25Апр

Коловратный двигатель: Паровой двигатель Тверского | Роторные двигатели

Содержание

Паровой двигатель Тверского | Роторные двигатели

Паровая машина за всю свою историю имела много вариаций воплощения в металл. Одним из таких воплощений — был паровой роторный двигатель инженера-механика Н.Н. Тверского. Этот паровой роторный двигатель (паровая машина) активно эксплуатировался в различных областях техники и транспорт. В русской технической традиции 19-го века такой роторный двигатель назывался — коловратная машина. Двигатель отличался долговечностью, эффективностью и высоким крутящим моментом. Но с появлением паровых турбин был забыт. Ниже представлены архивные материалы, поднятые автором этого сайта. Материалы весьма обширны, поэтому пока здесь представлена только часть их.

 

 

 

 

 

 

 

 

 

 

 

 

 

Паровой роторный двигатель Н.Н.Тверского

 

Пробная прокрутка сжатым воздухом (3,5 атм) парового роторного двигателя.
Модель расчитана на 10 кВт мощности при 1500 об/мин на давлении пара в 28-30 атм.

В конце 19-го века паровые двигатели — «коловратные машины Н.Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении паровых турбин справдливо лишь в их больших массо-габаритных размерах. Действительно — при мощности болше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у паровых турбин есть другой недостаток. При масштабировании их массо-габаритных парамеров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются. Именно поэтому — в области мощностей менее 1,5 тыс. кВт (1,5 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины» — роторные паровые двигатели. А между тем — эти паровые машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают средней частотой вращения главного вала на полных оборотах от 1000 до 3000 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (автомобиля- грузовика, трактора, тягача) — не будут требовать редуктора, счепления и проч., а будут своим валом на прямую содиняться с динамо-машиной, колесами парового автомобиля и проч.

Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр и др.
Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилицации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизирыется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 3.5 — 5 кВт (зависит от давления в пара), если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей. Т.е вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

Но, кроме средних и относительно крупных паросиловых установок, паросиловые схемы с малыми паровыми роторными двигателями будут востребованы и в малых силовых установках.
Например- одно из моих изобретений- «Походно-туристический электрогенератор на местном твердом топливе».
Ниже представлено видео, где испытывается упрощенный прототип такого устройства.
Но маленький паровой двигатель уже весело и энергично крутит свой электрогенератор и на дровах и прочем подножном топливе выдает электроэнергию.

Основное направление коммерческого и технического применения паровых роторных двигателей (коловратных паровых машин) — это выработка дешевого электричества на дешевом твердом топливе и горючих отходах. Т.е. малая энергетика- распределенная электрогенерация на паровых роторных двигателях. Представьте, как будет отлично вписываться роторный паровой двигатель в схему работы лесопилки- пилорамы, где нибудь на Русском Севере или в Сибири (Дальнем Востоке) где нет центрального электроснабжения, электричество дает задорого дизель-генератор на привозной издалека солярке. Зато сама лесопилка производит в день минимум полтонны щепы- опилок — горбыля, который девать некуда…

Таким древесным отходам — прямая дорога в топку котла, котел дает пар высокого давления, пар приводит в действие роторный паровой двигатель и тот крутит электрогенератор.

Точно так же можно сжигать безграничные по объемам миллионы тонн пожнивных отходов сельского хозяйства и проч. А есть еще дешевый торф, дешевый энергетический уголь и проч. Автор сайта посчитал, что затраты на топливо при выработке электричества через малую паросиловую установку (паровую машину) с паровым роторным двигателем мощностью в 500 кВт будут от 0,8 до 1,

2 рубля за киловатт.

Еще интересный вариант применения парового роторного двигателя — это установка такой паровой машины на паровой автомобиль. Грузовик — тягач паровой автомобиль, с мощным крутящим моментом и применяющий дешевое твердое топливо — очень нужная паровая машина в сельском хозяйстве и в лесной отрасли. При применении современных технологий и материалов, а так же использование в термодинамическом цикле «Органичесокго цикла Ренкина» позволят довести эффективный КПД до 26-28% на дешевом твердом топливе (или недорогом жидком, типа «печного топлива» или отработанного машинного масла). Т.е. грузовик — тягач с паровой машиной

Грузовик НАМИ-012, с паровым двигателем. СССР, 1954 г

и мощностью роторного парового двигателя около 100 кВт, будет расходовать на 100 км около 25-28 кг энергетического угля (стоимость 5-6 руб за кг) или около 40-45 кг щепы- опилок (цена которых на Севере- забирай даром)…

Есть еще много интересных и перспективных областей применения роторного парового двигателя, но размеры этой странички не позволяют все их подробно рассмотреть. В итоге- паровая машина может занять еще очень заметное место во многих областях современной техники и во многих отраслях народного хозяйства.

ЗАПУСКИ ОПЫТНОЙ МОДЕЛИ ПАРОСИЛОВОГО ЭЛЕКТРОГЕНЕРАТОРА С ПАРОВЫМ ДВИГАТЕЛЕМ

Май -2018г. После длительных экспериментов и опытных образцов сделан малый котел высокого давления.   Котел опрессован на 80 атм давления, так что будет держать рабочее давление в 40-60 атм без затруднений.  Запущен в работу с опытной моделью парового аксиально-поршневого двигателя моей конструкции. Работает прекрасно- смотри видео. За 12-14 минут от розжига на дровах готов давать пар высокого давления.

Сейчас я начинаю готовиться к штучному производству таких установок- котел высокого давления, паровой двигатель (роторный ), конденсатор. Установки будут работать по замкнутой схеме с оборотом «вода- пар- конденсат».

Спрос на такие генераторы весьма большой, ибо 60% территории России не имеют центрального электроснабжения и сидят на дизельгенерации. А цена солярки все время растет и уже в  2020 г  достигла 44-47 руб за литр.  Да и там где электричество есть- энергокомпании тарифы все поднимают, а за подключение новых мощностей требуют больших денег.

    СВЕЖИЕ ДАННЫЕ ЗА  2020  г

Свежее видео — 2020 г- идет к завершению отработка паровых роторных двигателей и прямоточных котлов на твердом топливе.  Основная цель такой установки- создание малой паросиловой установки с электрогенератором для выработки дешевой электроэнергии на  сжигании твердого топлива. Особенно это актуально для лесной глубинки- где навалом опила. щепы, горбыля и бурелома. А электрических  сетей — нет.

ПРОБНЫЕ ИСПЫТАНИЯ МАЛОГО ПАРОВОГО КОТЛА

Пробные прокрутки парового роторного двигателя от котла на дровах

 

 

 

 

Роторный паровой двигатель — Паровые двигатели

Вот замечательная подборка на тему того что такое роторные паровые двигатели и зачем они не нужны: http://www.aqpl43.ds…s/rotaryeng.htm

 

Идёт эта идея ещё от Уатта (который Ватт). С непременной стабильностью. Проблемы просты и нерешаемы: уплотнения, клапана и прочие перегородки, степень расширения.

С уплотнениями всё просто.Роторный двигатель только в плане выглядит красиво. С дугой проекции видны громадные трущиеся плоскости, которые изнашиваются и уплотнить их невозможно никак. Это вам не масляный насос. И множество лопастей, дверок, заслоноу, и прилегающих тел хитрой формы со скользящей линией контакта тоже не способствуют применению пружинных колец и других хороших штук.

Перегородки и дверки в роторном двигателе должны перемещаться туда-сюда очень быстро (большие обороты — главное заявленное достоинство роторных двигателей), плотно прижиматься к куда надо (потому что уплотнение) и держать большие давления. И это несочетаемо. Прижмёшь неплотно или чуть раньше откроешь — пар уйдёт из впуска в выпуск напрямую. Прижмёшь плотнее или задержишься с открытием — ударит и оторвёт. Сделаешь принудительное вращение и хитрую форму — будут щели, увеличивающиеся от износа.

Степень расширения же полностью перечёркивает весь смысл роторных двигателей. Потому что её чуть менее чем нет. То есть на паре такие двигатели перекачивают пар из котла в выхлоп, а не выдают мощность.

 

Почему работают пневматические роторные двигатели? Потому что сжатый воздух не пар. У него температура комнатная, смазку он не сжигает и не вымывает. Давление его небольшое, а расход не важен, сжать воздух компрессором гораздо проще, чем вскипятить и перегреть массу воды.

Роторный паровой двигатель не совсем вечный, но близок к тому.

 

Кстати, пожарные насосы это чуть ли не единственное реальное применение роторных паровых двигателей. Роторный двигатель питается от примитивного, но мощного, котла и крутит роторный же насос. Весь чуть примятый пар уходит на создание тяги в топке. На эффективность всем плевать, главное что компактно, мощно, и сразу готово к действию.

Изменено пользователем John Jack

Коловратная машина или роторный двигатель Тверского

В конце 19-го века «коловратные машины Н.Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении турбин справедливо лишь в их больших массо-габаритных размерах. Действительно — при мощности больше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у турбин есть другой недостаток. При масштабировании их массо-габаритных параметров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются. Именно поэтому — в области мощностей менее 1 тыс. кВт (1 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины». А между тем — эти машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают невысокой частотой вращения главного вала на полных оборотах от 800 до 1500 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (трактора, тягача) — не будут требовать редуктора, сцепления и проч., а будут своим валом на прямую соединяется с динамо-машиной, колесами авто и проч.
Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр. и др. Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилизации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизируется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 10 кВт, если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей т.е. вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

подробное описание, чертежи. Паровой роторный двигатель Тверского — коловратная паровая машина Как называется паровой двигатель

Осмотр музейной экспозиции я пропущу и перейду сразу к машинному залу. Кому интересно, тот может найти полную версию поста у меня в жж. Машинный зал находится в этом здании:

29. Зайдя внутрь, у меня сперло дыхание от восторга — внутри зала была самая красивая паровая машина из всех, что мне доводилось видеть. Это был настоящий храм стимпанка — сакральное место для всех адептов эстетики паровой эры. Я был поражен увиденным и понял, что совершенно не зря заехал в этот городок и посетил этот музей.

30. Помимо огромной паровой машины, являющейся главным музейным объектом, тут также были представлены различные образцы паровых машин поменьше, а на многочисленных инфостендах рассказывалась история паровой техники. На этом снимке вы видите полностью функционирующую паровую машину, мощностью 12 л.с.

31. Рука для масштаба. Машина была создана в 1920 году.

32. Рядом с главным музейным экземпляром экспонируется компрессор 1940 года выпуска.

33. Этот компрессор в прошлом использовался в железнодорожных мастерских вокзала Вердау.

34. Ну а теперь рассмотрим детальней центральный экспонат музейной экспозиции — паровую 600-сильную машину 1899 года выпуска, которой и будет посвящена вторая половина этого поста.

35. Паровая машина является символом индустриальной революции, произошедшей в Европе в конце 18-го — начала 19-го века. Хотя первые образцы паровых машин создавались различными изобретателями еще в начале 18-го века, но все они были непригодны для промышленного использования так как обладали рядом недостатков. Массовое применение паровых машин в индустрии стало возможным лишь после того, как шотландский изобретатель Джеймс Уатт усовершенствовал механизм паровой машины, сделав ее легкой в управлении, безопасной и в пять раз мощней существовавших до этого образцов.

36. Джеймс Уатт запатентовал свое изобретение в 1775 году и уже в 1880-х годах его паровые машины начинают проникать на предприятия, став катализатором индустриальной революции. Произошло это прежде всего потому, что Джеймсу Уатту удалось создать механизм преобразования поступательного движения паровой машины во вращательное. Все существовавшие до этого паровые машины могли производить лишь поступательные движения и использоваться только лишь в качестве насосов. А изобретение Уатта уже могло вращать колесо мельницы или привод фабричных станков.

37. В 1800 году фирма Уатта и его компаньона Болтона произвела 496 паровых машин из которых лишь 164 использовались в качестве насосов. А уже в 1810 году в Англии насчитывалось 5 тысяч паровых машин, и это число в ближайшие 15 лет утроилось. В 1790 году между Филадельфией и Берлингтоном в США стала курсировать первая паровая лодка, перевозившая до тридцати пассажиров, а в 1804 году Ричард Тревинтик построил первый действующий паровой локомотив. Началась эра паровых машин, которая продлилась весь девятнадцатый век, а на железной дороге и первую половину двадцатого.

38. Это была краткая историческая справка, теперь вернемся к главному объекту музейной экспозиции. Паровая машина, которую вы видите на снимках, была произведена фирмой Zwikauer Maschinenfabrik AG в 1899 году и установлена в машинном зале прядильной фабрики «C.F.Schmelzer und Sohn». Паровая машина предназначалась для привода прядильных станков и в этой роли использовалась вплоть до 1941 года.

39. Шикарный шильдик. В то время индустриальная техника делалась с большим вниманием к эстетическому виду и стилю, была важна не только функциональность, но и красота, что отражено в каждой детали этой машины. В начале ХХ века некрасивую технику просто никто бы не купил.

40. Прядильная фабрика «C.F.Schmelzer und Sohn» была основана в 1820 году на месте теперешнего музея. Уже в 1841 году на фабрике была установлена первая паровая машина, мощностью 8 л.с. для привода прядильных машин, которая в 1899 году была заменена новой более мощной и современной.

41. Фабрика просуществовала до 1941 года, затем производство было остановлено в связи с началом войны. Все сорок два года машина использовалась по назначению, в качестве привода прядильных станков, а после окончания войны в 1945 — 1951 годы служила в качестве резервного источника электроэнергии, после чего была окончательно списана с баланса предприятия.

42. Как и многих ее собратьев, машину ждал бы распил, если бы не один фактор. Данная машина являлась первой паровой машиной Германии, которая получала пар по трубам от расположенной в отдалении котельной. Кроме того она обладала системой регулировки осей от фирмы PROELL. Благодаря этим факторам машина получила в 1959 году статус исторического памятника и стала музейной. К сожалению, все фабричные корпуса и корпус котельной были снесены в 1992 году. Этот машинный зал — единственное, что осталось от бывшей прядильной фабрики.

43. Волшебная эстетика паровой эры!

44. Шильдик на корпусе системы регулировки осей от фирмы PROELL. Система регулировала отсечку — количество пара, которое впускается в цилиндр. Больше отсечка — больше экономичность, но меньше мощность.

45. Приборы.

46. По своей конструкции данная машина является паровой машиной многократного расширения (или как их еще называют компаунд-машиной). В машинах этого типа пар последовательно расширяется в нескольких цилиндрах возрастающего объёма, переходя из цилиндра в цилиндр, что позволяет значительно повысить коэфициент полезного действия двигателя. Эта машина имеет три цилиндра: в центре кадра находится цилиндр высокого давления — именно в него подавался свежий пар из котельной, затем после цикла расширения, пар перепускался в цилиндр среднего давления, что расположен справа от цилиндра высокого давления.

47. Совершив работу, пар из цилиндра среднего давления перемещался в цилиндр низкого давления, который вы видите на этом снимке, после чего, совершив последнее расширение, выпускался наружу по отдельной трубе. Таким образом достигалось наиболее полное использование энергии пара.

48. Стационарная мощность этой установки составляла 400-450 л.с., максимальная 600 л.с.

49. Гаечный коюч для ремонта и обслуживания машины впечатляет размерами. Под ним канаты, при помощи которых вращательное движения передавалось с маховика машины на трансмиссию, соединенную с прядильными станками.

50. Безупречная эстетика Belle Époque в каждом винтике.

51. На этом снимке можно детально рассмотреть устройство машины. Расширяющийся в цилиндре пар передавал энергию на поршень, который в свою очередь осуществлял поступательное движение, передавая его на кривошипно-ползунный механизм, в котором оно трансформировалось во вращательное и передавалось на маховик и дальше на трансмиссию.

52. В прошлом с паровой машиной также был соединен генератор электрического тока, который тоже сохранился в прекрасном оригинальном состоянии.

53. В прошлом генератор находился на этом месте.

54. Механизм для передачи крутящего момента с маховика на генератор.

55. Сейчас на месте генератора установлен электродвигатель, при помощи которого несколько дней в году паровую машину приводят в движение на потеху публике. В музее каждый год проводятся «Дни пара» — мероприятие, объединяющее любителей и моделистов паровых машин. В эти дни паровая машина тоже приводится в движение.

56. Оригинальный генератор постоянного тока стоит теперь в сторонке. В прошлом он использовался для выработки электричества для освещения фабрики.

