12Авг

Двигатель внутреннего сгорания устройство и принцип действия: Принцип работы и устройство двигателя

Содержание

Как работает двс. Устройство и принцип работы двигателя внутреннего сгорания. Основные причины неполадок и перебоев в машине и двигателе

Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.

Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:


Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом , в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК . Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ . Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ . При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК . Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.

Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.

Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.

Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.

Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт — такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт — такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт — рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.


После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Газораспределительный механизм

Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.

Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.

Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.

Устройство КШМ
Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.


В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Для настоящего автолюбителя машина — это непросто средство передвижения, а ещё и инструмент свободы. При помощи автомобиля можно достаться в любую точку города, страны или континента. Но наличия прав для настоящего путешественника недостаточно. Ведь до сих пор есть множество мест, где не ловит мобильный, и куда не могут добраться эвакуаторы. В таких случаях при поломке вся ответственность ложится на плечи автомобилиста.

Поэтому каждый водитель должен хоть немного разбираться в устройстве своего автомобиля , и начать нужно именно с двигателя. Безусловно, современные автомобильные компании выпускают множество автомобилей с разными типами моторов, но чаще всего производителями в конструкциях используются двигатели внутреннего сгорания. Они обладают высоким КПД и при этом обеспечивают высокую надёжность работы всей системы.

Внимание! В большинстве научных статей двигатели внутреннего сгорания сокращённо называются ДВС.

Какими бывают ДВС

Перед тем как приступить к подробному изучению устройства ДВС и их принципа работы, рассмотрим, какими бывают двигатели внутреннего сгорания. Сразу нужно сделать одно важное замечание. За более чем 100 лет эволюции учёными было придумано множество разновидностей конструкций, у каждой из которых есть свои преимущества. Поэтому для начала выделим основные критерии, по которым можно различить данные механизмы:

  1. В зависимости от способа создания горючей смеси все ДВС делятся на карбюраторные, газовые и инжекторные устройства. Причём это класс с внешним смесеобразованием. Если же говорить о внутреннем, то — это дизели.
  2. В зависимости от типа топлива ДВС можно разделить на бензиновые, газовые и дизельные.
  3. Охлаждение устройства двигателей может быть двух типов: жидкостным и воздушным.
  4. Цилиндры могут располагаться как друг напротив друга, так и в форме буквы V.
  5. Смесь внутри цилиндров может воспламеняться посредством искры. Так происходит в карбюраторных и инжекторных ДВС или за счёт самовоспламенения.

В большинстве автомобильных журналов и среди профессиональных автоэкспортов принято классифицировать ДВС, на такие типы:

  1. Бензиновый двигатель. Это устройство работает за счёт бензина. Зажигание происходит принудительно при помощи искры, которую генерирует свеча. За дозировку топливно-воздушной смеси отвечают карбюраторные и инжекторные системы. Воспламенение происходит при сжатии.
  2. Дизельные . Двигатели с устройством такого типа работают за счёт сгорания дизельного топлива. Главная разница в сравнении с бензиновыми агрегатами заключается в том, что горючее взрывается благодаря повышению температуры воздуха. Последнее становится возможным из-за роста давления внутри цилиндра.
  3. Газовые системы функционируют при помощи пропан-бутана. Зажигание происходит принудительным образом. Газ с воздухом подаётся в цилиндр. В остальном устройство подобного ДВС аналогично бензиновому мотору.

Именно такая классификация используется чаще всего, указывая на конкретные особенности системы.

Устройство и принцип работы

Устройство двигателя внутреннего сгорания

Лучше всего рассмотреть устройство ДВС на примере одноцилиндрового двигателя. Главной деталью в механизме является цилиндр. В нём находится поршень, который двигается вверх-вниз. При этом есть две контрольные точки его передвижения: верхняя и нижняя. В профессиональной литературе они именуются как ВМТ и НМТ. Расшифровка следующая: верхняя и нижняя мёртвые точки.

Внимание! Поршень также соединяется с валом. Соединительным звеном служит шатун.

Главная задачу шатуна — это преобразование энергии, которая образовывается в результате движения поршня вверх-вниз во вращательное. Результатом подобного преобразования является движение автомобиля в нужное вам направление. Именно за это отвечает устройство ДВС. Также не стоит забывать про бортовую сеть, работа которой становится возможной благодаря энергии, выработанной двигателем.

Маховик крепится к концу вала ДВС. Он обеспечивает стабильность вращения коленчатого вала. Впускной и выпускной клапаны находятся вверху цилиндра, который, в свою очередь, накрывается специальной головкой.

Внимание! Клапаны открывают и закрывают соответствующие каналы в нужное время.

Чтобы клапаны ДВС открылись, на них воздействуют кулачки распредвала. Происходит это посредством передаточных деталей. Сам вал двигается при помощи шестерней коленчатого вала.

Внимание! Поршень свободно движется внутри цилиндра, застывая на миг то в верхней мёртвой точке, то в нижней.

Чтобы устройство ДВС функционировало в нормальном режиме, горючая смесь должна подаваться в чётко выверенной пропорции. В противном случае возгорание может не произойти. Огромную роль также играет момент, в который происходит подача.

Масло необходимо для того, чтобы предотвратить преждевременный износ деталей в устройстве ДВС. В общем, всё устройство двигателя внутреннего сгорания состоит из таких основных элементов:

  • свечей зажигания,
  • клапанов,
  • поршней,
  • поршневых колец,
  • шатунов,
  • коленвала,
  • картера.

Взаимодействие этих системных элементов позволяет устройству ДВС вырабатывать нужную для передвижения автомобиля энергию.

Принцип работы

Рассмотрим, как работает четырёхтактный ДВС. Чтобы понять принцип его работы, вы должны знать значение понятия такт. Это определённый промежуток времени, за который внутри цилиндра осуществляется нужное для работы устройства действие. Это может быть сжатие или воспламенение.

Такты ДВС образуют рабочий цикл, который, в свою очередь, обеспечивает работу всей системы. В процессе этого цикла тепловая энергия преобразуется в механическую. За счёт этого происходит движение коленчатого вала.

Внимание! Рабочий цикл считается завершённым после того, как коленчатый вал сделает один оборот. Но такое утверждение работает только для двухтактного двигателя.

Здесь нужно сделать одно важное объяснение. Сейчас в автомобилях преимущественно используется устройство четырёхтактного двигателя. Такие системы отличаются большей надёжностью и улучшенной производительностью.

Для совершения четырёхтактного цикла нужно два оборота коленчатого вала. Это четыре движения поршня вверх-вниз. Каждый такт выполняет действия в точной последовательности:

  • впуск,
  • сжатие,
  • расширение,
  • выпуск.

Предпоследний такт также называется рабочим ходом. Про верхнюю и нижнюю мертвые точки вы уже знаете. Но расстояние между ними обозначает ещё один важный параметр. А именно, объём ДВС. Он может колебаться в среднем от 1,5 до 2,5 литра. Измеряется показатель посредством плюсования данных каждого цилиндра.

Во время первого полуоборота поршень с ВМТ перемещается в НМТ. При этом впускной клапан остаётся открытым, в свою очередь, выпускной плотно закрыт. В результате данного процесса в цилиндре образуется разряжение.

Горючая смесь из бензина и воздуха попадает в газопровод ДВС. Там она смешивается с отработанными газами. В результате образуется идеальное для воспламенения вещество, которое поддаётся сжатию на втором акте.

Сжатие происходит тогда, когда цилиндр полностью заполнен рабочей смесью. Коленчатый вал продолжает свой оборот, и поршень перемещается из нижней мёртвой точки в верхнюю.

Внимание! С уменьшением объёма температура смеси внутри цилиндра ДВС растёт.

На третьем такте происходит расширение. Когда сжатия подходит к своему логическому завершению свеча генерирует искру и происходит воспламенение. В дизельном двигателе всё происходит немного по-другому.

Во-первых, вместо свечи установлена специальная форсунка, которая на третьем такте впрыскивает топливо в систему. Во-вторых, внутрь цилиндра закачивается воздух, а не смесь газов.

Принцип работы дизельного ДВС интересен тем, что в нём топливо воспламеняется самостоятельно. Происходит это за счёт повышения температуры воздуха внутри цилиндра. Подобного результата удаётся добиться за счёт сжатия, в результате которого растёт давление и повышается температура.

Когда топливо через форсунку попадает внутрь цилиндра ДВС, температура внутри настолько высока, что возгорание происходит само собой. При использовании бензина подобного результата добиться нельзя. Всё потому что он воспламеняется при гораздо более высокой температуре.

Внимание! В процессе движения поршня от произошедшего внутри микровзрыва деталь ДВС совершает обратный рывок, и коленчатый вал прокручивается.

Последний такт в четырёхтактном ДВС носит название впуск. Он происходит на четвёртом полуобороте. Принцип его действия довольно прост. Выпускной клапан открывается, и все продукты сгорания попадают в него, откуда в выпускной газопровод.

Перед тем как попасть в атмосферу отработанные газы из обычно проходят систему фильтров. Это позволяет минимизировать вред, наносимый экологии. Тем не менее устройство дизельных двигателей всё равно намного более экологично, чем бензиновых.

Устройства, позволяющие увеличить производительность ДВС

С момента изобретения первого ДВС система постоянно совершенствуется. Если вспоминать первые двигатели серийных автомобилей, то они могли разгоняться максимум до 50 миль в час. Современные суперкары без труда преодолевают отметку в 390 километров. Таких результатов учёным удалось добиться за счёт интеграции в устройство двигателя дополнительных систем и некоторых конструкционных изменений.

Большой прирост мощности в своё время дал клапанный механизм, внедрённый в ДВС. Ещё одной ступенью эволюции стало расположение распределительного вала вверху конструкции. Это позволило уменьшить число движущихся элементов и увеличить производительность.

Также нельзя отрицать полезность современной системы зажигания ДВС. Она обеспечивает максимально возможную стабильность работы. Вначале генерируется заряд, который поступает на распределитель, а с него на одну из свечей.

Внимание! Конечно же, нельзя забыть про систему охлаждения, состоящую из радиатора и насоса. Благодаря ей удаётся предотвратить своевременный перегрев устройства ДВС.

Итоги

Как видите, устройство двигателя внутреннего сгорания не представляет особенной сложности. Для того чтобы его понять не нужно каких-либо специальных знаний — достаточно простого желания. Тем не менее знание принципов работы ДВС точно не будет лишними для каждого водителя.

Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.

ДВС что это?

Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.

ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.

Основные механизмы двигателя внутреннего сгорания

Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.

1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.


2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.

3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.


5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:

Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.

6. Шатун служит соединительным элементом между поршнем и коленчатым валом.

7. Коленчатый вал преобразует поступательные движения поршней во вращательные.


8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.

Принцип работы двигателя внутреннего сгорания

В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду. Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.

Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.

Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.

Впуск

Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.

Сжатие

Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты. Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.

Рабочий ход

Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.

Выпуск

Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.

После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.

А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.

Достоинства и недостатки

Мы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.

Преимущества ДВС:

1. Возможность длительного передвижения на полном баке.

2. Небольшой вес и объём бака.

3. Автономность.

4. Универсальность.

5. Умеренная стоимость.

6. Компактные размеры.

7. Быстрый старт.

8. Возможность использования нескольких видов топлива.

Недостатки ДВС:

1. Слабый эксплуатационный КПД.

2. Сильная загрязняемость окружающей среды.

3. Обязательное наличие коробки переключения передач.

4. Отсутствие режима рекуперации энергии.

5. Большую часть времени работает с недогрузом.

6. Очень шумный.

7. Высокая скорость вращения коленчатого вала.

8. Небольшой ресурс.

Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.

Подписывайтесь на наши ленты в

Это удивительно, что мы уже более 100 лет используем огонь, металл, бензин и масло, чтобы приводить автомобили в движение. И это в то время, когда в наши дни у каждого из нас есть мобильные телефоны, по мощности ничем не уступающие компьютерам. Наши смартфоны могут распознавать лица, отпечатки пальцев и даже измерять сердечный ритм. У нас есть технологии и высокотехнологичные объекты, которые могут разбить друг об друга протоны, позволяющие изучить их обломки. Это позволяет нам раскрывать тайны Вселенной. Мы также можем посадить зонд на комету и отправить спутник за пределы Солнечной системы. И так можно продолжать до бесконечности… Так почему же в век технологической революции мир до сих пор пользуется устаревшими двигателями внутреннего сгорания?

Несмотря на все наши достижения , двигатель внутреннего сгорания фактически остается основным источником движения всего автотранспорта в мире. И это с учетом того, что этот силовой агрегат был придуман более ста лет назад.

Примечательно, что на фоне других, более современных изобретений, двигатель внутреннего сгорания (ДВС) выглядит очень примитивно. Как и сто лет назад, ДВС работает за счет впрыска топлива, его сжатия, воспламенения и ударной волны, которая образуется из-за сгорания топлива.

Давайте немного проанализируем, как все работает в автомобиле с обычным двигателем.

И так. Вы вставляете в зажигание и поворачиваете его, чтобы запустить стартер. В итоге стартер начинает двигать поршни двигателя вверх и вниз. Далее начинает работать топливный насос подавая топливо в камеру сгорания двигателя.

Вместе с ним начинают работать водяной насос, масляный насос, клапана двигателя, которые начинают свой гармоничный танец, чтобы подавать топливо в камеру сгорания двигателя каждую секунду. В итоге двигатель начинает свою работу, где все его компоненты начинают вращаться и смазываться большим количеством масла.

Согласитесь, что этот процесс относится к очень расточительной операции. Ведь для работы двигателя задействовано множество вспомогательного оборудования, которое практически расходует 75 процентов энергии двигателя впустую. К тому же огромное количество вспомогательных компонентов ДВС быстро выходят из строя из-за постоянной высокой нагрузки.

Но, несмотря на это нельзя говорить, что двигатель внутреннего сгорания изначально основывается на глупой идее. Нет конечно. ДВС служит нам верой и правдой уже более 100 лет и фактически изменил наш мир до неузнаваемости. Но это не означает, что этот удивительный мотор должен служить нам еще следующие 100 лет. Для того времени, когда появился ДВС, это был прорыв, что соответствовало тем технологиям, которые господствовали в ту эпоху.

Но сегодня все изменилось и теперь двигатели внутреннего сгорания не вписываются в тот мир, который нас окружает.

Вы посмотрите на современные автомобили. Они фактически стали выглядеть, как транспортные средства, которые мы видели не раз в фантастических фильмах и футуристических рассказах. Новые автомобили имеют удивительный дизайн, благодаря новым технологиям конструкции и достижениям в аэродинамике.

Современные автомобили могут обмениваться информацией со спутниками, автоматически брать на себя управление автомобилем, предупреждать нас об опасностях на дороге, экстренно тормозить, чтобы избежать опасности, выходить в всемирную сеть Интернет и многое другое.

Но, несмотря на высокотехнологичность, под капотом современных автомобилей, чаще всего, устанавливаются двигатели внутреннего сгорания, которые являются пережитками прошлого. Это в наши дни выглядит точно также, если бы iPhone 7 оснащался поворотным диском для набора номера.

