Типы шаговых двигателей
Шаговый двигатель постоянного тока – это электромеханическое устройство, преобразующее сигнал управления в угловое (или линейное) перемещение
ротора с фиксацией его в заданном положении без устройств обратной связи. При проектировании конкретных систем
приходится делать выбор между сервомотором и шаговым двигателем. Когда требуется прецизионное позиционирование и точное
управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель
является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован
понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит. В отличие от коллекторных двигателей, у
котрых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же,
шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что
ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора.
купить шаговый двигатель
купить блок управления шаговым двигателем
Виды шаговых двигателей:
- двигатели с переменным магнитным сопротивлением
- двигатели с постоянными магнитами
- гибридные двигатели
- биполярные и униполярные шаговые двигатели
Способы управления фазами шагового двигателя:
- полношаговый режим
- полушаговый режим
- микрошаговый режим
Зависимость момента от скорости, влияние нагрузки:
Момент, создаваемый шаговым двигателем, зависит от скорости, тока в обмотках и схемы драйвера.
У идеального
шагового двигателя эта зависимость …далее ➠
Разгон шагового двигателя:
Для того, чтобы работать на большой скорости из области разгона, необходимо стартовать на низкой скорости из области старта, а затем выполнить …далее ➠
Резонанс шагового двигателя:
Шаговым двигателям свойственен нежелательный эффект, называемый резонансом. Эффект проявляется в виде внезапного падения момента на некоторых
Недостатки шагового двигателя:
- шаговым двигателям присуще явление резонанса
- возможна потеря контроля положения ввиду работы без обратной связи
- потребление энергии не уменьшается даже без нагрузки
- затруднена работа на высоких скоростях
- невысокая удельная мощность
- относительно сложная схема управления
Преимущества шагового двигателя:
- угол поворота ротора определяется числом импульсов, которые поданы на двигатель
- двигатель обеспечивает полный момент в режиме остановки (если обмотки запитаны)
- прецизионное позиционирование и повторяемость.
Хорошие шаговые двигатели имеют точность от 3 до 5% от величины шага. Эта ошибка не накапливается от шага к шагу - возможность быстрого старта/остановки/реверсирования
- высокая надежность, связанная с отсутствием щеток, срок службы шагового двигателя фактически определяется сроком службы подшипников
- однозначная зависимость положения от входных импульсов обеспечивает позиционирование без обратной связи
- возможность получения очень низких скоростей вращения для нагрузки, присоединенной непосредственно к валу двигателя без промежуточного редуктора
- может быть перекрыт довольно большой диапазон скоростей, скорость пропорциональна частоте входных импульсов
Оригинал этой статьи можно прочитать в журнале «Основы схемотехники», №6-7/2001. Автор — Л.Ридико
Авиа двигатели. Виды и типы двигателей для самолетов и вертолетов
Именно благодаря использованию авиа двигателей, прогресс развития современной авиации продолжает развиваться.
Все авиа двигатели принято разделять на 9 основных категорий.
- Паровые авиа двигатели;
- Поршневые авиа двигатели;
- Атомные авиа двигатели;
- Ракетные авиа двигатели;
- Реактивные авиа двигатели;
- Газотурбинные авиа двигатели;
- Турбовинтовые авиа двигатели;
- Пульсирующие воздушно-реактивные двигатели;
- Турбовентиляторные авиа двигатели.
Паровые авиа двигатели
Паровые авиа двигатели практически не нашли своего практического применения в авиации из-за низкого КПД своей работы. Главным принципом работы парового авиационного двигателя является преобразование возвратно-поступательного движения поршней во вращательное движение винтов за счёт энергии пара.
Стоит отметить, что первоначально паровые авиа двигатели предполагалось использовать на заре авиации, когда источник пара был наиболее доступным, однако из-за массивности своей конструкции паровые двигатели не смогли поднимать воздушные суда.
Поршневые авиа двигатели
Поршневой авиа двигатель представляет собой обычный двигатель внутреннего сгорания, в котором тепловая энергия расширяемого газа превращает поступательное движение поршня во вращательное движение винта. Такие авиа двигатели нашли своё применение, и применяются и по сегодняшний день из-за простоты своего функционирования и недорогостоящего изготовления.
КПД поршневого авиационного двигателя, как правило, не превышает 55 %, однако это ничуть не смущает современных авиаконструкторов, так как у этого двигателя имеется высокая надёжность.
Атомные авиа двигатели
Первые атомные авиа двигатели начали появляться в середине минувшего века, когда начались мирные исследования атома.
Основным принципом работы атомного авиационного двигателя является осуществление контролируемой цепной ядерной реакции, что позволяло выдавать огромную мощность, при сравнительно небольшом уровне затрат.
Атомные авиа двигатели практически одновременно появились и в США и в СССР, однако сама идея того, что самолёт, пусть и с весьма компактным атомным реактором на своём борту может упасть и это впоследствии приведёт к катастрофе, заставила отказаться от этой идеи.
