18Сен

Как устроен электродвигатель: Как работает электродвигатель, устройство «сердца» электрической машины

Содержание

Как работает электродвигатель, устройство «сердца» электрической машины

Ни одна сфера жизнедеятельности человека сегодня не обходится без электродвигателей. Эти устройства настолько прочно вошли в нашу повседневность, что выход из строя одного из них может как минимум испортить нам настроение на день, а как максимум остановить работу целого предприятия. Электродвигатели поднимают большие грузы на стройках, приводят в движение различные станки на заводах, передвигают общественный транспорт по городу, циркулируют воздух по вентиляционным каналам, помогают готовить еду на кухне и охлаждают детали наших компьютеров. Да что там говорить, если они присутствуют даже в детских игрушках.

Несмотря на такую ​​распространенность, автомобилей с электрическим приводом выпускается значительно меньше, чем их «собратьев» с двигателем внутреннего сгорания. На это есть технические и коммерческие причины, обзор которых мы оставили для отдельной статьи.

А в этом тексте рассмотрим преимущества и недостатки электродвигателя и самое главное - его принцип действия.

Электрическая машина

Для начала нужно ввести понятие электрической машины, которой называют электромеханическое устройство для преобразования электрической энергии в механическую или механической в ​​электрическую, а также электрической энергии с одними свойствами в электрическую энергию с другими свойствами. Электродвигатель, в свою очередь, является разновидностью электрической машины. Если в механизме электрическая энергия преобразуется в механическую с выделением тепла - это электродвигатель.

В основе принципа действия электродвигателя лежит электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Преобразование электрической энергии в механическую электромагнитным полем впервые продемонстрировал британский ученый Майкл Фарадей в 1821 году. Он подвесил провод и погрузил его в ртуть, в центре ванны установил постоянный магнит, через провод начал пропускать ток.

В результате провод начал оборачиваться вокруг магнита, тем самым показывая, что ток вызывает циклическое магнитное поле. Это был простейший электродвигатель, непригодный для практического использования.

Первым в мире электродвигателем, который можно было эффективно использовать в различных системах, считают изобретение россиянина Бориса Якоби. В отличие от других ученых, которые работали над тем, чтобы заставить железный сердечник двигаться в магнитном поле подобно тому, как движется поршень в паровой машине, он предложил механизм с якорем, который вращается, объяснив, что такое строение значительно проще и непосредственно вращательные движения превращать в другие виды легче. Вращение в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов, которые периодически меняли полярность.

Устройство электродвигателя

С развитием науки и техники электродвигатели менялись, разрабатывались новые модели, совершенствовались старые.

Но основных составляющих всегда было две: статор и ротор.

  • Статор - неподвижная часть, на которой размещены все вспомогательные детали, также используемый для закрепления на корпусе, установки на поверхности и т.д.
  • Ротор - подвижная часть двигателя, которая может вращаться внутри статора.

На обеих частях конструкции предусмотрены обмотки, которые работают как электромагниты. Также возможна комбинация из электромагнита на роторе и постоянного магнита на статоре, или наоборот. При подаче электрического тока на обмотки в них возникает магнитное поле с соответствующими полюсами. Вследствие этого происходит силовое взаимодействие между полями статора и ротора. Таким образом стороны обмоток с одинаковыми полюсами начинают отталкиваться друг от друга, а с противоположными - притягиваться. Подвижная часть сразу же пытается стать в такое положение, чтобы противоположные полюса совпадали.

Так происходит максимум пол-оборота, или 180 °. Для того, чтобы ротор двигался дальше и сделал полный оборот на угол 360 °, нужно изменить направление тока в одной из обмоток, в результате чего ее полярность изменится на противоположную и стороны с соответствующими полюсами снова начнут притягиваться.

Если через определенный период переключать полярность подаваемого на обмотку тока, то вал ротора будет непрерывно вращаться.

В разных видах электродвигателей такая разница между векторами магнитных полей достигается различными путями. Например, длительное время широко применялись коллекторы, а двигатели, соответственно, назывались коллекторными. Типичный коллектор представляет собой барабан на валу ротора, на который выведены контакты всех обмоток в определенном порядке. Ток на контакты подается с помощью угольных щеточек, которые прижимаются к барабану пружинами. Недостатками такого механизма является необходимость периодической замены щеток, стирание контактов и шум, поэтому со временем более популярными стали бесколлекторные двигатели, в которых используются датчики положения ротора.

Количество обмоток на подвижной и неподвижной частях может отличаться. Чем их больше, тем больше плавность хода и более равномерно распределяется мощность.

Читайте также: «Неубиваемый» солнечный двигатель создан французским стартапом (видео)

Классификация электродвигателей

Различать типы электромоторов можно по нескольким признакам, но две самые распространенные группы отличаются по типу электропитания.

По типу тока, который подается на обмотки, электродвигатели бывают постоянного и переменного тока.

В свою очередь, первую группу в зависимости от наличия щеточно-коллекторного узла можно разделить на две: коллекторные и бесколлекторные. Возбуждение в коллекторных двигателях может происходить независимо с помощью постоянных и электрических магнитов, либо самовозбуждаться, при этом обмотка якоря может включаться параллельно, последовательно, частично-параллельно и частично-последовательно.

Среди двигателей, которые питаются от переменного тока, различают синхронные и асинхронные электродвигатели.

Синхронный электродвигатель – это двигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Существуют синхронные двигатели с дискретным углом перемещения ротора, заданное положение которого фиксируется подачей питания на соответствующие обмотки. Такой вид называют шаговыми. Также можно выделить вентильные реактивные электродвигатели, питания обмоток которых формируется с помощью полупроводниковых элементов.

Асинхронный электродвигатель – это двигатель переменного тока, в котором частота вращения ротора отличается от частоты вращения магнитного поля, которое создается напряжением питания. Моторы такого типа могут иметь разное количество фаз переменного тока. Так, однофазные запускаются вручную или пусковой. Также различают двухфазные, трехфазные и многофазные. Именно асинхронные трехфазные электродвигатели в настоящее время являются наиболее распространенными в промышленности. При отсутствии питания током с тремя фазами, могут работать от однофазной электросети, однако с меньшей мощностью и большим нагрузкам на обмотки, которые могут выйти из строя из-за перегрева.

