Инжекторный двигатель: устройство и принцип работы
Инжекторный двигатель представляет собой сложное устройство, обеспечивающее максимальную производительность автомобиля. В отличие от карбюраторных моделей, инжектор более экономичен и прост в обслуживании. Такие двигатели снабжены системой впрыскивания топлива, благодаря чему повышается мощность авто, а расходы топлива, наоборот, снижаются. Принцип работы инжекторного двигателя рассмотрен в нашей статье.
Принцип работы инжектора
Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.
Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан.
Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:
- Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
- Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
- Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
- Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.
Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь.
В чём особенности устройства?
Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.
Ключевые отличия:
- За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%.
- Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
- Система впрыскивания топлива обеспечивают легкий запуск двигателя.
- Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
- Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.
Среди главных недостатков — полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.
Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.
ЭБУ
Главным центром управления инжектора является ЭБУ — электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,
В зависимости от модели, обычно есть три типа памяти устройства:
- ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой.
Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
- ОЗУ — оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
- ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.
Форсунки
Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид — распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.
Каталитический нейтрализатор
Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.
Датчики
Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.
Основные датчики инжекторного двигателя:
- ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
- Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
- Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
- Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
- Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
- Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
- Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.
Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.
Если материал был для вас интересен или полезен, опубликуйте его на своей странице в социальной сети:
Добавить комментарий
В начало страницы
Диагностика инжекторных двигателей – советы для самостоятельной помощи + видео » АвтоНоватор
Первичная диагностика инжекторных двигателей заключается в контроле состояния всех датчиков управления агрегата.
Диагностика и ремонт инжекторных двигателей – кратко о самом устройстве
Но вначале остановимся на том, что собой представляет инжекторный двигатель. Чем он отличается от карбюраторного? Основное отличие заключается в системе подачи воздушно-топливной смеси. В прежних двигателях топливная смесь засасывалась непосредственно через карбюратор, где осуществлялось дозирование составляющих, и далее происходило смешивание бензина с воздухом. При этом из-за несовершенства конструкции двигатель терял до 10 % мощности.
В инжекторном (или впрысковом) двигателе топливо поступает в камеру сгорания путем принудительного впрыска под высоким давлением через форсунки. Дозирование и контроль количества поступающего горючего осуществляет электроника. В результате уменьшается уровень вредных выбросов в окружающую среду, а также существенно увеличивается мощность двигателя, улучшаются его эксплуатационные характеристики, и снижается расход топлива.
Достоинства инжекторных систем:
- точная дозировка подачи горючего;
- за счет оптимизации состава воздушно-топливной смеси существенно меньше становится уровень токсичности выхлопных газов;
- улучшаются динамические характеристики автомобиля, инжекторная система корректирует подачу топлива в зависимости от нагрузки;
- применение впрысковой системы ведет к увеличению мощности двигателя более чем на 7 %.
К недостаткам можно отнести дорогостоящий ремонт системы питания инжекторного двигателя, достаточно высокие требования к качеству топлива и наличие специального оборудования для ремонта и диагностики.
Диагностика инжекторных двигателей – как обнаружить поломку самостоятельно?
Какие же неисправности наиболее часто преследуют впрысковые системы? Самой существенной неисправностью можно считать поломку датчика, контролирующего положение коленчатого вала. В этом случае чаще всего требуется ремонт двигателя, поскольку отказ сигнализации вызван серьезными неполадками силового агрегата.
Предварительная диагностика инжекторного двигателя своими руками вполне возможна, но для точного определения причины неисправности потребуется специальное оборудование, которое есть только на СТО. При отказе в пути топливного насоса единственное, что можно сделать – это заменить неисправный узел. Если же его в запасе нет, то придется надеяться только на эвакуатор.
