировые автопроизводители ведут активные разработки машин, работающих на экологически чистом виде топлива. Специалисты говорят, что уже через 15-20 лет мир полностью перейдет на такой вид транспорта. Пока лидерство в этом деле сохраняет компания «Тойота». После выпуска знаменитого «Примуса» японцы решили пойти дальше и разработать еще один экологически чистый автомобиль — Toyota Mirai с водородным двигателем. В сегодняшней статье мы рассмотрим все особенности данной новинки, а также перечислим все преимущества и недостатки использования водородных машин.

Характеристика

«Тойота Мирай» — это один из первых седанов японского производства, который компания решила выпускать в серийном масштабе. Кстати, решение назвать данную модель Mirai было вполне оправданным, ведь в переводе с японского это слово означает «Чистое будущее».

Производитель утверждает, что первая серийная водородная Toyota отличится от своих аналогов большим запасом хода, который составит 480 километров. Этого вполне хватит как для повседневной эксплуатации в черте города, так и для семейных путешествий на большие расстояния. Но что касается дальних поездок, пока совершить их на таком авто не удастся. И здесь вопрос не в надежности конструкции (как всегда, японцы сделали машину качественно и «на века»), а в отсутствии нужных АЗС. Но об этом мы поговорим несколько позже.

Интересный факт

Стоит отметить, что «Мирай» не самый первый в мире автомобиль с водородным двигателем. «Тойота» занимается разработкой гибридных моделей авто начиная с 1997 года. Именно тогда мировая публика увидела первый автомобиль с водородным двигателем в виде концепт-внедорожника модели FCHV. Однако запускать его в масштабное серийное производство японцы так и не решились. Чаще всего данный джип можно было встретить в госучреждениях и организациях, которые занимались тестированием данного вида транспорта. Кстати, водородный двигатель объединяет BMW и Toyota. Немцы заключили контракт с японскими инженерами и до 2020 года планируют создать новый экологически чистый седан BMW Hydrogen 7-й серии.

Плюсы водородного автомобиля

Для начала о преимуществах. Начнем с того, что двигатель на водородном топливе не выделяет никаких загрязняющих веществ, в отличие от дизеля и бензина. Стоит отметить и низкую себестоимость эксплуатации данного вида транспорта. Само топливо (водород) можно получать как в малых, так и крупных масштабах. Это позволит значительно стабилизировать ситуацию с постоянно меняющимися ценами на горючее и более рационально распределять энергетические ресурсы в мире.

Какие имеет минусы двигатель на водородном топливе?

Теперь поговорим о недостатках. Основной минус данного вида транспорта заключается в том, что водородный двигатель («Тойота FCV» в том числе) более взрывоопасен, чем классические дизельные и бензиновые аналоги. Это объясняется особым химическим составом водорода. Кстати, кроме взрывоопасности он отличается высокой летучестью. Эта характеристика значительно усложняет транспортировку и заправку автомобилей водородом. Также эксперты говорят, что обслуживание подобной установки будет более затратным, чем например ремонт дизельного ДВС (в силу малого количества работников, знающих толк в данной сфере). Ну и, конечно же, отсутствие водородных заправочных станций. В мире таких лишь единицы, потому использовать сейчас такие автомобили весьма трудно (тем более что заправить такую машину можно только при помощи специального оборудования).

Вопросы снабжения

Основная проблема водородных авто – отсутствие АЗС, на которых их можно было бы заправлять. Именно поэтому миру более актуальны электрокары, так как они заряжаются от обыкновенной розетки и даже на ходу, если на крыше есть солнечная батарея. Но производство водородных станций уже набирает темпы. Уже известно о планах строительства 20 таких АЗС в Калифорнии. Если продажи будут расти, количество заправок увеличат вдвое. Кстати, этот штат был выбран неспроста – именно в Калифорнии начнутся старты продаж водородных «Тойот». Но о продажах мы поговорим в конце статьи, а пока давайте рассмотрим экстерьер новинки.

Дизайн

Внешний облик новой «Тойоты Мирай» весьма впечатляющий. Сразу в глаза бросается массивный агрессивный «передок» с суровым широким бампером и раскосыми фарами. Решетка радиатора – это, пожалуй, самый мелкий и незначительный элемент в экстерьере.

Но даже на таком маленьком кусочке пластика японцам удалось разместить свою фирменную эмблему, выполненную в хромированном стиле. Машина имеет хорошую площадь остекления. Особенно это касается лобового стекла. Водитель не будет чувствовать «мертвых зон», так как все события вокруг видны теперь как на ладони. Кузов имеет как угловатые, так и сглаженные, аэродинамические черты. Все это делает внешний облик седана очень свежим, современным и уникальным.

Интерьер

Внутренняя часть автомобиля словно часть космического корабля – масса кнопок, экранов, датчиков и всякой другой всячины. Что интересно, японцы не решились тратить деньги на разработку двух вариантов компоновки интерьера – для европейского и для внутреннего рынка. Проблему с перестановкой руля они решили очень просто, разместив все важные информационные приборы посредине торпеды.

Сама панель размещена впритык к лобовому стеклу и растянута по всей его ширине. Дальше от нее размещен массивный бортовой компьютер, который оснащен встроенной функцией навигатора. Ниже него есть еще один дисплей. А разделяют их два широких воздуховода. Такие же дублируются по бокам у зеркал, только с хромированной окантовкой в углу. Рулевое колесо тоже оснащено кнопками дистанционного управления. Ручки КПП в салоне нет – вероятнее всего, используется вариатор или АКПП. Динамики размещены в дверях, также как и кнопки управления электростеклоподъемниками. Рулевое колесо имеет удобный хват. В целом, компоновка салона очень эргономичная. И даже невзирая на массу кнопок (тем более что половина из них сенсорные), он не перегружен лишними элементами и в некоторой степени кажется аскетичным.

Технические характеристики

«Тойота» выпустила машину с водородным двигателем, имеющим большой запас мощности. Силовая установка, по словам производителей, будет иметь 153 лошадиные силы, чего вполне достаточно как для автомобиля такого класса. О других двигателях японцы не говорят, и, скорее всего, на рынок выйдет только одна модификация новинки со 153-сильным экологически чистым агрегатом. Водородный двигатель («Тойота Мирай» 2015 года выпуска) работает на специальных топливных ячейках. Внутри последней происходит реакция, в которой принимают участие водород и кислород. В результате химического взаимодействия вырабатывается мощная энергия, которая питает электромотор.

Динамика и затраты эксплуатации

Производитель говорит, что по динамическим характеристикам Toyota с водородным двигателем ничем не отличается от своих бензиновых аналогов. Разгон с нуля до «сотни» оценивается в 9 секунд. При этом инженеры отмечают низкую себестоимость поездок.

Цена заправки бака за 1 километр составит всего 10 центов. Таким образом, чтобы проехать машине сотню километров, нужно потратить всего 10 долларов. А заправить авто можно всего за 5 минут.

Как работает двигатель на водороде?

Наверняка каждый из нас задумывался о принципе действия данного агрегата. Что же, давайте рассмотрим, как работает водородный двигатель на самом деле.

Основной движущей силой данных машин является электрохимический генератор (некий топливный элемент). У японцев он называется FC Stack. Внутри электрохимического генератора происходит реакция, в результате которой происходит окисление водорода. Именно в этот период вырабатывается нужная энергия, которая потом перенаправляется в компактный аккумулятор. Последний выполняет функцию питания электродвигателя, который и приводит машину в действие. В каком виде вырабатывает отходы водородный двигатель? «Тойота Мирай» не зря называется экологически чистой машиной, так как из ее выхлопной трубы исходят вовсе не ядовитые газы, а обыкновенная вода.

Все это очень хорошо, однако есть сила, препятствующая развитию данного вида транспорта. Основная проблема заключается в том, что процессы изготовления топлива для водородных авто на данный момент недостаточно развиты и требуют больших денежных затрат. Тем более что при создании водорода задействуются такие компоненты, как уголь и метан. Они очень сильно загрязняют атмосферу, а потому смысла в использовании таких двигателей ради «сохранения окружающей среды» нет. Конечно, отходов от сгорания данного топлива нет (чистая вода), но чтобы его приготовить, нужно значительно испортить атмосферу грязными выбросами. Поэтому все больше специалистов ищут замену теперешним ДВС в солнечных батареях.

Кстати, водород не относится к какому-либо уникальному виду топлива, который может использоваться только на одном типе двигателей. Исследования показали, что этот продукт вполне реально применять и на классических моторах с внутренним сгоранием. Однако после такой реакции есть последствия. Дело в том, что водород при сгорании в ДВС выделяет лишь 1/3 от той энергии, которую он произвел бы на специализированном агрегате. Правда, инженерам удалось исправить этот недостаток. Благодаря измененной системе зажигания КПД таких двигателей не снижается, а, напротив, увеличивается почти в 1,5 раза от обычного, что делает эксплуатацию этого топлива более благоприятной и разумной с экологической и финансовой точки зрения.

Но все же неприятности были подмечены не только в области КПД. И если коэффициент полезного действия инженерам удалось увеличить методом усовершенствования системы зажигания, то с такими проблемами, как высокая температура горения в камере, прогар поршней и клапанов, они справиться не в силах. Кстати, при длительной работе водород способен вступать в реакцию с другими составляющими мотора, в том числе и со смазкой. А без нее двигатель очень быстро изнашивается. Кроме этого, водород в силу своей летучести может проникать в выпускной коллектор и там воспламеняться. Что касается роторных ДВС, они в силу простой конструкции и большого расстояния между коллекторами являются более благоприятными для использования подобного топлива в качестве основного. На этом вопрос, как работает водородный двигатель, можно считать закрытым.

О стоимости

По словам производителя, старт продаж автомобилей «Тойота Мирай» состоится весной 2015 года. Сначала новинка будет доступна только на внутреннем рынке, а уже летом она появится на европейском и американском рынках. Стартовая цена водородной «Тойоты» составляет 57,5 тысячи долларов. Кроме этого, компания предлагает приобрести данное авто в кредит с ежемесячной оплатой в 500 долларов США. Бонусом станет возможность бесплатной заправки автомобиля в течение года на АЗС Калифорнии.

Пока у японской «Тойоты» нет конкурентов среди водородных автомобилей. По крайнее мерее, так будет до 2016 года. Дело в том, что в марте 2016-го на рынок выходит новый водородный автомобиль Honda FCV. Но насколько популярным она будет, мы прогнозировать не станем, а пока дождемся старта продаж новой «Тойоты Мирай».

Заключение

Итак, мы выяснили, почему он такой особенный и как работает водородный двигатель. «Тойота» — один из первых автопроизводителей, который всерьез задумывается запустить в массовое производство свой «экологически чистый продукт». Правда, пока не будет решена проблема с заправочными станциями и более дешевым способом получения водорода, компанию вряд ли ждет большой успех в сфере продажи подобных машин.

fb.ru

22Фев

Двигателя для электромобилей – Что собой представляет двигатель для электромобиля, каким может быть и сколько стоит

как электрокары на нем работают

Тяговый электродвигатель для электромобиля Tesla Model S

Неотвратимым будущим автомобилестроения, хотим мы того или нет, являются электрические автомобили. Производители авто во всем мире вкладывают огромные средства в их разработку, желая снизить концентрацию вредных веществ выбрасываемых автомобилями традиционными, сделать поездки безопасными и комфортными, а также экономичными. Работа по их созданию проводится в двух направлениях – создание   новых моделей и  реконструкция серийных, которая более предпочтительна, поскольку  менее затратная. Электромобили, по сравнению с традиционными, более надежны, поскольку более просты по конструкции, т.е. отличаются минимумом движущихся частей.

Крупнейшими рынками электрических автомобилей являются сегодня:  США и Норвегия, Япония и Германия, Китай и Франция, Великобритания и др. Наша страна пока от производства и использования новых средств передвижения находится в стороне, исключая энтузиастов, разработавших Lada Ellada. Но, это случай пока единичный, поэтому он не в счет, тем более, что собрано авто на импортных комплектующих.

Понятие «электрический автомобиль» означает средство передвижения, приводимое в движение несколькими (или одним) электродвигателями. Теоретически питание мотора может быть от аккумулятора, топливных элементов или солнечных батарей. Тем не менее, большее распространение получил вариант первый.  Батарея, питающая двигатель требует зарядки, осуществлять которую можно при помощи внешних источников, рекуперации или генератора, установленного на борту автомобиля.  Электродвигатель, являющийся основным элементом электромобиля, питается, как правило, от литий — ионной батареи. Он же, в режиме рекуперации, играет роль генератора, заряжающего батарею.

Назначение тягового электродвигателя

Электродвигатель тяговый (ТЭД) предназначен для приведения в движение транспортного средства, т.е. он преобразует в механическую, энергию электрическую. Их классифицируют по способу питания, роду тока, конструктивному исполнению, типу привода колесных пар. В большинстве экологичных машин: гибридных авто, серийных электромобилях, авто на топливных элементах, которые в наши дни приобретают завидную популярность, они являются основной движущей силой.

В качестве двигателя используют в них моторы тяговые постоянного тока, которые работают в  двух режимах – двигательном и генераторном.

Видео: Как устроен двигатель электромобиля Tesla Model S

Принцип работы

Принцип работы электромобиля Golf blue-e-motion с тяговым электродвигателем

В основе их работы лежит принцип электромагнитной индукции, т.е. возникновение в замкнутом контуре электродвижущей силы при изменении магнитного потока. От традиционной машины электромеханической ТЭД отличается  большей мощностью, более компактными размерами, а кроме этого, у него более высокий КПД.

По способу питания моторы делятся на двигатели постоянного и переменного тока. По числу фаз – на однофазные (с одной обмоткой, подключаемой к сети однофазной переменного тока), двухфазные (две обмотки, расположенные под углом девяносто градусов), трехфазные (три обмотки с магнитными полями через 120 градусов).

По исполнению конструктивному двигатели могут быть: коллекторными, преимущественно работающие на постоянном токе (универсальные современные  могут также работать и на токе переменном), бесколлекторными, синхронными, асинхронными. Наконец, по способу возбуждения они делятся на: двигатели с последовательным, параллельным, последовательно-параллельным возбуждением и от постоянных магнитов.

Основные характеристики тягового электродвигателя электрического автомобиля

В современных авто электродвигатель может быть от переменного или постоянного тока. Основной его задачей является передача на движитель авто крутящего момента. Основными характеристиками ТЭД помимо максимального крутящего момента и мощности, являются: частота вращения, ток и напряжение.

В автомобилях чаще используют коллекторные двигатели (один из них благодаря способности вращаться в обратную сторону, может работать как генератор). Но, в отдельных моделях устанавливают электрические моторы и других типов – магнитоэлектрические моторы, подразделяющиеся на двигатели переменного и постоянного тока. Тяговые двигатели электрические, установленные в электромобилях, от других электромоторов не отличаются по конструкции.

Мотор-колесо

Если вначале использовали один тяговый электродвигатель для электромобиля, редуктор которого соединен с трансмиссией, то  сегодня все чаще обращаются к мотор-колесу. Суть концепции состоит в том, что компьютерная программа управляет при помощи  отдельных моторов каждым из колес. Главным преимуществом является  отсутствие трансмиссии, из-за которой силовая установка теряет значительную часть энергии. Помимо этого удается ликвидировать тормозную гидравлическую систему, функцию которой берут на себя электромоторы, а также отдельные механизмы ESP и ABS.

motocarrello.ru

главное для хорошего электромобиля – облегчённый мотор / Habr


Дизайн автора представляет новое слово в разработке электромоторов

В первое десятилетие XX века 38% всех машин в США работали на электричестве – и этот процент упал почти до нуля с ростом доминирования ДВС в 1920-х. Сегодняшнее стремление к сохранению энергии и уменьшению вредных выбросов вдохнуло в электромобили новую жизнь, но их высокая стоимость и ограниченный пробег сдерживают продажи.

Большая часть попыток решения этих проблем связана с улучшением батареек. Конечно же, улучшение систем хранения электроэнергии, будь то батарейки или топливные ячейки, должно оставаться частью любой стратегии улучшения электромобилей, но потенциал для улучшения есть и в другом фундаментальном компоненте машин: в моторе. Последние четыре года мы работали над новой концепцией тягового электродвигателя, используемого в электромобилях и грузовиках. Наша последняя разработка сильно улучшает эффективность по сравнению с обычными моделями – достаточно для того, чтобы сделать электромобили более практичными и доступными.

В прошлом году мы доказали работоспособность нашего мотора во всесторонних лабораторных тестах, и хотя до размещения его в автомобиле ещё далеко, у нас есть все основания полагать, что там он покажет себя так же хорошо. Наш мотор сможет увеличить пробег современных электромобилей, даже если мы не достигнем никакого прогресса в технологии батарей.

Чтобы понять сложность нашей задачи, необходимо вспомнить основы схемы электромотора (ЭМ). По сравнению с ДВС ЭМ проще, у них всего несколько критичных компонентов. Механика требует наличия корпуса. Он называется статором, поскольку не двигается. Необходим ротор, вращающий вал и создающий вращающий момент. Чтобы мотор работал, статор и ротор должны взаимодействовать при помощи магнетизма, превращая электрическую энергию в механическую.

Концепции моторов отличаются именно в области магнитных интерфейсов. В коллекторных моторах постоянного тока ток течёт через щётки, скользящие по коллекторному узлу. Ток идёт через коллектор и передаёт энергию намотке на роторе. Намотка отталкивается постоянными магнитами или электромагнитами статора. Щётки, скользя по коллектору, периодически меняют направление тока, и магниты ротора и статора отталкивают друг друга снова и снова, в результате чего ротор вращается. Иначе говоря, вращательное движение обеспечивается изменяющимся магнитным полем, производимым коллектором, соединяющим катушки с источником тока и циклически меняющим направление тока при поворотах ротора. Однако эта технология ограничивает вращающий момент и страдает от изнашивания; она уже не используется в тяговых ЭМ.

В современных электромобилях используется переменный ток от инвертера. Здесь динамическое вращающееся магнитное поле создаётся в статоре, а не в роторе. Это позволяет упростить схему ротора, который обычно более сложен, чем статор, что облегчает все задачи, связанные с разработкой ЭМ.

Моторов на переменном токе бывает два вида: асинхронные и синхронные. Мы сфокусируемся на синхронных, поскольку обычно они лучше и эффективнее работают.


Передовая система охлаждения проводит жидкость непосредственно через катушку (слева), а не через кожух мотора (справа)

Синхронные моторы тоже бывают двух видов. Более популярный – синхронная машина с постоянными магнитами [permanent-magnet synchronous machine, PMSM], использующая постоянные магниты, встроенные в ротор. Чтобы заставить его вращаться, в статоре организуется вращающееся магнитное поле. Это поле получается благодаря обмотке статора, соединённой с источником переменного тока. Во время работы полюса постоянных магнитов ротора захватываются вращающимся магнитным полем статора, что и заставляет ротор вращаться.

