Двигатель внутреннего сгорания рисунок с подписями. Принцип работы двигателя внутреннего сгорания. По рабочему циклу
Двигатель внутреннего сгорания: устройство и принципы работы
04.04.2017
Двигателем внутреннего сгорания называется разновидность тепловой машины, которая преобразует энергию, содержащуюся в топливе, в механическую работу. В большинстве случае используется газообразное или жидкое топливо, полученное путем переработки углеводородов. Извлечение энергии происходит в результате его сгорания.
Двигатели внутреннего сгорания имеют ряд недостатков. К ним относятся следующие:
- сравнительно большие массогабаритные показатели затрудняют их перемещение и сужают сферу использования;
- высокий уровень шума и токсичные выбросы приводят к тому, что устройства, работающие от двигателей внутреннего сгорания, могут лишь со значительными ограничениями использоваться в закрытых, плохо вентилируемых помещениях;
- сравнительно небольшой эксплуатационный ресурс вынуждает довольно часто ремонтировать двигатели внутреннего сгорания, что связано с дополнительными затратами;
- выделение в процессе работы значительного количества тепловой энергии обуславливает необходимость создания эффективной системы охлаждения;
- из-за многокомпонентной конструкции двигатели внутреннего сгорания сложны в производстве и недостаточно надежны;
- данный вид тепловой машины отличается высоким потреблением горючего.
Несмотря на все перечисленные недостатки двигатели внутреннего сгорания пользуются огромной популярностью, в первую очередь – благодаря своей автономности (она достигается за счет того, что топливо содержит в себе значительно большее количество энергии по сравнению с любой аккумуляторной батареей). Одной из основных областей их применения является личный и общественный транспорт.
Типы двигателей внутреннего сгорания
Когда речь идет о двигателях внутреннего сгорания, следует иметь в виду, что на сегодняшний день существует несколько их разновидностей, которые отличаются друг от друга конструктивными особенностями.
1. Поршневые двигатели внутреннего сгорания характеризуются тем, что сгорание топлива происходит в цилиндре. Именно он отвечает за преобразование той химической энергии, которая содержится в горючем, в полезную механическую работу. Чтобы добиться этого, поршневые двигатели внутреннего сгорания оснащаются кривошипно-ползунным механизмом, с помощью которого и происходит преобразование.
Поршневые двигатели внутреннего сгорания принято делить на несколько разновидностей (основанием для классификации служит используемое ими топливо).
В бензиновых карбюраторных двигателях образование топливовоздушной смеси происходит в карбюраторе (первый этап). Далее в дело вступают распыляющие форсунки (электрические или механические), местом расположения которых служит впускной коллектор. Готовая смесь бензина и воздуха поступает в цилиндр.
Там происходит ее сжатие и поджиг с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи. В случае с карбюраторными двигателями топливовоздушной смеси присуща гомогенность (однородность).
Бензиновые инжекторные двигатели используют в своей работе иной принцип смесеобразования. Он основан на непосредственном впрыске горючего, которое напрямую поступает в цилиндр (для этого используются распыляющие форсунки, называемые также инжектором). Таким образом, образование топливовоздушной смеси, как и ее сгорание, осуществляется непосредственно в самом цилиндре.
Дизельные двигатели отличаются тем, что используют для своей работы особую разновидность топлива, называемую «дизельное» или просто «дизель». Для его подачи в цилиндр используется высокое давление. По мере того, как в камеру сгорания подаются все новые порции горючего, прямо в ней происходит процесс образования топливовоздушной смеси и ее моментальной сгорание. Поджиг топливовоздушной смеси происходит не с помощью искры, а под действием нагретого воздуха, который подвергается в цилиндре сильному сжатию.