Следует отметить, что впервые модель асинхронного двигателя предложил знаменитый изобретатель Никола Тесла в Будапеште в 1882 году.

Также существует универсальный коллекторный электродвигатель, который может работать как от постоянного, так и от переменного тока. Конструкция предусматривает только последовательное подключение обмоток, поэтому его ротор вращается только в одном направлении независимо от полярности.

Генератор

Электродвигатель может не только потреблять электроэнергию, но и производить ее. В таком случае он называется генератором электрического тока. Если на вал ротора подать обороты, то в обмотках статора возникнет электродвижущая сила. Таким образом, например, в автомобилях с двигателем внутреннего сгорания во время движения заряжается аккумулятор и снабжаются энергией другие приборы. В электромобилях и гибридах часто используется система рекуперации: когда водитель не давит на педаль газа (или тормозит), электроэнергия возвращается обратно в аккумулятор. В этом режиме не двигатель приводит в движение трансмиссию, а колеса буквально крутят ротор.

В общем, электродвигатели получили большую популярность в технике из-за таких преимуществ, как высокий коэффициент полезного действия и простота механизма. Диапазон мощности и габаритов чрезвычайно велик, что позволяет успешно использовать их как в мелких электронных приборах, так и в масштабной промышленной технике.

Читайте также: Новый дешевый двигатель Volabo увеличит запас хода электромобилей на 25%

Источник: shooter.ua

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

Как работает электромотор, строение электромагнитного двигателя автомобиля

Электродвигатель является одним из наиболее распространённых устройств, которое способно превращать даже небольшое количество поглощаемой энергии в сложную механическую работу. Это довольно экономичный, безопасный и практически безвредный для окружающей среды мотор, именно поэтому с каждым годом число авто, основанных на электротяге, только возрастает. В статье подробно рассмотрен основной принцип работы и устройство двигателя, способного работать на электрической энергии.

Как устроен электродвигатель

Сегодня известна не одна модификация электромотора, но несмотря на это, вне зависимости от его сложности и дополнительных узлов, каждый такой агрегат состоит из двух основных частей: статора и ротора. Статор представляет собой неподвижную несущую часть, на которой установлены магнитопроводы, а в некоторых случаях и индуктор — технический блок, преобразующий переменный ток в постоянный. Основой статора любого автомобиля является литой или сварной корпус из металла (станина) и сердечник. В сердечнике предусмотрены специальные пазы, в которых установлена статорная обмотка (из медной проволоки). Её роль играют тонкие, параллельно расположенные и изолированные жилы из меди (или медных сплавов).

Под ротором принято подразумевать главный движущий элемент мотора. Наиболее часто он приобретает вид стального вала, по бокам которого закреплены подшипники. Поверх вала располагается медная обмотка, закрытая пластинами-магнитопроводами. Ротор плотно устанавливается во внутреннюю часть статора, при этом между верхней поверхностью ротора и внутренней частью статора устанавливается минимальный зазор, который не препятствует вращению вала во время работы.

Питание такого узла производится при помощи литий-ионного аккумулятора, его основой являются отдельные модули, подключённые в единое целое при помощи последовательной схемы. Это позволяет создать напряжение необходимой мощности и с устойчивыми параметрами. Зачастую на выходе такой батареи формируется около 300 В постоянного тока, но в некоторых моделях автомобилей при чётко устроенном взаимодействии всех узлов показатель может доходить и до 700 В.

Рекомендуем для прочтения:

Принцип работы электродвигателя

Электромотор можно назвать одним из наиболее простых и эффективных способов конвертирования электрической энергии в механическую. Данное действие реализуется благодаря так называемой магнитной индукции. Под ней подразумевают особое физическое явление, во время которого происходит возникновение электродвижущей силы в замкнутой среде при изменении потока магнитной силы.

В обычных двигателях внутреннего сгорания коленвал приводится в движение при помощи давления газов, как производных сгорания топлива. Электрический двигатель вращает ось благодаря взаимодействию магнитных полей на статоре и роторе. При подаче электроэнергии на медной обмотке этих элементов возникают взаимоотталкивающиеся поля, которые позволяют автоматически двигать ротор относительно неподвижного статора.

Если устроить контролируемый режим подачи питания через проводник, можно добиться стабильного и сбалансированного вращения движущихся частей, а далее — и машины. Такое строение даёт возможность практически отказаться от сложной коробки передач и упростить управление автомобилем. Кроме того, эта конструкция значительно проще, нежели цилиндровый двигатель, поэтому в нормальном режиме эксплуатации её ресурс будет значительно больше.

Видео: Как работает электродвигатель

Виды электродвигателей

Современная промышленность подарила изобилие всевозможных разновидностей и типов электродвигателей. Наиболее часто их классифицируют в зависимости от поглощаемого тока, поэтому выделяют устройства, работающие на постоянном и переменном токе. Существует и смешанный вид силового агрегата, способный работать как на постоянном, так и переменном напряжении.

Важно! Двигатели от разных производителей авто имеют уникальную массу, технические решения, мощность, размеры и прочие параметры, поэтому с каждым годом по ходу развития электротехники классификация дополняется.

В свою очередь, моторы, работающие на переменном напряжении, делятся на две основные группы: синхронные и асинхронные. Первые имеют одинаковую частоту магнитного поля как статора, так и ротора. Вторые отличаются различными частотами, при этом скорость взаимодействия магнитного поля статора значительно больше, нежели у ротора.

Можно также различать электромагнитные двигатели в зависимости от фаз поглощения тока. Так, выделяют одно-, двух- и даже трёхфазные автомоторы, самым редким из них принято считать трёхфазный. Сегодня известно всего несколько реальных воплощений такого агрегата в современном автомобилестроении, это такие автомобили, как Mitsubishi i-MiEV и Chevrolet Volt.

