29Мар

Устройство водородного двигателя: Водородный двигатель; устройство, принцип работы, перспективы

Содержание

Принцип работы водородного двигателя для автомобиля

Двигатель внутреннего сгорания уже давно является далеко не единственным силовым агрегатом, который устанавливается на автомобили: альтернативой ему в последнее время всё чаще становятся моторы, использующие в качестве движущей силы электричество, и водородные установки. Именно о последнем механизме и пойдет речь ниже.

Краткая история создания

Двигатель на водороде был создан в начале XIX века усилиями французского изобретателя. Спустя 35 лет в Англии был оформлен официальный патент на подобный агрегат, а в 1852 году немецкие инженеры доработали устройство, сделав возможной его работу на воздушно-водородной смеси.

Особое распространение моторы на водороде приобрели в годы ВОВ, когда бензин оказался в большом дефиците. Затем интерес к данному виду топлива поутих до топливного кризиса, случившегося в 70-е годы.

В последнее же время за развитие экологически безопасного топлива ратуют защитники природы и просто люди, неравнодушные к дальнейшей судьбе планеты и будущих поколений.

Принцип работы водородного двигателя

Функционирование двигателя на водородном топливе отличается от действия двигателя внутреннего сгорания, прежде всего, особенностями подачи и воспламенения смеси топлива, но принцип работы остаётся таким же.

Бензин горит медленно, а в случае с водородом время впрыска сдвигается к моменту возвращения поршня к крайнему положению, давление же может быть низким.

Водородный двигатель в идеальных условиях и вовсе способен работать без поступления воздуха: в камере сгорания останется после сжатия пар, который снова станет водой (это обеспечит радиатор). Однако на практике добиться этого сложно, т. к. на авто придётся устанавливать электролизер (специальное устройство, отделяющее водород от воды с целью осуществления реакции с кислородом).

Водородные топливные элементы

Эти устройства напоминают традиционные аккумуляторы с более высоким КПД, достигающим 45%.

В корпус помещается мембрана, проводящая исключительно протоны и разделяющая две камеры (анодную и катодную): в первую поступает водород, во вторую – кислород. Электроды покрываются катализатором (в его качестве часто применяют платину), при воздействии которого начинается процесс потери электронов водородом.

Протоны, проходящие в тот же период времени в катодную камеру, соединяются с приходящими извне электронами, что происходит опять же вследствие наличия катализатора.

Устройство водородного двигателя внутреннего сгорания

Такой движок практически ничем не отличается от пропанового агрегата, поэтому часто владельцы таких машин просто перенастраивают двигатели (но это и приводит к снижению КПД).

Как работает машина с водородным двигателем? В ней установлен генератор: внутри него протекает реакция окисления водорода, в конце которой получаются азот, пар и электрический ток (углекислый газ в продуктах распада отсутствует).

Автомобиль с таким силовым агрегатом можно сравнить с электрокаром, но с более компактным аккумулятором. На рабочий режим элемент выходит спустя пару минут после запуска, а вот на прогрев до рабочей температуры может уйти и час (на точное время влияет температура окружающей среды). Появляется вода, а электроны из анодной камеры попадают в электрическую цепь, подключенную к движку. Иными словами, получается ток, питающий автомобильный водородный двигатель.

Минусы водородного мотора

Водородные двигатели для автомобилей при всех плюсах не лишены недостатков:

  1. Высокая стоимость, на которую влияют, во-первых, электрический генератор, во-вторых, необходимые для эксплуатации авто баки из углепластика.
  2. Низкая энергетическая эффективность. У электромобиля КПД равняется 70%, у водородного топлива – 30%, если же водород получать из нефти, этот показатель увеличится примерно в 2 раза, но тогда появится углекислый газ.
  3. Малое количество заправок. Если в Европе они хотя бы есть, то в России такие заправочные станции в принципе отсутствуют.
  4. Необходимость периодической проверки баллонов, заправленных водородом, в целях безопасности.
  5. Увеличение веса машины и, как следствие, ухудшение маневренности.

Безусловно, защита окружающей среды имеет огромное значение, но пока что автолюбители не готовы жертвовать собственным комфортом и деньгами ради экологии.

Видео о том как работает водородный двигатель

Технология водородных топливных элементов | Knauf Automotive

инновации, Автомобильные аккумуляторные батареи, Автомобили на водороде 14 декабря 2021

Технология водородных топливных элементов может оказаться самым экономически эффективным вариантом автомобильной энергетики на сегодняшний день. Что такое водородный топливный элемент и как он работает?

