Клиновоздушные ракетные двигатели — будущее ракетостроения / Хабр
Современные ракетные двигатели подошли к пределу своих возможностей.
Всё чаще можно заметить этот тезис в статьях, докладах, мнениях о ракетостроении. И действительно, в глобальном плане это так, новые возможности, характеристики вжимать из реактивных двигателей становится всё сложнее, а те же тяги по большому счёту не увеличиваются уже давно, самые тяговитые монстры двигателестроения были созданы во 2 половине 20 века, и современные движки от них недалеко ушли, хоть и прокачали другие характеристики и возможности. Например, F1, настоящий монстр, поднимавший в небо лунную ракету Сатурн V имел тягу 6,77 меганьютон, а самый современный Raptor от корабля Starship и ускорителя Super Heavy имеет тягу всего…2000 килоньютон. И он считается мощным двигателем. Ситуация складывается печальная. Можно ли как то улучшить ситуацию, сделать двигатели мощнее, экономичнее? Можно, и об этом статья.
«Новый» тип двигателей
Сама по себе идея клиновоздушного реактивного двигателя не нова. В 1960-х годах Рокетдайн проводил обширные испытания с различными вариантами. Более поздние версии этих двигателей были основаны на крайне надёжных ЖРД J-2 (Рокетдайн) и обеспечивали приблизительно тот же уровень тяги, что могли обеспечить те двигатели, на которых они были основаны: ЖРД J-2T-200k обладал тягой 90,8 тс (890 кН) и ЖРД J-2T-250k обладал тягой 112,2 тс (1,1 МН) (буква «T» в наименовании двигателя указывает на тороидальную камеру сгорания). Позже создавались и другие прототипы и проводились испытания, но до полноценной реализации так и не доходило. Клиновоздушные двигатели даже планировалось использовать на Шаттлах, но выбрали более консервативное решение. Но технологии не стоят на месте, а актуальность этого типа двигателей растет.
В июле 2014 года Firefly Space Systems объявила, что в своей новой ракете-носителе Firefly Alpha будет использовать клиновоздушный двигатель на первой ступени. Так как данная модель предназначается для рынка запуска малых спутников, ракета будет выводить спутники на низкую околоземную орбиту по цене 8-9 миллионов долларов за запуск. Firefly Alpha сконструирована так, чтобы поднимать на орбиту 400 кг полезного груза. В конструкции ракеты задействуются композитные материалы — в том числе углеродное волокно. Клиновоздушный двигатель, применяемый в ракете, имеет тягу в 40,8 тс(400 кН). Правда, На данный момент работа застопорилась, и будущее именно этой ракеты выглядит туманно.
Так как это работает?
Для начала разберем, как работает классический реактивный ракетный двигатель. Очень упрощая, в камере сгорания смешивается и сгорает смесь топлива и окислителя(в качестве последнего применяют как правило жидкий кислород). Раскаленная до нескольких тысяч градусов смесь газов, образовавшаяся в результате сгорания под давлением выбрасывается из двигателя через сопло на огромной скорости, создавая тягу(спасибо закону сохранения импульса 😉 ), и ракета красочно отправляется к звёздам(иногда не отправляется, это называют аварией)). В контексте статьи самый главный элемент этой технологической фантасмагории это сопло.
Тут дело вот в чем, если просто сделать дырку в камере сгорания и поджечь топливо, тяга, конечно, будет, но минимальная, раскаленные газы будут выходить во все стороны и лишь малая часть будет вырываться в направлении, необходимом для создания тяги, да и скорость выходящих газов будет так себе, вобщем, печаль — беда, так до космоса не долетишь, а долететь хочется. Для того, чтобы направлять выхлопные газы, а так же разгонять их побыстрее, желательно до нескольких чисел Маха умные люди придумали Сопло Лаваля. Сопло было предложено в 1890 году шведским изобретателем Густафом де Лавалем для паровых турбин, а позже нашло своё применение в ракетостроении.