И, наконец, автомобильный электромотор разделяют на бесколлекторный и коллекторный (в зависимости от наличия щёточно-коллекторного узла). Первый тип работает на переменном токе, второй — на постоянном. Коллектор в этом случае играет роль принудительного «выпрямителя» интенсивности напряжения. При этом основная масса автомобилей на современном рынке передвигается именно на коллекторных моторах.

Автомобильный электродвигатель — это реальная, выгодная и более экологичная альтернатива классическим топливным моторам. Конструкция этих агрегатов надёжна, а также позволяет стабильно работать вне зависимости от типа нагрузки. Несмотря на то что большинство современных электромагнитных моторов по мощности уступают бензиновым и дизельным, этот разрыв с каждым годом только сокращается.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Устройство и принцип работы электроинструмента

Содержание:

  1. 1. Коллекторный электродвигатель постоянного тока
    1. 1.1. Принцип действия
    2. 1.2. Недостатки
  2. 2. Бесколлекторный двигатель
  3. 3. Редуктор
    1. 3.1. Особенности редукторов
  4. 4. Устройства управления
  5. 5. Для безопасной работы

Двигатель, редуктор, устройства управления и детали для безопасной работы — вот основные узлы каждого электроинструмента. Для ручной машины важно, что бы она была как можно легче и меньше. Кроме того, от нее требуется высокая скорость, которую можно регулировать. Этим условиям отвечают двигатели постоянного тока. Они подразделяются на коллекторные и вентильные.

Коллекторный электродвигатель постоянного тока

Что бы понять, как электрическая энергия превращается в механическую, познакомимся с устройством двигателя. Его основные узлы: статор (индуктор), ротор (якорь) и примыкающий к нему щеточноколлекторный узел.

Статор — неподвижная стальная деталь, к которой прикрепляются главные и добавочные полюсы. Обмотка главных полюсов создает магнитное поле, а добавочная улучшает работу коллектора.

Вращающийся ротор устанавливается на валу. Он состоит из сердечника и обмотки. Ее концы соединяются с пластинами коллектора, к которому, в свою очередь, примыкают щетки - через них обмотка якоря соединяется с внешней цепью. Щетки занимают определенное положение по отношению к полюсам двигателя. В некоторых электроинструментах имеется поворотный щеткодержатель-траверса, благодаря ему положение щеток можно изменять. Это позволяет сохранить мощность при работе в режиме реверса. В остальных случаях вращение в обратном режиме включают электронные магнитные пускатели.

Принцип действия

Двигатель работает за счет электромагнитной индукции. При подаче напряжения на графитовые щетки, они замыкаются с ротором. По его обмотке проходит электрический ток. Так как ротор находится внутри магнитного поля статора, на него начинают действовать силы Ампера. На концах якоря они направлены в противоположные стороны, что создает крутящий момент. Ротор поворачивается на 180°. В этот момент крутящий момент становится равным нулю. Что бы вращение продолжалось необходимо переключить направление тока — провести коммутацию. По коллектору, который начал вращаться вместе с ротором, скользят щетки, в нужный момент они переходят с одной пластины на другую, меняя направление тока в обмотках ротора.

Частота вращения двигателя регулируется за счет изменения магнитного поля статора, которое в свою очередь генерируется током возбуждения двигателя. На этот ток можно повлиять реостатом, транзистором, т. е. любым устройством с активным сопротивлением. Таким образом, осуществляется электронная регулировка скорости.

Недостатки

Слабое место коллекторного двигателя — графитовые щетки, в процессе эксплуатации они истираются. При интенсивной нагрузке их приходится часто заменять. Кроме того, такой двигатель шумит и вибрирует во время работы, особенно на больших скоростях. Бороться с этими недостатками помогает использование в конструкциях качественных деталей и внешних антивибрационных элементов.

Бесколлекторный двигатель

Существует вид двигателей постоянного тока, в которых отсутствует щеточно-коллекторный узел. Ток в них изменяется с помощью электронных переключателей, что избавляет конструкцию от наличия щеток. Такие моторы называют вентильными. Принцип их работы аналогичен описанному выше. От коллекторных их отличает конструкция: магниты размещены на роторе, а обмотка на статоре.

Датчик углового положения ротора указывает электронному блоку, когда нужно менять направление тока. Единственный недостаток вентильного двигателя — дорогостоящие детали. По этой причине в ручных электроинструментах в основном используются коллекторные двигатели, с вентильным — лишь единичные модели: компании Makita и Hitachi предлагают аккумуляторные ударные шуруповерты, называя их инструментами будущего.

Редуктор

Механическую энергию, которую вырабатывает двигатель, нужно передать на рабочий орган машины (шпиндель). Эту функцию выполняет редуктор. Часто его называют понижающим. Скорость вращения входного вала высокая, механическая передача (одна или несколько) преобразует ее так, что на выходном валу получается меньшее число оборотов, но высокий крутящий момент.

В ручных машинах применяют разнообразные виды механических передач: зубчатая, ременная, цепная, планетарная. В большинстве случаев на выходе получается вращение. Но есть инструменты, в которых этот вид движения преобразуется в другой.

Ударный механизм перфоратора работает следующим образом. На валу установлен «пьяный» подшипник — качающийся привод, которой преобразует вращательное движение от двигателя в поступательное - цилиндра. В пространстве между цилиндром, поршнем и бойком, находится воздух. Он сжимается и заставляет поршень перемещаться сначала вперед к бойку, а затем возвращает его в исходное положение.

Редуктор электролобзика преобразует вращение вала двигателя в возвратно-поступательное движение ползуна. Расположенный вертикально ползун перемещает пилку вниз и вверх. Пилка опирается на опорный ролик. Наличие функции маятникового хода означает, что опорный ролик и вилка, на которой он держится, могут отклоняться назад. В результате пилка, кроме основного, совершает движение вперед и назад. Это увеличивает скорость прямолинейного реза. Ступени маятникового хода задаются степенью отклонения ролика.

