3Окт

Роторный двигатель это: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Содержание

Роторный двигатель.Принцип работы роторного двигателя.

 Роторный двигатель Феликса Ванкеля — уникальная разновидность двигателей, создан и более менее доведенный до ума в середине двадцатого века. В чем же уникальность роторно-поршневого двигателя Ванкеля? Ответ прост, при малых габаритах и рабочем объёме, в комплекте с простотой конструкции и значительно меньшем количестве деталей по сравнению с обычным поршневым двигателем, роторный двигатель выдаст мощность в 2-2.5 раза большую, нежели поршневой двигатель с тем же рабочим объёмом цилиндров. Однако, тут же возникает вопрос, раз роторный мотор такой простой и одновременно мощный, то почему он не получил широкого распространения.

В общем то вариантов довольно много, самый на мой взгляд вероятный ответ на данный вопрос кроется в событиях тогдашнего времени. В 70-х годах многие авто-концерны того времени попытались сделать ставку на роторный двигатель, ввиду его превосходящей мощности и простоты конструкции над традиционным ДВС того времени.

  Все возможно и было бы хорошо, и роторные двигатели возможно сейчас ставили бы как минимум на половину современных авто, если бы не одно НО, как всегда, куда ж без него. В общем в 1973 году началась война на Аравийском полуострове. К слову, в то время арабские страны были основными поставщиками нефти в Европу и Америку, и война вынудила их значительно сократить поставки ресурсов в страны нового и старого света, что повлекло за собой невероятное подорожание нефтепродуктов, и в том числе и бензина, на котором работал роторный двигатель. Но, почему не перестали выпускать стандартные ДВС? Да потому, что в роторном двигателе всегда имеется огромный табун лошадей, который нужно кормить, короче РПД слишком много жрал, содержать его в то время было очень не выгодно, поэтому компании, вложившие деньги в разработки и производство роторных двигателей потерпели крах и понесли колоссальные убытки, машины с большим расходом топлива оказались совсем не востребованы на рынке. Производители отказались от прожорливого роторного двигателя в пользу более экономичного поршневого варианта.

  Однако все же нашлись приверженцы роторного двигателя — авто-концерн Mazda встал на путь самурая и продолжил проводить исследования и совершенствование двигателя Ванкеля, подобно тому, как однажды Subaru не отказались от использования оппозитных двигателей, которые на сегодняшний день являются главной фишкой этой марки. Инженеры мазды тоже даром времени не теряли и также имели свои разработки в области РПД. Это позволило им создать роторный двигатель 13b-REW с системой твин-турбо, мощностью 350 л.с, который устанавливался в автомобили Mazda RX7, в процессе эксплуатации двигатель зарекомендовал себя достаточно хорошо, но один непобедимый недостаток, свойственный РПД у него всё же остался,это большой расход топлива. Далее маздисты воткнули роторник в следующую модель Mazda RX8, но в ней заметно сократили табун под капотом с 350 л.с до 200, уменьшив рабочий объём до 1.3 литра. Ну где вы видели ДВС объёмом 1.3 с мощностью 200 л.с.? Это позволило сократить расход топлива и вывести модель на более конкурентно-способный уровень. Про попытку воткнуть РПД в жигуляторы думаю писать не стоит, инженеры купили авто с РПД у немцев и тупо скопировали двигатель. В результате ничего хорошего из этого не получилось.
 

Принцип работы и устройство роторного двигателя. Принцип работы роторного двигателя разительно отличается от поршневого. Прежде всего это связано с его конструктивными особенностями. Трудно выделить главную особенность этого двигателя, начну пожалуй с самого ротора. Ротор — является в данном типе двигателя и поршнем и шатуном, то есть весь кривошипно-шатунный механизм сводится только к ротору и валу-эксцентрику, которые и превращают энергию топлива во вращательные движения вала. Происходит это все в блоке, который является и камерой сгорания и газораспределительным механизмом. В нем происходят все такты работы ДВС, начиная с впуска и заканчивая выхлопом. Внутри блок имеет форму некой капсулы, но это не совсем так, эта форма имеет геометрическое научное название — эпитрохоида (блять). Установленный на валу ротор, крепко сцеплен с зубчатым колесом, которое соединено с неподвижной шестернёй, название которой — статор. Размер ротора значительно больше, нежели статор, несмотря на это, вокруг шестерни свободно вращается ротор с зубчатой шестерней. Каждый из концов треугольного ротора движется по внутренней поверхности блока, отсекая определенное количество пространства в блоке благодаря трём клапанам. Функцию поршневых колец в роторном двигателе выполняют радиальные и торцевые уплотнительные пластины, которые прижимаются к стенкам блока-цилиндра центробежными силами, ленточными пружинами и давлением газа. Двигатель ванкеля лишен сложного механизма газораспределения, это значительно упрощает конструкцию роторного двигателя по сравнению с традиционным, также отсутствие многих деталей КШМ традиционного двигателя позволяет вырабатывать большую мощность за счет отсутствия потерь на трение. За один полный оборот ротора, в двигателе проходит три полных рабочих цикла. Чуть не забыл, почему он много жрет, потому что камера сгорания в момент такта сжатия получается весьма длинной и топливо не успевает догорать полностью, для борьбы с этим явлением на роторные моторы ставят по две свечи зажигания, которые срабатывают по очереди одна за другой, воспламеняя топливную смесь с двух сторон. Такие меры весьма улучшили показатели роторников в плане экономичности и выдаваемой мощности.

  В общем все это очень хорошо звучит, но что же представляет из себя роторный двигатель в реальной жизни. На самом же деле по всему свету довольно много авто с роторными моторами времен 60-80х годов, многие на ходу и хранятся где то в музеях или частных коллекциях, еще больше гниют или уже сгнили на свалках. Стоит взглянуть на владельца авто с роторным двигателем, который мотор перегрел и носится по городу в поисках спецов и запчастей, всплывают все недостатки этого вида двигателей. Самое страшное для РПД на той же мазде рх8 это перегрев. Стоит один раз перегреть такой мотор и отремонтировать его будет потом очень сложно,так как запчасти стоят довольно недешево и ехать будут из Японии.В большинстве случаем при ремонте РПД бракуется и сам ротор и блок, на котором образовались задиры от поплавившегося металла. Многие в этом случае заказывают новый мотор, так как стоить он буден примерно так же как и ремонт старого двигателя. Поэтому некоторые мечтают сменить роторник на традиционный поршневой ДВС, однако, есть и фанаты, которые его ни на что не променяют.

Принцип работы роторного двигателя мазда


Вот что о нем нужно знать

Что такое роторный двигатель Mazda, как он работает и зачем его возрождают

Вращающиеся треугольники Рёло от Мазда возвращаются в массы, но явно под другим соусом…

 

Еще в марте Мартин тен Бринк, вице-президент «Mazda Motor Europe» по продажам и обслуживанию клиентов активировал энтузиастов по всему миру одним лишь своим заявлением, что роторный двигатель Ванкеля вернется в производство.

 

В частности, тен Бринк заявил, что роторный ДВС может стать элементом для расширения диапазона движения электрического автомобиля 2019 модельного года, но на тот момент это был просто слух.  «Mazda не анонсировала никаких конкретных продуктов с роторным двигателем в то время. Однако Mazda по-прежнему привержена работе над технологиями роторных двигателей», –рассуждали на тему комментария вице-президента Мазда в Mazda Motor of America.

 

Смотрите также: Один из немногих мотоциклов с роторным двигателем: История

 

Итак, что же такого особенного в этом легендарном двигателе, который так взволновал всех своим возвращением? И почему на этот раз все может быть по-другому?

 

Как он работает

Элементы системы двигателя

Нажать для увеличения

 

Роторный двигатель внутреннего сгорания по форме напоминает бочку. На нем и в нем вы не найдете многих компонентов, к которым привыкли в стандартном поршневом моторе. Во-первых, в нем нет поршней, ходящих вверх и вниз. Вместо них полезную работу совершает необычной формы треугольный поршень с округлыми краями (треугольник Рёло). Их количество может варьироваться от одного до трех в одном двигателе, но чаще всего используется схема с двумя поршнями, вращающимися вокруг вала посредством эксцентриковой полой центральной части.  

 

Топливо и воздух нагнетаются в пространство между сторонами роторов и внутренними стенками короба, где смесь воспламеняется. Быстрое, взрывное расширение газов поворачивает ротор, который таким образом производит мощность. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель более легким и компактным, чем поршневой двигатель эквивалентного объема.

 

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

 

Мало кто знает, но роторный мотор был изначально придуман почти 100 лет назад, а не в 50-е годы XX века. Первоначально принцип работы мотора был проработан Феликсом Ванкелем, немецким инженером, который придумал свой принцип действия двигателя внутреннего сгорания.

 

Преимущество №1: Роторный двигатель легче и компактней обычного поршневого мотора

 

Война, поднявшая одних инженеров, например Фердинанда Порше, другим не дала никакой возможности развиться. Не нужны были в опасные времена мирные двигатели Ванкеля, поэтому изобретателю пришлось ждать аж до 1951 года, когда он получил приглашение от автопроизводителя NSU для разработки прототипа. Немецкая компания решила с помощью хитрости выяснить, так ли хорош оригинальный двигатель, параллельно дав возможность продемонстрировать силы другому инженеру – Ханнсу Дитеру Пашке.

 

Сложная конструкция Ванкеля фактически проиграла простому прототипу, разработанному инженером Ханнсом Дитером Пашке, который всего-навсего убрал из оригинальной конструкции все лишнее, сделав ее производство экономически выгодным.

 

Так в Германии был изобретен и опробован новый двигатель Mazda, который на протяжении долгих десятилетий был одним из немногих роторно-поршневых серийных моторов и единственным в 21-м веке.

 

Современный двигатель Ванкеля не совсем двигатель Ванкеля.

 

Да, основа роторного двигателя от Ванкеля стала самой успешной конструкцией данного двигателя в мире и единственной, которая смогла сложными путями дойти до серийного производства.

 

Еще в начале 60-х годов у NSU и Mazda проводился дружеский совместный конкурс на производство и продажу первого автомобиля с двигателем типа Ванкеля, когда они работали над сырым продуктом, пытаясь создать из него качественный товар.

 

NSU стал первым на рынке в 1964 году. Но немецкой компании не повезло: она разрушила свою репутацию в течение следующего десятилетия ненадлежащим качеством продукции. Частые отказы двигателя снова и снова посылали владельцев к дилеру и в магазин за запчастями. Вскоре нередко можно было обнаружить модели NSU Spider или Ro 80, в которых было поменяно три и более роторных двигателей Ванкеля.

 

Проблема заключалась в уплотнениях вершины ротора – тонких полосках металла между наконечниками вращающихся роторов и корпусами роторов. NSU сделал их из трех слоев, что вызывало неравномерный износ. Это была бомба замедленного действия не только для автомобилей фирмы, но и самого автопроизводителя. Мазда решила проблему уплотнения (крайне важного элемента мотора, без которого он просто не был способен работать из-за отсутствия давления), сделав их однослойными. Силовой агрегат начали устанавливать в 1967 году на спортивные люксовые модели Cosmo…

 

В начале 70-х годов Mazda представила целую линейку автомобилей с двигателем Ванкеля – мечта, которая была разбита нефтяным кризисом 1973 года. Пришлось поубавить аппетит и оставить мотор там, где в нем больше всего нуждались – в легком спортивном купе Mazda RX-7. С 1978 по 2002 год было выпущено более 800 тыс. этих легендарных спорткаров с необычным двигателем, у которого больше не было аналогов.

 

Из Германии в Японию, из Японии в СССР – вот путь двигателя, разработанного в 20-х годах XX века Ванкелем

 

Любим и ненавидим

Фанаты техники любят роторные двигатели потому, что они другие. Многие автолюбители, хорошо разбиравшиеся в технике, питали определенную слабость к такому странному двигателю, работающему на обычном топливе, но при этом не выглядевшему как стандартный набор поршней, клапанов и других неотъемлемых элементов обычного поршневого мотора.

 

В зависимости от специфики мотора ротор линейно поставляет мощность до 7.000-8.000 об/мин – бесперебойно, практически на одном уровне крутящего момента. Эта ровная полка момента как раз и отличает его от подавляющего большинства поршневых ДВС, в которых наблюдается много мощности на высоких оборотах и ее нехватка при низких.

 

Автопроизводителям также понравился роторный двигатель благодаря плавности его работы. Роторы, вращаясь вокруг центральной оси, не создают никакой вибрации по сравнению с поршневыми двигателями, у которых верхняя и нижняя точки хождения поршня отчетливо прослеживаются даже внутри салона автомобиля.

 

Но необычный двигатель – это словно необъезженная лошадь, своенравное животное, поэтому в противовес обожателям идеи Ванкеля концепция также внушает свою долю ненависти в среде автомобильных фанатов и механиков. И, казалось бы, почему?

 

Ведь у двигателя простой дизайн: отсутствует ремень ГРМ, отсутствует распределительный вал, нет привычной системы клапанов. Но за простоту приходится платить большой точностью производства деталей. Они должны быть сделаны безукоризненно, что поднимает их стоимость в разы, по сравнению с запчастями для обычных поршневых двигателей. Второе – этих запчастей мало в природе. И в-третьих, в мире почти нет специалистов, которые занимались бы починкой роторных моторов. В Москве, говорят, есть пара, но очередь к ним – на год вперед.