Самое простое сопло Лаваля представляет из себя два усечённых конуса, соединённых в одну конструкцию. Реальные современные сопла профилируются на основе газодинамических расчетов и компьютерных симуляций.
Иллюстрация работы сопла Лаваля. По мере движения газа по соплу, его абсолютная температура Т и давление Р снижаются, а скорость V возрастает. М — число Маха.
Итак, на сужающемся, т.н. докритическом участке сопла движение газа происходит с дозвуковыми скоростями. В самой узкой,критической части сопла скорость газа достигает звуковой. На расширяющемся, закритическом участке, газ движется со сверхзвуковыми скоростями.
Выглядит просто идеально. Но всё не так гладко, свои коррективы, например, вносит атмосфера, а именно атмосферное давление, которое тоже действует на поток газа, и на разных высотах действует по разному, серьезно влияя на эффективность двигателя. На любой высоте над поверхностью Земли с разным давлением атмосферы сопло может быть сконструировано практически идеально, но та же самая форма будет менее эффективна на другой высоте с другим давлением воздуха. Таким образом, по мере того как ракета поднимается через атмосферу, эффективность её двигателей вместе с их тягой претерпевает значительные изменения, которые достигают 30 %. Например, двигатели RS-24 МТКК «Спейс шаттл» могут генерировать тягу со скоростью газовой струи 4525 м/с в вакууме и 3630 м/с на уровне моря. По сути двигатель работает «не на полную», куча драгоценного топлива, которое, кстати, составляет бОльшую часть массы ракеты, тратится впустую. Клиновоздушный реактивный двигатель решает эту проблему. Как? Расширяющейся частью сопла становится сама атмосфера! И такое «сопло» саморегулируется, сохраняя одинаковую эффективность на любой высоте.
В конструкции клиновоздушного двигателя проблема эффективности на различной высоте решается следующим образом: вместо одной точки выхлопа в виде небольшого отверстия в центре сопла используется клиновидный выступ, вокруг которого устанавливается ряд камер сгорания. Клин формирует одну сторону виртуального сопла, в то время как другая часть формируется проходящим потоком воздуха в ходе полета. Этим объясняется его первоначальное название «двигатель аэроспайк» (aerospike engine, «воздушно-клинный двигатель»).
Вот так это выглядит. По сути, такой двигатель выступающим клином формирует сужающуюся(докритическую) часть сопла. Остальное формирует сама атмосфера. Гениальное решение.
Недостатком такой конструкции является большой вес центрального выступа и дополнительные требования по охлаждению из-за большей поверхности, подверженной нагреву. Также большая площадь охлаждаемой поверхности может уменьшить теоретические уровни давления на сопло. Дополнительным отрицательным фактором является относительно плохая производительность такой системы при скоростях 1-3 Маха. В данном случае воздушный поток сзади летательного аппарата имеет уменьшенное давление, что снижает тягу.
Существует несколько модификаций этого дизайна, которые отличаются по их форме. В «тороидальном клине» центральная часть имеет форму сужающегося конуса, по краям которого осуществляется концентрический выход реактивных газов.
Практическое использование
Несмотря на очевидные преимущества, на данный момент клиновоздушные двигатели почти нигде не применяются, хотя планы по их применению есть и разработки ведутся.
20 сентября 2003 года объединённая команда Университета штата Калифорния в Лонг-Бич и компании Garvey Spacecraft Corporation успешно провела испытательный полет ракеты с КВРД в пустыне Мохаве. Студенты университета разработали ракету Prospector 2, используя двигатель с тягой 448,7 кгс (4,4 кН). Эта работа над клиновоздушными двигателями не прекращается — ракета Prospector 10 с 10-камерным КВРД была испытана 25 июня 2008 года. В марте 2004 года были проведены два успешных испытания в Лётном исследовательском центре НАСА им. Драйдена (база Эдвардс, США) с малоразмерными твердотопливными ракетами с тороидальными двигателями, которые достигли скорости 1,1 М и высоты 7,5 км. Другие модели малоразмерных клиновоздушных ракетных двигателей находятся в стадии разработок и испытаний. У клиновоздушных двигателей есть проблемы и недостатки, в том числе высокая сложность и стоимость, но их преимущества делают их весьма перспективными. В обозримом будущем они будут активно применяться, хоть и не заменят полностью классические двигатели на сопле Лаваля.