В США атомный авиационный двигатель применялся на самолёте Convair NB-36H, а в СССР на самолётах Ту-95 и Ан-22.
Ракетные авиа двигатели
Первые ракетные авиа двигатели появились в начале 40 годов прошлого столетия в Германии, когда немцы всеми усилиями пытались создать быстрый самолёт, который мог бы принести им победу во Второй мировой войне. Тем не менее, стоит отметить, что наука в те годы не позволяла совершить точный расчёт некоторых параметров, поэтому проект так и не был реализован.
Впоследствии ракетные авиа двигатели испытывались исключительно с возможностью их применения для разгона самолётов в стратосфере, но применимость их весьма ограничена, и потому на сегодняшний день они практически не используются.
Основным недостатком ракетного авиационного двигателя является практически полное отсутствие управляемости на высоких скоростях.
Реактивные авиа двигатели
Реактивные двигатели весьма распространены на сегодняшний день в авиации и авиаконструкторском деле. Принцип работы этих авиа двигателей основывается на то, что необходимая тяга для воздушного судна создаётся за счёт преобразования в кинетическую энергию реактивную струи внутренней энергии авиационного топлива.
Реактивные двигатели весьма надёжны и эффективны и потому в ближайшее время стоит ожидать их дальнейшего совершенствования и развития.
Газотурбинные авиа двигатели
Принцип работы газотурбинного авиационного двигателя основывается на сжатии и нагреве газа, энергия которого впоследствии преобразуется в механическую работу, заставляя вращаться газовую турбину.
Первые двигатели данного класса появились в Германии ещё в начале 40-х годов прошлого века, и на сегодняшний день они по-прежнему продолжают широко применяться в военной авиации, в частности устанавливаются на самолётах Су-27, МиГ-29, F-22, F-35 и т.д.
Газотурбинные авиа двигатели весьма эффективны на сравнительно небольших скоростях перемещения воздушных судов, и потому их применение в гражданской авиации также весьма обоснованно.
Турбовинтовые авиа двигатели
Турбовинтовые авиа двигатели представляют собой своеобразную разновидность газотурбинный авиационных двигателей, принцип действия которых основывается на том, что энергия горячих газов преобразуется во вращение винта, а около 10% от совокупной энергии превращается в толкающую реактивную струю.
Турбовинтовые авиа двигатели имеют хороший КПД и надёжны, что делает их эффективными и применимыми в гражданской авиации на многих воздушных судах.
Пульсирующие воздушно-реактивные авиа двигатели
Пульсирующие воздушно-реактивные двигатели не нашли применения в современной авиации из-за неудовлетворительной своей эффективности.
Главной особенностью их функционирования является то, что работают они на принципе воздушно-реактивного двигателя. С той лишь разницей, что топливо в камеру сгорания подаётся периодически, создавая своеобразные импульсы, позволяющие двигать объект в заданном направлении.
Пульсирующие воздушно-реактивные двигатели эффективны лишь при однократном своём использовании, в последующих же случаях, их использование снижает и саму надёжность и увеличивает затраты.
Турбовентиляторные авиа двигатели
Принцип работы турбовентиляторных авиационных двигателей сводится к тому, что подаваемый за счёт вентилятора воздух. Обеспечивает полное сгорание топлива за счёт избытка кислорода, что делает такие авиа двигатели и более эффективными и в тоже время наиболее экологически чистыми. Применяются подобные турбовентиляторные авиа двигатели как правило на крупных авиалайнерах, так как практически всегда у них имеется большая конструкция за счёт необходимости нагнетания дополнительного объёма воздуха.
Какие бывают типы двигателей? с (изображения и PDF)
В этой статье вы узнаете, какие типы двигателей используются в автомобильной промышленности. А также вы можете скачать PDF-файл этой статьи в конце.
Что такое двигатель?
Двигатель — это машина, предназначенная для преобразования одной формы энергии в механическую энергию. Тепловые двигатели, такие как двигатели внутреннего сгорания, сжигают свое топливо внутри цилиндра двигателя.
С другой стороны, двигатели внешнего сгорания – это тепловые двигатели, в которых топливо сжигается вне цилиндра двигателя.
Это паровые машины. Энергия, вырабатываемая при сгорании топлива, передается пару, которая воздействует на поршень внутри цилиндра. В двигателях внутреннего сгорания химическая энергия накапливается при их работе.
Тепловая энергия преобразуется в механическую за счет расширения газов на поршне, прикрепленном к коленчатому валу, который может вращаться.
Типы двигателей
Ниже приведены различные типы двигателей :
- Types of Fuel Used
- Petrol engine
- Diesel engine
- Gas engine
- According to Cycle of Operation
- Otto cycle engine
- Diesel cycle engine
- The dual combustion cycle engine
- Number of Число тактов за цикл
- Четырехтактный двигатель
- Двухтактный двигатель
- Классификация по типу воспламенения
- Двигатель с зажиганием по горячей точке
- Двигатель с искровым зажиганием (SI)
- Compression ignition (C.