 

Из минусов еще можно назвать своеобразную работу роторного силового агрегата. Конструкция подразумевает сгорание масла в цилиндрах мотора, куда нагнетаются небольшие количества моторного масла прямо в камеры сгорания. Делается это для того, чтобы смазывать прилегающие площади роторов, вращающихся на бешеной скорости. Сизоватый дым, иногда выходящий из выхлопной трубы, – это признак беды, он отпугивает незнающих людей от моделей вроде RX-7 или 8.

 

Роторные моторы также предпочитают минеральные масла синтетическим, а их дизайн означает, что вы должны время от времени подливать масло в этот ненасытный агрегат, чтобы оно не закончилось.

 

Ну и наконец, те уплотнения вершины ротора, которые не удалось сделать NSU, все же недостаточно долговечны. Раз в 130-160 тыс. км мотору требуется капитальная переборка. А это удовольствие, как вы уже понимаете, дорогое. Да и что такое 130.000 км? Пять-шесть лет эксплуатации? Маловато будет!

 

Современные водители также наиболее чувствительны к другим недостаткам роторных движков: высоким выбросам вредных веществ в атмосферу (этим, скорей, обеспокоены в Greenpeace) и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь перед отправкой ее восвояси (здесь, конечно, удар наносится по карману автовладельца). Да, роторные двигатели имеют отменный «аппетит».

 

Для RX-8 Mazda частично решила эти проблемы, разместив выпускные отверстия по бокам камер сгорания. Но сейчас борьба за экологию обострилась и предложенных улучшений оказалось недостаточно. Это явилось еще одной причиной, по которой RX-8 стал последним автомобилем с двигателем Ванкеля под капотом. Он продавался 10 лет, с 2002 по 2012 год, но его убила экология.

 

Время для повторного возвращения

Вернемся к слухам Mazda о том, что компания может использовать какой-то роторный двигатель в качестве «расширителя» диапазона для своего будущего электрического автомобиля. Эта штука имела бы смысл.

 

Еще в 2012 году Mazda арендовала в Японии 100 электромобилей Demio EV, они были хороши, но напрягал небольшой диапазон без подзарядки – менее 200 км.

 

Изучив дело, в 2013 году Mazda создала прототип, который получил небольшой роторный моторчик, тот самый «расширитель» диапазона, который почти удвоил этот диапазон. Модель назвали «Mazda2 RE Range Extender».

 

Колеса прототипа приводились в движение с помощью электрического двигателя, а 0,33-литровый 38-сильный роторный моторчик работал для того, чтобы перезаряжать батареи электрического двигателя, если они разряжались и поблизости не было места для перезарядки.

 

Поскольку роторный двигатель не мог отправлять мощность на колеса, Mazda2 RE не был гибридом, как Volt или Prius. Силовой агрегат Ванкеля, скорее, был бортовым генератором, который добавлял энергии аккумуляторам.

 

Смотрите также: Mazda официально подтвердила возвращение роторных двигателей в 2019 году

 

Такая же компактность и легкий вес, которые сделали ротор Ванкеля отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным в новом качестве – расширяющего диапазон генератора на автомобиле, особенно том, который уже имеет электродвигатели и батареи, конкурирующие за пространство, и не может позволить себе много «лишнего» веса.

 

Роторные двигатели Мазда сделали себе репутацию в основном как моторы для спортивного автомобиля. В былые времена слухи об уникальных возможностях такого рода силовых агрегатов преодолели даже железный занавес СССР, где уже наши инженеры вносили и успешно интегрировали диковинные моторы в отечественные автомобили.

 

Наверное, будет не совсем правильно делать из такого легендарного двигателя всего лишь генератор для электромобиля. Но такова сегодняшняя реальность: время роторных моторов прошло, и его не получится вернуть обратно.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.

Этот контент несовместим с этим устройством.

Если вы посмотрите внимательно, то увидите, что выступ на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа на лебедке, давая ротору рычаг, необходимый для поворота выходного вала. Когда ротор вращается внутри корпуса, он толкает лопасть по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие. В тот момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму.Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается. К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму.Это когда начинается горение.

Горение

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, быстро нарастает давление, заставляя ротор двигаться.

Давление сгорания заставляет ротор двигаться в направлении увеличения объема камеры. Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора происходит три такта сгорания.Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, что означает, что на каждый оборот выходного вала приходится один такт сгорания.

,Роторный двигатель Mazda

, напечатанный на 3D-принтере, радует нас 9000

В этом выпуске Engineering Explained Джейсон Фенске объясняет, как работает роторный двигатель Ванкеля. Используя напечатанную на 3D-принтере модель двигателя 13B-REW в масштабе 1/3 от FD Mazda RX-7, мы более подробно рассмотрим, как работают роторы. Роторный двигатель Ванкеля впервые был использован Mazda, когда компания представила Cosmo еще в 1967 году. Позже он использовался в пикапах, но не стал популярным, пока не нашел свое место в первом поколении RX-7 в 1978 году.С тех пор роторные двигатели и название RX-7 стали синонимами вплоть до финального производства RX-8 в 2012 году.

В отличие от обычных поршневых двигателей внутреннего сгорания, двигатель Ванкеля содержит внутри ротор. Взглянув на модель 13B-REW, вы можете увидеть внутри корпуса ротора, где происходит все самое интересное. Ротор в форме Дорито внутри является ключом к созданию мощности и вращается с помощью эксцентрикового вала. Вал и роторы вращаются вместе, в отличие от четырехтактного двигателя, в котором используется возвратно-поступательное движение.

7 Фото

Во время вращения ротора активны все три камеры процесса сгорания: такт впуска, рабочий ход и такт выпуска. Если у двигателя 13B два ротора, это означает, что шесть циклов выполняются одновременно. Этот процесс сгорания позволяет роторному двигателю создавать большую мощность по сравнению с аналогичным четырехтактным двигателем. Не имея дела с возвратно-поступательным движением массы, роторные двигатели могут без проблем развивать скорость до 9000 об / мин из-за инерции вращения.

Из-за длинной формы камеры сгорания из выхлопной трубы часто выходит несгоревшее топливо, что не очень эффективно. По своей конструкции роторные двигатели сжигают масло для герметизации камеры сгорания. Вот почему большинство владельцев RX-7 носят в багажнике литры масла. Слухи о возвращении Mazda RX-7 появляются каждый год, но произойдет ли это на самом деле? Время покажет.

Источник: Технические данные Разъяснения через YouTube

.

Роторный двигатель Skyactiv-R нового поколения | Mazda Канада

27 октября 2015 г.

Взгляните на будущее мощности следующего поколения с роторным двигателем Mazda SKYACTIV-R.

RX-VISION представляет будущее, которое мы в Mazda надеемся однажды превратить в реальность; Спортивный автомобиль с передним расположением двигателя и задним приводом с изысканными пропорциями, основанными на дизайне Kodo, которые могла представить только Mazda, и оснащенный роторным двигателем Skyactiv-R следующего поколения.

RX-VISION представляет будущее, которое Mazda надеется однажды превратить в реальность; Спортивный автомобиль с передним расположением двигателя и задним приводом с изысканными пропорциями, основанными на дизайне Kodo, которые могла представить только Mazda, и оснащенный роторным двигателем Skyactiv-R следующего поколения.

Роторные двигатели имеют уникальную конструкцию, вырабатывающую энергию за счет вращательного движения треугольного ротора. Преодолев многочисленные технические трудности, Mazda смогла внедрить роторный двигатель в производство в 1967 году, установив его в Cosmo Sport (известный как Mazda 110S за рубежом).Как единственный автопроизводитель, производящий роторные двигатели серийно, Mazda продолжала усилия по повышению выходной мощности, экономии топлива и долговечности и в 1991 году одержала общую победу в гонке «24 часа Ле-Мана» на гоночном автомобиле с роторным двигателем. За прошедшие годы роторный двигатель стал символом творчества Mazda и ее неустанных усилий перед лицом трудных задач.

В то время как массовое производство в настоящее время приостановлено, Mazda никогда не прекращала исследования и разработки роторного двигателя. Следующий роторный двигатель был назван Skyactiv-R, что выражает нашу решимость решать проблемы, бросая вызов традициям и используя новейшие технологии, как мы это делали при разработке Skyactiv Technology.

Изучите инновации

,

Роторный двигатель: принцип действия, особенности

Двигатель – это основа любого транспортного средства. Без него невозможно движение автомобиля. На данный момент наиболее распространенными являются поршневые двигатели внутреннего сгорания. Если говорить о большинстве беговых авто, это рядные четырехцилиндровые ДВС. Однако есть автомобили с таким моторами, где классическая поршневая отсутствует в принципе. Эти моторы имеют совершенно иное устройство и принцип работы. Называются они роторными ДВС. Что это за агрегаты, в чем их особенности, плюсы и минусы? Рассмотрим в нашей сегодняшней статье.

Характеристика

Роторный двигатель – это одна из разновидностей тепловых ДВС. Впервые такой мотор был разработан еще в далеком 19-м веке. Сегодня используется роторный двигатель на Mazda РХ-8 и еще на некоторых спортивных авто. Такой мотор имеет ключевую особенность – в нем нет возвратно-поступательных движений, как в обычном ДВС.

Здесь вращение осуществляется специальным трехгранным ротором. Он заключен в специальный корпус. Подобная схема практиковалась еще в 50-х годах прошлого столетия немецкой фирмой NSU. Автором такого ДВС стал Феликс Ванкель. Именно по его схеме производятся все современные роторные двигателя («Мазда РХ» не является исключением).

Устройство

В конструкцию силового агрегата входит:

  • Корпус.
  • Выходной вал.
  • Ротор.

Сам корпус являет собой основную рабочую камеру. На роторном двигателе она имеет овальную форму. Столь необычная конструкция камеры сгорания обусловлена использованием трехгранного ротора. Так, при соприкосновении его со стенками образуются изолированные закрытые контуры. Именно в них осуществляются рабочие такты ДВС. Это:

  • Впуск.
  • Сжатие.
  • Воспламенение и рабочий ход.
  • Выпуск.

Среди особенностей роторного двигателя внутреннего сгорания стоит отметить отсутствие классических впускных и выпускных клапанов. Вместо них использованы специальные отверстия. Они находятся по бокам камеры сгорания. Данные отверстия напрямую соединяются с системой выпуска газов и системой питания.

Ротор

Основа конструкции силовой установки данного типа – это ротор. Он выполняет функцию поршней в данном двигателе. Однако ротор находится в единственном экземпляре, в то время как поршней может быть от трех до двенадцати и более. По форме данный элемент напоминает некий треугольник с закругленными краями.

Такие края нужны для более герметичного и качественного уплотнения камеры сгорания. Так достигается правильное сгорание топливной смеси. В верхней части грани и по ее бокам расположены специальные пластины. Они выполняют функцию компрессионных колец. В роторе также находятся зубцы. Они служат для вращения привода, который задействует также выходной вал. О назначении последнего поговорим ниже.

Вал

Как такового коленчатого вала в роторно-поршневом двигателе нет. Вместо него использован выходной элемент. Относительно его центра находятся специальные выступы (кулачки). Они расположены асимметрично. Крутящий момент от ротора, что передается на кулачок, заставляет вал вращаться вокруг своей оси. Так создается энергия, необходимая для движения приводов и колес в автомобиле.

Такты

Какой имеет принцип работы роторный двигатель? Алгоритм действия, несмотря на схожие такты с поршневым мотором, отличается. Так, начало такта происходит при прохождении одного из концов ротора через впускной канал корпуса ДВС. В данный момент под действием вакуума в камеру засасывается горючая смесь. При дальнейшем вращении ротора происходит такт сжатия смеси. Это происходит, когда второй конец проходит впускное отверстие. Постепенно возрастает давление смеси. В конечном итоге она воспламеняется. Но возгорается она не от силы сжатия, а от искры свечи зажигания. После этого начинается рабочий такт хода ротора.

Поскольку камера сгорания в таком двигателе имеет овальную форму, целесообразно использовать две свечи в конструкции. Это позволяет быстро осуществить поджог смеси. Так, фронт пламени распространяется более равномерно. Кстати, по две свечи на одну камеру сгорания может приходиться и в обычном поршневом ДВС (встречается такая конструкция крайне редко). Однако для роторного двигателя это является необходимостью.

После воспламенения, в камере образуется высокое давление газов. Сила настолько велика, что позволяет прокрутить ротор на эксцентрике. Это способствует вырабатыванию крутящего момента на выходном валу. Когда вершина ротора приближается к выпускному отверстию, сила и давление энергии газов снижается. Они самопроизвольно устремляются в выпускной канал. После того как камера полностью от них освободилась, начинается новый процесс. Работа роторного двигателя снова начинается с такта впуска, сжатия, воспламенения, а затем и рабочего хода.

О системе смазки и питании

Данный агрегат не имеет отличий в системе топливоподачи. Здесь также используется погружной насос, что подает бензин под давлением из бака. А вот смазочная система имеет свои особенности. Так, масло для трущихся частей двигателя подается прямо в камеру сгорания. Для смазки предусмотрено специальное отверстие. Но возникает вопрос: куда затем девается масло, если оно проникает в камеру сгорания? Здесь принцип работы схож с двухтактным двигателем. Смазка попадает в камеру и сгорает вместе с бензином. Такая схема работы используется на каждом роторно-лопастном двигателе и поршневом в том числе. Ввиду особой конструкции смазочной системы такие моторы не могут отвечать современным экологическим нормам. Это одна из нескольких причин, почему роторные двигатели на ВАЗе и других моделях авто серийно не применяются. Впрочем, сперва отметим преимущества РПД.