В наши дни, в 21 веке действительно выглядит устаревшим. Особенно его технология получения энергии, которая образуется путем сжигания материала (топлива), от которого образуются отходы в виде газа. И этот вредный газ мы возвращаем обратно в природу, нанося непоправимый вред всей планете.

Хочу отметить, что я не сумасшедший эколог, которые часами на пролет разглагольствуют о защите земли, атмосферы и сохранения пингвинов в Антарктиде. Таких «зеленых фанатов» в нашем мире и так предостаточно. Причем хочу отметить, что различных ярых защитников природы (на грани фанатизма) было очень много еще задолго появления паровых двигателей, не говоря уже о появлении ДВС. И хочу вас заверить, что подобных фондов и организаций, будет большое количество даже в том случае, если экологии нашей планеты больше ничего угрожать не будет.

Но несмотря на свой нейтралитет по отношению к экологии природы, я хочу однозначно сказать, что двигатель внутреннего сгорания действительно себя изжил и ему не место в нашем 21 веке и в нашем будущем.

Тем более, что в наши дни уже есть технологии, которые основываются на более простых и более эффективных способах получения энергии для движения транспорта.

Но, для того чтобы двигатель внутреннего сгорания ушел навсегда в прошлое, необходимо, чтобы мы с вами поняли, что пришло время поменять наш мир, начав с себя. Дело в том, чтобы любая технология стала основной для использования по всему миру необходимо, чтобы мы к ней привыкли, перестроив свои устои и привычки. Это точно также, как мы сначала тяжело привыкали к мобильным телефонам и долгое время не могли отказаться от домашних стационарных телефонов. Затем на смену пришли смартфоны, которые долгое время оставались нами незамеченными, но в итоге прочно вошли в нашу жизнь. Также можно сказать и о новых технологий в автопромышленности. Ведь пока с нашей стороны не появится спрос на новые источники энергии, новые технологии не смогут отправить двигатели внутреннего сгорания на пенсию.

К сожалению, в наши дни не стоит пока рассчитывать на скорое исчезновение ДВС из современных автомобилей. До того момента, когда двигатели внутреннего сгорания мы сможем увидеть только в музеи или в технической литературе в библиотеке или в Интернете, может пройти еще достаточно времени. Дело в том, что несмотря на устаревшую технологию получения энергии, двигатели внутреннего сгорания еще имеют небольшой потенциал развития и увеличения мощности и экономичности. Этим и пользуются автопроизводители. Но я считаю, что в настоящий момент мы наблюдаем переломный момент в истории ДВС и в скором времени люди начнут понимать, что пришло время отказаться от использования автомобилей, оснащенных традиционными двигателями, работающие . И как только это произойдет, автомобильные компании будут вынуждены в короткий срок перестроиться и начать выпускать массово автомобили без ДВС.

Поверьте, совсем скоро двигатели внутреннего сгорания, в качестве источника энергии для передвижения транспорта, станут, как лошади в начале 20 века.

На первом этапе заката двигателей , уйдут самые неэффективные силовые агрегаты. На рынке на определенное время останутся только самые инновационные и экологически чистые двигатели внутреннего сгорания. Затем исчезнут и они.

Так что наше будущее связано с автомобилями, которые будут оснащаться двигателями, работающие на альтернативных источниках энергии.

Скорее всего, совсем скоро мы будем владеть автомобилями с электрическими двигателями, часть которых будет заряжаться электроэнергией, а часть водородным топливом.

устройство, принцип работы и тюнинг. Принцип работы двс и его основные компоненты

Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

Принцип работы двигателей внутреннего сгорания

Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую.

Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

На сегодняшний день устройство ДВС может иметь три основных вида:

  • часто называемый легким;
  • четырехтактный силовой агрегат, позволяющий добиться более высоких показателей мощности и значений КПД;
  • обладающие повышенными мощностными характеристиками.

Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

Преимущества двигателей внутреннего сгорания

В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или керосин и даже обычная древесина.

Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

Краткий исторический экскурс

Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

Первый четырехтактный двигатель внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора.

А в самом конце позапрошлого века знаменитый немецкий инженер предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

Основные виды и типы ДВС

Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

Бензиновые двигатели

Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина.

В свою очередь, такие силовые установки принято подразделять на две большие группы:

  • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
  • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска «Коммон Рейл». Устанавливаются почти на все современные автомобили.

Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация — заметно сложнее.

Дизельные двигатели

На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

Главным принципиальным отличием внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

  • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
  • большими габаритами и весовыми характеристиками;
  • сложностями с запуском при экстремальных погодных и климатических условиях;
  • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

Газовые двигатели

Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности.

На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, — при помощи электрической искры, исходящей от свечи зажигания.

Комбинированные типы двигателей внутреннего сгорания

Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?

Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

Обслуживание и ремонт двигателей внутреннего сгорания

Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.

Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

Итак, мы выяснили, что собой представляет данный силовой агрегат.

Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.

Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:


Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом , в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК . Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ . Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ . При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК . Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель — анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они — все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится . Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

  • Плохая топливная смесь
  • Отсутствие сжатия
  • Отсутствие искры

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом . Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками . Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его ! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора

Как работает двигатель? Видео

Для настоящего автолюбителя машина — это непросто средство передвижения, а ещё и инструмент свободы. При помощи автомобиля можно достаться в любую точку города, страны или континента. Но наличия прав для настоящего путешественника недостаточно. Ведь до сих пор есть множество мест, где не ловит мобильный, и куда не могут добраться эвакуаторы. В таких случаях при поломке вся ответственность ложится на плечи автомобилиста.

Поэтому каждый водитель должен хоть немного разбираться в устройстве своего автомобиля , и начать нужно именно с двигателя. Безусловно, современные автомобильные компании выпускают множество автомобилей с разными типами моторов, но чаще всего производителями в конструкциях используются двигатели внутреннего сгорания. Они обладают высоким КПД и при этом обеспечивают высокую надёжность работы всей системы.

Внимание! В большинстве научных статей двигатели внутреннего сгорания сокращённо называются ДВС.

Какими бывают ДВС

Перед тем как приступить к подробному изучению устройства ДВС и их принципа работы, рассмотрим, какими бывают двигатели внутреннего сгорания. Сразу нужно сделать одно важное замечание. За более чем 100 лет эволюции учёными было придумано множество разновидностей конструкций, у каждой из которых есть свои преимущества. Поэтому для начала выделим основные критерии, по которым можно различить данные механизмы:

  1. В зависимости от способа создания горючей смеси все ДВС делятся на карбюраторные, газовые и инжекторные устройства. Причём это класс с внешним смесеобразованием. Если же говорить о внутреннем, то — это дизели.
  2. В зависимости от типа топлива ДВС можно разделить на бензиновые, газовые и дизельные.
  3. Охлаждение устройства двигателей может быть двух типов: жидкостным и воздушным.
  4. Цилиндры могут располагаться как друг напротив друга, так и в форме буквы V.
  5. Смесь внутри цилиндров может воспламеняться посредством искры. Так происходит в карбюраторных и инжекторных ДВС или за счёт самовоспламенения.

В большинстве автомобильных журналов и среди профессиональных автоэкспортов принято классифицировать ДВС, на такие типы:

  1. Бензиновый двигатель. Это устройство работает за счёт бензина. Зажигание происходит принудительно при помощи искры, которую генерирует свеча. За дозировку топливно-воздушной смеси отвечают карбюраторные и инжекторные системы. Воспламенение происходит при сжатии.
  2. Дизельные . Двигатели с устройством такого типа работают за счёт сгорания дизельного топлива. Главная разница в сравнении с бензиновыми агрегатами заключается в том, что горючее взрывается благодаря повышению температуры воздуха. Последнее становится возможным из-за роста давления внутри цилиндра.
  3. Газовые системы функционируют при помощи пропан-бутана. Зажигание происходит принудительным образом. Газ с воздухом подаётся в цилиндр. В остальном устройство подобного ДВС аналогично бензиновому мотору.

Именно такая классификация используется чаще всего, указывая на конкретные особенности системы.

Устройство и принцип работы

Устройство двигателя внутреннего сгорания

Лучше всего рассмотреть устройство ДВС на примере одноцилиндрового двигателя. Главной деталью в механизме является цилиндр. В нём находится поршень, который двигается вверх-вниз. При этом есть две контрольные точки его передвижения: верхняя и нижняя. В профессиональной литературе они именуются как ВМТ и НМТ. Расшифровка следующая: верхняя и нижняя мёртвые точки.

Внимание! Поршень также соединяется с валом. Соединительным звеном служит шатун.

Главная задачу шатуна — это преобразование энергии, которая образовывается в результате движения поршня вверх-вниз во вращательное. Результатом подобного преобразования является движение автомобиля в нужное вам направление. Именно за это отвечает устройство ДВС. Также не стоит забывать про бортовую сеть, работа которой становится возможной благодаря энергии, выработанной двигателем.

Маховик крепится к концу вала ДВС. Он обеспечивает стабильность вращения коленчатого вала. Впускной и выпускной клапаны находятся вверху цилиндра, который, в свою очередь, накрывается специальной головкой.

Внимание! Клапаны открывают и закрывают соответствующие каналы в нужное время.

Чтобы клапаны ДВС открылись, на них воздействуют кулачки распредвала. Происходит это посредством передаточных деталей. Сам вал двигается при помощи шестерней коленчатого вала.

Внимание! Поршень свободно движется внутри цилиндра, застывая на миг то в верхней мёртвой точке, то в нижней.

Чтобы устройство ДВС функционировало в нормальном режиме, горючая смесь должна подаваться в чётко выверенной пропорции. В противном случае возгорание может не произойти. Огромную роль также играет момент, в который происходит подача.

Масло необходимо для того, чтобы предотвратить преждевременный износ деталей в устройстве ДВС. В общем, всё устройство двигателя внутреннего сгорания состоит из таких основных элементов:

  • свечей зажигания,
  • клапанов,
  • поршней,
  • поршневых колец,
  • шатунов,
  • коленвала,
  • картера.

Взаимодействие этих системных элементов позволяет устройству ДВС вырабатывать нужную для передвижения автомобиля энергию.

Принцип работы

Рассмотрим, как работает четырёхтактный ДВС. Чтобы понять принцип его работы, вы должны знать значение понятия такт. Это определённый промежуток времени, за который внутри цилиндра осуществляется нужное для работы устройства действие. Это может быть сжатие или воспламенение.

Такты ДВС образуют рабочий цикл, который, в свою очередь, обеспечивает работу всей системы. В процессе этого цикла тепловая энергия преобразуется в механическую. За счёт этого происходит движение коленчатого вала.

Внимание! Рабочий цикл считается завершённым после того, как коленчатый вал сделает один оборот. Но такое утверждение работает только для двухтактного двигателя.

Здесь нужно сделать одно важное объяснение. Сейчас в автомобилях преимущественно используется устройство четырёхтактного двигателя. Такие системы отличаются большей надёжностью и улучшенной производительностью.

Для совершения четырёхтактного цикла нужно два оборота коленчатого вала. Это четыре движения поршня вверх-вниз. Каждый такт выполняет действия в точной последовательности:

  • впуск,
  • сжатие,
  • расширение,
  • выпуск.

Предпоследний такт также называется рабочим ходом. Про верхнюю и нижнюю мертвые точки вы уже знаете. Но расстояние между ними обозначает ещё один важный параметр. А именно, объём ДВС. Он может колебаться в среднем от 1,5 до 2,5 литра. Измеряется показатель посредством плюсования данных каждого цилиндра.

Во время первого полуоборота поршень с ВМТ перемещается в НМТ. При этом впускной клапан остаётся открытым, в свою очередь, выпускной плотно закрыт. В результате данного процесса в цилиндре образуется разряжение.

Горючая смесь из бензина и воздуха попадает в газопровод ДВС. Там она смешивается с отработанными газами. В результате образуется идеальное для воспламенения вещество, которое поддаётся сжатию на втором акте.

Сжатие происходит тогда, когда цилиндр полностью заполнен рабочей смесью. Коленчатый вал продолжает свой оборот, и поршень перемещается из нижней мёртвой точки в верхнюю.

Внимание! С уменьшением объёма температура смеси внутри цилиндра ДВС растёт.

На третьем такте происходит расширение. Когда сжатия подходит к своему логическому завершению свеча генерирует искру и происходит воспламенение. В дизельном двигателе всё происходит немного по-другому.

Во-первых, вместо свечи установлена специальная форсунка, которая на третьем такте впрыскивает топливо в систему. Во-вторых, внутрь цилиндра закачивается воздух, а не смесь газов.

Принцип работы дизельного ДВС интересен тем, что в нём топливо воспламеняется самостоятельно. Происходит это за счёт повышения температуры воздуха внутри цилиндра. Подобного результата удаётся добиться за счёт сжатия, в результате которого растёт давление и повышается температура.

Когда топливо через форсунку попадает внутрь цилиндра ДВС, температура внутри настолько высока, что возгорание происходит само собой. При использовании бензина подобного результата добиться нельзя. Всё потому что он воспламеняется при гораздо более высокой температуре.

Внимание! В процессе движения поршня от произошедшего внутри микровзрыва деталь ДВС совершает обратный рывок, и коленчатый вал прокручивается.

Последний такт в четырёхтактном ДВС носит название впуск. Он происходит на четвёртом полуобороте. Принцип его действия довольно прост. Выпускной клапан открывается, и все продукты сгорания попадают в него, откуда в выпускной газопровод.

Перед тем как попасть в атмосферу отработанные газы из обычно проходят систему фильтров. Это позволяет минимизировать вред, наносимый экологии. Тем не менее устройство дизельных двигателей всё равно намного более экологично, чем бензиновых.

Устройства, позволяющие увеличить производительность ДВС

С момента изобретения первого ДВС система постоянно совершенствуется. Если вспоминать первые двигатели серийных автомобилей, то они могли разгоняться максимум до 50 миль в час. Современные суперкары без труда преодолевают отметку в 390 километров. Таких результатов учёным удалось добиться за счёт интеграции в устройство двигателя дополнительных систем и некоторых конструкционных изменений.

Большой прирост мощности в своё время дал клапанный механизм, внедрённый в ДВС. Ещё одной ступенью эволюции стало расположение распределительного вала вверху конструкции. Это позволило уменьшить число движущихся элементов и увеличить производительность.

Также нельзя отрицать полезность современной системы зажигания ДВС. Она обеспечивает максимально возможную стабильность работы. Вначале генерируется заряд, который поступает на распределитель, а с него на одну из свечей.

Внимание! Конечно же, нельзя забыть про систему охлаждения, состоящую из радиатора и насоса. Благодаря ей удаётся предотвратить своевременный перегрев устройства ДВС.

Итоги

Как видите, устройство двигателя внутреннего сгорания не представляет особенной сложности. Для того чтобы его понять не нужно каких-либо специальных знаний — достаточно простого желания. Тем не менее знание принципов работы ДВС точно не будет лишними для каждого водителя.