I.) engine
- Number of Cylinders
- Single-cylinder engine
- Two-cylinder engine
- Three-cylinder engine
- Four-cylinder engine
- Six-cylinder engine
- Eight-cylinder двигатель
- Двенадцатицилиндровый двигатель
- Шестнадцатицилиндровый двигатель
- Классификация по расположению клапанов
- Г-образный двигатель
- Г-образный двигатель
- F-голова двигателя
- T-головочный двигатель
- Классифицированный по системе охлаждения
- Двигатель с воздушным охлаждением
- двигатели внутреннего сгорания также классифицируются по следующим основаниям:
- Скорость
- Тихоходный двигатель
- Высокоскоростной двигатель
- Среднеоборотный двигатель
- Метод впрыска топлива
- Двигатель карбюратора
- Двигатель впрыска воздуха
- Двигатель без воздушного или твердого впрыска
- Метод управления:
- HIT HIT и MISS HIST GANED .

- Применение:
- Стационарный двигатель
- Автомобильный двигатель
- Локомотивный двигатель
- Судовой двигатель
- Авиационный двигатель
Несколько других типов двигателей внутреннего сгорания также предлагаются для использования в качестве автомобильных силовых установок. К ним относятся
- Свободнопоршневой двигатель
- Двигатель Ванкеля
- Двигатель Стерлинга
Читайте также: Перечень деталей двигателя автомобиля: его назначение (с рисунками)
Используемый тип топлива
двигатели классифицируются по трем категориям- Бензиновый двигатель (или бензиновый двигатель)
- Дизельный двигатель
- Газовый двигатель
Бензиновый двигатель
Бензиновый двигатель работает на бензине. Бензин или бензин — это углеводород, состоящий из соединений водорода и углерода. Бензовоздушная смесь всасывается в цилиндр во время хода всасывания поршня.
Правильная бензино-воздушная смесь получается из карбюратора.Смесь сжимается во время такта сжатия, воспламеняется во время рабочего такта, а выхлопные газы выталкиваются во время такта выпуска. В верхней части цилиндра установлена свеча зажигания, которая дает искру для воспламенения смеси.
Дизельный двигатель
В двигателях этих типов для работы используется дизельное топливо. Дизельное масло легкое, с низкой вязкостью и высоким цетановым числом. В дизельном двигателе только воздух всасывается в цилиндр во время такта всасывания и сжимается до высокого давления, степень сжатия достигает 22:1. Его температура также повышается примерно на 1000°F.
Дизельное топливо впрыскивается форсункой в конце такта сжатия, которая воспламеняется и горит из-за высокой температуры сжатого воздуха. Отдельной системы зажигания не требуется. Сгоревшие газы расширяются, толкая поршень вниз во время рабочего такта, и, наконец, газы выталкиваются во время такта выпуска.

Газовая турбина
Газовая турбина в основном состоит из двух секций — секции газификатора и силовой секции. Топливом, используемым в газовой турбине, может быть бензин, керосин или масло. Секция газификатора сжигает топливо в горелке и подает полученный газ в силовую секцию, где он вращает силовую турбину. Затем силовая турбина вращает колеса автомобиля через ряд шестерен.
Газификатор состоит из компрессора с ротором с рядом лопастей по внешнему краю. При вращении ротора воздух между лопастями перемещается и под действием центробежной силы выбрасывается в горелку. При этом давление воздуха в горелке повышается. Топливо впрыскивается в горелку, где оно сгорает и дополнительно повышает давление.
2. Классификация по циклу работы
По циклу работы автомобильные двигатели могут быть трех типов:
- Двигатель по циклу Отто.
- Двигатель дизельного цикла.
- Двухтактный двигатель.
Цикл Отто или цикл постоянного объема
Цикл Отто или цикл постоянного объема.
Этот цикл был введен в практическую форму немецким ученым Отто в 1876 году, хотя он был описан французским ученым Бодом Рошем в 1862 году. Двигатели, работающие по этому циклу, известны как двигатели с циклом Отто. Бензиновые двигатели работают по этому циклу.I.C. двигатель не подвергается циклическому изменению, но здесь предполагается, что рабочим телом является чистый воздух, который не подвергается никаким химическим изменениям. Воздух просто нагревается и охлаждается, чтобы пройти цикл. Также предполагается строгое соблюдение идеальной индикаторной диаграммы.
Идеальный цикл Отто состоит из следующих операций 1-2 Адиабатическое сжатие.
2-3 Подвод тепла при постоянном объеме.
3-4 Адиабатическое расширение.
