Коэффициент полезного действия (кпд) — формулы, обозначение, расчет
Покажем, как применять знание физики в жизни
Начать учиться 148.6KЛюбой механизм хочется оценить с точки зрения его пользы. Важно же понять, хорошо он выполняет свою функцию или нет. Для этого нужно такое понятие, как КПД.
КПД: понятие коэффициента полезного действия
Представьте, что вы пришли на работу в офис, выпили кофе, поболтали с коллегами, посмотрели в окно, пообедали, еще посмотрели в окно — вот и день прошел. Если вы не сделали ни одного дела по работе, то можно считать, что ваш коэффициент полезного действия равен нулю.
В обратной ситуации, когда вы сделали все запланированное — КПД равен 100%.
По сути, КПД — это процент полезной работы от работы затраченной.
Вычисляется по формуле:
Формула КПД η = (Aполезная/Aзатраченная) · 100% η — коэффициент полезного действия [%] Aполезная — полезная работа [Дж] Aзатраченная — затраченная работа [Дж] |
Есть такое философское эссе Альбера Камю «Миф о Сизифе». Оно основано на легенде о неком Сизифе, который был наказан за обман. Его приговорили после смерти вечно таскать огромный булыжник вверх на гору, откуда этот булыжник скатывался, после чего Сизиф тащил его обратно в гору. То есть он делал совершенно бесполезное дело с нулевым КПД. Есть даже выражение «Сизифов труд», которое описывает какое-либо бесполезное действие.
Давайте пофантазируем и представим, что Сизифа помиловали и камень с горы не скатился. Тогда, во-первых, Камю бы не написал об этом эссе, потому что никакого бесполезного труда не было. А во-вторых, КПД в таком случае был бы не нулевым.
Полезная работа в этом случае равна приобретенной булыжником потенциальной энергии. Потенциальная энергия прямо пропорционально зависит от высоты: чем выше расположено тело, тем больше его потенциальная энергия. То есть, чем выше Сизиф прикатил камень, тем больше потенциальная энергия, а значит и полезная работа.
Потенциальная энергия Еп = mg Еп — потенциальная энергия [Дж] m — масса тела [кг] g — ускорение свободного падения [м/с2] На планете Земля g ≃ 9,8 м/с2 |
Затраченная работа здесь — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.
Механическая работа А = FS A — механическая работа [Дж] F — приложенная сила [Н] S — путь [м] |
И как же достоверно определить, какая работа полезная, а какая затраченная? Все очень просто! Задаем два вопроса:
В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы). Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа. |
Не отбрасываем!
Если КПД получился больше 100 — идем проверять на ошибки. Такое может получиться, если неправильно подставили в формулу или перепутали затраченную и полезную работу.
η = (Aполезная/Aзатраченная) · 100% η — коэффициент полезного действия [%] Aполезная — полезная работа [Дж] Aзатраченная — затраченная работа [Дж] |
Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.
Давайте разберемся на примере задачи.
Задача
Чтобы вкатить санки массой 4 кг в горку длиной 12 метров, мальчик приложил силу в 15 Н. Высота горки равна 2 м. Найти КПД этого процесса. Ускорение свободного падения принять равным g ≃9,8 м/с2
Запишем формулу КПД.
η = (Aполезная/Aзатраченная) · 100%
Теперь задаем два главных вопроса:
Ради чего все это затеяли?
Чтобы санки в горку поднять — то есть ради приобретения телом потенциальной энергии. Значит в данном процессе полезная работа равна потенциальной энергии санок.
Потенциальная энергия Еп = mg m — масса тела [кг] g — ускорение свободного падения [м/с2] h — высота [м] На планете Земля g ≃ 9,8 м/с2 |
За счет чего процесс происходит?
За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе
Механическая работа А = FS A — механическая работа [Дж]F — приложенная сила [Н] S — путь [м] |
Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:
η = Eп/A · 100% = mgh/FS · 100%
Подставим значения:
η = 4 · 9,8 · 2/15 · 12 · 100% = 78,4/180 · 100% ≃ 43,6 %
Ответ: КПД процесса приблизительно равен 43,6%
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
КПД в термодинамике
В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.
- Тепловой двигатель (машина) — это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.
Схема теплового двигателя выглядит так:
У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).
- Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ или топливо). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.
Оставшееся количество теплоты Q 2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.
КПД такой тепловой машины будет равен:
КПД тепловой машины η = (Aполезная/Qнагревателя) · 100% η — коэффициент полезного действия [%] Aполезная — полезная работа (механическая) [Дж] Qнагревателя — количество теплоты, полученное от нагревателя[Дж] |
Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:
A = Qнагревателя — Qхолодильника.