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

Двигатель внутреннего сгорания: принцип работы и устройство

Сердцем любого автомобиля является двигатель внутреннего сгорания. Он отличается тем, что топливная смесь у него воспламеняется и горит внутри цилиндра. Принцип его работы основывается на том, что газы расширяются, когда происходит горение. Давайте немного рассмотрим работу бензинового и дизельного агрегатов и некоторые их циклы.

Рабочий цикл мотора – это несколько процессов, которые выполняются друг за другом с соблюдением строгого временного периода. Этот цикл протекает во всех цилиндрах, которые имеются в агрегате, и обеспечивает процесс, когда энергия тепла превращается в механическое движение. Когда цикл проходит за два движения рабочего поршня, то это равняется одному обороту коленчатого вала. Тогда можно с уверенностью утверждать, что агрегат является двухтактным.

Автомобильные моторы выполняют свою работу, следуя строго своим циклам. Каждый из них — это четыре отдельных такта. Последние укладывается за два полноценных валовых оборота, что равно четырем поршневым ходам. Другими словами, двигатель является четырехтактным.

Каждый из четырех тактов имеет свое название. Первым идет впуск. Вторым — сжатие. Третьим — расширение. Четвертым — выпуск. Самые предельные положения поршня, то есть когда он максимально либо отдален от вала, либо приближен к нему, именуются как верхняя и нижняя точки предела.

Пока вал выполняет первую половину одного оборота, поршень смещается в самую нижнюю часть. В этот момент полностью открывается впускной клапан. Клапан для выпуска пока остается плотно закупоренным. Это приводит к образованию разряжения внутри цилиндра. Из-за этого энергетическая воздушно-бензиновая смесь попадает внутрь цилиндра через тот же впуск. Там она смешивается с теми газовыми остатками, которые уже отработаны. Получается смесь, подходящая для работы.

Когда полость цилиндра до отказа заполнен воспламеняющейся смесью, поршень, вращаясь, смещается вверх до максимума. Все клапаны остаются плотно закрытыми. Объем смеси постепенно уменьшается, а вот ее температурное значение и давление наоборот становятся выше.

Когда такт подходит к своему завершению, происходит возгорание смеси. Для этого используется электрическая искра от свечей зажигания. Итак, смесь загорается и быстро выгорает. Это приводит к тому, что температурное значение и давление из-за образования газов значительно увеличиваются. Поршень же при этом сдвигается в самый низ до минимума. Когда происходит расширение, шатун, который соединен с поршнем шарнирами, выполняет довольно сложное движение.

Когда газы расширяются, он выполняют полезное действие. Поэтому вращение поршня на третьем валовом полуобороте именуется рабочим ходом. В конце данного процесса, когда поршень уходит в низ до самого минимума. Из-за этого значительно падают температурные показатели и, конечно, давление.

На четвертом валовом полуобороте поршень смещается до самого верхнего максимума. Именно через выпускной клапан все продукты горения вытесняются из цилиндровой внутренности. Для этого имеется специальный газоотвод.

Если говорить о дизельных агрегатах, то у них на в цилиндр запускается не смесь, а чистый кислород. Когда начинается сжатие, воздух нагревается до шестисот градусов по Цельсию. На конечном тактовом этапе в цилиндр поступает совсем немного дизеля. Именно он и воспламеняется.

Когда же поршень опускается до самой нижней точки из-за образовавшегося разряжения, то из фильтра для воздуха внутрь цилиндра подается кислород. При этом впуск должен быть отрытым.

Теперь поршень начинает двигаться вверх до самого максимума. При этом все клапаны плотно закупориваются. Это приводит к тому, что воздушная масса начинает сильно сжиматься. Чтобы произошло возгорание топлива, нужно чтобы температура воздуха была выше, чем та, при которой может само воспламеняться. Используются форсунки и топливный насос.

На конечном этапе сжимания запускается дизель. Он перемешивается с кислородом, который нагрет до предела, и загорается. Начинает процесс активного горения, что становится причиной значительного увеличения температуры и давления в цилиндре. Газы заставляют поршень смещаться в низ, то есть выполнять свою прямую обязанность — рабочий ход. И как раз теперь давление и температура смеси в цилиндре идут на спад.

На следующем этапе поршень снова подымается к верхней точке. Давление и температура снижаются до стабильной нормы. Когда процесс выпуска будет закончен, весь процесс вращения вала снова повторяется. Рабочая последовательность остается той же.

Один из самых технологичных двигателей: W16, 1500л.с. для Bugatti Chiron

Все современные машины обычно оборудуют многоцилиндровыми агрегатами. Чтобы такой мотор совершал свой рабочий процесс равномерно, расширяющие такты должны проходить через одинаковые поворотные углы вала.

Устройство и принцип работы двигателя внутреннего сгорания

Устройство и принцип работы
двигателя внутреннего сгорания
УСТРОЙСТВО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Двигатель состоит из цилиндра, в
котором перемещается поршень 3,
соединенный при помощи шатуна 4 с
коленчатым валом 5. В верхней части
цилиндра имеется два клапана 1 и 2,
которые при работе двигателя
автоматически открываются и
закрываются в нужные моменты.
Через клапан 1 в цилиндр поступает
горючая смесь, которая
воспламеняется с помощью свечи 6, а
через клапан 2 выпускаются
отработавшие газы. В цилиндре такого
двигателя периодически происходит
сгорание горючей смеси, состоящей из
паров бензина и воздуха. Температура
газообразных продуктов сгорания
достигает 1600—1800 градусов
Цельсия.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
I ТАКТ
Один ход поршня, или один такт
двигателя, совершается за пол-оборота
коленчатого вала. При повороте вала
двигателя в начале первого такта поршень
движется вниз . Объем над поршнем
увеличивается. Вследствие этого в
цилиндре создается разрежение.
В это время открывается клапан 1 и в
цилиндр входит горючая смесь.
К концу первого такта цилиндр
заполняется горючей смесью, а клапан 1
закрывается.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
II ТАКТ
При дальнейшем повороте вала
поршень движется вверх (второй такт) и
сжимает горючую смесь. В конце второго такта,
когда поршень дойдет до крайнего
верхнего положения, сжатая горючая смесь
воспламеняется (от электрической искры)
и быстро сгорает.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
III ТАКТ
Под действием расширяющихся
нагретых газов (третий такт) двигатель
совершает работу, поэтому этот такт
называют рабочим ходом. Движение поршня
передается шатуну, а через него коленчатому
валу с маховиком. Получив сильный толчок,
маховик затем продолжает вращаться
по инерции и перемещает скрепленный
с ним поршень при последующих тактах.
Второй и третий такты происходят при
закрытых клапанах.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
IV ТАКТ
В конце третьего такта открывается
клапан 2, и через него продукты
сгорания выходят из цилиндра в атмосферу.
Выпуск продуктов сгорания продолжается
и в течение четвертого такта, когда поршень
движется вверх. В конце четвертого
такта клапан 2 закрывается.
Итак, цикл работы двигателя состоит
из следующих четырех процессов
(тактов):
•впуска,
•сжатия,
•рабочего хода,
•выпуска.
Щелкните на картинке

9. Карбюраторные двигатели

900igr.net

10. История создания карбюраторного двигателя


В 1885 году немецкие инженеры Готлиб Даймлер (1834-1900)
и Вильгельм Майбах (1846-1929) изобрели легкий,
быстроходный двигатель внутреннего сгорания (ДВС),
использовавший качестве топлива бензин. Они установили
его на деревянный велосипед и создали первый в мире
мотоцикл.
В 1889 году Даймлер и Майбах построили первый
четырехколесный автомобиль. На этом автомобиле впервые
был установлен двигатель, оснащенный четырехступенчатой
коробкой передач и карбюратором. Карбюратор был
разработан Даймлером, в нем топливо распыляется,
смешивается с воздухом и подается в цилиндр.
Это обстоятельство значительно повышало эффективность
работы данного двигателя, впоследствии названного
карбюраторным.

11. Применение карбюраторных двигателей

• Карбюраторные двигатели находят широкое применение в
современной жизни. Их используют в основном на
транспортных средствах (из-за высокой стоимости топлива
которые данные виды двигателей используют), к таким
транспортным средствам относятся:
• Мотоциклы, Автомобили, а также Катера; Моторные лодки и т.
п.
• Мне бы хотелось сосредоточить ваше внимание на
использование карбюраторных двигателей в современном
автомобильной промышленности.
• Автомобильный транспорт создан в результате развития
новой отрасли народного хозяйства — автомобильной
промышленности, которая на современном этапе является
одним из основных звеньев отечественного машиностроения.
• В конце XIX века в ряде стран возникла автомобильная
промышленность. В царской России неоднократно делались
попытки организовать собственное машиностроение. В 1908
г. производство автомобилей было организовано на РусскоБалтийском вагоностроительном заводе в Риге. В течение
шести лет здесь выпускались автомобили, собранные в
основном из импортных частей.

После Великой Октябрьской социалистической революции
практически заново пришлось создавать отечественную
автомобильную промышленность.
Начало развития российского автомобилестроения относится к 1924
году, когда в Москве на заводе АМО были построены первые грузовые
автомобили АМО-Ф-15.
В период 1931-1941 гг. создается крупносерийное и массовое
производство автомобилей. В 1931 г. на заводе АМО началось
массовое производство грузовых автомобилей. В 1932 г. вошел в
строй завод ГАЗ.
В 1940 г. начал производство малолитражных автомобилей
Московский завод малолитражных автомобилей. Несколько позже был
создан Уральский
автомобильный завод. За годы послевоенных пятилеток вступили в
строй:
Кутаисский, Кременчугский, Ульяновский, Минский автомобильные
заводы.
Начиная с конца 60-х гг., развитие автомобилестроения
характеризуется особо быстрыми темпами. В 1971 г. вступил в
строй Волжский автомобильный завод им. 50-летия СССР.
Спасибо за внимание!

устройство, работа, КПД :: SYL.ru

В подавляющем большинстве автомобилей используются в качестве топлива для двигателей производные нефти. При сгорании этих веществ выделяются газы. В замкнутом пространстве они создают давление. Сложный механизм воспринимает эти нагрузки и трансформирует их сначала в поступательное движение, а затем — во вращательное. На этом основан принцип работы двигателя внутреннего сгорания. Далее вращение уже передается на ведущие колеса.

Поршневой двигатель

В чем преимущество такого механизма? Что дал новый принцип работы двигателя внутреннего сгорания? В настоящее время им оборудуются не только автомобили, но и сельскохозяйственный и погрузочный транспорт, локомотивы поездов, мотоциклы, мопеды, скутера. Двигатели такого типа устанавливаются на военной технике: танках, бронетранспортерах, вертолетах, катерах. Еще можно вспомнить о бензопилах, косилках, мотопомпах, генераторных подстанциях и другом мобильном оборудовании, в котором используется для работы дизельное топливо, бензин или газовая смесь.

До изобретения принципа внутреннего сгорания топливо, чаще твердое (уголь, дрова), сжигалось в отдельной камере. Для этого применялся котел, который грел воду. В качестве первоисточника движущей силы использовался пар. Такие механизмы были массивными и габаритными. Ими оборудовались локомотивы паровозов и теплоходы. Изобретение двигателя внутреннего сгорания дало возможность в разы уменьшить габариты механизмов.

Система

При работе двигателя постоянно происходит ряд цикличных процессов. Они должны быть стабильными и проходить за строго определенный промежуток времени. Это условие обеспечивает бесперебойную работу всех систем.

У дизельных двигателей топливо предварительно не подготавливается. Система подачи топлива доставляет его из бака, и оно подается под высоким давлением в цилиндры. Бензин же по пути предварительно смешивается с воздухом.

Принцип работы двигателя внутреннего сгорания таков, что система зажигания воспламеняет эту смесь, а кривошипно-шатунный механизм принимает, трансформирует и передает энергию газов на трансмиссию. Газораспределительная система выпускает из цилиндров продукты горения и выводит их за пределы транспортного средства. Попутно снижается звук выхлопа.

Система смазки обеспечивает возможность вращения подвижных узлов. Тем не менее трущиеся поверхности нагреваются. Система охлаждения следит за тем, чтобы температура не выходила за пределы допустимых значений. Хотя все процессы происходят в автоматическом режиме, за ними все же необходимо наблюдать. Это обеспечивает система управления. Она передает данные на пульт в кабину водителя.

Устройство двигателя внутреннего сгорания

Достаточно сложный механизм должен иметь корпус. В нем монтируются основные узлы и агрегаты. Дополнительное оборудование для систем, обеспечивающих нормальную его работу, размещается поблизости и монтируется на съемных креплениях.

В блоке цилиндров располагается кривошипно-шатунный механизм. Основная нагрузка от сгоревших газов топлива передается на поршень. Он шатуном соединен с коленчатым валом, который преобразует поступательное движение во вращательное.

Также в блоке размещается цилиндр. По его внутренней плоскости перемещается поршень. На нем прорезаны канавки, в которых помещаются уплотнительные кольца. Это необходимо для минимизации зазора между плоскостями и создания компрессии.

Сверху к корпусу крепится головка блока цилиндров. В ней монтируется газораспределительный механизм. Он состоит из вала с эксцентриками, коромысел и клапанов. Их поочередное открытие и закрытие обеспечивают впуск топлива внутрь цилиндра и выпуск затем отработанных продуктов горения.

К низу корпуса монтируется поддон блока цилиндров. Туда стекает масло после того, как оно смажет трущиеся соединения деталей узлов и механизмов. Внутри двигателя еще расположены каналы, по которым циркулирует охлаждающая жидкость.

Принцип работы ДВС

Суть процесса заключается в преобразовании одного вида энергии в другой. Это происходит при сжигании топлива в замкнутом пространстве цилиндра двигателя. Выделяющиеся при этом газы расширяются, и внутри рабочего пространства создается избыточное давление. Его воспринимает поршень. Он может двигаться вверх-вниз. Поршень посредством шатуна соединен с коленчатым валом. По сути это главные детали кривошипно-шатунного механизма – основного узла, отвечающего за преобразование химической энергии топлива во вращательное движение вала.

Принцип работы двигателя внутреннего сгорания основан на поочередной смене циклов. При поступательном движении поршня вниз совершается работа – на определенный угол проворачивается коленчатый вал. На одном его конце закреплен массивный маховик. Получив ускорение, он по инерции продолжает движение, и это еще проворачивает коленчатый вал. Теперь шатун толкает поршень вверх. Он занимает рабочее положение и снова готов принять на себя энергию воспламененного топлива.

Особенности

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором – воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Потери

Несмотря на то что ДВС отличается надежностью и стабильностью работы, его эффективность недостаточно высока, как это может показаться на первый взгляд. В математическом измерении КПД двигателя внутреннего сгорания составляет в среднем 30-45 %. Это говорит о том, что большая часть энергии сгораемого топлива расходуется вхолостую.

КПД лучших бензиновых двигателей может составлять лишь 30 %. И только массивные экономные дизели, у которых много дополнительных механизмов и систем, могут эффективно преобразовать до 45 % энергии топлива в пересчете на мощность и полезную работу.