Как это работает. Ракетный двигатель
Фото: Объединенная двигателестроительная корпорация
Полеты в космос, одно из самых вдохновляющих достижений человечества, невозможны без ракетного двигателя. С одной стороны, принцип его работы максимально прост, а с другой – всего несколько стран могут похвастаться ракетными двигателями собственного производства.
С момента старта Гагарина и по сей день все российские космонавты поднимаются с поверхности Земли двигателями РД-107/108. Серийное производство этих исключительно надежных двигателей продолжается на самарском предприятии Ростеха «ОДК-Кузнецов». Рассказываем о том, как устроен и работает космический двигатель-долгожитель РД-107/108.
Космически просто
И правда, объяснить принцип действия реактивных двигателей, к которым относятся и ракетные двигатели, можно даже ребенку.
Фото: Космический центр «Восточный» / Роскосмос
Самым распространенным типом двигателей для космических программ сегодня являются жидкостные ракетные двигатели (ЖРД), в которых в качестве топлива используются жидкие горючее и окислитель. К этому типу относится и российский РД-107/108.
Жидкостные двигатели – на сегодняшний момент самые мощные и универсальные ракетные двигатели, с помощью которых совершается большинство полетов в космос. Они отличаются высоким удельным импульсом, то есть при меньшей массе израсходованного топлива создают большую тягу. Кроме того, ЖРД позволяют активно управлять уровнем тяги и могут использоваться много раз. При этом по сравнению с другими видами ракетных двигателей, например твердотопливными, они значительно сложнее и дороже, поэтому основная их сфера применения – космонавтика и обеспечение выведения орбитальных и межпланетных аппаратов.
Как работает жидкостный ракетный двигатель
Чтобы получить полезное действие, достаточное для прорыва в космос, нужно получить большое количество энергии − эффективно сжечь большое количество топлива. Как известно, любой процесс горения представляет собой химическую реакцию окисления. И если на Земле для других видов тепловых двигателей в качестве окислителя можно использовать атмосферный кислород, то для ракетного двигателя, и тем более в космосе, окислитель и горючее надо иметь непосредственно на ракете, и лучше всего в максимально плотном и удобном для подачи жидком виде.
Фото: Объединенная двигателестроительная корпорация
В камере сгорания подаваемые специальными насосами в нужном количестве и с необходимым давлением окислитель и горючее смешиваются и сгорают. Горячие (с температурой в несколько тысяч градусов) продукты сгорания в конструкции особого профиля – сверхзвуковом сопле Лаваля – разгоняются до многократно сверхзвуковых скоростей и уходят в пространство. Если умножить сумму секундных расходов масс горючего и окислителя на скорость выхода продуктов сгорания из сопла, можно в первом приближении получить силу тяги двигателя. Так, в общих чертах, можно описать схему работы жидкостного ракетного двигателя.
Устройство РД-107/108
Двигатель РД-107/108 состоит из четырех камер сгорания, турбонасосного агрегата, газогенератора, испарителя азота для наддува баков ракеты и комплекта агрегатов автоматики. Для управления полетом ракеты на двигателях имеются рулевые камеры: два на РД-107 и четыре на РД-108.
Несоизмеримые с возможностями существующих металлов температуры горения и продуктов сгорания, большое количество выделяемого тепла требуют охлаждения стенок камеры сгорания и сопла. В РД-107/108 эта инженерная задача решается двухстеночной конструкцией камеры сгорания и сопла и организацией охлаждения стенки со стороны горячего тракта подачей горючего (керосина) в камеру сгорания через межстеночные пространства.