Подставим в числитель и получим такой вариант формулы.
КПД тепловой машины η = Qнагревателя − Qхолодильника/Qнагревателя · 100% η — коэффициент полезного действия [%] Qнагревателя — количество теплоты, полученное от нагревателя [Дж] Qхолодильника — количество теплоты, отданное холодильнику [Дж] |
А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?
Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.
Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.
Запишем его, чтобы не забыть:
Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.
Задача
Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.
Решение:
Возьмем формулу для расчета КПД:
η = Qнагревателя − Qхолодильника/Qнагревателя · 100%
Решать будем в системе СИ, поэтому переведем значения из килоджоулей в джоули и затем подставим в формулу:
η = 20 000 − 10 000/20 000 · 100% = 50%
Ответ: КПД тепловой машины равен 50%.
Идеальная тепловая машина: цикл Карно
Давайте еще чуть-чуть пофантазируем: какая она — идеальная тепловая машина. Кажется, что это та, у которой КПД равен 100%.
На самом деле понятие «идеальная тепловая машина» уже существует. Это тепловая машина, у которой в качестве рабочего тела взят идеальный газ. Такая тепловая машина работает по циклу Карно. Зависимость давления от объема в этом цикле выглядит следующим образом
А КПД для цикла Карно можно найти через температуры нагревателя и холодильника.
КПД цикла Карно η = Tнагревателя − Tхолодильника / Tнагревателя · 100% η — коэффициент полезного действия [%] Tнагревателя — температура нагревателя [Дж] Tхолодильника — температура холодильника [Дж] |
КПД в электродинамике
Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.
Вспомним формулу:
КПД η = (Aполезная/Aзатраченная) · 100% η — коэффициент полезного действия [%] Aполезная — полезная работа [Дж] Aзатраченная — затраченная работа [Дж] |
Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.
Задачка, чтобы разобраться
Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.
Решение:
Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно 😉
Количество теплоты, затраченное на нагревание Q = cm(tконечная − tначальная) Q — количество теплоты [Дж] c — удельная теплоемкость вещества [Дж/кг · ˚C] m — масса [кг] tконечная — конечная температура [˚C] tначальная — начальная температура [˚C] |
Работает чайник, потому что в розетку подключен. Затраченная работа в данном случае — это работа электрического тока.
Работа электрического тока A = (I2) · Rt = (U2)/R · t = UIt A — работа электрического тока [Дж] I — сила тока [А] U — напряжение [В] R — сопротивление [Ом] t — время [c] |
То есть в данном случае формула КПД будет иметь вид:
η = Q/A · 100% = Q/UIt · 100%
Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь нам известны все значения, поэтому подставим их:
η = 22176/220 · 1,4 · 120 · 100% = 60%
Ответ: КПД чайника равен 60%.
Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:
Работа электрического тока A = Pt A — работа электрического тока [Дж] P — мощность [Вт] t — время [c] |
Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.
КПД η = Pполезная/Pзатраченная · 100% η — коэффициент полезного действия [%] Pполезная — полезная мощность [Дж] Pзатраченная — затраченная мощность [Дж] |
Карина Хачатурян
К предыдущей статье
Магнитное поле
К следующей статье
199.7KЗакон Ома
Получите индивидуальный план обучения физике на бесплатном вводном уроке
На вводном уроке с методистом
Выявим пробелы в знаниях и дадим советы по обучению
Расскажем, как проходят занятия
Подберём курс
Формула полезной работы в физике для КПД: как найти, формула
Содержание:
-
Понятие КПД (коэффициента полезного действия)
- Применение в различных сферах физики
- Какой буквой обозначается, единицы измерения
- Физическая формула КПД
- Примеры расчета КПД
Содержание
-
Понятие КПД (коэффициента полезного действия)
- Применение в различных сферах физики
- Какой буквой обозначается, единицы измерения
- Физическая формула КПД
- Примеры расчета КПД
Выбирая техническое устройство, всегда обращают внимание на эффективность его работы. Иными словами, насколько высока энергоэффективность. Получить ответ на этот вопрос можно, если произвести вычисление коэффициента его полезного действия. Тогда становится понятным, насколько затраченные усилия будут обеспечивать полезный результат работы.
Понятие КПД (коэффициента полезного действия)
Термин «КПД» широко используется не только среди профессионалов, но и в быту. Под ним понимают, насколько совершенная работа превышает полезную, т.е. ту, ради которой механизм или прибор приобретается.