Устройство двигателя внутреннего сгорания не может исключить потери. Часть топлива не успевает сгорать и уходит с отработанными газами. Другая статья потерь – это расход энергии на преодоление различного рода сопротивлений при трении сопряженных поверхностей деталей узлов и механизмов. И еще какая-то часть ее тратится на приведение в действие систем двигателя, обеспечивающих его нормальную и бесперебойную работу.

Двигатель внутреннего сгорания. | Презентация к уроку на тему:

Слайд 1

Двигатель внутреннего сгорания Филиал государственного бюджетного образовательного учреждения высшего образования Московской области «Университет «Дубна» Лыткаринский промышленно-гуманитарный колледж Мастер производственного обучения Рязанцев В.М.

Слайд 3

Двигатель внутреннего сгорания (ДВС) Классификация: по назначению: – транспортные, устанавливаются на автомобилях. — стационарные – на стационарных силовых установках (миксер-бетономешалка, компрессорная установка. по рабочему циклу: – 4-х тактные — 2-х тактные (маломощные: мопеды, мотоциклы )

Слайд 4

по способу смесеобразования: — с внешним смесеобразованием (карбюраторные, инжекторные ) — с внутренним смесеобразованием (в дизели – топливо впрыскивается в цилиндр двигателя) по способу воспламенения рабочей смеси: — от электрической искры (бензиновые, на газовом топливе) — с воспламенением под воздействием высокой температуры, возникающей при сильном сжатии рабочей смеси (дизели)

Слайд 5

по виду топлива: — жидкое топливо: — легкие сорта (бензины, керосины, спирты) — тяжелые сорта (дизельное топливо) По числу цилиндров По расположению цилиндров: — рядные (с вертикальным расположением цилиндров) — V -образные (цилиндры под углом 90 градусов) — оппозитные (цилиндры под углом 180 градусов)

Слайд 7

По способу наполнения цилиндров свежим зарядом: — атмосферные — с наддувом По способу охлаждения: — отвод тепла осуществляется при помощи охлаждающей жидкости — путем обдува цилиндров воздухом.

Слайд 8

Общее устройство ДВС Двигатель внутреннего сгорания состоит из: — 2-х механизмов: — кривошипно-шатунный механизм (КШМ) — газораспределительный механизм (ГРМ) — 5-и систем: — система питания (включает систему выпуска отработавших газов) — система смазки (включает систему рециркуляции и вентиляции картерных газов) — система охлаждения (включает систему предпускового подогрева) — система зажигания (отсутствует у дизелей) — система пуска

Слайд 9

КШМ — предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала двигателя. В ДВС еще воспринимает давление газов в процессе их расширения. Принцип действия КШМ Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар: поршень – шатун и шатун – вал поступательное движение поршня преобразуется во вращательное движение коленчатого вала . Детали КШМ делятся на подвижные и неподвижные: Подвижные: поршни, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал, маховик. Неподвижные: Блок цилиндров, головка блока цилиндров ГБЦ, картер, поддон картера.

Слайд 11

ГРМ – служит для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов. Служит для своевременного открытия и закрытия впускных и выпускных клапанов. Состоит из: Тарельчатый клапан : тарелка, стержень. Направляющая втулка, седло . Распределительный вал (или несколько) Привод распределительного вала Привод клапанных механизмов. С верхним расположением распределительного вала: пружины клапана, рычаг клапана. С нижним … ось коромысел, коромысла, штанги (толкатели), пружины клапанов.

Слайд 15

Система питания карбюраторного двигателя – служит для приготовления горючей смеси вне цилиндров двигателя и подачи её в цилиндры двигателя. Состроит: топливный бак, фильтры грубой и тонкой очистки топлива, топливопроводы , топливный насос, карбюратор, воздушный фильтр, впускной коллектор. Система выпуска отработавших газов является частью системы питания. Состоит: Выпускной коллектор, выхлопная труба, резонатор, глушитель.

Слайд 17

Система смазки — служит для подачи масла для смазки и охлаждения подшипников и других трущихся деталей двигателя . Состоит: насос с маслоприемником , фильтр очитки масла, масляные магистрали (каналы и трубопроводы), масляный радиатор, детали системы вентиляции картера двигателя.

Слайд 20

Система охлаждения – предназначена для отвода излишней теплоты и поддержания температурного режима в пределах 80 -95 градусов. Жидкостная система охлаждения — состоит из рубашки охлаждения, насоса охлаждающей жидкости, термостата, радиатора, вентилятора, расширительного бачка, патрубков системы охлаждения, клапана. Рубашка охлаждения – полость, огибающая части двигателя, требующие охлаждения. Насос охлаждающей жидкости – служит для принудительной циркуляции охлаждающей жидкости по системе охлаждения .

Слайд 22

Термостат – служит для поддержания рабочей температуры. Он перенаправляет охлаждающую жидкость по малому кругу, в обход радиатора, если температура не достигла рабочей. Радиатор — служит для отвода тепла в атмосферу за счет набегающего потока воздуха. Вентилятор — создает дополнительный поток воздуха для обдува радиатора. Расширительный бачок — содержит запас охлаждающей жидкости. Система охлаждения имеет клапан , который создает небольшое давление в системе для увеличения температуры кипения (около 110 градусов). Клапан находится в крышке радиатора или расширительного бачка.

Слайд 23

Воздушная система охлаждения состоит из ребер охлаждения и вентилятора (если с принудительным приводом)

Слайд 24

Система зажигания – обеспечивает появление, в нужный момент, электрической искры, воспламеняющей рабочую смесь. Является частью общей системы электрооборудования. У дизельных двигателей система зажигания отсутствует. Воспламенение происходит под воздействием высокой температуры рабочей смеси в результате сильного сжатия рабочей смеси.

Слайд 26

Система пуска – служит для обеспечения пуска двигателя. Если двигатель находится в неподвижном состоянии, его нужно раскрутить воздействием внешней силы или источника энергии. Мускульная сила (тросик, веревочный стартер), (на мотоциклах есть рычаг – кикстартер ) Электростартер Вспомогательный ДВС (пусковой двигатель) Буксировка (кроме АКПП)

Слайд 28

Основные параметры двигателя — мертвые точки – крайние положения поршня в цилиндре двигателя, в которых поршень меняет направление своего движения. Их две: верхняя — ВМТ , нижняя – НМТ — Ход поршня – путь, который проходит поршень от одной до другой мертвой точки — Рабочий цикл двигателя – совокупность процессов, при которых тепловая энергия превращается в механическую работу. — Такт – часть рабочего цикла, который происходит за один ход поршня

Слайд 30

— Объем камеры сгорания – пространство над поршнем, при нахождении поршня в ВМТ — Рабочий объем цилиндра – пространство, освобождаемое поршнем при движении от ВМТ к НМТ — П олный объем цилиндра – сумма объема камеры сгорания и рабочего объема цилиндра — Р абочий объем двигателя – сумма рабочих объемов всех цилиндров двигателя — Степень сжатия – отношение полного объема цилиндра к объему камеры сгорания (показывает, во сколько раз сжимается рабочая смесь в цилиндре двигателя)

Слайд 31

Увеличение степени сжатия влечет: — увеличение октанового числа бензина — увеличивается мощность — уменьшается расход топлива — увеличение надежности и стоимости деталей КШМ Октановое число – показатель характеризующий детонационную стойкость бензина Детонация – характерный стук или «звон» двигателя Детона́ция (от фр. détoner — «взрываться» и лат. detonare — «греметь»

Слайд 33

Продолжение следует!

Диаграмма давление-объем (pV) и как работа выполняется в ДВС — x-engineer.org

Двигатель внутреннего сгорания — это тепловой двигатель . Принцип его работы основан на изменении давления и объема внутри цилиндров двигателя. Все тепловые двигатели характеризуются диаграммой давление-объем , также известной как диаграмма pV , которая в основном показывает изменение давления в цилиндре в зависимости от его объема для полного цикла двигателя.

Кроме того, работа , производимая двигателем внутреннего сгорания, напрямую зависит от изменения давления и объема внутри цилиндра.

К концу этого руководства читатель должен уметь:

  • понять значение диаграммы pV
  • как нарисовать диаграмму pV для 4-тактного двигателя внутреннего сгорания
  • при впуске и выпуске клапаны приводятся в действие во время цикла двигателя
  • , когда зажигание / впрыск производится во время цикла двигателя
  • как работа производится двигателем внутреннего сгорания
  • какая разница между указанным и тормозом
  • каков механический КПД двигателя

Давайте начнем с рассмотрения pV-диаграммы четырехтактного атмосферного двигателя внутреннего сгорания.

Изображение: График давление-объем (pV) для типичного 4-тактного ДВС

, где:

S — ход поршня
V c — зазорный объем
V d — смещенный (рабочий) объем
p 0 — атмосферное давление
W — работа
ВМТ — верхняя мертвая точка
НМТ — нижняя мертвая точка
IV — впускной клапан
EV — выпускной клапан
IVO — открытие впускного клапана
IVC — закрытие впускного клапана
EVO — открытие выпускного клапана
EVC — закрытие выпускного клапана
IGN (INJ) — зажигание (впрыск)

Диаграмма давление-объем (pV) построена путем измерения давления внутри цилиндра и нанесения его значения в зависимости от угла поворота коленчатого вала на протяжении всего цикл двигателя (720 °).

Давайте посмотрим, что происходит в цилиндре во время каждого хода поршня, как изменяются давление и объем внутри цилиндра.

Обратите внимание, что синхронизация впускных и выпускных клапанов имеет опережение и задержку относительно положения поршня. Например, впускной клапан открывается во время такта выпуска поршня и закрывается во время такта сжатия. В то же время, когда начинается такт впуска, выпускной клапан еще некоторое время открыт.Открытие выпускного клапана происходит до завершения рабочего хода.

ВПУСК (a-b)

Цикл двигателя начинается в точке a . Впускной клапан уже открыт, и поршень движется от ВМТ к НМТ. Объем постоянно увеличивается по мере того, как поршень перемещается по длине хода. Максимальный объем достигается, когда поршень находится в НМТ. Давление ниже атмосферного на протяжении всего хода, потому что движение поршня создает объем, а воздух втягивается внутрь цилиндра из-за эффекта вакуума.

СЖАТИЕ (b-c)

После того, как поршень прошел НМТ, начинается такт сжатия. В этой фазе объем начинает уменьшаться, а давление увеличиваться. Требуется некоторое время, пока давление в цилиндре не превысит атмосферное, чтобы впускной клапан оставался открытым даже после того, как поршень пройдет НМТ. По мере того, как поршень приближается к ВМТ, давление постепенно увеличивается. Примерно за 25 ° до ВМТ срабатывает зажигание, и давление быстро повышается до максимального.

МОЩНОСТЬ (c-e)

После события зажигания / впрыска давление в цилиндре резко повышается, пока не достигнет максимальных значений p max . Значение максимального давления зависит от типа двигателя, на каком топливе он используется. Для типичного двигателя легкового автомобиля максимальное давление в цилиндре может составлять около 120 бар (бензин) или 180 бар (дизель). Рабочий ход начинается, когда поршень движется от ВМТ к НМТ. Высокое давление в цилиндре толкает поршень, поэтому объем увеличивается, а давление начинает постепенно падать.

ВЫХЛОП (e-a)

После рабочего хода поршень снова находится в НМТ. Объем в цилиндре снова на максимальном значении, а давление около минимального (атмосферное давление). Поршень начинает двигаться в сторону ВМТ и выталкивает сгоревшие газы из цилиндра.

Как видите, давление и объем внутри цилиндров двигателя постоянно меняются. Мы увидим, что работа, производимая ДВС, зависит от изменений давления и объема.

Работа Вт [Дж] — это произведение между силой F [Н] , которая толкает поршень, и смещением, которое в нашем случае составляет ход S [м] .

\ [W = F \ cdot S \ tag {1} \]

Мы знаем, что давление — это сила, разделенная на площадь, поэтому:

\ [F = p \ cdot A_p \ tag {2} \]

где p [ Па] — давление внутри цилиндра, а A p 2 ] — площадь поршня.

Замена (2) в (1) дает:

\ [W = p \ cdot A_p \ cdot S \ tag {3} \]

Мы знаем, что умножая расстояние на площадь, мы получаем объем, следовательно:

\ [W = p \ cdot V \ tag {4} \]

Это мгновенная работа , произведенная в цилиндре для определенного давления и объема.Чтобы определить работу для полного цикла двигателя, нам нужно интегрировать мгновенную работу:

\ [W = \ int F \ cdot dx = \ int p \ cdot A_p \ cdot dx \ tag {5} \]

, где x ход поршня.

Произведение между ходом поршня и площадью поршня дает дифференциальный объем dV , смещенный поршнем:

\ [dV = A_p \ cdot dx \ tag {6} \]

Замена (6) в (5 ) дает работу , произведенную в цилиндре за полный цикл :

\ [\ bbox [# FFFF9D] {W = \ int p \ cdot dV} \ tag {7} \]

Поскольку подавляющее большинство Если двигатель внутреннего сгорания имеет несколько цилиндров, мы собираемся ввести более подходящий параметр для количественной оценки работы, которым является удельная работа Вт [Дж / кг] .

\ [w = \ frac {W} {m} \ tag {8} \]

где м [кг] — масса топливовоздушной смеси внутри цилиндров за полный цикл.

Мы можем также определить удельный объем v [м 3 / кг] как:

\ [v = \ frac {V} {m} \ tag {9} \]

Производная от удельного объем будет:

\ [dv = \ frac {1} {m} \ cdot dV \ tag {10} \]

, откуда мы можем записать:

\ [dV = m \ cdot dv \ tag {11} \]

Замена (7) в (8) дает:

\ [w = \ frac {1} {m} \ int p \ cdot dV \ tag {12} \]

Из (11) и (12) получаем математическое выражение удельной работы для полного цикла двигателя:

\ [\ bbox [# FFFF9D] {w = \ int p \ cdot dv} \]

Работа, производимая внутри цилиндров двигателя, называется , указывается удельная работа , w i [Дж / кг] .Что мы получаем на коленчатом валу, так это удельная работа тормоза w b [Дж / кг] . Это называется «тормозом», потому что при испытании двигателей на испытательном стенде они подключаются к тормозному устройству (гидравлическому или электрическому), которое имитирует нагрузку.

Чтобы получить работу тормоза, мы должны вычесть из указанной работы все потери двигателя. Потери связаны с внутренним трением и вспомогательными устройствами, которые требуют мощности от двигателя (масляный насос, водяной насос, нагнетатель, компрессор кондиционера, генератор переменного тока и т. Д.). Эти потери имеют эквивалент удельной работы на трение w f [Дж / кг] .