4 1 Отвод тепла при постоянном объеме.Дизельный цикл или цикл постоянного давления
Дизельный цикл был введен доктором Рудольфом Дизелем в 1897 году.
Двигатели, работающие по этому циклу, известны как дизельные двигатели. На рисунке показана p-v диаграмма цикла Дизеля.Состоит из следующих операций: 1-2 Адиабатическое сжатие.
2-3 Подвод тепла при постоянном давлении
3-4 Адиабатическое расширение.
4-1 Отвод тепла при постоянном объемеЦикл Дизеля отличается от цикла Отто в одном отношении. В дизельном цикле тепло добавляется при постоянном давлении, а не при постоянном объеме.
Источник изображения: https://en.wikipedia.org/wiki/Diesel_cycleВоздух сжимается в цилиндре во время такта сжатия из точки 1 в точку 2. Теперь тепло добавляется при постоянном давлении из точки 2 в точку 3, и затем воздух адиабатически расширяется из точки 3 в точку 4. Наконец, тепло отводится постоянным объемом из точки 4 в точку 1. Воздух возвращается в исходное состояние, и цикл завершается.
Двойной цикл (или двойной цикл сгорания)
В этих типах двигателей для сгорания топлива в дизельном двигателе отводится больше времени без отрицательного влияния на эффективность.

Топливо впрыскивается в цилиндр перед окончанием такта сжатия, так что сгорание происходит частично при постоянном объеме и частично при постоянном давлении. Такой цикл известен как двойной цикл. Фактически все дизельные двигатели работают по этому циклу. На рисунке показан двойной цикл на p-v диаграмме.
Он состоит из следующих операций. 1-2. Адиабатическое сжатие
2-3. Подвод тепла при постоянном объеме
3-4. Подвод тепла при постоянном давлении
4-5. Адиабатическое расширение
5-1. Отвод тепла при постоянном объеме.Поскольку топливо впрыскивается в цилиндр до конца такта сжатия в двойном цикле, учитывается характеристика задержки воспламенения топлива.
Прочтите полностью об этих темах:
- Процессы двойного цикла сгорания с [диаграммой P-v и T-s]
- Четырехтактный дизельный двигатель и его работа [объяснено диаграммой P-v и T-s] Двигатель с зажиганием с [диаграммой P-v и T-s]
3.
Классификация по количеству тактов за циклПо количеству тактов за цикл автомобильные двигатели классифицируются как
- Четырехтактные двигатели.
- Двухтактный двигатель.
Четырехтактный двигатель
Четырехтактный двигатель завершает цикл операций во время четырехтактного хода поршня, а именно: всасывание, сжатие, мощность и выпуск. Эти четыре такта требуют двух оборотов коленчатого вала. Таким образом, за каждые два оборота коленчатого вала происходит только один рабочий ход поршня.
Двухтактный двигатель
Двухтактный двигатель завершает цикл операций за два такта поршня. Эти два такта требуют одного оборота коленчатого вала. Таким образом, за каждый оборот коленчатого вала происходит один рабочий ход поршня. Следовательно, двухтактный двигатель производит в два раза больше лошадиных сил, чем четырехтактный двигатель того же размера, работающий с той же скоростью.
В двухтактном двигателе такт впуска и сжатия, а также рабочий такт и выпускной такт в определенном смысле объединены.
Двухтактные двигатели используются в мотоциклах, скутерах. Четырехтактные двигатели используются в легковых, грузовых автомобилях, автобусах.Подробнее: Двухтактные двигатели
4. Классификация по типу зажигания
По типу используемого зажигания современные автомобильные двигатели классифицируются в основном на две группы:
- Двигатели с искровым зажиганием.
- Двигатели с воспламенением от сжатия.
Двигатель с искровым зажиганием
В двигателе с искровым зажиганием в головке блока цилиндров установлена свеча зажигания, которая в конце такта сжатия дает электрическую искру для воспламенения топлива. Бензиновые двигатели — это двигатели с искровым зажиганием.
Читайте также: Что такое система зажигания и 3 различных типа системы зажигания
Двигатель с воспламенением от сжатия
В этих типах двигателей топливо воспламеняется за счет тепла сжатого воздуха внутри цилиндра. В нем нет свечи зажигания, чтобы дать искру.
Воздух сжимается в цилиндре во время такта сжатия относительно при более высоком давлении.Степень сжатия также выше, чем у двигателя с искровым зажиганием. В конце такта сжатия , впрыскивается топливо, которое сгорает за счет тепла сжатого воздуха. Дизельные двигатели относятся к двигателям с воспламенением от сжатия. Двигатели с горячим зажиганием практически не используются.
5. Классификация по количеству и расположению цилиндров
Автомобильные двигатели могут иметь один, два, три, четыре, шесть, восемь, двенадцать и шестнадцать цилиндров. Одноцилиндровый двигатель используется в скутерах, мотоциклах. Двухцилиндровый двигатель используется в тракторах. Четырех- и шестицилиндровые двигатели используются в автомобилях, джипах, автобусах, грузовиках.