Такая схема, использующаяся в Chevrolet Volt и Bolt, в BMW i3, в Nissan Leaf и множестве других машин, может в пике достигать эффективности в 97%. Постоянные магниты обычно делают из редкоземельных элементов; яркие примеры – очень мощные неодимовые магниты, разработанные в 1982 году General Motors и Sumitomo.

Явнополюсные синхронные электродвигатели [Salient-pole synchronous machines, SPSM)] используют внутри ротора не постоянные, а электромагниты. Полюсы – это катушки в виде труб, направленные наружу, как спицы колеса. Эти электромагниты в роторе питаются источником постоянного тока, соединённым с ними через контактные кольца. Контактные кольца, в отличие от коллектора, не меняют направление тока. Северный и южный полюса ротора статичны, и щётки не изнашиваются так быстро. Как и в случае с PMSM, вращение ротора происходит из-за вращения магнитного поля статора.

Из-за необходимости питать электромагниты ротора через контактные кольца, у этих моторов обычно чуть ниже пиковая эффективность – в диапазоне от 94 до 96%. Преимущество над PMSM заключается в настраиваемости поля ротора, позволяющая ротору более эффективно вырабатывать крутящий момент на больших скоростях. Итоговая эффективность при использовании для разгона машины возрастает. Единственный производитель таких моторов в серийных авто – это Renault с его моделями Zoe, Fluence и Kangoo.

Электромобили необходимо строить с не только эффективными, но и лёгкими компонентами. Самый очевидный способ улучшить соотношение мощности к весу – уменьшить размер мотора. Однако такая машина выдаст меньший крутящий момент для одной и той же скорости вращения. Следовательно, чтобы получить больше энергии необходимо вращать мотор на более высоких скоростях. Сегодняшние электромобили работают на 12000 об/мин; в следующем поколении появятся моторы, работающие при 20000 об/мин; уже идут работы над моторами, работающие на скорости 30000 об/мин. Проблема в том, что чем выше скорость, тем сложнее получается редуктор – скорость вращения мотора слишком сильно превышает скорость вращения колёс. Из сложности редуктора следуют большие энергопотери.


Идеальный шторм: в авторском варианте (вверху) сила Лоренца и смещённая индуктивность (серый) суммируются в максимальное общее усилие (синее) равное 2. В обычном моторе (внизу) сумма двух сил – силы Лоренца и магнитное сопротивление (серый) дают общее усилие (синий), достигающее пика лишь в 1,76, при угле выбега ротора в 0,94 рад. Разница в этом примере составляет 14%

Второй подход к улучшению соотношения мощности к весу – увеличение силы магнитного поля, что увеличивает крутящий момент. В этом состоит смысл добавления железного сердечника к катушке – хотя это увеличивает вес, но одновременно усиливает плотность магнитного потока на два порядка. Следовательно, практически все современные ЭМ используют железные сердечники в статоре и роторе.

Однако, есть и минус. Когда сила поля увеличивается до определённого предела, железо теряет возможность усиления плотности потока. На это насыщение можно немного повлиять, добавляя присадки и изменяя процесс изготовления железа, но и самые эффективные материалы ограничены 1,5 В*с/м2 (вольт в секунду на квадратный метр, или тесла, Тл). Только очень дорогие и редкие вакуумные железно-кобальтовые материалы могут достигать плотностей магнитного потока 2 Тл или более.

И, наконец, третий стандартный путь увеличения крутящего момента – усиление поля через усиление тока, проходящего через катушки. Опять-таки, тут есть свои ограничения. Увеличьте ток, и увеличатся потери на сопротивление, уменьшится эффективность и появится тепло, способное повредить мотор. Для проводов можно использовать металл, лучше проводящий ток, чем медь. Серебряные провода также бывают, но их применение в таком устройстве было бы абсурдно затратным.

Единственный практический способ увеличить ток – контролировать тепло. Передовые охлаждающие решения проводят жидкость прямо рядом с катушками, а не дальше от них, снаружи статора.

Все эти шаги помогают улучшать соотношение веса к мощности. В гоночных электромобилях, где стоимость не имеет значения, моторы могут достигать 0,15 кг на киловатт, что сравнимо с лучшими ДВС из Формулы 1.

Мы со студентами разрабатывали и создавали такие высокопроизводительные электромоторы для автомобиля, участвовавшего в студенческой Формуле три года назад. Мы создавали моторы в нашей лаборатории в Электротехническом институте Технологического института Карлсруэ. Каждый год команда создавала новую машину с улучшенным мотором, редуктором и силовой электроникой. В машине четыре мотора, по одному на колесо. Каждый имеет всего 8 см в диаметре, 12 см в длину и 4,1 кг веса, и производит 30 кВт на постоянной основе и 50 кВт в пике. В 2016 году наша команда выиграла чемпионат мира.

Так что это и правда можно сделать, если стоимость вас не волнует. Главный вопрос – можно ли использовать такие улучшающие эффективность технологии в массовом производстве, в машине, которую могли бы купить вы? Мы создали такой мотор, так что ответ на вопрос – положительный.

Мы начали с простой идеи. Электромоторы хорошо работают как в роли моторов, так и в роли генераторов, хотя для электромобилей такая симметрия не особенно нужна. Для автомобиля нужен мотор, работающий лучше в роли мотора, чем в роли генератора – последняя используется только для заряда батарей при рекуперативном торможении.

Чтобы понять эту идею, рассмотрим работу мотора PMSM. В таком моторе движение создают две силы. Во-первых, сила, возникающая благодаря постоянным магнитам в роторе. Когда ток идёт через медные катушки статора, они создают магнитное поле. Со временем ток переходит из одной катушки в другую и заставляет магнитное поле вращаться. Вращающееся поле статора притягивает постоянные магниты ротора, и тот начинает двигаться. Этот принцип основан на силе Лоренца, влияющей на движение заряженной частицы в магнитном поле.

Но современные ЭМ получают часть энергии от магнитного сопротивления – силы, притягивающей блок железа к магниту. Вращающееся поле статора притягивает как постоянные магниты, так и железо ротора. Сила Лоренца и магнитное сопротивление работают бок о бок, и – в зависимости от схемы мотора – примерно равны друг другу. Обе силы примерно равны нулю, когда магнитные поля ротора и статора выравниваются. С увеличением угла между ними мотор вырабатывает механическую энергию.

В синхронном моторе поля статора и ротора работают совместно, без задержек, существующих в асинхронных машинах. Поле статора находится под определённым углом к полю ротора, который можно регулировать во время работы для достижения наибольшей эффективности. Оптимальный угол для создания вращательного момента при заданном токе можно вычислять заранее. Затем он подстраивается, по мере изменения тока, к силовой электронной системе, дающей переменный ток на намотку статора.

Но вот, в чём проблема: при движении поля статора по отношению к положению ротора сила Лоренца и магнитное сопротивление то увеличиваются, то уменьшаются. Сила Лоренца увеличивается по синусоиде, достигающей пика на 90 градусов от точки отсчёта (от точки, в которой поля статора и ротора выровнены). Сила манитного сопротивления циклично меняется в два раза быстрее, поэтому достигает пика на 45 градусах.

Поскольку силы достигают максимума в разных точках, максимальная сила мотора меньше, чем сумма его частей. Допустим, у какого-то определённого мотора в определённый момент работы оказывается, что оптимальным углом для максимума суммарной силы будет 54 градуса. В этом случае этот пик будет на 14% меньше, чем суммарные пики двух сил. Это наилучший из возможных компромиссов данной схемы.

Если бы мы могли переделать этот мотор так, чтобы две силы достигали максимума в одной точке цикла, мощность мотора возросла бы на 14% совершенно бесплатно. Вы бы потеряли только эффективность работы в роли генератора. Но мы, как будет показано далее, нашли способ восстановить и эту способность, чтобы мотор лучше восстанавливал энергию при торможении.

Разработка идеально выравнивающего поля мотора – дело непростое. Проблема состоит в комбинации PMSM и SPSM в новую гибридную схему. В результате получается гибридный синхронный мотор со смещённой осью магнитного сопротивления. По сути, этот мотор использует как провода, так и постоянные магниты, для создания магнитного поля в роторе.

Другие пытались работать в этом направлении, а затем отбросили эту идею – но они хотели использовать постоянные магниты только для усиления электромагнитного поля. Наша инновация состоит в использовании магнитов только для придания точной формы полю, чтобы оптимально выровнять две силы – силу Лоренца и силу магнитного сопротивления.

Основная проблема в разработке состояла в поиске такой конструкции ротора, которая могла бы менять форму поля, оставаясь при этом достаточно прочной для того, чтобы вращаться на высоких скоростях, не ломаясь при этом. В центре нашей схемы – многослойная структура ротора, несущего медную намотку на железном сердечнике. Мы приклеили постоянные магниты к полюсам сердечника; дополнительные шипы препятствуют их вылету. Чтобы всё удерживалось на месте, мы применили крепкие и лёгкие титановые штифты, пропущенные через электромагнитные полюса ротора, притянутые гайками к кольцам из нержавеющей стали.

Мы также нашли способ обойти недостаток первоначального мотора, уменьшение крутящего момента во время работы генератором. Теперь мы можем менять направление поля в роторе так, что генерация во время рекуперативного торможения работает так же эффективно, как режим мотора.

Этого мы добились, меняя направление тока в намотке ротора во время работы в режиме генератора. Работает это следующим образом. Представьте себе первоначальный вид ротора. Если идти по его периметру, вы обнаружите определённую последовательность северных и южных полюсов электромагнитных (Е) и постоянных магнитных (P) источников: NE, NP, SE, SP. Эта последовательность повторяется столько раз, сколько в моторе пар полюсов. Меняя направление тока в обмотке, мы меняем ориентацию электромагнитных полюсов, и только их, в результате последовательность превращается в SE, NP, NE, SP.

Изучив две этих последовательности, вы увидите, что вторая похожа на первую, идущую задом наперёд. Это значит, что ротор можно использовать в режиме мотора (первая последовательность) или в режиме генератора (вторая), когда ток в роторе меняет направление на противоположное. Таким образом наша машина работает более эффективно, чем обычные моторы, как в роли мотора, так и в роли генератора. На нашем прототипе изменение направления тока занимает не более 70 мс, что достаточно быстро для автомобилей.

В прошлом году мы построили прототип мотора на верстаке и подвергли его тщательным проверкам. Результаты ясны: при той же самой силовой электронике, параметрах статора и других ограничениях обычного мотора, машина способна выдавать почти на 6% больше крутящего момента и на 2% больше эффективности в пике. В цикле езды результаты ещё лучше: ей требуется на 4,4% меньше энергии. Это значит, что машина, проезжающая на одной зарядке 100 км, проехала бы с этим мотором 104,4 км. Дополнительные километры достаются нам почти задаром, поскольку в нашей схеме есть всего несколько дополнительных частей, заметно менее дорогих, чем дополнительные батарейки.

Мы связались с несколькими производителями оборудования, и они нашли нашу концепцию интересной, хотя пройдёт ещё много времени до того, как вы увидите один из таких асимметричных моторов в серийном автомобиле. Но появившись, в результате он станет новым стандартом, поскольку извлечение всей возможной пользы из имеющейся у вас энергии стоит в приоритете как для автопроизводителей, так и для всего нашего общества.

habr.com

Двигатели для электромобилей: производители, устройство

Исчерпание углеводородного топлива, ухудшение экологической обстановки и ряд других причин рано или поздно заставят производителей разработать модели электромобилей, которые станут доступны для широких слоев населения. А пока остается только ждать или собственноручно разрабатывать варианты экологически чистой техники.

Если же вы все-таки предпочитаете самостоятельно искать решения, а не дожидаться их со стороны, то вам понадобятся знания о том, какие двигатели для электромобиля уже изобрели, чем они отличаются и какой из них наиболее перспективный.

Тяговый двигатель

Если вы решите поставить обыкновенный электромотор под капот своего автомобиля, то, скорее всего, из этого ничего не выйдет. А все потому, что вам необходим тяговый электрический двигатель (ТЭД). От обычных электромоторов он отличается большей мощностью, способностью выдавать больший крутящий момент, небольшими габаритами и малой массой.

Для питания тягового электродвигателя используются батареи. Они могут подзаряжаться от внешних источников («от розетки»), от солнечных батарей, от генератора, установленного в авто, или в режиме рекуперации (самостоятельное восполнение заряда).

Двигатели для электромобилей чаще всего работают от литий-ионных батарей. ТЭД обычно функционирует в двух режимах – двигательном и генераторном. В последнем случае он восполняет потраченный запас электроэнергии при переходе на нейтральную скорость.

Принцип работы

Стандартный электродвигатель состоит из двух элементов – статора и ротора. Первый компонент является неподвижным, имеет несколько катушек, а второй совершает вращательные движения и передает усилие на вал. На катушки статора с определенной периодичностью подается переменный электрический ток, что вызывает появление магнитного поля, которое начинает вращать ротор.

Чем чаще катушки «включаются-выключаются», тем быстрее вращается вал. В двигатели для электромобилей могут устанавливать два вида ротора:
  • короткозамкнутый, на котором возникает магнитное поле, противоположное полю статора, за счет чего и происходит вращение;
  • фазный – используется для уменьшения тока запуска и контроля скорости вращения вала, является наиболее распространенным.

Кроме того, в зависимости от скорости вращения магнитного поля и ротора двигатели могут быть асинхронными и синхронными. Тот или иной тип необходимо выбирать из имеющихся средств и поставленных задач.

Синхронный двигатель

Синхронный двигатель – это ТЭД, у которого скорость вращения ротора совпадает со скоростью вращения магнитного поля. Такие двигатели для электромобилей целесообразно использовать только в тех случаях, когда имеется источник повышенной мощности – от 100 кВт.

Одной из разновидностей синхронных электромоторов является шаговый двигатель. Обмотка статора такой установки разбита на несколько секций. В определенный момент ток подается на определенную секцию, возникает магнитное поле, которое вращает ротор на определенный угол. Затем ток подается на следующую секцию, и процесс повторяется, вал начинает вращаться.

Асинхронный электромотор

В асинхронном двигателе скорость вращения магнитного поля не совпадает со скоростью вращения ротора. Плюсом таких устройств является ремонтопригодность – запчасти для электромобилей, оснащенных этими установками, найти очень просто. К другим преимуществам относятся:

  1. Простая конструкция.
  2. Простота обслуживания и эксплуатации.
  3. Низкая стоимость.
  4. Высокая надежность.

В зависимости от наличия щеточно-коллекторного узла двигатели могут быть коллекторными и безколлекторными. Коллектор – устройство, служащее для преобразования переменного тока в постоянный. Щетки служат для передачи электроэнергии на ротор.

Безколлекторные двигатели для электромобилей отличаются меньшей массой, компактными габаритами и более высоким КПД. Они реже перегреваются и потребляют меньше электричества. Единственный минус такого двигателя – высокая цена на электронный блок, который выполняет функции коллектора. Кроме того, найти запчасти для электромобилей, оснащенных безколлекторным двигателем, сложнее.

Производители электродвигателей

Большинство самодельных электромобилей сконструировано с применением коллекторного двигателя. Это объясняется доступностью, низкой ценой и простым обслуживанием.

Видным производителем линейки данных моторов является немецкая компания Perm-Motor. Ее продукция способна к рекуперативному торможению в генераторном режиме. Она активно используется для оснащения скутеров, моторных лодок, легковых автомобилей, электроподъёмных устройств. Если двигатели Perm-Motor устанавливали в каждый электромобиль, цена их была бы значительно ниже. Сейчас они стоят в пределах 5-7 тыс. евро.

Популярным производителем является компания Etek, которая занимается производством безщеточных и щеточных коллекторных двигателей. Как правило, это трехфазные моторы, работающие на постоянных магнитах. Основные преимущества установок:
  • точность управления;
  • легкость организации рекуперации;
  • высокая надежность за счет простой конструкции.

Завершает список производителей завод из США Advanced DC Motors, выпускающий коллекторные электромоторы. Некоторые модели обладают исключительной особенностью – они имеют второй шпиндель, что можно использовать для подключения на автомобиль-электромобиль дополнительного электрооборудования.

Какой двигатель выбрать

Чтобы покупка вас не разочаровала, надо сравнить характеристики приобретаемой модели с предъявляемыми требованиями к автомобилю. При выборе электродвигателя в первую очередь ориентируются на его тип:

  • Синхронные установки имеют сложное устройство и дорогостоящи, но обладают перегрузочной способностью, ими легче управлять, им не страшны перепады напряжения, используются при высоких нагрузках. Они устанавливаются на электромобиль Mercedes.
  • Асинхронные модели отличаются низкой стоимостью, простым устройством. Они просты в обслуживании и эксплуатации, однако выделяемая ими мощность намного меньше, чем тот же показатель синхронной установки.

На электромобиль цена будет значительно ниже, если электромотор будет работать в паре с двигателем внутреннего сгорания. На рынке такие комбинированные установки обладают большей популярностью, так как их стоимость составляет около 4-4,5 тыс. евро.

fb.ru

Двигатель электромобиля – разновидности и принцип работы

Экологичные автомобили, будь-то «чистые» электромобили или плагин-гибриды объединяет наличие электродвигателя, в качестве основной движущей силы. Работа современного электрического двигателя основана на принципе электромагнитной индукции, в базе которого лежит выработка электродвижущей силы в замкнутом контуре с изменением магнитного потока. Технология не нова, однако современные достижения науки и техники позволили развить ее до невероятных высот. Немалую роль в этом сыграла и возросшая в десятки раз мощность и емкость аккумуляторных батарей, которые выполняют роль топливного бака в современных электрических и гибридных автомобилях.

Электромобиль Nissan Leaf в «разрезе»: батарея с электродвигателем

Тем не менее, нельзя со 100% уверенностью утверждать, что все электродвигатели одинаковы. Многие ошибочно считают электродвигатель довольно простой установкой, однако стоит, к примеру, учитывать тот факт, что в отличии от ДВС, у электрического двигателя практически 90% КПД выделяемой энергии идет на создание крутящего момента. Согласитесь, что подобную мощность необходимо обуздать и уметь с ней обращаться, а для этого нужно знать некоторые нюансы о работе и разновидностях электрических двигателей.

Электродвигатели – особенности эксплуатации и принцип работы

К главным особенностям электрического двигателя относится несколько важных характеристик:

  1. Крутящий момент мотора достигает своего максимума сразу при включении, таким образом, электромобили не требуют наличия характерных для ДВС стартеров и сцеплений.
  2. Работа агрегата на обширном числе оборотов, позволяет электромобилю обходиться без коробки переключения передач. Для изменения стороны вращения двигателя (включение заднего хода) достаточно поменять полярности.