\ [w_b = w_i — w_f \]

Посмотрев на указанную выше диаграмму давление-объем (pV), мы можем увидеть, что есть две отдельные области:

  • верхняя область, образованная во время сжатия и рабочего хода ( + W)
  • нижняя область, образующаяся во время тактов выпуска и впуска (-W), также называемая насосная работа

В зависимости от значения давления всасывания рабочая область нагнетания может быть отрицательной или положительной.Для атмосферных двигателей насосная работа отрицательна, потому что она использует энергию двигателя для выталкивания выхлопных газов из цилиндров и всасывания свежего воздуха во время впуска.

Для бензиновых атмосферных двигателей из-за дросселирования всасываемого воздуха насосные потери выше и максимальны на холостом ходу. Дизельные двигатели более эффективны, чем бензиновые, потому что на впуске нет дроссельной заслонки, а нагрузка регулируется за счет впрыска топлива.

Если разделить удельный крутящий момент тормоза на указанный удельный крутящий момент, мы получим механический КПД двигателя η м [-] :

\ [\ bbox [# FFFF9D] {\ eta_m = \ frac {w_b} {w_i}} \]

Для большинства двигателей механический КПД составляет около 80-85% при полной нагрузке (полностью открытый дроссель) и падает до нуля на холостом ходу, когда весь крутящий момент двигателя используется для поддержания холостого хода. скорость, а не движущая сила.

По любым вопросам, наблюдениям и запросам относительно этой статьи используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Принцип работы поршневого двигателя / рабочие циклы

Соотношения между давлением, объемом и температурой газов являются основными принципами работы двигателя. Двигатель внутреннего сгорания — это устройство для преобразования тепловой энергии в механическую. Бензин испаряется и смешивается с воздухом, нагнетается или втягивается в цилиндр, сжимается поршнем, а затем воспламеняется электрической искрой.Преобразование полученной тепловой энергии в механическую, а затем в работу осуществляется в цилиндре. На рис. 1-35 показаны различные компоненты двигателя, необходимые для выполнения этого преобразования, а также представлены основные термины, используемые для обозначения работы двигателя.

Рисунок 1-35. Компоненты и терминология работы двигателя.

Рабочий цикл поршневого двигателя внутреннего сгорания включает в себя серию событий, необходимых для индукции, сжатия, воспламенения и горения, вызывающих расширение заряда топлива / воздуха в цилиндре и удаления или выпуска побочных продуктов процесса сгорания.Когда сжатая смесь воспламеняется, образующиеся при сгорании газы расширяются очень быстро и заставляют поршень отодвигаться от головки блока цилиндров. Это движение поршня вниз, воздействующее на коленчатый вал через шатун, преобразуется коленчатым валом в круговое или вращательное движение. Клапан в верхней части или в головке цилиндра открывается, чтобы позволить сгоревшим газам уйти, а импульс коленчатого вала и гребного винта заставляет поршень возвращаться в цилиндр, где он готов к следующему событию в цикле.Затем открывается другой клапан в головке блока цилиндров, чтобы впустить свежую топливно-воздушную смесь. Клапан, позволяющий отводить горящие выхлопные газы, называется выпускным клапаном, а клапан, который впускает свежий заряд топливно-воздушной смеси, называется впускным клапаном. Эти клапаны открываются и закрываются механически в нужное время с помощью механизма управления клапанами.

Отверстие цилиндра — это его внутренний диаметр. Ход — это расстояние, на которое поршень перемещается от одного конца цилиндра к другому, в частности, от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ) или наоборот.[Рис. 1-35]

Соотношения между давлением, объемом и температурой газов являются основными принципами работы двигателя. Двигатель внутреннего сгорания — это устройство для преобразования тепловой энергии в механическую. Бензин испаряется и смешивается с воздухом, нагнетается или втягивается в цилиндр, сжимается поршнем, а затем воспламеняется электрической искрой. Преобразование полученной тепловой энергии в механическую, а затем в работу осуществляется в цилиндре. На рис. 1-35 показаны различные компоненты двигателя, необходимые для выполнения этого преобразования, а также представлены основные термины, используемые для обозначения работы двигателя.

Рисунок 1-35. Компоненты и терминология работы двигателя.

Рабочий цикл поршневого двигателя внутреннего сгорания включает в себя серию событий, необходимых для индукции, сжатия, воспламенения и горения, вызывающих расширение заряда топлива / воздуха в цилиндре и удаления или выпуска побочных продуктов процесса сгорания. Когда сжатая смесь воспламеняется, образующиеся при сгорании газы расширяются очень быстро и заставляют поршень отодвигаться от головки блока цилиндров. Это движение поршня вниз, воздействующее на коленчатый вал через шатун, преобразуется коленчатым валом в круговое или вращательное движение.Клапан в верхней части или в головке цилиндра открывается, чтобы позволить сгоревшим газам уйти, а импульс коленчатого вала и гребного винта заставляет поршень возвращаться в цилиндр, где он готов к следующему событию в цикле. Затем открывается другой клапан в головке блока цилиндров, чтобы впустить свежую топливно-воздушную смесь. Клапан, позволяющий отводить горящие выхлопные газы, называется выпускным клапаном, а клапан, который впускает свежий заряд топливно-воздушной смеси, называется впускным клапаном.Эти клапаны открываются и закрываются механически в нужное время с помощью механизма управления клапанами.

Отверстие цилиндра — это его внутренний диаметр. Ход — это расстояние, на которое поршень перемещается от одного конца цилиндра к другому, в частности, от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ) или наоборот. [Рис. 1-35]

Многие факторы влияют на синхронизацию конкретного двигателя, и очень важно, чтобы рекомендации производителя двигателя в этом отношении выполнялись при техническом обслуживании и капитальном ремонте.Время срабатывания клапана и зажигания всегда указывается в градусах хода коленчатого вала. Следует помнить, что для полного открытия клапана требуется определенный ход коленчатого вала; следовательно, указанное время соответствует началу открытия, а не полностью открытому положению клапана. Примерную диаграмму фаз газораспределения можно увидеть на Рисунке 1-37.

Рисунок 1-37. Временная диаграмма клапана.

Ход впуска

Во время такта впуска поршень в цилиндре тянется вниз за счет вращения коленчатого вала.Это снижает давление в цилиндре и заставляет воздух под атмосферным давлением проходить через карбюратор, который дозирует правильное количество топлива. Топливно-воздушная смесь проходит через впускные трубы и впускные клапаны в цилиндры. Количество или вес заправки топливом / воздухом зависит от степени открытия дроссельной заслонки.

Впускной клапан открывается значительно раньше, чем поршень достигает ВМТ на такте выпуска, чтобы вызвать большее количество топлива / воздуха в цилиндр и, таким образом, увеличить мощность в лошадиных силах.Однако расстояние, на которое клапан может быть открыт до ВМТ, ограничено несколькими факторами, такими как возможность того, что горячие газы, оставшиеся в цилиндре от предыдущего цикла, могут вернуться во впускную трубу и систему впуска.

Во всех авиационных двигателях большой мощности впускные и выпускные клапаны находятся вне седел клапана в ВМТ в начале такта впуска. Как упоминалось выше, впускной клапан открывается перед ВМТ на такте выпуска (ход клапана), а закрытие выпускного клапана значительно задерживается после того, как поршень прошел ВМТ и начал такт впуска (запаздывание клапана).Эта синхронизация называется перекрытием клапанов и предназначена для помощи в охлаждении цилиндра изнутри за счет циркуляции холодной поступающей топливно-воздушной смеси, для увеличения количества топливно-воздушной смеси, вводимой в цилиндр, и для помощи в удалении побочных продуктов сгорания. из цилиндра.

Впускной клапан закрывается примерно на 50–75 ° после НМТ на такте сжатия, в зависимости от конкретного двигателя, чтобы позволить импульсу поступающих газов более полно заряжать цилиндр.Из-за сравнительно большого объема цилиндра над поршнем, когда поршень находится вблизи НМТ, небольшое перемещение поршня вверх в это время не оказывает большого влияния на набегающий поток газов. Это позднее время может зайти слишком далеко, потому что газы могут быть вытеснены обратно через впускной клапан и нарушить цель позднего закрытия.

Ход сжатия

После закрытия впускного клапана продолжающееся движение вверх поршня сжимает топливно-воздушную смесь для получения желаемых характеристик горения и расширения.Заряд запускается с помощью электрической искры при приближении поршня к ВМТ. Время зажигания варьируется от 20 ° до 35 ° до ВМТ, в зависимости от требований конкретного двигателя, чтобы обеспечить полное сгорание заряда к тому времени, когда поршень немного пройдет мимо положения ВМТ. Многие факторы влияют на угол опережения зажигания, и производитель двигателя потратил много времени на исследования и испытания, чтобы определить наилучшую настройку. Все двигатели имеют устройства для регулировки угла опережения зажигания, и очень важно, чтобы система зажигания была синхронизирована в соответствии с рекомендациями производителя двигателя.

Рабочий ход

По мере того, как поршень перемещается через положение ВМТ в конце такта сжатия и начинает опускаться на рабочем такте, он толкается вниз за счет быстрого расширения горящих газов в головке блока цилиндров с силой которая может превышать 15 тонн (30 000 фунтов на кв. дюйм) при максимальной выходной мощности двигателя. Температура этих горящих газов может составлять от 3000 до 4000 ° F. Поскольку поршень прижимается вниз во время рабочего хода под давлением горящих газов, оказываемых на него, движение шатуна вниз изменяется на вращательное движение коленчатого вала.Затем вращательное движение передается на карданный вал, приводящий в движение воздушный винт. Когда горящие газы расширяются, температура падает до безопасных пределов, прежде чем выхлопные газы выйдут через выхлопное отверстие.

Момент открытия выпускного клапана определяется, среди прочего, желательностью использования как можно большей расширяющей силы и как можно более полной и быстрой продувки цилиндра. Клапан открывается значительно перед НМТ на рабочем ходе (на некоторых двигателях при 50 ° и 75 ° перед НМТ), в то время как в цилиндре все еще сохраняется некоторое давление.Это время используется для того, чтобы давление могло как можно скорее вытеснить газы из выпускного отверстия. Этот процесс освобождает цилиндр от отработанного тепла после достижения желаемого расширения и позволяет избежать перегрева цилиндра и поршня. Тщательная продувка очень важна, потому что любые продукты выхлопа, остающиеся в цилиндре, разбавляют поступающий заряд топлива / воздуха в начале следующего цикла.

Ход выпуска отработавших газов

По мере того, как поршень проходит через НМТ при завершении рабочего такта и начинает движение вверх на такте выпуска, он начинает выталкивать сгоревшие отработавшие газы из выпускного отверстия.Скорость выхлопных газов, выходящих из цилиндра, создает в цилиндре низкое давление. Это низкое или пониженное давление ускоряет поток свежего топлива / воздуха в цилиндр, когда впускной клапан начинает открываться. Открытие впускного клапана должно происходить под углом от 8 ° до 55 ° до ВМТ на такте выпуска на различных двигателях.

Двухтактный цикл

Двухтактный двигатель снова используется в сверхлегких, легких спортивных и многих экспериментальных самолетах. Как следует из названия, двухтактным двигателям требуется только один ход поршня вверх и один ход вниз, чтобы завершить требуемую серию событий в цилиндре.Таким образом, двигатель завершает рабочий цикл за один оборот коленчатого вала. Функции впуска и выпуска выполняются во время одного хода. Эти двигатели могут иметь воздушное или водяное охлаждение и обычно требуют наличия корпуса редуктора между двигателем и гребным винтом.

Цикл вращения

Цикл вращения имеет трехсторонний ротор, который вращается внутри эллиптического корпуса, совершая три из четырех циклов за каждый оборот. Эти двигатели могут быть однороторными или многороторными с воздушным или водяным охлаждением.Они используются в основном с экспериментальными и легкими самолетами. Вибрационные характеристики также очень низкие для этого типа двигателя.

Дизельный цикл

Дизельный цикл зависит от высокого давления сжатия, обеспечивающего воспламенение топливно-воздушного заряда в цилиндре. Когда воздух втягивается в цилиндр, он сжимается поршнем, и при максимальном давлении в цилиндр распыляется топливо. В этот момент из-за высокого давления и температуры в цилиндре топливо сгорает, увеличивая внутреннее давление в цилиндре.Это опускает поршень, поворачивая или приводя в движение коленчатый вал. В двигателях с водяным и воздушным охлаждением, которые могут работать на топливе JETA (керосин), используется вариант дизельного цикла. Существует много типов дизельных циклов, включая двухтактные и четырехтактные.

Понимание правил стационарных двигателей

На этой странице:


Как EPA регулирует стационарные двигатели?

Требования EPA к качеству воздуха для стационарных двигателей различаются в зависимости от:

  • независимо от того, является ли двигатель новый или существующий и
  • , расположен ли двигатель в области источника или основного источника и является ли двигатель двигателем с воспламенением от сжатия или двигателем с искровым зажиганием.Двигатели с «искровым зажиганием» далее подразделяются по циклам мощности — то есть, двухтактный или четырехтактный, и является ли двигатель «богатым» (сгорает с большим количеством топлива по сравнению с воздухом) или «бедным сгорает» (меньше топлива по сравнению с воздухом) двигатель.

Ряд нормативных актов расширил количество и типы стационарных RICE, которые должны соответствовать федеральным требованиям. К ним относятся:

На какие типы двигателей распространяются правила?
  1. Двигатели мощностью> 500 лошадиных сил (л.с.) в основном источнике HAP:

    Существующие двигатели , если они построены до 19 декабря 2002 г.
    Новые двигатели , если построены 19 декабря 2002 г. или позднее
    Реконструированные двигатели , если реконструкция началась 19 декабря 2002 г. или позднее

  2. Двигатели мощностью ≤500 л.с., расположенные у основного источника HAP, и двигатели всей мощностью, расположенные в районе источника HAP:

    Существующие двигатели , если они построены до 12 июня 2006 г.
    Новые двигатели , если построены 12 июня 2006 г. или позднее
    Реконструированные двигатели , если реконструкция началась 12 июня 2006 г. или позднее

На какие типы двигателей НЕ распространяются правила?

  1. Автомобили или внедорожные двигатели, в том числе:
    • самоходная (тракторы, бульдозеры)
    • приводится в движение при выполнении своих функций (газонокосилки)
    • переносной или переносной (с колесами, салазками, ручками для переноски, тележкой, прицепом или платформой).Примечание: переносной внедорожный двигатель становится стационарным, если он находится в одном месте более 12 месяцев (или полный годовой период работы сезонного источника)
  2. Существующие аварийные двигатели , расположенные в жилых, институциональных или коммерческих зонах источников и не используемые для обеспечения надежности на местном уровне. Двигатель должен соответствовать требованиям подраздела ZZZZ к работе аварийного двигателя:
    • Неограниченное использование в чрезвычайных ситуациях (например, отключение электроэнергии, пожар, наводнение)
    • Аварийные двигатели могут работать в течение 100 часов в год для обслуживания / тестирования
    • 50 часов в год из 100 часов в год могут быть использованы для:
      1. неэкстренные ситуации при отсутствии финансовой договоренности
      2. надежность на местном уровне в рамках финансового соглашения с другим предприятием, если выполняются определенные критерии (только существующий RICE в местных источниках HAP).