Плюсы

Существует немало плюсов у такого типа двигателей. Во-первых, данный мотор обладает небольшим весом и размерами. Это позволяет сэкономить место в подкапотном пространстве и разместить ДВС в любом автомобиле. Также низкий вес способствует более правильной развесовке автомобиля. Ведь большая часть массы на авто с классическими ДВС сосредоточена именно в передней части кузова.

Во-вторых, роторно-поршневой двигатель обладает высокой удельной мощностью. По сравнению с классическими моторами, данный показатель в полтора-два раза выше. Также у роторного двигателя более широкая полка крутящего момента. Он доступен практически с холостых оборотов, в то время как обычные ДВС нужно раскручивать до четырех-пяти тысяч. Кстати, роторный мотор намного легче набирает высокие обороты. Это еще один плюс.

В-третьих, такой двигатель имеет более простую конструкцию. Здесь нет ни клапанов, ни пружин, ни кривошипно-шатунного механизма в целом. Вместе с этим отсутствует привычная система газораспределения с ремнем и распределительным валом. Именно отсутствие КШМ способствует более легкому набору оборотов роторным ДВС. Такой мотор за доли секунды крутится до восьми-десяти тысяч. Ну и еще один плюс – это меньшая склонность к детонации.

Минусы

Теперь поговорим о недостатках, из-за которых применение роторных моторов стало ограниченным. Первый минус – это высокие требования к качеству масла. Хоть мотор и работает по типу двухтактного, сюда нельзя заливать дешевую «минералку». Детали и механизмы силового агрегата подвергаются существенным нагрузкам, поэтому для сохранения ресурса нужна плотная масляная пленка между трущимися парами. Кстати, регламент замены смазки составляет шесть тысяч километров.

Следующий недостаток касается быстрого износа уплотняющих элементов ротора. Это происходит вследствие малого пятна контакта. Из-за износа уплотнительных элементов, образуется высокий перепад давлений. Это негативно сказывается на производительности роторного двигателя и расходе масла (а соответственно и экологических показателях).

Перечисляя недостатки, стоит упомянуть и о расходе топлива. По сравнению с цилиндро-поршневым двигателем, роторный не располагает топливной экономичностью, особенно на средних и низких оборотах. Ярким примером тому служит «Мазда РХ-8». При объеме в 1,3 литра этот мотор потребляет не менее 15 литров бензина на сотню. Что примечательно, на высоких оборотах ротора достигается наибольшая топливная экономичность.

Также роторные двигатели склонны к перегреву. Это происходит из-за особой линзовидной формы камеры сгорания. Она плохо отводит тепло по сравнению со сферической (как на обычных ДВС), поэтому при эксплуатации нужно всегда следить за температурным датчиком. В случае перегрева, деформируется ротор. При работе он будет образовать значительные задиры. В результате ресурс мотора приблизится к концу.

Несмотря на простую конструкцию и отсутствие кривошипно-шатунного механизма, этот мотор трудно отремонтировать. Такие двигателя очень редко встречаются и мало кто из мастеров имеет опыт с ними. Поэтому многие автосервисы отказываются «капиталить» такие моторы. А те, кто и занимается роторами, просят за это баснословные суммы денег. Приходится платить либо устанавливать новый двигатель. Но это не является гарантией высокого ресурса. Такие моторы выхаживают максимум 100 тысяч километров (даже при умеренной эксплуатации и своевременном обслуживании). И моторы «Мазды РХ-8» не стали тому исключением.

Роторный двигатель ВАЗ

Все знают, что такие моторы в свои годы использовал японский производитель «Мазда». Однако мало кому известен тот факт, что РПД применялся и в Советском Союзе на ВАЗовской «Классике». Разрабатывался такой мотор по приказу министерства для спецслужб. ВАЗ-21079, оснащенный таким двигателем, являлся аналогом известной черной «Волги-догонялки» с восьмицилиндровым мотором.

Разработки роторно-поршневого двигателя для ВАЗ начались еще в середине 70-х. Задача была не из легких – создать роторный мотор, который будет превосходить по всем показателями традиционный поршневой ДВС. Разработкой нового силового агрегата занимались специалисты авиационных предприятий Самары. Начальником сборочно-конструкторского бюро был Борис Сидорович Поспелов.

Разработка силовых агрегатов шла одновременно с изучением роторных моторов зарубежных образцов. Первые экземпляры не отличались высокими эксплуатационными показателями, и в серию они не пошли. Несколько лет спустя были созданы несколько вариантов РПД для классического ВАЗа. Лучшим из них был признан мотор ВАЗ-311. Этот двигатель имел такие же геометрические параметры, как и японский мотор 1ЗВ. Максимальная мощность агрегата составляла 70 лошадиных сил. Несмотря на несовершенность конструкции, руководством было принято решение о выпуске первой промышленной партии РПД, которые устанавливались на служебные автомобили ВАЗ-2101. Однако вскоре обнаружилась масса недоработок: мотор породил волну рекламаций, разразился скандал и численность работников конструкторского бюро существенно сократилась. Из-за частых поломок, первый роторный двигатель ВАЗ-311 был снят с производства.

Но на этом история советского РПД не заканчивалась. В 80-х годах инженерам все же удалось создать роторный мотор, который существенно превосходил характеристики поршневого ДВС. Так, это был роторный двигатель ВАЗ-4132. Агрегат развивал мощность в 120 лошадиных сил. Это дало автомобилю ВАЗ-2105 превосходные динамические характеристики. С этим двигателем машина разгонялась до сотни за 9 секунд. А максимальная скорость «догонялки» составляла 180 километров в час. Среди основных преимуществ стоит отметить высокий крутящий момент двигателя, доступный на всем диапазоне оборотов и высокую литровую мощность, которая была достигнута без какой-либо форсировки.

В 90-х годах на АвтоВАЗе занялись разработкой нового роторного двигателя, который должен был устанавливаться на «девятку». Так, в 1994 м году на свет вышел новый силовой агрегат ВАЗ-415. Мотор имел рабочий объем в 1300 кубических сантиметров и две камеры сгорания. степень сжатия каждой составляла 9,4. Данная силовая установка способна раскручиваться до десяти тысяч оборотов. При этом мотор отличался небольшим расходом топлива. В среднем, агрегат потреблял 13-14 литров на сотню в смешанном цикле (это неплохой показатель для старого по сегодняшним меркам роторного ДВС). При этом двигатель отличался малой снаряженной массой. Без навесного оборудования он весил всего 113 килограмм.

Расход масла у двигателя ВАЗ-415 составляет 0,6 процента от удельного расхода топлива. Ресурс ДВС до капитального ремонта – 125 тысяч километров. Мотор, установленный на «девятку», показывал неплохие динамические характеристики. Так, разгон до сотни занимал всего девять секунд. А максимальная скорость – 190 километров в час. Также были экспериментальные образцы ВАЗ-2108 с роторным мотором. Благодаря меньшему весу, роторная «восьмерка» разгонялась до сотни всего за восемь секунд. А максимальная скорость в ходе испытаний составила 200 километров в час. Однако в серию эти моторы так и не поступили. На вторичном рынке и на разборках найти их тоже нельзя.

Подводим итоги

Итак, мы выяснили, что собой представляет роторный двигатель. Как видите, это весьма интересная разработка, направленная на получение максимального КПД и мощности. Однако ввиду своей конструкции, механизмы ротора быстро изнашивались. Это сказывалось на ресурсе двигателя. Даже у японских РПД он составляет не более ста тысяч километров. Также данные моторы имеют высокие требования к смазочным материалам и не могут соответствовать современным экологическим нормам. Поэтому роторно-поршневые двигатели внутреннего сгорания так и не стали особо популярными в сфере автомобилестроения.

принцип работы, ресурс и особенности

Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
Роторный двигатель, как и двигатель в вашей машине является двигат

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

В чем сходство и отличие роторного двигателя от привычного поршневого собрата? Попробуем разобраться на примере одной из его последних версий 13B-MSP, которую ставили на «Мазду RX‑8».

В поршневом моторе энергия сгорания топливовоздушной смеси сначала преобразуется в возвратно-поступательное движение поршневой группы, а уже затем во вращение коленчатого вала. В роторном же двигателе это происходит без промежуточной ступени, а значит, с меньшими потерями.

История создания

Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.

Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.

Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.

Привет, друзья!

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B.

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.

Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас :-)) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.

На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.

Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.

Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.

По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Работа ротативного двигателя.

Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки :-).

Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).

Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Ротативный двигатель Félix Millet на мотоцикле.

Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.

В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.

Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.

Практически одновременно с ним работал американский инженер  Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

Открытый картер двигателя Le Rhône 9J.

По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».

Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?

Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.

Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.

Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый — это моделирование его работы на компьютере. Во втором показана работа «внутренностей» двигателя Le Rhône.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Ротативный двигатель Gnome 7 Omega.

В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Двигатель Gnome Monosoupape.

Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был безкарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Подвод топлива в цилиндр Gnome Monosoupape. Crank Case – картер, Ports – подводящие отверстия.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели :-)) и управлялся только отключением зажигания (об этом чуть ниже :-)).

Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель Le Rhone 9C.

Ротативный двигатель Le Rhone 9J.

Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.

Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать :-)) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.

Истребитель Fokker E.I с двигателем Oberursel U.0 .

Германский двухрядный Oberursel U.III, копия Gnome 14 Lambda-Lambda.

Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни :-)…

Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина :-)) со своим известным движком Clerget 9B.

Двигатель Clerget 9B.

Двигатель Clerget 9B на истребителе Sopwith 1½ Strutter.

Истребитель Sopwith 1 1/2 Strutter с двигателем Clerget 9B.

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR.2 для истребителей Sopwith 7F.1 Snipe.

На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель Bentley BR1.

Ротативный двигатель Bentley BR2.

Истребитель Sopwith 7F.1 Snipe с двигателем Bentley BR.2 .

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют ? (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно :-)) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулироват подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите :-)) газа.

У ротативного двигателя все не так просто :-). Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан («bloctube») . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая :-)), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро :-).

Пример защитных капотов на двигателе (защита от масла двигатель Gnome 7 Lambda ) на самолете Sopwith Tabloid.

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели :-).

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Схема топливо- и маслопитания ротативного двигателя Gnome 7 Omega.

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно :-)) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Пример замасливания (темные пятна) двигателя Gnome 7 Omega полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики :-). Масло, сгоревшее и несовсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики – люди мужественные :-). Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно :-)…

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен :-).

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.

Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B .

Истребитель Sopwith Camel F.1 (реплика).

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости :-). Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» :-). Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .

Основным и достойным противником для Sopwith Camel F.1 был немецкий триплан Fokker Dr.I с двигателем Oberursel UR.II (полный аналог французского Le Rhône 9J). На таком воевал Барон Ма́нфред А́льбрехт фон Рихтго́фен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Триплан Fokker Dr.I

Германский двигатель Oberursel-UR-2. Копия Le Rhône 9J.

Истребитель-триплан Fokker Dr.I (современная реплика, правда двигатель у нее не ротативный).

Fokker DR1, современная реплика с настоящим ротативным двигателем.

Триплан Fokker Dr.I незадолго до гибели “Красного Барона”.

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность – вес – надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким ? (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости ( ρV2/2, где ρ – плотность воздуха, V – скорость потока). То есть если скорость просто растет, то сопротивление растет в квадрате (примерно :-)).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III ). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Биротативный двигатель Siemens-Halske Sh.III .

Истребитель Siemens-Schuckert D.IV .

Истребитель Siemens-Schuckert D.IV в берлинском музее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе Siemens-Schuckert D.IV , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров.

Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Недостатков у них, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям :-), ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя – радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

На этом заканчиваю :-). В заключение как всегда кое-какое интересное видео. Первый ролик — запуск восстановленного двигателя Гном 1918 года выпуска. Далее три ролика о работе двигателя и полетах восстановленного Sopwith Camel F.1, а также Fokker Dr.I  (на заднем плане :-)). Интересного вам просмотра и до встречи…

P.S. Один из моих читателей (Александр) совершенно справедливо указал мне на то, что в ролике, где вместе с Сопвичем летает современная реплика германского триплана, движок у этого триплана не ротативный. Абсолютно верно. Я, увлекшись Сопвичем, не обратил на это внимание :-). Прошу прощения у читателей и помещаю ролик (и фото), где в полете современная реплика Фоккера с настоящим ротативным движком. Самолет здесь классно показан :-)…

Фотографии кликабельны.

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.

Хотя у роторного мотора и меньше элементов, чем у поршневого, в нем применены более хитрые конструктивные решения и технологии. Но между ними можно провести параллели.

Основными преимуществами роторных двигателей по сравнению с поршневыми являются:

В двухроторном двигателе движется только выходной вал и оба ротора, в то время, как даже в самом простом по конструкции поршневом ДВС движущихся деталей насчитывается не менее сорока. Соответственно, надежность роторного силового агрегаты оказывается существенно более высокой.

В роторных двигателях все движущиеся части вращаются только в одном направлении, что значительно уменьшает вибрации. Для эффективного гашения тех, которые все же возникают, используются противовесы. Следует также отметить, что вращение ротора в роторном двигателе составляет лишь треть от скорости вращения вала. Это также положительно сказывается на надежности силового агрегата.