Электродвигатель Nissan Leaf

Однако все понимают, что стартовать на электромобиле со всего потенциала крутящего момента, который гораздо мощнее многих автомобилей с ДВС, никто не будет. По меньшей мере, это небезопасно, и что немаловажно это влечет неэффективный расход заряда батарей. Поэтому традиционно электродвигатели должны отвечать следующим требованиям:

  • иметь безопасное и удобное для эксплуатации строение;
  • обладать гарантией длительной эксплуатации;
  • иметь компактные габариты.

Как уже упоминалось, работа современного электродвигателя основана на давно известном принципе электромагнитной индукции. Традиционно агрегат состоит из недвижимого элемента – статора, и крутящегося – ротора. Статор имеет ряд обмоток на которые поступает электрический ток, что приводит к появлению магнитного поля, при котором ротор начинает свое движение. Скоростные показатели ротора определяются частотой, с которой происходит переключение тока с одной обмотки статора на другую.

Двигатели для электромобилей – разновидности и классификация

В современных автомобилях с электрической тягой серийного производства наиболее часто используют три типа электрических двигателей.

Асинхронные двигатели. Моторы непостоянного тока, в которых скорость вращения ротора различается с потенциалом напряжения магнитного поля, созданным источником питания. Различают одно, двух и трехфазные агрегаты асинхронного типа.

Асинхронный трехфазный электродвигатель переменного тока Tesla Model S

Синхронные двигатели. Электромотор, работающий на переменном токе, с движением ротора полностью симметричным электромагнитному полю. Подобные электродвигатели используют при повышенных мощностях. Различают шаговые и вентильные синхронные электродвигатели. Для первых характерно точное расположение ротора с подачей питания на конкретную обмотку, а чтобы изменить положение ротора, напряжение между обмотками необходимо перенаправить. Для второго типа агрегатов характерно питание от полупроводниковых составляющих.

Синхронный электродвигатель с постоянным магнитом Mitsubishi i-MiEV

Двигатель-колесо. Тип электромотора сила напряжения и крутящий момент которого рассчитан на конкретное колесо. Данный тип электропривода часто используется в плагин-гибридных автомобилях в рабочем тандеме с двигателем внутреннего сгорания. Агрегат может устанавливаться непосредственно в колесо, однако современные электромобили все больше отходят от такого расположения мотора, поскольку это увеличивает удельный вес шасси и снижает управляемость. Более рационально стало использовать двигатель в качестве полноценного привода для вращения колеса.

Двигатель-колесо

Что касается регулировок управления электродвигателя, то за преобразование постоянного тока от аккумуляторных батарей в трехфазный переменный – отвечает инвертор.Трансмиссия – выполняющая роль сцепления и коробки передач, зачастую представлена одноступенчатым зубчатым редуктором.Остальные параметры работы электродвигателя регулируют электронная система управления, которая индивидуальна для каждой марки электрокара или гибрида.

Видео как работает электродвигатель и другие механизмы электромобиля на примере Tesla Model S

Хотелось бы подчеркнуть, что представленная классификация и система работы электродвигателей далеко не финальная. Стремительное развитие отрасли эко автомобилей только входит в начальную стадию, поэтому кардинального изменения принципа работы, мощности, строения электромоторов можно ожидать уже в ближайшее время.

Какие электродвигатели используются в гибридных и плагин-гибридных автомобилях

Гибридные автомобили имеют собственную специфику использования электромоторов. Во многом электродвигатель гибрида выполняет роль вспомогательного элемента, повышающего мощность основного двигателя внутреннего сгорания и снижающего уровень потребления топлива.

Электродвигатели используемые в гибридах можно разделить на несколько разновидностей:

  • Встроенная помощь мотору. Электродвигатель который берет на себя часть усилий по созданию крутящего момента при движении.
  • Встроенный генератор стартера. Электродвигатель, который только приводит автомобиль в движение.
  • Старт/стоп двигатель. Электродвигательная система, которая отключает основной ДВС при остановке и мгновенно запускает его при начале движения.

Кроме указанных подвидов классифицируют три типа использования электродвигателя:

  • Параллельной работы. В данном типе электродвигатель питается от батарей, а ДВС от топливного бака. Обе категории двигателей создают крутящий момент для движения автомобиля.
  • Последовательной работы. Заведенный двигатель внутреннего сгорания включает генератор, который или заводит электродвигатель или подзаряжает аккумуляторный блок.
  • Параллельно-последовательной работы. Данный тип гибридного двигателя соединяет электромотор, генератор, ДВС и колеса редуктором.

По большей части в гибридах используется принцип параллельной работы электродвигателя и ДВС. Его применяют также в подключаемых гибридах (плагин-гибридах), в которых по мере истечения заряда аккумуляторных батарей подключается ДВС малой мощности, работа которого в направлена на восполнение заряда АКБ.

Видео работы новой гибридной системы плагин-гибрида Toyota Prius

Преимущества и недостатки использования электродвигателей

Как и любой двигатель, электромотор в электромобиле имеет собственные плюсы и минусы использования. Для понимания данных особенностей электромоторов приведем таблицу:

ПреимуществаНедостатки
  • Небольшие габариты и малый вес.
  • Максимальный крутящий момент доступен с момента включения (при нулевых оборотах) двигателя.
  • Высокая, фактически ничем не ограниченная производительность.
  • Возможность использования рекуперативной энергии.
  • Экологически чистая работа.
  • Минимум движущихся деталей требующих замены или ремонта.
  • Отсутствие необходимости в КПП.
  • Зависим от настроек программного обеспечения, питания и производительности аккумуляторных батарей.

Будущие перспективы электродвигателя в автомобилях

Говорить о перспективах, при активном использовании электродвигателей в автомобилях, уже не разумно. Сейчас можно говорить только о происходящих и грядущих улучшениях электромоторов.

Сам электродвигатель, это достаточно совершенное устройство, апгрейд которого происходит исключительно в зависимости от потенциала использования. Ближайшие тенденции по улучшению электродвигателя направлены в сторону уменьшения размеров и массы, с сохранением и увеличением производительности.

Гораздо больше работы проводится по улучшению источников энергии для электродвигателя, а точнее аккумуляторных батарей. Их также стараются сделать меньше и легче, увеличивая объем, отдачу энергии, но при этом снижая время на подзарядку. Работа над АКБ устанавливаемых на электромобили, сейчас наиболее приоритетная в отрасли производства электромобилей, гибридных и плагин-гибридных авто.

Автор: hevcars.com.ua

Еще интересное пишут по теме

HEVCARS 🔌 Автор

Читайте самые интересные новости и статьи о электрокарах в Telegram и Facebook!

hevcars.com.ua

В настоящее время широкой популярностью пользуются двигатели, работающие от электроэнергии

Об электродвигателе

Двигатели для электромобилей подразделяются на:

  • синхронные;
  • асинхронные.

Практически сила авто – несложная установка, которая в процессе функционирования оправдывает себя. При работе на нейтрале аккумулятор заряжается. КПД составляет почти 90%. Это значит, что объем выделяемой энергии полностью направлен на создание движения. Получается преобразование электрической энергии в механическую с излучением тепла.

Принцип работы

Имеется несколько особенностей двигателя:

  1. Перед непосредственным запуском крутящий момент максимальный. На основании этого показателя не следует производить зацепление за стартер либо за сцепление.
  2. Работа происходит в большом спектре оборотов. Поэтому установка коробки для переключения передач необязательна. Чтобы изменить направление вращения, следует переставить местами полярности, вследствие этого на задней передаче можно получить выигрыш.

О достоинствах конструкции:

  • удобство и безопасность;
  • гарантийные обязательства прочностных характеристик;
  • компактность;
  • простота в управлении;
  • современность конструкции;
  • доступность.

Для работы разных типов электродвигателей в основе лежит магнитная индукция. Как правило, такие конструкции состоят из ротора и статора. Элементарные познания электротехники указывают, что ротор – это крутящийся элемент, а статор – неподвижный. На катушки, размещенные на статоре, периодически поступает постоянный ток, а такое явление обеспечивает создание магнитного поля. В конструкции двигателя стоит элемент, необходимый для управления. Он производит отключение тока с одной катушки на другую. На основании этого процесса происходит вращение ротора. Его скоростной режим определяется частотой переключения создаваемых оборотов напряжения с первой катушки на вторую. Роторы для двигателя подразделяются на следующие виды:

  • накоротко замкнутый;
  • фазный, используемый при вращении для снижения скорости тока при запуске и для контроля крутящих скоростей. Подобные двигатели применяются в крановых системах, а забор энергии происходит от природы.

Для маломощных конструкций используется магнитный индуктор. Якорь – это элемент, обеспечивающий вращение двигателя. Такой тип имеет активацию обмотки и индуктора. Различие определяется лишь по качеству обмотки. На постоянном токе отсутствует сопротивление.

Виды двигателей

Электродвигатели, зависящие от природной энергии, делятся на группы, согласно заданным критериям. По моменту вращения:

  1. Гистерезисные. При этом постоянное вращение достигается при изменениях магнитного поля ротора. Такая группа не применяется в производственных процессах.
  2. Магнитоэлектрические. Их применение довольно актуально в производстве и потребительской сфере. К такой группе относятся конструкции переменного и постоянного показателей токов.

Электродвигатель для электромобиля постоянного тока представляет собой мотор, работающий на постоянном токе, а двигатель, функционирующий на переменном токе, называется двигателем непостоянного тока. Лишь только в скорости включения гармоники можно найти их отличия. В первом случае такая скорость приравнивается к количеству частоты оборотов. Во втором – эти скоростные характеристики имеют отличительные черты.

Электродвигатель на электромобиль неизменного тока состоит:

 

  • из якоря;
  • на нем устанавливается сердечник для полюса;
  • на полюсе производится обмотка;
  • из статора;
  • вентиляционной установки;
  • установленных щеток;
  • коллектора для накапливания электрических зарядов.

Двигатели постоянного тока подразделяются на:

  1. Электродвигатель на электромобиль синхронного типа.Он напоминает мотор, функционирующий на переменном токе. Обеспечивает движение в такт с напряжением магнита. Такой тип больше подходит на электромобили с характеристиками мощности 100 и выше кВт. Одним из видов этих движков являются шаговые моторы, характеризующиеся угловым движением ротора. Питание подается на специально предназначенную обмотку. Для того чтобы обеспечить изменение положения ротора из одного места в иное, достаточно произвести перенаправление между линиями напряжений установленных обмоток.Вентильный двигатель – это одна из разновидностей синхронных. Его питание осуществляется через полупроводники.
  2. Асинхронный двигатель на электромобиле.Это мотор непостоянного тока, и скорость вращения ротора отличается от показателя магнитной индукции, которая, в свою очередь, создается напряжением. Именно эти движки обладают повышенным спросом.

Согласно узлу коллектора, различают:

  • бесколлекторные;
  • коллекторные.

В зависимости от вида активации:

  • моторы, работающие от электрических или постоянных магнитов;
  • самовозбуждающиеся от природных условий подвижные механизмы.

Разновидность двигателей также различается, от какой фазы он работает. Как правило, они бывают одно-, двух-, трех- и многофазными.

Новые разработки подобных механизмов можно приобрести в розничной продаже, а можно сконструировать самим.

Выбор двигателя

Новейшая технология производства позволяет выбрать нужный механизм для задания движения транспорту.

Критерии выбора:

  • длительность рабочего цикла;
  • мощность;
  • потребление энергии;
  • режимы работы;
  • стоимость.

При непосредственном выборе двигателя немаловажно обратить внимание на ресурс работы и обслуживание, в том числе профилактические мероприятия. Сегодня они имеются как отечественного, так и зарубежного производства. Для выбора наиболее подходящей модели стоит получить консультацию специалиста.

‘; blockSettingArray[0][«setting_type»] = 6; blockSettingArray[0][«elementPlace»] = 2; blockSettingArray[1] = []; blockSettingArray[1][«minSymbols»] = 0; blockSettingArray[1][«minHeaders»] = 0; blockSettingArray[1][«text»] = ‘

‘; blockSettingArray[1][«setting_type»] = 6; blockSettingArray[1][«elementPlace»] = 0; blockSettingArray[3] = []; blockSettingArray[3][«minSymbols»] = 1000; blockSettingArray[3][«minHeaders»] = 0; blockSettingArray[3][«text»] = ‘

ekoenergia.ru

Двигатель электрический для электромобиля, прошлое, настоящее и будущее

Где применяется электрический автомобильный двигатель

Содержание статьи

Электродвигатель для автомобиля, в качестве тягового устройства применялся на автомобилях (вернее на их прототипах), еще раньше, чем двигатель внутреннего сгорания. Однако на сегодняшний день автомобильные электрические машины (именно так они правильно называются), применяются на электромобилях, работающих исключительно на аккумуляторах или других накопителях электрической энергии, а также на гибридных автомобилях.

Гибридные автомобили называются так, потому, что в них есть и двигатель внутреннего сгорания (ДВС), и аккумуляторная батарея.

История создания

Первая, можно сказать лабораторная, модель-прототип электромобиля была создана почти 200 лет назад. Известно, что в 1828 году венгерский изобретатель Джедлик продемонстрировал тележку, которая двигалась за счет электрической энергии. Но этот образец только показал принцип электрической тяги. Ведь настоящий электродвигатель постоянного тока, способный работать достаточно долго, был изобретен в 1833 году физиком из Великобритании Уильямом Стёрдженом. В 1835 году в Голландии Кристофер Беккер и  Стратин Гронинген построили первый электромобиль. Конечно, он был несовершенен и в серийное производство не пошел.

Первый патент на электрический двигатель был получен в 1837 году Томасом Дэвенпортом, именно с этого времени можно сказать, что началось строительство электромобилей. Проблема электромобилей того времени была в очень небольшом заряде тогдашних аккумуляторов. Эту проблему пытались решить американец Томас Давенпорт и голландец Роберт Андерсон, которые создали автомобиль, двигающийся за счет электричества от одноразовых гальванических элементов в 1842 году.

Больших успехов в использовании электрической энергии для тяги достигли в 19-том веке железнодорожники. Уже в 1847 году в Питсбурге (США) работал локомотив (можно назвать его первым электровозом), который получал электричество по рельсам. Аккумуляторы были очень ненадежные и с очень небольшим ресурсом, да и энергии они запасали мало. И только улучшение рабочих характеристик аккумуляторных батарей решило проблему использования электромобилей. Нужно отметить, что первый рекорд скорости превышающей 100 км/час был зафиксирован именно электромобилем.

Так в 1899 году бельгиец Камиль Женатци на электромобиле «La Jamais Contente» разогнался до 105,882 км/ч. Как видно на рисунке (слева) этот электромобиль на резиновом ходу (на пневматических шинах), это тоже было новшеством на тот момент.

Немногим раньше в Лондоне было запущено движение электрических омнибусов (тогдашних автобусов) благодаря Ральфу Уорду. В это же время в Нью-Йорке начали работать такси на электротяге, стали выпускаться электровелосипеды и многие другие подвижные единицы на электричестве. В России они (электромобили, точнее омнибусы) появились в 1901 году (фото справа) разработки инженера Романова. Уже в 1902 году заводом «Дукс» в Москве выпускался электромобиль для частного использования (фото слева).

 

 

Напомним, что только в 1878 году Николаусом Отто был запущен в серию четырехтактный двигатель внутреннего сгорания, который можно было устанавливать на автомобиль. Он с некоторыми доработками служит «верой и правдой» автомобилистам и по сей день.

Да, двигатель Отто и резкое падение цен на нефть, из которой получают бензин, вытеснило электромобили почти на 100 лет с рынка, но они вновь завоевывают себе «место под солнцем», тесня классические ДВС. Все это благодаря тому, что электромобили практически бесшумны, экологически безвредны и экономически выгодны в эксплуатации. Нужно напомнить, что КПД электродвигателя высокий и составляет (85…95 %), да и электричество дешевеет. Если его (электричество) получать при помощи солнечных батарей или ветрогенераторов, то эксплуатация электромобиля получается почти бесплатной.

На сегодняшний день доля электромобилей среди всего автопарка составляет около 1%, но это пока. За последние 2 года количество продаж электрокаров увеличилось на 45%. Осталось только подождать, когда бензиновые и дизельные автомобили потихоньку сойдут с рынка.

Принцип работы электромобиля

Классическая схема электромобиля представлена на рисунке справа. Аккумуляторы расположенные здесь вдоль кузова отдают свою энергию через устройство управления (УУ) электродвигателю (ЭД), а он вращает колеса. Но эта компоновка далека от совершенства. Дело в том, что электропривод имеет очень важное преимущество перед любыми другими типами приводов – рекуперация. Рекуперация, это преобразование энергии движения в электрическую. Все мы с вами знаем, что энергия никуда не исчезает, она может только преобразовываться из одного вида в другой. Так вот, энергия движения (кинетическая энергия) при торможении автомобиля преобразуется в тепловую. Мы с вами просто нагреваем тормозные колодки, и это тепло отдаем атмосфере. То есть, по сути дела выбрасываем эту энергию. В электромобилях и в гибридах мы можем большую часть кинетики преобразовать в электричество и опять накопить его в аккумуляторе.

Гибридные автомобили всегда имеют кроме аккумулятора и двигатель внутреннего сгорания. Зачем? Для того чтобы удлинить расстояние езды на электромобиле. Дело в том, что даже современные аккумуляторы могут накопить энергии на 100, ну максимум на 200 километров пробега. Согласитесь, что это совсем немного. При использовании ДВС, в качестве дополнительного источника энергии можно удлинить путь до 800, а иногда и до 1000 километров без подзарядки аккумулятора и без дозаправки бензином или дизельным топливом.

Как правило, на авто такого типа (гибридных автомобилях) нет прямого воздействия двигателя на ведущие колеса. ДВС вращает генератор, который вырабатывает электрическую энергию, и уже эта энергия подается на электродвигатели либо на накопители энергии, если автомобиль едет по инерции или стоит (на светофоре, например). Накопителями энергии могут быть не только аккумуляторы, в последнее время все большей популярностью пользуются суперконденсаторы.

Двигатель  на гибридных автомобилях может быть подключен к генератору, который вырабатывает электричество. Электричество это можно использовать для разгона (его обычно не хватает, аккумулятор плохо отдает электроэнергию на старте), или для зарядки аккумулятора, если авто на выбеге или стоянке. Крайне редко ДВС не подключен к генератору. При такой схеме ДВС помогает электродвигателю разгонять автомобиль.Где же экономия? Все дело в том, что при любой схеме подключения ДВС и электродвигателя, двигатель внутреннего сгорания всегда работает в номинальном режиме. В котором достигается максимальная экономия. КПД у ДВС всегда указывается для номинального режима и он колеблется от 36 до 42. Для малых оборотов этот КПД не превышает 7…10%.