57. Произведен фирмой «Elektrotechnische & Maschinenfabrik Ernst Walther» в Вердау в 1899 году, если верить инфотабличке, но на оригинальном шильдике стоит год 1901.

58. Так как я был единственным посетителем музея в тот день, никто не мешал мне наслаждаться эстетикой этого места один-на-один c машиной. К тому же отсутствие людей способстовало получению хороших фотографий.

59. Теперь пару слов о трансмиссии. Как видно на этом снимке, поверхность маховика обладает 12 канавками для канатов, при помощи которых вращательное движение маховика передавалось дальше на элементы трансмиссии.

60. Трансмиссия, состоящая из колес различного диаметра, соединенных валами, распределяла вращательное движение на несколько этажей фабричного корпуса, на которых распологались прядильные станки, работающие от энергии, переданной при помощи трансмиссии от паровой машины.

61. Маховик с канавками для канатов крупным планом.

62. Тут хорошо видны элементы трансмиссии, при помощи которых крутящий момент передавался на вал, проходящий под землей и передающий вращательное движение в прилегающий к машинному залу корпус фабрики, в котором располагались станки.

63. К сожалению, фабричное здание не сохранилось и за дверью, что вела в соседний корпус, теперь лишь пустота.

64. Отдельно стоит отметить щит управления электрооборудованием, который сам по себе является произведением искусства.

65. Мраморная доска в красивой деревянной рамке с расположенной на ней рядами рычажков и предохранителей, роскошный фонарь, стильные приборы — Belle Époque во всей красе.

66. Два огромных предохранителя, расположенные между фонарем и приборами впечатляют.

67. Предохранители, рычажки, регуляторы — все оборудование эстетически привлекательно. Видно, что при создании этого щита о внешнем виде заботились далеко не в последнюю очередь.

68. Под каждым рычажком и предохранителем расположена «пуговка» с надписью, что этот рычажок включает/выключает.

69. Великолепие техники периода «прекрасной эпохи «.

70. В завершении рассказа вернемся к машине и насладимся восхитительной гармонией и эстетикой ее деталей.

71. Вентили управления отдельными узлами машины.

72. Капельные масленки, предназначенные для смазки движущихся узлов и агрегатов машины.

73. Этот прибор называется пресс-масленка. От движущейся части машины приводятся в движение червяки, перемещающие поршень масленки, а он нагнетает масло к трущимся поверхностям. После того, как поршень дойдет до мертвой точки, его вращением ручки поднимают назад и цикл повторяется.

74. До чего же красиво! Чистый восторг!

75. Цилиндры машины с колонками впускных клапанов.

76. Еще масленки.

77. Эстетика стимпанка в классическом виде.

78. Распределительный вал машины, регулирующий подачу пара в цилиндры.

79.

80.

81. Все это очень очень красиво! Я получил огромный заряд вдохновения и радостных эмоций во время посещения этого машинного зала.

82. Если вас вдруг судьба занесет в регион Цвикау, посетите обязательно этот музей, не пожалеете. Сайт музея и его координаты: 50°43″58″N 12°22″25″E

Паровая машина за всю свою историю имела много вариаций воплощения в металл. Одним из таких воплощений — был паровой роторный двигатель инженера-механика Н.Н. Тверского. Этот паровой роторный двигатель (паровая машина) активно эксплуатировался в различных областях техники и транспорт. В русской технической традиции 19-го века такой роторный двигатель назывался — коловратная машина. Двигатель отличался долговечностью, эффективностью и высоким крутящим моментом. Но с появлением паровых турбин был забыт. Ниже представлены архивные материалы, поднятые автором этого сайта. Материалы весьма обширны, поэтому пока здесь представлена только часть их.

Пробная прокрутка сжатым воздухом (3,5 атм) парового роторного двигателя.
Модель расчитана на 10 кВт мощности при 1500 об/мин на давлении пара в 28-30 атм.

В конце 19-го века паровые двигатели — «коловратные машины Н.Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении паровых турбин справдливо лишь в их больших массо-габаритных размерах. Действительно — при мощности болше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у паровых турбин есть другой недостаток. При масштабировании их массо-габаритных парамеров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются. Именно поэтому — в области мощностей менее 1,5 тыс. кВт (1,5 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины» — роторные паровые двигатели. А между тем — эти паровые машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают средней частотой вращения главного вала на полных оборотах от 1000 до 3000 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (автомобиля- грузовика, трактора, тягача) — не будут требовать редуктора, счепления и проч., а будут своим валом на прямую содиняться с динамо-машиной, колесами парового автомобиля и проч.
Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр и др.
Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилицации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизирыется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 3.5 — 5 кВт (зависит от давления в пара), если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей. Т.е вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

Но, кроме средних и относительно крупных паросиловых установок, паросиловые схемы с малыми паровыми роторными двигателями будут востребованы и в малых силовых установках.
Например- одно из моих изобретений- «Походно-туристический электрогенератор на местном твердом топливе».
Ниже представлено видео, где испытывается упрощенный прототип такого устройства.
Но маленький паровой двигатель уже весело и энергично крутит свой электрогенератор и на дровах и прочем подножном топливе выдает электроэнергию.

Основное направление коммерческого и технического применения паровых роторных двигателей (коловратных паровых машин) — это выработка дешевого электричества на дешевом твердом топливе и горючих отходах. Т.е. малая энергетика- распределенная электрогенерация на паровых роторных двигателях. Представьте, как будет отлично вписываться роторный паровой двигатель в схему работы лесопилки- пилорамы, где нибудь на Русском Севере или в Сибири (Дальнем Востоке) где нет центрального электроснабжения, электричество дает задорого дизель-генератор на привозной издалека солярке. Зато сама лесопилка производит в день минимум полтонны щепы- опилок — горбыля, который девать некуда…

Таким древесным отходам — прямая дорога в топку котла, котел дает пар высокого давления, пар приводит в действие роторный паровой двигатель и тот крутит электрогенератор.

Точно так же можно сжигать безграничные по объемам миллионы тонн пожнивных отходов сельского хозяйства и проч. А есть еще дешевый торф, дешевый энергетический уголь и проч. Автор сайта посчитал, что затраты на топливо при выработке электричества через малую паросиловую установку (паровую машину) с паровым роторным двигателем мощностью в 500 кВт будут от 0,8 до 1,

2 рубля за киловатт.

Еще интересный вариант применения парового роторного двигателя — это установка такой паровой машины на паровой автомобиль. Грузовик — тягач паровой автомобиль, с мощным крутящим моментом и применяющий дешевое твердое топливо — очень нужная паровая машина в сельском хозяйстве и в лесной отрасли. При применении современных технологий и материалов, а так же использование в термодинамическом цикле «Органичесокго цикла Ренкина» позволят довести эффективный КПД до 26-28% на дешевом твердом топливе (или недорогом жидком, типа «печного топлива» или отработанного машинного масла). Т.е. грузовик — тягач с паровой машиной

и мощностью роторного парового двигателя около 100 кВт, будет расходовать на 100 км около 25-28 кг энергетического угля (стоимость 5-6 руб за кг) или около 40-45 кг щепы- опилок (цена которых на Севере- забирай даром)…

Есть еще много интересных и перспективных областей применения роторного парового двигателя, но размеры этой странички не позволяют все их подробно рассмотреть. В итоге- паровая машина может занять еще очень заметное место во многих областях современной техники и во многих отраслях народного хозяйства.

ЗАПУСКИ ОПЫТНОЙ МОДЕЛИ ПАРОСИЛОВОГО ЭЛЕКТРОГЕНЕРАТОРА С ПАРОВЫМ ДВИГАТЕЛЕМ

Май -2018г. После длительных экспериментов и опытных образцов сделан малый котел высокого давления. Котел опрессован на 80 атм давления, так что будет держать рабочее давление в 40-60 атм без затруднений. Запущен в работу с опытной моделью парового аксиально-поршневого двигателя моей конструкции. Работает прекрасно- смотри видео. За 12-14 минут от розжига на дровах готов давать пар высокого давления.

Сейчас я начинаю готовиться к штучному производству таких установок- котел высокого давления, паровой двигатель (роторный или аксиально-поршневой), конденсатор. Установки будут работать по замкнутой схеме с оборотом «вода- пар- конденсат».

Спрос на такие генераторы весьма большой, ибо 60% теорритории России не имеют центрального электроснабжения и сидят на дизельгенерации. А цена солярки все время растет и уже достигла 41-42 руб за литр. Да и там где электричество есть- энергокомпании тарифы все поднимают, а за подключение новых мощностей требуют больших денег.

Наткнулся на интересную статью в интернете.

«Американский изобретатель Роберт Грин разработал абсолютно новую технологию, генерирующую кинетическую энергию путем преобразования остаточной энергии (как и других видов топлива). Паровые двигатели Грина усилены поршнем и сконструированы для широкого спектра практических целей. «
Вот так, ни больше ни меньше: абсолютно новая технология. Ну естественно стал смотреть, пытался вникнуть. Везде написано, одним из наиболее уникальных преимуществ этого двигателя является способность генерировать энергию из остаточной энергии двигателей. Точнее говоря, остаточная выхлопная энергия двигателя может быть преобразована для энергии, идущей к насосам и охлаждающим системам агрегата. Ну и что из этого, как я понял выхлопными газами доводить воду до кипения и потом преобразовывать пар в движение. Насколько это необходимо и малозатратно, ведь… хоть этот двигатель, как пишут, и специально разработан из минимального количества деталей, но все таки он сколько то да и стоит и есть ли вообще смысл огород городить, тем более принципиально нового в этом изобретении я не вижу. А механизмов преобразования возвратно-поступательного движения во вращательное уже придумано очень много. На сайте автора двухцилинровая модель продаестя, в принципе не дорого
всего 46 долларов.
На сайте автора есть видео с использованием солнечной энергии, так же есть фото где некто на лодке использует этот двигатель.
Но в обоих случаях это явно не остаточное тепло. Короче я сомневаюсь в надежности такого двигателя: «Шаровые же опоры одновременно являются полыми каналами, по которым в цилиндры подаётся пар.» А каково ваше мнение, уважаемые пользователи сайта?
Статьи на русском

В представлении большинства людей века смартфонов автомобили на паровой тяге – это нечто архаическое, что вызывает улыбку. Паровые страницы истории автомобилестроения были очень яркими и без них трудно представить современный транспорт вообще. Как ни старались скептики от законотворчества, а также нефтяные лоббисты разных стран ограничить развитие автомобиля на пару, им это удавалось лишь на время. Ведь паровой автомобиль подобен Сфинксу. Идея автомобиля на пару (т. е. на двигателе наружного сгорания) актуальна и по сей день.

В представлении большинства людей века смартфонов автомобили на паровой тяге – это нечто архаическое, что вызывает улыбку.

Так в 1865 году в Англии ввели запрет на передвижение скоростных самоходных карет на паровом ходу. Им запрещалось передвигаться быстрее 3 км/ч по городу и не выпускать клубы пара, дабы не пугать лошадей, запряжённых в обычные экипажи. Самым серьёзным и ощутимым ударом по паровым грузовым автомобилям уже в 1933 году нанёс закон о налоге на тяжёлые транспортные средства. И только в 1934 году, когда были снижены пошлины на импорт нефтепродуктов, замаячила на горизонте победа бензиновых и дизельных двигателей над паровыми.

Так изысканно и хладнокровно издеваться над прогрессом могли себе позволить только в Англии. В США, Франции, Италии среда изобретателей-энтузиастов буквально бурлила идеями, а паровой автомобиль приобретал новые очертания и характеристики. Хотя английские изобретали внесли весомый вклад в развитие парового автотранспорта, законы и предубеждения властей не позволяли им полноценно участвовать в схватке с ДВС. Но давайте обо всём по порядку.

Доисторическая справка

История развития парового автомобиля неразрывно связана с историей возникновения и совершенствования паровой машины. Когда в I веке н. э. Герон из Александрии предложил свою идею заставить пар вращать металлический шар, к его идее отнеслись не более, чем к забаве. То ли другие идеи в большей степени волновали изобретателей, но первым, кто поставил паровой котёл на колёса был монах Фердинанд Вербст. В 1672 году. К его «игрушке» тоже отнеслись как к забаве. Но следующие сорок лет не прошли даром для истории парового двигателя.

Проект самодвижущегося экипажа Исаака Ньютона (1680), пожарный аппарат механика Томаса Севери (1698) и атмосферная установка Томаса Ньюкомена (1712) продемонстрировали огромный потенциал использования пара для совершения механической работы. Сначала паровые машины откачивали воду из шахт и поднимали грузы, но к середине 18 века на предприятиях Англии таких паровых установок уже было несколько сотен.

Что же собой представляет паровой двигатель? Как может пар двигать колёса? Принцип паровой машины прост. Вода нагревается в закрытом резервуаре до состояния пара. Пар отводится по трубкам в закрытый цилиндр и выдавливает поршень. Через промежуточный шатун это поступательное движение передаётся на вал маховика.

Эта принципиальная схема работы парового котла на практике имела существенные недостатки.

Первая порция пара клубами вырывалась наружу, а остывший поршень под собственным весом опускался вниз для следующего такта. Эта принципиальная схема работы парового котла на практике имела существенные недостатки. Отсутствие системы регулирования давлением пара нередко приводила к взрыву котла. Для доведения котла до рабочего состояния требовалось немало времени и топлива. Постоянная дозаправка и гигантские размеры паровой установки лишь увеличивали перечень её недостатков.

Новую машину в 1765 году предложил Джеймс Уатт. Он направил выдавливаемый поршнем пар в дополнительную камеру для конденсации и избавил от необходимости постоянно подливать воду в котёл. Наконец, в 1784 году он разрешил задачу, как перераспределить движение пара таким образом, чтобы он толкал поршень в обоих направлениях. Благодаря созданному им золотнику, паровая машина могла работать без перерывов между тактами. Этот принцип теплового двигателя двойного действия и лёг в основу большинства паровой техники.

Над созданием паровых машин трудились много умных людей. Ведь это простой и дешёвый способ получения энергии практически из ничего.

Небольшой экскурс в историю автомобилей на паровой тяге

Однако, как ни грандиозны были успехи англичан в области , первым, кто поставил паровую машина на колёса, был француз Николя Жозеф Кюньо.

Первый паровой автомобиль Кюньо

Его автомобиль появился на дорогах в 1765 году. Скорость передвижения коляски была рекордной — 9,5 км/ч. В нём изобретатель предусмотрел четыре места для пассажиров, которых можно было прокатить с ветерком на средней скорости 3,5 км/ч. Этого успеха изобретателю показалось недостаточно.

Необходимость остановки для заправки водой и разжигание нового костра через каждый километр пути не были существенным минусом, а лишь уровнем техники того времени.

Он решился на изобретение тягача для пушек. Так на свет появилась трёхколёсная повозка с массивным котлом впереди. Необходимость остановки для заправки водой и разжигание нового костра через каждый километр пути не были существенным минусом, а лишь уровнем техники того времени.

Следующая модель Кюньо образца 1770 года имела вес около полутора тонн. Новая телега могла транспортировать порядка двух тонн груза со скоростью 7 км/ч.

Маэстро Кюньо больше занимала идея создания парового двигателя высокого давления. Его даже не смущал тот факт, что котёл мог взорваться. Именно Кюньо придумал расположить топку под котлом и возить «костёр» с собой. Кроме того, его «телега» может по праву быть названа первым грузовиком. Отставка покровителя и череда революций не дали возможности мастеру развить модель до полноценной грузовой машины.

Самоучка Оливер Эванс и его амфибия

Идея создания паровых машин имела вселенские масштабы. В североамериканских штатах изобретатель Оливер Эванс создал около пятидесяти паровых установок на базе машины Уатта. Стараясь уменьшить габариты установки Джеймса Уатта, он конструировал паровые машины для мукомольных фабрик. Однако всемирную славу Оливер Эванс приобрёл за свой паровой автомобиль-амфибию. В 1789 году его первый автомобиль в США успешно прошёл сухопутное и водное испытания.

На свою амфибию, которую можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Девятиметровый автомобиль-лодка имел вес около 15 тонн. Паровая машина приводила в движение задние колёса и гребной винт. Кстати говоря, Оливер Эванс тоже был сторонником создания парового двигателя высокого давления. На свою амфибию, которую можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Если бы у изобретателей 18-19 веков были под рукой технологии 21 века, вы представляете, сколько техники они бы придумали!? И какой техники!