В вибрационных шлифмашинах эксцентрик, установленный на валу, так преобразует вращательное движение, что подошва всего лишь колеблется с маленькой амплитудой. В эксцентриковых шлифовальных машинах вращательное движение рабочего органа сохраняется, но эксцентрик добавляет ему колебания. Такие преобразования позволяют выполнять с помощью этих инструментов тонкую шлифовку.

Особенности редукторов

Для пользователя имеет значение, из каких деталей изготовлен редуктор, от этого зависит его надежность и срок службы всего электроинструмента. В моделях бытового класса часто используются шестерни из пластмассы, в профессиональных — редуктор полностью металлический. Преимуществом считается, если и корпус то же выполнен из металла. В этом случае инструмент лучше выдерживает большие нагрузки и удары.

Важной функцией, которую может выполнять редуктор, является ступенчатое изменение частоты вращения выходного вала. Она доступна на отдельных моделях дрелей, шуруповертов. Механическое переключение скоростей позволяет работать с меньшей скоростью и большим крутящим моментом на первой передаче и с более высоким числом оборотов - на второй. Если сравнить технические характеристики в цифрах, то можно сразу заметить, что инструменты с двухскоростным (трехскоростные встречаются редко) редуктором отличаются большим числом оборотов по сравнению с обычными моделями, в которых обороты регулируются только электроникой. Эта особенность обеспечивает высокую производительность и оптимальный подбор режима работы.

Устройства управления

Для питания двигателя в электроинструментах используются различные схемы, в том числе микропроцессорные электроприводы. Обязательным элементом любой системы является выпрямитель. Он преобразует переменный ток сети в постоянный, который подается на электродвигатель. В аккумуляторных инструментах, которые питаются от батарей, выпрямитель не требуется.

Скорость вращения регулирует преобразователь частоты. Самый простой его вариант — это несколько реле, с помощью которых число оборотов можно установить вручную. В систему так же могут входить магнитные пускатели с кнопкой для изменения направления вращения двигателя (функция реверса). Устройство управления двигателем размещают под рукояткой или вблизи нее, где на корпус выводятся курок-выключатель, колесико регулировки скорости, кнопка реверса.

Для безопасной работы

К ручным инструментам предъявляются особые требования, связанные с безопасностью работы. Электропроводящие детали покрывают специальным материалом для защиты пользователя от поражения током. Многие производители, кроме основной изоляции, на случай ее повреждения, применяют дополнительную, получая, таким образом, двойную. Остальные защитные устройства, такие как муфты, фиксаторы применяются в зависимости от вида инструмента.

устройство, принцип работы, типы, управление

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.
Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному

Электродвигатель постоянного тока. Принцип действия и устройство. – www.motors33.ru

На рис. 1-1 представлена простейший электродвигатель постоянного тока, а на рис. 1-2 дано его схематическое изображение в осевом направлении. Неподвижная часть двигателя, называемая индуктор, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. 1-1 имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано).
Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. 1-1 и 1-2 простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.
Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Рис. 1-1. Простейший электродвигатель постоянного тока
Рис. 1-2. Работа простейшего электродвигателя постоянного тока в режиме генератора (а) и двигателя (б).

Генератор постоянного тока.

Рассмотрим сначала работу электродвигателя в режиме генератора.

Предположим, что якорь электродвигателя (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется Э. Д. С., направление которой может быть определено по «правилу правой руки» и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта Э. Д. С. индуктируется только вследствие вращения якоря и называется Э. Д. С. вращения. В обоих проводниках вследствие симметрии индуктируются одинаковые Э. Д. С., которые по контуру витка складываются. Частота Э. Д. С. f в двухполюсном электродвигателе равна скорости вращения якоря n, выраженной в оборотах в секунду:
f = n,
а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью:
f = pn

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Двигатель постоянного тока.

Рассматриваемая простейшая машина может работать также двигателем, если к обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы и возникнет электромагнитный момент. Величины силы и момента определяются как и для генератора. При достаточной величине Мэм якорь электродвигателя придет во вращение и будет развивать механическую мощность. Момент Мэм при этом является движущим и действует в направлении вращения.
Если мы желаем, чтобы при той же полярности полюсов направления вращения генератора (рис. 1-2, а) и двигателя (рис. 1-2, б) были одинаковы, то направление действия а следовательно, и направление тока у двигателя должны быть обратными по сравнению с генератором (рис. 1-2, б).
В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве механического инвертора тока.
Принцип обратимости. Из изложенного выше следует, что каждый электродвигателя постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.
Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно, при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.
Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.
Аналогичным образом может происходить изменение режима работы также в электродвигателях переменного тока.

«Технодинамика» разработала электродвигатель для защиты «тропических» вертолетов

Холдинг «Технодинамика» Госкорпорации Ростех разработал электродвигатель для применения в пылезащитном устройстве (ПЗУ) «тропических» версий вертолетов. Устройство разработано в рамках программы импортозамещения, первый опытный образец уже передан для испытаний. 

Электродвигатель предназначен для работы в пылезащитном устройстве, которое предохраняет двигатель от попадания пыли и песка при полетах на сверхмалых высотах. Устройство предназначено для установки на вертолеты Ми-38 и различные модификации легендарного Ми-8, способные эксплуатироваться в тропическом климате и в условиях пустыни. 

«Мы планируем, что наша разработка заменит электродвигатели пылезащитных устройств иностранного производства. Основными заказчиками таких изделий являются страны Африки, но уверен, что данная разработка станет востребованной и на отечественном авиационном рынке и снизит зависимость от импортных комплектующих», – прокомментировал генеральный директор холдинга «Технодинамика» Игорь Насенков. 

Опытно-конструкторская работа по созданию электродвигателя вентилятора ПЗУ выполняется в целях обеспечения госпрограммы «Развитие авиационной промышленности на 2013–2025 годы» в рамках государственного контракта «Создание, квалификация авиационными властями и внедрение систем и агрегатов авиационного оборудования с целью импортозамещения и повышения технического уровня гражданских летательных аппаратов», заключенного между АО «Технодинамика» и Министерством промышленности и торговли Российской Федерации.