Учеными разработана специальная формула, из которой следует, что КПД всегда меньше единицы. Чтобы рассчитать коэффициент, нужно полезную работу, выраженную в Джоулях, разделить на энергию, которая затрачена на эту работу. Поскольку энергия также выражается в Джоулях, конечная расчетная величина безразмерна.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Источник: mashintop.ruОбъяснить бытовым языком данное понятие можно так: энергия, выделяемая от плиты, на которой должен закипеть чайник, расходуется не только на его нагревание. Она должна нагреть саму посудину, воздух вокруг нее, сам нагревательный элемент. И только ее часть будет расходоваться на передачу воде. Чтобы сориентироваться, насколько долго будет закипать чайник одного объема на различного вида печах, нужно знать их КПД.
В поисках наиболее эффективного прибора не стоит стремиться к единице. Такого не бывает. Например, КПД атомной электростанции примерно равно 35%.
Происходит это по двум причинам:
- Исходя из закона сохранения энергии, получить больше работы, чем затрачено энергии, невозможно.
- Любая работа сопровождается определенными потерями, будь-то нагревание тары или преодоление сил трения при движении по поверхности.
Термин КПД применим практически к каждому процессу, в котором имеется затраченная и полезная работа.
Применение в различных сферах физики
Характеризуя КПД, следует учитывать, что он не является константой, поскольку в каждом случае свои особенности энергозатрат. С другой стороны, он не может быть установлен изолированно от конкретных процессов. Если рассмотреть работу электродвигателя, величина его КПД сложится исходя из преобразования энергии тока в механическую работу.
В данном случае КПД рассматривается не как соотношение полезной и общей работы, а как соотношение отдаваемой мощности и подводимой к рабочему механизму.
В формулу (η=P2/P1) должны быть включены P1 – первичная мощность и P2 – мощность прибора.
В качестве первого примера выведем формулу КПД для варианта определения с величинами работы и затраченной энергии (формула для определения КПД теплового двигателя). Условными обозначениями в ней будут являться:
Ап – работа полезная;
- Q1 – количество энергии (или тепла), полученной от нагревающего устройства;
- Q2 – количество энергии (или тепла), отданное в процессе деятельности;
- Q1 – Q2 – та энергия (или тепло), которая пошла на процесс.
В итоге получится выражение:
Теперь выразим формулу через соотношение мощностей. Условные обозначения следующие:
Ротд – полезная (эффективная) мощность;
Рподв – номинальная мощность.
Формула будет выглядеть так:
Если затрата или передача энергии происходит неоднократно, общий КПД равен сумме КПД на каждом участке процесса:
Какой буквой обозначается, единицы измерения
В вышеприведенной формуле искомая величина коэффициента полезного действия обозначается буквой η, которая произносится «эта».
Для упрощения понимания величины, КПД чаще выражается в процентах.
Физическая формула КПД
С учетом изложенных выше особенностей и необходимости выражения результата в %, физические формулы приобретают усовершенствованный внешний вид:
или
Примеры расчета КПД
Формула применяется для расчетов коэффициентов машин различного типа.
Задача 1
Имеется 10 кг дров, теплота сгорания которых составляет 95 Дж/кг. При их сгорании в помещении объемом 75 м3 установилась температура 22оС (допускаем, что удельная теплоемкость воздуха равна 1,3 кДж/ кгхград).
Решение состоит из нескольких действий:
- 1300 Дж умножить на 75 (объем) и 22 (температуру). Получаем 2 145 кДж. Это то тепло, выраженное в кДж, которое поступило в воздух помещения.
- 10700000Дж умножаем на 10 (количество дров) =10х107 кДж.
- При делении полезного тепла и полного, выработанного обогревателем, получаем значение 2,5%. Это говорит о низкой эффективности прибора и большой затрате дров и необходимости внесения конструктивных изменений, например, оборудования возможности дымоходам нагревать не только воздух, но и предметы в помещении.
Задача 2
В доме установлен электробойлер объемом 80 литров. Нагревательный элемент имеет мощность 2 кВт. Было замечено, что для нагревания воды от 12оС до 70оС уходит 3 часа. Нужно определить КПД прибора.
Дополнительные данные: плотность воды составляет 1000 кг/м3, ее теплоемкость – 4200 Дж/кг*оС.
Решать задачу нужно по формуле:
\(\eta=Q_{пол}\div Q_{зат}\times100\%\)
\(Q_{зат}=N\times t=10800(сек)\)
\(Q_{пол}=c\times m\times(T_2-T_1)\)
\(m=\rho\times V\)
\(T_1=12\) oC
\(T_2=70\) oC
Конечная формула:
\(\eta=(c\times\rho\times V\times(T_2-T_1)\div N\times t)\times100\%=90\%\)
Задача 3
Температура воды, налитой в котел паровой машины, составляет 160оС. Температура холодильника – 10оС. Коэффициент полезного действия машины – 60%. В топке сжигается 200 кг угля. Его удельная теплота сгорания – 2,9 • 107 Дж/кг. О какой максимальной работе может идти речь для данной машины?