Что такое водородный топливный элемент?

В ближайшем будущем водородные топливные элементы могут широко использоваться в автомобилях. Это решение имеет множество преимуществ, и есть много признаков того, что автомобили на водородном топливе будут становиться все более популярными. В то же время важно помнить, что водородные топливные элементы, как и любая другая технология, имеют определенные ограничения. Но сначала стоит узнать, как выглядит система такого типа и как она может обеспечивать энергией двигатель автомобиля.

Функция топливного элемента – независимо от его типа – заключается в выработке электроэнергии за счет окисления подаваемого на него топлива. Работа водородных топливных элементов, однако, полностью отличается от работы гальванических элементов, к которым относятся батареи и аккумуляторы. В отличие от этих типов компонентов, топливные элементы не нуждаются в подзарядке и могут начать работать практически сразу после подачи топлива.

Водородные топливные элементы – наиболее широко используемый вариант. Электроды погружены в электролит и используют водород (на аноде) и кислород (на катоде). Это, помимо прочего, устраняет вредные вещества, образующиеся в процессе сгорания топлива – вместо них в окружающую среду выбрасывается только пар.

См. подробнее: Как уменьшить углеродный след в автомобильном секторе?

Как работает водородный топливный элемент?

Благодаря использованию водорода, процесс сгорания топлива не изменяет химический состав электролитов или электродов. Это еще один важный аспект, касающийся различий между топливными и гальваническими элементами. Батареи основаны на реакциях, которые могут привести к изменению используемых веществ – отсюда необходимость зарядки, которая включает в себя обратные процессы.

Принцип работы водородного топливного элемента довольно прост: водород высвобождает электроны, которые затем реагируют с кислородом для производства электроэнергии, оставляя в качестве побочного продукта реакции только пар. В некоторых элементах вместо чистого водорода используются соединения, содержащие большое количество водорода, такие как метан или метанол – в этих случаях эффективность немного ниже, а в процессе сгорания также образуется небольшое количество углекислого газа.

Области применения водородных топливных элементов

Водородные топливные элементы находят довольно широкое применение в различных отраслях:

  • энергетические технологии – для обеспечения энергией мест, где невозможен свободный доступ к электросети;
  • строительство автономных роботов,
  • системы аварийного энергоснабжения,
  • космические технологии – корабли и зонды,
  • автомобильная промышленность.

Последний пункт, в частности, заслуживает внимания. Двигатели на водородных топливных элементах – это решение, которое принимает все большее число производителей автомобилей. Уже есть несколько моделей от ведущих брендов с таким приводом – эффективность водородных топливных элементов довольно высока, что позволяет использовать их даже в автобусах.

См. подробнее: Амортизаторы для автомобильных баков для хранения водорода

Водородные автомобили – технология, инфраструктура и другие факторы, влияющие на их внедрение

Хотя технология как водородных топливных элементов, так и водородных двигателей в настоящее время достаточно развита, мы все еще довольно далеки от широкомасштабного внедрения этого типа технологий. Однако их количество неуклонно растет, а растущая популярность является результатом сочетания нескольких важных факторов. Среди прочего стоит обратить внимание на действующие нормы – Европейский Союз, совместно с другими организациями, в настоящее время уделяет большое внимание экологичности дорожного движения, поддерживает инициативы, связанные с альтернативными видами топлива, и проясняет юридические вопросы, связанные с электромобильностью.

Одним из решающих преимуществ в повседневной эксплуатации водородного автомобиля является широкая доступность этого элемента – его можно найти практически везде, что позволяет свести затраты к минимуму. Один «бак» в новейших водородных автомобилях позволяет проехать даже более 700 км, что является значительным преимуществом перед другими электромобилями.

См. подробнее: Виды электромобилей против развития электромобильности – в чем преимущества автомобилей HEV, PHEV, FCEEV?

Однако в настоящее время серьезным препятствием является отсутствие доступной инфраструктуры для снабжения автомобилей водородом. В Польше первая станция такого типа была создана всего несколько месяцев назад, а во всей Европе их количество оценивается чуть более чем в 200. Однако существует множество проектов, которые предполагают строительство новых водородных заправочных станций в ближайшие годы.

Как заправлять водородный автомобиль?