Грузовик и автобус Comet оснащены шестицилиндровыми двигателями. Американские легковые автомобили имеют восьмицилиндровые двигатели. Двенадцати- и шестнадцатицилиндровые двигатели также используются в некоторых легковых автомобилях, автобусах, грузовиках, промышленных установках.
Трехцилиндровый двигатель используется и в иностранном переднеприводном автомобиле.Цилиндры могут располагаться несколькими способами — вертикально, горизонтально, в ряд (в ряд), в два ряда или рядами, установленными под углом (V-образный), в два ряда друг против друга (плоский, или блин) или как спицы на колесе (радиальные).
Одноцилиндровый двигатель
Двигатели этого типа обычно используются для легких транспортных средств, таких как скутеры и мотоциклы. Максимальный объем одноцилиндрового двигателя ограничен примерно 250-300 куб.см. Для двигателя большего размера потребуются тяжелые двигатели из-за более высоких сил дисбаланса в одноцилиндровом двигателе.
В одном цилиндре один импульс мощности за два оборота коленчатого вала. Таким образом, из четырех ходов поршней мощность отдается за один ход, а в остальных ходах поршней мощность расходуется на преодоление сопротивления трения движущихся частей. распределение крутящего момента во время цикла неравномерно, что приводит к грубой работе и вибрациям.

Поскольку имеется только один поршень и один шатун, которые совершают возвратно-поступательное движение без рабочих частей, уравновешивающих их вес, одноцилиндровый двигатель не имеет механического баланса. Однако двигатель в некоторой степени уравновешивается за счет использования противовеса, прикрепленного к коленчатому валу, а также за счет использования маховика, настолько тяжелого, что его импульс обеспечивает сравнительно устойчивое движение.
Колебания частоты вращения двигателя вызывают вибрацию даже в лучших конструкциях одноцилиндровых двигателей. Следовательно, одноцилиндровые двигатели нежелательны для использования в автомобилях.
Двухцилиндровый двигатель.
Двигатели этого типа используются в основном в тракторах. Они также используются в небольшом немецком автомобиле и автомобиле DAF из Голландии. Расположение цилиндров в двухцилиндровых двигателях может быть трех типов
- Рядное вертикальное
- V-образное
- Оппозитное
Трехцилиндровый двигатель
Трехцилиндровый двигатель используется на переднеприводный автомобиль, в котором дифференциал расположен между двигателем и трансмиссией.
Три цилиндра расположены в ряд. Это двухтактный двигатель. Картер в этом двигателе служит камерой впуска и предварительного сжатия.Каждый цилиндр имеет свой отпаянный участок картера. Таким образом, коренные подшипники, поддерживающие коленчатый вал, являются герметичными, благодаря чему картер делится на три отдельных отсека, по одному на каждый цилиндр.
Четырехцилиндровый двигатель
Четырехцилиндровые двигатели в основном используются для обычных автомобилей. Полученный крутящий момент намного более равномерен по сравнению с двухцилиндровым двигателем, поскольку получается два рабочих хода на один оборот.
Цилиндры четырехцилиндрового двигателя расположены по следующему типу:
- Рядный вертикальный тип
- V-образный тип
- Оппозитный тип
Шести- и восьмицилиндровый двигатель
Шести- и восьмицилиндровые двигатели обеспечивают гораздо более плавный крутящий момент и более высокую мощность.
Цилиндры этих двигателей также расположены тремя способами: рядным, V и оппозитным, как и в четырехцилиндровых двигателях. Почти повсеместно используются рядные 6-цилиндровые двигатели и двигатели V-8. Угол между рядами цилиндров в двигателях V-8 выдерживают обычно 90°.Двигатели V-8 с меньшими V-образными углами выпускались также, но в них усложнен механизм работы клапанов. Двигатели V-6 имеют два трехцилиндровых ряда, расположенных под углом друг к другу. Коленчатый вал имеет только три кривошипа, при этом шатуны противоположных цилиндров в двух рядах прикреплены к одной и той же шатунной шейке. К каждой шатунной шейке прикреплены два шатуна.
Двигатель V-8 имеет два ряда по четыре цилиндра, расположенных под углом друг к другу. Коленчатые валы имеют четыре кривошипа с шатунами от противоположных цилиндров в двух рядах, прикрепленными к одной шатунной шейке. Таким образом, к каждой шатунной шейке прикреплены два шатуна, а к каждой шатунной шейке работают два поршня. Коленчатый вал обычно опирается на пять подшипников.

Читайте также: Что такое двигатель V8 (восьмицилиндровый двигатель) и как он работает?
Двенадцати- и шестнадцатицилиндровые двигатели.
Расположение цилиндров в двенадцати- и шестнадцатицилиндровых двигателях может быть следующих типов
- V-образное или блинчатое имеет два ряда цилиндров.