События, связанные с этим
7 декабря 2020

«Технодинамика» разработала электродвигатель для защиты «тропических» вертолетов

Подпишитесь на новости

Асинхронный двигатель - принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению - однофазный асинхронный двигатель. 

  • Просмотров: 83609
  • Как работают электродвигатели?

    Криса Вудфорда. Последнее изменение: 25 июля 2020 г.

    Щелкните выключателем и мгновенно получите власть - как любили наши предки электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили - и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор.Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной - вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя как одни из лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

    Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону перед осью, с прорезями, находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

    Как электромагнетизм заставляет двигатель двигаться?

    Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

    Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение.Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом либо притягивать, либо отталкивать. Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и именно это заставляет проволоку подпрыгивать.

    Правило левой руки Флеминга

    Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

    Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом. Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет покажите направление, в котором провод Движется.

    Это ...

    • Первый палец = Поле
    • SeCond палец = текущий
    • ЧтМб = Движение

    Несколько слов о текущем

    Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческое соглашение.Такие люди, как Бенджамин Франклин, помогли разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что он перетекал с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению обычного тока.Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

    Как работает электродвигатель - теоретически

    Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

    Связь между электричеством, магнетизмом и движением изначально была открыл в 1820 году французский физик Андре-Мари Ампер (1775–1867), и это основная наука об электродвигателе. Но если мы хотим превратить это удивительное научное открытие в более практическое немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878).Вот как они пришли к своему гениальному изобретению.

    Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас через провод, а другой один возвращает ток обратно. Потому что ток течет в Правило левой руки Флеминга говорит нам два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

    Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась постоянно - и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко достаточно, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он пойдет обратно в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать шаркая назад и вперед на месте, даже не куда угодно.

    Как работает электродвигатель - на практике

    Есть два способа решить эту проблему. Один из них - использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение - добавить компонент называется коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который коммутируют, означает путешествовать туда и обратно.) В простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача - реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару свободных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш "свинец") или тонкие отрезки упругого металла, который (как название предполагает) "задела" коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

    Работа: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила с каждой стороны катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

    Такой простой экспериментальный двигатель, как этот, не способен производить большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что мотор может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки. На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, поэтому он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

    Хотя мы описали ряд различных частей, вы можете думать о двигателе как о двух основных компонентах:

    • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
    • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

    Универсальные двигатели

    Такие двигатели постоянного тока

    отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут работать от переменного или постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

    • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
    • Когда вы подаете переменный ток, однако, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба, , меняют направление, точно синхронно, поэтому сила на катушке всегда в одном и том же направлении, а двигатель всегда вращается по часовой стрелке или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

    Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда изменяется ток питания.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

    Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать от постоянного или переменного тока. Серый электромагнит по краю - это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание также на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который приводит в действие универсальные двигатели.

    Электродвигатели прочие

    В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают несколько иначе: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

    Еще одна интересная конструкция - бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре, а постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

    Как работают электродвигатели?

    Криса Вудфорда. Последнее изменение: 25 июля 2020 г.

    Щелкните выключателем и мгновенно получите власть - как любили наши предки электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили - и вы можете быть удивлены, насколько они распространены.Сколько электрических моторы сейчас в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор. Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной - вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.Электродвигатели зарекомендовали себя как одни из лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

    Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону перед осью, с прорезями, находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

    Как электромагнетизм заставляет двигатель двигаться?

    Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

    Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит.Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение. Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом либо притягивать, либо отталкивать.Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и именно это заставляет проволоку подпрыгивать.

    Правило левой руки Флеминга

    Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

    Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом.Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет покажите направление, в котором провод Движется.

    Это ...

    • Первый палец = Поле
    • SeCond палец = текущий
    • ЧтМб = Движение

    Несколько слов о текущем

    Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческое соглашение.Такие люди, как Бенджамин Франклин, помогли разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что он перетекал с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению обычного тока. Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

    Как работает электродвигатель - теоретически

    Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

    Связь между электричеством, магнетизмом и движением изначально была открыл в 1820 году французский физик Андре-Мари Ампер (1775–1867), и это основная наука об электродвигателе. Но если мы хотим превратить это удивительное научное открытие в более практическое немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.

    Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас через провод, а другой один возвращает ток обратно. Потому что ток течет в Правило левой руки Флеминга говорит нам два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

    Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась постоянно - и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко достаточно, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он пойдет обратно в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать шаркая назад и вперед на месте, даже не куда угодно.

    Как работает электродвигатель - на практике

    Есть два способа решить эту проблему. Один из них - использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение - добавить компонент называется коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который коммутируют, означает путешествовать туда и обратно.) В простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача - реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару свободных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш "свинец") или тонкие отрезки упругого металла, который (как название предполагает) "задела" коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

    Работа: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила с каждой стороны катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

    Такой простой экспериментальный двигатель, как этот, не способен производить большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что мотор может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки. На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, поэтому он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

    Хотя мы описали ряд различных частей, вы можете думать о двигателе как о двух основных компонентах:

    • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
    • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

    Универсальные двигатели

    Такие двигатели постоянного тока

    отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут работать от переменного или постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

    • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
    • Когда вы подаете переменный ток, однако, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба, , меняют направление, точно синхронно, поэтому сила на катушке всегда в одном и том же направлении, а двигатель всегда вращается по часовой стрелке или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

    Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда изменяется ток питания.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

    Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать от постоянного или переменного тока. Серый электромагнит по краю - это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание также на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который приводит в действие универсальные двигатели.

    Электродвигатели прочие

    В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают несколько иначе: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

    Еще одна интересная конструкция - бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре, а постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

    Электродвигатели - Как работают электродвигатели? - Высшее - OCR 21C - Объединенная научная версия GCSE - OCR 21st Century

    Объяснение электродвигателя

    На схеме показан простой двигатель, работающий на постоянном токе (dc).