Диагностика инжекторного двигателя своими руками – еще несколько наблюдений
Что еще может привести к внезапному увеличению прожорливости мотора? Специалисты рекомендуют обратить внимание на датчик массового расхода воздуха. Определить данную неисправность можно по темному выхлопу, снижению приемистости, появлению неприятных рывков и неустойчивой работе двигателя в холостом режиме. Доехать на таком автомобиле, естественно, можно, но только до ближайшей СТО, где проводится диагностика и ремонт инжекторных двигателей.
Случается, что мотор начинает троить. Опытные водители знают, что причина может быть не только в нарушении подачи топлива, но чаще всего это происходит из-за поломок электрооборудования (неисправная катушка зажигания, свечи и другое). Определить это может даже начинающий автолюбитель. Но если требуется ремонт инжекторных двигателей, описание неисправностей которых уже дано в этой статье, то лучше всего обратиться к профессионалам сервисных центров.
- Автор: Михаил
- Распечатать
Оцените статью:
(7 голосов, среднее: 3. 9 из 5)
Поделитесь с друзьями!
Adblock
detector
КОМПОНЕНТЫ, ТИПЫ И ПРИНЦИПЫ РАБОТЫ
Впрыск топлива – это подача топлива в двигатель внутреннего сгорания, чаще всего в автомобильный двигатель, с помощью форсунки.
Система впрыска топлива лежит в основе дизельного двигателя. Создавая давление и впрыскивая топливо, система нагнетает его в воздух, сжатый до высокого давления в камере сгорания.
Топливная форсунка представляет собой механическое устройство с электронным управлением, которое отвечает за распыление (впрыск) необходимого количества топлива в двигатель, чтобы создать подходящую воздушно-топливную смесь для оптимального сгорания.
Электронный блок управления (ECU в системе управления двигателем) определяет точное количество и конкретное время необходимой дозы бензина (бензина) для каждого цикла, собирая информацию с различных датчиков двигателя. Таким образом, ЭБУ посылает командный электрический сигнал правильной продолжительности и времени на катушку топливной форсунки. Таким образом, открывается форсунка, и бензин проходит через нее в двигатель.
На одну клемму катушки форсунки напрямую подается 12 вольт, которые контролируются ЭБУ, а другая клемма катушки форсунки разомкнута. Когда ЭБУ определяет точное количество топлива и время его впрыска, он активирует соответствующую форсунку, переключая другую клемму на массу (массу, т.е. отрицательный полюс).
ФУНКЦИИ
Система впрыска дизельного топлива выполняет четыре основные функции:
1. Подача топлива
Элементы насоса, такие как цилиндр и плунжер, встроены в корпус ТНВД. Топливо сжимается до высокого давления, когда кулачок поднимает поршень, и затем направляется в форсунку.
2. Регулировка количества топлива
В дизельных двигателях подача воздуха практически постоянна, независимо от частоты вращения и нагрузки. Если количество впрыскиваемого топлива изменяется в зависимости от частоты вращения двигателя, а момент впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.
3. Регулировка момента впрыска
Задержка воспламенения – это период времени между моментом впрыска, воспламенения и сгорания топлива и моментом достижения максимального давления сгорания. Поскольку этот период времени практически не зависит от частоты вращения двигателя, для регулировки и изменения момента впрыска используется таймер, что позволяет достичь оптимального сгорания.
4. Распыление топлива
Когда топливо сжимается ТНВД, а затем распыляется из форсунки, оно тщательно смешивается с воздухом, что улучшает воспламенение. Результат — полное сгорание.
КОМПОНЕНТЫ
Задачей системы впрыска топлива является дозирование, распыление и распределение топлива по воздушной массе в цилиндре. В то же время он должен поддерживать требуемое соотношение воздух-топливо в соответствии с нагрузкой и частотой вращения двигателя.