- Тип W имеет три ряда цилиндров.
- X-type имеет четыре ряда цилиндров.
Двенадцати- и шестнадцатицилиндровые двигатели нашли применение в автомобилях, автобусах. грузовики и промышленные установки. Единственным легковым автомобилем, выпускаемым в настоящее время с двенадцатицилиндровым двигателем, является «Феррари».
7. Классификация по расположению клапанов
Автомобильные двигатели подразделяются на четыре категории в соответствии с расположением впускного и выпускного клапанов в различных положениях в головке блока цилиндров. Эти устройства обозначаются буквами «L», «TF» и «T». Легко запомнить слово «ПОДЪЕМ», чтобы вспомнить расположение четырех клапанов.
Двутавровая головка чаще всего используется в автомобильных двигателях.Двигатель с двутавровой головкой
В двигателе с двутавровой головкой или верхним расположением клапанов клапаны расположены в головке блока цилиндров. Рядные двигатели обычно имеют клапаны в один ряд. Двигатели V-8 могут иметь клапаны в одинарном или двойном ряду в каждом ряду. Независимо от расположения, один распределительный вал приводит в действие все клапаны.
Читайте также: Клапаны двигателя: типы клапанов двигателя, их принцип работы и механизм клапанов
Двигатель с Г-образной головкой
В Г-образной конфигурации впускные и выпускные клапаны расположены рядом и приводятся в действие одним распределительным валом. Камера сгорания и цилиндр в виде перевернутой буквы L. Все клапаны у двигателя расположены в одну линию, кроме двигателей V-8 с Г-образной головкой, у которых они расположены в две линии.
В двигателях с Г-образной головкой механизмы клапанов находятся в блоке, поэтому головку цилиндров можно легко снять при необходимости капитального ремонта двигателя.
Хотя двигатель с L-образной головкой прочен и надежен, он не особенно приспособлен к более высокой степени сжатия.Двигатель с I-образным расположением клапанов лучше приспособлен к высокой степени сжатия. В двигателе с I-образной головкой объем зазора может быть уменьшен до большей величины, чем в двигателе с L-образной головкой. В некоторых двигателях с двутавровой головкой в головках поршней есть карманы, в которые может перемещаться клапан, когда они открыты с поршнем в ВМТ.
Двигатель с F-образной головкой
Этот двигатель представляет собой комбинацию двигателей с L-образной и I-образной головкой, в которой один клапан обычно впускной клапан находится в головке, а выпускной клапан находится в блоке цилиндров. Оба комплекта приводятся от одного и того же распределительного вала.
Двигатель с Т-образной головкой
Двигатель с Т-образной головкой имеет впускные клапаны с одной стороны и выпускные клапаны с другой стороны цилиндра. Таким образом, для их работы требуется два распределительных вала.

Читайте также: Камера сгорания: Типы камеры сгорания и ГБЦ
7. Классификация по типу охлаждения
По типу способа охлаждения автомобильные двигатели классифицируются в основном на две категории:
- С воздушным охлаждением двигатели.
- Двигатели с водяным охлаждением.
Двигатели с воздушным охлаждением
Двигатели с воздушным охлаждением используются в мотоциклах и скутерах. В двигателях с воздушным охлаждением гильзы цилиндров обычно разделены и снабжены металлическими ребрами, которые дают большую излучающую поверхность для увеличения скорости охлаждения.
Многие двигатели с воздушным охлаждением оснащены металлическими кожухами, которые направляют поток воздуха вокруг цилиндров для улучшения охлаждения. Так как эти двигатели не используют воду, устраняется проблема обслуживания в холодную погоду.
Читайте также: Типы систем охлаждения автомобильных двигателей (двигатель внутреннего сгорания)
Двигатели с водяным охлаждением
Двигатели этого типа используются в автобусах, грузовиках, легковых автомобилях и других четырехколесных транспортных средствах большой грузоподъемности.
В этих двигателях используется вода с добавлением антифриза в качестве охлаждающей среды.
Вода рассчитывается через водяные рубашки вокруг каждой из камер сгорания, цилиндров, седел клапанов и стержней клапанов. Пройдя через кожухи двигателя в блоке и головке блока цилиндров, вода проходит через радиатор, где охлаждается воздухом, всасываемым через радиатор.
Двигатели с испарительным охлаждением практически не используются.
Читайте также: Что такое система воздушного охлаждения и как она работает в автомобиле
Вот и все, спасибо за внимание. Я надеюсь, что вы найдете эту статью полезной. Если у вас есть вопросы по « Типы двигателей » задавайте в комментариях. Поделитесь этим постом, если он стоит того.
Подпишитесь на нашу рассылку, чтобы получать уведомления о наших новых статьях.
Введите адрес электронной почты…
Загрузите PDF-файл отсюда:
Скачать
Двигатели, работающие на природном газе
Двигатели, работающие на природном газеХанну Яаскеляйнен
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.
Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.- Мощные газовые двигатели
Abstract : Двигатели, работающие на природном газе, могут варьироваться от небольших двигателей малой грузоподъемности до низкоскоростных двухтактных судовых двигателей мощностью более 60 МВт. Доминирующим циклом двигателя может быть либо Отто, либо Дизель, с использованием нескольких различных методов приготовления смеси и воспламенения. Большинство коммерческих и экспериментальных двигателей, работающих на природном газе, можно разделить на четыре типа технологий: (1) двигатели со стехиометрическим циклом Отто; (2) двигатели с обедненной смесью, цикл Отто; (3) двухтопливные двигатели смешанного цикла (сочетание двигателей Отто и Дизеля) и (4) дизельные двигатели, работающие на природном газе. Эти технологии демонстрируют различия в термической эффективности, производительности и требованиях к последующей обработке.

- Введение
- Двигатели с премиксами
- Двигатели без предварительного смешения
Низкая стоимость природного газа по сравнению с дизельным топливом и бензином в сочетании с различными мерами регулирования, связанными с выбросами, по-прежнему вызывают значительный интерес к природному газу как к альтернативному топливу для двигателей внутреннего сгорания. Производители двигателей отреагировали на это поставкой новых специально построенных двигателей на природном газе, размеры которых варьируются от небольших двигателей малой мощности мощностью в несколько кВт до низкоскоростных двухтактных судовых двигателей мощностью более 60 МВт. В 2019 году, WinGD заявила, что их двухтопливный двигатель 12X92DF является самым мощным двигателем, работающим по циклу Отто, мощностью 63 840 кВт
[4829] . OEM-производители и поставщики запчастей также предоставляют комплекты для переоборудования, которые позволяют переоборудовать существующие дизельные и бензиновые двигатели для работы на природном газе.
Двигатели, работающие на природном газе, можно разделить на категории по многочисленным параметрам, в том числе: подготовка смеси (предварительно смешанная или не смешанная), зажигание (искровое зажигание или дизельное пилотное) и преобладающий цикл двигателя (отто или дизель). Одна из распространенных категорий: Рисунок 1 [4247] :
- Предварительно смешанная заправка, искровое зажигание, только природный газ
- Предварительно смешанная заправка, дизельное предварительное зажигание, двойное топливо природный газ/дизель
- Непосредственный впрыск природного газа под высоким давлением, дизельное запальное зажигание, двойное топливо природный газ/дизель
(Источник: Wartsila)
Хотя приведенная выше группа адекватно охватывает коммерческие двигатели объемом до 2,5 л/цилиндр, когда также рассматриваются более крупные двигатели, это создает некоторые проблемы при представлении общих концепций между некоторыми из различных подходов.
В частности, двухтопливные двигатели, работающие на обедненной смеси, зажигаемые небольшим (<~5% энергии топлива) дизельным микропилотом, имеют больше общего с двигателями SI, работающими на обедненной смеси, чем с двухтопливными двигателями, использующими гораздо больший пилотный дизель (> ~15 %). % энергии топлива). Он также не охватывает некоторые концепции, находящиеся на стадии разработки. Следующая классификация является более общей и отражает общие концепции различных подходов:- Двигатели со стехиометрическим циклом Отто
- Работа на обедненной смеси, двигатели с циклом Отто
- Двухтопливные двигатели смешанного цикла (сочетание Отто и Дизеля)
- Двигатели на природном газе дизельного цикла
Двигатели со стехиометрическим циклом Отто используют предварительно смешанную «почти стехиометрическую» воздушно-топливную смесь и зажигаются от свечи зажигания. Важной мотивацией для использования стехиометрических двигателей является тот факт, что они могут использовать трехкомпонентный катализатор (TWC), иногда также называемый катализатором неселективного каталитического восстановления (NSCR), для снижения содержания NOx и окисления CO и углеводородов в выхлопных газах.
. Следует отметить, что пиковая эффективность преобразования NOx, CO и HC в TWC на природном газе как раз соответствует стехиометрии, а двигатели, работающие на природном газе, работающие на «стехиометрической» топливно-воздушной смеси, обычно откалиброваны для работы с небольшим обогащением. Это отражено в терминологии, используемой для стационарных двигателей, работающих на природном газе, для которых двигатели, работающие на природном газе, использующие смесь, близкую к стехиометрической, иногда называют двигателями с «богатым горением».В двигателях с циклом Отто, работающих на обедненной смеси, используется обедненная предварительно смешанная топливно-воздушная смесь с несколькими вариантами зажигания. Свеча зажигания или дизельный микропилот — два наиболее распространенных варианта. Свечи накаливания также имеют ограниченное коммерческое применение. Одним из важных преимуществ двигателей с циклом Отто, работающих на обедненной смеси, является их высокая тепловая эффективность торможения (BTE), которая во многих случаях может достигать 50%.