    Правило левой руки Флеминга может быть использовано для объяснения того, почему катушка поворачивается

    Начиная с позиции, показанной на схеме двигателя постоянного тока:

    • ток в левой части катушки вызывает силу, направленную вниз, и ток в правая часть катушки создает восходящую силу
    • катушка вращается против часовой стрелки из-за сил, описанных выше

    Когда катушка находится вертикально, она движется параллельно магнитному полю, не создавая силы.Это привело бы к остановке двигателя, но две особенности позволяют катушке продолжать вращаться:

    • импульс двигателя заставляет его немного продолжать вращаться
    • коммутатор с разъемным кольцом меняет направление тока каждые полувиток

    Это означает, что ток в левой части катушки по-прежнему вызывает силу, направленную вниз, а ток в правой части катушки по-прежнему вызывает силу, направленную вверх.

    Это означает, что силы воздействия двигателя продолжают вызывать вращение катушки против часовой стрелки.

    Электродвигатели влияют практически на все аспекты повседневной жизни. Их можно найти в домах, школах и даже в автомобилях.

    Электродвигатели

    Что внутри электродвигателя?

    Катушка ротора

    Катушка сделана из медной проволоки, потому что медь - отличный проводник. Он наматывается на арматуру. Катушка становится электромагнитом, когда через нее протекает ток.

    Якорь

    Якорь поддерживает катушку и может помочь сделать электромагнит сильнее.Это делает мотор более эффективным.

    Постоянные магниты

    Есть два постоянных магнита. Они создают постоянное магнитное поле, так что катушка будет вращаться, когда в ней протекает ток.

    Некоторые двигатели имеют электромагниты вместо постоянных магнитов (Рисунок 9). Они сделаны из большего количества катушек медной проволоки.

    Коммутатор

    Каждый конец катушки соединен с одной из двух половин коммутатора. Коммутатор меняет местами контакты каждые пол-оборота.Ротор на Рисунке 8 имеет две катушки, поэтому для него необходимы четыре сегмента коммутатора.

    Щетки

    Щетки давят на коммутатор. Они поддерживают контакт с коммутатором, даже если он вращается. Ток проходит через щетки в двигатель и выходит из него. В реальных двигателях щетки сделаны из угля.

    S тележка

    Каркас из магнитного материала соединяет два постоянных магнита и, по сути, превращает их в один подковообразный магнит.

    Рисунок 6: Детали модели двигателя постоянного тока. Двигатели постоянного тока с питанием от низковольтных батарей приводят в движение моторизованные игрушки. Их легко разобрать. Вы можете обнаружить, что они используют несколько катушек и имеют соответствующий многосегментный коммутатор.

    Рисунок 7 - Простой двухполюсный двигатель постоянного тока (один N и один S).

    Почему он поворачивается?

    На странице, посвященной электромагнитам, показано, как катушка с проволокой становится магнитом, когда через нее протекает электрический ток.Катушка двигателя, намотанная на якорь, становится электромагнитом, но электромагнит находится внутри второго постоянного магнитного поля. Эти поля взаимодействуют как два стержневых магнита. Результат - притяжение или отталкивание, в зависимости от текущего направления. Ток течет в одном направлении справа от катушки и в противоположном направлении слева.

    Сила, действующая на провод, направлена ​​под прямым углом к ​​магнитному полю, а также под прямым углом к ​​току. Это называется моторным эффектом.Правило Флеминга использует ваши пальцы, расположенные под прямым углом друг к другу, чтобы предсказать силу, действующую на провод в магнитном поле. Для моторов вы используете левую руку.

    См. Рис. 7. Когда ток включен, он течет в направлении зеленой стрелки и вызывает восходящую силу. Попытайтесь совместить схему левой рукой. Поскольку он течет обратно вниз с другой стороны в противоположном направлении, он вызывает силу, направленную вниз. Двигайте рукой, чтобы соответствовать этому направлению. Силы объединяются, чтобы вращать катушку.

    Это может работать только на пол-оборота. Разъем с разрезным кольцом, называемый коммутатором, меняет местами соединения, чтобы можно было начать следующую половину оборота. Это происходит на каждые пол-оборота, поэтому двигатель вращается. Электрический ток подается на катушку через щетки.

    Так работает электродвигатель постоянного тока. Двигатели переменного тока более сложны, но по-прежнему действует правило Флеминга.

    Как работают моторы и как выбрать мотор для вашего проекта

    Как работают двигатели и как выбрать правильный двигатель

    Моторы можно найти практически везде.Это руководство поможет вам изучить основы электродвигателей, доступные типы и способы выбора правильного электродвигателя. Основные вопросы, на которые нужно ответить при принятии решения о том, какой двигатель наиболее подходит для применения, - это какой тип выбрать и какие характеристики имеют значение.

    Как работают моторы?

    Электродвигатели работают, преобразуя электрическую энергию в механическую энергию для создания движения. Сила создается внутри двигателя за счет взаимодействия между магнитным полем и переменным (AC) или постоянным (DC) током обмотки.С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I * R); напряжение должно увеличиваться, чтобы поддерживать тот же ток при увеличении сопротивления.

    Электродвигатели имеют множество применений. Обычные промышленные применения включают воздуходувки, станки и электроинструменты, вентиляторы и насосы. Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.

    Типы двигателей:

    Существует много типов двигателей постоянного тока , но наиболее распространены щеточные или бесщеточные.Также существуют вибрационные двигатели, шаговые двигатели и серводвигатели.

    Электродвигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые подключаются к коммутатору для изменения направления тока. Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об / мин). Несколько недостатков заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут создавать электромагнитный шум из-за искрения щеток.


    Щеточный двигатель постоянного тока

    Бесщеточные двигатели постоянного тока используют постоянные магниты в роторном узле. Они популярны на рынке хобби для применения в самолетах и ​​наземных транспортных средствах. Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем щеточные двигатели постоянного тока. Они также могут производиться серийно и напоминать двигатель переменного тока с постоянной частотой вращения, за исключением питания от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими трудно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специализированных редукторов в приводах, что приводит к более высоким капитальным затратам, сложности и экологическим ограничениям.


    Бесщеточный двигатель постоянного тока

    Вибрационные двигатели используются для приложений, требующих вибрации, таких как мобильные телефоны или игровые контроллеры. Они генерируются электродвигателем и имеют несбалансированную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для звуковой сигнализации или для сигналов тревоги или дверных звонков.