Понимание принципов работы двигателей внутреннего сгорания

903 90 впускной
A B
сжатие процесс сжатия топливовоздушной смеси в камере сгорания для увеличения потенциальной химической энергии тепла от сгорания
ход сжатия — это время, за которое поршень перемещается назад к ВМТ
шатун соединяет поршень с коленчатым валом
коленчатый вал вал со смещениями, к которым прикреплены шатуны
цикл серия повторяющихся событий
цилиндр часть блока двигателя, в которой происходит сгорание топлива
дизельные двигатели — это двигатели, в которых используются свечи накаливания и воспламенение топлива от сжатия
блок цилиндров большой металлическая конструкция, в которой находятся четыре основные части: цилиндр, поршень, шатун и коленчатый вал. удаление отработанных продуктов сгорания в камере сгорания
такт выпуска время, когда поршень возвращается в ВМТ и сгоревшие газы выпускаются
плоский относится к перпендикуляру (относительно Земли) расположение цилиндров
четырехтактный двигатель двигатель, который имеет серию из четырех событий или тактов, которые должны быть выполнены в течение цикла
бензиновые двигатели двигатели, работающие на топливе с искровым зажиганием
рядный все цилиндры прямые
процесс получения топлива / воздуха, необходимого для сгорания, происходить в камере
такт впуска время, когда выпускной клапан остается закрытым, а впускной клапан открывается, позволяя топливовоздушной смеси поступать в камеру. цилиндр
двигатель внутреннего сгорания представляет собой устройство, которое преобразует энергию, содержащуюся в топливе, во вращающую силу
большие двигатели производят более 25 л.с.
многоцилиндровые имеют 2,3, 4,5,6 или более цилиндров
поршень поршень, который работает внутри цилиндра
мощность результат преобразования химической потенциальной энергии в механическую энергию за счет быстрого расширения нагретых газов
рабочий ход время, когда оба клапана закрыты и газы расширяются, толкаясь к BDC
язычок v alves — это односторонние распределители, которые позволяют топливовоздушной смеси поступать в картер
одноцилиндровый двигатель имеет только 1 цилиндр
малые двигатели производят менее 25 л.с.
двухтактный двигатель двигатель, который завершает серию из четырех событий за два такта
V-образный блок цилиндры расположены в V-образной конфигурации с двумя рядами цилиндров
штифт деталей, которые крепят шток к поршню

EGLE — Engine Guidance

Engine Guidance

Контактное лицо: см. Ниже Агентство: Окружающая среда, Великие озера и энергия

Стационарный поршневой двигатель внутреннего сгорания (IC) преобразует химическую энергию в механическую энергию посредством сгорания топлива и воздуха.Процесс происходит внутри цилиндра, где сгорание смеси проталкивает поршень через цилиндр, поворачивая коленчатый вал. Стационарные поршневые двигатели внутреннего сгорания — это внедорожные, немобильные двигатели, которые остаются стационарными на одном объекте не менее одного года. Стационарный RICE можно разделить на категории с воспламенением от сжатия (CI) или искровым зажиганием (SI). Двигатели CI обычно работают на дизельном топливе, тогда как двигатели SI в основном работают на природном газе, свалочном газе или бензине. Стационарные поршневые двигатели внутреннего сгорания обычно используются для выработки электроэнергии и для питания механического оборудования, такого как насосы и компрессоры.

Процесс сгорания двигателей внутреннего сгорания вызывает выброс загрязняющих веществ в атмосферу через выхлопные газы. Эти загрязнители воздуха оказывают неблагоприятное воздействие на здоровье населения и окружающую среду, особенно на уязвимые группы населения с респираторными и сердечно-сосудистыми заболеваниями. Загрязняющие вещества, обычно выбрасываемые стационарными поршневыми двигателями (IC), включают оксиды азота (NOx), оксид углерода (CO), летучие органические соединения (VOC) и твердые частицы (PM), а также опасные загрязнители воздуха (HAP) и токсичные загрязнители воздуха ( TAC) формальдегида, ацетальдегида, акролеина, метанола и ПАУ.По этим причинам выбросы от стационарных поршневых двигателей (IC) регулируются EGLE и EPA.

Если вы планируете установку, модификацию, реконструкцию, перемещение и / или эксплуатацию стационарного RICE в Мичигане, вам может потребоваться разрешение на полеты. Правило 201 Правил контроля за загрязнением воздуха штата Мичиган требует, чтобы лицо получило одобренное Разрешение на установку (PTI) любого потенциального источника загрязнения воздуха, если только этот источник не освобожден от процесса выдачи разрешения.Не для всех стационарных установок RICE требуется разрешение на использование воздуха. Например, если двигатель соответствует исключениям из разрешений, изложенным в Правилах 278 и 285 (2) (g), двигатель может считаться освобожденным от необходимости в PTI. Важно отметить, что хотя ваш стационарный RICE может быть освобожден от государственных разрешений на использование воздуха, он все же может подпадать под действие федеральных правил, перечисленных ниже.

Информация, которую необходимо иметь для подачи заявки, применения и предметных правил и положений, включает следующее:

  • тип источника (крупный или районный)
  • использование по назначению (экстренная помощь, пиковое бритье, ограниченное использование и т. Д.)
  • Производство, модель и год двигателя (новый или существующий)
  • дата установки
  • Сертификат выбросов
  • (при наличии)
  • Конструкция двигателя
  • : номинальная мощность, рабочий объем на цилиндр, метод зажигания (CI или SI), тип используемого топлива, уровень расхода топлива, рабочий ход (два или четыре), соотношение воздух-топливо (богатое горение или обедненное топливо). гореть), оборудование для борьбы с загрязнением воздуха (при наличии)

Агентство по охране окружающей среды США (USEPA) завершило разработку стандартов, которые устанавливают требования к владельцам / операторам, а также производителям стационарных поршневых двигателей внутреннего сгорания по минимизации выбросов HAP и критериальных загрязнителей.Федеральные стандарты производительности новых источников (NSPS), подразделы IIII и JJJJ регулируют выбросы определенных загрязняющих веществ из новых, модифицированных и реконструированных стационарных двигателей. Федеральный стандарт, именуемый Национальным стандартом по выбросам опасных загрязнителей воздуха (NESHAP), подраздел ZZZZ, регулирует выбросы HAP от всех существующих, реконструированных и новых стационарных двигателей. Подчасть ZZZZ сложна, поскольку существует множество ранее не регулируемых двигателей меньшего размера, в том числе предназначенных для аварийного использования, которые теперь подпадают под действие федеральных правил.

Применяемость

Во-первых, определите, считается ли ваш источник основным или второстепенным источником выбросов HAP. Основной источник выбросов HAP может производить 10 или более тонн в год (т / год) любого отдельного HAP или 25 или более т / г комбинированных HAP.

Во-вторых, определите, какой у вас двигатель с неподвижным воспламенением от сжатия (CI) или искровым зажиганием (SI).

В-третьих, рассмотрим назначение двигателя. Это аварийный или неаварийный двигатель? Это двигатель с черным запуском или двигатель ограниченного использования?

В-четвертых, проверьте номинальную мощность двигателя в лошадиных силах (л.с.).Вам также может понадобиться узнать объем двигателя в литрах на цилиндр.

В-пятых, определите, считается ли двигатель существующим, новым или реконструированным. Для крупного источника с номинальной мощностью двигателя более 500 л.с. существующий означает, что двигатель был установлен или построен на месте до 19 декабря 2002 г. Новый или реконструированный означает, что двигатель был установлен или построен 19 декабря 2002 г. или после этой даты. крупный или местный источник с номинальной мощностью двигателя менее 500 л.с., существующий означает, что двигатель был установлен или построен на месте до 12 июня 2006 г.Новый или реконструированный означает, что двигатель был установлен или построен на месте или после 12 июня 2006 г.

Как только вышеуказанная информация станет известна, следующие инструменты могут быть использованы для определения федеральных требований NESHAP и NSPS, применимых к вашей системе.

Разрешение на полеты и соответствующие федеральные правила для вашего стационарного RICE могут содержать требования к ведению документации, тестированию производительности и отчетности, чтобы сделать условия разрешения и федеральные стандарты практически выполнимыми.

Мониторинг и учет

Типичные требования к ведению документации для двигателей включают использование топлива, часы работы (в случае аварии), результаты анализа масла, проведенное техническое обслуживание двигателя и оборудования для контроля загрязнения воздуха (если применимо), неисправности, которые произошли с продолжительностью и действиями, выполняемыми после, а также контроль загрязнения воздуха параметры работы оборудования (если применимо).

Тестирование производительности

В зависимости от выходной мощности двигателя, типа источника и года изготовления двигатель может быть подвергнут эксплуатационным испытаниям, чтобы продемонстрировать соответствие установленным ограничениям выбросов в PTI или федеральном постановлении.Например, существующий неаварийный двигатель Cl мощностью более 100 л.с. в основном источнике должен пройти первоначальное испытание на выбросы и повторное испытание каждые 8760 часов работы или три года для двигателей мощностью более 500 л.с. (пять лет при ограниченном использовании. ).

Отчетность

Федеральные правила содержат требования к отчетности для предметного стационарного RICE. Эти отчеты могут включать первоначальное уведомление о соответствии, уведомление о соответствии после проверки производительности, а также полугодовые и годовые отчеты о соответствии.В отчетах проверяется, соответствует ли источник установленным ограничениям на выбросы или эксплуатационным ограничениям, или имели место отклонения. Требуется свидетельство ответственного должностного лица.

Годовая отчетность о выбросах

Федеральный закон о чистом воздухе требует, чтобы каждый штат вел инвентаризацию выбросов загрязняющих веществ в атмосферу для определенных объектов и ежегодно обновлял эту инвентаризацию. Кадастр выбросов штата Мичиган собирается ежегодно с использованием Системы отчетности о выбросах в атмосферу штата Мичиган (MAERS) и передается в USEPA для добавления в национальный банк данных.Не все предприятия обязаны отчитываться о своих годовых выбросах. Объекты, которые обычно обязаны сообщать, считаются основными источниками, синтетическими-второстепенными источниками или подпадают под действие федерального NSPS, такого как Subpart IIII или JJJJ.

Следующие ссылки могут быть полезны для расчета потенциальной эмиссии (PTE) и при подготовке заявки PTI для стационарного RICE.

По вопросам, касающимся применимости разрешений и предметных правил, пожалуйста, свяжитесь с вашим районным офисом или инспектором.

Как работают автомобильные двигатели внутреннего сгорания

АВТО ТЕОРИЯ

Что такое двигатель?

Проще говоря, двигатель — это группа связанных частей, которые собраны таким образом, чтобы преобразовывать энергию в движение, которое, в свою очередь, можно использовать для выполнения работы. Бензиновые двигатели — это устройства внутреннего сгорания, в которых в качестве источника энергии используется бензин. Давайте построим один.

Если бы мы взяли прочную жестяную банку и брызнули в нее немного бензина, затем накрыли ее крышкой и зажгли ее через какое-нибудь отверстие сбоку, то взрыв поднял бы крышку довольно высоко в воздух.Причина в том, что пары бензина смешались с воздухом и образовали очень взрывоопасную смесь, которая, в свою очередь, создала чрезвычайно горячие газы, которые необходимо было выпустить. В этом случае верх снесло.

Теперь, когда мы знаем, что можем перемещать что-то с помощью взрыва, почему бы не создать механическое устройство, которое может выполнять некоторую работу? Следовательно, если мы зацепим крышку банки за стержень, который другим концом соединен с коленчатым валом — устройство, которое использует эксцентриковые шейки для преобразования возвратно-поступательного движения во вращательное движение, — а затем перевернем банку и жестко ее поддержим, то взрыв мы generate будет толкать крышку и ее шток вниз, вращая коленчатый вал.

Не вдаваясь в очевидные недостатки приведенной выше конструкции, давайте перейдем к тому, как устроены бензиновые двигатели.

Блок

Вместо банки нам нужен прочный жесткий цилиндр, который просверливается в еще более прочном куске металла, обычно в тяжелой отливке из железа или алюминия, обычно называемой блоком цилиндров.

Поскольку мы отливаем блок, почему бы не спроектировать в отливке несколько каналов, которые можно заполнить водой, чтобы поддерживать постоянную температуру при работающем двигателе? Кроме того, давайте спроектируем некоторые другие каналы, чтобы можно было перекачивать масло для смазки движущихся частей.

Мы можем обработать блок после литья для создания однородного цилиндра известного размера. Кроме того, мы можем просверлить и проткнуть различные отверстия в блоке, чтобы разместить крепеж, который в конечном итоге будет удерживать детали двигателя вместе.

Время на запчасти!

Поршень Деталь, которую мы собираемся перемещать при взрыве топлива, — это поршень. Хотя в старых автомобилях использовались железные поршни, все поршни после Второй мировой войны сделаны из литого или кованого алюминия и имеют размер примерно на 10 тысячных дюйма меньше, чем размер цилиндра, чтобы учесть тепловое расширение.Поршни должны быть достаточно высокими, чтобы не опрокидываться вбок при движении вверх и вниз по цилиндру. Они также должны быть легкими, чтобы уменьшить инерционные силы, которым они подвергаются, поэтому все современные поршни полые.

Поршень, как описано выше, будет довольно хорошо перемещаться по каналу цилиндра, но значительная взрывная сила будет «просачиваться» мимо его боковых сторон. Чтобы ограничить эту проблему, поршни имеют канавки по окружности с несколькими разнесенными друг от друга каналами. В эти каналы помещены кольца из пружинной стали или железа, которые постоянно оказывают давление на стенку цилиндра, изолируя большую часть дымовых газов.Большинство поршней имеют два компрессионных кольца и одно масляное кольцо.

Примерно на полпути вниз в поршне просверливается отверстие точного размера по диаметру, чтобы удерживать палец на запястье или поршневой палец.

Шатун Поршень соединен с коленчатым валом с помощью шатуна. Это сверхмощное высококачественное устройство, которое толкается поршнем вниз. На другом конце находится круговой фиксатор подшипника, который перемещается по коленчатому валу, когда он движется по эксцентрической окружности.Шток соединен с поршнем через поршневой палец.

Зачем поршню шпилька? Что ж, если вы думаете об этом, поршень движется прямо вверх и вниз, но шток качается вперед и назад вслед за коленчатым валом. Следовательно, шток должен иметь возможность перемещаться там, где он прикреплен к поршню, а штифт допускает это маятниковое движение.

Коленчатый вал Сердцем двигателя является коленчатый вал. Он должен быть достаточно прочным, чтобы выдерживать огромную силу движущегося стержня вместе с другими нагрузками, которые он выдерживает.На его переднем конце есть шкив, который приводит в движение вспомогательное оборудование двигателя, а на заднем конце — маховик, который приводит в движение трансмиссию и оставшуюся трансмиссию. В блоке двигателя отлиты точки, на которых вращается коленчатый вал, называемые шейками. В одноцилиндровом двигателе коленчатый вал должен поддерживаться, по крайней мере, двумя шейками, поскольку силы, создаваемые взрывами, должны распределяться во всех направлениях одинаково, без смещения центральной линии коленчатого вала.