Топливом для газовых двигателей служат различные углеводороды, которые при нормальных условиях пребывают в газообразном состоянии. Из этого следует, что для их хранения и использования требуется соблюдать особые условия:
- Сжиженные газы поставляются в баллонах различного объема, внутри которых с помощью насыщенных паров создается достаточное давление, но не превышающее 16 атмосфер. Благодаря этому горючее находится в жидком состоянии. Для его перехода в пригодную для сжигания жидкую фазу используется специальное устройство, называемое испарителем. Понижение давления до уровня, который примерно соответствует нормальному атмосферному давлению, осуществляется в соответствии со ступенчатым принципом. В его основе лежит использование так называемого газового редуктора. После этого топливовоздушная смесь поступает во впускной коллектор (перед этим она должна пройти через специальный смеситель). В конце этого достаточно сложного цикла горючее подается в цилиндр для последующего поджига, осуществляемого с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи.
- Хранение сжатого природного газа осуществляется при гораздо более высоком давлении, которое находится в диапазоне от 150 до 200 атмосфер. Единственное конструктивное отличие данной системы от той, что описана выше, заключается в отсутствии испарителя. В целом принцип остается тем же.
Генераторный газ получают путем переработки твердого топлива (угля, горючих сланцев, торфа и т.п.). По своим основным техническим характеристикам он практически ничем не отличается от других видов газообразного топлива.
Газодизельные двигатели
Данная разновидность двигателей внутреннего сгорания отличается тем, что приготовление основной порции топливовоздушной смеси осуществляется аналогично газовым двигателям. Однако для ее поджига используется не искра, получаемая при помощи электрической свечи, а запальная порция топлива (ее впрыск в цилиндр осуществляется тем же способом, как и в случае с дизельными двигателями).
Роторно-поршневые двигатели внутреннего сгорания
К данному классу относится комбинированная разновидность данных устройств. Ее гибридный характер находит свое отражение в том, что конструкция двигателя включает в себя сразу два важных конструктивных элемента: роторно-поршневую машину и одновременно — лопаточную машину (она может быть представлена компрессором, турбиной и т.д.). Обе упомянутых машины на равных принимают участие в рабочем процессе. В качестве характерного примера таких комбинированных устройств можно привести поршневой двигатель, оснащенный системой турбонаддува.
Особую категорию составляют двигатели внутреннего сгорания, для обозначения которых используется английская аббревиатура RCV. От других разновидностей они отличаются тем, что газораспределение в данном случае основывается на вращении цилиндра. При совершении вращательного движения топливо по очереди проходит выпускной и впускной патрубок. Поршень отвечает за движение в возвратно-поступательном направлении.
Поршневые двигатели внутреннего сгорания: циклы работы
Для классификации поршневых двигателей внутреннего сгорания также используется принцип их работы. По данному показателю двигатели внутреннего сгорания делятся на две большие группы: двух- и четырехтактные.
Четырехтактные двигатели внутреннего сгорания используют в своей работе так называемый цикл Отто, который включает в себя следующие фазы: впуск, сжатие, рабочий ход и выпуск. Следует добавить, что рабочий ход состоит не из одного, как остальные фазы, а сразу из двух процессов: сгорание и расширение.
Наиболее широко применяемая схема, по которой осуществляется рабочий цикл в двигателях внутреннего сгорания, состоит из следующих этапов:
1. Пока происходит впуск топливовоздушной смеси, поршень перемещается между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). В результате этого внутри цилиндра освобождается значительное пространство, в которое и поступает топливовоздушная смесь, заполняя его.
Всасывание топливовоздушной смеси осуществляется за счет разности давления, существующего внутри цилиндра и во впускном коллекторе. Толчком к поступлению топливовоздушной смеси в камеру сгорания служит открытие впускного клапана. Этот момент принято обозначать термином «угол открытия впускного клапана» (φа).