    Вибрационный двигатель

    Когда требуется точное позиционирование, шаговые двигатели - ваш друг.Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, который дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение посредством сигнальных импульсов, отправляемых драйверу, который интерпретирует их и отправляет пропорциональное напряжение на двигатель. Их относительно просто сделать и контролировать, но они постоянно потребляют максимальный ток. Расстояние небольшого шага ограничивает максимальную скорость, и шаги можно пропустить при высоких нагрузках.


    Шаговый двигатель

    Серводвигатели - еще один популярный двигатель на рынке хобби, который используется для неточного управления положением. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ), посредством отправки электрических импульсов на провод управления. Сервоприводы могут быть переменного или постоянного тока. Сервоприводы переменного тока могут выдерживать более высокие скачки тока и используются для промышленного оборудования, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений.Чтобы узнать больше о сервоприводах, ознакомьтесь с нашей статьей Как работают сервомоторы .

    Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
    Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или не медленнее, чем указанная частота. Скольжение , разница между фактической и синхронной скоростью, необходима для создания крутящего момента , крутящего момента, вызывающего вращение, в асинхронных двигателях.Магнитное поле, окружающее ротор этих двигателей, создается наведенным током.

    Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем с высокой мощностью, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других приложениях, таких как часы, вентиляторы и дисководы.

    Что нужно учитывать при покупке мотора:

    При выборе двигателя необходимо обратить внимание на несколько характеристик, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об / мин).

    Ток - это то, что питает двигатель, и слишком большой ток приведет к его повреждению. Для двигателей постоянного тока важны рабочий ток и ток остановки. Рабочий ток - это средняя величина тока, которую двигатель может потреблять при типичном крутящем моменте. Ток остановки обеспечивает достаточный крутящий момент для двигателя, чтобы работать со скоростью остановки или 0 об / мин. Это максимальный ток, который двигатель может потреблять, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает с напряжением выше номинального, чтобы не допустить плавления катушек.

    Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает на наиболее эффективное напряжение во время работы. Обязательно подайте рекомендованное напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, а слишком высокое напряжение может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.

    Рабочие значения и значения остановки также необходимо учитывать с крутящим моментом.Рабочий крутящий момент - это величина крутящего момента, которую двигатель был разработан, а крутящий момент при остановке - это величина крутящего момента, возникающая при подаче мощности от скорости остановки. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых приложениях вам потребуется знать, насколько далеко вы можете толкнуть двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент сваливания достаточно высок, чтобы поднять вес робота. В этом случае крутящий момент важнее скорости.

    Скорость или скорость (об / мин) может быть сложной для двигателей. Общее правило заключается в том, что двигатели наиболее эффективно работают на самых высоких скоростях, но это не всегда возможно, если требуется передача. Добавление шестерен снизит эффективность двигателя, поэтому примите во внимание снижение скорости и крутящего момента.

    Это основные принципы, которые следует учитывать при выборе двигателя. Подумайте о назначении приложения и о том, какой ток он использует, чтобы выбрать подходящий тип двигателя. Спецификации приложения, такие как напряжение, ток, крутящий момент и скорость, будут определять, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.

    Есть ли у вас дополнительные советы по выбору двигателей? Дайте нам знать по телефону [адрес электронной почты защищен] .

    Как работают электродвигатели и генераторы

    Электромобили используют исключительно электродвигатели для движения, а гибриды используют электродвигатели, чтобы помочь своим двигателям внутреннего сгорания при передвижении. Но это не все. Именно эти двигатели могут использоваться и используются для выработки электроэнергии (посредством рекуперативного торможения) для зарядки бортовых аккумуляторов этих транспортных средств.

    Самый частый вопрос: «Как это может быть ... как это работает?» Большинство людей понимают, что для работы двигатель работает от электричества - они каждый день видят это в своих бытовых приборах (стиральных машинах, пылесосах, кухонных комбайнах).

    Но идея о том, что двигатель может «вращаться в обратном направлении», фактически вырабатывая электричество, а не потребляя его, кажется почти магией. Но как только связь между магнитами и электричеством (электромагнетизм) и концепция сохранения энергии будет понята, тайна исчезнет.

    Электромагнетизм

    Электроэнергия и выработка электроэнергии начинаются со свойства электромагнетизма - физических отношений между магнитом и электричеством. Электромагнит - это устройство, которое действует как магнит, но его магнитная сила проявляется и контролируется электричеством.

    Когда провод, сделанный из проводящего материала (например, меди), проходит через магнитное поле, в проводе создается ток (элементарный генератор). И наоборот, когда электричество проходит через провод, намотанный вокруг железного сердечника, и этот сердечник находится в присутствии магнитного поля, он будет двигаться и скручиваться (очень простой двигатель).

    Моторы / генераторы

    Мотор / генераторы - это действительно одно устройство, которое может работать в двух противоположных режимах. Вопреки тому, что иногда думают люди, это не означает, что два режима двигателя / генератора работают в обратном направлении друг от друга (что в качестве двигателя устройство вращается в одном направлении, а в качестве генератора оно вращается в противоположном направлении).

    Вал всегда вращается одинаково. «Смена направления» заключается в потоке электричества. В качестве двигателя он потребляет электричество (поступает) для производства механической энергии, а в качестве генератора он потребляет механическую энергию для производства электроэнергии (вытекает).

    Электромеханическое вращение

    Электродвигатели / генераторы обычно бывают двух типов: переменного (переменного тока) или постоянного (постоянного тока), и эти обозначения указывают на тип электроэнергии, которую они потребляют и генерируют.

    Если не вдаваться в подробности и не затушевывать проблему, то вот разница: переменный ток меняет направление (чередуется), когда он течет по цепи. Постоянный ток течет в одном направлении (остается неизменным) при прохождении через цепь.