Существует и более сложные системы. Вот, например, как взаимодействуют  детали в современном гибридном автомобиле «Тойота Приус». Здесь ДВС может работать на генератор, а может и помогать вращать ведущие колеса через планетарный механизм. При торможении, мотор/генератор (MG2) преобразует кинетическую энергию в электрическую, заряжая аккумулятор. В результате чего достигается неплохая экономия. Да это сложно, но это того стоит. Расход у Тойоты-Приус около 3-х литров бензина на 100 километров.

Устройство тягового электродвигателя автомобиля

Устройство электродвигателя автомобиля зависит, от многих факторов.  Электродвигатели для электромобилей могут быть как постоянного, так и переменного тока. В последнее время на машину такого типа ставят только двигатель переменного тока (синхронный или асинхронный).  Первые электромоторы для автомобилей были, конечно, постоянного тока. Это и логично, потому как аккумулятор выдает постоянный ток, и двигатель электрический также постоянного тока. Их применяют и сейчас, но уже гораздо реже. Однако, все не так просто, как кажется на первый взгляд. Электродвигатели переменного тока гораздо экономичнее и надежнее. Выглядеть они могут точно так же как и электродвигатели постоянного тока. Разные типы электродвигателей имеют различную маркировку. AC – говорит о том, что этот двигатель переменного тока, DC – постоянного.

Принцип работы любого электродвигателя состоит во взаимодействии магнитных полей. Еще Фарадей на заре электричества заметил, что если проводник, по которому течет ток, поместить в постоянное магнитное поле, то этот проводник стремится вырваться из этого поля отклоняясь в ту или иную сторону в зависимости от направления движения тока. Если этих проводников много, и магнитное поле сильное, то и работа такого двигателя постоянного тока  будет соответствующей.

В каждом электродвигателе есть ротор (его иногда называют якорь) и статор (его еще называют индуктором). Ротором является вращающееся часть, статором – не вращающееся (стационарная). И ротор и статор имеют обмотки состоящие из отдельных проводников. Для подачи электрического тока на вращающуюся часть двигателя существует коллектор (набор медных пластин собранных в цилиндр). От статора на коллектор ток передается при помощи специальных щеток. Взаимодействие магнитных полей заставляет ротор совершать вращение.

Электродвигатели переменного тока работают несколько по-другому. Статор создает магнитное поле, которое само вращается. Оно (поле) может увлекать за собой стальные предметы, то есть заставлять вращаться ротор. По этой причине на роторе обмотка не нужна. Но в этом случае скорость вращения ротора будет отставать от скорости вращения магнитного поля статора. Такие электродвигатели нарываются асинхронными.

Для того, чтобы точно знать с какой частотой вращается ротор и регулировать эту частоту, необходимо на роторе разместить электрическую обмотку.  Такие электродвигатели называются синхронными. Но вновь появляется слабое звено электродвигателя – коллектор. Щетки изнашиваются и их нужно менять. Асинхронные двигатели в обслуживании не нуждаются.

На рисунке представлено два вида синхронных двигателей (с явными и неявными полюсами). Повторимся, что асинхронный двигатель отличается лишь тем, что на якоре нет обмотки.

При работе каждый электродвигатель нагревается. По этой причине тема охлаждения электрических машин очень важна. Система охлаждения может быть автономная и принудительная. На электродвигателях большегрузных автомобилей, например БелАЗ, охлаждение принудительное (воздух для охлаждения подается специальным вентилятором). У машин малого класса и легковых, на самом двигателе есть крыльчатка, которая продувает воздух через двигатель, тем самым охлаждая его.

Характеристики электродвигателей автомобильных

Характеристика электродвигателя, это соотношение его параметров к его цене. Лучше всего это представить в табличной форме. В таблице представлены популярные электродвигатели как постоянного DC, так и переменного AC тока. Напряжение у некоторых двигателей имеет несколько значений, это значит, что они способны работать на всех указанных напряжениях. Мощность N указана номинальная. Вращающий момент M, тоже при номинальном режиме работы. Частота вращения указана как максимально допустимая.

Характеристики электрического двигателя автомобиля невозможно сравнивать спонтанно. Для каждого конкретного случая, для определенного автомобиля, может быть разработан свой, оригинальный электродвигатель. Но электродвигатель переменного тока, а он здесь представлен один, явно отличается в лучшую сторону, от электродвигателей постоянного тока той же мощности, хотя бы по соотношению цены и вырабатываемой мощности (AC – 10.7 $/кВт, DC – 450 $/кВт).

Перспективы развития

Внедрение синхронных и асинхронных двигателей на автомобилях тормозилось медленным развитием электроники способной контролировать процессы в этих самых двигателя. Теперь эти барьеры снимаются, электроника становится надежной и относительно дешевой. По этой причине в скором времени электродвигатели переменного тока на электромобилях скорее всего будут внедряться практически повсеместно.

Изобретение новых конструкционных материалов позволяет повышать надежность и долговечность электродвигателей.

Что касается электромобилей в целом, то за ними большое будущее.

znayauto.ru

Электродвигатели

Электродвигатели для электромобилей, электромоторы

Какой мощности выбрать электродвигатель для электромобиля?

Мощность электродвигателя зависит от массы будущего электромобиля и необходимых динамических характеристик.

Таблица выбора мощности электродвигатель для электромобиля,

Электродвигатель Масса электромобиля Динамические характеристики Запас хода
Motor D&D Motor Systems, Inc. ES-31B DC Series Wound DC 18 квт 1281 кг 100 км/ч 50 км
ADC FB1- 4001 600 кг 90 км/ч 100 км
ADC 9 Inch 21 КВт 1640 кг 130 км/ч 123 км

по данным существующих электромобилей.

Электромоторы для электромобилей, таблица

Модель Ном. мощн. (КВт)  Ном. крут. момент (Н*м) Макс. мощн (КВт)  Макс. крут. момент (Н*м) Скорость вращения шпинделя (об/мин) Вес (кг) 
Электродвигатель Perm-Motor PMG-132  7.2  20.5  14.5  38.5  3480  11
 LEMCO LEM-200  4.3  14.2  17.2  57  2880  11
Электродвигатель Brushless Etek 36V  3.6  13.6  10.8  40.9  2520  10.2
Perm-Motor PMS-156  21.3  33.9  46  73.2  6000  25.4
Электродвигатель ADC #203-06-4001A 8\’\’ 72-144VDC 17.5HP Double Shaft  16.3  23.95  28.0  45.3  6500  48
Электродвигатель ADC #FB1-4001 9.1\’\’ 72-144VDC 19.5HP Single Shaft  21.5  34.2  36.8  81.9  6000  66.5
Solectria (Azure Dynamics) AC42  21  42  78  150  4000  66.3
Solectria (Azure Dynamics) AC55  34    78  250  2000  105

.

Модель Ном. мощн. (КВт) Ном. крут. момент (Н*м) Макс. мощн. (КВт) Макс. крут. момент (Н*м) Скорость вращения шпинделя (об/мин) Вес (кг)
SIEMENS
ACW-80-4
synchro-nous
 21         20              38              60           12500       22 
SIEMENS
1PV5105 WS12
induction
 18  69  78.4  125  10000            49 
SIEMENS
1PV5133-4WS18
induction 
 30  85  78.4  175  9700  68

Каталог двигателей для электромобилей

Электродвигатель ADC #203-06-4001A 8\’\’ 72-144VDC 17.5HP Double S

Электродвигатель ADC #FB1-4001 9.1\’\’ 72-144VDC 19.5HP Single Shaft

Электродвигатель Azure Dynamics AC24

Электродвигатель Brushless Etek 36V

Электродвигатель Differential Gear Bridge

Электродвигатель Golden Motor 90BLDC-001

Электродвигатель Golden Motor HPM5000B-48V

Электродвигатель Golden Motor HPM5000B-72V

Электродвигатель LEMCO LEM-200

Электродвигатель Perm-Motor PMG-132

Электродвигатель Perm-Motor PMS-156

Электродвигатель SIEMENS 1PV5105 WS12 induction

Электродвигатель SIEMENS 1PV5133-4WS18 induction

Электродвигатель SIEMENS ACW-80-4 synchro-nous

Электродвигатель Solectria (Azure Dynamics) AC42

Электродвигатель Solectria (Azure Dynamics) AC55

Электродвигатель ДПТ-45

electro-mobiles.ru

8Фев

Такты работы двигателя внутреннего сгорания – Такты работы двигателя внутреннего сгорания

Такты работы двигателя внутреннего сгорания

Четырехтактные двигатели названы так, поскольку схему полного цикла сгорания топлива и выпуска отработавших газов можно разделить на четыре основных фазы, или такта. Четырехтактные двигатели работают следующим образом.

Первый такт – опускание поршня и открытие впускного клапана. Топливовоздушная смесь поступает через открытый впускной клапан в цилиндр. Клапан закрывается в конце первого такта.

 


Второй такт – поршень поднимается вверх, сжимая топливовоздушную смесь.

 


Третий (рабочий) такт – воспламенение смеси. Если двигатель бензиновый, то смесь поджигается свечой зажигания. В дизельных двигателях поршень сжимает только воздух, поэтому на третьем такте происходит впрыск топлива в уже сжатый (и тем самым нагретый) воздух и его воспламенение. Расширяющийся газ, образующийся при сгорании смеси, толкает поршень вниз, прокручивая коленчатый вал.

 


Четвертый такт – поднятие поршня вверх и выпуск отработавшего газа. Выпускной клапан открывается в начале такта, закрывается в конце. В конце четвертого такта открывается впускной клапан.

 

 

По завершению четвертого такта цикл повторяется.

 

 

Открытие и закрытие клапанов осуществляется в точной синхронизации с вращением коленчатого вала посредством привода ГРМ.

KnowCar — понятная энциклопедия по устройству автомобилей, где сложное описано простым языком, с иллюстрациями и видео, а статьи рассортированы по разделам. Энциклопедия в процессе наполнения. Если есть вопросы или предложения, свяжитесь с командой. Все контактные данные — внизу сайта.

knowcar.ru

его принцип работы и отличия от четырехтактного

Поршневые двигатели внутреннего сгорания (ДВС) широко используются в разных сферах человеческой жизни. Однако не все они работают одинаково. Между ними есть одно принципиальное отличие. В зависимости от конструкции рабочий цикл двигателя может состоять из двух или четырёх тактов. Поэтому и называется он соответственно двухтактным двигателем или четырехтактным. Это справедливо как для бензинового мотора, так и для дизеля.

Основные термины и определения

Принцип работы всех поршневых двигателей заключается в превращении энергии сгорания топлива в механическую энергию. Передаточным звеном является кривошипно-шатунный механизм. Для описания их работы используются следующие понятия:

  • Рабочий цикл — это определённая последовательность взаимосвязанных событий, вследствие которых происходит преобразование энергии теплового расширения сгорающего топлива в механическую энергию перемещения поршня и поворота коленчатого вала.
  • Такт — последовательность изменения состояния узлов и механизмов, происходящая в течение одного хода поршня.
  • Ход поршня — это расстояние, которое проходит поршень внутри цилиндра между его крайними точками.
  • Верхняя мёртвая точка (ВМТ) — это наивысшее положение поршня в цилиндре, при этом объем камера сгорания имеет минимальный объем.
  • Нижняя мёртвая точка (НМТ) — максимально удалённое от ВМТ положение поршня.
  • Впуск — заполнение цилиндра топливовоздушной смесью.
  • Сжатие — уменьшение объёма смеси и сжатие её под давлением поршня.
  • Рабочий ход — перемещение поршня под давлением газов сгорающего топлива.
  • Выпуск — выталкивание из цилиндра продуктов горения топлива.

Принцип работы четырехтактного двигателя

Четырехтактным называется такой поршневой двигатель, в котором один рабочий цикл состоит из четырёх тактов. Они имеют следующие названия:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

За один цикл поршень два раза двигается от ВМТ к НМТ и обратно, а коленчатый вал проворачивается на два полных оборота. События, которые происходят за это время в двигателе, имеют чётко определённую последовательность.

Впуск. Поршень перемещается вниз, к НМТ. Под ним образуется разрежение, благодаря которому через открытую тарелку впускного клапана из впускного коллектора в цилиндр затягивается топливо, смешанное с воздухом. Поршень проходит нижнюю мёртвую точку, после чего впускной клапан закрывает впускной коллектор.

Такт сжатия. Продолжающий двигаться вверх поршень сжимает воздушную смесь.

В верхней мёртвой точке над поршнем происходит поджог горючей смеси. Сгорая, оно вызывает значительное увеличение давления на поршень. Начинается такт рабочего хода. Под действием давления сгорающих газов поршень снова движется к НМТ, выполняя при этом полезную работу.

После прохождения поршнем НМТ открывается тарелка выпускной клапан. Поршень, двигаясь к ВМТ, выталкивает выхлопные газы в выпускной коллектор. Это такт выпуска.

Затем снова начинается такт впуска и так бесконечно.

Рабочий цикл из двух тактов

Одноцилиндровый двухтактный двигатель работает по-другому. Здесь все четыре действия происходят за один полный оборот коленвала. При этом поршень делает только два такта (расширения и сжатия), двигаясь от ВМТ к НМТ и обратно. А впуск и выпуск являются частью этих двух тактов. Подробней принцип работы двухтактного двигателя внутреннего сгорания можно описать следующим образом.

Газы от сгорания топливной смеси толкают поршень вниз от ВМТ. Примерно на середине хода поршня в гильзе цилиндра открывается выпускное отверстие, через которое часть газов выбрасывается в патрубок глушителя. Продолжая двигаться вниз, поршень создаёт давление, благодаря которому в цилиндр поступает новая порция топлива, одновременно продувая его от остатков сгоревших газов. Подходя к ВМТ, поршень сжимает смесь и система зажигания воспламеняет её. Снова начинается такт расширения.

В авиамоделестроении широко используется двухтактный дизельный двигатель, его принцип работы тот же, что и у бензинового. Разница в том, что смесь топлива с воздухом самостоятельно воспламеняется в конце цикла сжатия. Горючим для таких моторов служит смесь эфира с авиационным керосином. Воспламенение этого горючего происходит при гораздо меньшей степени сжатия, чем у двигателей на традиционном дизельном топливе.

Конструктивные особенности и различия

Двухтактный двигатель отличается от четырехтактного не только тем, за сколько тактов работы происходит газообмен.

Четырехтактный требует наличия системы газораспределения (впускные и выпускные клапаны, распределительный вал с кулачковым механизмом и т. д. ). В двухтактном такой системы нет, благодаря этому он гораздо проще.

Двигатель с четырьмя тактами работы требует полноценной системы смазки из-за большого количества движущихся и трущихся частей. Для смазки двигателя с двумя тактами работы можно использовать масло просто разводя его вместе с топливом.

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Удельная мощность представляет собой величину отношения мощности мотора к его весу. Она также выше у двухтактных. Для них нужен менее тяжёлый маховик и не нужны дополнительные системы (газораспределения и смазки), утяжеляющие конструкцию. КПД у них также выше.

Экономичность (расход топлива на единицу мощности) выше у четырехтактных. Двигатели с двумя тактами часть топлива теряют впустую при продувке цилиндра.

Экологичность двухтактных ниже, опять-таки из-за потери несгоревшего топлива и масла. Убедиться в этом можно на примере двухтактного лодочного мотора. Он всегда оставляет на воде тонкую плёнку из несгоревшего топлива.

Шумность выше у двухтактных. Это связано с тем, что выхлопные газы из цилиндра вырываются с большой скоростью.

Ресурс работы выше у четырехтактных. Отдельная система смазки и меньшая оборотистость двигателя положительно сказываются на сроке его службы.

Проще обслуживать, безусловно, двухтактные моторы из-за меньшего количества вспомогательных систем. Масса больше у четырехтактных. Двухтактные дешевле.

В некоторых механизмах применение двухтактных двигателей является однозначным. Это, например, бензопилы. Высокая удельная мощность, маленький вес и простота делают его здесь безусловным фаворитом.

Двухтактные двигатели используются также в мототехнике, лодочных моторах, газонокосилках, скутерах, авиамоделировании. В большинстве самодельных машин и механизмов умельцы также используют двухтактный мотор.

Однотактные и трехтактные силовые агрегаты

Существуют также одно- и трехтактные двигатели. Однотактные двигатели делают с внешней камерой сгорания. Такая схема реализует все четыре такта за один ход поршня. Трехтактный двигатель Ванкеля является роторно-поршневым. Из-за сложности конструкции и чрезвычайной требовательности к качеству обработки поверхностей такие моторы не получили широкого распространения.

pochini.guru

Четырехтактный двигатель: принцип работы, основные отличия

Четырехтактный двигатель представляет собой поршневой мотор внутреннего сгорания. Рабочий процесс всех цилиндров в этих агрегатах занимает 2 кругооборота коленчатого вала или четыре поршневых такта. С середины ХХ века 4 тактный двигатель — самый распространенный вид поршневых моторов.

Принцип работы и основная характеристика

Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:

  • цилиндр заполняется топливной смесью;
  • смесь сжимается;
  • топливная смесь воспламеняется;
  • газы расширяются и цилиндр очищается.

В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.

Двухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за два оборота коленвала или за четыре такта.

Основные характерные показатели 4 тактного двигателя:

  1. За счет движения рабочего поршня происходит обмен газов.
  2. Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
  3. Происходит обмен газов в момент отдельного полуоборота коленвала.
  4. Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.

История

Приблизительно в 1854—1857 годах итальянцами Феличче Матоци и Евгением Барсанти было создано устройство, которое по имеющимся сегодня сведениям было похоже на четырехтактный мотор. Изобретение итальянцев было утеряно и только в 1861 году. Алфоном де Роше был запатентован двигатель такого типа.

Впервые пригодный к работе четырехтактный мотор создал немецкий инженер Николаус Отто. В его честь был назван четырехтактный цикл работы циклом Отто, а 4-тактный мотор, применяющий свечи зажигания, называют двигателем Отто.

Особенности работы 4-х тактного двигателя

В двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.

Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.

Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.

Конструкция агрегата

Распредвал четырехтактного мотора размещается в крышке цилиндра. Он приводится в действие ведущим колесом, вмонтированном в коленчатый вал. Распределительный вал открывает и закрывает один из клапанов: выпускной или впускной, в зависимости от расположения поршня. На распределительном вале также расположены кулачки, которые приводят в действие клапанные коромысла.

Коромысла после срабатывания, начинают воздействовать на определенный клапан и открывают его. Важно, что между регулировочным винтом и клапаном должен быть тепловой зазор (узкий промежуток). При нагреве металл расширяется, поэтому, если зазор слишком маленький или его нет вообще, клапаны не могут закрыть полностью каналы выпуска и впуска.