XX век и 204 км/ч на паровом автомобиле Стэнли

Да! 18 век дал мощный толчок к развитию парового транспорта. Многочисленные и разнообразные конструкции самоходных паровых повозок стали всё чаще разбавлять гужевой транспорт на дорогах Европы и Америки. К началу XX века автомобили на паровой тяге существенно распространились и стали привычным символом своего времени. Как и фотография.

18 век дал мощный толчок к развитию парового транспорта

Именно свою фотографическую компанию продали братья Стэнли, когда в 1897 году решили всерьёз заняться производством паровых авто в США. Они создавали хорошо продаваемые паромобили. Но этого им было недостаточно для удовлетворения своих амбициозных планов. Ведь они были всего лишь одни из многих таких же автопроизводителей. Так было до тех пор, пока они не сконструировали свою «ракету».

Именно свою фотографическую компанию продали братья Стэнли, когда в 1897 году решили всерьёз заняться производством паровых авто в США.

Конечно, автомобили Стэнли имели славу надёжного автомобиля. Паровой агрегат располагался сзади, а бойлер разогревался при помощи факелов бензина или керосина. Маховик парового двухцилиндрового мотора двойного действия вращение на заднюю ось посредством цепной передачи. Случаев взрывов котла у Стэнли Стимер не было. Но им нужен был фурор.

Конечно, автомобили Стэнли имели славу надёжного автомобиля.

Своей «ракетой» они произвели фурор на весь мир. 205,4 км/ч в 1906 году! Так быстро ещё не ездил никто! Авто с ДВС побил этот рекорд только 5 лет спустя. Фанерная паровая «Ракета» Стэнли определила форму гоночных авто на многие годы вперёд. Но после 1917 года Стенли Стимер всё тяжелее переживал конкуренцию дешёвого Форд Т и ушёл в отставку.

Уникальные паромобили братьев Добл

Этому знаменитому семейству удалось оказывать достойное сопротивление бензиновым моторам аж до начала 30-х годов XX века. Они не собирали машины для рекордов. Братья поистине любили свои паромобили. Иначе, чем ещё объяснить изобретённые ими сотовый радиатор и кнопку зажигания? Их модели не были похожи на малые паровозы.

Братья Абнер и Джон сделали революцию в паровом транспорте.

Братья Абнер и Джон сделали революцию в паровом транспорте. Чтобы сдвинуться с места, его машину не требовалось разогревать 10–20 минут. Кнопка зажигания нагнетала керосин из карбюратора в камеру сгорания. Он попадал туда после розжига запальной свечой. Вода нагревалась за считанные секунды, а через минуту-полторы пар создавал необходимое давление и можно было ехать.

Отработанный пар направлялся в радиатор для конденсации и подготовки к последующим циклам. Поэтому для плавного пробега на 2000 км автомобилям Доблов требовалось всего девяносто литров воды в системе и несколько литров керосина. Такой экономичности не мог предложить никто! Возможно, именно на автосалоне в Детройте в 1917 году Стэнли познакомились с моделью братьев Добл и начали сворачивать своё производство.

Модель Е стала самым роскошным автомобилем второй половины 20-х и самой последней версией паромобиля Доблов. Кожаный салон, полированные элементы из дерева и кости слона радовали состоятельных владельцев внутри автомобиля. В таком салоне можно было наслаждаться пробегом на скорости до 160 км/ч. Всего 25 секунд отделяли момент зажигание от момента старта. Ещё 10 секунд требовалось, чтобы автомобиль массой в 1,2 т разогнался до 120 км/ч!

Все эти скоростные качества были заложены в четырёхцилиндровом моторе. Два поршня выталкивались паром под высоким давлением в 140 атмосфер, а два других отправляли остывший пар низкого давления в сотовый конденсатор-радиатор. Но в первой половине 30-х годов и эти красавцы братьев Добл перестали выпускаться.

Паровые грузовые машины

Однако не стоит забывать, что паровая тяга бурно развивалась и на грузовом транспорте. Это в городах паровые автомобили вызывали аллергию у снобов. А ведь грузы должны доставляться в любую погоду и не только по городу. А междугородние автобусы и военная техника? Там легковыми малолитражками не отделаешься.

Грузовой транспорт имеет одно значительное преимущество перед легковым – это его габариты.

Грузовой транспорт имеет одно значительное преимущество перед легковым – это его габариты. Именно они позволяют разместить мощные силовые установки в любом месте автомобиля. Причём она только увеличит грузоподъёмность и проходимость. А как будет выглядеть грузовик – на это не всегда обращали внимание.

Среди паровых грузовых машин хочется выделить английский Сэнтинэл и советский НАМИ. Конечно, были и многие другие, например, Фоден, Фаулер, Йоркшир. Но именно Сэнтинэл и НАМИ оказались самыми живучими и выпускались до конца 50-х годов прошлого века. Они могли работать на любом твёрдом топливе – угле, дровах, торфе. «Всеядность» этих грузовиков на пару ставило их вне влияния цен на нефтепродукты, а также позволяло использовать их в труднодоступных местах.

Трудяга Сэнтинэл с английским акцентом

Эти два грузовика отличаются не только страной производителя. Принципы расположения парогенераторов тоже были разные. Для Сэнтинэлов характерны верхнее и нижнее расположение паровых машин относительно котла. При верхнем расположении парогенератор подавал горячий пар непосредственно в камеру двигателя, который был связан с мостами системой карданных валов. При нижнем расположении парового двигателя, т. е. на шасси, котёл разогревал воду и подавал пар в двигатель по трубкам, что гарантировало потери температуры.

Для Сэнтинэлов характерны верхнее и нижнее расположение паровых машин относительно котла.

Наличие цепной передачи от маховика паровой машины на карданы было типичным для обоих типах. Это позволило конструкторам унифицировать выпуск Сэнтинэлов в зависимости от заказчика. Для жарких стран, таких как Индия, выпускали паровые грузовики с нижним, разделённым расположением котла и двигателя. Для стран с холодными зимами – с верхним, совмещённым типом.

Для жарких стран, таких как Индия, выпускали паровые грузовики с нижним, разделённым расположением котла и двигателя.

На этих грузовиках применяли множество проверенных технологий. Золотники и клапаны распределения пара, двигатели простого и двойного действия, с высоким или низким давлением, с или без КПП. Однако, это не продлили жизнь английским паровым грузовикам. Хоть они и выпускались до конца 50-х годов XX века и даже состояли на воинской службе до и во время 2-й мировой войны, они всё же были громоздкими и чем-то напоминали паровозы. А так как в их кардинальной модернизации не было заинтересованных особ, то их участь была предрешена.

Хоть они и выпускались до конца 50-х годов XX века и даже состояли на воинской службе до и во время 2-й мировой войны, они всё же были громоздкими и чем-то напоминали паровозы.

Кому что, а нам – НАМИ

Чтобы поднять разрушенную войной экономику советского союза, нужно было найти способ не тратить ресурсы нефти, хотя бы в труднодоступных местах – на севере страны и в Сибири. Советским инженерам была предоставлена возможность изучить конструкцию Сэнтинэла с верхним расположением четырёхцилиндровой паровой машины прямого действия и разработать свой «ответ Чемберлену».

В 30-х годах российские институты и конструкторские бюро предпринимали неоднократные попытки создания альтернативного грузовика для лесной промышленности.

В 30-х годах российские институты и конструкторские бюро предпринимали неоднократные попытки создания альтернативного грузовика для лесной промышленности. Но каждый раз дело останавливалось на стадии испытаний. Используя собственный опыт и возможность изучения трофейных паромобилей, инженерам удалось убедить руководство страны в необходимости такого грузовика-паровика. Тем более что бензин стоил в 24 раза дороже угля. А со стоимостью дров в тайге вообще можно не упоминать.

Группа конструкторов под руководством Ю. Шебалина максимально упростили парового агрегата в целом. Они совместили четырёхцилиндровый двигатель и котёл в один агрегат и расположили его между кузовом и кабиной. Поставили эту установку на шасси серийного ЯАЗ (МАЗ)-200. Работа пара и его конденсация были совмещены в замкнутом цикле. Подача дровяных чушек из бункера осуществлялась автоматически.

Так появился на свет, вернее на лесном бездорожье, НАМИ-012. Очевидно, принцип бункерной подачи твёрдого топлива и расположение паровой машины на грузовом автомобиле был заимствован из практики газогенераторных установок.

Судьба хозяина лесов – НАМИ-012

Характеристики парового отечественного бортового грузовика и лесовоза НАМИ-012 были такие

  • Грузоподъёмность – 6 тонн
  • Скорость – 45 км/ч
  • Дальность пробега без дозаправки топлива – 80 км, если была возможность обновить запас воды, то 150 км
  • Крутящий момент на малых оборотах – 240 кгм, что превышало почти в 5 раз показатели базового ЯАЗ-200
  • Котёл с естественной циркуляцией создавал давление в 25 атмосфер и доводил пар до температуры 420°С
  • Пополнять запасы воды возможно было непосредственно из водоёма через эжекторы
  • Цельнометаллическая кабина не имела капот и была выдвинута вперёд
  • Скорость регулировалась объёмом пара в двигателе при помощи рычага подачи/отсечки. С его помощью цилиндры наполнялись на 25/40/75%.
  • Одна задняя передача и три педаль управления.

Серьёзными недостатками парового грузовика были расход 400 кг дров на 100 км пути и необходимость в мороз избавляться от воды в котле.

Серьёзными недостатками парового грузовика были расход 400 кг дров на 100 км пути и необходимость в мороз избавляться от воды в котле. Но основным минусом, который присутствовал у первого образца, была плохая проходимость в незагруженном состоянии. Тогда получалось, что передняя ось была перегружена кабиной и паровым агрегатом, по сравнению с задней. С этой задачей справились, установив модернизированную паросильную установку на полноприводный ЯАЗ-214. Теперь и мощность лесовоза НАМИ-018 была доведена до 125 лошадиных сил.

Но, не успев распространиться по стране, парогенераторные грузовики были все утилизированы во второй половине 50-х годов прошлого века.

Но, не успев распространиться по стране, парогенераторные грузовики были все утилизированы во второй половине 50-х годов прошлого века. Впрочем, вместе с газогенераторными. Потому что стоимость переделки автомобилей, экономический эффект и удобство эксплуатации были трудоёмки и сомнительны, по сравнению с бензиновыми и дизельными грузовиками. Тем более что к этому времени в Советском Союзе уже налаживалась добыча нефти.

Скоростной и доступный современный паровой автомобиль

Не стоит думать, что идея автомобиля на паровой тяге забыта навсегда. Сейчас проявляется значительный рост интереса к двигателям, альтернативным ДВС на бензине и дизтопливе. Мировые запасы нефти не безграничны. Да, и стоимость нефтепродуктов постоянно увеличивается. Конструкторы так старались усовершенствовать ДВС, что их идеи почти достигли своего лимита.

Электромобили, авто на водороде, газогенераторные и паромобили вновь стали актуальными темами. Здравствуй, забытый 19 век!

Сейчас проявляется значительный рост интереса к двигателям, альтернативным ДВС на бензине и дизтопливе.

Британский инженер (опять Англия!) продемонстрировал новые возможности парового двигателя. Он создал свой Inspuration не только для демонстрации актуальности автомобилей паровой тяге. Его детище сделано для рекордов. 274 км/ч – такова скорость, которую разгоняют двенадцать котлов, установленных на 7,6 метровый болиде. Всего 40 литров воды достаточно, чтобы сжиженный газ буквально за миг довёл температуру пара до 400°С. Подумать только, истории понадобилось 103 года, чтобы побить рекорд скорости автомобиля на паровой тяге, установленный «Ракетой»!

В современном парогенераторе можно использовать уголь в виде порошка или другое дешёвое топливо, например, мазут, сжиженный газ. Именно поэтому паровые автомобили всегда были и будут популярны.

Но чтобы настало экологически чистое будущее, опять необходимо преодолевать сопротивление нефтяных лоббистов.

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

На анимированной иллюстрации приведен принцип работы парового двигателя.


Для генерации подаваемого на двигатель пара использовались котлы, работающие как на дровах и угле, так и на жидком топливе.

Первый такт

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.

Выпуск

В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

Второй такт

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.

Выпуск

В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно.

Цикл повторяется заново.

Паровой двигатель имеет т.н. мертвую точку в конце каждого хода, когда клапан переходит от такта расширения к выпуску. По этой причине каждый паровой двигатель имеет два цилиндра, что позволяет запускать двигатель из любого положения.

Паровой роторный двигатель Тверского — коловратная паровая машина. Паровой двигатель Паровой механизм

Осмотр музейной экспозиции я пропущу и перейду сразу к машинному залу. Кому интересно, тот может найти полную версию поста у меня в жж. Машинный зал находится в этом здании:

29. Зайдя внутрь, у меня сперло дыхание от восторга — внутри зала была самая красивая паровая машина из всех, что мне доводилось видеть. Это был настоящий храм стимпанка — сакральное место для всех адептов эстетики паровой эры. Я был поражен увиденным и понял, что совершенно не зря заехал в этот городок и посетил этот музей.

30. Помимо огромной паровой машины, являющейся главным музейным объектом, тут также были представлены различные образцы паровых машин поменьше, а на многочисленных инфостендах рассказывалась история паровой техники. На этом снимке вы видите полностью функционирующую паровую машину, мощностью 12 л.с.

31. Рука для масштаба. Машина была создана в 1920 году.

32. Рядом с главным музейным экземпляром экспонируется компрессор 1940 года выпуска.

33. Этот компрессор в прошлом использовался в железнодорожных мастерских вокзала Вердау.

34. Ну а теперь рассмотрим детальней центральный экспонат музейной экспозиции — паровую 600-сильную машину 1899 года выпуска, которой и будет посвящена вторая половина этого поста.

35. Паровая машина является символом индустриальной революции, произошедшей в Европе в конце 18-го — начала 19-го века. Хотя первые образцы паровых машин создавались различными изобретателями еще в начале 18-го века, но все они были непригодны для промышленного использования так как обладали рядом недостатков. Массовое применение паровых машин в индустрии стало возможным лишь после того, как шотландский изобретатель Джеймс Уатт усовершенствовал механизм паровой машины, сделав ее легкой в управлении, безопасной и в пять раз мощней существовавших до этого образцов.

36. Джеймс Уатт запатентовал свое изобретение в 1775 году и уже в 1880-х годах его паровые машины начинают проникать на предприятия, став катализатором индустриальной революции. Произошло это прежде всего потому, что Джеймсу Уатту удалось создать механизм преобразования поступательного движения паровой машины во вращательное. Все существовавшие до этого паровые машины могли производить лишь поступательные движения и использоваться только лишь в качестве насосов. А изобретение Уатта уже могло вращать колесо мельницы или привод фабричных станков.

37. В 1800 году фирма Уатта и его компаньона Болтона произвела 496 паровых машин из которых лишь 164 использовались в качестве насосов. А уже в 1810 году в Англии насчитывалось 5 тысяч паровых машин, и это число в ближайшие 15 лет утроилось. В 1790 году между Филадельфией и Берлингтоном в США стала курсировать первая паровая лодка, перевозившая до тридцати пассажиров, а в 1804 году Ричард Тревинтик построил первый действующий паровой локомотив. Началась эра паровых машин, которая продлилась весь девятнадцатый век, а на железной дороге и первую половину двадцатого.

38. Это была краткая историческая справка, теперь вернемся к главному объекту музейной экспозиции. Паровая машина, которую вы видите на снимках, была произведена фирмой Zwikauer Maschinenfabrik AG в 1899 году и установлена в машинном зале прядильной фабрики «C.F.Schmelzer und Sohn». Паровая машина предназначалась для привода прядильных станков и в этой роли использовалась вплоть до 1941 года.

39. Шикарный шильдик. В то время индустриальная техника делалась с большим вниманием к эстетическому виду и стилю, была важна не только функциональность, но и красота, что отражено в каждой детали этой машины. В начале ХХ века некрасивую технику просто никто бы не купил.

40. Прядильная фабрика «C.F.Schmelzer und Sohn» была основана в 1820 году на месте теперешнего музея. Уже в 1841 году на фабрике была установлена первая паровая машина, мощностью 8 л.с. для привода прядильных машин, которая в 1899 году была заменена новой более мощной и современной.