Система впрыска топлива состоит из:
- ТНВД — нагнетает топливо до высокого давления
- Трубка высокого давления — подает топливо к форсунке
- Форсунка — впрыскивает топливо в цилиндр
- питательный насос — всасывает топливо из топливного бака
- топливный фильтр — фильтрует топливо
ТИПЫ ТОПЛИВНЫХ ИНЖЕКТОРОВ
1. Верхняя подача — топливо поступает сверху и выходит снизу.
2. Боковая подача – топливо поступает сбоку через штуцер форсунки внутри топливной рампы.
3. Форсунки корпуса дроссельной заслонки – (TBI) Расположены непосредственно в корпусе дроссельной заслонки.
ТИПЫ СИСТЕМ ВПРЫСКА ТОПЛИВА
1. Одноточечный или дроссельный впрыск топлива
Также известный как однопортовый, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который чистый воздух сначала поступает в двигатель. TBFI работает, добавляя правильное количество топлива в воздух, прежде чем оно будет распределено по отдельным цилиндрам. Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнут проблемы с инжектором, вам нужно будет заменить только один. Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.
С технической точки зрения системы дроссельной заслонки очень надежны и требуют меньше обслуживания. При этом впрыск в корпус дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно старые, поэтому техническое обслуживание будет более проблематичным, чем с более новым автомобилем с меньшим пробегом.
Еще одним недостатком TBFI является его неточность. Если вы отпустите педаль акселератора, в воздушной смеси, подаваемой в ваши цилиндры, все еще будет много топлива. Это может привести к небольшой задержке перед замедлением, а в некоторых автомобилях это может привести к выбросу несгоревшего топлива через выхлопную трубу. Это означает, что системы TBFI далеко не так экономичны, как современные системы.
2. Многоточечный впрыск
Многоточечный впрыск просто перемещает форсунки дальше вниз к цилиндрам. Чистый воздух поступает в первичный коллектор и направляется к каждому цилиндру. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.
Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свое распыление топлива. Каждая форсунка меньше и точнее, что обеспечивает экономию топлива. Минус в том, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим. Это означает, что у вас может быть остаточное топливо между периодами впуска, или у вас может быть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.
Многопортовые системы отлично работают, когда вы путешествуете с постоянной скоростью. Но когда вы быстро ускоряетесь или убираете ногу с педали газа, эта конструкция снижает либо экономию топлива, либо производительность.
3. Последовательный впрыск
Системы последовательной подачи топлива очень похожи на многоточечные системы. При этом есть одно ключевое отличие. Последовательная подача топлива — это раз. Вместо одновременного срабатывания всех форсунок топливо подается одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан откроется, чтобы всосать его. Такая конструкция позволяет улучшить экономию топлива и производительность.
Поскольку топливо остается в порту только в течение короткого промежутка времени, последовательные форсунки обычно служат дольше и остаются чище, чем другие системы. Из-за этих преимуществ последовательные системы впрыска топлива сегодня являются наиболее распространенным типом впрыска топлива в автомобилях.
Единственным недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через несколько секунд после открытия форсунки. Если он грязный, засоренный или не отвечает, вашему двигателю будет не хватать топлива. Форсунки должны поддерживать свою максимальную производительность, иначе ваш автомобиль начнет работать с перебоями.
4. Прямой впрыск
Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямой впрыск. В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят, чтобы вы поверили, что непосредственный впрыск — это новейшее и лучшее изобретение. Что касаемо характеристик бензиновых автомобилей, то они абсолютно правы! Но эта технология далеко не нова. Он использовался в авиационных двигателях со времен Второй мировой войны, а дизельные автомобили почти все имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.
В дизельных двигателях непосредственный впрыск очень надежен. Доставка топлива может потребовать много злоупотреблений, а проблемы с техническим обслуживанием сведены к минимуму.
В бензиновых двигателях непосредственный впрыск встречается почти исключительно в автомобилях с высокими характеристиками. Поскольку эти автомобили работают с очень точными параметрами, особенно важно обслуживать вашу систему подачи топлива. Несмотря на то, что автомобиль будет продолжать работать в течение длительного времени, когда им пренебрегают, производительность быстро снизится.