У клапана впуска зазор должен быть меньше, чем у клапана выпуска, потому как газы выхлопа горячее, чем смесь. Соответственно клапан впуска нагревается меньше, чем клапаны выпуска.

Работа двигателя

Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.

Этапы работы :

  1. Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
  2. Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
  3. Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
  4. Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.

Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей

Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.

Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.

Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.

Основные отличия двухтактных и четырехтактных двигателей:

  1. Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
  2. Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
  3. У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.

Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.

Двигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.

В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).

В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.

В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.

Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.

tokar.guru

4 тактный двигатель: принцип работы

4 тактный двигатель является поршневым мотором внутреннего сгорания. В этих агрегатах рабочий процесс всех цилиндров занимает два кругооборота коленчатого вала. Два кругооборота коленчатого вала также можно охарактеризовать как четыре поршневых такта, от чего и произошло название четырехтактный двигатель.

Начиная с середины двадцатого века четырехтактный двигатель является самым распространенным видом поршневых моторов внутреннего сгорания.

Основные характеристики 4 тактного двигателя

  1. Обмен газов происходит за счет движения рабочего поршня;
  2. 4 тактный двигатель обладает газораспределительным механизмом, который позволяет переключить цилиндровую полость на впуск и выпуск;
  3. Обмен газов происходит в момент отдельного полуоборота коленвала;
  4. Цепная, ременная передача и шестеренчатые редукторы позволяют изменить моменты зажигания, впрыскивания бензина и привода газораспределительного механизма относительно частоты верчения коленвала.

История

Примерно 1854-1857 годов итальянцы Евгенио Барсанти и Феличче Матоци создали устройство, которое, согласно существующим сведениям, походило на 4 тактный мотор. Несмотря на это, 4 тактный мотор был запатентован только в 1861 Алфоном де Роше, поскольку изобретение итальянцев было потеряно.

В первый раз пригодный к работе 4 тактный мотор был создан немецким инженером Николаусом Отто, в честь которого четырехтактный цикл назвали циклом Отто, а применяющий свечи зажигания 4 тактный мотор – двигателем Отто.

 

 

 

4 тактный двигатель принцип работы

В двухтактном моторе смазывание коленвала, цилиндровых и поршневых пальцев, подшипника коленвала, поршня и компрессионных колец происходит путем заливки масла в бензин. 4 тактный мотор отличается тем, что в нем коленчатый вал расположен в масляной ванне. За счет этой особенности необходимость в добавлении масла или смешивании топлива попросту отсутствует. Все, что нужно сделать владельцу транспортного средства – это наполнить топливный бак бензином, после чего можно продолжать пользоваться транспортом.

Таким образом, автовладельцу становится незачем приобретать специальное масло, которое нужно для функционирования двухтактных моторов. Помимо этого, 4 тактный мотор отличается уменьшенным количеством нагара на стенах глушителя и поршневом зеркале. Еще одним важным отличием является то, что при двухтактном моторе совершается выплеск горючей смеси в выхлопную трубу – это обусловлено его устройством.

Стоит признать, что четырехтактные двигатели также обладают небольшими недостатками. К примеру, у таких двигателей повышенная длительность старта скутера с места. Также не особо качественными являются работы по регулированию клапанного теплового зазора. При этом следует отметить, что проблему с повышенной длительностью старта скутера можно решить оптимизацией опций центробежного сцепления и передачи.

 

 

 

Конструкция агрегата

Устройство 4 тактного двигателя выглядит таким образом: распредвал размещен в крышке цилиндра и приводится в действие с помощью ведущего колеса, вмонтированного на коленчатом вале. В устройстве 4 тактного двигателя распределительный вал способен открывать и закрывать впускной и выпускной клапан, но лишь один из них, а какой конкретно – зависит от расположения поршня. Помимо этого, на распределительном вале расположены кулачки, с помощью которых приводятся в действие коромысла клапанов.

После своего срабатывания коромысла начинают воздействовать на один из двух клапанов, что приводит к его открытию. Стоит отметить, что между клапаном и регулировочным винтом должен быть узкий промежуток (его еще называют тепловым зазором) – во время нагрева происходит расширение металла, поэтому в случае неимения или слишком маленького размера зазора клапаны не смогут полностью закрыть каналы впуска и выпуска. Зазор при клапане выпуска должен быть большего размера, чем у клапана впуска, поскольку газы выхлопа более горячие, нежели горючая смесь, и, соответственно, это приводит к тому, что клапан выпуска нагревается больше клапана впуска.

Вот и все описание устройства 4 тактного двигателя.

Работа 4 тактного двигателя

Как уже было сказано, работа 4 тактного двигателя состоит из двух оборотов коленвала или, еще можно сказать, четырех тактов поршня.

Работа 4 тактного двигателя происходит таким образом:

  1. (впуск). Поршень продвигается в нижнюю сторону, что приводит к открытию клапана впуска. В итоге горючая смесь оказывается в цилиндре, куда она попадает из карбюратора. По достижению поршнем нижнего положения совершается закрытие клапана впуска.
  2. (сжатие). Поршень передвигается в верхнюю сторону, что провоцирует сжимание горючей смеси. После того, как поршень приближается к верхней мертвой точке, совершается возгорание сжатого поршнем бензина.
  3. (расширение). Происходит возгорание бензина, в результате которого он сгорает – это приводит к растяжению горючих газов и, соответственно, к движению поршня вниз (два клапана оказываются закрытыми).
  4. (выпуск). По инерции коленчатый вал продолжает кругооборот вокруг своей оси, а поршень – продвигаться вверх. Вместе с этим происходит открытие клапана выпуска, откуда выхлопные газы попадают в трубу. Когда поршень доходит до верхней мертвой точки, совершается закрытие клапана впуска.

По окончанию работы 4 тактного двигателя четыре такта проходят заново.

Функционирование двухтактного агрегата

Хоть и статья не об этом, однако стоит коротко описать функционирование двухтактного двигателя с целью сравнить их. Как становится понятно из наименования, функционирование такого мотора проходит только через два такта.

 

 

  1. Поршень продвигается наверх, что приводит к сжатию горючей смеси, после которого (без достижения верхней мертвой точки) она воспламеняется. По достижению поршнем верхней мертвой точки открываются окна впуска в стене цилиндра, из-за чего горючая смесь перетекает в кривошипную камеру.
  2. Под действием растягивающихся газов поршень продвигается в нижнюю сторону. Пребывая в нижнем положении, поршень открывает окна впуска и выпуска. Газы попадают в трубу выхлопа, а на их месте оказывается горючая смесь.

avtomoto-best.ru

4ех тактный бензиновый двигатель внутреннего сгорания

 

4ех тактный бензиновый двигатель стал основной рабочей «лошадкой» во многих сферах жизни человека, особенно в транспортной.

История 4ех тактного ДВС началась с французского инженер Этьена Ленуара. Он создал первый надёжно работавший двигатель в 1860 году. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. Двигатель Отто и стал основой поршневого двигателестроения. А закрепил его на рынке автомобилестроения Генри Форд и его знаменитая массовая модель Форд Т, выпускавшийся с 1908 года.

Столь успешным двигатель стал благодаря своей простой и в тоже время работоспособной конструкцией. Физика работы двигателя основана на термобарических процессах газов.

Соединение горючего и воздуха приводит к образованию смеси. Сгорающая смесь воздуха и горючего способствует образованию давления. Оно направляется на поршень. Который в свою очередь вращает коленчатый вал через кривошипно-шатунный механизм. В свою очередь с вала уже снимается полезная работа. Отмечается цикличность работы механизма в целом.

Процесс работы двигателя.

Такт 1– Впуск.

Вначале впуска поршень находится в верхнем положении, так называемая верхняя мертвая точка (ВМТ) и должен опуститься в крайнее нижнее положение – нижняя мертвая точка (НМТ). При этом впускной клапан открыт свежая порция топливной смеси засасывается внутрь цилиндра. Впускной клапан открывается деталями распределительного вала — кулачками.

Такт 2 – Сжатие.

Поршень двигается в обратном направлении. Рабочая смесь постепенно сжимается. Она становится намного горячее. Степенью сжатия можно называть отношение объемов цилиндра в НМТ и камеры сгорания в ВМТ. Если используется инжекторная система смесеобразования, то на данном этапе в цилиндр еще подается порция топлива, которое распыляется через форсунку.

Такт 3 – Рабочий такт.

Рабочий ход поршня обеспечивает сгорание топлива с дальнейшим расширением. После полного сжатия горючего свеча дает искру, которая в свою очередь, воспламеняет смесь. Воздушно-топливная смесь сгорая расширяется, создавая повышенное давление на поршень. Происходит выталкивание поршня с ускорением.

Такт 4 – Выпуск.

Когда поршень попадает в крайнее нижнее положение, выпускной клапан открыт. Поршень движется вверх и выталкивает из цилиндра уже отработанные газы. При дохождения поршня до ВМТ, выпускной клапан закрывается. С этого момента рабочий цикл из 4 тактов повторяется.
Запуск не обязательно начинается после выпуска. Открытие обеих клапанов одновременно называется перекрытием. Оно важно для того, чтобы цилиндры лучше наполнялись горючей смесью и лучше были очищены от отработанных газов.

Основные параметры ДВС

Мощность и крутящий момент двигателя

Изменяется в лошадиных силах или в Ваттах. Мощность — основной параметр двигателя. Мощность двигателя показывает то количество энергии который можно «снять» с вала двигателя при оптимальном режиме работы двигателя. Показывает, какую работу двигатель может выполнить за промежуток времени, а более точнее, сколько энергии успеет передать сгорающее топливо кривошип — шатунной системе через поршень за временной промежуток рабочего такта. Мощность находится в прямой зависимости от крутящего момента.
Крутящий момент — сила, с которой проворачивается вал двигателя. Зависит от плеча воздействия шатуна на кривошип вала двигателя. Или какое тормозное усилие нужно приложить к валу двигателя, чтобы его остановить.


Диаграмма зависимость мощности и крутящего момента от числа оборотов коленчатого вала двигателя Audi 4,2 л V8 FSI.

Объем двигателя

Объем цилиндра  — это закрытый объем, в котором рабочее тело (сгорающая топливно-воздушная смесь) действует на часть замкнутого пространства — поршень Объем двигателя складывается из всех объемов всех цилиндров.
Сложив объем углубления в головке над поршнем и объем полости цилиндра, получают объем камеры сгорания.
Рабочим объемом именуют пространство, которое высвобождается передвигающимся поршнем в цилиндре.
Полный объем равен сумме рабочего объема и объема камеры сгорания.
Литраж определяют сложением всех рабочих объемов цилиндров.


Количество цилиндров

В современных моторах количество цилиндров варьируется в широких диапазонах. Теоретически их может быть от 1 до не ограниченного количества. Но на практике в основном применяют в 4ех тактных двигателях компоновку от 4 до 12 цилиндров. Количество цилиндров зависит от мощности, степени сжатия и скорости оборота коленчатого вала. Огромную мощность, высокие обороты и высокую степень сжатия очень сложно организовать в цилиндре большого диаметра.


Мощность. Она зависит от количества и энергии рабочего тела (сгорающей газовой смеси), рабочее тело сильно нагревает поршень и цилиндр, чем больше поршень по диаметру, тем больше вероятность его нагрева и прогорания в центре. Именно с центра поршня тяжело снять излишки тепла.
Обороты коленчатого вала. Чем больше обороты, тем выше линейные и осевые скорости в кривошип-шатунном механизме и тем больше инертные силы, тем выше нагрузки действующие на поршень, шатун, вал, цилиндр. Поэтому тихоходные живут дольше своих «оборотистых собратья».
Степень сжатия. Чем больше нужно сжимать газ, тем большие нагрузки испытывает поршень и кривошип-шатунный механизм.
С выше сказанным вывод один — чем меньше диаметр цилиндра тем меньшие нагрузки испытывают элементы кривошип-шатунной группы. Но для создания большой мощности нужен больший объем камеры сгорания. Многоцилиндровость — это техническое решения, которое позволило решить главную задачу — увеличить мощность двигателя, не увеличивая при этом линейные и осевые инерционные силы и как итог механические нагрузки, а также поддержания в разумных пределах тепловых нагрузок, действующие на двигатель.

Степень сжатия

Степень сжатия очень сильно влияет на то, какое топливо следует применять для бензинового двигателя.

Степень сжатия определяют следующим способом, если разделить полный объем цилиндра на объем камеры сгорания. Она показывает уменьшение объема во время движения поршня. Степень сжатия сильно влияет на экономичность, экологичность и КПД двигателя.
Также топливная смесь может подаваться в цилиндры под давлением, что увеличивает количество свежего заряда.

Свежий заряд подаеться в цилиндры двигатели двумя способами:
• Без наддува: воздух или смесь всасывается в цилиндре под дествием разряжения и наполняет цилиндр с атмосферным давление.
• С наддувом: процесс протекает под давлением, в цилиндры подается газовая смесь с давлением в несколько раз выше атмосферного.

Дополнительные параметры ДВС

На выбор двигателя для механических средств также влияют дополнительные параметры, которые в одних системах могут прижиться, а в других создадут ряд проблем.

Способы смесеобразования

• Внешний: горючая смесь образуется за пределами цилиндров. К таким относятся карбюраторные и газовые двигатели.
• Внутренний: горючее впрыскивается непосредственно внутри цилиндров. Инжекторный тип смесеобразования.

Способы охлаждения

1. Жидкостный.
2. Воздушный.

Способ смазки

• Смешанный (масло смешивают со смесью горючих материалов).
• Раздельный (масло уже сразу заливают в картер).

Частота вращения

• Двигатели на тихом ходу.
• Двигатели, имеющие повышенную частоту вращения.
• Быстроходные двигатели.

Материал двигателя

Изготовление современных двигателей возможно из 3-х типов материалов:
• чугуна или других ферросплавов. Они наиболее прочные, но при этом имеют немалый вес.
• алюминия и его сплавов. Вес небольшой, прочность средняя.
• магниевых сплавов. По весу они самые маленькие, а вот прочностью они наделены высокой. Но цена таких двигателей огромна.

Компоновка ДВС

1. Рядный.

Все цилиндры располагаются в ряд. Такая конструкция двигателей самая простая, детали к ним имеют несложную технологию производства.

2. V- образный двигатель.
Цилиндры в таком двигателе расставлены в форме буквы V, в двух плоскостях, двумя рядами под углом 600 или 900. Образовавшийся между ними угол – это угол развала. Плюсом такого двигателя является мощность. Его габариты могут быть уменьшены за счет смещения в развал других важных компонентов. Его длина меньше, а ширина больше. Но из-за сложности таких конструкций бывает непросто определить центр их тяжести.

3. Оппозитные двигатели (маркировка В).
Они относительно уравновешены, для уменьшения вибрации все элементы располагают симметрично. Их конструктивная особенность – центральное крепление вала на жестком блоке. Это так же влияет на степень вибрации. Угол развала составляет 1800.

4. Рядно-смещенные агрегаты (маркировки VR).
Данную компоновку отличает малый угол развала (150) V-образного двигателя в содружестве с рядным аналогом. Это позволяет уменьшить размеры продольного и поперечного агрегатов. Маркировка VR расшифровывается как V – образный, R — рядный.

5. W (или дубль V) — образный.
Самый сложный двигатель. Известен двумя видами компоновки.
1) Три ряда, угол развала большой.
2) Две компоновки VR. Они компактны, несмотря на большое количество цилиндров.

 

6. Радиальный (звездообразный) поршневой двигатель.
Имеет небольшой размер длины с плотным размещение нескольких штук цилиндров. Они располагаются вокруг коленчатого вала радиальными лучами с равными углами. Ее отличает от других наличие кривошипно-шатунного механизма. В данной конструкции один цилиндр выступает главным, остальные – прицепные – крепятся к первому по периферии. Недостаток: в состоянии покоя нижние цилиндры могут пострадать от протекания масла. Рекомендуют до начала запуска двигателя проверить, что в нижних цилиндрах масло отсутствует. В противном случае возможны гидроудар и поломка. Чтобы увеличить размер и мощность двигателя, достаточно удлинить коленчатый вал образованием нескольких рядов – звезд.

Дополнительные системы двигателя внутреннего сгорания.

Запуск двигателя — Стартер

Для устойчивой работы ДВС требуются минимальные обороты 800 обр/мин. Запуск двигателя и вывод оборотов коленчатого вала, механизмов и агрегатов на нужные параметры для устойчивой и самоподдерживающей работы осуществляется стартером. Это электродвигатель для проворачивания коленчатого вала. Реже запуск двигателя осуществляется посредством подачи в цилиндры сжатого воздуха под давлением.

Топливная система

Топливная система для двигателя внутреннего сгорания состоит из следующих элементов:
— топливный бак (хранения запаса топлива, баллон, для хранения сжатого газа). Топливом для бензиновых ДВС является бензин или газ.
— топливный насос (подача и прокачка топлива по топливной системе).
— топливопровод (магистраль из стальных трубок для соединения топливного бака с системой смесеобразования).
— фильтры грубой и тонкой очистки топлива (очистка топлива от инородных частиц, которые могут засорить конструктивные элементы топливной системы).
— системя для образования газо-воздушной системы. Для образования рабочей газовой смеси из топлива и воздуха используются 2 вида систем.

Карбюраторная система

Карбюратор – один из узлов, входящих в систему питания двигателя. В нем как раз и готовится такая смесь из воздуха и горючего. Карбюратор также регулирует, сколько ее поступит в камеры сгорания. Известно несколько его видов: барботажные, мембранно-игольчатые и поплавковые.
Принцип действия основан на гидродинамических силах, создаваемых в карбюраторе конструктивно. Бензин, подаваясь в карбюратор и под действие движущегося атмосферного воздуха, принудительно испаряясь, смешивается с воздухом, образуя паровоздушную смесь. Далее смесь поступает во впускной коллектор двигателя, откуда далее в цилиндры. Пассивный принцип смесеобразования.

Инжекторная система

Инжекторные системы — это уже активная система смесеобразования. Инжекторная система состоит из управляющего электронного блока и форсунок. Форсунке подают заряд топлива (распыляя его) в засасываемый атмосферный воздух, подчиняясь командам электронного блока управления. Топливная смесь образуется либо во впускном коллекторе, либо же непосредственно в цилиндре, перед тактом сжатия смеси. Система осуществляют непосредственную дозировку нужного количества топлива.

 

Система смазки

Данный вид системы предназначен для смазки трущихся поверхностей двигателя во время работы. Смазка снижает коэффициент трения, что уменьшает потери энергии, снижает быстрый износ деталей двигателя, а также происходит удаление продуктов нагара и охлаждение поверхности деталей. Система смазки двигателя включает в себя следующие элементы:
— поддон картера двигателя с маслозаборником (предназначен для хранения масла).
— масляный насос (предназначен для перекачки масла и создания давления в системе).
— масляный фильтр (очистка масла от посторонних механических примесей).
— масляный радиатор (для охлаждения забираемого из картера масла перед подачей его в смазываемые детали).
— соединительные магистрали и каналы элементов системы смазки.