Решение следующее. Амакс возможна для идеальной тепловой машины, которая функционирует по циклу Карно. Ее КПД равно (Т1-Т2)/Т1. В этой формуле Т1 и Т2 – температуры нагревателя, холодильника.
Определяем КПД, пользуясь формулой: \( \eta\;=\;A\div Q_1\). В этой формуле А – работа тепловой машины, Q1 – теплота, полученная от нагревателя. С другой стороны, она равна \(\eta_1\times m\times q\).
\(Q_1\;=\;\eta_1\times m\times q\)
\((T_1-T_2)\div T_1=A\div\eta_1\times m\times g\)
Итоговая формула:
\(А\;=\;\eta_1\times m\times q\times(1\;-\;Т_2\div Т_1)\)
Подставив значение, получаем ответ: 1,2*109 Дж.
Насколько полезной была для вас статья?
Рейтинг: 3.50 (Голосов: 2)
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Поиск по содержимому
Тепловые двигатели
Тепловые двигателиДля преобразования теплоты в работу необходимо как минимум два места с разными температурами. Если вы возьмете в Q максимум в температура T высокая необходимо сбросить как минимум Q низкая при температура T низкая . Объем работы, которую вы получаете от тепловой двигатель W = Q высокий — Q низкий . Максимальный объем работы, который вы можете получить от тепловая машина это сумма которую вы получите из реверсивного двигателя.
Вт макс. = (Q высокий — Q низкий ) реверсивный = Q высокий — Q высокий T низкий /T высокий = Q старший (1 — T низкий /T высокий ).
W является положительным, если T high больше T low .
КПД тепловой машины отношение полученной работы к затраченной тепловой энергии температура, e = W/Q высокий . Максимально возможное КПД е макс такого двигателя
e макс = W макс /Q высокий = (1 — T низкий /T старший ) = (T высокий — T низкий )/T высокий .
Паровые двигатели
Паровая машина — разновидность тепловой машины. Он забирает тепло от горячий пар, преобразует часть этого тепла в полезную работу и сбрасывает отдохнуть на более холодном окружающем воздухе. Максимальная доля тепла которые можно превратить в работу, можно найти, используя законы термодинамики, и она увеличивается с разницей температур между горячий пар и окружающий воздух. Чем горячее пар и чем холоднее воздух, тем эффективнее паровая машина при преобразовании тепло в работу.
В типичном паровом двигателе поршень движется вперед и назад внутри цилиндр. В котле вырабатывается горячий пар высокого давления. этот пар поступает в цилиндр через клапан. Однажды внутри цилиндр, пар выталкивается наружу на каждую поверхность, включая поршень. Поршень движется. Пар совершает механическую работу над поршень, а поршень совершает механическую работу над присоединенными механизмами к этому. Расширяющийся пар передает часть своей тепловой энергии это оборудование, так что пар становится холоднее, когда оборудование работает.
Когда поршень достигает конца своего диапазона, клапан останавливает поток пара и открывает цилиндр для наружного воздуха. после этого поршень может легко вернуться. Во многих случаях допускается использование пара. введите другой конец цилиндра так, чтобы пар толкал поршень вернуться в исходное положение. Как только поршень вернется в исходное положение начальной точки, клапан снова впускает пар высокого давления в цилиндр и весь цикл повторяется. В общем, тепло идет. от горячего котла к более прохладному окружающему воздуху и части этого тепла преобразуется в механическую работу движущимся поршнем. максимальный КПД паровой машины e max = (T пар — T воздух )/T пар . Фактическая эффективность обычно намного ниже.
Внешняя ссылка: Паровоз (Youtube)
Проблема:
Максимум возможный КПД паровой машины, принимающей теплоту при 100 o C и сброс его при комнатной температуре примерно 20 o C?
Решение:
- Обоснование:
Максимальный КПД любой тепловой машины равен КПД двигателя Карно. e max = (T высокий — T низкий )/T высокий . - Детали расчета:
100 o C = 373 K и 20 o С = 293 К. максимально возможная эффективность
(T высокий — T низкий )/T высокий = (373 — 293)/373 = 0,21 = 21%.