Вторая особенность РД-107/108 − открытая схема сброса генераторного газа. Окислитель и горючее хранятся в отдельных баках и подаются в систему с помощью турбонасосного агрегата (ТНА). Для привода насосов горючего и окислителя используется турбина, в качестве рабочего тела для которой используется парогаз – продукт каталитического разложения пероксида водорода. Выхлопы турбины выбрасываются за срез сопла.
Рекордсмен космоса
Разработка двигателей РД-107 и РД-108 проходила в 1954–1957 годах под руководством выдающегося конструктора Валентина Глушко. Двигатели предназначались для первой в мире межконтинентальной баллистической ракеты Р-7, модификация которой в 1957 году доставила в космос первый искусственный спутник Земли. В 1961 году двигатели обеспечили первый полет человека в космос. На протяжении более 60 лет российские ракеты «Союз» поднимаются в небо с помощью двигателей РД-107/108 и их модификаций. Серийное производство двигателей налажено на самарском заводе «ОДК-Кузнецов», входящем в Объединенную двигателестроительную корпорацию Ростеха.
Программа РД-107/108 продолжает развиваться, создаются новые модификации – всего разработано 18 вариантов для различных программ. Сегодня модификациями двигательных установок РД-107А/РД-108А оснащаются I и II ступени всех ракет-носителей среднего класса типа «Союз». Все пилотируемые и до 80% грузовых космических кораблей в России взлетают благодаря этим двигателям.
РД-107/108 уже поставил свой космический рекорд по долголетию. Конечно, когда-нибудь и его время пройдет, но сегодня запас для совершенствования двигателя еще не исчерпан.
Двигатели против двигателей — JTech
Когда дело доходит до механики, хорошо автомеханики; дискуссия о том, есть ли у автомобиля двигатель или мотор, широко обсуждалась. По правде говоря, даже Словарь Вебстера не дает полной ясности в этом отношении и дает им одинаковое, хотя и не точное определение.
Двигатель:
- Машина для преобразования тепловой энергии в механическую или мощность для создания силы и движения.
- Железнодорожный локомотив.
- Пожарная машина.
- Любое механическое приспособление.
- Машина или инструмент, используемый в войне, например, таран, катапульта или артиллерийское орудие.
- Устарело. Орудие пытки, особенно дыба.
- Сравнительно небольшой и мощный двигатель, особенно двигатель внутреннего сгорания в автомобиле, моторной лодке и т.п.
- Любое транспортное средство с автономным двигателем.
- Человек или вещь, придающие движение, особенно устройство, такое как паровой двигатель, который получает и модифицирует энергию из какого-либо природного источника, чтобы использовать ее для приведения в действие механизмов.
- Также называется электродвигателем. Электричество. Машина, преобразующая электрическую энергию в механическую, например асинхронный двигатель.
Несмотря на устройства для пыток, общим знаменателем здесь является преобразование или изменение энергии для создания движения. Будь то тепловая, электрическая, ядерная, механическая или какая-либо другая… Результат — движение. Различие, по-видимому, заключается в том, что двигатели содержат свой собственный источник топлива для создания движения, в то время как двигатель использует внешний источник.
А как насчет автомобиля, в котором есть и то, и другое? Двигатель на топливе и электродвигатель. Вот гибрид. Это дивный новый мир, в котором нужно идти в ногу с тем, чего хочет потребитель. А потребитель хочет, чтобы автомобиль был более экологичным, экономичным, но при этом обладал бы «крутым» фактором.
Автомобили прошлого, настоящего и будущего имеют общие характеристики, но в то же время автомобили постоянно развиваются. Достижения в автомобильной промышленности происходят быстрыми темпами, поэтому оставаться на переднем крае новых технологий очень важно, если вы хотите продолжить карьеру в автомобильной промышленности. Высококвалифицированные технические специалисты получают все более высокую заработную плату по всей стране, и спрос на эти должности растет.