У роторных двигателей есть и несколько существенных недостатков. Пожалуй, главный из них состоит в том, что по сравнению с поршневыми ДВС они расходуют существенно больше топлива. При этом затраты на их производство значительно выше, поэтому на сегодняшний день большими сериями они не выпускаются. 

Читайте также: CRDI двигатель — что это такое.

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение – Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.  И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Роторный двигатель на автомобиль.

Роторный двигатель внутреннего сгорания (или как его ещё называют роторно-поршневым, так как сам ротор выполняет роль поршня) был изобретён ещё в 1957 году прошлого века талантливыми инженерами Феликсом Ванкелем и Вальтером Фройде. Этот двигатель существенно отличается от обычного двигателя внутреннего сгорания. В этой статье мы подробно рассмотрим эти основные отличия, а так же преимущества и недостатки роторного двигателя перед обычным мотором, и почему всё таки РПД не так распространён, как обычный ДВС.

Основное отличие роторно-поршневого двигателя перед обычным поршневым, это отсутствие цилиндропоршневой группы, то есть поршней с кольцами, шатунов и цилиндров. Ну и самое главное — это отсутствие множества деталей механизма газораспределения, что позволило сэкономить на производстве около тысячи деталей!

 

 

 

 

 

 

Основная деталь такого двигателя — это ротор, имеющий форму треугольника (cм. фотографии и рисунок). И этот ротор, с помощью зубьев шестерни, входит в зацепление с шестерней другой детали, но неподвижной — статором. Принцип работы роторного двигателя можно посмотреть на видеоролике чуть ниже и он основан на том, что вершины треугольного ротора, при его вращении трутся по эпитрохоидальной (имеющей форму восьмёрки) и полированной внутренней поверхности картера (статора).

И при этом ротор своими гранями вершин отсекает при вращении переменные объёмы трёх камер (трёх камер потому, что у ротора три вершины, бывает и другое число, но три — самый распространённый вариант). Камеры образуются отсеканием вершинами ротора внутренней поверхности статора (при вращении ротора).

При вращении ротора получается, что ротор играет роль и поршня и клапанов при работе мотора. И такая уникальная конструкция позволяет осуществлять любой четырёхтактный цикл Отто, Стерлинга или Дизеля, и при этом не нужен отдельный механизм газораспределения с множеством деталей, который имеется в головке цилиндров обычного и хорошо известного нам ДВС.

А герметичность пар в роторном двигателе, достигается торцевыми и радиальными уплотнителями (пластинами), которые при работе ещё лучше прижимаются давлением газов, центробежной силой, а так же специальными плоскими пружинами.

К тому же благодаря отсутствию головки цилиндров с механизмом ГРМ, а так же отсутствию кривошипно-шатунного механизма (коленвала, шатунов) и самих цилиндров, роторно-поршневой двигатель получается очень компактным (см фото слева) и не занимает много места под капотом. Так ещё и кроме своей компактности, такие моторы имеют бóльшую мощность, чем обычные двигатели.

 

 

 

 

 

 

И у такого мотора гораздо меньше деталей, чем у привычного нам ДВС. Это хорошо видно на фото слева. И это далеко не все преимущества и подробнее о преимуществах РПД написано ниже.

 

 

 

Преимущества роторного двигателя.

  • Меньшие габаритные размеры, чем у обыччного ДВС (примерно в полтора и даже в два раза). Это позволяет сделать машину более просторной и удобной для обслуживания.
  • Бóльшая удельная мощность, при меньшем объёме камеры сгорания, чем у обычного ДВС. Это достигается благодаря тому, что однороторный мотор выдаёт мощность в течении трёх четвертей каждого оборота вала. А на знакомом нам обычном моторе, мощность выдаётся только в течении одной четверти оборота коленвала.
  • Меньшее количество деталей (примерно около тридцати), а у обычного ДВС несколько сотен деталей.
  • Способность развить большие обороты при отсутствии вибрации, так как нет кривошипно-шатунного механизма, который преобразует возвратно-поступательное движение поршней в вращательное.
  • Низкий уровень вибрации, и мотор хорошо уравновешен.
  • Отличные динамические показатели автомобиля с РПД, и на низкой передаче можно легко разогнаться более сотни км/ч.
  • Ну и главный плюс, который я считаю вернёт эти моторы на дороги в будущем — это меньшая склонность к детонации, по сравнению с обычным ДВС. А значит можно использовать в качестве топлива не только бензин, но и водород — топливо будущего.

Так почему же такой двигатель не стал популярен у производителей автомобилей (исключение фирма Мазда) и до сих пор распространены обычные двигатели?. Чтобы ответить на этот вопрос, рассмотрим недостатки роторного-поршневого двигателя (РПД).

Недостатки роторного двигателя.

Кроме множества преимуществ, у РПД имеется ряд недостатков, из-за которых он не получил широкого распространения:

  • Повышенный расход топлива, особенно на низких оборотах, по сравнению с обычным двигателем.
  • Сложность производства, так как требуется очень большая точность изготовления трущихся пар и очень качественные сплавы (легированные стали). К тому же на производстве должны быть очень дорогие, сложные и точные металлообрабатывающие станки, так как фреза должна при обработке (например внутренней поверхности статора) следовать очень сложной траектории.
  • Быстрый износ уплотнителей, так как площадь пятна контакта маленькая а обороты вала большие. А при износе уплотнителей, из-за прорыва газов повышается токсичность, резко теряется коэффициент полезного действия (КПД) двигателя и потеря мощности.
  • Бóльшая склонность к перегреву, чем обычный ДВС. Из-за повышенного перегрева, даже бывают проблемы с воспламенением смеси в камере и чтобы улучшить воспламенение, на такие моторы устанавливают по две свечи зажигания на камеру. Две свечи ставят ещё и потому, что камера сгорания имеет вытянутую плоскую форму, и одной свечи в ней недостаточно.
  • В большинстве регионов не возможность ремонта таких двигателей, так как нет ни адекватных специалистов, ни запасных частей.
  • Более частая замена моторного масла, из-за того, что ротор соединяется с выходным валом через эксцентриковый механизм и получается большое давление между трущимися деталями. В добавок к этому ещё и большая температура приводит к быстрому износу двигателя, особенно если вовремя не поменять масло, а менять как я уже говорил, его надо чаще. Если же вовремя менять масло, уплотнители и делать капремонт, то ресурс РПД будет достаточно большим. А у некоторых двигателях японской фирмы Мазда, проработать РПД без поломок может около трёхсот тысяч км.

Устройство и более подробный принцип работы роторно-поршневого двигателя.

В роторном двигателе, как и в обычном ДВС вращение выходного вала (работа двигателя) происходит за счёт сгорания топливно-воздушной смеси. И так же как в привычном нам обычном двигателе, РПД имеет впускной канал, через который впрыскивается рабочая смесь, и имеет выпускной канал, через который выбрасываются отработавшие газы.

Но основное отличие состоит в том, что газы, образуемые при сгорании топлива, давят не на поршень (поршни), а на ротор, и от этого ротор передаёт вращение через зубья шестерни и эксцентрики на приводной вал. При этом сам ротор при этом выполняет и роль газораспределителя (как в двухтактном моторе, но не совсем), и делит внутренний объём картера на три отдельных камеры.

 

 

И в каждой камере в определённый момент происходит всасывание рабочей смеси, её сжатие, вспышка рабочей смеси и сам рабочий ход от расширения газов, ну и выпуск отработанных газов (четыре такта). Подробно это показано на рисунке слева и описано ниже.

 

 

 

 

  1. Такт впуска. Всасывание рабочей смеси происходит в тот момент, когда соответствующая вершина ротора проходит через впускное отверстие в картере двигателя. А при дальнейшем движении ротора, объём соответствующей камеры увеличиваетс и создаётся разряжение, при котором рабочая смесь засасывается в камеру.
  2. Такт сжатия. Далее при вращении ротора, впускное отверстие отсекается кромкой другой (следующей) вершины ротора, и одновременно объём камеры уменьшается, таким образом рабочая смесь сжимается и давление в камере увеличивается. Пик сжатия (наибольшего давления смеси) достигается в районе свечей зажигания.
  3. Такт рабочий ход. В этот момент происходит разряд на двух свечах зажигания и соответственно вспышка сжатой рабочей смеси. От вспышки происходит сгорание и расширение продуктов горения, которые с силой толкают ротор, и от этого он проворачивается и вращает выходной вал.
  4. Такт выпуска. Далее, при вращении ротора, кромка одной из вершин ротора проходит выпускное отверстие в картере, открывая его, и через это выпускное отверстие под давлением выходят отработанные газы. Далее первый ротор благодаря силе инерции, а так же благодаря действию второго ротора, работающего асинхронно первому ротору, продолжает своё вращение и подходит опять кромкой к впускному отверстию, для нового такта впуска, и всё повторяется заново.

Но как понял читатель из выше описанного, чтобы лучше сбалансировать РПД, а так же уменьшить вибрацию и предотвратить детонацию, применяют не один а два ротора (см. фото выше, где показан РПД в разобранном виде). А сам ротор (роторы) немного смещён (эксцентричен) от выходного вала, ось которого расположена строго по центру и передаёт вращение на вал как бы обкатывая его по кругу.

Передача вращения происходит воздействием шестерни ротора на шестерню вала (а шестерня вала находится внутри шестерни ротора), а передаточное число рассчитано так, что за один оборот ротора, вал совершает три оборота.

Основные детали роторно-поршневого двигателя. Главная деталь РПД это ротор, имеющий форму треугольника. Причем на каждой из трёх немного выпуклых плоскостей ротора, имеются выборки (углубления — см. фото), которые делаются на заводе для того, чтобы немного увеличить рабочий объём двигателя.

На каждой из трёх вершин ротора, вставлены уплотнительные пластинки, которые уплотняют сам ротор относительно внутренней поверхности картера двигателя, и делят внутреннюю полость картера на три камеры. Пластинки трутся о внутреннюю поверхность картера с большой скоростью и разумеется постепенно изнашиваются. Поэтому они вставлены в вершину ротора так, что бы по необходимости их можно было заменить новыми, взамен изношенных.

Так же с каждой стороны ротора (ближе к центру — см. фото) установлены уплотнительные кольца, которые герметизируют (отделяют) полость камер от картера. Ну и в самом центре ротора жёстко вмонтирована кольцевая шестерня (зубчатый венец), которая как бы обкатывается вокруг меньшей шестерни, закреплённой на валу двигателя, и передаётся вращение выходному валу.

Сам ротор (роторы) помещён в картер, а картер состоит из нескольких плит, которые плотно соединяются между собой, образуя несколько отсеков и разделяющие их стенки. Как правило разделительная стенка делит двигатель на две основные части (полости), в каждой их которых работает свой отдельный ротор (обычно в моторе два ротора).

Каждая полость имеет впускной и выпускной каналы, и сложную форму в виде восьмёрки, которую не так то просто выполнить при производстве. К тому же стенки должны быть изготовлены из очень твёрдого материала, иначе они быстро износятся, и от этого давление в камерах упадёт, и соответственно упадёт и мощность мотора.

Сам картер имеет с наружи двойную стенку (как блок обычного ДВС) для циркуляции между стенками охлаждающей жидкости системы охлаждения. А в центре картера имеются отверстия, в которые запрессованы подшипники, на которых висит вал мотора.

Вал роторного двигателя с виду похож на распределительный вал обычного ДВС (см. фото), так как имеет эксцентрики, похожие на кулачки распредвала обычного мотора. Вал изготовлен так, что эксцентрики расположены на нём в противоположных сторонах вала. И когда на эти эксцентрики при сборке будет насажены два ротора (насажены на подшипники скольжения), то роторы будут работать в противофазе, помогая друг другу в работе.

То есть работа двух роторов будет подобна работе двух поршней четвёртого и второго цилиндров обычного четырёхцилиндрового мотора — один из них в начальной стадии впуска рабочей смеси, а другой в стадии выпуска отработавших газов. И именно из-за того, что роторы сидят на эксцентриках вала, при вращении роторов в противофазе будет вращаться и вал РПД, передавая вращение на трансмиссию.

Ну а как же применение роторно-поршневого двигателя на автомобилях — есть ли смысл?

Первым автопроизводителем, который установил РПД на свой автомобиль ещё в конце 60-х годов прошлого века, была компания NSU (о их машине, двигателе и о машинах Мазда, смотрите интересный видеоролик под статьёй). А авто-производитель, которому удалось поставить такие двигатели на поток, применяя их на своих автомобилях — является всем известная японская Мазда.

РПД установленный на некоторые её машины, при рабочем объёме всего в 1,3 литра, способен развить мощность в 250 лошадей. Но и это ещё не всё, благодаря постоянному совершенствованию своих роторных моторов, им удалось существенно снизить расход топлива и масла, а главное снизить токсичность. Это позволило вывести автомобили с РПД на европейский рынок, который наиболее жёсткий к экологическим нормам.

К тому же в 1995 году был разработан новейший РПД, который назвали RENESIS, что означает новая жизнь роторного мотора. Этот мотор был впервые установлен на новый маздовский концепткар «Mazda RX-01″ и показал отличную динамику разгона. А улучшенный вариант такого мотора был установлен в 1999 году на спортивный концепткар «RX-EVOLV». Этот двигатель планируют устанавливать серийно на автомобиль «Mazda RX-8″.

Большая экономичность нового двигателя была достигнута за счёт применения более совершенных форсунок и использования боковых окон для выпуска отработанных газов. Так же были установлены усовершенствованные свечи зажигания, которые существенно улучшили полноту сгорания топлива.