При этом следует иметь в виду, что в цилиндре на этот момент уже содержаться продукты, оставшиеся после сгорания предыдущей порции горючего (для их обозначения используется понятие остаточных газов). В результате их смешения с топливовоздушной смесью, называемой на профессиональном языке свежим зарядом, образуется рабочая смесь. Чем успешнее протекает процесс ее приготовления, тем более полно сгорает топливо, выделяя при этом максимум энергии.
В результате растет кпд двигателя. В связи с этим еще на этапе конструирования двигателя особое внимание уделяется правильному смесеобразованию. Ведущую роль играют различные параметры свежего заряда, включая его абсолютную величину, а также удельную долю в общем объеме рабочей смеси.
2. При переходе к фазе сжатия оба клапана закрываются, а поршень совершает движение в обратном направлении (от НМТ к ВМТ). В результате надпоршневая полость заметно уменьшается в объеме. Это приводит к тому, что содержащаяся в ней рабочая смесь (рабочее тело) сжимается. За счет этого удается добиться того, что процесс сгорания топливовоздушной смеси протекает более интенсивно. От сжатия также зависит такой важнейший показатель, как полнота использования тепловой энергии, которая выделяется при сжигании горючего, а следовательно – и эффективность работы самого двигателя внутреннего сгорания.
Для увеличения этого важнейшего показателя конструкторы стараются проектировать устройства, обладающие максимально возможной степенью сжатия рабочей смеси. Если мы имеем дело с ее принудительным зажиганием, то степень сжатия не превышает 12. Если же двигатель внутреннего сгорания работает на принципе самовоспламенения, то упомянутый выше параметр обычно находится в диапазоне от 14 до 22.
3. Воспламенение рабочей смеси дает старт реакции окисления, которая происходит благодаря кислороду воздуха, входящему в ее состав. Этот процесс сопровождается резким ростом давления по всему объему надпоршневой полости. Поджиг рабочей смеси осуществляется при помощи электрической искры, которая имеет высокое напряжение (до 15 кВ).
Ее источник располагается в непосредственной близости от ВМТ. В этой роли выступает электрическая свеча зажигания, которую вворачивают в головку цилиндра. Однако в том случае, если поджиг топливовоздушной смеси осуществляется посредством горячего воздуха, предварительно подвергнутого сжатию, наличие данного конструктивного элемента является излишним.
Вместо него двигатель внутреннего сгорания оснащается особой форсункой. Она отвечает за поступление топливовоздушной смеси, которая в определенный момент подается под высоким давлением (оно может превышать 30 Мн/м²).
4. При сгорании топлива образуются газы, которые имеют очень высокую температуру, а потому неуклонно стремятся к расширению. В результате поршень вновь перемещается от ВМТ к НМТ. Это движение называется рабочим ходом поршня. Именно на этом этапе происходит передача давления на коленчатый вал (если быть точнее, то на его шатунную шейку), который в результате проворачивается. Этот процесс происходит при участии шатуна.
5. Суть завершающей фазы, которая называется впуском, сводится к тому, что поршень совершает обратное движение (от НМТ к ВМТ). К этому моменту открывается второй клапан, благодаря чему отработавшие газы покидают внутреннее пространство цилиндра. Как уже говорилось выше, части продуктов сгорания это не касается. Они остаются в той части цилиндра, откуда поршень их не может вытеснить. За счет того, что описанный цикл последовательно повторяется, достигается непрерывный характер работы двигателя.
Если мы имеем дело с одноцилиндровым двигателем, то все фазы (от подготовки рабочей смеси до вытеснения из цилиндра продуктов сгорания) осуществляется за счет поршня. При этом используется энергия маховика, накапливаемая им в течение рабочего хода. Во всех остальных случаях (имеются в виду двигатели внутреннего сгорания с двумя и более цилиндрами) соседние цилиндры дополняют друг друга, помогая выполнять вспомогательные ходы. В связи с этим из их конструкции без малейшего ущерба может быть исключен маховик.