41. Фабрика просуществовала до 1941 года, затем производство было остановлено в связи с началом войны. Все сорок два года машина использовалась по назначению, в качестве привода прядильных станков, а после окончания войны в 1945 — 1951 годы служила в качестве резервного источника электроэнергии, после чего была окончательно списана с баланса предприятия.

42. Как и многих ее собратьев, машину ждал бы распил, если бы не один фактор. Данная машина являлась первой паровой машиной Германии, которая получала пар по трубам от расположенной в отдалении котельной. Кроме того она обладала системой регулировки осей от фирмы PROELL. Благодаря этим факторам машина получила в 1959 году статус исторического памятника и стала музейной. К сожалению, все фабричные корпуса и корпус котельной были снесены в 1992 году. Этот машинный зал — единственное, что осталось от бывшей прядильной фабрики.

43. Волшебная эстетика паровой эры!

44. Шильдик на корпусе системы регулировки осей от фирмы PROELL. Система регулировала отсечку — количество пара, которое впускается в цилиндр. Больше отсечка — больше экономичность, но меньше мощность.

45. Приборы.

46. По своей конструкции данная машина является паровой машиной многократного расширения (или как их еще называют компаунд-машиной). В машинах этого типа пар последовательно расширяется в нескольких цилиндрах возрастающего объёма, переходя из цилиндра в цилиндр, что позволяет значительно повысить коэфициент полезного действия двигателя. Эта машина имеет три цилиндра: в центре кадра находится цилиндр высокого давления — именно в него подавался свежий пар из котельной, затем после цикла расширения, пар перепускался в цилиндр среднего давления, что расположен справа от цилиндра высокого давления.

47. Совершив работу, пар из цилиндра среднего давления перемещался в цилиндр низкого давления, который вы видите на этом снимке, после чего, совершив последнее расширение, выпускался наружу по отдельной трубе. Таким образом достигалось наиболее полное использование энергии пара.

48. Стационарная мощность этой установки составляла 400-450 л.с., максимальная 600 л.с.

49. Гаечный коюч для ремонта и обслуживания машины впечатляет размерами. Под ним канаты, при помощи которых вращательное движения передавалось с маховика машины на трансмиссию, соединенную с прядильными станками.

50. Безупречная эстетика Belle Époque в каждом винтике.

51. На этом снимке можно детально рассмотреть устройство машины. Расширяющийся в цилиндре пар передавал энергию на поршень, который в свою очередь осуществлял поступательное движение, передавая его на кривошипно-ползунный механизм, в котором оно трансформировалось во вращательное и передавалось на маховик и дальше на трансмиссию.

52. В прошлом с паровой машиной также был соединен генератор электрического тока, который тоже сохранился в прекрасном оригинальном состоянии.

53. В прошлом генератор находился на этом месте.

54. Механизм для передачи крутящего момента с маховика на генератор.

55. Сейчас на месте генератора установлен электродвигатель, при помощи которого несколько дней в году паровую машину приводят в движение на потеху публике. В музее каждый год проводятся «Дни пара» — мероприятие, объединяющее любителей и моделистов паровых машин. В эти дни паровая машина тоже приводится в движение.

56. Оригинальный генератор постоянного тока стоит теперь в сторонке. В прошлом он использовался для выработки электричества для освещения фабрики.

57. Произведен фирмой «Elektrotechnische & Maschinenfabrik Ernst Walther» в Вердау в 1899 году, если верить инфотабличке, но на оригинальном шильдике стоит год 1901.

58. Так как я был единственным посетителем музея в тот день, никто не мешал мне наслаждаться эстетикой этого места один-на-один c машиной. К тому же отсутствие людей способстовало получению хороших фотографий.

59. Теперь пару слов о трансмиссии. Как видно на этом снимке, поверхность маховика обладает 12 канавками для канатов, при помощи которых вращательное движение маховика передавалось дальше на элементы трансмиссии.

60. Трансмиссия, состоящая из колес различного диаметра, соединенных валами, распределяла вращательное движение на несколько этажей фабричного корпуса, на которых распологались прядильные станки, работающие от энергии, переданной при помощи трансмиссии от паровой машины.

61. Маховик с канавками для канатов крупным планом.

62. Тут хорошо видны элементы трансмиссии, при помощи которых крутящий момент передавался на вал, проходящий под землей и передающий вращательное движение в прилегающий к машинному залу корпус фабрики, в котором располагались станки.

63. К сожалению, фабричное здание не сохранилось и за дверью, что вела в соседний корпус, теперь лишь пустота.

64. Отдельно стоит отметить щит управления электрооборудованием, который сам по себе является произведением искусства.

65. Мраморная доска в красивой деревянной рамке с расположенной на ней рядами рычажков и предохранителей, роскошный фонарь, стильные приборы — Belle Époque во всей красе.

66. Два огромных предохранителя, расположенные между фонарем и приборами впечатляют.

67. Предохранители, рычажки, регуляторы — все оборудование эстетически привлекательно. Видно, что при создании этого щита о внешнем виде заботились далеко не в последнюю очередь.

68. Под каждым рычажком и предохранителем расположена «пуговка» с надписью, что этот рычажок включает/выключает.

69. Великолепие техники периода «прекрасной эпохи «.

70. В завершении рассказа вернемся к машине и насладимся восхитительной гармонией и эстетикой ее деталей.

71. Вентили управления отдельными узлами машины.

72. Капельные масленки, предназначенные для смазки движущихся узлов и агрегатов машины.

73. Этот прибор называется пресс-масленка. От движущейся части машины приводятся в движение червяки, перемещающие поршень масленки, а он нагнетает масло к трущимся поверхностям. После того, как поршень дойдет до мертвой точки, его вращением ручки поднимают назад и цикл повторяется.

74. До чего же красиво! Чистый восторг!

75. Цилиндры машины с колонками впускных клапанов.

76. Еще масленки.

77. Эстетика стимпанка в классическом виде.

78. Распределительный вал машины, регулирующий подачу пара в цилиндры.

79.

80.

81. Все это очень очень красиво! Я получил огромный заряд вдохновения и радостных эмоций во время посещения этого машинного зала.

82. Если вас вдруг судьба занесет в регион Цвикау, посетите обязательно этот музей, не пожалеете. Сайт музея и его координаты: 50°43″58″N 12°22″25″E

В представлении большинства людей века смартфонов автомобили на паровой тяге – это нечто архаическое, что вызывает улыбку. Паровые страницы истории автомобилестроения были очень яркими и без них трудно представить современный транспорт вообще. Как ни старались скептики от законотворчества, а также нефтяные лоббисты разных стран ограничить развитие автомобиля на пару, им это удавалось лишь на время. Ведь паровой автомобиль подобен Сфинксу. Идея автомобиля на пару (т. е. на двигателе наружного сгорания) актуальна и по сей день.

В представлении большинства людей века смартфонов автомобили на паровой тяге – это нечто архаическое, что вызывает улыбку.

Так в 1865 году в Англии ввели запрет на передвижение скоростных самоходных карет на паровом ходу. Им запрещалось передвигаться быстрее 3 км/ч по городу и не выпускать клубы пара, дабы не пугать лошадей, запряжённых в обычные экипажи. Самым серьёзным и ощутимым ударом по паровым грузовым автомобилям уже в 1933 году нанёс закон о налоге на тяжёлые транспортные средства. И только в 1934 году, когда были снижены пошлины на импорт нефтепродуктов, замаячила на горизонте победа бензиновых и дизельных двигателей над паровыми.

Так изысканно и хладнокровно издеваться над прогрессом могли себе позволить только в Англии. В США, Франции, Италии среда изобретателей-энтузиастов буквально бурлила идеями, а паровой автомобиль приобретал новые очертания и характеристики. Хотя английские изобретали внесли весомый вклад в развитие парового автотранспорта, законы и предубеждения властей не позволяли им полноценно участвовать в схватке с ДВС. Но давайте обо всём по порядку.

Доисторическая справка

История развития парового автомобиля неразрывно связана с историей возникновения и совершенствования паровой машины. Когда в I веке н. э. Герон из Александрии предложил свою идею заставить пар вращать металлический шар, к его идее отнеслись не более, чем к забаве. То ли другие идеи в большей степени волновали изобретателей, но первым, кто поставил паровой котёл на колёса был монах Фердинанд Вербст. В 1672 году. К его «игрушке» тоже отнеслись как к забаве. Но следующие сорок лет не прошли даром для истории парового двигателя.

Проект самодвижущегося экипажа Исаака Ньютона (1680), пожарный аппарат механика Томаса Севери (1698) и атмосферная установка Томаса Ньюкомена (1712) продемонстрировали огромный потенциал использования пара для совершения механической работы. Сначала паровые машины откачивали воду из шахт и поднимали грузы, но к середине 18 века на предприятиях Англии таких паровых установок уже было несколько сотен.

Что же собой представляет паровой двигатель? Как может пар двигать колёса? Принцип паровой машины прост. Вода нагревается в закрытом резервуаре до состояния пара. Пар отводится по трубкам в закрытый цилиндр и выдавливает поршень. Через промежуточный шатун это поступательное движение передаётся на вал маховика.

Эта принципиальная схема работы парового котла на практике имела существенные недостатки.

Первая порция пара клубами вырывалась наружу, а остывший поршень под собственным весом опускался вниз для следующего такта. Эта принципиальная схема работы парового котла на практике имела существенные недостатки. Отсутствие системы регулирования давлением пара нередко приводила к взрыву котла. Для доведения котла до рабочего состояния требовалось немало времени и топлива. Постоянная дозаправка и гигантские размеры паровой установки лишь увеличивали перечень её недостатков.

Новую машину в 1765 году предложил Джеймс Уатт. Он направил выдавливаемый поршнем пар в дополнительную камеру для конденсации и избавил от необходимости постоянно подливать воду в котёл. Наконец, в 1784 году он разрешил задачу, как перераспределить движение пара таким образом, чтобы он толкал поршень в обоих направлениях. Благодаря созданному им золотнику, паровая машина могла работать без перерывов между тактами. Этот принцип теплового двигателя двойного действия и лёг в основу большинства паровой техники.

Над созданием паровых машин трудились много умных людей. Ведь это простой и дешёвый способ получения энергии практически из ничего.

Небольшой экскурс в историю автомобилей на паровой тяге

Однако, как ни грандиозны были успехи англичан в области , первым, кто поставил паровую машина на колёса, был француз Николя Жозеф Кюньо.

Первый паровой автомобиль Кюньо

Его автомобиль появился на дорогах в 1765 году. Скорость передвижения коляски была рекордной — 9,5 км/ч. В нём изобретатель предусмотрел четыре места для пассажиров, которых можно было прокатить с ветерком на средней скорости 3,5 км/ч. Этого успеха изобретателю показалось недостаточно.

Необходимость остановки для заправки водой и разжигание нового костра через каждый километр пути не были существенным минусом, а лишь уровнем техники того времени.

Он решился на изобретение тягача для пушек. Так на свет появилась трёхколёсная повозка с массивным котлом впереди. Необходимость остановки для заправки водой и разжигание нового костра через каждый километр пути не были существенным минусом, а лишь уровнем техники того времени.

Следующая модель Кюньо образца 1770 года имела вес около полутора тонн. Новая телега могла транспортировать порядка двух тонн груза со скоростью 7 км/ч.

Маэстро Кюньо больше занимала идея создания парового двигателя высокого давления. Его даже не смущал тот факт, что котёл мог взорваться. Именно Кюньо придумал расположить топку под котлом и возить «костёр» с собой. Кроме того, его «телега» может по праву быть названа первым грузовиком. Отставка покровителя и череда революций не дали возможности мастеру развить модель до полноценной грузовой машины.

Самоучка Оливер Эванс и его амфибия

Идея создания паровых машин имела вселенские масштабы. В североамериканских штатах изобретатель Оливер Эванс создал около пятидесяти паровых установок на базе машины Уатта. Стараясь уменьшить габариты установки Джеймса Уатта, он конструировал паровые машины для мукомольных фабрик. Однако всемирную славу Оливер Эванс приобрёл за свой паровой автомобиль-амфибию. В 1789 году его первый автомобиль в США успешно прошёл сухопутное и водное испытания.

На свою амфибию, которую можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Девятиметровый автомобиль-лодка имел вес около 15 тонн. Паровая машина приводила в движение задние колёса и гребной винт. Кстати говоря, Оливер Эванс тоже был сторонником создания парового двигателя высокого давления. На свою амфибию, которую можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Если бы у изобретателей 18-19 веков были под рукой технологии 21 века, вы представляете, сколько техники они бы придумали!? И какой техники!

XX век и 204 км/ч на паровом автомобиле Стэнли

Да! 18 век дал мощный толчок к развитию парового транспорта. Многочисленные и разнообразные конструкции самоходных паровых повозок стали всё чаще разбавлять гужевой транспорт на дорогах Европы и Америки. К началу XX века автомобили на паровой тяге существенно распространились и стали привычным символом своего времени. Как и фотография.

18 век дал мощный толчок к развитию парового транспорта

Именно свою фотографическую компанию продали братья Стэнли, когда в 1897 году решили всерьёз заняться производством паровых авто в США. Они создавали хорошо продаваемые паромобили. Но этого им было недостаточно для удовлетворения своих амбициозных планов. Ведь они были всего лишь одни из многих таких же автопроизводителей. Так было до тех пор, пока они не сконструировали свою «ракету».

Именно свою фотографическую компанию продали братья Стэнли, когда в 1897 году решили всерьёз заняться производством паровых авто в США.

Конечно, автомобили Стэнли имели славу надёжного автомобиля. Паровой агрегат располагался сзади, а бойлер разогревался при помощи факелов бензина или керосина. Маховик парового двухцилиндрового мотора двойного действия вращение на заднюю ось посредством цепной передачи. Случаев взрывов котла у Стэнли Стимер не было. Но им нужен был фурор.

Конечно, автомобили Стэнли имели славу надёжного автомобиля.

Своей «ракетой» они произвели фурор на весь мир. 205,4 км/ч в 1906 году! Так быстро ещё не ездил никто! Авто с ДВС побил этот рекорд только 5 лет спустя. Фанерная паровая «Ракета» Стэнли определила форму гоночных авто на многие годы вперёд. Но после 1917 года Стенли Стимер всё тяжелее переживал конкуренцию дешёвого Форд Т и ушёл в отставку.

Уникальные паромобили братьев Добл

Этому знаменитому семейству удалось оказывать достойное сопротивление бензиновым моторам аж до начала 30-х годов XX века. Они не собирали машины для рекордов. Братья поистине любили свои паромобили. Иначе, чем ещё объяснить изобретённые ими сотовый радиатор и кнопку зажигания? Их модели не были похожи на малые паровозы.

Братья Абнер и Джон сделали революцию в паровом транспорте.

Братья Абнер и Джон сделали революцию в паровом транспорте. Чтобы сдвинуться с места, его машину не требовалось разогревать 10–20 минут. Кнопка зажигания нагнетала керосин из карбюратора в камеру сгорания. Он попадал туда после розжига запальной свечой. Вода нагревалась за считанные секунды, а через минуту-полторы пар создавал необходимое давление и можно было ехать.

Отработанный пар направлялся в радиатор для конденсации и подготовки к последующим циклам. Поэтому для плавного пробега на 2000 км автомобилям Доблов требовалось всего девяносто литров воды в системе и несколько литров керосина. Такой экономичности не мог предложить никто! Возможно, именно на автосалоне в Детройте в 1917 году Стэнли познакомились с моделью братьев Добл и начали сворачивать своё производство.

Модель Е стала самым роскошным автомобилем второй половины 20-х и самой последней версией паромобиля Доблов. Кожаный салон, полированные элементы из дерева и кости слона радовали состоятельных владельцев внутри автомобиля. В таком салоне можно было наслаждаться пробегом на скорости до 160 км/ч. Всего 25 секунд отделяли момент зажигание от момента старта. Ещё 10 секунд требовалось, чтобы автомобиль массой в 1,2 т разогнался до 120 км/ч!

Все эти скоростные качества были заложены в четырёхцилиндровом моторе. Два поршня выталкивались паром под высоким давлением в 140 атмосфер, а два других отправляли остывший пар низкого давления в сотовый конденсатор-радиатор. Но в первой половине 30-х годов и эти красавцы братьев Добл перестали выпускаться.

Паровые грузовые машины

Однако не стоит забывать, что паровая тяга бурно развивалась и на грузовом транспорте. Это в городах паровые автомобили вызывали аллергию у снобов. А ведь грузы должны доставляться в любую погоду и не только по городу. А междугородние автобусы и военная техника? Там легковыми малолитражками не отделаешься.