Автомеханики J-Tech — квалифицированные и знающие специалисты в своей отрасли. Благодаря комплексному практическому учебному плану мы подготовим вас к решению различных автомобильных задач. Опытные инструкторы J-Tech обеспечивают фундамент для долгой и успешной карьеры. Хотите сделать следующий шаг? Позвоните нам по телефону (877) 447-0442 или свяжитесь с нами на сайте jtech.org.
Раздвигая границы транспорта и технологий
Мы делаем электромобили доступными для всех.
См. Как
Имитация транспортных средств, показаны расходы и функции. Просмотр важной информации.
- Изображенные транспортные средства, зарядные устройства и функции могут быть смоделированы или созданы в предсерийном варианте и могут быть изменены. Некоторые продукты в настоящее время недоступны или их наличие ограничено. Информацию о наличии автомобиля, функциях и ограничениях см. на веб-сайте бренда и в руководстве по эксплуатации автомобиля.
Мы являемся пионерами в области инноваций, которые двигают людей вперед и связывают их с тем, что действительно важно.
Безопасность автомобиля
Благодаря исследованиям, технологиям и пропаганде мы продвигаем наше видение будущего без аварий.
Электрификация
Наша новая платформа Ultium поможет каждому пересесть на электромобиль и приблизить мир к полностью электрическому будущему.
Social Impact
Мы стремимся стать самой инклюзивной компанией в мире, и мы не остановимся, пока не добьемся этого.
Зарабатывай на жизнь. Сделать жизнь.
Есть работа, которой можно зарабатывать на жизнь. Кроме того, есть рабочие места GM, которые помогают вам зарабатывать на жизнь. Мы чествуем наших более чем 51 000 производственных сотрудников в США, которые все единственные в своем роде. От лидеров сообщества до наставников и ветеранов США. Познакомьтесь с некоторыми людьми, которыми мы гордимся в составе команды GM.
Подробнее
Показана опытная модель. Реальная производственная модель может отличаться. Заказы MY23 LYRIQ выполнены. Перейдите на сайт Cadillac.com для получения информации о наличии.
EV LIVE
Поговорите с консультантом по электромобилям в прямом эфире
Как электромобиль впишется в вашу жизнь? Свяжитесь с нами на EV LIVE, чтобы пообщаться с нашим специалистом по электромобилям и получить ответы в режиме реального времени на все ваши вопросы по электромобилям. Изучите новейшие электромобили, чтобы узнать, какой из них подходит именно вам. Наши специалисты готовы научить вас пользоваться электромобилем, включая владение, техническое обслуживание, а также домашнюю и общественную зарядку. Независимо от того, где вы находитесь в своем путешествии на электромобиле, мы в EV LIVE всегда готовы помочь.
Демонстрируются смоделированные, опытные образцы или концептуальные продукты, которые могут быть изменены. Некоторые продукты в настоящее время недоступны или их наличие ограничено. Подробности смотрите на сайтах автомобилей.
Электрификация нашей линейки, по одному удивительному автомобилю за раз
В нашей линейке электромобилей каждый найдет что-то для себя. От высокопроизводительных автомобилей до рабочих грузовиков, от ежедневных водителей до коммерческой доставки — мы упрощаем работу на электричестве.
Узнать больше
«Во всем мире один миллиард человек имеет ту или иную форму инвалидности, и это то, с чем в какой-то момент жизни сталкивается большинство из нас. Поскольку мы стремимся стать самой инклюзивной компанией в мире, вполне логично, что доступность является частью уравнения».
КЭРРИ МОРТОН (она/она) // Главный инженер Центра передового опыта в области доступности
Мы ищем искателей приключений и творческих идейных лидеров, которые помогут нам трансформировать мобильность и продвигать полностью электрическое будущее.