Чтобы было удобнее изучать различные двигатели внутреннего сгорания, в их рабочем цикле вычленяют различные процессы. Однако существует и противоположный подход, когда сходные процессы объединяют в группы. Основой для подобной классификации служит положение поршня, которое он занимает в отношении обеих мертвых точек. Таким образом, перемещения поршня образуют тот отправной пункт, отталкиваясь от которого, удобно рассматривать работу двигателя в целом.
Важнейшим понятием является «такт». Им обозначают ту часть рабочего цикла, которая укладывается во временной промежуток, когда поршень перемещается от одной смежной мертвой точки к другой. Такт (а вслед за ним и весь соответствующий ему ход поршня) называется процессом. Он играет роль основного при перемещении поршня, которое происходит между двумя его положениями.
Если переходить к тем конкретным процессам, о которых мы говорили выше (впуск, сжатие, рабочий ход и выпуск), то каждый из них четко приурочен к определенному такту. В связи с этим в двигателях внутреннего сгорания принято различать одноименные такты, а вместе с ними – и ходы поршня.
Выше мы уже говорили о том, что наряду с четырехтактными существуют и двухтактные двигатели. Однако независимо от количества тактов рабочий цикл любого поршневого двигателя состоит из пяти упомянутых выше процессов, а в его основе лежит одна и та же схема. Конструктивные особенности в данном случае не играют принципиальной роли.
Дополнительные агрегаты для двигателей внутреннего сгорания
Важный недостаток двигателя внутреннего сгорания заключается в достаточно узком диапазоне оборотов, в котором он способен развивать значительную мощность. Чтобы компенсировать этот недостаток, двигатель внутреннего сгорания нуждается в дополнительных агрегатах. Самые важные из них – стартер и трансмиссия.
Наличие последнего устройства не является обязательным условием лишь в редких случаях (когда, к примеру, речь идет о самолетах). В последнее время все привлекательнее становится перспектива создать гибридный автомобиль, чей двигатель мог бы постоянно сохранять оптимальный режим работы.
К дополнительным агрегатам, обслуживающим двигатель внутреннего сгорания, относится топливная система, которая осуществляет подачу горючего, а также выхлопная система, необходимая для того, чтобы отводить отработавшие газы.
Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.
Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.
При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.
В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы .
Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.
Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.
Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.
Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.
В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.
Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.
В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.
Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.
Принцип работы двигателя внутреннего сгорания
Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.
В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:
- рабочий объем,
- количество цилиндров,
- мощность системы,
- скорость вращения узлов,
- применяемое для работы топливо и др.
Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?
Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.
Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.
В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.
Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.
От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.
Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.
Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.
Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.
Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.
Варианты конструкций внутреннего двигателя
Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.
Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.
Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.
Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.
Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.
Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.
Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.
Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.
Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.
Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.
Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.
Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.
Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.
Каждому, водителю интересно и необходимо знать, как устроен автомобиль, что такое ДВС в машине, из чего состоит двигатель автомобиля и каков у ДВС ресурс.
Отличие двигателей внутреннего сгорания от двигателей внешнего сгорания
ДВС называется так именно потому, что топливо сжигается внутри рабочего органа (цилиндра), промежуточный теплоноситель, например пар, здесь не нужен, как это организовано в паровозах. Если рассматривать паровой двигатель и двигатель, но уже внутреннего сгорания автомобиля, устройство их сходно, это очевидно (на рисунке справа паровой двигатель, слева – ДВС).
Принцип работы одинаков: на поршень, действует какая-то сила. От этого поршень вынужден двигаться вперед или назад (возвратно-поступательно). Эти движения при помощи специального механизма (кривошипного) преобразуются во вращение (колеса у паровоза и коленчатого вала «коленвала» у автомобиля). В двигателях внешнего сгорания нагревается вода, превращаясь в пар, и уже этот пар совершает полезную работу толкая поршень, а в ДВС мы нагреваем воздух внутри (непосредственно в цилиндре)и он (воздух) двигает поршень. От этого коэффициент полезного действия, у ДВС, конечно, выше.