С точки зрения водителя, процесс заправки выглядит так же, как и в случае с автомобилем, работающим на топливе. Однако есть несколько важных отличий: водород на заправочных станциях обычно измеряется в килограммах, а не в литрах. Кроме того, заправка водородного автомобиля требует тщательного контроля скорости насоса, поскольку слишком быстрая заправка автомобиля может привести к опасно высокой температуре. Время зарядки нового водородного автомобиля на обычной станции составляет около 3 минут.

Цены на водородные автомобили

В настоящее время водородные автомобили довольно дороги – цены на модели, доступные в Польше, составляют около 65 000 евро. Однако с развитием инфраструктуры и ростом популярности альтернативных видов топлива эти цифры будут постепенно снижаться, как и в случае с другими электромобилями. Важную роль здесь могут сыграть правовые нормы Европейского союза и государств-членов – уже сейчас во многих местах водители могут рассчитывать на льготы, связанные с использованием этого типа автомобилей.

Водородные топливные элементы – преимущества и недостатки

Конструкция водородных топливных элементов относительно проста, как и принцип их работы – благодаря этому химическая энергия может быть преобразована в электричество очень быстро и легко. При этом риск возникновения сбоев и неполадок очень низок. Огромным преимуществом использования этого типа топливных элементов является их нейтральное воздействие на окружающую среду. Побочным продуктом сжигания водорода является только пар, в отличие от ряда вредных веществ, образующихся при использовании твердого топлива. Более того, водородный топливный элемент также создает низкий уровень шума. Технология водородных топливных элементов также обеспечивает эффективную работу в течение длительного времени и возможность больших мгновенных перегрузок. Один элемент вырабатывает ток очень низкого напряжения (от 0,5 до 1 В), но они могут быть объединены практически в любом количестве, что обеспечивает значительную масштабируемость и широкое применение.

Недостатком водородных топливных элементов является довольно высокая стоимость материалов, используемых для производства катализаторов. Кроме того, эффективность систем такого типа ниже, чем при хранении энергии в аккумуляторах. Процесс производства водорода также требует определенных затрат энергии. Несмотря на это, считается, что водород имеет значительный потенциал в качестве источника энергии как для автомобилей, так и для стационарных установок. Следует, однако, помнить, что водородные топливные элементы — это технология, которая все еще находится на стадии разработки, но значение компаний в этом секторе постоянно растет.

Современные решения для электромобильности с Knauf

Постоянно развивающаяся технология водородной энергетики становится все более популярной. По этой причине имеет смысл обратиться к решениям, которые будут хорошо работать на этом быстрорастущем рынке. В современных элементах используются компоненты из вспененного EPP, которые обеспечивают эффективную теплоизоляцию в сочетании с защитой от ударов и повреждений. Одним из ведущих производителей таких деталей является компания Knauf Industries, которая также предлагает ряд других инновационных решений для электромобилей.

Заправка не только топливными элементами

Составные части

Джейсон Морган — директор по контенту компании Fleet Equipment.

У нас есть ответ на вопрос, что важнее: технология трансмиссии или инфраструктура, которая питает (или заряжает) ее? Электрические грузовики начали использоваться для ближнемагистральных перевозок, а для их поддержки развернута инфраструктура для зарядки электромобилей. OEM-производители и автопарки стимулируют изменение электромобилей на арене аккумуляторных электромобилей, и это, вероятно, верно и для водородной арены.

Нажмите здесь, чтобы узнать больше

Водород в настоящее время находится в том же опасном положении, что и электрические грузовики с аккумуляторными батареями около трех лет назад. Разработка водородных силовых агрегатов ведется за закрытыми дверями, и интерес клиентов автопарка к ним растет. Это первые дни в цикле внедрения — цикле, который Cummins стремится ускорить и сократить с помощью своего водородного двигателя внутреннего сгорания X15H, 15-литровой водородной силовой установки, которая является одним из самых удивительных дополнений к топливно-независимой серии X Cummins. портфолио.

«Поскольку мы работаем над обезуглероживанием, нам нужны решения, и водородный двигатель — это практичное решение», — начал Джим Небергалл, генеральный директор Cummins Hydrogen Engine Business. «Это топливо с нулевым содержанием углерода, которое приводит к значительному сокращению выбросов парниковых газов, но это также самая дешевая технология использования топлива с нулевым содержанием углерода».