Подшипники Очевидно, что любая движущаяся часть, такая как коленчатый вал, шатун, пальцы и т. Д.должен быть спроектирован так, чтобы создавать как можно меньшее трение, иначе все это будет царапаться, истираться и нагреваться настолько, что части будут свариваться друг с другом. Для этого производители используют подшипниковые материалы и масло. Цапфы коленчатого вала и шатуна содержат вкладыши подшипников из молибдена и других специальных материалов, между которыми проходят тонкие масляные пленки под давлением. Подробнее об этом позже …

Теперь у нас есть двигатель, верно?

Нет, не знаем. Пока что у нас есть блок, коленчатый вал, поршень и шток в сборе, которые будут вращаться, но у нас нет никакого способа герметизировать цилиндр вверху, чтобы взрыв мог толкнуть поршень вниз.Не хватает и некоторых других вещей, таких как подача топлива, выброс выхлопных газов и источник воспламенения, но мы доберемся до этого вовремя. Во-первых, нам нужно создать камеру сгорания, чтобы было место для воспламенения топливно-воздушной смеси.

Чтобы сделать это в простейшей форме, все, что нам действительно нужно сделать, это прикрутить плоский кусок тяжелого металла к верхней части цилиндра, оставляя пространство между ним и верхней частью поршня. Назовем это головкой блока цилиндров. Головка блока цилиндров, конечно, съемная, но мы не можем снять ее и впрыснуть немного топлива, а затем снова включить и зажечь топливо каждый раз, когда нам нужен рабочий ход поршня, не так ли? Нам нужен какой-то порт для впуска топлива и еще один порт для выпуска отработавших газов.

Клапаны Хорошо, мы обработали пару отверстий в головке цилиндров, одно для впуска топлива / воздуха, а другое для выпуска выхлопных газов, но если наш двигатель будет работать, нам нужно найти способ чтобы запечатать их в нужное время. Это делается с помощью клапанов, которые представляют собой прочные металлические объекты, состоящие из стержня и широкой конической головки. Нам нужны впускные и выпускные клапаны. Угол конуса на головке клапана повторяется в его «седле» в отверстии головки цилиндра, обеспечивая таким образом уплотнительную поверхность.

Для того, чтобы клапаны должным образом закрывали отверстия в головке блока цилиндров, нам необходимо разместить пружины вокруг штоков и прикрепить их с помощью зажима определенного типа, обычно называемого «держателем».

Мы приближаемся к работающему двигателю, но нам нужно придумать способ открывать и закрывать клапаны в нужное время. Мы обсудим это в ближайшее время, но сначала нам нужно рассмотреть различные циклы, которые должен пройти двигатель, обычно называемые тактами.

Типовой клапан в сборе для двигателя с плоской головкой.


Все, что нам нужно сделать сейчас, это повернуть распределительный вал и синхронизировать открытие клапана с правильным ходом. Поскольку коленчатый вал вращается, почему бы не соединить его с распределительным валом с помощью системы шестерен или цепи? Именно это и делают производители, и компоненты обрабатываются и маркируются таким образом, чтобы во время сборки сохранялось правильное соотношение между ходом поршня и открытием клапана, синхронизацией клапана.

Однако важно помнить, что частота вращения распределительного вала составляет половину частоты вращения коленчатого вала.В четырехтактном двигателе каждый клапан открывается только через каждый второй оборот, поэтому распределительный вал поворачивается на один оборот за каждые два оборота коленчатого вала.

Масса маховика помогает сгладить движение коленчатого вала.


Масса маховика используется для поглощения вибраций двигателя и для удержания коленчатого вала во время следующих трех ходов, обеспечивая тем самым плавную работу двигателя.

Маховик

Двигатель, который мы собрали выше, будет довольно сильно вибрировать, поскольку есть один большой рабочий ход и четыре смены направления поршня каждые два оборота.Нам нужно что-то, чтобы гасить вибрации. Кроме того, нам нужно что-то тяжелое, прикрепленное к коленчатому валу, чтобы помочь инерционным силам удерживать коленчатый вал достаточно долго, чтобы пройти все четыре хода. Кроме того, нам нужно что-то прикрепленное к коленчатому валу, на котором мы можем прикрепить необходимые детали для передачи мощности двигателя, не говоря уже о его запуске в первую очередь.

Все эти проблемы можно решить с помощью маховика, большого тяжелого диска, который прикручивается к задней части коленчатого вала.По окружности маховика мы можем установить зубчатый венец, который может включаться электростартером. Поверхность маховика может быть обработана и нарезана резьба, чтобы принять узел сцепления, или, в случае автоматических трансмиссий, сам маховик может иметь более легкую конструкцию (так называемый гибкий диск), дополненный преобразователем крутящего момента трансмиссии.

Еще одна вещь

Поскольку коленчатый вал имеет маховик на одном конце, его масса будет иметь тенденцию создавать силы, которые заставляют коленчатый вал немного скручиваться на другом конце, вызывая вибрацию.Чтобы противодействовать этой вибрации, производители используют специально разработанный уравновешивающий диск, который прикрепляется к переднему концу коленчатого вала и называется гармоническим балансиром. Этот диск обычно состоит из двух отдельных частей, залитых резиной или синтетическим компаундом. Резина поглощает дифференциальное движение двух частей. Размер и вес гармонического балансира зависят от конкретной конструкции двигателя.

Сводка

Независимо от размера (рабочего объема) двигателя, количества цилиндров, формы ряда цилиндров, мощности в лошадиных силах и т. Д., он будет содержать те же основные части, что и движок, который мы обсуждали здесь. Детали могут быть расположены по-разному и по-разному в двигателе / ​​на двигателе, но вы всегда найдете базовые детали, а их будет больше. У четырехцилиндрового двигателя будет четыре поршня, восемь клапанов (как минимум!), Восемь подъемников и так далее, и так далее …

Четырехтактный цикл

Бензин жидкость не горит, а вот ПАР бензина горит, да еще как! Нам нужно сделать все возможное, чтобы создать много пара, начиная со смешивания бензина с воздухом в идеальном соотношении — примерно 14 частей воздуха на 1 часть бензина.

Поскольку поршень (и его кольца) в двигателе образуют довольно хорошее уплотнение, топливно-воздушная смесь может сжиматься. При сжатии капли топлива распадаются на еще более мелкие частицы, и температура топливно-воздушной смеси повышается, что облегчает воспламенение. Таким образом, если мы введем топливо и воздух в цилиндр, когда поршень находится внизу внизу, а затем закроем впускной клапан, он сжимает смесь до максимальной степени.

Эй! Если поршень может сжимать смесь, это означает, что когда он движется вниз по цилиндру, он может создавать вакуум, верно? Это верно, и мы можем использовать этот вакуум для всасывания топливно-воздушной смеси, открыв впускной клапан до того, как поршень начнет опускаться.

Теперь мы к чему-то приближаемся. Предполагая, что мы проворачиваем двигатель стартером, первый ход, с которым мы столкнемся, — это такт впуска. Маховик поворачивает коленчатый вал, опуская шток и поршень. Одновременно мы открыли впускной клапан, впуская в себя топливно-воздушную смесь, всасываемую вакуумом. Поршень достигает дна цилиндра и мы закрываем впускной клапан.

Поршень поднимается, сжимая смесь и завершая такт сжатия.Когда он достигнет вершины, мы можем зажечь смесь. Смесь бензина и воздуха взрывается с фронтом пламени (скорость, с которой происходит взрыв) 2500 футов / сек, примерно такой же взрывной скоростью, как у динамита.

Этот взрыв заставляет поршень опускаться в рабочем такте. Теперь двигатель работает сам. Когда поршень достигает нижней части цилиндра, инерция коленчатого вала и силы маховика продолжают вращение. Если мы открываем выпускной клапан в этот момент, движение поршня вверх выталкивает сгоревшие газы наружу, создавая такт выпуска.

Вот и стандартный четырехтактный двигатель внутреннего сгорания. Четыре такта — впускной, компрессионный, мощный и выпускной — составляют половину оборота коленчатого вала. Интересно отметить, что четыре хода совершают два полных оборота коленчатого вала, во время которых двигатель создает мощность только в одной четвертой части времени.

Как открываются клапаны?

На данный момент должно быть очевидно, что мы не изобрели способ открывать и закрывать клапаны.Ясно, что мы хотим, чтобы коленчатый вал выполнял эту работу, а не пытался вручную открывать и закрывать их. Конструкторы двигателей давно решили эту проблему.

Если мы обработаем круглый вал, который находится под штоком клапана, и установим его концы в подшипники, у нас будет начало чего-то, что сделает эту работу за нас. Путем обработки выступа на валу, называемого выступом кулачка, можно использовать выступ, чтобы подтолкнуть шток вверх по мере вращения вала. Размер выпуклости определяет величину подъема и, следовательно, время открытия клапана.Этот вал называется распределительным валом.

Из соображений экономии мы не хотим обрабатывать два распределительных вала, один для впускных клапанов, а другой для выпускных клапанов. Вместо этого мы можем разместить один распределительный вал в центре, и на этом валу мы можем обработать впускные и выпускные кулачки на своих местах. Поскольку мы не хотим выдвигать шток клапана или изгибать его, чтобы перейти к распределительному валу, мы можем изготовить круглый стержневой узел, который будет следовать за выступом кулачка и, в свою очередь, толкать шток клапана. Это устройство называется подъемником клапана.Если мы добавим какой-то механизм регулировки длины (рисунок на стр. 17) между подъемником и штоком, то теперь мы получим клапанный механизм, состоящий из распределительного вала, подъемника, регулятора, штока, пружины и держателя.

data-matched-content-ui-type = «image_card_stacked» data-matched-content-rows-num = «3» data-matched-content-columns-num = «1» data-ad-format = «autorelaxed»>

Двигатель внутреннего сгорания. Презентация на тему ДВС Презентация современных автомобилей с ДВС

История создания первого двигателя внутреннего сгорания Первый на сегодняшний день
рабочий Двигатель внутреннего сгорания (ДВС)
появился в Германии в 1878 году.Но история создания
ICE уходит корнями во Францию.
В 1860 году французский изобретатель Этвен Ленуар
изобрел
первый двигатель внутреннего сгорания. Но этот агрегат
был несовершенным, с низким КПД и неприменим
на практике. На помощь пришел еще один француз
изобретатель Бо де Рош, который в 1862 году предложил
использовать в этом двигателе четыре такта:
1. Входной
2. Давление
3. Рабочий ход
4. Такт выпуска
Первая машина с Четырехтактный двигатель внутреннего сгорания представлял собой
трехколесный вагон Карла Бенца, построенный в 1885 году в
году.
Год спустя (1886) появился вариант Готлиба Даймера.
Оба изобретателя работали независимо друг от друга.
В 1926 году они объединились в Deimler-Benz.
AG.

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаще всего,
с приводом от двигателя внутреннего сгорания
внутреннего сгорания. Таких двигателей огромное количество.
лотов. Они различаются объемом, числом цилиндров
, мощностью, скоростью вращения
, используемого топлива (дизель, бензин
и газовые двигатели внутреннего сгорания).Но в принципе устройство ДВС
, похоже
. Как работает это устройство и почему
назвал четырехтактный двигатель внутреннего сгорания
? Внутреннее сгорание
прозрачное. Топливо горит внутри двигателя. А
почему 4-тактный двигатель, что это такое?
Действительно, есть двухтактные двигатели
. Но на автомобилях
они используются редко. Четырехтактный двигатель
получил название из-за того, что его работу можно разделить на четыре, равные по времени, части.
Поршень пройдет через цилиндр четыре раза — два раза по
вверх и дважды вниз.Измерение начинается с отметки
, поршень находится в крайней нижней или
верхней точке. Для автомобилистов-механиков это
называется верхней мертвой точкой (ВМТ) и
нижней мертвой точкой (НМТ).

Первый ход — такт впуска

Первый ход, также известный как впуск,
начинается с ВМТ (верхняя мертвая точка
). Двигаясь вниз по поршню
, всасывает в цилиндр
воздушно-топливную смесь. Работа
этого цикла происходит при открытии
впускного клапана. Кстати, у
много двигателей с несколькими впускными клапанами
.
Их количество, размер, время открытия

может существенно повлиять на мощность двигателя
. Есть двигатели
, в которых, в
, в зависимости от давления на педаль газа
, происходит принудительное
увеличение времени пребывания,
впускные клапаны открыты,
состояние. Это для
увеличения количества всасываемого топлива
, которое после
после зажигания увеличивает мощность двигателя
. Автомобиль
в данном случае намного быстрее
разгоняется.

Второй цикл — это цикл сжатия

Следующий такт двигателя —
такт сжатия.После того, как поршень
достиг дна, он начинает подъем
вверх, тем самым сжимая
смесь, попавшую в цилиндр во время
всасывания. Топливная смесь сжимается до
объема камеры сгорания. Что это за
такая камера? Свободное пространство
между верхней частью поршня и
верхней частью цилиндра в точке
, когда поршень находится в верхней мертвой точке
, называется камерой сгорания.
Клапаны, при этом такте двигателя
закрываются полностью.Чем плотнее они
закрыты, тем лучше происходит сжатие
качества. Большое значение имеет
, в данном случае состояние
поршень, цилиндр, поршневые кольца.
Если будут большие зазоры, то у
хорошее сжатие не получится, а вот у
соответственно мощность такого двигателя
будет намного ниже. Степень сжатия
— сжатие, можно проверить специальным устройством
. По наибольшей компрессии
можно сделать вывод о
степени износа двигателя.

Третий цикл — рабочий ход

Третий такт — рабочий, начинается с
ВМТ.Его не случайно называют рабочим
. Ведь именно в этом
и происходит действие,
едет машина,
движется. В этом ритме в работу
входит система зажигания. Почему
эта система называется так? Да
потому что она
отвечает за воспламенение сжатой топливной смеси
в цилиндре, в камере сгорания.
Работает очень просто — свечная система
дает искру. Справедливости ради
, стоит отметить, что искра
выдала на свечу зажигания
за несколько градусов до достижения
верхней точки поршня.Эти
градус, в современном двигателе,
регулируются автоматически.
«Мозги» автомобиля. После
как воспламеняется топливо, происходит взрыв
— он резко увеличивается в объеме
, заставляя поршень
двигаться вниз. Клапаны в этом такте работы двигателя
, как и в предыдущем
, находятся в закрытом состоянии
.

Четвертый такт — такт выпуска

Четвертый такт работы двигателя
, последний — выпуск
средней школы. Достигнув нижней точки
, после рабочего хода
в двигателе
начинает открываться выпускной клапан
.Таких клапанов
, как и впускных,
может быть несколько.
При перемещении поршня
через этот клапан удаляется
выхлопных газов из цилиндра
— вентилирует
его. Чем лучше работает выпускной клапан
, тем на
больше выхлопных газов,
удалится из цилиндра, освободив
, тем самым,
место для новой порции
топливно-воздушной смеси.