Если в двигателях, работающих на обедненных смесях, требуется обработка выхлопных газов, SCR с мочевиной является вариантом контроля NOx. Катализаторы окисления метана требуют высокой температуры выхлопных газов, чтобы быть эффективными, и их можно использовать только в некоторых стационарных приложениях.В двухтопливных двигателях смешанного цикла используется обедненная предварительно смешанная воздушно-топливная смесь, воспламеняемая мощным пилотным дизельным двигателем, что составляет более ~ 15% общей энергии топлива. Они упоминаются здесь как двигатели смешанного цикла, потому что дизельный пилот вносит значительный вклад в общее выделение тепла во время сгорания предварительно смешанного заряда природного газа/воздуха. Важным преимуществом этого подхода является то, что существующие дизельные двигатели (либо используемые двигатели, либо существующие платформы дизельных двигателей от производителя двигателей) могут быть относительно легко переоборудованы для работы на природном газе — популярное соображение, когда разница в цене между дизельным топливом и природным газом велика.
большой.В дизельных двигателях, работающих на природном газе, природный газ предварительно не смешивается с воздухом. Вместо этого природный газ впрыскивается непосредственно в камеру сгорания под высоким давлением почти так же, как это делается в дизельном двигателе. Однако, в отличие от дизельных двигателей, требуется источник воспламенения. Основным средством зажигания форсунок природного газа является зажигание небольшого дизельного пилота непосредственно перед впрыском газа. Этот подход иногда называют прямым впрыском под высоким давлением (HPDI) или газодизельным двигателем. Зажигание через свечу накаливания или свечу зажигания с предварительной камерой также исследуется. Важным преимуществом этого подхода является то, что достигается более высокая плотность мощности и может использоваться более высокая степень сжатия по сравнению с подходами с предварительным смешиванием.
Таблица 1 суммирует эти подходы с дополнительными подробностями, представленными ниже. Доступны и другие сводки, аналогичные таблице 1, но в основном они касаются только тяжелых условий эксплуатации [3568] [4323] .

- Скорость

Хорошие шаговые двигатели имеют точность от 3 до 5% от величины шага. Эта ошибка не накапливается от шага к шагу
I.) engine
Правильная бензино-воздушная смесь получается из карбюратора.
Этот цикл был введен в практическую форму немецким ученым Отто в 1876 году, хотя он был описан французским ученым Бодом Рошем в 1862 году. Двигатели, работающие по этому циклу, известны как двигатели с циклом Отто. Бензиновые двигатели работают по этому циклу.
Двигатели, работающие по этому циклу, известны как дизельные двигатели. На рисунке показана p-v диаграмма цикла Дизеля.
Классификация по количеству тактов за цикл
Двухтактные двигатели используются в мотоциклах, скутерах. Четырехтактные двигатели используются в легковых, грузовых автомобилях, автобусах.
Воздух сжимается в цилиндре во время такта сжатия относительно при более высоком давлении.
Трехцилиндровый двигатель используется и в иностранном переднеприводном автомобиле.
Три цилиндра расположены в ряд. Это двухтактный двигатель. Картер в этом двигателе служит камерой впуска и предварительного сжатия.
Цилиндры этих двигателей также расположены тремя способами: рядным, V и оппозитным, как и в четырехцилиндровых двигателях. Почти повсеместно используются рядные 6-цилиндровые двигатели и двигатели V-8. Угол между рядами цилиндров в двигателях V-8 выдерживают обычно 90°.
Двутавровая головка чаще всего используется в автомобильных двигателях.
Хотя двигатель с L-образной головкой прочен и надежен, он не особенно приспособлен к более высокой степени сжатия.

Для полного доступа требуется подписка DieselNet. 

В частности, двухтопливные двигатели, работающие на обедненной смеси, зажигаемые небольшим (<~5% энергии топлива) дизельным микропилотом, имеют больше общего с двигателями SI, работающими на обедненной смеси, чем с двухтопливными двигателями, использующими гораздо больший пилотный дизель (>
. Следует отметить, что пиковая эффективность преобразования NOx, CO и HC в TWC на природном газе как раз соответствует стехиометрии, а двигатели, работающие на природном газе, работающие на «стехиометрической» топливно-воздушной смеси, обычно откалиброваны для работы с небольшим обогащением. Это отражено в терминологии, используемой для стационарных двигателей, работающих на природном газе, для которых двигатели, работающие на природном газе, использующие смесь, близкую к стехиометрической, иногда называют двигателями с «богатым горением».
Если в двигателях, работающих на обедненных смесях, требуется обработка выхлопных газов, SCR с мочевиной является вариантом контроля NOx. Катализаторы окисления метана требуют высокой температуры выхлопных газов, чтобы быть эффективными, и их можно использовать только в некоторых стационарных приложениях.
большой.