Система охлаждения

Система охлаждения нужна для отвода тепла от «горячих» элементов двигателя. При работе двигателя выделяется тепловая энергия от сгорающей рабочей смеси, только 40% данной энергии расходуется на полезную работу хода поршня, вся остальная энергия или в виде лучистой энергии оседает на стенках камеры сгорания или в виде горячих газов выходит через выхлопную систему в атмосферу.
Если не снимать эти «излишки» энергии, то в конечном итоге это приведет к выводу двигателя из строя, прогорание поршней, головы блока цилиндров, клапанов, заклинивание поршня в цилиндре. Для отвода энергии от двигателя используют теплоноситель — специальную охлаждающую жидкость, которая принудительно прокачивается через рубашку охлаждения блока цилиндров и головки цилиндров, снимая «излишки тепла», а далее по патрубкам поступает в радиатор, где часть ненужной энергии отдает окружающей атмосфере. После охлаждения жидкость вновь прокачивается через «рубашку охлаждения» двигателя. Охлаждающая система состоит:
— «рубашка охлаждения» (служит для обеспечения контакта охлаждающей жидкости с горячими элементами двигателя для снятия «излишков тепла»).
— центробежный насос (помпа) (служит для создания давления в системе и прокачки через систему жидкости).
— термостат (служит для разделения системы охлаждения на 2 контура, контур с радиатор и контур без радиатора).
— радиаторы охлаждающей жидкости и отопителя (предназначены для теплообмена между охлаждающей жидкости и окружающей средой).
— расширительный бачок (предназначен для хранения дополнительного количества охлаждающей жидкости).
— соединительные патрубки элементов системы охлаждения.

Система электропитания

Система электропитания имеет два основных источника электричества — это генератор и аккумулятор. Система электропитания предназначена для бесперебойного обеспечения электроэнергией потребителей. В первую очередь электрическая система питает элементы двигателя — это система зажигания, генератор при старте, электронную систему управления двигателя, электробензонасос, инжекторную систему. Так же в электрической энергии нуждается ряд автомобильных систем, это система освещения, габаритов, систем удобств пассажиров, электронные системы.

Аккумулятор

Аккумулятор — это первичный источник энергии в автомобили. Именно благодаря той энергии, которая запасена в нем и начинается работа всего автомобиля и двигателя в частности. Чтобы завести двигатель, стартер берет энергию именно от аккумулятора. Аккумуляторы бывают разной емкости, но напряжение, которое они выдают стандартное — 6, 12 Вольт, для мототехники и транспортных средств соответственно. Основная характеристика аккумулятора — это емкость и пусковой ток. Емкость у аккумуляторов бывает от 18 до 200 А/ч. Значение емкости показывает, сколько ампер и за какое время способен выдать аккумулятор. Пусковой ток измеряется в амперах и показывает пиковое значение по току, которое может выдать аккумулятор за короткое время, порядка 30 секунд. Важная характеристика для запуска двигателя стартером.

Генератор

Генератор — это электротехническое устройство, преобразующее механическую энергию в электрическую. При работающем двигателе генератор генератор является основным источником электрического тока, а аккумулятор вспомогательным. Генератор питает всю электрическую систему как двигателя, так и машины в целом, также от работающего генератора вырабатываемый ток заряжает аккумулятор. Генератор вырабатывает переменный ток, который в с вою очередь через диодный мост преобразуется в постоянный. Именно постоянный ток нужен в электрической системе автомобиля. Основные характеристики генератора — это напряжение и сила тока вырабатываемая им. Генераторы бывают 12 и 24 вольтные. Сила тока, вырабатываемая генератором колеблется в широких диапазонах, т.к. зависит от частоты вращения ротора.

Система зажигания

Предназначена для воспламенения горючей смеси топлива и воздуха в цилиндре от электрической искры. В зависимости от способа управления процессом зажигания различают следующие типы систем зажигания: контактная, бесконтактная (транзисторная) и электронная (микропроцессорная). Контактный способ — перераспределение электрической энергии происходит механическим путем, через прерыватель — распределитель. В бесконтактной системе прерыватель транзисторный, распределитель — механический. В электронной системе и прерыватель и распределитель — это микропроцессорный блок в котором и осуществляются процессы прерывания и распределения с помощью полупроводниковых устройств. Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания.

Система контроля и управления работы двигателя

Контроль и управление двигателем бывает 2 видов — механический и электронный. В первом случае человек управляет работой двигателя полностью и полностью ведет контроль за его работой, подбирая нужные условия работы, непосредственно воздействуя на элементы двигателя через рычаги и тросики. Во втором случае за всем следит электроника, она подбирает оптимальные условия для работы двигателя и следит за работой двигателя. Управление работой двигателя полностью ведется электроникой. человек лишь вносит управляющий сигнал в электронную система, а та в свою очередь обрабатывая сигнал, подбирает нужные условия работы двигателя. Электронная система управления контролирует работу двигателя с помощью множества датчиков, которые измеряя физические величины выдают, преобразуют их значения в электрический сигнал. Например: давления топлива, частоты вращения коленчатого вала, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Информация, получаемая от датчиков, является основой управления двигателем.

zewerok.ru

Рабочий цикл четырехтактного двигателя — особенности, схема и описание

Автолюбители должны хотя бы в общих чертах знать, как устроен и работает двигатель. В большинстве автомобилей установлен четырехтактный четырехцилиндровый мотор. Давайте рассмотрим рабочий цикл четырехтактного двигателя. Далеко не все знают, какие процессы происходят, когда автомобиль находится в движении.

Общий принцип действия

Двигатель работает следующим образом. В камеру сгорания попадает топливная смесь, далее она сжимается под воздействием поршня. После этого смесь воспламеняется. Это приводит к расширению продуктов сгорания, они давят на поршень и выходят из цилиндра.

В двухтактных двигателях один оборот коленчатого вала совершается в два такта. Четырехтактный поршневой двигатель совершает рабочий цикл за два оборота коленчатого вала. Двигатели оснащаются ГРМ. Что это за механизм? Это элемент, который позволяет впускать топливную смесь в камеры и выпускать оттуда продукты сгорания. Обмен газов осуществляется в момент отдельного оборота коленчатого вала. Газообмен происходит за счет движения поршня.

История

Первое устройство, напоминающее четырехтактный мотор, изобрели Феличче Матоци и Евгений Барсанти. Но данное изобретение невероятным образом утеряли. Лишь в 1861 году похожий агрегат запатентовали.

А первый пригодный к использованию двигатель разработал инженер из Германии Николаус Отто. Мотор получил имя изобретателя, а рабочий цикл четырехтактного двигателя также носит имя этого инженера.

Основные отличия четырехтактных моторов

В двухтактном двигателе поршневые и цилиндровые пальцы, коленчатый вал, подшипники и компрессионные кольца смазываются за счет масла, которое доливают в топливо. В четырехтактном моторе все узлы установлены в масляной ванне. Это существенное отличие. Поэтому в четырехтактном агрегате нет необходимости смешивать масла и бензин.

Преимущества системы заключаются в том, что на зеркале в цилиндрах и на стенках глушителя количество нагара значительно меньше. Еще одно отличие – в двухтактных двигателях в выхлопную трубу попадает горючая смесь.

Работа двигателя

Вне зависимости от типа мотора, принцип его работы аналогичен. Сегодня существуют карбюраторные моторы, дизельные, инжекторные. Во всех моделях происходит один и тот же рабочий цикл четырехтактного двигателя. Давайте подробно рассмотрим, какие же процессы работают внутри мотора и заставляют его приходить в движение.

Четырехтактный цикл – это последовательность из четырех рабочих тактов. За начало обычно принимается такт, когда в камеры сгорания попадает горючая смесь. Хоть за время его течения в двигателе проходят и другие действия, обозначаемый такт – это один рабочий процесс. К примеру, такт сжатия – это не только сжатие. В этот период смесь перемешивается в цилиндрах, начинается формирование газа, она воспламеняется.

То же самое можно сказать и о других этапах работы двигателя. Самое важное здесь то, что разные процессы для лучшего понимания и упрощения рабочего цикла четырехтактного двигателя раскладывают лишь на четыре такта.

Впуск

Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.

Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.

То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.

Сжатие

После заполнения камеры сгорания горючей смесью бензиновых паров и воздуха, если коленвал производит вращательные движения, поршень начнет возвращаться в свое нижнее положение. Впускной клапан на данном этапе начнет закрываться. А выпускной будет все еще закрыт.

Рабочий ход

Это третий такт рабочего цикла четырехтактного двигателя внутреннего сгорания. Он самый важный в работе силового агрегата. Именно на данном этапе работы двигателя энергия от сгорания топлива преобразуется в механическую, заставляющую вращаться коленчатый вал.

Когда поршень находится в позиции, близкой к ВМТ, еще в процессе сжатия топливная смесь принудительным образом воспламеняется от свечи зажигания двигателя. Топливный заряд сгорает очень быстро. Еще до начала этого такта сгоревшие газы имеют максимальное значение давления. Эти газы являются рабочим телом, сжатым в небольшом объеме камеры сгорания двигателя. Когда поршень начнет двигаться вниз, газы начинают интенсивно расширяться, высвобождая энергию.

Среди всех тактов рабочего цикла четырехцилиндрового двигателя именно этот самый полезный. Он функционирует на нагрузку агрегата. Только на этом этапе коленвал получает разгонное ускорение. Во всех прочих мотор не вырабатывает энергию, а потребляет ее от того же коленчатого вала.

Выпуск

После совершения газами полезной работы они должны выйти из цилиндра, чтобы освободилось место для новой порции горюче-воздушной смеси. Это последний такт в рабочем цикле четырехтактного двигателя.

Газы на этом этапе находятся под давлением, существенно превышающем атмосферное. Температура к концу такта снижается примерно до 700 градусов. Коленвал посредством шатуна двигает поршень к ВМТ. Далее открывается выпускной клапан, газы выталкиваются в атмосферу через выхлопную систему. Что касается давления, то оно высокое только в самом начале. В конце такта оно снижается до 0,120 МПа. Естественно, полностью избавиться от продуктов сгорания в цилиндре невозможно. Поэтому они при следующем такте впуска смешиваются с топливной смесью.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Дизельные моторы

Рабочий цикл четырехтактного дизельного двигателя – это такая же последовательность процессов, как и цикл карбюраторного мотора. Разница состоит в том, как протекает цикл, а также в различиях процессов образования смеси и воспламенения.

Такт впуска на дизеле

При движении поршня по направлению вниз газораспределительный механизм открывает впускной клапан. В камеру сгорания попадает определенное количество воздуха. Температура в цилиндре при этом составляет примерно 80 градусов. В дизельных двигателях система питания значительно отличается от бензиновых карбюраторных моторов. Например, гидравлическое сопротивление в них ниже, а давление немного повышается.

Такт сжатия в дизельном двигателе

На данном этапе работы поршень в камере сгорания идет по направлению вверх к ВМТ. Оба клапана в двигателе автомобиля находятся в закрытом состоянии. В результате работы поршня воздух в цилиндре сжимается. Степень сжатия в дизельном двигателе более высокая, чем в бензиновых моторах, а давление внутри цилиндра может достигать 5 МПа. Сжатый воздух существенно нагревается. Температуры могут достигать 700 градусов. Это нужно, чтобы воспламенилось топливо. Оно на дизельных моторах подается через форсунки, установленные на каждом цилиндре. В зимнее время в работе участвуют свечи накаливания. Они предварительно подогревают холодную смесь. Таким образом мотор легче запускается в зимнее время. Но такая система есть не на всех авто.

Такт расширения газов в дизельном двигателе

Когда поршень дизельного двигателя еще не дошел до верхней точки примерно на 30 градусов по коленвалу, ТНВД через форсунку подает в цилиндр топливо под высоким давлением. Значение в 18 МПа необходимо, чтобы горючее могло тонко распыляться и распределиться по всему объему в цилиндре.

Далее топливо под действием высоких температур воспламеняется и быстро сгорает. Поршень движется к нижней точке. Температура внутри цилиндра в этот момент составляет около 2000 градусов. К концу такта температура снижается.

Выпуск в дизельном двигателе

На этом этапе выпускной клапан открыт, поршень движется к верхней точке. Из цилиндра принудительно удаляются продукты сгорания. Далее они идут на выпускной коллектор. После этого в работу включается каталитический нейтрализатор. Газы, проходя через него под высокой температурой, очищаются. В атмосферу уже выходит чистый, безвредный газ. На дизельных автомобилях дополнительно установлен сажевый фильтр. Он также способствует очистке газов.

Заключение

Мы подробно разобрали, как осуществляется рабочий цикл четырехтактного двигателя (проходит за два оборота коленчатого вала силовой установки). А сам цикл включает в себя много разных процессов.

fb.ru

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаще всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).

 

Первый такт — такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

 

Второй такт — такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

 

Третий такт — рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

 

Четвертый такт — такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

 

 

После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

autoustroistvo.ru

6Фев

Перегрев двигателя причины – 10 причин перегрева мотора | 5koleso.ru

10 причин перегрева мотора | 5koleso.ru

Хорошее время лето, вот только у многих автомобилистов может появиться проблема — перегрев двигателя. Стоя в пробках, внимательно и настороженно наблюдают они, как неуклонно лезет вверх температура двигателя. Еще не хватало «закипятить» мотор на дороге!

Помимо нервотрепки, потери времени, которое требуется на периодические стоянки с открытым капотом, удара по престижу и репутации, вызванному либо сочувственными, либо презрительными взглядами из проезжающих мимо машин, все это крайне неполезно для мотора.

Даже однократный кратковременный перегрев мотора может обеспечить ему массу проблем в дальнейшей жизни. Дело в том, что у мотора есть немало деталей, которые очень чувствительны к повышенным температурам. Во-первых, это маслоотражательные колпачки клапанов. Резинка, что с нее возьмешь! Да даже если колпачки силиконовые, то все равно — и они перегревов не любит. Во-вторых, это поршневые кольца, маслосъемные в первую очередь. Пружинные расширители маслосъемных колец при высоких температурах «отпускаются», теряют упругость. И это кольцо превращается в простое украшение поршня. И первое, и второе влечет за собой резкий рост масляного аппетита двигателя. Но, помимо необходимости частого долива масла и дымного выхлопа, рост расхода масла имеет еще одну опасную сторону. Поверхности камеры сгорания зарастают отложениями, препятствующими нормальному охлаждению двигателя, что усугубляет ситуацию с перегревами.

И даже не это самое страшное. Детали, как известно, при нагреве расширяются. Если все штатно, то при охлаждении они возвращаются в исходное состояние. Как говорят механики, деформация линейна, остаточных деформаций нет. А при перегреве — расширяются больше, чем это предписано конструкцией. И деформация может выйти за границы «линейного закона» — перейти в пластику. А это ведет к тому, что после охлаждения деталь уже не вернется к начальному состоянию — появляются остаточные деформации. Отсюда коробление блока и головки цилиндров, рост размера поршней вплоть до их задира. Вот это уже совсем неприятно, поскольку требует серьезного ремонта двигателя. Ну, наверное, хватит страшилок. Давайте разбираться с причинами.

Почему же вдруг начинает греться мотор? Причин можно насчитать с десяток. Причем перегрев может быть и внешним и, что более опасно, внутренним. Признак внешнего перегрева — рост температуры охлаждающей жидкости. Это мы видим и можем оперативно на него среагировать. А вот внутренний перегрев снаружи сразу не заметен. Тепло как бы остается внутри мотора, повышения температуры жидкости практически нет. Но двигатель реагирует резким снижением мощности из-за ухудшения наполнения и роста механических потерь, детонацией и калильным зажиганием, и, в худшем варианте, — задирами поршней.

Четко прослеживается аналогия с человеческим организмом. Как и у человека, повышение температуры мотора — это свидетельство того, что «организм» сопротивляется. Даже при исправном термостате некоторый рост температуры двигателя в определенных ситуациях дело нормальное. Долгое стояние в пробках, езда в горку с полной нагрузкой — повышение температуры неизбежно. Но это проявление «внешнего» перегрева. А вот вспомните ситуацию, когда плохо совсем, а температура низкая! Это еще хуже, чем, допустим, 38 на градуснике. «Организм не борется», — говорят в таких случаях. У мотора — аналогично. Бывают ситуации, когда «внутренний пожар» никак не отражается на указателе температуры. Это перегрев «внутренний».

Причины двух видов перегрева разные. Начнем с «внешнего».

Первая причина, и самая простая, — недостаточное количество охлаждающей жидкости в системе охлаждения. Вода, или тосол — это жидкость, которая, как известно, дырочку найдет. В системе охлаждения мотора, с кучей трубок, трубочек, патрубков, хомутиков и прокладочек, таких дырочек может быть много. Вот и уходит постепенно тосол и из расширительного бачка, и из радиатора системы охлаждения. Свидетельство этого — белые потеки на внешних поверхностях двигателя, капли тосола под машиной после длительной стоянки. А уж совсем плохо, если тосол уходит в масло и в цилиндры двигателя. Как уже говорилось ранее, такое возможно при разрушении или прогаре прокладки блока цилиндров, короблении посадочных поверхностей головки или блока. Тут последствия могут быть куда жестче: от гидроудара до заклинивания коленчатого вала.

Вторая причина — малая эффективность воздушного охлаждения радиатора. Этому может быть тоже несколько причин. Если вентилятор приводится ремнем от коленчатого вала, то может ослабнуть натяжение этого ремня. Если привод вентилятора электрический, то может дурить датчик температуры. А еще это может быть следствием сильного загрязнения ребер радиатора системы охлаждения. Грязь — очень плохой проводник тепла, а под капотом ее обычно достаточно. Кстати, о сильном загрязнении радиатора говорит малая скорость нормализации температуры при начале движения после длительной стоянки. В нормальном состоянии обдув радиатора при движении даже со средней скоростью приводит к очень быстрому снижению температуры до нормальной. Если этого нет, радиатор надо мыть или вообще менять!

Третья причина — нарушения в работе термостата. Тут тоже все понятно. По мере накопления отложений в системе охлаждения подвижность упругого элемента термостата теряется, и он перестает реагировать на температуру тосола, выходящего из двигателя. Дальше все зависит от того, в каком положении он зависнет — либо постоянно начнет гонять жидкость по большому контуру, и мотор будет труднее прогреваться; либо по малому, тогда перегревы неизбежны. А особенно термостат «любит» воду, а лучше всего — жесткую, с большим содержанием солей и минералов. Тут зависания его упругого элемента можно ждать уже через пару тысяч километров после замены. Некоторые герметики системы охлаждения тоже могут дать аналогичный эффект, особенно если ими злоупотреблять.