К тому же выпускной коллектор был изготовлен с двойной стенкой, позволяющей повысить температуру выпускных газов и быстро прогревать каталитический нейтрализатор, даже при минусовой температуре окружающего воздуха. Ну и была усовершенствована система смазки с мокрым картером, и количество масла в картере было уменьшено вдвое, по сравнению с обычными РПД.Ну и кроме идеальной плавности работы нового мотора, был улучшен и звук выхлопа, который не описать, это нужно слышать.

Многие могут сказать, что несмотря на многие преимущества, технология производства таких двигателей довольно сложна и требует новейшего оборудования. Но ведь многие высокотехнологические детали, которые имеются сейчас на многих серийных машинах, когда то казались сложными и не практичными, и применялись только на спортивных машинах.

Например когда то и никасилевое покрытие цилиндров серийного двигателя, или вентилируемые тормозные диски, казались сложными, дорогими и трудновыполнимыми, а сейчас на большинстве серийных машин это обычное явление.

Сейчас ведутся работы по применению на таких двигателях водородного топлива, ведь роторный двигатель не склонен к детонации и способен работать на водороде, и скорей всего за РПД будущее, поживём — увидим.

воскрешение роторного двигателя / Хабр

На международной автомобильной выставке в Токио «Tokyo Motor Show», компания Mazda представила концепт своей новой модели RX-Vision. В компании всегда умели делать красивые и оригинальные автомобили — но главное в новой модели то, что она вновь будет оснащена роторным двигателем. Предыдущая модель с таким двигателем ушла с рынка три года назад.

В пресс-релизе компании сказано: «RX-Vision представляет наше видение будущего, которое компания планирует однажды претворить в жизнь». У концепта этого спортивного автомобиля переднее расположение двигателя, задний привод и роторный двигатель новой модификации SkyActiv-R.

Роторно-поршневой двигатель придумал в 1957 году немецкий инженер Вальтер Фройде в соавторстве с Феликсом Ванкелем. Отличительная особенность двигателя – трёхгранный ротор, вращающийся внутри цилиндра особого профиля. Вершины ротора, снабжённые уплотнителями, двигаются по внутренней части цилиндра и отсекают переменные объёмы камер.

Двигатель обладает большим числом преимуществ по сравнению с обычным поршневым. Он уравновешен и не даёт сильных вибраций, может работать на более высоких оборотах, обладает более высокой удельной мощностью. Недостатки двигателя – необходимость частой замены масла, высокие требования к качеству деталей и их изготовлению, склонность к перегреву и меньшая экономичность.


Двигатель SkyActiv

Правда, инженеры из Mazda, много лет работая над своими двигателями, достигли определённых успехов в устранении их недостатков. В частности, серьёзно уменьшена токсичность выхлопа и увеличена экономичность. Выхлоп соответствует нормам «Евро-4». Двухкамерный двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает немного места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет объём 1,6 литра, и при большей мощности нагревается даже меньше.

В 2003 году компания выпустила модель Mazda RX-8 Hydrogen RE, двигатель которой был способен работать как на бензине, так и на водороде. Это была уже пятая модель компании с таким универсальным двигателем.

Роторный двигатель — autodoc24.ru

В этой статье мы узнаем что такое роторный двигатель, рассмотрим принцип действия роторного двигателя, его устройство, узнаем о преимуществах, недостатках и сфере применения.

Роторный двигатель, принцип действия

В роторном двигателе используется давление, которое создается во время сгорания топливно-воздушной смеси в пространстве между ротором и корпусом двигателя.

Только если в поршневом моторе внутреннего сгорания это давление получают в цилиндрах, после чего через поршни, и шатуны передают на коленчатый вал, то в роторном упомянутых промежуточных звеньев нет.

Треугольный ротор в устройстве играет роль поршня, вращающегося по кругу и передающего крутящий момент непосредственно на выходной вал.

Получается, что ротор, в процессе вращения, делит камеру на 3 изолированных сегмента. В объеме каждого из них происходит один из циклов: впуск, сжатие, зажигание и выброс.

Оборот ротора, соответствует трем оборотом вала. Обычно используют два ротора. Это позволяет убрать детонацию, повысить стабильность работы движка.

Ротор устанавливается на вал с эксцентриситетом, это позволяет перенести крутящий момент непосредственно на вал.

Роторный двигатель принцип работы заключается в том, что имеет четыре такта, они изменяются в зависимости от угла расположения ротора. Рассмотрим каждый из тактов:

  • Забор смеси происходит когда одна из вершин ротора находится в районе впускного клапана в корпусе. В этот момент, объем камеры увеличивается, втягивая в свое растущее пространство смесь. А когда вторая вершина приходит ко впускному каналу, происходит очередной такт;
  • Сжатие топливно-воздушной смеси происходит при дальнейшем повороте ротора, когда объем смеси, уменьшается и приводит к росту давления. Максимальный уровень давления наблюдается в период, когда смесь поступает в зону свечей;
  • Сжигание топливно-воздушной смеси, как и в обычном бензиновом двигателе, инициируется свечами. Они синхронно поджигают смесь. Обычно, применяют 2 свечи, чтобы смесь горела с большей скоростью и равномернее. Образовавшееся давление взрывной волны, создает рабочее усилие; которое проворачивает ротор на эксцентрике вала. На выходной вал передается крутящий момент;
  • Выпуск отработавших выхлопных газов начинается как только ротор одной из вершин проходит точку выпускного отверстия. Далее он по инерции, и под воздействием второго ротора, который работает в асинхронном режиме, изменяет свой угол и приходит вершиной к впускному отверстию. Все повторяется по новой – от такта забора до такта выхлопа.

Конструктивные особенности

Теперь познакомимся с узлами и деталями двигателя. Это поможет более точно понять как работает устройство.

В его составе присутствуют: системы зажигания, питания (в том числе карбюратор), охлаждения, которые напоминают те, что используются в поршневом варианте. Но есть и уникальные элементы.

Ротор содержит три выпуклых поверхности с углублениями, которые увеличивают рабочий объем. На углах расположены однонаправленные уплотнительные пластины. Они обеспечивают герметизацию пары ротор-корпус.

Еще предусмотрены стальные кольца с каждой стороны, для отделения рабочей камеры от картера.

Также у ротора есть в центре с одной стороны зубчатый венец. Через эту зубчатую передачу снимается крутящий момент.

Корпус роторного движка напоминает многослойный пирог. Он состоит из крышек, рабочих камер, разделительных стенок. Предусмотрено две камеры, разделенные стенкой и с двух сторон крышки.

Внутри корпус представляет собой сложную форму типа овала, с компенсирующими отливами, которые отвечают за герметизацию всех трех камер разделяемых ротором.

Выходной вал имеет два эксцентрика, так как на валу установлены два ротора, работающие в противофазе – на одном цикл выброса отработавших газов, на втором цикл забора смеси.

Использование двух аналогичных узлов исключает возникновение биений и уменьшает детонацию.

При смещении эксцентриков и перемещении каждого ротора по стенкам корпуса, они проворачивают вал.

Достоинства

Главное достоинство – отсутствие шатунов. Также в конструкции не используются клапана, пружины клапанов, распредвал, ремень ГРМ и т. п. Все это уменьшает габариты и массу силовой установки.

Следующий плюс – хорошая сбалансированность деталей. Мотор более продолжительное время передает на выходной вал крутящий момент – передача мощности на вал продолжается ¾ оборота (для поршневого варианта только в течении ½ оборота).

Так как ротор делает всего 1 оборот на 3 оборота вала, это увеличивает его ресурс. Для японский моделей он достигает 300.000 километров.

Роторный двигатель, недостатки

Роторные двигатели не получили массового распространения из-за низких экологических показателей.

Также отмечается потребление большого количества топлива, вследствие невысокого рабочего давления в камере сгорания.

Так как такой тип двигателя редко встречается, при его ремонте и эксплуатации могут возникнуть проблемы.

Практически отсутствует система смазки. Моторное масло постоянно поступает в корпус к ротору из-за чего наблюдается значительный его расход.

Само масло должно иметь высокие качественные показатели и быть минеральным без присадок. Дело в том, что «синтетика» выгорает и образует на поверхности корпуса нагар.

Следует отметить что роторные моторы нагреваются намного сильнее чем поршневые.

Применение

Перспектива у этих двигателей есть. Как только остановим засилье нефтяных компаний, и мир перейдёт на водородное топливо.

К тому же роторный двигатель, работающий на водороде, не подвержен детонации.
Первый автомобиль с таким двигателем был спорткар NSU Spider, он мог двигаться со скоростью до 150 км/час, имея мощность мотора 57 лошадок.

Массово выпускался автомобиль с роторным двигателем компанией NSU – седан Ro-80. Также такими моторами оснащались: Citroen (GS Birotor), Chevrolet (Corvette), Mercedes-Benz (С111), ВАЗ (21018) и некоторые другие.

Самые массовый автомобиль японской компании Mazda, это Mazda RX8. Производство последней из них в версии Spirit R, свернуто в 2012 году из-за выбросов движка, которые не отвечали европейским стандартам.

Правда, компания уже создала современный роторный двигатель Renesis 16X, который соответствует международным экологическим стандартам. В нем значительно переработана топливная система впрыска – теперь горючее расходуется намного экономнее. Корпус движка изготовили из алюминиевого сплава. Также создан агрегат, который работает и на водороде.

Последняя разработка с роторным двигателем ‒ Premacy Hydrogen RE Hybrid в принципе ни в чем не уступает другим новинкам мирового автопрома.

Кстати, многие производители самолетов предпочитают поршневым бензиновым двигателям роторные, например, такие как Skycar и Schleicher.

Думаю, пример роторного двигателя подтверждает истину, что не популярный, не значит – плохой. Просто его время ещё не наступило.

Теперь в знаете принцип действия роторного двигателя. Расскажите об этом устройстве своим друзьям в социальных сетях, пусть подписываются на наш блог, и будут в курсе.

Что такое роторный двигатель Mazda, как он работает и зачем его возрождают

Вращающиеся треугольники Рёло от Мазда возвращаются в массы, но явно под другим соусом…

Еще в марте Мартин тен Бринк, вице-президент «Mazda Motor Europe» по продажам и обслуживанию клиентов активировал энтузиастов по всему миру одним лишь своим заявлением, что роторный двигатель Ванкеля вернется в производство.

В частности, тен Бринк заявил, что роторный ДВС может стать элементом для расширения диапазона движения электрического автомобиля 2019 модельного года, но на тот момент это был просто слух. «Mazda не анонсировала никаких конкретных продуктов с роторным двигателем в то время. Однако Mazda по-прежнему привержена работе над технологиями роторных двигателей», –рассуждали на тему комментария вице-президента Мазда в Mazda Motor of America.

Итак, что же такого особенного в этом легендарном двигателе, который так взволновал всех своим возвращением? И почему на этот раз все может быть по-другому?

Как он работает

Элементы системы двигателя

Нажать для увеличения

Роторный двигатель внутреннего сгорания по форме напоминает бочку. На нем и в нем вы не найдете многих компонентов, к которым привыкли в стандартном поршневом моторе. Во-первых, в нем нет поршней, ходящих вверх и вниз. Вместо них полезную работу совершает необычной формы треугольный поршень с округлыми краями (треугольник Рёло). Их количество может варьироваться от одного до трех в одном двигателе, но чаще всего используется схема с двумя поршнями, вращающимися вокруг вала посредством эксцентриковой полой центральной части.

Топливо и воздух нагнетаются в пространство между сторонами роторов и внутренними стенками короба, где смесь воспламеняется. Быстрое, взрывное расширение газов поворачивает ротор, который таким образом производит мощность. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель более легким и компактным, чем поршневой двигатель эквивалентного объема.

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

Мало кто знает, но роторный мотор был изначально придуман почти 100 лет назад, а не в 50-е годы XX века. Первоначально принцип работы мотора был проработан Феликсом Ванкелем, немецким инженером, который придумал свой принцип действия двигателя внутреннего сгорания.

Преимущество №1: Роторный двигатель легче и компактней обычного поршневого мотора

Война, поднявшая одних инженеров, например Фердинанда Порше, другим не дала никакой возможности развиться. Не нужны были в опасные времена мирные двигатели Ванкеля, поэтому изобретателю пришлось ждать аж до 1951 года, когда он получил приглашение от автопроизводителя NSU для разработки прототипа. Немецкая компания решила с помощью хитрости выяснить, так ли хорош оригинальный двигатель, параллельно дав возможность продемонстрировать силы другому инженеру – Ханнсу Дитеру Пашке.

Сложная конструкция Ванкеля фактически проиграла простому прототипу, разработанному инженером Ханнсом Дитером Пашке, который всего-навсего убрал из оригинальной конструкции все лишнее, сделав ее производство экономически выгодным.

Так в Германии был изобретен и опробован новый двигатель Mazda, который на протяжении долгих десятилетий был одним из немногих роторно-поршневых серийных моторов и единственным в 21-м веке.

Современный двигатель Ванкеля не совсем двигатель Ванкеля.

Да, основа роторного двигателя от Ванкеля стала самой успешной конструкцией данного двигателя в мире и единственной, которая смогла сложными путями дойти до серийного производства.

Еще в начале 60-х годов у NSU и Mazda проводился дружеский совместный конкурс на производство и продажу первого автомобиля с двигателем типа Ванкеля, когда они работали над сырым продуктом, пытаясь создать из него качественный товар.