Грузовой транспорт имеет одно значительное преимущество перед легковым – это его габариты.

Грузовой транспорт имеет одно значительное преимущество перед легковым – это его габариты. Именно они позволяют разместить мощные силовые установки в любом месте автомобиля. Причём она только увеличит грузоподъёмность и проходимость. А как будет выглядеть грузовик – на это не всегда обращали внимание.

Среди паровых грузовых машин хочется выделить английский Сэнтинэл и советский НАМИ. Конечно, были и многие другие, например, Фоден, Фаулер, Йоркшир. Но именно Сэнтинэл и НАМИ оказались самыми живучими и выпускались до конца 50-х годов прошлого века. Они могли работать на любом твёрдом топливе – угле, дровах, торфе. «Всеядность» этих грузовиков на пару ставило их вне влияния цен на нефтепродукты, а также позволяло использовать их в труднодоступных местах.

Трудяга Сэнтинэл с английским акцентом

Эти два грузовика отличаются не только страной производителя. Принципы расположения парогенераторов тоже были разные. Для Сэнтинэлов характерны верхнее и нижнее расположение паровых машин относительно котла. При верхнем расположении парогенератор подавал горячий пар непосредственно в камеру двигателя, который был связан с мостами системой карданных валов. При нижнем расположении парового двигателя, т. е. на шасси, котёл разогревал воду и подавал пар в двигатель по трубкам, что гарантировало потери температуры.

Для Сэнтинэлов характерны верхнее и нижнее расположение паровых машин относительно котла.

Наличие цепной передачи от маховика паровой машины на карданы было типичным для обоих типах. Это позволило конструкторам унифицировать выпуск Сэнтинэлов в зависимости от заказчика. Для жарких стран, таких как Индия, выпускали паровые грузовики с нижним, разделённым расположением котла и двигателя. Для стран с холодными зимами – с верхним, совмещённым типом.

Для жарких стран, таких как Индия, выпускали паровые грузовики с нижним, разделённым расположением котла и двигателя.

На этих грузовиках применяли множество проверенных технологий. Золотники и клапаны распределения пара, двигатели простого и двойного действия, с высоким или низким давлением, с или без КПП. Однако, это не продлили жизнь английским паровым грузовикам. Хоть они и выпускались до конца 50-х годов XX века и даже состояли на воинской службе до и во время 2-й мировой войны, они всё же были громоздкими и чем-то напоминали паровозы. А так как в их кардинальной модернизации не было заинтересованных особ, то их участь была предрешена.

Хоть они и выпускались до конца 50-х годов XX века и даже состояли на воинской службе до и во время 2-й мировой войны, они всё же были громоздкими и чем-то напоминали паровозы.

Кому что, а нам – НАМИ

Чтобы поднять разрушенную войной экономику советского союза, нужно было найти способ не тратить ресурсы нефти, хотя бы в труднодоступных местах – на севере страны и в Сибири. Советским инженерам была предоставлена возможность изучить конструкцию Сэнтинэла с верхним расположением четырёхцилиндровой паровой машины прямого действия и разработать свой «ответ Чемберлену».

В 30-х годах российские институты и конструкторские бюро предпринимали неоднократные попытки создания альтернативного грузовика для лесной промышленности.

В 30-х годах российские институты и конструкторские бюро предпринимали неоднократные попытки создания альтернативного грузовика для лесной промышленности. Но каждый раз дело останавливалось на стадии испытаний. Используя собственный опыт и возможность изучения трофейных паромобилей, инженерам удалось убедить руководство страны в необходимости такого грузовика-паровика. Тем более что бензин стоил в 24 раза дороже угля. А со стоимостью дров в тайге вообще можно не упоминать.

Группа конструкторов под руководством Ю. Шебалина максимально упростили парового агрегата в целом. Они совместили четырёхцилиндровый двигатель и котёл в один агрегат и расположили его между кузовом и кабиной. Поставили эту установку на шасси серийного ЯАЗ (МАЗ)-200. Работа пара и его конденсация были совмещены в замкнутом цикле. Подача дровяных чушек из бункера осуществлялась автоматически.

Так появился на свет, вернее на лесном бездорожье, НАМИ-012. Очевидно, принцип бункерной подачи твёрдого топлива и расположение паровой машины на грузовом автомобиле был заимствован из практики газогенераторных установок.

Судьба хозяина лесов – НАМИ-012

Характеристики парового отечественного бортового грузовика и лесовоза НАМИ-012 были такие

  • Грузоподъёмность – 6 тонн
  • Скорость – 45 км/ч
  • Дальность пробега без дозаправки топлива – 80 км, если была возможность обновить запас воды, то 150 км
  • Крутящий момент на малых оборотах – 240 кгм, что превышало почти в 5 раз показатели базового ЯАЗ-200
  • Котёл с естественной циркуляцией создавал давление в 25 атмосфер и доводил пар до температуры 420°С
  • Пополнять запасы воды возможно было непосредственно из водоёма через эжекторы
  • Цельнометаллическая кабина не имела капот и была выдвинута вперёд
  • Скорость регулировалась объёмом пара в двигателе при помощи рычага подачи/отсечки. С его помощью цилиндры наполнялись на 25/40/75%.
  • Одна задняя передача и три педаль управления.

Серьёзными недостатками парового грузовика были расход 400 кг дров на 100 км пути и необходимость в мороз избавляться от воды в котле.

Серьёзными недостатками парового грузовика были расход 400 кг дров на 100 км пути и необходимость в мороз избавляться от воды в котле. Но основным минусом, который присутствовал у первого образца, была плохая проходимость в незагруженном состоянии. Тогда получалось, что передняя ось была перегружена кабиной и паровым агрегатом, по сравнению с задней. С этой задачей справились, установив модернизированную паросильную установку на полноприводный ЯАЗ-214. Теперь и мощность лесовоза НАМИ-018 была доведена до 125 лошадиных сил.

Но, не успев распространиться по стране, парогенераторные грузовики были все утилизированы во второй половине 50-х годов прошлого века.

Но, не успев распространиться по стране, парогенераторные грузовики были все утилизированы во второй половине 50-х годов прошлого века. Впрочем, вместе с газогенераторными. Потому что стоимость переделки автомобилей, экономический эффект и удобство эксплуатации были трудоёмки и сомнительны, по сравнению с бензиновыми и дизельными грузовиками. Тем более что к этому времени в Советском Союзе уже налаживалась добыча нефти.

Скоростной и доступный современный паровой автомобиль

Не стоит думать, что идея автомобиля на паровой тяге забыта навсегда. Сейчас проявляется значительный рост интереса к двигателям, альтернативным ДВС на бензине и дизтопливе. Мировые запасы нефти не безграничны. Да, и стоимость нефтепродуктов постоянно увеличивается. Конструкторы так старались усовершенствовать ДВС, что их идеи почти достигли своего лимита.

Электромобили, авто на водороде, газогенераторные и паромобили вновь стали актуальными темами. Здравствуй, забытый 19 век!

Сейчас проявляется значительный рост интереса к двигателям, альтернативным ДВС на бензине и дизтопливе.

Британский инженер (опять Англия!) продемонстрировал новые возможности парового двигателя. Он создал свой Inspuration не только для демонстрации актуальности автомобилей паровой тяге. Его детище сделано для рекордов. 274 км/ч – такова скорость, которую разгоняют двенадцать котлов, установленных на 7,6 метровый болиде. Всего 40 литров воды достаточно, чтобы сжиженный газ буквально за миг довёл температуру пара до 400°С. Подумать только, истории понадобилось 103 года, чтобы побить рекорд скорости автомобиля на паровой тяге, установленный «Ракетой»!

В современном парогенераторе можно использовать уголь в виде порошка или другое дешёвое топливо, например, мазут, сжиженный газ. Именно поэтому паровые автомобили всегда были и будут популярны.

Но чтобы настало экологически чистое будущее, опять необходимо преодолевать сопротивление нефтяных лоббистов.

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

На анимированной иллюстрации приведен принцип работы парового двигателя.


Для генерации подаваемого на двигатель пара использовались котлы, работающие как на дровах и угле, так и на жидком топливе.

Первый такт

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.

Выпуск

В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

Второй такт

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.

Выпуск

В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно.

Цикл повторяется заново.

Паровой двигатель имеет т.н. мертвую точку в конце каждого хода, когда клапан переходит от такта расширения к выпуску. По этой причине каждый паровой двигатель имеет два цилиндра, что позволяет запускать двигатель из любого положения.

Статья опубликована 19.05.2014 05:36 Последняя правка произведена 19.05.2014 05:58

О истории развития парового двигателя, достаточно подробно описано в этой статье . Тут же — наиболее известные решения и изобретения времен 1672-1891 года.

Первые наработки.

Начнем с того, что еще в семнадцатом веке пар стали рассматривать как средство для привода, проводили с ним всяческие опыты, и лишь только в 1643 году Эванджелистом Торричелли было открыто силовое действие давления пара. Кристиан Гюйгенс через 47 лет спроектировал первую силовую машину, приводившуюся в действие взрывом пороха в цилиндре. Это был первый прототип двигателя внутреннего сгорания. На аналогичном принципе устроена водозаборная машина аббата Отфея. Вскоре Дени Папен решил заменить силу взрыва на менее мощную силу пара. В 1690 году им была построена первая паровая машина , известная также как паровой котел.

Она состояла из поршня, который с помощью кипящей воды перемещался в цилиндре вверх и за счет последующего охлаждения снова опускался – так создавалось усилие. Весь процесс происходил таким образом: под цилиндром, который выполнял одновременно и функцию кипятильного котла, размещали печь; при нахождении поршня в верхнем положении печь отодвигалась для облегчения охлаждения.

Позже два англичанина, Томас Ньюкомен и Коули – один кузнец, другой стекольщик, – усовершенствовали систему путем разделения кипятильного котла и цилиндра и добавления бака с холодной водой. Эта система функционировала с помощью клапанов или кранов – одного для пара и одного для воды, которые поочередно открывались и закрывались. Затем англичанин Бэйтон перестроил клапанное управление в подлинно тактовое.

Применение паровых машин на практике.

Машина Ньюкомена вскоре стала известна повсюду и, в частности, была усовершенствована, разработанной Джеймсом Уаттом в 1765 году системой двойного действия. Теперь паровая машина оказалась достаточно завершенной для использования в транспортных средствах, хотя из-за своих размеров лучше подходила для стационарных установок. Уатт предложил свои изобретения и в промышленности; он построил также машины для текстильных фабрик.

Первая паровая машина, используемая в качестве средства передвижения, был изобретена французом Николя Жозефом Куньо, инженером и военным стратегпм-любителем. В 1763 или 1765 году он создал автомобиль, который мог перевозить четырех пассажиров при средней скорости 3,5 и максимальной – 9,5 км/час. За первой попыткой последовала вторая – появился автомобиль для транспортировки орудий. Испытывался он, естественно, военными, но из-за невозможности продолжительной эксплуатации (непрерывный цикл работы новой машины не превышал 15 минут) изобретатель не получил поддержки властей и финансистов. Между тем в Англии совершенствовалась паровая машина. После нескольких безуспешных, базировавшихся на машине Уаттa попыток Мура, Вильяма Мердока и Вильяма Саймингтона, появилось рельсовое транспортное средство Ричарда Тревисика, созданное по заказу Уэльской угольной шахты. В мир пришел активный изобретатель: из подземных шахт он поднялся на землю и в 1802 году представил человечеству мощный легковой автомобиль, достигавший скорости 15 км/час на ровной местности и 6 км/час на подъеме.

Превью — увеличение по клику.

Приводимые в движение паром транспортные средства все чаще использовались и в США: Натан Рид в 1790 году удивил жителей Филадельфии своей моделью парового автомобиля . Однако еще больше прославился его соотечественник Оливер Эванс, который спустя четырнадцать лет изобрел автомобиль-амфибию. После наполеоновских войн, во время которых «автомобильные эксперименты» не проводились, вновь началась работа над изобретением и усовершенствованием паровой машины . В 1821 году ее можно было считать совершенной и достаточно надежной. С тех пор каждый шаг вперед в сфере приводимых в движение паром транспортных средств определенно способствовал развитию будущих автомобилей.

В 1825 году сэр Голдсуорт Гарни на участке длиной 171 км от Лондона до Бата организовал первую пассажирскую линию. При этом он использовал запатентованную им карету, имевшую паровой двигатель. Это стало началом эпохи скоростных дорожных экипажей, которые, однако, исчезли в Англии, но получили широкое распространение в Италии и во Франции. Подобные транспортные средства достигли наивысшего развития с появлением в 1873 году «Реверанса» Амедэ Балле весом 4500 кг и «Манселя» – более компактного, весившего чуть более 2500 кг и достигавшего скорости 35 км/час. Оба были предвестниками той техники исполнения, которая стала характерной для первых «настоящих» автомобилей. Несмотря на большую скорость кпд паровой машины был очень маленький. Болле был тем, кто запатентовал первую хорошо действующую систему рулевого управления, он так удачно расположил управляющие и контрольные элементы, что мы и сегодня это видим на приборном щитке.

Превью — увеличение по клику.

Несмотря на грандиозный прогресс в области создания двигателя внутреннего сгорания, сила пара все еще обеспечивала более равномерный и плавный ход машины и, следовательно, имела много сторонников. Как и Болле, который построил и другие легкие автомобили, например Rapide в 1881 году со скоростью движения 60 км/час, Nouvelle в 1873 году, которая имела переднюю ось с независимой подвеской колес, Леон Шевроле в период между 1887 и 1907 годами запустил несколько автомобилей с легким и компактным парогенератором, запатентованным им в 1889 году. Компания De Dion-Bouton, основанная в Париже в 1883 году, первые десять лет своего существования производила автомобили с паровым двигателями и добилась при этом значительного успеха – ее автомобили выиграли гонки Париж-Руан в 1894 году.

Превью — увеличение по клику.

Успехи компании Panhard et Levassor в использовании бензина привели, однако, к тому, что и De Dion перешел на двигатели внутреннего сгорания. Когда братья Болле стали управлять компанией своего отца, они сделали то же самое. Затем и компания Chevrolet перестроила свое производство. Автомобили с паровыми двигателями все быстрее и быстрее исчезали с горизонта, хотя в США они использовались еще до 1930 года. На этом самом моменте и прекратилось производство и изобретение паровых машин

Интерес к водяному пару, как доступному источнику энергии, появился вместе с первыми научными познаниями древних. Приручить эту энергию люди пытались на протяжении трёх тысячелетий. Каковы основные этапы этого пути? Чьи размышления и проекты научили человечество извлекать из него максимальную пользу?

Предпосылки появления паровых двигателей

Потребность в механизмах, способных облегчить трудоёмкие процессы, существовала всегда. Примерно до середины XVIII века для этой цели использовались ветряные мельницы и водяные колеса. Возможность использования энергии ветра напрямую зависит от капризов погоды. А для использования водяных колёс фабрики приходилось строить по берегам рек, что не всегда удобно и целесообразно. Да и эффективность тех и других была чрезвычайно мала. Нужен был принципиально новый двигатель, легко управляемый и лишённый этих недостатков.

История изобретения и совершенствования паровых двигателей

Создание парового двигателя — результат долгих размышлений, удач и крушений надежд множества учёных.

Начало пути

Первые, единичные проекты были лишь интересными диковинками. Например, Архимед сконструировал паровую пушку, Герон Александрийский использовал энергию пара для открывания дверей античных храмов. А заметки о практическом применении энергии пара для приведения в действие иных механизмов исследователи находят в трудах Леонардо да Винчи.

Рассмотрим наиболее значительные проекты по этой тематике.

В XVI веке арабский инженер Таги аль Дин разработал проект примитивной паровой турбины. Однако практического применения она не получила из-за сильного рассеяния струи пара, подаваемой на лопасти колеса турбины.

Перенесемся в средневековую Францию. Физик и талантливый изобретатель Дени Папен после многих неудачных проектов останавливается на следующей конструкции: вертикальный цилиндр заполняли водой, над которой устанавливали поршень.

Цилиндр нагревали, вода закипала и испарялась. Расширяющийся пар приподнимал поршень. Его закрепляли в верхней точке подъёма и ожидали остывания цилиндра и конденсации пара. После конденсации пара в цилиндре образовывался вакуум. Освобожденный от крепления поршень под действием атмосферного давления устремлялся в вакуум. Именно это падение поршня предполагалось использовать как рабочий ход.