Четвертая причина лежит в области неправильной регулировки системы зажигания или впрыска. Позднее начало сгорания сдвигает момент окончания горения топлива практически к моменту открытия выпускных клапанов, а то и еще дальше. Тогда сгорание не кончится и на выпуске. Итог — резкий рост температуры отработавших газов. Головка блока цилиндров до 40–50% тепла получает именно из выпускной системы. Если добавить к этому очень сложные условия охлаждения головки, то избежать кипения тосола в такой ситуации, скорее всего, не получится. Паровые пробки в полостях охлаждения «затыкают» весь контур охлаждения, вот вам и тяжелый перегрев.

Пятая причина — длительная работа бензинового двигателя в условиях детонации. О детонации можно говорить много, но один из «сухих остатков» этого разговора — резкий рост износа деталей двигателя при детонации.

Шестая причина — длительная работа двигателя в нерасчетных режимах. Эффективность работы системы охлаждения зависит от расхода охлаждающей жидкости, прокачиваемой через контур охлаждения. А расход жидкости зависит от частоты вращения коленчатого вала: чем она больше, тем больше тосола гонит помпа через полости системы охлаждения. Но вот частая ситуация. Лето, жарко. Загородная трасса, трудяга-«жигуленок» тянет на дачу многочисленное семейство с детьми, кошками, огромным верхним багажником и прицепом, заваленным всякими нужными вещами. А на пути — длинный-длинный подъем, по которому с трудом и дымом тянется старенький «КамАЗ»-лесовоз. И не обогнать — навстречу поток машин… Итог очевиден и многим знаком — кипение двигателя. А все почему? Скорости набегающего воздушного потока не хватает, ползем ведь еле-еле. Обороты двигателя малые, система охлаждения работает через пень-колоду, а педаль в пол — нагрузка на мотор сумасшедшая. Вот и все самые неблагоприятные факторы в одну кучу собираются.

Та ситуация, которая описана, характерна для так называемых буксировочных режимов работы двигателя. Это самое то, что нужно для скорейшего отправления бензинового мотора на свалку. А еще мотор очень не любит длительное стояние в пробках, когда он молотит на холостых. Хоть нагрузка и минимальна, но набегающего потока вовсе нет, только от вентилятора. А его может и не хватить.

Cедьмая причина — прогар выпускного клапана. Тут все понятно. Трещина в клапане пускает на выпуск высокотемпературные газы еще на такте сгорания, а это повышает температуру отработавших газов и, следовательно, деталей двигателя. Реагирует на это и температура охлаждающей жидкости.

Первые семь причин — это «внешний» перегрев. Мы можем как-то оперативно на него прореагировать, потому что видим, как стрелка указателя температуры постепенно приближается к красной черте. Значительно опаснее следующие причины, поскольку они вызывают «внутренний» перегрев двигателя, который проявляется уже своими последствиями.

Итак, восьмая причина — большое количество отложений в полостях охлаждения. При длительной работе на стенках полостей охлаждения, особенно головки блока цилиндров, накапливается слой отложений, чаще всего минеральных солей, выделившихся из тосолов или воды. Они очень вредны. Во-первых, отложения перекрывают часть сечения каналов и уменьшают тем самым расход жидкости. Во-вторых, они плохо теплопроводны, и поэтому создают дополнительное сопротивление для потока тепла, который должен отбираться тосолом. Вот и идет внутренний перегрев. Внешне, на указателе температуры, все нормально, а внутри — слишком горячо! Кстати, отложения могут дать и внешний перегрев, расход-то тосола уменьшается, вот его температуры и растут. Но все-таки внутренний перегрев здесь будет более выраженным и опасным. А еще эти отложения повышают опасность возникновения крайне опасного явления — кавитации полостей охлаждения, при котором металл стенок двигателя может быть «съеден» до сквозных дыр очень быстро. Часто повреждения, наносимые кавитацией, путают с обычной коррозией и относят к использованию некачественных тосолов. Внешне они похожи, и действительно те и другие вызваны «левым» происхождением охлаждающей жидкости, но причины их возникновения разные. Впрочем, какая вам разница, отчего потечет блок или головка — от кавитации или коррозии? То и другое одинаково неприятно.

Девятая причина — большой уровень отложений в камере сгорания. Вот это четкий внутренний перегрев двигателя. Камера сгорания при этом как бы теплоизолируется слоем нагаров, практически неспособных проводить тепловой поток. Особенно это характерно для моторов с изрядным износом, где в цилиндры идет много масла. Оно плохо горит и дает эти самые отложения в цилиндрах. Причем все развивается как цепная реакция: перегревы вызывают повышенный расход масла, он увеличивает слой отложений в камере сгорания, и перегревы еще более увеличиваются. И опять, внешне, со стороны указателя температуры двигателя, все благополучно. Поток-то тепла в тосол уменьшился, и температура остается нормальной. А вот мотор «тупеет», валит сизый дым из трубы, по утрам не завестись. Опасны эти отложения еще и тем, что при их большом количестве они могут вызвать и раннее, и позднее калильное зажигание, очень опасную аномалию сгорания в бензиновом моторе.

Наконец, последняя в нашем описании, десятая причина возможных внутренних перегревов — это нерациональное использование ряда присадок к моторному маслу, тех, что относятся к классу автохимии. Дело в том, что принцип работы определенного класса присадок — это наращивание металлокерамического слоя на поверхностях цилиндров. А металлокерамика — мощный теплоизолятор, и работает он, с точки зрения перегревов, аналогично внутренним отложениям в камере сгорания, описанным выше. Поэтому, несмотря на очевидные преимущества металлокерамического слоя в плане трения и износа, перестараться с ним опасно. У нас были случаи, когда после подобной обработки межкольцевые канавки у поршней вышибало на первой сотне километров пробега. И это тема для отдельной статьи, к которой мы обязательно вернемся в дальнейшем.

Итак, при самом беглом взгляде на закипевший мотор мы нашли целых десять возможных причин его перегрева. Так как быть, чтобы избежать этого опасного явления? Советов в целом немного, и все они сводятся к одному: надо следить за мотором своего автомобиля. Правильная регулировка, своевременная подтяжка ремня привода помпы и вентилятора, если они есть, конечно, использование качественных бензинов, не детонирующих даже в самых сложных условиях, — это азбука эксплуатации. А еще надо помнить, что чистоту любят не только люди! Слой грязи на радиаторе, внешних поверхностях мотора снаружи не виден, но мешает его работе изрядно. Еще больше мешают грязь и отложения на поверхностях внутренних полостей мотора. А вот с ними поможет справиться «подкапотная» автохимия, благо очистителей двигателя в продаже нынче много!

5koleso.ru

Последствия перегрева двигателя автомобиля

Нормальная работа системы охлаждения двигателя является одним из важнейших условий для максимального увеличения срока службы и ресурса силового агрегата. Также различные неполадки указанной системы в ряде случаев приводят к серьезным последствиям.

В одних случаях последствия перегрева двигателя устраняются путем ремонта, который обычно оказывается весьма затратным. Также распространенной ситуацией становится то, что после перегрева мотора силовая установка не подлежит восстановлению и нужен новый или контрактный мотор.

В этой статье мы рассмотрим, по каким причинам возникает перегрев двигателя, последствия перегрева бензинового и дизельного мотора, а также что делать водителю в подобной ситуации.

Читайте в этой статье

Основные причины перегрева двигателя

Начнем с того, что любой двигатель внутреннего сгорания проектируется так, чтобы большую часть времени агрегат работал в строго ограниченном температурном диапазоне. Если проще, холодный мотор после запуска сначала выходит на так называемые рабочие температуры (прогревается), после чего система охлаждения удерживает  нагрев в заданных пределах.

Как правило, многие современные двигатели работают с учетом диапазона нагрева охлаждающей жидкости, который в среднем составляет 85-100 градусов по Цельсию. Это значит, что система охлаждения не позволяет температуре ОЖ как опуститься ниже минимальной отметки, так и превысить максимальный порог.

Постоянное поддержание рабочей температуры двигателя необходимо по причине того, что именно при таком нагреве технические жидкости имеют нужную текучесть, зазоры между деталями  ДВС приходят в расчетную норму в результате температурного расширения, топливо расходуется и сгорает наиболее эффективно и т.д.

С учетом вышесказанного становится понятно, что исправная система охлаждения всегда будет стремиться поддерживать рабочую температуру. При этом определенные сбои могут привести к тому, что мотор может перегреться, причем как летом, так и зимой.

Единственное, в холодное время года от системы охлаждения не требуется максимума эффективности благодаря низкой температуре наружного воздуха. В этом случае, как правило, возникновение определенных проблем может оставаться незамеченным до того момента, пока не повысится температура воздуха за бортом.

Итак, к перегреву двигателя обычно приводит некорректная работа системы охлаждения. В списке основных причин следует выделить:

  1. утечку охлаждающей жидкости;
  2. нарушение герметичности системы;
  3. затрудненную циркуляцию ОЖ;
  4. выход из строя элементов системы охлаждения;

Утечки и разгерметизация приводят к тому, что в системе охлаждения падает уровень ОЖ, образуются воздушные пробки и т.д. Вполне очевидно, что снижение уровня в расширительном бачке является поводом для диагностики. Вытекать жидкость может по вине растрескавшихся патрубков и шлангов, образования трещин в радиаторе, в результате повреждения прокладок и т.п. Если ситуация аварийная, тогда можно воспользоваться герметиками системы охлаждения типа «стоп-течь». Также в ряде случаев помогает ремонт радиатора.

  • Теперь давайте поговорим об ухудшении циркуляции ОЖ по каналам. Как правило, основной причиной является забитый изнутри радиатор. Дело в том, что использование тосола или антифриза низкого качества, несвоевременная замена жидкости или заправка обычной воды в систему охлаждения приводит к тому, что в сотах радиатора происходит образование накипи, скопление загрязнений и отложений. В этой ситуации нужна промывка системы охлаждения.

Еще добавим, что снаружи радиатор охлаждения также может быть покрыт слоем пыли, грязи и пуха. В результате теплообмен в радиаторе ухудшается, а в совокупности с забитыми сотами ОЖ не охлаждается должным образом. По этой причине необходимо периодически промывать радиатор как изнутри, так и снаружи.

  • Если говорить о поломках, из строя чаще всего выходит помпа (водяной насос) и термостат. Сбои в работе или полный отказ помпы приводят к тому, что жидкость перестает нормально циркулировать по каналам системы охлаждения. К этому может привести значительный износ или разрушение крыльчатки, неисправности привода помпы и т.д. Для проверки рекомендуется диагностировать состояние помпы на ТО и менять данный элемент строго по регламенту.

Что касается термостата, задачей данного элемента является возможность пропускать ОЖ из малого круга (рубашка охлаждения двигателя) по большому кругу (через радиатор). В норме пока мотор нагревается, жидкость циркулирует только по малому кругу, после определенного прогрева термостат открывает большой круг.

Если не происходит такого открытия или термостат открывается не полностью (клинит), тогда ОЖ не имеет возможности попасть в большой круг и охладиться в радиаторе. Результатом становится перегрев мотора.

Также следует добавить, что перегрев двигателя может возникать и по другим причинам. Например, выход из строя вентилятора системы охлаждения или езда с небольшой скоростью на максимально высоких оборотах и пониженных передачах обычно приводят к тому, что двигатель «закипел».

Еще можно выделить случаи, когда появляется трещина в блоке или головке блока цилиндров, прогорает или пробивается прокладка ГБЦ. В этом случае возникает или утечка охлаждающей жидкости, которая попадает в моторное масло, или же газы из камеры сгорания начинают попадать в систему охлаждения.

Добавим, что частой причиной перегрева мотора после зимы является банальная невнимательность автовладельцев, которые забывают снять дополнительный утеплитель капота и подкапотного пространства с приходом тепла. Например, если оставить автоодеяло даже в тех случаях, когда наружная температура не превышает 3-5 градусов тепла, все равно может возникнуть перегрев ДВС.

Если водитель перегрел двигатель: последствия для мотора

Как правило, специалисты выделяют несколько вариантов перегрева двигателя:

  • слабый или локальный;
  • перегрев мотора средней тяжести
  • сильный перегрев, повлекший поломку и/или заклинивание ДВС;

В разных случаях последствия будут зависеть от того, какая степень перегрева была допущена. Если температура повышена, но не дошла до критической отметки и водитель своевременно заметил проблему и быстро заглушил агрегат, тогда высока вероятность того, что мотор останется в исправном состоянии.

Как правило, в этом случае перичиной становится сбой в работе вентилятора, ухудшение производительности помпы, подклинивание термостата.

  • В том случае, когда перед остановкой перегретый двигатель работал и не заклинил, тогда такой перегрев можно отнести к среднему. Однако если из-под капота виден пар, температура ДВС на шкале приборов поднялась до красной зоны, тогда последствия могут быть куда серьезнее.

Речь идет не только о прогаре прокладки ГБЦ, но и о разрушении поршневых колец, оплавлении поршней, деформации привалочной плоскости головки блока цилиндров (головку «повело»), появлении трещин в корпусе головки, на тарелках клапанов и т.д.

  • Внезапная остановка мотора является признаком критического перегрева. В этой ситуации агрегат может просто заглохнуть в результате повреждения его деталей и узлов. Также силовая установка может заклинить, что проявляется в виде резкого удара и прекращения работы ДВС.

Последствия такого перегрева разрушительные, происходит оплавление и прогар поршней, расплавленный материал стекает на стенки цилиндров. Моторное масло перегревается и коксуется, нагруженные пары трения разрушаются, на коленчатом валу расплавляются шатунные и коренные вкладыши. В ряде случаев коленвал может сломаться, поршни могут пробить стенку блока цилиндров и т.п.

Как видно, в последнем случае восстанавливать такой мотор обычно бывает нецелесообразно с экономической точки зрения. Получается, сильно перегретый и разрушенный двигатель требует полной замены на новый или контрактный силовой агрегат.

Как уберечь двигатель от перегрева

На многих автомобилях имеется отдельный указатель температуры ОЖ, который вынесен на приборную панель. Однако во время езды не всем водителям удается своевременно заметить рост нагрева и остановить двигатель.

Еще отметим, что некоторые машины дополнительно оснащены звуковой сигнализацией, указывающей на недопустимое  повышение температуры, но такая опция есть только на отдельных современных ТС, да и то не всегда. По этой причине необходимо уметь замечать характерные признаки в движении, которые могут указать на перегрев.

  • Прежде всего, нужно выработать привычку периодически контролировать температуру ОЖ на панели приборов во время движения.

Низкий уровень тосола или антифриза в системе приводит к тому, что из печки не идет теплый воздух. Также из внутрисалонного отопителя не будет подачи горячего воздуха в том случае, когда ОЖ кипит. В результате закипания в системе образуется воздушная пробка.

  • Избыточный нагрев ДВС приводит к тому, что в моторе появляется детонация. Детонация двигателя отличается характерным звонким «цокотом» во время нажатия на педаль акселератора. Параллельно двигатель начинает заметно терять мощность, часто появляются  посторонние стуки и шумы.

Советы и рекомендации

Перегрев  мотора является аварийной ситуацией. Если замечен рост температуры выше нормы или очевидно то, что агрегат уже перегрелся, машину нужно остановить и немедленно заглушить ДВС.

Помните, запрещается лить воду на двигатель в целях его скорейшего охлаждения. Если поломка произошла зимой, тогда лучше не спешить открывать капот. Дело в том, что слишком интенсивное охлаждение горячего агрегата холодным наружным воздухом также может привести к появлению трещин и других дефектов.

Нужно дождаться некоторого остывания агрегата, после чего проверить уровень ОЖ в расширительном бачке. Снижение уровня обычно является результатом непредвиденной течи или халатности самого водителя.

Если под рукой нет антифриза на долив, подойдет дистиллированная вода, которую обычно можно приобрести на ближайшей АЗС. Доливать воду или тосол нужно только на холодном моторе. В противном случае могут возникнуть дополнительные повреждения по причине разницы температуры жидкости и ДВС.

Затем нужно проверить вентилятор охлаждения, помпу и термостат. Параллельно следует осмотреть патрубки, шланги и места их соединений. Если обнаружено, что не работает водяной насос, тогда от попыток продолжить движение своим ходом лучше воздержаться.

В случае, когда виновником перегрева является термостат, можно удалить устройство из системы (при такой возможности), чтобы ОЖ все время циркулировала только по большому кругу. Проблему с неработающим вентилятором охлаждения в экстренной ситуации решают путем включения печки на максимум и дальнейшей езды на низких оборотах с высокой скоростью на повышенной передаче.

Также можно сразу пустить ОЖ по большому кругу как в случае обнаружения проблемы с термостатом, так и с вентилятором охлаждения. Данный подход позволяет добраться до СТО своим ходом.

Обнаружение явной утечки жидкости после долива указывает на необходимость отказа от движения и проведения обязательного локального ремонта для ликвидации или уменьшения течи.

Напоследок отметим, что если причину перегрева устранить не удается, но авто нужно доставить на станцию техобслуживания своим ходом, тогда ТС приводится в движение кратковременным запуском двигателя.

Агрегат разрешается держать заведенным только до того момента, пока не начинается подъем температуры на панели приборов до средней отметки. Затем двигатель глушат, после чего машина движется накатом на нейтральной передаче. Пока машина катится, мотор успевает немного остыть. Если этого не происходит, до следующего запуска нужно снова выждать некоторое время на обочине.

Отметим, указанный способ требует обладания определенными навыками. Помните, при заглушенном ДВС не работает усилитель рулевого управления и усилитель тормозов. По этой причине следует соблюдать особую осторожность, замедляя ТС на спусках при помощи КПП.

В тех случаях, когда автомобиль оснащен коробкой «автомат», следует полностью отказаться от попыток такого движения своим ходом и доставить автомобиль на СТО при помощи эвакуатора.

Читайте также

krutimotor.ru

Признаки перегрева двигателя

Как известно, нарушение температурного режима во время работы двигателя внутреннего сгорания может привести к серьезным последствиям. В летний период одной из самых актуальных проблем является эффективное охлаждения мотора. Другими словами, важно не допустить, чтобы произошел перегрев двигателя автомобиля.

Сразу отметим, даже кратковременное повышение температуры не проходит без последствий и влияет на ресурс ДВС. Что касается значительных перегревов, в этом случае силовой агрегат может полностью выйти из строя. В подобной ситуации необходимо делать капитальный ремонт или замену двигателя.

Вполне очевидно, что водитель должен самостоятельно контролировать состояние и температуру мотора. В этой статье мы намерены поговорить о том, какие симптомы и признаки указывают на перегрев двигателя, на что следует обратить внимание при езде, а также как предотвратить перегрев двигателя.