Помните, мы не говорим о трансмиссии на топливных элементах. Этот двигатель имеет много общего с хорошо известным дизельным двигателем Cummins X15. Вот несколько быстрых пунктов, которые подчеркивают сходство X15H с его дизельным аналогом:

• Прямой впрыск, искровое зажигание;

• Номинальная мощность, которая совпадает (хотя бы частично) с дизельным двигателем X15; и

• Общие компоненты для блока цилиндров, кривошипа и точек крепления (и это лишь некоторые из них).

— Очень знакомо, — подтвердил Небергалл. «Методы технического обслуживания очень распространены. Изменений X15 в X15H не так много. Мы работаем на рынке, не склонном к риску. У нас не склонная к риску отрасль. X15H не несет большого риска. Cummins может сделать двигатель, работающий на любом топливе. Водород оказался отличным топливом с нулевым содержанием углерода, и многие клиенты переходят на него в качестве конечного топлива».

«Последнее топливо» — звучит неплохо, но Небергалл знает, что впереди долгий водородный путь. Маркером первой мили на этом пути является поиск правильного приложения, которое будет способствовать внедрению. Cummins в качестве основной цели выделяет дальнемагистральные маршруты протяженностью 300 миль и более. Очевидно, что это удовлетворяет потребность в обезуглероживании, поскольку аккумуляторные электрические грузовики работают на расстоянии около 250 миль, но есть и другое потенциальное решение для этого приложения. Природный газ является очевидным (и растущим) претендентом на то, чтобы бросить вызов дизельному топливу в краткосрочной перспективе, но по-прежнему производит выбросы (которые можно компенсировать, если вы используете возобновляемый природный газ, но это уже другая история).

Конечно, водородный двигатель также производит выбросы NOx.

«Но это будет намного меньше выбросов, производимых сегодняшними дизелями», — сказал Небергалл. «Примерно на 75% ниже. Очень низкий уровень NOx, но NOx все равно будет».

Nebergall молчал о конкретных показателях выбросов и о том, как он может сравниться с двигателем X15N, работающим на природном газе, но пообещал, что более подробная информация будет предоставлена, когда двигатель будет ближе к запуску.

Преимущество водородного двигателя заключается в переходе на новое топливо. В то время как автопарки будут чувствовать себя комфортно, имея сходство X15H с дизельным X15, некоторые отличия X15H помогут им перейти к водородному будущему. Возьмем, к примеру, систему хранения топлива.

«Бортовые баки цилиндров для водородных топливных систем X15H точно такие же, как и для автомобиля на топливных элементах», — сказал Небергалл. «Это хорошо для производителя оригинального оборудования, потому что теперь у них есть инженерная работа, которую нужно решить.

Таким образом, они могут интегрировать его один раз для двигателя, и он работает с топливным элементом».

Думайте об этом как о маленьком шаге к обезуглероживанию, с точки зрения оборудования, и о гигантском скачке вперед к внедрению нового источника топлива для дальнемагистральных перевозок. Тем не менее возникает вопрос: сохранится ли водородный двигатель после того, как водородный топливный элемент закрепится на рынке?

Небергалл посмотрел в свой хрустальный шар:

«Мы не знаем, что нас ждет в будущем, но мы разработали двигатели для работы во многих условиях окружающей среды — при экстремально низких температурах окружающей среды или в экстремальных условиях эксплуатации, где много пыли и мусора. Что касается топливных элементов, нам нужно посмотреть, как они себя ведут, когда на улице минус 40 градусов и из выхлопной трубы течет вода. С двигателем об этом можно не беспокоиться. Есть различия. Я не знаю, что одно решение когда-либо будет 100%. Думаю, в будущем найдется место и для того, и для другого».

В краткосрочной перспективе у автопарков появляется все больше возможностей для достижения целей устойчивого развития. Нажмите ниже, чтобы прочитать больше историй из нашей серии статей о Cummins и узнать, как они распределяют свою стратегию разработки двигателей:

Как Cummins представляет себе будущее энергетики (и что это означает для ее бизнеса по производству двигателей)

Удельная мощность дизельного топлива (и его влияние на обезуглероживание)

Двигатели, работающие на природном газе, в настоящее время: потенциально готовы к росту

Водород на долгом пути

Исследования и разработки в области использования водорода и топливных элементов для различных применений продолжают расширяться. Несмотря на то, что в настоящее время в секторе автомобильных дорог ведется большая работа, особенно в связи с тем, что водород рассматривается как лучшая альтернатива для дальних перевозок, в отрасли внедорожных транспортных средств также предпринимаются усилия по развитию.