Итак, полезный ход поршня был вызван образованием вакуума из-за конденсации пара и внешним (атмосферным) давлением.

Потому паровой двигатель Папена как и большинство последующих проектов получили название пароатмосферных машин.

Эта конструкция обладала весьма существенным недостатком — не была предусмотрена повторяемость цикла. Дени приходит к идее получать пар не в цилиндре, а отдельно в паровом котле.

В историю создания паровых двигателей Дени Папен вошел как изобретатель весьма важной детали — парового котла.

А поскольку пар стали получать вне цилиндра, сам двигатель перешел в разряд двигателей внешнего сгорания. Но из-за отсутствия распределительного механизма, обеспечивающего бесперебойную работу, эти проекты почти не нашли практического применения.

Новый этап в разработке паровых двигателей

Около 50 лет для откачки воды в угольных шахтах использовался паровой насос Томаса Ньюкомена. Он во многом повторял предыдущие конструкции, но содержал весьма важные новинки — трубу для вывода сконденсированного пара и предохранительный клапан для выпуска излишнего пара.

Его существенным минусом было то, что цилиндр приходилось то нагревать перед впрыскиванием пара, то охлаждать перед его конденсацией. Но потребность в таких двигателях была столь высока, что, несмотря на их очевидную неэкономичность, последние экземпляры этих машин прослужили вплоть до 1930 года.

В 1765 году английский механик Джеймс Уатт, занявшись усовершенствованием машины Ньюкомена, отделил конденсатор от парового цилиндра.

Появилась возможность цилиндр держать постоянно нагретым. КПД машины сразу вырос. В последующие годы Уатт значительно усовершенствует свою модель, оснастив её устройством для подачи пара то с одной, то с другой стороны.

Стало возможным использовать эту машину не только как насос, но и для приведения в действие различных станков. Уатт получил патент на свое изобретение — паровой двигатель непрерывного действия. Начинается массовый выпуск этих машин.

К началу XIX века в Англии работало более 320 паровых машин Уатта. Их стали закупать и другие европейские страны. Это способствовало значительному росту промышленного производства во многих отраслях как самой Англии, так соседних государств.

Двадцатью годами ранее Уатта, в России над проектом паровой машины работал алтайский механик Иван Иванович Ползунов.

Заводское начальство предложило ему построить агрегат, который приводил бы в действие воздуходувку плавильной печи.

Построенная им машина была двухцилиндровой и обеспечивала непрерывное действие подсоединённого к ней устройства.

Успешно проработав более полутора месяцев, котёл дал течь. Самого Ползунова к этому времени уже не было в живых. Ремонтировать машину не стали. И замечательное творение русского изобретателя-одиночки было забыто.

В силу отсталости России того времени мир узнал об изобретении И. И. Ползунова с большим опозданием….

Итак, для приведения в действие паровой машины необходимо, чтобы пар, вырабатываемый паровым котлом, расширяясь, давил на поршень или на лопасти турбины. А затем их движение передавалось другим механическим частям.

Применение паровых машин на транспорте

Несмотря на то, что КПД паровых двигателей того времени не превышал 5%, к концу XVIII века их стали активно использовать в сельском хозяйстве и на транспорте:

  • во Франции появляется автомобиль с паровым двигателем;
  • в США начинает курсировать пароход между городами Филадельфия и Берлингтон;
  • в Англии продемонстрирован железнодорожный локомотив на паровой тяге;
  • российский крестьянин из Саратовской губернии запатентовал построенный им гусеничный трактор мощностью 20 л. с.;
  • неоднократно предпринимались попытки построить самолёт с паровым двигателем, но, к сожалению, малая мощность этих агрегатов при большом весе самолёта делала эти попытки неудачными.

Уже к концу XIX столетия паровые двигатели, сыграв свою роль в техническом прогрессе общества, уступают место и электродвигателям.

Паровые устройства в XXI веке

С появлением новых источников энергии в XX и XXI веке снова появляется потребность в использовании энергии пара. Паровые турбины становятся неотъемлемой частью АЭС. Пар, приводящий их в действие, получают за счёт ядерного топлива.

Широко используются эти турбины и на конденсационных тепловых электростанциях.

В ряде стран проводятся эксперименты по получению пара за счёт солнечной энергии.

Не забыты и поршневые паровые двигатели. В горных местностях в качестве локомотива до сих пор используют паровозы.

Эти надёжные труженики и безопаснее, и дешевле. Линии электропередач им не нужны, а топливо — древесина и дешёвые сорта угля всегда под рукой.

Современные технологии позволяют улавливать до 95% выбросов в атмосферу и повысить КПД до 21%, так, что люди решили пока с ними не расставаться и работают над паровыми локомотивами нового поколения.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Коловратный двигатель с концентричным барабаном — PatentDB.ru

Коловратный двигатель с концентричным барабаном

Иллюстрации

Показать все

Реферат

 

I 4г

» с.

Класс 14.Ь а . .:

:1 № 2098

ПАТЕНТ НА ИЗОБРЕТЕНИЕ

ОПИСАНИЕ коловратного двигателя с концентричным барабаном.

К патенту Н. ф. Синявина, заявленному 3 июня 1925 года (ваяв. свид. № 3276).

0 выдаче патента опубликовано 81 декабря 1926 года. Действие патента распространяется на 16 лет от 81 декабря 1926 года.

ПРЕДМЕТ ПЛТЕНТЛ

Типо-жпогра4ия «Краевый Печагипи», Ленппград, Ыеждународный, 15.

Предлагаемый коловратный двига- j тель предназначается как для работы паром, так и газами, причем впослед- . нем случае его кожух снабжается во- дяной камерой.

На фиг. 1 изображен поперечный разрез двигателя, на фиг. 2 — его продольный разрез по CD фиг. 1.

Двигатель состоит из кожуха А (с крышками Б), внутри которого вращается барабан а с крышкой в. На барабане имеются две пазухи з, вос- принимающие рабочую среду. Последняя действует на уплотненные вкладышами с концы диаметральной попа- сти г. Лопасть снабжена в центре прорезом прямоугольного сечения, так что она обхватывает квадратную часть pa- бочего вала и, по которой лопасть мо- i жет скользить. при чем направляющими служат стенки кожуха А, снабженные выстчпами и.

Коловратный двигатель с концентричным барабаном, характеризующийся применением в барабане а двух пазух з, воспринимающих рабочу;о среду и заключающих уплотненные концы диаметральной лопасти г, снабженной в центре прямоугольного сечения прорезом, обхватывающим квадратную часть рабочего вала ъ., по которой лопасть может скользить, направляясь стенками кожуха А, снабженными выступами и.

  

cad.tverskogo Коловратная машина Тверского Николая Николаевича

Доклад Н.Н. Тверского. О результатах сравнительного испытания коловратных и прямолинейных машин.

– Милостивые государи! В 1883 году я докладывал вам о моей машине в 4 номинальные силы, предполагавшейся к постройке на Балтийском заводе для катера Государя Императора. Теперь я уже имею возможность сообщить о результате испытаний моих машин. Но для лучшего уяснения дела необходимо ознакомиться с коловратными машинами; а потому, не входя в подробности устройства оных, постараюсь вкратце восстановить в вашей памяти сказанное мною в 1883 г.

В 1973 г. РЛГ были сданы Госкомиссии бывшего Минстанкопрома СССР на рабочее давление 100 бар и максимальное – 140 бар. В 1974 г. Людиновским заводом поставлены промышленности гамма РЛГ серии ГМ (ГМ-16; ГМ-32; ГМ-80; ГМ-125) в количестве 90 шт для приводов станков с ЧПУ, роботов и других агрегатов (Савеловскому машзаводу, НИАТу, Ташкентскому авиазаводу, п/я А-7291, станкозаводу им. Орджоникидзе, ЛОЗГ г. Ленинград), которая успешно отработала в промышленности более 8-и лет.

Гидромоторы типа ГМ-80, ГМ-125 были использованы в электроприводах силовых органов робота, разработанного ОРГСТАНКИНПРОМа и изготовленных Дмитровским заводом Московской обл.

Следящие серводвигатели, выполненные на базе РЛГ типа ГМ-80, изготовленные ЛАЗом (г. Людиново, Калужской обл.) для ковочных машин типа РКМ, собранные на Рязанском станкозаводе, успешно заменили вышедшие из строя на п/я Г-4086 (г. Ижевск) ненадежные импортные сервоприводы.

За период с 1973 по 1999 гг. за счет конструктивных и технологических усовершенствований уровень рабочего давления отечественных РЛГ был повышен со 100 до 210 бар, при максимальном допустимом – 280 бар, даже на маслах малой вязкости типа ВМГ-3, АМГ-10 и МГЕ-10. Так, гидромашины типа ГМ-32, ГМ-80 и ГМ-125 Ковровским экспериментальным машзаводом (1994 г.) и ГосНИИАС (1980 г.) успешно работают в составе специальных высокодинамичных моделирующих установках (приводы курса и тангажа) в ГосНИИАС, а на гидромашинах РЛГ-1 и ГМ-16 достигнута максимальная частота вращения соответственно 30 000 и 11 000 мин-1.

Одна из отечественных моделирующих установок с 3-мя гидромоторами ГМ-32 (приводы курса и тангажа), поставленная Росвооружением России в одну из зарубежных стран мира, в настоящее время успешно эксплуатируется при давлении около 210 бар в комплекте с сервоклапаном 6Ц225 МКБ «Родина» на маловязком масле АМГ-10. При этом обеспечивается рабочий диапазон частот вращения более чем 2000:1.

17 гидронасосов типа ГМ-16, изготовленные Ковровским экспериментальным машзаводом, в течение трех лет надежно работают в тяжелых условиях (высокая запыленность, плохая фильтрация рабочей жидкости, высокие температуры) на ЗАО «Ковровский завод силикатного кирпича».

Двигатель переменного тока

| Основные схемы работы статора и ротора

Ротор двигателя переменного тока

До сих пор о роторе было сказано немногое. В предыдущих примерах предполагалось, что полюса ротора намотаны катушки, как и полюса статора, снабжены постоянным током для создания полюсов фиксированной полярности. Кстати, именно так синхронный двигатель переменного тока работает. Однако большинство двигателей переменного тока, используемых сегодня, не являются синхронными.Вместо этого используются так называемые «асинхронные» двигатели. рабочие лошадки индустрии. Так чем же отличается асинхронный двигатель? Большая разница заключается в том, как протекает ток. подается на ротор. Это не внешний источник питания. Как вы можете догадаться из названия двигателя, используется индукционная техника. вместо.

Индукция — еще одна характеристика магнетизма. Это естественное явление, которое возникает, когда проводник (алюминиевые стержни в случае ротора, см. рисунок 13), перемещается через существующее магнитное поле или когда магнитное поле проходит мимо проводника.В В любом случае, относительное движение двух вызывает электрический ток, протекающий в проводнике. Это называется «индуцированный» текущий поток. Другими словами, в асинхронном двигателе ток в роторе не вызывается каким-либо прямым подключением проводников к источнику напряжения, а скорее влияние проводников ротора, пересекающих линии магнитного потока, создаваемые магнитные поля статора.Индуцированный ток, который создается в роторе, приводит к возникновению магнитного поля вокруг ротора. проводников, как показано на рисунке 14. Это магнитное поле вокруг каждого проводника ротора заставляет каждый проводник ротора действовать как постоянный магнит в примере на Рисунке 9. Поскольку магнитное поле статора вращается, из-за эффекта трехфазного Источник питания переменного тока, индуцированное магнитное поле ротора притягивается и будет следовать за вращением.Ротор подключен к вал двигателя, поэтому вал вращается и приводит в движение соединительную нагрузку.

Как работает ротор асинхронного электродвигателя?

Индукция протекания тока через стержни ротора асинхронного электродвигателя возникает, когда ток подается на статор. Этот приложенный ток через обмотки статора запускает вращение магнитного поля статора с линейной частотой.

Стержни неподвижного ротора затем подвергаются максимальному относительному движению магнитного поля статора к стержням.В этот момент вдоль стержней генерируется максимальный ток. Когда северный полюс статора вращается мимо стержня ротора, ток индуцируется вдоль стержня ротора. В то же время южный полюс статора поворачивается через стержень на 180 ° и индуцирует ток вдоль стержня в противоположном направлении. Этот круговой поток тока вдоль стержней ротора через закорачивающие кольца и вокруг пластин заставляет ротор становиться электромагнитом.

Именно в этой начальной начальной точке (заблокированный ротор) электромагнитная сила ротора наиболее высока.Электромагнитный ротор начнет разгоняться до синхронной скорости или скорости, с которой вращается магнитное поле статора. По мере увеличения скорости ротора относительное движение между стержнями ротора и вращающимся магнитным полем уменьшается. Это приводит к уменьшению тока и крутящего момента. Когда относительное движение (вращающая сила) между стержнями ротора и магнитным полем статора приближается к нулю, ток вдоль ротора прекращается. Магнетизм ротора прекратится, и ротор замедлится до тех пор, пока крутящий момент, создаваемый двигателем, не станет равным крутящему моменту ведомого оборудования.(Нагрузка)

Если нагрузка двигателя увеличивается, скорость двигателя уменьшается. Уменьшите нагрузку, и двигатель увеличит скорость. Асинхронный двигатель никогда не достигнет синхронной скорости из-за потерь на трение и сопротивление воздуха. Разница между синхронной скоростью и скоростью асинхронного ротора называется частотой скольжения.

Тодд А. Хэтфилд, вице-президент по проектированию и ремонту

HECO — Все системы идут

269-381-7200

thatfield @ hecoinc.com

Об авторе:

Тодд Хэтфилд является совладельцем HECO и вице-президентом по проектированию и ремонту. Он имеет более чем 35-летний опыт работы в области ремонта и проектирования генераторов и электродвигателей. Тодд имеет степень бакалавра в области электротехники и специализируется в следующих областях: модернизация и проектирование электрических и механических двигателей, анализ первопричин отказов и качественное восстановление электродвигателей.

Восстановление и запуск ротора

Для большинства пользователей двигателей роторы двигателей с короткозамкнутым ротором являются простейшими и наиболее безотказными вращающимися электрическими элементами. Однако, как и любое машинное оборудование с движущимися частями, роторы могут выйти из строя. Однако роторы подлежат ремонту, и у вас есть несколько вариантов. Для большого двигателя ремонтная мастерская часто является вашим лучшим ресурсом, чтобы определить, вышел ли из строя ротор, как он вышел из строя, и для его ремонта.

Неисправность ротора

Любое изменение условий эксплуатации может снизить производительность, надежность и эффективность современных высокоэффективных двигателей и привести к отказу ротора.Роторы обычно выходят из строя по двум причинам:
• Чрезмерное количество пусков. В некоторых больших роторах с короткозамкнутым ротором срок службы ротора обратно пропорционален количеству пусков.
• Более продолжительное время пуска, чем рассчитано двигателем. Эта ситуация обычно возникает при запуске больших инерционных нагрузок.
• Большинство, но не все, отказы ротора вызваны поломкой стержней ротора, как правило: • Внутри пазовой части ротора.
• Где концевое кольцо (также известное как закорачивающее кольцо) соединяется с стержнем
.• Где стержень входит в ядро.

Эти разрывы вызваны сочетанием механических и электрических нагрузок, включая колебательные, маятниковые, термические и центробежные.

Например, одна комбинация этих напряжений может начинаться с термической. Ускорение нагрузки, особенно с большой инерцией, увеличивает температуру ротора. Повторные запуски еще больше увеличивают температуру, образуя пирамиду на вершине нормальной рабочей температуры.

Это тепло расширяет концевые кольца и нагружает выступающие части стержня так же, как консольная балка.Чем короче удлинение стержней и колец, тем больше растягивающие и сжимающие напряжения в нижнем и верхнем краях стержня — той области, где обычно происходят разрывы. Длинные удлинения уменьшают эти напряжения сжатия и растяжения, но увеличивают напряжения, которые могут привести к трещинам и поломкам стержней ротора.

Производители могут контролировать влияние некоторых из этих напряжений при проектировании двигателя. Например, изменение определенных параметров конструкции может контролировать влияние центробежных напряжений.Существуют материалы, достаточно прочные, чтобы противостоять силам пробоя. Однако дизайнеры должны сбалансировать усталостную прочность и долговечность материала с его электропроводностью. Высокопрочные материалы обычно обладают высоким удельным сопротивлением, что делает их плохим выбором для конструкции ротора.