Двигатели внутреннего сгорания
Двигатель внутреннего сгорания сжигает смесь топлива и воздуха. Наиболее распространенным типом является четырехтактный двигатель. Поршень скользит в и из цилиндра. Два или более клапана позволяют топливу и воздух для входа в цилиндр и газы, которые образуются, когда топливо и воздух сжечь, чтобы покинуть цилиндр. Когда поршень скользит вперед и назад внутри цилиндра изменяется объем, который могут занимать газы кардинально.
Процесс преобразования теплоты в работу начинается, когда поршень вытащили из цилиндра, расширив замкнутое пространство и позволив топливо и воздух поступают в это пространство через клапан. Это движение называется тактом впуска или тактом впуска . Далее топливо и воздушная смесь сжимается, вдавливая поршень в цилиндр. Это называется сжатием . ход . В конце такта сжатия при топливно-воздушная смесь сжата максимально плотно, свеча зажигания в запаянном конце цилиндра срабатывает и воспламеняет смесь. Горячее горящее топливо имеет огромное давление и толкает поршень. из цилиндра. это рабочий ход — это то, что обеспечивает мощность двигателя и навесного оборудования. Наконец, сгоревший газ выдавливается из цилиндра через другой клапан в такте выпуска . Эти четыре удара повторяются снова и снова. Самый внутренний двигатели внутреннего сгорания имеют не менее четырех цилиндров и поршней. Там всегда хотя бы один цилиндр проходит рабочий такт, и это может нести другие цилиндры через нерабочие такты. максимальный КПД такого двигателя е max = (T зажигание — T воздух )/T зажигание где T зажигание — температура топливно-воздушной смеси после воспламенения. К максимизировать эффективность использования топлива, вы должны создать максимально горячую топливно-воздушной смеси после зажигания. Самая высокая эффективность, которая было достигнуто примерно 50% e max .
Внешняя ссылка: Внутреннее сгорание двигатель (Ютуб)
Проблема:
Тепловая машина поглощает 360 Дж тепловой энергии и совершает 25 Дж работы в
каждый цикл. Найти
(а) КПД двигателя и
(b) тепловая энергия, выделяемая в каждом цикле.
Решение:
- Обоснование:
Количество работы, которую вы получаете от тепловой машины, равно W = Q high — Q low .
КПД e = W/Q высокий . - Детали расчета:
Q высокий = 360 Дж. W = 25 Дж. Q низкий = Q высокая — W = 335 J.
(a) Эффективность e = W/Q высокая = 6,9%.
(b) Излучаемая тепловая энергия Q низкая = 335 Дж.
Тепловая эффективность – Энергетическое образование
Энергетическое образованиеМеню навигации
ИСТОЧНИКИ ЭНЕРГИИ ЭНЕРГЕТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕИНДЕКС
Поиск
Рисунок 1: Количество работы, произведенной для данного количества тепла, определяет тепловую эффективность системы. [1]Тепловые двигатели превращают тепло в работу. Тепловой КПД выражает долю тепла, которая превращается в полезную работу. Тепловой КПД обозначается символом [math]\eta[/math] и может быть рассчитан по уравнению:
Где:
[math]W[/math] — полезная работа и
[math]Q_H[/math] — общее количество подведенной тепловой энергии от горячего источника. [2]
Тепловые двигатели часто работают с эффективностью от 30% до 50% из-за практических ограничений. Тепловые двигатели не могут достичь 100% термического КПД ([математика]\эта = 1[/математика]) в соответствии со Вторым законом термодинамики. Это невозможно, потому что некоторое количество отработанного тепла всегда производится в тепловом двигателе, что показано на рисунке 1 термином [math]Q_L[/math]. Хотя полная эффективность тепловой машины невозможна, существует много способов повысить общую эффективность системы.
Пример
Если вводится 200 Дж тепловой энергии в виде тепла ([math]Q_H[/math]), а двигатель выполняет работу 80 Дж ([math]W[/math]), то КПД равен 80 Дж / 200 Дж, что составляет 40% КПД.
Тот же результат можно получить, измерив отработанное тепло двигателя. Например, если в двигатель вложено 200 Дж и наблюдается 120 Дж отходящего тепла, то должно быть выполнено 80 Дж работы, что дает КПД 40%.
Эффективность Карно
- основной артикул
Существует максимально достижимая эффективность тепловой машины, которая была выведена физиком Сади Карно. Следуя законам термодинамики, уравнение для этого оказывается таким
Где
[math]T_L[/math] — температура холодной «раковины» и
[math]T_H[/math] — температура теплового резервуара.
Описывает КПД идеализированного двигателя, которого в реальности достичь невозможно. [3] Из этого уравнения следует, что чем ниже температура стока [math]T_L[/math] или выше температура источника [math]T_H[/math], тем больше работы доступно для тепловой машины.