NSU стал первым на рынке в 1964 году. Но немецкой компании не повезло: она разрушила свою репутацию в течение следующего десятилетия ненадлежащим качеством продукции. Частые отказы двигателя снова и снова посылали владельцев к дилеру и в магазин за запчастями. Вскоре нередко можно было обнаружить модели NSU Spider или Ro 80, в которых было поменяно три и более роторных двигателей Ванкеля.

Проблема заключалась в уплотнениях вершины ротора – тонких полосках металла между наконечниками вращающихся роторов и корпусами роторов. NSU сделал их из трех слоев, что вызывало неравномерный износ. Это была бомба замедленного действия не только для автомобилей фирмы, но и самого автопроизводителя. Мазда решила проблему уплотнения (крайне важного элемента мотора, без которого он просто не был способен работать из-за отсутствия давления), сделав их однослойными. Силовой агрегат начали устанавливать в 1967 году на спортивные люксовые модели Cosmo…

В начале 70-х годов Mazda представила целую линейку автомобилей с двигателем Ванкеля – мечта, которая была разбита нефтяным кризисом 1973 года. Пришлось поубавить аппетит и оставить мотор там, где в нем больше всего нуждались – в легком спортивном купе Mazda RX-7. С 1978 по 2002 год было выпущено более 800 тыс. этих легендарных спорткаров с необычным двигателем, у которого больше не было аналогов.

Из Германии в Японию, из Японии в СССР – вот путь двигателя, разработанного в 20-х годах XX века Ванкелем

Любим и ненавидим

Фанаты техники любят роторные двигатели потому, что они другие. Многие автолюбители, хорошо разбиравшиеся в технике, питали определенную слабость к такому странному двигателю, работающему на обычном топливе, но при этом не выглядевшему как стандартный набор поршней, клапанов и других неотъемлемых элементов обычного поршневого мотора.

В зависимости от специфики мотора ротор линейно поставляет мощность до 7.000-8.000 об/мин – бесперебойно, практически на одном уровне крутящего момента. Эта ровная полка момента как раз и отличает его от подавляющего большинства поршневых ДВС, в которых наблюдается много мощности на высоких оборотах и ее нехватка при низких.

Автопроизводителям также понравился роторный двигатель благодаря плавности его работы. Роторы, вращаясь вокруг центральной оси, не создают никакой вибрации по сравнению с поршневыми двигателями, у которых верхняя и нижняя точки хождения поршня отчетливо прослеживаются даже внутри салона автомобиля.

Но необычный двигатель – это словно необъезженная лошадь, своенравное животное, поэтому в противовес обожателям идеи Ванкеля концепция также внушает свою долю ненависти в среде автомобильных фанатов и механиков. И, казалось бы, почему?

Ведь у двигателя простой дизайн: отсутствует ремень ГРМ, отсутствует распределительный вал, нет привычной системы клапанов. Но за простоту приходится платить большой точностью производства деталей. Они должны быть сделаны безукоризненно, что поднимает их стоимость в разы, по сравнению с запчастями для обычных поршневых двигателей. Второе – этих запчастей мало в природе. И в-третьих, в мире почти нет специалистов, которые занимались бы починкой роторных моторов. В Москве, говорят, есть пара, но очередь к ним – на год вперед.

Из минусов еще можно назвать своеобразную работу роторного силового агрегата. Конструкция подразумевает сгорание масла в цилиндрах мотора, куда нагнетаются небольшие количества моторного масла прямо в камеры сгорания. Делается это для того, чтобы смазывать прилегающие площади роторов, вращающихся на бешеной скорости. Сизоватый дым, иногда выходящий из выхлопной трубы, – это признак беды, он отпугивает незнающих людей от моделей вроде RX-7 или 8.

Роторные моторы также предпочитают минеральные масла синтетическим, а их дизайн означает, что вы должны время от времени подливать масло в этот ненасытный агрегат, чтобы оно не закончилось.

Ну и наконец, те уплотнения вершины ротора, которые не удалось сделать NSU, все же недостаточно долговечны. Раз в 130-160 тыс. км мотору требуется капитальная переборка. А это удовольствие, как вы уже понимаете, дорогое. Да и что такое 130.000 км? Пять-шесть лет эксплуатации? Маловато будет!

Современные водители также наиболее чувствительны к другим недостаткам роторных движков: высоким выбросам вредных веществ в атмосферу (этим, скорей, обеспокоены в Greenpeace) и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь перед отправкой ее восвояси (здесь, конечно, удар наносится по карману автовладельца). Да, роторные двигатели имеют отменный «аппетит».

Для RX-8 Mazda частично решила эти проблемы, разместив выпускные отверстия по бокам камер сгорания. Но сейчас борьба за экологию обострилась и предложенных улучшений оказалось недостаточно. Это явилось еще одной причиной, по которой RX-8 стал последним автомобилем с двигателем Ванкеля под капотом. Он продавался 10 лет, с 2002 по 2012 год, но его убила экология.

Время для повторного возвращения

Вернемся к слухам Mazda о том, что компания может использовать какой-то роторный двигатель в качестве «расширителя» диапазона для своего будущего электрического автомобиля. Эта штука имела бы смысл.

Еще в 2012 году Mazda арендовала в Японии 100 электромобилей Demio EV, они были хороши, но напрягал небольшой диапазон без подзарядки – менее 200 км.

Изучив дело, в 2013 году Mazda создала прототип, который получил небольшой роторный моторчик, тот самый «расширитель» диапазона, который почти удвоил этот диапазон. Модель назвали «Mazda2 RE Range Extender».

Колеса прототипа приводились в движение с помощью электрического двигателя, а 0,33-литровый 38-сильный роторный моторчик работал для того, чтобы перезаряжать батареи электрического двигателя, если они разряжались и поблизости не было места для перезарядки.

Поскольку роторный двигатель не мог отправлять мощность на колеса, Mazda2 RE не был гибридом, как Volt или Prius. Силовой агрегат Ванкеля, скорее, был бортовым генератором, который добавлял энергии аккумуляторам.

Такая же компактность и легкий вес, которые сделали ротор Ванкеля отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным в новом качестве – расширяющего диапазон генератора на автомобиле, особенно том, который уже имеет электродвигатели и батареи, конкурирующие за пространство, и не может позволить себе много «лишнего» веса.

Роторные двигатели Мазда сделали себе репутацию в основном как моторы для спортивного автомобиля. В былые времена слухи об уникальных возможностях такого рода силовых агрегатов преодолели даже железный занавес СССР, где уже наши инженеры вносили и успешно интегрировали диковинные моторы в отечественные автомобили.

Наверное, будет не совсем правильно делать из такого легендарного двигателя всего лишь генератор для электромобиля. Но такова сегодняшняя реальность: время роторных моторов прошло, и его не получится вернуть обратно.

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Достоинства

Недостатки

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

http://auto-ru.ru/rotornyj-dvigatel.html
Источник http://1gai.ru/publ/520660-rotornyy-dvigatel-mazda-vozvraschaetsya-vot-chto-o-nem-nuzhno-znat.html
Источник http://avtodvigateli.com/vidy/drugie/rotornyj-dvigatel.html

Роторный двигатель

| Британника

роторный двигатель , двигатель внутреннего сгорания, в котором камеры сгорания и цилиндры вращаются вместе с ведомым валом вокруг неподвижного управляющего вала, к которому прикреплены поршни; давление газа сгорания используется для вращения вала. Некоторые из этих двигателей имеют поршни, которые скользят в тороидальных (пончиковидных) цилиндрах; другие имеют одно- и многолепестковые роторы. Ранние роторные двигатели использовались в самолетах Первой мировой войны.Они имели воздушное охлаждение, с цилиндрами, расположенными по кругу вокруг коленчатого вала, жестко прикрепленного к фюзеляжу. Винт крепился непосредственно к круглой раме, на которой устанавливались вращающиеся цилиндры. Различные недостатки этих двигателей привели к тому, что после войны от них отказались.

После Второй мировой войны интерес к разработке нового типа роторного двигателя пробудился. Ванкель является наиболее развитым и широко используемым роторным двигателем. В двигателе Ванкеля ротор в форме равностороннего треугольника вращается с орбитальным движением в корпусе специальной формы и образует вращающиеся камеры сгорания в форме полумесяца между его сторонами и изогнутой стенкой корпуса.Три вершины ротора снабжены подпружиненными уплотнительными пластинами, которые поддерживают непрерывный скользящий контакт с вогнутой внутренней поверхностью корпуса, а камеры сгорания последовательно увеличиваются и уменьшаются в размере по мере вращения ротора. Топливный заряд из карбюратора поступает в камеру через впускной канал, сжимается, поскольку размер камеры уменьшается из-за вращения ротора, и в соответствующее время воспламеняется свечой зажигания.

Подробнее по этой теме

Бензиновый двигатель

: Роторные двигатели (Ванкеля)

Роторно-поршневой двигатель внутреннего сгорания, разработанный в Германии, радикально отличается по конструкции от обычного поршневого поршневого двигателя…

Двигатель Ванкеля был впервые испытан для использования в автомобилях в 1956 году. С тех пор он стал использоваться для таких промышленных применений, как приводные воздушные компрессоры, где необходимы небольшие, легкие, высокоскоростные двигатели с простотой механики. См. Также бензиновый двигатель .

Роторный двигатель — шедевр инженерной мысли

При покупке новенького автомобиля вопрос о конструкции двигателя практически не возникает, и он не указывается на сайте производителя.Хотя существуют двигатели разных размеров, конфигураций и даже с принудительной индукцией, все они используют цилиндры и поршни. Однако в 1950-х годах человек по имени Феликс Ванкель разработал двигатель совершенно другого типа. Широко известный как роторный двигатель, он был меньше, легче и часто мощнее, чем его конкуренты с поршневым двигателем.

Как работает роторный двигатель?

Чтобы понять, что делает роторный двигатель уникальным, нам сначала нужно знать, как работает традиционный поршневой двигатель.Впускные клапаны позволяют воздуху поступать в цилиндры. При движении вниз поршни засасывают воздух в камеру сгорания. В этот момент топливная форсунка добавляет топливо в смесь. Когда поршень движется обратно вверх, он начинает сжимать воздух в камере. Оказавшись наверху, свеча зажигания воспламеняет смесь, толкая поршень обратно вниз. Это движение, повторяющееся с молниеносной скоростью, позволяет двигателю развивать свою мощность.

Роторный двигатель, с другой стороны, выполняет тот же процесс, но совершенно по-другому.Вместо поршня, который движется вертикально, роторный двигатель использует ротор, который вращается вокруг оси. Во-первых, воздух и топливо засасываются в камеру сгорания за счет вакуума, создаваемого вращающимся ротором. Когда ротор вращается, он сжимает воздух, и в этот момент две свечи зажигания воспламеняют смесь. Затем ротор выпускает выхлопные газы из камеры сгорания только для того, чтобы втянуть больше воздуха и топлива, когда он совершит еще один оборот. Это вращательное движение — то, что позволяет двигателю развивать свою мощность.

Кто это разработал?

Капелла Ротари | Mazda

СВЯЗАННЫЙ: стоит ли рисковать покупкой автомобиля с роторным двигателем?

В то время как Феликс Ванкель разрабатывал оригинальный дизайн роторного двигателя, Mazda популяризировала его. Согласно Mazda, в 1960 году различные производители подписали лицензионные соглашения на производство двигателя; однако только Mazda когда-либо смогла сделать его коммерчески жизнеспособным. Первым автомобилем Mazda с роторным двигателем был Cosmo 110S, который, как следует из названия, развивал 110 л.с. в двухроторной конфигурации.

С тех пор роторный двигатель стал хитом, в конечном итоге породив линейку спортивных автомобилей RX, которые мы знаем и любим сегодня. Одной из выдающихся моделей, в которых использовался роторный двигатель, была модель RX-7 третьего поколения, которая производилась с 1992 по 2002 год. На RX-7 был установлен 1,3-литровый двухроторный двигатель 13b с двумя турбинами. Силовой агрегат комплекса развивал 236 л.с.

Почему это так редко?

Mazda RX-792P | Аллан Хэмилтон / Icon Sportswire через Getty Images

Роторный двигатель по своей конструкции идеально подходит для жизни в мире автоспорта.Одна из причин, по которой мы не видим роторные двигатели в серийных автомобилях, а именно, связана с затратами на техническое обслуживание. Хотя в роторном двигателе меньше движущихся частей, дроссельная заслонка напрямую влияет на количество масла в камере, смазывая ротор и все уплотнения.

Когда дроссельная заслонка не используется, например, при остановке или движении, уплотнения могут высохнуть и выйти из строя. Кроме того, сам ротор может быть недостаточно смазан, что приведет к повреждению камеры сгорания, что приведет к потере сжатия.Эти требования означают, что для ухода за ротором необходимо тщательно выполнять техническое обслуживание. В результате коммерческая жизнеспособность роторного двигателя начала угасать, и в конечном итоге Mazda сняла его с производства в 2012 году.