Форма стержня также может использоваться для контроля воздействия некоторых из этих напряжений. Изменение формы стержня может распределить нагрузки и продлить срок службы ротора. Наиболее распространенными формами стержней являются прямоугольные, трапециевидные, перевернутые буквы «Т» и их комбинации.При изменении формы стержня инженеры должны поддерживать разумные пропорции между прорезью и зубом.

В поисках неисправности

Не существует надежного метода определения наличия сломанных стержней ротора в собранном двигателе . При возникновении сильной вибрации или других проблем с двигателем, скорее всего, вам понадобится ремонтная мастерская, чтобы провести полную проверку компонентов двигателя, чтобы определить проблему, особенно если двигатель большой. Ремонтная мастерская не только может диагностировать проблему, у многих есть оборудование для обширного ремонта, в том числе для изготовления новых ламинатов.

Ремонтной мастерской потребуется следующая информация при выходе из строя двигателя с короткозамкнутым ротором:
• Продолжительность службы и тип службы.
• Общее количество запусков и интервал между запусками.
• Кривая скорости крутящего момента нагрузки.
• Инерция нагрузки.
• Ожидаемое обслуживание в будущем.
• Паспорт статора.
• Данные паспортной таблички.

Ремонтный персонал снимет ротор с двигателя и либо визуально осмотрит стержни, либо с помощью красителя обнаружит трещины или разрывы на концах.Проверка окраски включает покрытие стержней ротора флуоресцентным красителем, который подчеркивает любые трещины или изломы.

Трещины в пазу стержня часто трудно обнаружить. В некоторых случаях, особенно если в прошлом существовала дуга, изменение цвета сердечника может быть основным признаком поломки стержня.

Способы ремонта

Найдя сломанные решетки, вы можете выбрать один из нескольких методов ремонта. Выбранный метод зависит от будущего использования двигателя.

1. Если на концах стержня есть разрыв, его можно отремонтировать пайкой. Пайка представляет собой недорогое временное решение, когда вам нужно продолжить работу, пока вы рассматриваете другие варианты. Этот метод подходит для нескольких треснувших стержней, но другие стержни могут устать и сломаться через короткое время.

2. Замените обычные медные шины на бескислородную или серебросодержащую медь. Этот материал придает большую пластичность и может увеличить срок службы стержня. Однако при изменении материала стержней новые стержни не будут иметь тех же размеров, что и старые стержни.Таким образом, использование пружинной конструкции будет удерживать стержни плотно в прорези, позволяя при этом свободное продольное перемещение для теплового расширения.

В этом методе замена торцевого кольца на материал, такой же или похожий на материал новых стержней, не является обязательной. Однако, если концевое кольцо не менять, могут быть различия в проводимости между двумя материалами. Эти различия могут потребовать дальнейшего изменения размера стержня, а также новых пластин, что является третьим вариантом.

3.Замените медные стержни на стержни из сплава, вставьте новые пластинки и сделайте новым стержням Т-образную форму перевернутой формы. Такие стержни выдерживают центробежные силы лучше, чем трапециевидная форма из-за плоской плоскости Т-образного сечения. T удерживает штангу на месте, а также помогает распределять центробежную силу. Трапециевидная форма может перемещаться вверх и вниз в прорезях.

В электрическом отношении эта конструкция дает те же характеристики, что и трапециевидная или полутрапециевидная балка, обеспечивая при этом прочную конструкцию зубьев и свободное продольное перемещение стержня.

Первый метод ремонта, вероятно, будет достаточным, если двигатель подходит к концу предполагаемого срока службы. Если двигатель входит в пиковый период, когда количество пусков увеличится или ожидается еще много лет эксплуатации, то второй или третий метод может быть более экономичным. Непрерывная пайка прутков по мере их поломки в сочетании с продолжительностью простоя двигателя может сделать второй или третий способ более экономичным вариантом.

После ремонта ротора и сборки двигателя внимательно проверьте центровку ротора.Изменение воздушного зазора в роторах с короткозамкнутым ротором влияет на КПД двигателя. Слишком маленький воздушный зазор увеличивает сопротивление ротора. Слишком большой воздушный зазор потребует снижения номинальных характеристик устройства.

Бинт Ниндра — технический менеджер компании National Electric Coil, Колумбус, Огайо.

Когда стержни ротора не проблема

Иногда сломанные стержни ротора являются причиной проблем, вызванных отказами других компонентов.Например, ротор двухполюсного двигателя, испытывающий сильную вибрацию, может указывать на более неуловимые проблемы.

В этом примере инженеры ремонтной мастерской сняли ротор с двигателя, чтобы проверить его. Сломанных стержней не было видно, поэтому ротор балансировался в открытой установке на полной скорости. Похоже, это решило проблему вибрации. Однако под нагрузкой вибрация вернулась, указывая на то, что проблема не была чисто механической.

Для проверки ротора инженеры использовали другие методы контроля, в том числе ультразвуковое.Эти методы дали показания, которые указывали на то, что проблема заключалась в сломанных полосах. Инженеры снова сняли ротор и проверили его на наличие трещин. Однако они подтвердили, что все стержни были целы и все соединения с концевыми кольцами в хорошем состоянии. Это оставило ламинированный сердечник как возможную причину неисправности.

Инженеры проверили состояние ламелей и вала и обнаружили зазор между ними. Этот зазор может быть причиной вибрации. Инженеры не смогли определить, является ли это производственным дефектом или результатом условий эксплуатации, хотя они обнаружили признаки фреттинг-коррозии на поверхности вала.

После этой проверки инженеры пришли к выводу, что проблема связана с температурой двигателя. Они пришли к выводу, что по мере проникновения тепла в ламинат ламинированный сердечник расширяется. Расширение в сочетании с центробежной силой привело к расшатыванию пластин на валу двигателя.

Изготовлены новые листы, уложены в оправку и нагреты. Затем пластинки надевали на вал, охлаждали и стягивали для надежной горячей посадки. Эта процедура аналогична процессу, выполняемому с большими двухполюсными двигателями, где сердечник хонингован для устранения всех заусенцев, нагревается и, наконец, усаживается на валу.

Связанная статья

Семинары по ремонту пружинных двигателей

Трехфазные асинхронные двигатели с фазным ротором



ЦЕЛИ

• Перечислите основные компоненты многофазного асинхронного двигателя с фазным ротором.

• Опишите, как развивается синхронная скорость в этом типе двигателя.

• Опишите, как регулятор скорости подключен к щеткам двигателя. обеспечивает регулируемый диапазон скорости двигателя.

• указать, как крутящий момент, регулирование скорости и эффективность работы на двигатель влияет регулятор скорости.

• продемонстрировать, как изменить направление вращения ротора с фазной фазой Индукционный двигатель.

До последних нескольких лет регулирование скорости переменного тока было очень трудным. со штатным мотором. Поэтому другой тип мотора и управления Система разрабатывалась и широко использовалась в течение многих лет. Электрики по обслуживанию должен быть знаком с этим типом двигателя и системы управления.

Для многих промышленных двигателей требуются трехфазные двигатели с регулируемой контроль скорости. Асинхронный двигатель с короткозамкнутым ротором нельзя использовать для переменного скорость работы, поскольку ее скорость по существу постоянна. Другой тип индукции Двигатель был разработан для приложений с регулируемой скоростью. Этот мотор называется асинхронный двигатель с фазным ротором или электродвигатель переменного тока с фазным ротором.

КОНСТРУКТИВНЫЕ ДЕТАЛИ

Трехфазный асинхронный двигатель с фазным ротором состоит из сердечника статора с трехфазная обмотка, намотанный ротор с контактными кольцами, щетками и щеткой держатели и два торцевых щита для размещения подшипников, поддерживающих ротор вал.

рис. 1, 2, 3 и 4 показывают основные части трехфазного, Асинхронный двигатель с фазным ротором.


ил. 1 Детали двигателя с фазным ротором


ил. 2 Обмотка статора многофазного асинхронного двигателя


ил. 3 Ротор с обмоткой для многофазного асинхронного двигателя


ил. 4 Подшипник скольжения, многофазный асинхронный двигатель с фазным ротором (General Electric Company)

Статор

Типичный статор содержит трехфазную обмотку, удерживаемую в пазах. многослойного стального сердечника, рисунок 2.Обмотка состоит из формованных катушки расположены и соединены таким образом, что получается три однофазных обмотки разнесены на 120 электрических градусов. Отдельные однофазные обмотки подключаются по схеме звезды или треугольника. Выводятся три линейных вывода к клеммной коробке, установленной на раме двигателя. Это та же конструкция как статор двигателя с короткозамкнутым ротором.

Ротор

Ротор состоит из цилиндрического сердечника, состоящего из стальных пластин.Прорези, вырезанные в цилиндрическом сердечнике, удерживают сформированные витки проволоки для обмотка ротора.

Обмотка ротора состоит из трех однофазных обмоток, разнесенных на 120 эл. градусы друг от друга. Однофазные обмотки соединяются звездой или звездой. дельта. (Обмотка ротора должна иметь такое же количество полюсов, что и статор обмотки.) Три вывода от трехфазной обмотки ротора заканчиваются на трех контактных кольцах, установленных на валу ротора. Выводы от угольных щеток которые ездят на этих контактных кольцах, подключены к внешнему регулятору скорости для изменения сопротивления ротора для регулирования скорости.

Щетки надежно прикреплены к контактным кольцам намотанного ротора с помощью регулируемые пружины, установленные в щеткодержателях. Щеткодержатели бывают фиксируется в одном положении. Для этого типа двигателя нет необходимости переключать положение щеток, которое иногда требуется при работе с генератором постоянного тока и электродвигателем.

Корпус двигателя

Корпус двигателя изготовлен из литой стали. Сердечник статора прижимается напрямую в кадр.К стальной литой раме прикручены два торцевых щита. Один одного из торцевых щитов больше другого, потому что он должен вмещать щетку держатели и щетки, которые скользят по контактным кольцам намотанного ротора. В Кроме того, он часто содержит съемные смотровые лючки.

Подшипниковая опора такая же, как и в индукционной короткозамкнутой клетке. моторы. В конце используются либо подшипники скольжения, либо шарикоподшипники. щиты.

ПРИНЦИП ДЕЙСТВИЯ

Когда три тока, разнесенные на 120 электрических градусов, проходят через три однофазные обмотки в пазах сердечника статора, вращающийся магнитный месторождение разрабатывается.Это поле движется вокруг статора. Скорость вращающееся поле зависит от количества полюсов статора и частоты источника питания. Эта скорость называется синхронной скоростью. это определяется по формуле, которая использовалась для нахождения синхронного скорость вращающегося поля асинхронных двигателей с короткозамкнутым ротором.

Синхронная скорость в об / мин = [120 x частота в герцах / количество полюсов] или S = ​​120 x F / P

S = 120 x f / P

Поскольку вращающееся поле движется с синхронной скоростью, оно отсекает трехфазное обмотка ротора и индуцирует в этой обмотке напряжение.Обмотка ротора соединяется с тремя контактными кольцами, установленными на валу ротора. Кисти на контактных кольцах подключаются к внешней группе соединенных звездой резисторы (регулятор скорости), рисунок 5. Наведенные напряжения в обмотки ротора создают токи, которые идут от ротора по замкнутому пути обмотка на регулятор скорости, соединенный звездой. Токи ротора создают магнитное поле в сердечнике ротора, основанное на действии трансформатора. Этот ротор поле реагирует с полем статора, создавая крутящий момент, который вызывает ротор повернуть.Регулятор скорости иногда называют вторичным сопротивлением. контроль.

Начальная теория асинхронных двигателей с фазным ротором

Для запуска двигателя все сопротивление регулятора скорости, соединенного звездой. вставлен в цепь ротора. Цепь статора запитана от трехфазная линия. Наведенное в роторе напряжение вызывает токи в контуре ротора. Однако токи ротора ограничены по величине. сопротивлением регулятора скорости.В результате ток статора также имеет ограниченную стоимость. Другими словами, чтобы минимизировать пусковой выброс тока к асинхронному двигателю с ротором, вставьте полное сопротивление регулятора скорости в цепи ротора. На пусковой крутящий момент влияет сопротивлением, вставленным во вторичную обмотку ротора. С сопротивлением в вторичный, коэффициент мощности ротора высокий или близок к единице. Этот означает, что ток ротора почти совпадает по фазе с индуцированным ротором Напряжение.Если ток ротора находится в фазе с напряжением, индуцированным ротором, тогда магнитные полюса ротора производятся одновременно с полюса статора. Это создает сильный магнитный эффект, который создает сильный пусковой момент. По мере ускорения двигателя ступеньки сопротивления в соединении звездой регулятор скорости может быть отключен от цепи ротора до тех пор, пока двигатель не разгонится к его номинальной скорости.


ил. 5 Соединения для асинхронного двигателя с фазным ротором и регулятора скорости

Контроль скорости

Добавление сопротивления в цепь ротора не только ограничивает запуск скачок тока, но также обеспечивает высокий пусковой крутящий момент и обеспечивает средство регулировки скорости.Если полное сопротивление регулятора скорости вставляется в цепь ротора, когда двигатель работает, ротор ток уменьшается, и двигатель замедляется. По мере уменьшения скорости ротора в обмотках ротора индуцируется большее напряжение и увеличивается ток ротора. разработан для создания необходимого крутящего момента на пониженной скорости.

Если в цепи ротора убрать все сопротивление, ток и скорость двигателя увеличатся. Однако скорость ротора всегда будет быть меньше синхронной скорости поля, создаваемого статором обмотки.Напомним, что этот факт справедлив и для индукции с короткой клеткой. мотор. Скорость двигателя с фазным ротором можно регулировать вручную или автоматически. с реле времени, контакторами и кнопкой выбора скорости.


ил. 6 Рабочие характеристики двигателя с фазным ротором.

Характеристики крутящего момента

Когда к двигателю прилагается нагрузка, увеличивается как процентное скольжение ротора, так и крутящий момент, развиваемый в роторе. Как показано на графике в На рисунке 6 соотношение между крутящим моментом и процентом скольжения практически прямая линия.

илл. 6 показывает, что характеристики крутящего момента индукции с фазным ротором двигатель исправен, когда вставлено полное сопротивление регулятора скорости в контуре ротора. Большое сопротивление в цепи ротора заставляет ток ротора почти совпадать по фазе с индуцированным напряжением ротора. В результате поле, создаваемое током ротора, почти в фазе с полем статора. Если два поля достигают максимального значения в то же время произойдет сильная магнитная реакция, приводящая к с высоким выходным крутящим моментом.

Однако, если все сопротивление регулятора скорости убрать с цепь ротора и двигатель запускается, характеристики крутящего момента плохие. Цепь ротора за вычетом сопротивления регулятора скорости состоит в основном из индуктивного сопротивления. Это означает, что ток ротора отстает от индуцированное напряжение ротора и, следовательно, ток ротора отстает от ток статора. В результате поле ротора, создаваемое током ротора. отстает от поля статора, которое создается током статора.В результирующая магнитная реакция двух полей относительно мала, поскольку они достигают своих максимальных значений в разных точках. Таким образом, Выходной пусковой момент асинхронного двигателя с фазным ротором плохой, когда все сопротивление снимается с цепи ротора.

Регулировка скорости

В предыдущих абзацах было показано, что вставка сопротивления на регуляторе скорости улучшает пусковой момент двигателя с фазным ротором на малых оборотах.Однако на обычных скоростях наблюдается обратный эффект. В Другими словами, регулирование скорости двигателя хуже, когда сопротивление добавляется в цепь ротора на более высокой скорости. По этой причине сопротивление регулятора скорости снимается, когда двигатель достигает своей номинальной скорости.

илл. 7 показывает скоростные характеристики асинхронного двигателя с фазным ротором. Обратите внимание, что кривая характеристики скорости, полученная, когда все сопротивление Вырезание регулятора скорости указывает на относительно хорошее регулирование скорости.Вторая кривая скоростной характеристики, возникающая, когда все сопротивление вставлен в регулятор скорости, имеет заметное падение скорости, поскольку нагрузка увеличивается. Это указывает на плохую регулировку скорости.