Разновидности двигателя внутреннего сгорания

Дизельный двигатель внутреннего сгорания

Дизельный двигатель — поршневой двигатель внутреннего сгорания
, принцип зажигания

Распыленное топливо из
контактирует со сжатым нагретым
воздухом.Дизельные двигатели работают на дизельном топливе
(в просторечии —
«Дизельное топливо»).
В 1890 году Рудольф Дизель разработал теорию
«Экономичный тепловой двигатель»,
, которая благодаря сильному сжатию в цилиндрах
значительно повышает эффективность его
. Он получил патент на свой двигатель
23 февраля 1893 года. Первый действующий прототип
под названием «Дизельный мотор» был построен Diesel в начале 1897 года в
году, а 28 января того же года он был успешно испытан на
.

Принцип работы инжекторного двигателя

В современных инжекторных двигателях
на каждый
цилиндр предусмотрена
индивидуальная форсунка.
Все форсунки подключены к топливной рампе
, где топливо
находится под давлением
, которое создает электрический бензонасос
.
Впрыскиваемое количество
топлива зависит от
продолжительности открытия
форсунок. Момент открытия
регулирует электронный блок
управления (контроллер) на
на основании обработанных
данных от различных датчиков
.

Двигатели внутреннего сгорания

Учебный центр «ОникС»


Устройство двигателя внутреннего сгорания

1 — ГБЦ;

2 — цилиндр;

3 — поршень;

4 — кольца поршневые;

5 — палец поршневой;

7 — коленчатый вал;

8 — маховик;

9 — кривошипный;

10 — распределительный вал;

11 — кулачок распределительного вала;

12 — рычаг;

13 — вентиль;

14 — свеча зажигания


Крайнее верхнее положение поршня в цилиндре называется верхней мертвой точкой (ВМТ)


Параметры двигателя внутреннего сгорания

Нижнее крайнее положение поршня в цилиндре называется нижней мертвой точкой.


Параметры двигателя внутреннего сгорания

Расстояние, пройденное поршнем от одной мертвой точки до другой, называется

ход поршня S .


Параметры двигателя внутреннего сгорания

Объем V с над поршнем, расположенным в. м., называется , объем камеры сгорания


Параметры двигателя внутреннего сгорания

Объем V NS над поршнем, расположенным в n.m.t. называется

полный объем цилиндра .


Параметры двигателя внутреннего сгорания

Объем Vр, освобождается поршнем при его движении от v. M. т. к п. м., называется , рабочий объем цилиндра .


Параметры двигателя внутреннего сгорания

Рабочий объем цилиндра

Где: D — диаметр цилиндра ;

S — ход поршня.


Параметры двигателя внутреннего сгорания

Полный объем цилиндра

V c + V ч = V n


Параметры двигателя внутреннего сгорания

Степень сжатия


Рабочие циклы двигателей внутреннего сгорания

4-тактный

2-тактный


двигатель .

Первая мера — впуск .

Поршень перемещается из в. м. т. к п. м., впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разрежение 0,7-0,9 кгс / см и в цилиндр поступает горючая смесь, состоящая из паров бензина и воздуха.

Температура смеси на конце входа

75-125 ° C.


Рабочий цикл четырехтактного карбюраторного двигателя .

Вторая мера — сжатие .

Поршень движется от bmw. к vmt оба клапана закрыты. Давление и температура рабочей смеси повышаются, достигая к концу хода соответственно

9-15 кгс / см 2 и 35O-50O ° C.


Рабочий цикл четырехтактного карбюраторного двигателя .

Третья мера — удлинение или рабочего хода .

В конце такта сжатия рабочая смесь воспламеняется электрической искрой, и смесь быстро сгорает. Максимальное давление горения достигает 30-50 кгс / см 2 , а температура 2100-2500 ° С.


Рабочий цикл четырехтактного карбюраторного двигателя .

Четвертая мера — выпуск

Поршень перемещается от

н.м. К v.м.т., , выпускной клапан открыт. Выхлопные газы выбрасываются из цилиндра в атмосферу. Процесс выпуска происходит при давлении выше атмосферного. К концу хода давление в цилиндре снижается до 1,1-1,2 кгс / см 2, а температура падает до 70O-800 ° C.


Работа четырехтактного карбюратора Двигатель .


Разъемная вихревая камера сгорания


Формы камер сгорания в дизельных двигателях

Разделенная камера предварительного сгорания


Формы камер сгорания в дизельных двигателях

Полуразделенная камера сгорания


Формы камер сгорания в дизельных двигателях

Неразделенная камера сгорания


Установка на заслонку экрана

Расположение тангенциального канала

Винтовой канал


Способы создания вихревого движения заряда при всасывании

Винтовой канал


Принцип работы дизельного двигателя .


двигатель .


Работа двухтактного карбюраторного двигателя .

Слайд 2

План

История создания двигателей внутреннего сгорания Типы и принцип работы двигателей внутреннего сгорания 2-х, 4-х тактные двигатели внутреннего сгорания Применение двигателей внутреннего сгорания

Slide 3

История создания двигателя внутреннего сгорания

В 1799 году французский инженер Филипп Ле Бон обнаружил светящийся газ.В 1799 году он получил патент на использование и способ производства лампового газа путем сухой перегонки древесины или угля. Это открытие имело большое значение в первую очередь для развития светотехники. Очень скоро во Франции, а затем и в других странах Европы газовые лампы стали успешно конкурировать с дорогими свечами. Однако светящийся газ подходил не только для освещения.

Slide 4

Жан Этьен Ленуар

Двигатель Ленуара двухходовой и двухтактный, т.е.е. полный цикл поршня длится два хода. Но этот двигатель оказался малоэффективным. Хотя в 1862 году Ленуар установил двигатель на карету, использовал рулевое колесо и даже совершил тест-драйв под Парижем. В 1863 году он заверил, что его двигатель начал работать на бензине.

Slide 5

Август Отто

В 1864 году Август Отто получил патент на свою модель газового двигателя и в том же году заключил контракт с богатым инженером Лангеном на использование этого изобретения.Вскоре была основана компания Otto & Company.

Слайд 6

Типы ДВС

Двигатель внутреннего сгорания (сокращенно ДВС) — это тип двигателя, тепловой двигатель, в котором химическая энергия топлива (обычно используется жидкое или газообразное углеводородное топливо), сжигаемое в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых двигателей (громкий шум, токсичные выбросы, меньший ресурс), из-за их автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические батареи) ДВС очень распространены, например, в транспорте.

Слайд 7

Поршневые двигатели

Поршневой двигатель — двигатель внутреннего сгорания, в котором тепловая энергия, генерируемая при сгорании топлива в замкнутом объеме, преобразуется в механическую работу поступательного движения поршня за счет расширения рабочего тела (газообразных продуктов сгорания топлива). в цилиндре, в который вставлен поршень.

Slide 8

Бензин

Бензин — смесь топлива и воздуха подготавливается в карбюраторе, а затем во впускном коллекторе или во впускном коллекторе с помощью распылительных форсунок (механических или электрических), затем смесь подается в цилиндр, сжимается, а затем воспламеняется. помощь искры, прыгающей между электродами свечи зажигания.Основным отличительным признаком топливовоздушной смеси в этом случае является ее гомогенизация.

Slide 9

Дизель

Дизель — специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу сгорает) непосредственно в цилиндре при впрыске части топлива. Смесь воспламеняется из-за высокой температуры сжатого воздуха в цилиндре.

Слайд 10

Газ

Газ — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях.

Слайд 11

Газ-дизель

Газ-дизель — основная часть топлива подготавливается, как в одном из типов газовых двигателей, но воспламеняется не от электрической свечи, а от воспламеняющейся порции дизельного топлива, впрыскиваемого в цилиндр аналогично дизелю. двигатель.

Направляющая 12

2-тактная

Двухтактный цикл. Шаги: 1. Когда поршень движется вверх, топливная смесь сжимается в текущем цикле, и смесь всасывается для следующего цикла в полость под поршнем.2. При движении поршня вниз — рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую зону цилиндра.

Направляющая 13

4-тактная

4-тактный цикл двигателя внутреннего сгорания

Слайд 14

Использование двигателя внутреннего сгорания

ICE часто используется на транспорте, и для каждого вида транспорта требуется свой тип ICE. Так для общественного транспорта необходим двигатель внутреннего сгорания, обладающий хорошей тягой на малых скоростях, в общественном транспорте используется двигатель внутреннего сгорания большого объема, развивающий максимальную мощность на низких скоростях.В гоночных автомобилях Формулы 1 используется двигатель внутреннего сгорания, который развивает максимальную мощность на высоких оборотах, но имеет относительно небольшой объем.

Посмотреть все слайды

Подготовил: Максим Тарасов

Руководитель: Магистр производственного обучения

МАОУ ДО МУК «Эврика»

Баракаева Фатима Курбанбиевна



  • Двигатель внутреннего сгорания (ДВС) — одно из основных устройств в конструкции автомобиля, которое служит для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу.Принцип работы двигателя внутреннего сгорания основан на том, что топливо в сочетании с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, топливовоздушная смесь создает высокое давление, направленное на поршень, который, в свою очередь, через кривошипно-шатунный механизм вращает коленчатый вал. Его энергия вращения передается трансмиссии автомобиля.
  • Для запуска двигателя внутреннего сгорания часто используется стартер — обычно электродвигатель, который проворачивает коленчатый вал.В более тяжелых дизельных двигателях в качестве стартера и с той же целью используется вспомогательный ДВС («пусковая установка»).

  • Существуют следующие типы двигателей (ДВС):
  • бензин
  • дизель
  • газ
  • газ-дизель
  • роторно-поршневой

  • Бензиновые двигатели внутреннего сгорания — самые распространенные автомобильные двигатели. Бензин для них служит топливом.Проходя по топливной системе, бензин через форсунки попадает в карбюратор или впускной коллектор, а затем эта топливовоздушная смесь поступает в цилиндры, сжимается под действием поршневой группы и воспламеняется искрой от свечей зажигания.
  • Карбюраторная система считается устаревшей, поэтому сейчас широко используется система впрыска топлива. Форсунки (форсунки) впрыскивают топливо либо непосредственно в цилиндр, либо во впускной коллектор. Системы впрыска делятся на механические и электронные.Во-первых, для дозирования топлива используются механические рычажные механизмы плунжерного типа с возможностью электронного управления топливной смесью. Во-вторых, процесс заправки и впрыска топлива полностью возложен на электронный блок управления (ЭБУ). Системы впрыска необходимы для более тщательного сгорания топлива и минимизации вредных продуктов сгорания.
  • Дизельные двигатели внутреннего сгорания используют специальное дизельное топливо … Двигатели данного типа автомобилей не имеют системы зажигания: топливная смесь, поступающая в цилиндры через форсунки, способна взорваться под действием высокого давления. и температура, обеспечиваемая поршневой группой.

Бензиновые и дизельные двигатели. Рабочие циклы бензина и дизеля


  • в качестве топлива использовать газ — сжиженный, генераторный, сжатый природный. Распространение таких двигателей было связано с растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в цилиндрах под высоким давлением, откуда через испаритель попадает в газовый регулятор, теряя давление. Кроме того, процесс аналогичен бензиновому двигателю внутреннего сгорания с впрыском.В некоторых случаях в системах газоснабжения могут не использоваться испарители.

  • Современный автомобиль чаще всего приводится в движение двигателем внутреннего сгорания. Таких двигателей много. Они различаются объемом, количеством цилиндров, мощностью, частотой вращения, используемым топливом (дизельные, бензиновые и газовые двигатели внутреннего сгорания). Но в принципе устройство ДВС вроде бы.
  • Как работает двигатель и почему его называют четырехтактным двигателем внутреннего сгорания? Внутреннее сгорание понятно.Топливо горит внутри двигателя. Почему 4-х тактный двигатель, что это такое? Действительно, есть и двухтактные двигатели. Но на автомобилях они используются редко.
  • Четырехтактный двигатель получил название потому, что его работу можно разделить на четыре равные по времени части. Поршень пройдет через цилиндр четыре раза — два раза вверх и два раза вниз. Ход начинается, когда поршень находится в крайней нижней или верхней точке. Для автомобилистов-механиков это называется верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ).

  • Первый такт, также известный как впуск, начинается от ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает топливовоздушную смесь в цилиндр. Действие этого хода происходит при открытом впускном клапане. Кстати, много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии могут существенно повлиять на мощность двигателя. Есть двигатели, в которых в зависимости от нажатия на педаль газа происходит принудительное увеличение времени открытия впускных клапанов.Это сделано для увеличения количества всасываемого топлива, которое после зажигания увеличивает мощность двигателя. Автомобиль в этом случае может разгоняться намного быстрее.

  • Следующий такт двигателя — такт сжатия. После того, как поршень достиг нижней точки, он начинает подниматься вверх, тем самым сжимая смесь, попавшую в цилиндр во время такта впуска. Топливная смесь сжимается до объема камеры сгорания. Что это за камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра, когда поршень находится в верхней мертвой точке, называется камерой сгорания.Клапаны полностью закрыты во время этого хода двигателя. Чем плотнее они закрыты, тем лучше компрессия. Большое значение в этом случае имеет состояние поршня, цилиндра, поршневых колец. Если есть большие зазоры, то хорошего сжатия не получится, и соответственно мощность такого двигателя будет намного ниже. Компрессию можно проверить специальным прибором. По степени сжатия можно сделать вывод о степени износа двигателя.

  • Третий цикл — рабочий, он начинается с ВМТ.Его не случайно называют рабочим. В конце концов, именно в этом цикле происходит действие, заставляющее машину двигаться. В этом цикле срабатывает система зажигания. Почему эта система так называется? Потому что он отвечает за воспламенение сжатой в цилиндре топливной смеси в камере сгорания. Работает очень просто — свеча системы дает искру. Справедливости ради стоит отметить, что искра исходит от свечи зажигания за несколько градусов до того, как поршень достигнет верхней точки.Эти градусы в современном двигателе автоматически регулируются «мозгами» автомобиля.
  • После воспламенения топлива происходит взрыв — оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

  • Четвертый такт двигателя, последний — выхлоп. Достигнув нижней точки, после рабочего хода выпускной клапан в двигателе начинает открываться.Таких клапанов может быть несколько, как и впускных. Двигаясь вверх, поршень через этот клапан удаляет выхлопные газы из цилиндра — вентилирует его. От точной работы клапанов зависит степень сжатия в цилиндрах, полный отвод выхлопных газов и необходимое количество всасываемой топливно-воздушной смеси.
  • После четвертого такта очередь первого. Процесс повторяется циклически. И за счет чего происходит вращение — работа ДВС на всех 4-х тактах, из-за чего поршень поднимается и опускается в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, полученная в рабочем ходе, направляется на движение автомобиля.Часть энергии уходит на раскручивание маховика. И он под действием инерции крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» ходов.

Презентация подготовлена ​​по материалам сайта http://autoustroistvo.ru

.