МЕТОДЫ ВПРЫСКА ТОПЛИВА
Существует два метода впрыска топлива в системе воспламенения от сжатия
1. Впрыск воздушной струей
2. Впрыск безвоздушного или твердого топлива
1. Впрыск воздушной струей
Первоначально этот метод использовался в крупных стационарных и судовые двигатели. Но сейчас это устарело. В этом методе воздух сначала сжимается до очень высокого давления. Затем поток этого воздуха впрыскивается вместе с топливом в цилиндры. Скорость впрыска топлива регулируется изменением давления воздуха. Воздух под высоким давлением требует многоступенчатого компрессора, чтобы держать баллоны с воздухом заряженными. Топливо воспламеняется от высокой температуры воздуха, вызванной высокой степенью сжатия. Компрессор потребляет около 10% мощности, развиваемой двигателем, что снижает полезную мощность двигателя. 92. Этот метод используется для всех типов малых и больших дизельных двигателей. Ее можно разделить на две системы
1. Индивидуальная насосная система: в этой системе каждый цилиндр имеет свой индивидуальный насос высокого давления и измерительный блок.
2. Система Common Rail: в этой системе топливо нагнетается многоцилиндровым насосом в систему Common Rail, давление в магистрали регулируется предохранительным клапаном. Отмеренное количество топлива подается в каждый цилиндр из общей топливной рампы.
Это все о системе впрыска топлива. Если у вас есть какие-либо вопросы относительно этой статьи, задайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт, чтобы получать больше информативных статей. Спасибо, что прочитали это.
ПРИНЦИПЫ РАБОТЫ
Форсунки управляются блоком управления двигателем (ECU). Во-первых, ECU получает информацию о состоянии двигателя и требованиях, используя различные внутренние датчики. После определения состояния и требований двигателя топливо забирается из топливного бака, транспортируется по топливопроводам, а затем нагнетается топливными насосами. Надлежащее давление проверяется регулятором давления топлива. Во многих случаях топливо также распределяется с помощью топливной рампы для подачи в разные цилиндры двигателя. Наконец, форсункам приказано впрыскивать необходимое топливо для сгорания.
Точная требуемая топливно-воздушная смесь зависит от двигателя, используемого топлива и текущих требований двигателя (мощность, расход топлива, уровень выбросов выхлопных газов и т. д.)
Принцип работы и схема топливной форсунки
Топливо Система на двигателе автомобиля делится на два типа: карбюраторный и инжекторный. Оба типа имеют одинаковую функцию подачи бензина во впускной коллектор с идеальным объемом.
Но есть ли кооперативный принцип?
Очевидно, что карбюраторный тип использует принцип разницы давлений, а тип впрыска топлива использует принцип компьютеризированного расчета.
Тогда как работает впрыск топлива? давайте обсудим подробно.
Определение систем впрыска топлива
Система впрыска топлива представляет собой мехатронные схемы, которые объединяют механические и электронные схемы для достижения общей цели, то есть подачи топлива во впускной коллектор с идеальным объемом.
В системе впрыска топлива есть две группы, а именно группа топливопроводов (механическая часть) и группа контроллера (электронная часть).
Система впрыска используется практически во всех выпускаемых сегодня автомобилях. Это связано с тем, что система впрыска имеет много преимуществ.
Преимущества системы впрыска топлива;
- Экономичное использование топлива
- Экологически чистый
- Чистый шум двигателя
- Выбросы ЕВРО 3 или выше
Все вышеперечисленные преимущества достигаются благодаря тому, что принцип работы системы впрыска топлива сильно отличается от принципа работы карбюратора. Кроме того, при определении объема подаваемого топлива также больше ориентиров, так что он может быть более точным.