Коэффициент мощности

Коэффициент мощности асинхронного двигателя с фазным ротором на холостом ходу так низок. как отставание от 15 до 20 процентов. Однако, когда к двигателю приложена нагрузка, коэффициент мощности улучшается и увеличивается до 85-90%, отставание при номинальной нагрузке.

ill 8 — график коэффициента мощности ротора с фазной фазой. асинхронный двигатель от холостого хода до полной нагрузки. Низкое отставание коэффициент мощности на холостом ходу обусловлен тем, что намагничивающая составляющая тока нагрузки составляет такую ​​большую часть общего тока двигателя. Намагничивание составляющая тока нагрузки намагничивает железо, вызывая взаимодействие между ротор и статор за счет взаимной индуктивности.

По мере увеличения механической нагрузки на двигатель синфазная составляющая тока увеличивается для обеспечения повышенных требований к мощности.Намагничивание Однако составляющая тока остается прежней. Поскольку общий мотор ток теперь более близок к фазе с линейным напряжением, есть улучшение коэффициента мощности.


ил. 7 Кривые частотных характеристик двигателя с фазным ротором

Операционная эффективность

Асинхронный двигатель с фазным ротором и отключенным всем сопротивлением. регулятора скорости и асинхронного двигателя с короткозамкнутым ротором показывают почти такой же КПД.Однако, когда двигатель должен работать на низкие скорости с отключением всего сопротивления в цепи ротора, эффективность двигателя плохая из-за потерь мощности в ваттах в резисторах регулятора скорости.

илл. 9 иллюстрирует эффективность индукции с фазным ротором. мотор. Верхняя кривая показывает самые высокие результаты операционной эффективности когда регулятор скорости находится в быстром положении и нет сопротивления вставлен в цепь ротора.Нижняя кривая показывает более низкую рабочую эффективность. Это происходит, когда регулятор скорости находится в медленном положении и все сопротивление регулятора вставлено в цепь ротора.


ил. 8 Коэффициент мощности асинхронного двигателя с фазным ротором


ил. 9 Кривые КПД асинхронного двигателя с фазным ротором

Реверс вращения

Направление вращения асинхронного двигателя с фазным ротором изменено на обратное. поменяв местами соединения любых двух из трех проводов, рис. 10.Эта процедура идентична процедуре, используемой для реверсирования направление вращения асинхронного двигателя с короткозамкнутым ротором.


ил. 10 Изменения, необходимые для реверсирования направления вращения электродвигателя с фазным ротором

Электрик ни в коем случае не должен пытаться изменить направление вращения. асинхронного двигателя с фазным ротором путем переключения любого из выводов, питающих от контактных колец к регулятору скорости. Изменения в этих связях не изменяет направление вращения двигателя.

РЕЗЮМЕ

Двигатель с фазным ротором сегодня редко устанавливается как новый двигатель, но есть все еще используется ряд двигателей. Двигатель с фазным ротором можно использовать для переменной скорости с вставкой вторичных резисторов. Стартовый ток и пусковой крутящий момент двигателя были главными соображениями при выборе двигателя с фазным ротором для установки. Есть еще много ссылок на двигатель с фазным ротором, используемый в Национальном электротехническом Код.

ВИКТОРИНА

Дайте исчерпывающие ответы на следующие вопросы.

1. Перечислите основные части асинхронного двигателя с фазным ротором.

2. Перечислите две причины, по которым асинхронный двигатель с ротором запускается с все сопротивление, вставленное в регулятор скорости.

3. Трехфазный асинхронный двигатель с фазным ротором имеет шесть полюсов и рассчитан на на 60 герц. Скорость двигателя при полной нагрузке со всем сопротивлением вырез из регулятора скорости составляет 1120 об / мин.Что такое синхронный скорость поля, создаваемого обмотками статора?

4. Определите процент скольжения при номинальной нагрузке для рассматриваемого двигателя. 3.

5. Почему вместо короткозамкнутого ротора используется асинхронный двигатель с фазным ротором? асинхронный двигатель для некоторых промышленных применений?

6. Почему низкий процентный КПД асинхронного двигателя с фазным ротором? при работе с номинальной нагрузкой, когда все сопротивление вставлено в регулятор скорости?

7.Что нужно сделать, чтобы изменить направление вращения ротора с фазной фазой Индукционный двигатель?

8. Почему коэффициент мощности асинхронного двигателя с ротором низкий? нагрузка?

9. Перечислите два фактора, которые влияют на синхронную скорость вращения магнитное поле, создаваемое током в обмотках статора.

B. Выберите правильный ответ для каждого из следующих утверждений и поместите соответствующую букву в отведенное место.

10.Скорость двигателя с фазным ротором увеличена на:

а. вставка сопротивления в первичную цепь.

г. вставка сопротивления во вторичной цепи.

г. уменьшение сопротивления во вторичной цепи.

г. уменьшение сопротивления в первичной цепи.

11. Пусковой ток асинхронного двигателя с ротором ограничен:

а. уменьшение сопротивления в первичной цепи.

г.уменьшение сопротивления во вторичной цепи.

г. вставка сопротивления в первичную цепь.

г. вставка сопротивления во вторичной цепи.

12. Направление вращения электродвигателя с фазным ротором изменяют перестановкой мест. любые два из трех:

а. L1, L2, L3 c. М1, М2, М3

г. Т1, Т2, Т3 d. все эти.

13. Двигатели с фазным ротором могут использоваться с:

а. ручные регуляторы скорости.

г. автоматические регуляторы скорости.

г. выбор кнопки.

г. все эти.

14. Максимальный КПД двигателя с фазным ротором при полной нагрузке:

а. все сопротивление отключено от вторичной цепи.

г. все сопротивление отключено во вторичной цепи.

г. он работает медленно.

г. он работает на средней скорости.

15. Основным преимуществом многофазного двигателя с фазным ротором является то, что он a.имеет низкий пусковой момент. c. быстро изменится.

г. имеет широкий диапазон скоростей. d. имеет низкий диапазон скоростей.

16. Двигатель с фазным ротором назван так потому, что:

а. ротор намотан проволокой.

г. статор намотан проволокой.

г. Контроллер обмотан проводом.

г. все эти.

17. Намагничивающая составляющая тока нагрузки …

а. составляет небольшую часть от общего тока двигателя без нагрузки.

г. намагничивает железо, вызывая взаимодействие между ротором и статор.

г. составляет большую часть от общего тока двигателя при полной нагрузке.

г. не зависит от коэффициента мощности.

Произошла ошибка

Повторите попытку позже или попробуйте нашу домашнюю страницу еще раз.
Bitte versuchen Sie es später oder schauen Sie ob die Homepage funktioniert.

Ошибка: E1020

Австралия Электронная почта

Максон Мотор Австралия Пти Лтд

Unit 1, 12-14 Beaumont Road
Гора Куринг-Гай Новый Южный Уэльс 2080
Австралия

Benelux Электронная почта

maxon motor benelux B.V.

Йосинк Колквег 38
7545 PR Enschede
Нидерланды

Китай Электронная почта

Максон Мотор (Сучжоу) Ко., Лтд

江兴东 路 1128 号 1 号楼 5 楼
215200 江苏 吴江
中国

Германия Электронная почта

Максон Мотор ГмбХ

Truderinger Str. 210
81825 Мюнхен
Deutschland

Индия Электронная почта

maxon Precision Motor India Pvt.ООО

Niran Arcade, № 563/564
Новая Бел Роуд,
RMV 2-я ступень
Бангалор — 560 094
Индия

Италия Электронная почта

maxon motor italia S.r.l.

Società Unipersonale
Via Sirtori 35
20017 Rho MI
Италия

Япония Электронная почта

マ ク ソ ン ジ ャ パ ン 株式会社

東京 都 新宿 区 新宿 5-1-15
〒 160-0022
日本

Корея Электронная почта

㈜ 맥슨 모터 코리아

서울시 서초구
반포 대로 14 길 27, 한국 137-876

Португалия Электронная почта

maxon motor ibérica s.а

C / Polo Norte № 9
28850 Торрехон-де-Ардос
Испания

Швейцария Электронная почта

максон мотор аг

Брюнигштрассе 220
Постфах 263
6072 Sachseln
Schweiz

Испания Электронная почта

maxon motor ibérica s.a. Испания (Барселона)

C / Polo Norte № 9
28850 Торрехон-де-Ардос
Испания

Тайвань Электронная почта

maxon motor Тайвань

8F.-8 №16, переулок 609 сек. 5
П. 5, Chongxin Rd.
Sanchong Dist.
Нью-Тайбэй 241
臺灣

Великобритания, Ирландия Электронная почта

максон мотор великобритания, ооо

Maxon House, Hogwood Lane
Finchampstead
Беркшир, RG40 4QW
Соединенное Королевство

США (Восточное побережье) Электронная почта

прецизионные двигатели maxon, inc.

125 Девер Драйв
Тонтон, Массачусетс 02780
США

США (Западное побережье) Электронная почта

прецизионные двигатели maxon, inc.

1065 East Hillsdale Blvd,
Люкс 210
Фостер-Сити, Калифорния 94404
США

Что такое бесщеточный двигатель с внешним ротором? Сравнение внутреннего и внешнего роторов

Новые технологии позволяют производить более мощное беспроводное наружное силовое оборудование и инструменты.Одним из новых типов двигателей, интегрируемых в электроинструменты, является бесщеточный двигатель с внешним ротором. Мы видели, как они используются везде, от аккумуляторных дисковых пил до бензопил с батарейным питанием, струнных триммеров и газонокосилок. Итак, что такое бесщеточный двигатель с внешним ротором и как он соотносится с конструкциями с внутренним ротором?

Мы поговорили с Карлосом Кинтана, старшим менеджером по продукции подразделения аккумуляторных инструментов Makita, чтобы понять разницу, а также плюсы и минусы обоих дизайнов.

10-секундная сводка
  • Двигатели с внутренним ротором размещают статор снаружи, а ротор внутри
  • Двигатели с внешним ротором размещают статор внутри, а ротор снаружи
  • Двигатели с внутренним ротором длиннее с меньший диаметр
  • Двигатели с внешним ротором короче с большим диаметром
  • Двигатели с внешним ротором обычно более эффективны
  • В большинстве ручных электроинструментов используется конструкция с внутренним ротором

Общие конструктивные различия

Основное различие между внутренним ротором и внешним ротором Бесщеточные двигатели заложены в базовой конструкции.Все двигатели, щеточные или бесщеточные, вращаются с помощью магнитов. Роль статора — обеспечить заряд, который будет отталкивать или притягивать магниты и заставлять двигатель вращаться. Ротор содержит эти магниты и вращается.

В конструкции с внутренним ротором статор находится снаружи, а ротор — внутри. На бесщеточном двигателе с внешним ротором они переворачиваются.

Последствия проектирования

Площадь основания

Допустим, у вас есть по одному двигателю каждого типа с одинаковой выходной мощностью и общим диаметром.Как они выглядят по сравнению друг с другом?

Им нужна одинаковая площадь магнитной поверхности. Поскольку внутренняя конструкция ротора имеет магниты напротив внутренней стороны, они имеют меньший диаметр — они должны быть длиннее.

Обратное верно для бесщеточного двигателя с внешним ротором. Присоединение к большему диаметру означает, что вы можете сократить общую длину двигателя. Кроме того, вы получаете естественное снижение веса.

КПД

Двигатели с внутренним ротором также обладают присущим ему колебанием. Они слегка перемещаются внутри статора и теряют эффективность.Однако есть способы справиться с этим. Например, Makita добавляет гребни, чтобы помочь стабилизировать их роторы и повысить эффективность до 99%. Но не все производители двигателей так поступают.

Бесщеточные двигатели с внешним ротором не должны иметь дело с этим движением и по своей конструкции более эффективны.

Уравновешивание преимуществ

Таким образом, у вас есть два варианта, когда вы выбираете конструкцию с внешним ротором. Один из вариантов позволяет уменьшить длину и вес двигателя, чтобы получить ту же мощность и повысить эффективность.

В качестве альтернативы вы можете сохранить вес и добиться большей мощности за счет повышения эффективности. Конечно, вы также можете найти баланс между ними и немного снизить вес, увеличивая мощность на менее значительном уровне. Мы действительно видим это с питанием от аккумуляторных батарей, которые могут извлечь выгоду из уменьшенного веса бесщеточных двигателей с фронтальной загрузкой.

Применение инструмента

В большинстве бесщеточных инструментов используется конструкция с внутренним ротором для уменьшения общего размера (обхвата).Makita использует по крайней мере четыре конструкции бесщеточного внутреннего ротора: 80 мм, 54 мм, 44 мм и 38 мм.

Триммер для струн Makita 18V X2 и их бензопилы получили пятую конструкцию с 80-миллиметровым бесколлекторным двигателем с внешним ротором. В этих более крупных инструментах есть место для размещения двигателя большего диаметра, при этом уменьшая общую площадь основания, поскольку они имеют меньшую длину.

Этот профиль позволяет Makita устанавливать двигатели в эти инструменты с прямым приводом, чтобы они получали преимущество наиболее эффективной передачи мощности.

В поисках большего количества инструментов для бесщеточных двигателей с внешним ротором

Поскольку производители стремятся перейти от инструментов с традиционным шнуром к аккумуляторным, вы можете ожидать появления большего количества бесщеточных двигателей с внешним ротором. Литий-ионные аккумуляторы еще не достигли пика своих возможностей. Конструкция внешнего ротора помогает генерировать больше мощности и эффективности, поскольку мы раздвигаем границы возможностей аккумуляторной батареи.

Двигатель с внешним ротором

Двигатель с внешним ротором относится к двигателю с вращающейся оболочкой и фиксированным валом.Этот двигатель отличается экономией места, компактным дизайном и красивым внешним видом. Он подходит для установки в рабочие колеса для оптимального охлаждения. Поэтому не требуются клиновые ремни, дополнительные натяжные ремни или другое оборудование. В двигателе используется пара герметичных радиальных шарикоподшипников для длительного срока службы. Высокоточные шарикоподшипники могут минимизировать вибрацию и снизить шум при работе.

В двигателе с внешним ротором используются высококачественные электромагнитные материалы и особая конструкция электромагнитной конструкции для обеспечения эффективной работы двигателя и большей экономии энергии.На конце обмотки двигателя установлено высокочувствительное тепловое реле, обеспечивающее безопасную и надежную работу двигателя. Поскольку этот двигатель имеет большой крутящий момент, он подходит для большого гребного винта и имеет высокий КПД. Кроме того, он широко используется в различных электрических дронах.

Сортировать по: DefaultName (A — Z) Name (Z — A) Price (Low> High) Price (High> Low) Rating (Highest) Rating (Low) Model (A — Z) Model (Z — A)

Показать: 20255075100

Артикул: 32BLE18-24-01 Электрические характеристики Номер детали производителя: 32BLE18-24-01 Фаза: 3 полюса: 8 Сопротивление / линия: 13.7 ± 10% [защита по электронной почте] ℃ Индуктивность / линия: 7,73 ± 20% [защита по электронной почте] Номинальное напряжение: 24 В постоянного тока Скорость холостого хода: 4530 ± 10% об / мин Ток холостого хода: 0 ..

60,91 долл. США Всего: 60,91 долл. США

Артикул: 45BLE18-24-01 Электрические характеристики Номер детали производителя: 45BLE18-24-01 Фаза: 3 полюса: 16 Сопротивление / линия: 1,42 ± 10% [защита по электронной почте] Индуктивность ℃ / линия: 0,6 ± 20% [защита по электронной почте] Номинальная Напряжение: 24 В постоянного тока Скорость холостого хода: 6500 ± 10% об / мин Ток холостого хода: 0 ..

$ 64,49 Начиная с: 64,49 $

Артикул: 45BLE22-24-01 Электрические характеристики Номер детали производителя: 45BLE22-24-01 Фаза: 3 полюса : 16 Сопротивление / Линия: 0.7 ± 0,1 [защита электронной почты] ℃ Индуктивность / линия: 0,33 ± 0,1 [защита электронной почты] Номинальное напряжение: 24 В постоянного тока Скорость холостого хода: 6700 ± 10% об / мин Ток холостого хода: 0 ..

72,13 $ Начиная с: 72,13 долларов США

SKU: 45BLE27-24-01 Электрические характеристики Номер детали производителя: 45BLE27-24-01 Фаза: 3 полюса: 16 Сопротивление / линия: 0,56 ± 0,1 [защита электронной почты] ℃ Индуктивность / линия: 0,27 ± 0,1 [защита электронной почты] Номинальное напряжение: 24 В постоянного тока Скорость холостого хода: 6100 ± 10% об / мин Ток холостого хода: .