В июле 2020 года JCB объявила о разработке экскаватора с водородным двигателем. Прототип 20-тонного экскаватора 220X оснащен водородным топливным элементом и проходит испытания на испытательном полигоне компании. «JCB будет продолжать развивать и совершенствовать эту технологию, проводя расширенные испытания нашего прототипа машины, и мы продолжим оставаться в авангарде технологий, предназначенных для построения будущего с нулевым выбросом углерода», — заявил лорд Бэмфорд, председатель JCB, в пресс-релизе компании. выпуск о прототипе машины.

Производитель строительной техники SANY объявил в марте 2021 года, что с его производственной линии сошли два автомобиля на водородных топливных элементах: самосвал и автобетоносмеситель. Компания заявила, что основными преимуществами использования водорода является отсутствие производимых выбросов — тепло и водяной пар являются единственными выбросами от водорода.

Дополнительные преимущества, по словам SANY, эти новые транспортные средства обеспечивают повышенную мощность благодаря высокомощным блокам топливных элементов, используемым в сочетании с приводным двигателем с большим крутящим моментом и коробкой передач AMT. Возможны и более длинные расстояния за счет использования водородных баллонов общей емкостью 1680 л (443,8 галлона), которые обеспечивают запас хода более 500 км (310,7 миль).

Компания Cummins Inc. также работает над совершенствованием технологий производства водорода и топливных элементов. В ноябре компания провела День водорода, чтобы обозначить свои текущие и будущие инициативы в этой области. Председатель и главный исполнительный директор Том Лайнбаргер сказал, что у Cummins есть «невероятная возможность продолжать строить сильный бизнес в области производства водорода и технологий топливных элементов, способствуя снижению выбросов и защите нашей планеты».

ПОДРОБНЕЕ: Cummins представляет концепцию водородной технологии

Во время мероприятия он сказал, что Cummins считает, что водород будет играть ключевую роль в усилиях по обезуглероживанию из-за множества преимуществ, которые он предлагает, таких как легкость, простота хранения и способность обеспечивать высокую энергию на единицу массы. «Он предлагает способы обезуглероживания энергоемких отраслей, таких как перевозки на большие расстояния, судоходство и промышленные процессы», — сказал Лайнбаргер.

Компания JCB проводит испытания своего водородного 20-тонного экскаватора на испытательном полигоне в карьере. JCB

Технологии и приложения расширяются

По словам Cummins, есть три ключевые области, на которых компания сосредоточила свои усилия по разработке водорода и топливных элементов:

  • производство зеленого водорода
  • управление и транспортировка водорода
  • применение водородных топливных элементов.

У компании есть несколько текущих проектов, связанных с этими направлениями развития. В настоящее время Cummins имеет более 2000 установок топливных элементов для различных применений на дорогах и вне дорог, в том числе коммерческие грузовики в Норвегии с ASKO, крупным оптовым продавцом продуктов в регионе. Другие демонстрационные проекты Cummins с дополнительной технологией топливных элементов также будут реализованы в различных регионах, поскольку отрасли стремятся познакомиться с этой технологией. Компания Cummins сосредоточила свои усилия по разработке водорода на трех направлениях, включая технологию электролиза для производства водорода. Cummins Inc.

Cummins также недавно объявила об этом, а Air Liquide завершила строительство и ввод в эксплуатацию крупнейшего в мире электролизера с протонообменной мембраной, который используется для производства водорода. Он питается от возобновляемых источников энергии и производит до 8,2 тонн низкоуглеродистого водорода в день в Беканкуре, Квебек.

«Мы рассматриваем аккумуляторную электроэнергию и водородные топливные элементы как дополняющие друг друга технологии в составе силовых агрегатов с нулевым уровнем выбросов», — говорит Джереми Харсин, бизнес-директор Cummins Off-Highway. «Не существует универсального решения, подходящего для всех».

Водород имеет смысл для более крупного оборудования с высоким коэффициентом использования и потребности в энергии из-за ограничений инфраструктуры зарядки и размера необходимых батарей, а также их более высокой стоимости. Длительное время перезарядки, необходимое для более крупного оборудования, также может быть сдерживающим фактором. «Для более тяжелых рабочих циклов топливные элементы обеспечат большую гибкость и более высокую загрузку машины. Они хорошо подходят для тяжелых грузов и длительных рабочих смен с быстрой заправкой и отсутствием выбросов углекислого газа», — объясняет Харсин. «Электричество больше подходит для компактного оборудования, особенно используемого в аренде».