Принцип работы системы впрыска топлива
Система впрыска топлива и карбюратор работают по одному принципу, то есть по разнице давлений. Однако в системе впрыска топлива давление со стороны топлива увеличивается настолько, что оно превышает пространство впускного коллектора.
Таким образом, можно сказать, что в карбюраторном типе давление во впускном пространстве (Вентури) понижено, так что возникает разница давлений. В то время как в системе впрыска давление со стороны топлива увеличивается, так что возникает разница давлений.
Для повышения давления со стороны подачи топлива имеется электрический насос, который нагнетает топливо в топливные шланги. Поскольку давление со стороны подачи топлива больше, чем на стороне впуска, топливо будет поступать во впускной коллектор через форсунку.
Приведенные выше фрагменты являются только описанием обложки, для получения дополнительной информации, пожалуйста, продолжайте читать.
Основной компонент системы впрыска топлива
- Топливные баки, компоненты для хранения запаса топлива.
- Топливный насос, предназначен для повышения давления топлива в топливных шлангах.
- Топливные шланги, предназначение для слива топлива из бака к форсунке.
- Форсунка предназначена для подачи топлива во впуск в виде аэрозоля
- Системный контроллер регулирует, когда и как долго открывается инжектор.
Рабочая схема системы впрыска топлива
Когда мы запустим двигатель, топливный насос будет работать так, что давление топлива в топливных шлангах увеличится.
Здесь есть поток топлива из бака к топливному насосу и к форсунке.
В этом состоянии давление в топливопроводах превышает давление во впускном коллекторе, поэтому при открытии форсунки топливо может выйти немедленно. Однако форсунка не открывается неосторожно. Но ECU-датчик-исполнительный механизм выполняет расчет для регулирования необходимого объема топлива.
Мы называем это электронным контроллером, потому что в системе впрыска топлива электронных частей больше, чем механических. Для механических частей, только ограничено выше.
Тогда как работает этот электронный контроллер?
Этот электронный контроллер состоит из трех основных компонентов, а именно;
- Датчик
- ЭБУ
- Привод
Датчик служит индикатором состояния индикатора. Примеры датчиков в системе впрыска топлива:
- IAT (температура воздуха на впуске), используется для определения температуры воздуха на впуске.
- MAF (массовый расход воздуха), используемый для определения периода воздуха на основе его расхода.
- MAP (абсолютное давление во впускном коллекторе), используется для определения разрежения во впускном коллекторе.
- ECT (температура охлаждающей жидкости двигателя), используется для определения тепла охлаждающей воды
- Кислородный датчик, используемый для определения уровня кислорода в выхлопных газах.
- CKP (положение коленчатого вала), используется для определения оборотов двигателя.
- CMP (положение распределительного вала), используется для определения положения двигателя TOP 1.
ECU или электронный блок управления — это процессор на транспортном средстве, который вычисляет все данные с датчика. Итак, ECU функционирует для обработки данных, результатом является команда, подаваемая исполнительному механизму.
В то время как исполнительный механизм представляет собой устройство вывода, которое предназначено для преобразования команд от ЭБУ в механические движения. В этом случае форсунка работает как исполнительный механизм. Инжектор получает команду в виде напряжения от ЭБУ, а затем преобразует его в движение для открытия сопла на конце форсунки. Когда сопло открывается, топливо может немедленно выйти.
Тогда какая схема?
Когда мы запускаем двигатель, коленчатый вал автоматически вращается. Это вызывает процесс всасывания на поршне, поэтому датчики системы впрыска будут работать для определения температуры, массы, вакуума и температуры двигателя.
Все данные отправляются в ЭБУ в виде напряжения с определенным значением. ЭБУ будет обрабатывать все данные с датчика, чтобы определить идеальный объем топлива в состоянии двигателя, результатом будет конечное напряжение, подаваемое на форсунку.
Инжектор изготовлен из трубки с насадкой. Насадка имеет функцию двери, по умолчанию насадка будет закрыта.