Читайте в этой статье

Двигатель перегревается: признаки возникшей неисправности

Итак, если происходит перегрев, далеко не всегда из-под капота должен пойти густой белый пар. Основным поводом для беспокойства можно считать показания стрелки температуры охлаждающей жидкости на приборной панели.

На большинстве автомобилей используется именно такая схема контроля температуры ДВС. Также может быть установлен индикатор-лампочка, а повышение температуры выше заданных пределов будет сопровождаться характерным звуковым сигналом.

Если мотор перегревается на ходу, тогда основным признаком является резко поднимающаяся температура охлаждающей жидкости, стрелка указателя температуры на панели стремится в красную зону. Параллельно с этим отмечается значительное падение мощности, силовой агрегат попросту не тянет.

Сам двигатель начинает работать более «жестко» и шумно. Могут отчетливо прослушиваться звонкие металлические стуки, начинают «звенеть пальцы». Такие изменения происходят в результате появившейся детонации двигателя, когда сгорание топлива в цилиндрах приобретает взрывной характер.

Также признаки перегрева можно заметить, подняв крышку капота и заглянув в моторный отсек. На сильный перегрев укажут трещины в БЦ и ГБЦ,  заметные деформации головки блока цилиндров. Из-под прокладки головки блока могут быть видны течи антифриза или масла и т.д.

Еще можно определить перегрев по свечам зажигания. Как правило, на значительное повышение температуры в камере сгорания указывает белый налет на электродах, а также общее состояние свечи (растрескивание изолятора и т.д.).

Также можно открыть крышку расширительного бачка системы охлаждения (только после остывания ДВС). Признаки перегрева двигателя, которые можно определить при осмотре, представляют собой потемнения на стенках бачка (серо-черные пятна). Дополнительно следует взглянуть на сам антифриз. Если заметны хлопья темного цвета, которые находятся в ОЖ, тогда это масло, попавшее в систему охлаждения в результате перегревов.

Обычно попадание масла происходит после повреждения (прогара) прокладки ГБЦ. Параллельно необходимо извлечь масляный щуп и открутить крышку маслозаливной горловины. Если в масле видна пена и наблюдается эмульсия под крышкой, тогда в смазочную систему попал антифриз.

Перегрев двигателя: причины

Начнем с того, что причин для перегрева мотора много. Одни, скажем так, лежат на поверхности, тогда как другие могут быть скрытыми и не иметь явных признаков.

  • Прежде всего, недостаточный уровень охлаждающей жидкости в расширительном бачке является одной из самых частых причин перегрева мотора. Дело в том, что в процессе эксплуатации тосол или антифриз «выкипает». По этой причине уровень нужно контролировать, доливая дистиллированную воду или концентрат.
  • Еще одной причиной можно считать аварийную утечку ОЖ из системы. К такой утечке приводят трещины в патрубках, повреждения радиатора, течи в области соединений и т.д.
Внимание, утечки также могут быть внутренними, то есть когда ОЖ попадает в цилиндры и картер двигателя. Попадание в цилиндры может привести к гидроудару, а наличие антифриза в картере разжижает моторное масло.

Смазка теряет свои свойства, быстро выходят из строя коренные и шатунные вкладыши. Если двигатель дымит белым дымом, то это может быт явный признак наличия охлаждающей жидкости в цилиндрах.

  • Заклинивание термостата также приводит к перегреву ДВС. Дело в том, что если термостат заклинит в закрытом положении, тогда жидкость из блока цилиндров не попадает в радиатор, а мотор перегревается. Так обычно происходит по причине того, что различные загрязнения и отложения в системе охлаждения выводят из строя подвижный элемент термостата.
  • Загрязнение радиатора охлаждения пухом, пылью и грязью также приводит к снижению эффективности теплообмена. Если проще, если на радиаторе собралась «шуба», тогда даже во время циркуляции ОЖ по большому кругу охлаждение будет недостаточным.
  • Вентилятор системы охлаждения может срабатывать несвоевременно или выйти из строя. На агрегатах с вискомуфтой причиной становятся дефекты элемента, на моторах с приводом вентилятора через ремень возможно его растяжение или обрыв. Если же вентилятор электрический, тогда нужно проверять датчик температуры, электрические контакты, электромотор вентилятора и т.д.
  • Проблемы с помпой (водяной/жидкостной насос системы охлаждения) станут причиной быстрого перегрева мотора. Дело в том, что если помпа не работает, циркуляция ОЖ прекращается. Необходимо проверять как сам насос, так и его привод.
  • Также к перегревам приводит долгая работа двигателя под большими нагрузками, причем в самых тяжелых режимах. Например, если автомобиль сильно загружен (буксировка прицепа, другого ТС и т.п.), а движение происходит с малой скоростью, на пониженной передаче и высоких оборотах. В этом случае обдув радиатора встречными потоками воздуха незначительный, то есть не удается реализовать полноценный отвод избытков тепла.
  • Сбои в работе системы зажигания и топливоподачи, а также неправильные регулировки и настройки этих систем часто приводят к перегреву агрегата. Например, нарушенное смесеобразование приводит к тому, что двигатель может работать на «бедной» смеси. Или другой случай, когда зажигание позднее, то есть искра на свечах формируется с запозданием, рабочая смесь догорает уже после открытия выпускного клапана.

Это приводит к тому, что температура выхлопных газов стремительно растет, происходит перегрев ГБЦ, антифриз в каналах также сильно нагревается и кипит. Добавим, что к аналогичным последствиям приводит и прогар выпускного клапана.

  • Детонация двигателя также является распространенной причиной нарушения температурных режимов и сильного нагрева ДВС. В этом случае речь идет о неконтролируемом процессе сгорания топливно-воздушной смеси в цилиндрах. Важно понимать, что если двигатель детонирует, тогда кроме перегрева в скором времени возникнут и другие серьезные повреждения деталей агрегата.

Локальный перегрев двигателя

Также следует помнить, что внутри двигателя могут возникать так называемые локальные перегревы. Сложность заключается в том, что своевременно заметить такую проблему удается далеко не всегда.

  • К локальному перегреву мотора может приводить сильная закоксовка, то есть когда в камере сгорания скопился толстый слой нагара. При этом температура ОЖ остается в норме, датчик температуры не реагирует, но поршень, кольца, клапаны, стенки цилиндров и другие элементы подвержены значительному нагреву.
Также нагар становится причиной калильного зажигания. Если просто, тлеющие частички в камере сгорания произвольно поджигают топливно-воздушную смесь вместо искры на свечах зажигания. Явление частично напоминает детонацию, однако, природа его другая.
  • Загрязнение системы охлаждения и ее каналов приводит к тому, что пропускная способность снижается, эффективность циркуляции охлаждающей жидкости снижается. Естественно, теплоотвод в таких условиях будет нарушен.
  • Напоследок отметим, что защитные присадки в моторное масло также могут быть причиной перегрева. Дело в том, что действие некоторых присадок заключается в том, чтобы создать плотный слой из металлокерамических частиц на стенках цилиндров. При этом теплопроводность такого дополнительного слоя достаточно низкая, в результате чего может возникнуть значительный перегрев.

 Советы и рекомендации

На практике большинство водителей, заметив повышение температуры, стремятся как можно быстрее заглушить мотор. Обратите внимание, если стрелка в красной зоне, тогда это решение можно считать единственно верным.

Однако если перегрев есть, но температура не дошла до критической отметки, тогда двигатель лучше не глушить сразу. Оптимально сразу снизить обороты, после чего остановить машину и дать агрегату еще поработать на ХХ пару минут.

Дело в том, что такой способ помогает избежать деформации и растрескивания сильно нагретых деталей после их остывания. Также запрещается открывать крышку расширительного бачка на горячем двигателе, так как это может привести к ожогам. Еще запрещено доливать ОЖ в бачок до того момента, пока мотор не остыл. Разница температуры нагретых деталей мотора и заливаемой жидкости также способна вызвать деформацию.

Что касается профилактических мер для защиты от перегрева, регулярно контролируйте уровень жидкости в расширительно бачке, а также состояние самого тосола или антифриза. Если заметно снижение уровня, тогда нужно немедленно найти место протечки. Изменение цвета и запаха также является поводом к замене ОЖ.

Параллельно необходимо на каждом ТО проверять работоспособность помпы, а также состояние приводного ремня. В ряде случаев следует уделять внимание температурному датчику, который отвечает за срабатывание вентилятора охлаждения.

Дополнительной рекомендацией является мойка радиатора и подкапотного пространства. При этом необходимо выполнять все работы грамотно, чтобы не залить электрооборудование, не повредить радиатор, вентилятор охлаждения и т.п. Для старых авто желательно также проводить внутреннюю очистку системы охлаждения, промывать радиатор от накипи и ржавчины.

Еще добавим, что если зимой двигатель и подкапотное пространство утеплялись при помощи различных утеплителей, тогда все указанные элементы нужно снять, чтобы улучшить охлаждение и снизить нагрузки на систему.

Что в итоге

С учетом вышесказанного становится понятно, что двигатель конструктивно имеет много деталей и узлов, которые весьма чувствительны к изменениям температурного режима. Если говорить даже о незначительных перегревах, первыми выходят из строя сальники клапанов, затем поршневые кольца.

Рекомендуем также прочитать статью о том, что делать, если двигатель закипел. Из этой статьи вы узнаете о том, какие дейтсвия необходимо предпринят водителю, если мотор начал перегреваться.

Однако когда перегрев более серьезный, тогда высока вероятность прогара клапанов, прокладки ГБЦ, деформации привалочных плоскостей БЦ и головки и т.д. Что касается серьезных проблем, следует помнить, что нагрев неизбежно ведет к расширению деталей, в результате чего появляются трещины блока и головки, элементы деформируются и оплавляются. В худшем случае перегретый двигатель заклинивает.

При этом далеко не всегда на рост температуры внутри мотора укажет стрелка на приборной панели. Особенно опасны в этом плане локальные перегревы. По этой причине необходимо постоянно следить за общим состоянием ДВС, выполнять комплексную диагностику двигателя, регулярно менять антифриз, поддерживать работоспособность и чистоту системы охлаждения.

Напоследок хотелось бы добавить, что все диагностические и профилактические процедуры должны выполняться правильно, так как система охлаждения состоит из большого количества достаточно хрупких деталей. Например, даже неаккуратная наружная мойка радиатора под давлением может привести к повреждениям его ребер.

Читайте также

krutimotor.ru

Перегрев двигателя — почему, симптомы, что делать

Исправный автомобиль не требует предпринимать никаких действий от водителя для охлаждения двигателя. Если автолюбитель стоит в пробке, то с высокой температурой справится вентилятор. При движении радиатор охлаждается встречным воздухом. Когда транспортное средство работает «на холодную», то антифриз или тосол циркулируют по малому кругу: до помпы от двигателя. На прогретой машине открывается большой круг, включающий в себя работу радиатора.

Силовой агрегат современного автомобиля проходит различные испытания при самых высоких нагрузках и максимально-возможной температуре окружающей среды. А означает это только то, что двигатель, штатный для определённой марки транспортного средства, не может перегреваться в результате повседневной эксплуатации. Но, если  такая проблема возникает, то водителю необходимо искать причины ее возникновения, так как незаметные симптомы могут перерасти в дорогостоящий ремонт.

Симптомы перегрева двигателя

О перегреве двигателя водителю красноречиво говорят следующие признаки:

1. Многие автомобили оснащены стрелкой, указывающей температуру охлаждающей жидкости или сигнальным датчиком на панели приборов, указывающим на перегрев мотора. Иногда дополнительно включается звуковой сигнал.

2. Если водитель не следит за индикацией на приборной панели, то о перегреве оповестят другие неприятные факторы. Во-первых, возможна потеря мощности мотора, это будет отчетливо заметно по «тяжести» набора скорости. Во-вторых, расширенные от повышенной температуры детали начнут стучать, что и приведёт к дальнейшим поломкам.

3. Если есть подозрения на перегрев мотора, то откройте крышку расширительного бачка, когда мотор уже остыл, и рассмотрите его на наличие постороннего налета темного цвета. Обратить внимание нужно и на антифриз, который может содержать серые «хлопья». Если хотя бы один из факторов присутствует, то трактовать это можно исключительно как перегрев мотора.

4. Автомобили, имеющие дополнительный ремень как помпы, так и генератора, сигнализируют о перегреве ещё одним способом – загорается лампа зарядки аккумулятора вместе с лампочкой перегрева двигателя. Это свидетельствует об обрыве ремня генератора и помпы. Но индикация разрядки аккумулятора  появляется только совместно с повышением температуры. Если этого нет, то проблема исключительно в АКБ и о перегреве двигателя говорить не приходится.

5. Пожалуй, самый однозначный симптом перегрева двигателя – это пар из-под ног или капота. В первом случае он исходит из радиатора отопителя, то есть печки.

Видео: Перегрев двигателя, причины перегрева.

Причины перегрева мотора

Среди них:

  1. Низкий уровень антифриза в охлаждающей системе. Многие водители пренебрегают проверкой количества жидкости в расширительном бачке, а ведь она может где-то течь или выкипать. Если все патрубки и другие элементы целы, то можно просто долить ОЖ.
  2. Перегрев может стать следствием пробития радиатора. Поможет только замена, а при незначительных повреждениях герметик. Но чаще всего радиатор засоряется пылью, тополиным пухом и даже листьями. Нужно только прочистить его. Если это не помогло, а остальные причины исключены, то устройство уже просто забилось за годы эксплуатации. Это может быть следствием использования воды вместо антифриза.
  3. Заклинивание термостата. Эту проблему проще всего определить зимой. Если печь дует холодным, то других причин искать не стоит. Летом можно прикоснуться к патрубку, который чаще всего самый нижний, после прогрева мотора. Если шланг полностью холодный, то антифриз на радиатор не поступает, что и стало причиной выросшей температуры.
  4. Поломка помпы. Она, как и термостат, может заклинить.
  5. Остановившийся вентилятор. Для поиска проблемы требуется диагностика, так как мог сломаться моторчик или муфта включения. Иногда достаточно отключить датчик температуры охлаждающей жидкости, чтобы вентилятор работал постоянно при заведенном двигателе, это позволит избежать перегрева.
  6. Утечка антифриза. Первое, на что обращаем внимание, это патрубки. Могут быть не затянуты их хомуты или появились трещины. Проблема может находиться и в системе отопления салона: печка или её краник.
  7. Первая серьезная проблема, которая трудно диагностируется и устраняется исключительно профессионалами, — неправильная регулировка зажигания и впрыска. Позднее сгорание топлива приводит к перегреву двигателя, так как процесс происходит только в момент открытия клапанов.
  8. Отложения в камере сгорания. Во время работы изношенного двигателя происходит постоянный заброс масла в цилиндры. При сгорание масло образует тонкий нагар на стенках. Со временем его толщина увеличивается, что приводит к перегреву силового агрегата. Причем остановить проблему трудно, так как высокая температура способствует расходу масла, что негативно отражается на количестве отложений. Из-за этого перегрев только увеличивается.
  9. Воздушная пробка. Никакого воздуха в охлаждающей системе быть не должно, для этого стоит крышка расширительного бачка. Но она может не работать, если производился ремонт, например замена патрубка. Чтобы проверить наличие такой неисправности, нужно открыть крышку и прокачать шланги. Если это не поможет, то стоит поискать горку, поставить автомобиль «мордой» вверх и завести его, дожидаясь полного прогрева. После двух-трех срабатываний вентилятора снова открывается крышка, но уже максимально аккуратно, так как машина прогрета.
  10. Прогар клапана. Если на клапане присутствует хоть небольшая трещина, то это становится причиной раннего выхода газов, что повышает температуру двигателя.

Непосредственно перегрев наступает не сразу после возникновения причины, а после ряда действий, описанных далее:

  • при достижении высокой скорости;
  • во время пробуксовки и недостаточном обдуве радиатора;
  •  при слабом теплоотводе во время жары;
  • при работающем кондиционере;
  • негерметичная крышка радиатора способствует перегреву во время затяжного подъема в гору.

Но эти ситуации способствуют постепенному перегреву. У водителя есть возможность заметить неисправность из-за плавного роста стрелки температуры или мигающего индикатора. Но существуют и такие неполадки, которые приводят к быстрому перегреву мотора по причине:

  • полная остановка работы насоса;
  • разрыв патрубка, способствующий выходу охлаждающей жидкости из системы;
  • обрыв ремня помпы и генератора на некоторых автомобилях. Такая неполадка уже обсуждалась ранее;
  • прорыв газа в систему охлаждения. Актуально только для автомобилей с установленным ГБО. Последствия те же, что и у лопнувшего патрубка – антифриз просто уходит из системы;

Ещё кое-что полезное для Вас:

Действия водителя при перегреве

Самое главное, что должен сделать автолюбитель, это обеспечить остановку автомобиля. И закончить движение нужно своевременно, так как растущая температура однозначно приведет к перегреву.

Действия водителя далее выглядят следующим образом:

  1. Выключается кондиционер и дополнительные устройства, такие как: магнитола, фары, обогрев сидений и стекла.
  2.  Включается печка на самую высокую скорость. Это позволит отвести некоторую часть тепла.
  3. Если температура продолжает рост или причина не очевидна, то лучше заглушить мотор и осмотреть подкапотное пространство. Это может не дать полноценного ответа о случившемся, но сбережет денежные средства автолюбителя, так как самые печальные последствия перегрева не будут допущены.

Дальнейшее движение возможно только при установленной проблеме. Если это обрыв патрубка или другая проблема, однозначно говорящая о необходимости доливки антифриза, то её нужно устранить и добавить жидкость в систему. От автомобиля не должно исходить посторонних звуков в виде бульканья, хлопков или стуков.

Видео: ПЕРЕГРЕВ ДВИГАТЕЛЯ? КИПИТ МОТОР? / ЕСТЬ РЕШЕНИЕ!

Если двигатель закипел


Когда температура охлаждающей жидкости достигает предела, то водитель пытается спасти двигатель от последствий, но часто делает это неправильно.

Итак, самое главное – не открывать крышку расширительного бачка. Если давление внутри системы излишнее, то кипящий антифриз на огромной скорости польется наружу. Автолюбитель получит сильный ожог.

В охлаждающую систему доливается чистая вода. Мотор запускается, но нужно прислушаться к работе автомобиля. Если от расширительного бачка слышны посторонние звуки, например, бурление, то нужно остановиться. Если рабочая температура двигателя уже достигнута и шумов не наблюдается, то можно ехать домой,следя за показанием приборов. Исключите резкий набор скорости. 

Нельзя поливать горячий двигатель водой, так как это отрицательно скажется на дальнейшей работе агрегата. Микротрещины, возникшие от резкого перепада температуры, проявятся не сразу, но устранить их будет невозможно.