Водород обладает большей энергоемкостью по сравнению с дизельным топливом или природным газом. Один килограмм водорода имеет общую энергетическую эквивалентность примерно 3 кг или 1 галлону дизельного топлива. Таким образом, по сравнению с дизельным топливом или природным газом, водород сможет проехать такое же расстояние, используя меньше топлива.

«Внедрение топливных элементов будет происходить постепенно в течение следующих 5-10 лет, поскольку они станут не только экологически, но и операционно-экономически выгодными для OEM-производителей и операторов», — говорит Харсин.

DEUTZ также рассматривает водород как выгодную технологию для тяжелых условий эксплуатации. В нем отмечается, что возможности быстрой дозаправки позволяют более эффективно использовать углекислый газ (CO 2 ) в режиме свободной эксплуатации и снизить общую стоимость владения для конечных пользователей.

В настоящее время компания разрабатывает водородный двигатель на базе своего промышленного двигателя TCD7.8, известного как 7.8TCH. Доктор — Инж. Маркус Швадерлапп, , старший вице-президент по исследованиям и разработкам в DEUTZ, говорит, что к концу 2021 года компания планирует ввести в эксплуатацию водородный генератор в качестве демонстратора технологии водородного двигателя для пилотного клиента.

В этом приложении водородный генератор сможет обеспечить электроэнергию без CO 2 в пиковые периоды спроса на энергию, а также для удаленного энергоснабжения, например, для строительных площадок с электрическими машинами, говорит Швадерлапп.

DEUTZ также видит потенциал для замены дизельного двигателя в локомотивах и других устройствах. «Мы видим водородные двигатели во всех мобильных машинах, где требуется высокая производительность в сочетании с высокой степенью автономности», — говорит Швадерлапп.

Компания также оценивает разработку топливных элементов, но считает, что водородный двигатель ближе к индустриализации для внедорожных приложений.

ПОДРОБНЕЕ: Варианты топлива продолжают развиваться потенциал водорода

В марте 2021 года компания Westport Fuel Systems Inc. объявила об успешном запуске и первых испытаниях сверхмощного двигателя внутреннего сгорания, работающего на водороде, с системой прямого впрыска под высоким давлением (HPDI) 2.0. Предварительные испытания показали, что двигатель, работающий на водороде, может обеспечить сгорание и эффективность, сравнимые с топливными элементами, в тяжелых условиях эксплуатации.

«Возможность OEM-производителей и других сторон избежать новых и значительных инвестиций, которые потребуются для разработки и производства топливных элементов, электродвигателей и аккумуляторов, связанных с предложением продуктов для электромобилей на топливных элементах для дальних перевозок большой мощности, при этом используя налаженные поставки. производственных цепей, производственных инвестиций и инфраструктуры, а также экономии за счет масштаба — это невероятно увлекательно», — сказал Скотт Бейкер, вице-президент по инженерным вопросам Westport Fuel Systems, в пресс-релизе компании, в котором объявляются результаты первоначальных испытаний.

Компания считает, что эта технология может быть полезна для большегрузных грузовиков и других приложений с высокой нагрузкой, таких как горнодобывающая промышленность, судоходство и железнодорожный транспорт.

В мае компания Daimler Trucks объявила о начале тщательных испытаний последней версии своего грузовика Mercedes-Benz Genh3, прототипа автомобиля на водородных топливных элементах. По словам компании, серия испытаний будет очень требовательной к автомобилю и компонентам и будет сосредоточена на непрерывной эксплуатации, различных погодных и дорожных условиях, а также различных маневрах вождения.

Целью Daimler в области технологии топливных элементов является достижение дальности до 1000 км (621,4 мили) и более без остановок для дозаправки. Компания хочет, чтобы ее грузовик на топливных элементах имел аналогичные или лучшие характеристики по сравнению с дизельными аналогами, а это означает, что он может обеспечить такой же запас хода и долговечность. Daimler заявляет, что проведет такие же строгие испытания грузовика, как и грузовики с дизельным двигателем.

Genh3 был разработан с нуля и включает в себя совершенно новые компоненты — систему топливных элементов, полностью электрическую трансмиссию и сопутствующие системы, — сообщает компания. Особое внимание будет уделено им во время испытаний, поскольку вес и положение новых компонентов в грузовике влияют на его управляемость, что может влиять на силы и вибрации, ощущаемые транспортным средством и оператором.