    Тип используемого тока в основном зависит от стоимости устройства и его эффективности (двигатель / генератор переменного тока, как правило, дороже, но также намного эффективнее). Достаточно сказать, что в большинстве гибридов и во многих более крупных полностью электрических транспортных средствах используются двигатели / генераторы переменного тока - так что это тип, на котором мы сосредоточимся в этом объяснении.

    Электродвигатель / генератор переменного тока состоит из 4 основных частей:

    • Установленный на валу якорь с обмоткой из проволоки (ротор)
    • Поле магнитов, которые индуцируют электрическую энергию, собранную бок о бок в корпусе (статоре)
    • Контактные кольца, которые переносят переменный ток к / от якоря
    • Щетки, которые контактируют с контактными кольцами и передают ток в / из электрической цепи

    Генератор переменного тока в действии

    Якорь приводится в движение механическим источником энергии (например, при промышленном производстве электроэнергии это будет паровая турбина). Когда этот намотанный ротор вращается, его проволочная катушка проходит над постоянными магнитами в статоре, и в проводах якоря создается электрический ток.

    Но поскольку каждая отдельная петля в катушке сначала проходит через северный полюс, а затем через южный полюс каждого магнита по мере его вращения вокруг своей оси, индуцированный ток постоянно и быстро меняет направление. Каждое изменение направления называется циклом и измеряется в циклах в секунду или герцах (Гц).

    В Соединенных Штатах частота цикла составляет 60 Гц (60 раз в секунду), тогда как в большинстве других развитых стран мира она составляет 50 Гц.Отдельные контактные кольца установлены на каждом из двух концов проволочной петли ротора, чтобы обеспечить путь для выхода тока из якоря. Щетки (которые на самом деле являются углеродными контактами) скользят по контактным кольцам и завершают путь для тока в цепь, к которой подключен генератор.

    Двигатель переменного тока в действии

    Действие двигателя (подача механической энергии), по сути, противоположно действию генератора. Вместо того, чтобы вращать якорь для производства электричества, ток подается по цепи через щетки и контактные кольца в якорь.Этот ток, протекающий через ротор (якорь) с обмоткой, превращает его в электромагнит. Постоянные магниты в статоре отражают эту электромагнитную силу, заставляя якорь вращаться. Пока электричество течет по цепи, двигатель будет работать.

    Как работает мотор электромобиля

    Типы электродвигателей

    В автомобильной промышленности существуют два типа двигателей переменного тока: синхронные и асинхронные. Когда дело доходит до электромобиля, у синхронных и асинхронных двигателей есть свои сильные стороны - один не обязательно «лучше» другого.

    Двигатели синхронные и асинхронные

    Асинхронный двигатель, также называемый асинхронным двигателем, основан на статоре с электрическим приводом для создания вращающегося магнитного поля. Это влечет ротор в бесконечную погоню, как если бы он безуспешно пытался догнать магнитное поле. Асинхронный двигатель часто используется в электромобилях, которые в основном используются для движения с повышенной скоростью в течение длительных периодов времени.

    В синхронном двигателе ротор сам действует как электромагнит, активно участвуя в создании магнитного поля.Таким образом, его скорость вращения прямо пропорциональна частоте тока, который питает двигатель. Это делает синхронный двигатель идеальным для городского движения, которое обычно требует регулярной остановки и запуска на низких скоростях.

    Как синхронные, так и асинхронные двигатели работают в обратном порядке, что означает, что они могут преобразовывать механическую энергию в электричество во время замедления. Это принцип рекуперативного торможения, который исходит от генератора.

    Детали электродвигателей

    Давайте теперь более подробно рассмотрим некоторые из различных частей двигателя электромобиля: от магнитов электродвигателей или синхронных двигателей с внешним возбуждением (EESM) до силового агрегата в целом.

    Постоянные магниты

    В некоторых синхронных двигателях в качестве ротора используется двигатель с постоянными магнитами. Эти постоянные магниты встроены в стальной ротор, создавая постоянное магнитное поле. Преимущество постоянного электромотора в том, что он работает без источника питания, но требует использования металлов или сплавов, таких как неодим или диспрозий. Эти «редкоземельные элементы» являются ферромагнитными, что означает, что они могут быть намагничены, чтобы стать постоянными магнитами.Они используются в различных промышленных целях: от ветряных генераторов, аккумуляторных инструментов и наушников до велосипедных динамо-машин и… тяговых двигателей для некоторых электромобилей!

    Проблема в том, что цены на эти «редкие земли» очень волатильны. Несмотря на свое название, они не обязательно так уж редки, но встречаются почти исключительно в Китае, который, следовательно, имеет квазимонополию на их производство, продажу и распространение. Это объясняет, почему производители упорно работали, чтобы найти альтернативные решения для электродвигателей транспортных средств.

    Синхронные двигатели с внешним возбуждением

    Одно из таких решений, которое Renault использовало для New ZOE, включает сборку магнита электродвигателя из медной катушки. Это требует более сложного производственного процесса, но позволяет избежать проблем с питанием при сохранении отличного соотношения между массой двигателя и передаваемым крутящим моментом.

    Гийом Фори, руководитель отдела проектирования завода Renault Cléon во Франции, дает представление о сложности и изобретательности двигателя New ZOE: «Производство EESM требует специальных процессов намотки и пропитки катушек.Ограничения ожидаемых характеристик продукта, цель снижения отношения веса к мощности и высокая скорость производства требуют от нас эффективного использования самых современных технологий для выполнения этих процессов ».

    Электротрансмиссия

    В электромобиле двигатель, состоящий из ротора и статора, является частью более крупного блока, электрической трансмиссии, ансамбля, который заставляет электродвигатель работать.

    Также в этом устройстве силовой электронный контроллер (PEC) объединяет всю силовую электронику, отвечающую за управление питанием двигателя и зарядку батареи.Наконец, он включает в себя редукторный двигатель, часть, отвечающую за регулировку крутящего момента и скорости вращения, передаваемых двигателем на колеса.

    Вместе эти элементы обеспечивают плавную и эффективную работу электродвигателя. И результат? Ваш электромобиль бесшумный, надежный, менее дорогой и приятный в управлении!

    Авторские права: Pagecran

    .