50 ЛЕТ РОТАЦИОННОЙ РЕВОЛЮЦИИ

Без роторного двигателя, наверное, не было бы Mazda. А без Mazda роторный двигатель не производился бы почти 50 лет.
Именно инженеры Mazda реализовали уникальную концепцию двигателя Феликса Ванкеля и довели ее до коммерческого успеха пять десятилетий назад в этом году.
Роторный двигатель меньше и легче обычного поршневого двигателя, с превосходным соотношением мощности к массе. Поскольку в нем нет возвратно-поступательных деталей — только трехсторонний ротор, вращающийся в корпусе, он также работает тише и плавнее. Ротор также обеспечивает выдающуюся производительность при заданном рабочем объеме. Это было большим прорывом для компании, полной автолюбителей.
Mazda также применила роторный двигатель, чтобы отличаться, — философия «бросить вызов условностям», которая сохраняется и по сей день. В 1950-х и 1960-х годах Министерство международной торговли и промышленности Японии, архитектор послевоенной промышленной политики страны, пыталось сделать свой зарождающийся автомобильный сектор конкурентоспособным на мировом рынке.Он хотел оптимизировать количество автопроизводителей, мотивируя это тем, что более крупные производители с большей вероятностью будут конкурировать с американскими и европейскими тяжеловесами. Более мелкие производители автомобилей, такие как Mazda, оказались уязвимыми для принудительного слияния.
Но производитель автомобилей, который «думает иначе», создавший двигатель нового смелого типа, с гораздо большей вероятностью сохранит свою независимость. Роторный двигатель: отличная причина купить Mazda — автомобиль, который понравился не только тем, кто просто хотел добраться из пункта А в пункт Б.
Высоко оцененный роторный Cosmo Sport (также известный как 110S) 1967 года не только укрепил репутацию Mazda как небольшого, но очень влиятельного производителя автомобилей, но и в конечном итоге гарантировал компании постоянное место на автомобильном небосклоне.

Преодоление невзгод

В то время как другие автопроизводители пытались сделать роторный двигатель успешным, но безуспешно, Mazda упорно отказывалась позволить сложным двигателям встать у них на пути. Постоянно возникающая проблема заключалась в появлении царапин, получивших название «следы когтей дьявола», на внутренней поверхности корпуса двигателя.Это было вызвано тем, что уплотнения на вершине треугольного ротора дергались, а не плавно скользили по внутреннему корпусу. Такая оценка привела к плохой прочности уплотнения и вызвала преждевременный отказ от предложений по вращению от многих других производителей автомобилей (см. Панель справа). Инженеры Mazda
под руководством Кеничи Ямамото в конечном итоге не только решили проблему с уплотнением из графит-алюминиевого сплава, но и устранили другие недостатки, такие как чрезмерный расход масла и отсутствие крутящего момента на низких оборотах. В конце концов роторный двигатель стал реальным, сочетая надежность с впечатляющей мощностью для своего размера.
Эта выигрышная комбинация привела к значительному успеху в продажах Mazda в 1970-х годах. Только в 1972 году в США было продано около 100 000 автомобилей с роторным приводом, а в оставшееся десятилетие половина автомобилей Mazda была произведена с роторным двигателем.

Известные роторы

Ротари 50 лет | Внутри Mazda

В последнее время главной проблемой роторного двигателя была его относительно низкая топливная экономичность и более высокий уровень выбросов по сравнению с лучшими современными бензиновыми или дизельными двигателями, включая собственные силовые установки Mazda SKYACTIV.Но когда его потенциальные преимущества настолько поразительны — легкий, компактный, плавный, тихий, свободно развивающийся — несомненно, у роторных двигателей есть будущее?

Роторный двигатель действительно может быть на грани возвращения. В качестве основного источника энергии он может быть сравнительно более голодным, поскольку обороты повышаются и падают, а нагрузки меняются. Но при постоянных и оптимальных оборотах, таких как у генератора, он идеален. Неудивительно, что Mazda экспериментировала с использованием этих восхитительно небольших двигателей — одна треть размера обычного бензинового или дизельного двигателя — в качестве бортовых генераторов энергии или «расширителей запаса хода».«В 2013 году Mazda продемонстрировала крошечный однороторный агрегат объемом 330 куб. См, генерирующий бортовую мощность для электрической Mazda2. Развитие продолжается.

Есть и другие возможности в будущем. Роторные двигатели могут превосходно работать на водороде, самом распространенном элементе во Вселенной. Кроме того, он очень чистый: при сжигании водорода образуется только водяной пар. Mazda построила ряд экспериментальных роторных двигателей с водородным двигателем, в том числе арендованный на коммерческой основе парк RX-8 для экологического исследования, проведенного с правительством Норвегии.

Независимо от технического направления, которое роторный двигатель примет в будущем, одно более чем вероятно: он будет прекрасным. На автосалоне в Токио 2015 года Mazda продемонстрировала впечатляющий концепт спортивного автомобиля RX-Vision (вверху). Буквы RX, которые традиционно предшествуют моделям Mazda с роторным двигателем, сделали RX-Vision еще более популярной среди энтузиастов роторных двигателей во всем мире. Mazda просто заявила в то время, что роторные двигатели остаются символом неустанно сложного духа компании, и что исследования и разработки роторных двигателей продолжаются.Но кто из компании, которая обнаружила печально известные следы когтей дьявола и нанесла роторы на автомобильную карту мира, может что-то исключить?

Rotary vs Piston — журнал DSPORT

T he Роторный двигатель Ванкеля: самое ценное предложение Mazda также является источником сотен веселых интернет-мемов. В то время, когда поршневые двигатели внутреннего сгорания были основной технологией, используемой в автомобилях, Mazda решила разработать конкурирующую технологию. В начале 70-х годов роторные двигатели использовались почти во всех автомобилях модельного ряда Mazda.Когда случился кризис газа, он все еще использовался в высокопроизводительных автомобилях Mazda. Mazda Rotary имела преимущества по сравнению с поршневыми двигателями, но также имела большой список недостатков. Давайте посмотрим, что отличает его от поршневого двигателя, а также некоторые его плюсы и минусы.

Текст Бассема Гиргиса и Джима Медерера // Фото: Staff and Racing Beat

ДСПОРТ Выпуск №206

Поршневой двигатель внутреннего сгорания состоит из блока, кривошипа, шатунов, поршней, головок, клапанов, распределительных валов, системы впуска, системы выпуска и системы зажигания.Все они работают вместе, чтобы преобразовать химическую энергию в механическую энергию, которая позволяет вашему автомобилю двигаться. Внутри блока коленчатый вал соединен с несколькими шатунами (в зависимости от того, сколько цилиндров у вашего двигателя), а шатуны прикреплены к тому же количеству поршней. Когда поршни двигаются вверх и вниз, они вращают коленчатый вал с помощью шатунов.

Начиная с поршня в верхней мертвой точке (первая ступень в четырехтактном цикле), впускные клапаны открываются, а выпускные клапаны закрыты (открытие и закрытие регулируется распределительным валом, который синхронизируется с коленчатым валом с помощью ремня. или цепочка).По мере того как коленчатый вал продолжает вращаться, он опускает поршень, всасывая воздух в цилиндры. К тому времени, когда поршень достигает дна, цилиндр уже заполнен воздухом и топливом.

Для завершения полного четырехтактного процесса поршень должен сделать два полных прохода в цилиндре.

Затем поршень начинает движение вверх во время такта сжатия. Во время этого хода впускные и выпускные клапаны закрыты. Движение поршня вверх сжимает смесь воздуха и топлива, которая смешивает молекулы воздуха и топлива по мере их сближения.В результате этого процесса создается смесь, оптимизированная для сгорания. Как только поршень снова окажется около верхней мертвой точки, свеча зажигания загорится, чтобы вызвать сгорание в цилиндре.

Рабочий ход создает управляемое сгорание, вызываемое искрой. Сгорание толкает поршень вниз по цилиндру. Давление, создаваемое сгоранием, является движущей силой, которая приводит в движение колеса вашего автомобиля. Когда поршень приближается к нижней мертвой точке, выступ выпускного распределительного вала начинает открывать выпускной клапан, готовясь к заключительному такту в четырехтактном цикле.

Когда цилиндр снова начинает подниматься, выпускные клапаны открываются полностью. Это позволяет выхлопным газам выходить из цилиндров, чтобы снова освободить место для следующего четырехтактного цикла. Выхлопные газы выходят через выпускной коллектор, через каталитический нейтрализатор и через выхлопную трубу и глушитель. К тому времени, когда поршень снова окажется в верхней мертвой точке, выпускной клапан почти закрыт, а впускной клапан начинает открываться. Затем процесс повторяется.

Роторный двигатель имеет тот же четырехтактный цикл, что и поршневой двигатель, для выработки мощности на маховике.В отличие от поршневого двигателя, в котором сгорание происходит в цилиндре, роторный двигатель полагается на давление, содержащееся в камере в корпусе, которая герметизирована одной стороной ротора. Два ротора используются вместо поршней. Ротор трехсторонний, который вращается вокруг корпуса ротора с помощью эксцентрикового вала. Три стороны изогнуты в три лопасти, а корпус ротора имеет форму грубой восьмерки (8). По мере того как ротор вращается внутри корпуса, зазор между ротором и корпусом меняется между большим и маленьким.

В то время как в поршневом двигателе для распределительных валов и клапанов используется зубчатый ремень или цепь, единственная цепь, которую использует роторный двигатель, — это масляный насос.

Воздух и топливо попадают в корпус ротора по мере увеличения объема между одной из лопастей ротора и стенкой корпуса. Когда ротор вращается и объем увеличивается, создается вакуум, который втягивает воздух и топливо в корпус. Как только кончик одной из сторон ротора покидает эту зону всасывания, следующая сторона ротора начинает процесс всасывания.Ротор продолжает вращаться до тех пор, пока объем между лопастью ротора и стенкой корпуса не начнет уменьшаться. Это сжимает смесь воздуха и топлива, подобно тому, как это делает поршневой двигатель, когда поршень движется вверх. Затем сжатая смесь попадает в следующую часть корпуса, где находится свеча зажигания. Свеча зажигания загорается, воспламеняя сжатую смесь. В то время как нижняя свеча зажигания воспламеняет большую часть смеси через большее отверстие, верхняя свеча зажигания воспламеняет топливо в меньшем конце камеры сгорания.Воспламеняющийся воздух и топливо сгорают (горит с контролируемой скоростью), что приводит в движение ротор по часовой стрелке. Поскольку ротор продолжает вращаться после первого удара, объем между ротором и корпусом увеличивается, что позволяет газам расширяться. Последний шаг — это когда объем уменьшается в последний раз, чтобы вытеснить выхлопные газы через выхлопные отверстия, прежде чем сделать еще один круг и снова запустить четырехтактный цикл.

Горение — это то, что движет большинством двигателей.И роторные, и поршневые двигатели имеют четырехтактный цикл. Четырехтактный режим относится к такту впуска, такту сжатия, такту мощности и такту выпуска. Оба двигателя нуждаются в воздухе, топливе и искре для работы.


Все углы поворота указаны для выходного вала (эксцентрикового вала / коленчатого вала), а не для ротора. Оба двигателя сжигают сжатую топливно-воздушную смесь для развития мощности вращения. Оба двигателя четырехтактные.

Ротор вращается вокруг эксцентрикового вала внутри корпуса.Воздух сжимается вместе с топливом, затем вводится искра , и, наконец, выхлоп выходит через выхлопное отверстие.

Однако одно большое различие между ними состоит в том, что у реципиента 180 градусов на ход (или 4 x 180 = 720 градусов на термодинамический цикл, это два оборота кривошипа для одного полного четырехтактного цикла в цилиндре), а у поворотного — 270 градусов. градусов на «ход» (или 4 x 270 = 1080 градусов на термодинамический цикл, это три оборота кривошипа на один полный оборот ротора).Да, возможно, вам придется немного подумать об этом, но поверьте нам, это правда.


Для каждого целого ротора вырабатывается в два раза больше импульсов мощности, чем для одноцилиндрового приемника. Это означает, что 1,3-литровый двигатель производит в 1,5 раза больше мощности и крутящего момента, чем двигатель аналогичного объема.

Это имеет как хорошие, так и плохие последствия. Если предположить, что оба двигателя имеют одинаковые максимальные обороты в минуту, это означает, что роторный двигатель имеет в 1,5 раза больше миллисекунд для выполнения каждого «хода».Это одна из причин, почему роторные двигатели так хорошо дышат — у них больше времени (в миллисекундах), чтобы втягивать и выплевывать смесь.

У них также больше времени для рабочего хода — настоящий плюс для получения максимальной отдачи от газа сгорания, особенно на высоких оборотах. Теперь о плохом. Ротор также имеет в 1,5 раза больше миллисекунд для передачи тепла от горящей смеси маслу и воде.

Это одна из причин, по которой роторные двигатели тратят больше тепла в процессе охлаждения. Другое следствие заключается в том, что если вы рассматриваете только одну боковую поверхность одного ротора, роторный двигатель получает только 2/3 импульсов мощности, чем принимающий.Однако на самом деле у каждого ротора есть три боковых поверхности, каждая в разных точках термодинамического цикла, поэтому каждый полный ротор фактически дает в два раза больше импульсов мощности (в 3 раза 2/3), чем одноцилиндровый приемник. Смущенный? Найдите минутку, чтобы изучить рисунки 2 и 3 и погрузиться в них. Суть в том, что 1,3-литровый роторный двигатель обеспечивает в 1,5 раза большую мощность и крутящий момент, чем двигатель аналогичного размера. Это как 2,0-литровый поршневой двигатель.


Другими словами, роторный двигатель с 2 роторами имеет такое же количество пусковых импульсов, что и 4-цилиндровый реципиент, но поскольку длительность каждого пускового импульса составляет 270 градусов, двигатель работает более плавно из-за перекрытия пусковых импульсов.