Daimler использует баллоны с газообразным водородом во время испытаний Genh3. Тем не менее, компания считает, что жидкий водород является лучшим вариантом из-за его более высокой плотности энергии по отношению к объему, чем газообразный водород. Daimler говорит, что это приводит к использованию меньших и более легких резервуаров, потому что давление ниже, что позволяет грузовикам перевозить больше груза. В этих баках также можно перевозить больше водорода, что обеспечивает большую дальность полета.

Компания разрабатывает технологию резервуаров с жидким водородом и планирует создать новый прототип системы к концу 2021 года. Затем она проведет испытания с использованием резервуаров с жидким водородом, что позволит продемонстрировать использование как газообразных, так и жидких вариантов.

Грузовик Mercedes-Benz Genh3 был разработан с нуля и оснащен совершенно новыми компонентами. Daimler AG

Какие проблемы еще предстоит решить?

Производство, хранение и инфраструктура водорода являются одними из ключевых задач, стоящих перед рынком в настоящее время, говорит Швадерлапп. Как и Daimler, DEUTZ считает использование жидкого водорода наиболее выгодным. Он также отмечает необходимость разработки интеллектуальных решений для упаковки систем хранения водорода в транспортные средства.

«Бортовое хранилище — важнейший компонент водородной энергетики, — говорит Харсин. Он объясняет, что водород должен быть сжат в ограниченном пространстве путем сжатия или сжижения, чтобы хранить достаточно для удовлетворения требований рабочего цикла. Таким образом, Cummins инвестирует в технологии хранения. Недавно компания объявила о создании совместного предприятия с NPROXX для производства резервуаров для хранения водорода и сжатого природного газа.

Харсин также отмечает сложность, а также способность Cummins решать проблемы интеграции, настройки и усовершенствования взаимодействия между топливными элементами, батареями, силовым агрегатом и хранилищем топлива. «Понимание и адаптация общей системы трансмиссии будет иметь решающее значение в будущем. Это касается каждого компонента, который преобразует мощность двигателя в движение, и является областью, в которой Cummins может использовать наш глубокий опыт и понимание всех взаимодействующих компонентов и различных требований к работе, необходимых для обслуживания различных секторов». «Для более тяжелых рабочих циклов топливные элементы обеспечат большую гибкость и более эффективное использование машин», — говорит Джереми Харсин из Cummins. Cummins Inc.

Инфраструктура также останется проблемой. Даже несмотря на то, что в настоящее время существует множество проектов по увеличению заправки водородом, для их разработки потребуются время и ресурсы. Харсин говорит, что внедрение водорода, вероятно, начнется на рынках, где заправка может производиться централизованно, например, на домашних базах или вблизи крупных водородных центров, где есть доступ к доступной возобновляемой энергии.

Стоимость также является препятствием, которое необходимо преодолеть. Харсин говорит, что стоимость топливных элементов и водорода, по прогнозам, останется выше стоимости двигателей внутреннего сгорания в течение как минимум 5-10 лет. Однако он говорит, что экологические инициативы, продвигаемые корпорациями или правительствами, могут ускорить переход на водород. Клиенты автопарка, эксплуатирующие муниципальную технику или оборудование в аэропортах, распределительных центрах и портах, также могут оказать давление на OEM-производителей, чтобы они предлагали водородные решения, поскольку они стремятся сократить свои выбросы.

«Электроэнергия от аккумуляторов будет изо всех сил пытаться удовлетворить потребность в рабочем цикле для всех приложений, особенно для более крупных», — говорит Харсин. «Водород может предложить решение, которое эффективно выполняет работу при соблюдении требований нулевого уровня выбросов».

В целом, по его словам, водородные решения должны иметь общую стоимость владения, конкурентоспособную с двигателями внутреннего сгорания. «Мы должны постоянно совершенствовать конструкции электролизеров и топливных элементов, чтобы повысить уровень эффективности и снизить затраты за счет масштабирования».

Подобно аккумуляторной технологии, увеличение объемов будет способствовать масштабированию и со временем поможет снизить затраты. «Поскольку производство водорода, его распространение, производство оборудования и компонентов продолжается, стоимость, по прогнозам, снизится в течение следующего десятилетия для широкого спектра применений, что сделает водород конкурентоспособным по сравнению с аналогами двигателей внутреннего сгорания», — говорит Харсин.