Итак, в чем смысл всей этой математики? Дело в том, чтобы лучше понять, ПОЧЕМУ некоторые вещи так важны для роторного двигателя, особенно теплопередача. Помните, что тепло — это потенциальная мощность, поэтому сохранение тепла в смеси для сгорания дает больше мощности, которую вы можете использовать.

Переходим к следующему пункту: по сравнению с реципиентом, всасываемый заряд (когда он находится внутри двигателя) на самом деле проходит долгий, мучительный путь. На рисунках выше это показано подробно.


В приемнике центр тяжести всасываемого заряда перемещается только на дюйм или два, когда поршень перемещается вперед и назад между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ).В роторном двигателе Mazda заряд движется далеко — примерно на 20 дюймов — от впуска к выпуску. Одним из плохих результатов является наличие большого количества квадратных дюймов поверхности, через которую передается тепло, что снижает тепловую эффективность. Однако вот важный момент: вся масса всасываемого заряда должна проходить через узкую область между корпусом ротора и ротором, когда каждая боковая поверхность ротора проходит через ВМТ. Это стало возможным благодаря «депрессии ротора», которая отливается на каждой боковой поверхности ротора — если бы не этот путь, частично сгоревшая смесь никогда не смогла бы протиснуться через узкий зазор между корпусом ротора и ротором ( обычно вокруг.010 ~ 0,015 дюйма) на высоких оборотах. Существует грубая параллель с реципиентом, у которого есть «всплывающий» поршень, который имеет тенденцию разрезать камеру сгорания пополам в ВМТ. Некоторые рецепты даже вырезают «огневую щель» (выемку) в середине всплывающей области, чтобы она не препятствовала распространению фронта пламени в камере. По этой и другим причинам форма углубления ротора очень важна. Он также имеет большое влияние на определение степени сжатия двигателя, и, как указывается во всех учебниках «Двигатель внутреннего сгорания», степень сжатия является основным определяющим фактором мощности и эффективности любого двигателя.Фактически, это указывает на слабое место ротора — максимальная ПРАКТИЧЕСКАЯ степень сжатия определяется не детонацией (как это обычно бывает в рецептах), а способностью горящего заряда проходить через депрессию ротора. Если разрежение слишком мало, давление повышается вблизи задней свечи зажигания, вызывая ОТРИЦАТЕЛЬНУЮ РАБОТУ! Это может снизить мощность, перегреть заднюю свечу зажигания и существенно увеличить теплоотдачу масла и воды. Следовательно, форма углубления ротора — это попытка сбалансировать, чтобы найти лучший компромисс.Прежде чем мы оставим тему депрессии ротора, еще один момент: физическая форма углубления на его передней кромке во многом связана с максимально допустимым опережением опережения зажигания. Вы можете лучше понять это, если установите поворотный механизм последней модели на 35 градусов BTC, выньте ведущую свечу зажигания №1 и посмотрите в отверстие свечи зажигания. Вы увидите изогнутую боковую поверхность ротора, довольно плотно прилегающую к дну отверстия для свечи зажигания. Если свеча зажигания загорится в этот момент, двигатель может дать сбой, потому что фронт пламени может погаснуть (погаснуть) при ударе о поверхность ротора.

Если теперь повернуть двигатель на 20 градусов BTC, откроется путь для выгорания смеси в депрессии ротора.

Это важная часть причины, по которой почти все двигатели 1974 г. и более поздних моделей могут работать при опережения зажигания не более чем на 20–25 градусов при большой мощности (двигатели более ранних моделей США имели очень длинную неглубокую депрессию, которая позволяла больший ход). Как я объяснил ранее, здесь есть некоторые параллели между роторами и рецептами — камера сгорания и конструкция верхней части поршня являются основными проблемами в рецептах, но есть некоторые отличительные моменты, которые следует учитывать при работе с ротором.


По правде говоря, мало что можно сделать, чтобы изменить форму депрессии сгорания, особенно в двигателях 1989 года и более поздних версиях с тонкими литыми стенками, но кое-что полезное можно сделать. Во-первых, вы можете гарантировать, что расстояние от канавки уплотнения вершины до передней кромки впадины сгорания будет одинаковым на всех боковых сторонах всех роторов, чтобы все выдерживали одинаковую синхронизацию зажигания (отшлифуйте переднюю кромку впадины). как надо).

Затем вы можете попытаться уменьшить теплопередачу в ротор, отполировав углубление сгорания и / или нанеся на него покрытие «тепловой барьер» (Примечание: не добавляйте измеримую толщину к изогнутой боковой поверхности ротора, в противном случае ротор может ударить по корпусу ротора).Многие реципиенты делают то же самое с поршнями и камерами сгорания по одним и тем же причинам. Я знаю, что тем из вас, кто плохо знаком с роторными двигателями, нелегко пролезть через эту информацию, но если вы не понимаете этих основных концепций, другие вопросы (например, синхронизация портов и синхронизация зажигания) не будут иметь смысла. позже.

Я дам вам еще одну вещь для размышления — свечу зажигания. О зажигании роторных двигателей написаны книги, поэтому я коснусь только одной области — диапазона нагрева.Для тех, кто этого не знает, роторные двигатели, как правило, используют очень холодные свечи зажигания, то есть свечи, которые хорошо охлаждают электроды через водяную рубашку. Для этого есть много причин, но одна из наиболее очевидных заключается в том, что, хотя поршневой двигатель имеет горящую смесь вокруг своей свечи зажигания на номинальные 180 градусов (рабочий ход) из 720 общих градусов (или 25% термодинамического цикла) время) роторный двигатель имеет горящую смесь вокруг своей ведущей свечи зажигания в течение примерно 70% времени цикла.

Джим Медерер (1942-2016) поделился с нами своими знаниями о роторных двигателях во втором выпуске Drag Sport за 2002 год, прежде чем мы стали журналом DSPORT.Его наследие как первопроходца роторных технологий будет жить и дальше. Несмотря на то, что он больше не работает с нами, его всегда будут помнить за то, что он проложил путь в разработке роторных двигателей в мире производительности с 70-х годов.

Поскольку у него очень мало времени для «охлаждения», его необходимо охлаждать через водяную рубашку. На самом деле это не относится к задней свече зажигания — она ​​имеет горящую смесь только в течение 25% ~ 30% времени цикла, как в поршневом двигателе. Другие обстоятельства приводят к тому, что он получает большое количество тепла, но мы отложим это на другой раз.

Инженерное объяснение глубокого погружения в роторный двигатель Mazda

Роторный двигатель Mazda

— одна из тех вещей, которые вы легко могли бы простить за непонимание, если только вы не были большим поклонником RX-7 или RX-8.Он настолько сильно отличается от традиционного поршневого двигателя, что часто помогает наглядно объяснить его. Вот здесь и пригодится это видео от Engineering Explained.

Джейсон Фенске, ведущий популярного канала YouTube, который явно старше, чем он выглядит, заполучил гениальную модель роторного двигателя Mazda 13B, напечатанную на 3D-принтере, и в видео, которое он опубликовал в четверг, он проводит нас через уникальный способ, которым роторный двигатель или двигатель Ванкеля превращает бензин в лошадиные силы.

Один из самых интересных аспектов конструкции роторного двигателя — помимо его довольно грязной истории — это то, как ему удается делать все, что делает четырехтактный поршневой двигатель, но в гораздо более компактных размерах и значительно меньшем количестве. движущиеся части.
Роторный двигатель — это четырехтактный двигатель, который, вероятно, установлен в вашем автомобиле. Он использует тот же процесс впуска, сжатия, зажигания и выпуска, что и поршневой двигатель, но вместо тех событий, которые происходят в одном месте (цилиндре) в разное время, он происходит одновременно в четырех разных местах.

Роторный двигатель не имеет впускных или выпускных клапанов, как двухтактный поршневой двигатель, и в него также необходимо впрыскивать масло вместе с бензином для смазки и уплотнения роторов относительно корпуса ротора, как в двухтактном двигателе. смешайте масло и топливо. Также, как двухтактный двигатель, в котором каждый ход двигателя является рабочим ходом, каждое вращение ротора сопровождается событием зажигания, поэтому он может производить невероятное количество мощности для своих размеров.

К сожалению, из-за необходимости сжигания масла и высокого расхода топлива Mazda прекратила разработку роторных двигателей.Это не означает, что это не увлекательный, веселый и совершенно уникальный фрагмент автомобильной истории, который следует праздновать. Теперь, если вы нас извините, мы посмотрим на Craigslist для RX-7 первого поколения.

Что такое роторный двигатель и почему нацисты изобрели верхние уплотнения?

Вы перестали пускать слюни, как собака Павлова? Я уверен, что нет.Но просмотр этого видео, на котором Mazda демонстрирует безумную гонку 787 в Ле-Мане, передаёт лишь небольшую часть гоночной родословной этого ротора.

На протяжении многих лет Mazda использовала двух-, трех- и четырехроторные роторные двигатели для ряда различных приложений, включая гоночные спортивные автомобили высшего уровня IMSA, прототипы, такие как автомобили 767 и 787, автомобили с открытыми колесами и секретный прототип ралли Группы B с двухроторным RX-7 со скоростью 11000 об / мин. Первая роторная победа Mazda произошла в 1972 году, когда двухроторный спортивный автомобиль RX-2 выиграл гонку IMSA RS в Лайм-Рок-парке.

Mazda добилась успеха в своей серии RX, выиграв гонки с RX-2, RX-3 и RX-7. А с появлением RX-7 он продолжил победную серию, вырвав подиум в своем классе на протяжении 10 лет на гонках 24 часа Дайтоны. Он также выигрывал чемпионат IMSA Grand Touring Championship Under 2 Liters каждый год в период с 1980 по 1987 год.

Однако наибольшая известность роторных моторов в гонках пришлась на 1991 год, когда гоночный прототип 787B с четырьмя роторами, показанный на видео выше, безоговорочно выиграл 24 часа Ле-Мана.Он не только стал первым и единственным роторным двигателем, выигравшим знаменитую гонку, Mazda также стала первым японским конструктором, выигравшим эту гонку. Аккуратный!

Какие модели в настоящее время оснащены ротором?

Нет. Mazda держала его в живых столько, сколько могла, но его исключили из модельного ряда в 2012 году, когда RX-8 был снят с производства. Mazda заявляет, что возвращает роторный двигатель, хотя он будет использоваться в качестве расширителя диапазона в одном из будущих гибридных автомобилей компании. Не совсем триумфальное возвращение легендарного двигателя.

Узнайте, как управлять своим Ротари в Skip Barber Racing School

Изучить поведение, причуды и индивидуальность вашего автомобиля можно самостоятельно, но не на пустом месте. Пропущенная точка торможения или фиксация цели на том дереве может означать погнутый бампер или серьезные медицинские счета. Зачем рисковать, если вы можете безопасно научиться водить свой роторный автомобиль у профессионалов школы вождения Skip Barber Race Car Driving School?

Drive стал партнером легендарной школы гонок Skip Barber, чтобы гарантировать, что при первом включении зажигания вы не полетите в канаву.

Часто задаваемые вопросы о роторном двигателе

У вас есть вопросы, У Drive есть ответы!

Q: Почему Иисус ненавидит ротари?

A: Их используют исключительно грешники. Слава сатане!

Q: Хорошо, но может ли роторный двигатель работать на дизельном топливе?

A: Роторный двигатель может работать на нескольких различных видах топлива, включая дизельное топливо, этанол, метанол, спирт и старый бензин. Он не потечет на слезах, собранных после похода к механику.

Q: Итак, сколько оборотов в минуту может вращаться роторный двигатель?

A: Все.

Q: Но правда.

A: Большинство уличных роторных машин развивают скорость около 8000–8500 об / мин. Однако гоночные двигатели, подобные упомянутым выше, будут иметь частоту вращения выше 10 000 об / мин.

Q: Тогда сколько уплотнений вершины имеет роторный двигатель?

A: Три на ротор.

Q: Боюсь спросить, но сколько стоит починка уплотнений апекса?

A: Начните с того, что дайте механику 2 000 долларов, а затем будьте готовы раскошелиться на многие тысячи после этого, пока вы не окажетесь в нищете и не будете жить в фургоне у реки.

Интересные факты о поворотных устройствах

Вы знаете, что вам нужно больше фактов о поворотных устройствах!

  • Кто-то построил крошечный прозрачный ротор, который вращался со скоростью 18 000 об / мин.
  • Mazda когда-то построила двигатель NA Miata с роторным двигателем, который использовал водород в качестве источника топлива! Он, очевидно, не взлетел.
  • RX-7 был первым серийным автомобилем с последовательным двойным турбонаддувом.
  • Кто-то однажды взял роторный двигатель и заменил его на Ferrari 456 GT.
  • Suzuki когда-то построил и продал роторный мотоцикл под названием RE5, и легендарный дизайнер Джорджетто Джуджаро усовершенствовал его стиль.

Давайте поговорим, прокомментируем ниже, чтобы поговорить с редакторами

Drive !

Мы здесь, чтобы быть экспертами во всем, что связано с практическими рекомендациями. Используйте нас, хвалите нас, кричите на нас. Прокомментируйте ниже, и давайте поговорим! Вы также можете написать нам в Twitter или Instagram, вот наши профили.

Джонатон Кляйн: Twitter (@ jonathon.klein), Instagram (@jonathon_klein)

Тони Маркович: Twitter (@T_Marko), Instagram (@t_marko)

Крис Тиг: Twitter (@TeagueDrives), Instagram (@TeagueDrives)

.