История создания ДВС
История гласит, что первый работающий двигатель внутреннего сгорания коммерческого использования, то есть выпускаемый для продажи, был разработан французским изобретателем Ленуаром. Его двигатель работал на светильном газе в смеси с воздухом. Причем именно он догадался поджигать эту смесь путем электрической искры. Только в 1864 году документально зафиксирована продажа более 310 таких двигателей. На этом он разбогател. Жан Этьен Ленуар потерял интерес к изобретательству и вскоре(в 1877 году) его моторы были вытеснены более совершенными, на тот момент, двигателями Отто, изобретателя из Германии. Донат Банки (венгерский инженер) в 1893 году произвел настоящую революцию в двигателестроении. Он изобрел карбюратор. С этого момента история не знает бензиновых двигателей без этого устройства. И так продолжалось около 100 лет. На смену ему пришла система непосредственного впрыска, но это уже новейшая история.
Все первые двигатели внутреннего сгорания были только одноцилиндровыми. Увеличение мощности велось путем увеличения диаметра рабочего цилиндра. Только к концу 19-го века появились ДВС с двумя цилиндрами, а в начале 20-го века – четырехцилиндровые. Теперь, повышение мощности производилось уже путем увеличения числа цилиндров. На сегодняшний день можно встретить автомобильный двигатель в 2-мя, 4-мя, 6-ю цилиндрами. Реже 8 и 12. Некоторые спортивные автомобили имеют 24 цилиндра. Расположение цилиндров может быть как рядным, так и V-образным.
Вопреки расхожему мнению ни Готлиб Даймлер, ни Карл Бенц, ни Генри Форд устройство двигателя автомобиля не изменяли кардинально (разве что мелкие доработки), но оказали огромное влияние в автомобилестроение как таковое. Что такое ДВС в авто мы сейчас и рассмотрим.
Общее устройство двигателя внутреннего сгорания
Итак, ДВС состоит из корпуса, в котором все остальные детали монтируются. Чаще всего это блок цилиндров.
На данном рисунке показан один цилиндр без блока. Устройство ДВС направлено на максимально комфортные условия для цилиндров, ведь именно в них производится работа. Цилиндр, это металлическая (чаще всего стальная) труба, в которой двигается поршень. Он обозначен на рисунке цифрой 7. Над цилиндром устанавливается головка цилиндра 1, в которую вмонтированы клапана (5 – впускной и 4 — выпускной), а также свеча зажигания 3 и коромысла 2.
Над клапанами 4 и 5 есть пружины, которые удерживают их в закрытом состоянии. Коромысла при помощи толкателей 14 и распределительного вала 13 открывают клапана в определенный момент (тогда, когда это необходимо). Распределительный вал с кулачками вращается от коленвала 11 через приводные шестерни 12.
Движения поршня 7 преобразуются во вращение коленвала 11 при помощи шатуна 8 и кривошипа. Этим кривошипом служит «колено» на валу (смотри рисунок), именно поэтому вал и называется коленчатым. В связи с тем, что воздействие на поршень происходит не постоянно, а только когда в цилиндре горит топливо. У ДВС есть маховик 9, довольно массивный. Маховик как бы запасает энергию вращения и отдает ее при необходимости.
В любом двигателе много трущихся деталей, для их смазывания используют автомобильное масло. Масло это хранится в картере 10 и специальным насосом подается к трущимся деталям.
Синим цветом, показаны детали кривошипно-шатунного механизма (КШМ). Голубым – смесь топлива и воздуха. Серым – свеча зажигания. Красным – выхлопные газы.
Принцип работы ДВС
Разобрав двигатель внутреннего сгорания, его устройство, необходимо уяснить, как взаимодействуют его детали, как он работает. Знать строение еще не все, а вот как взаимодействуют механизмы, в чем преимущество дизельных автомобилей и в чем их недостатки для начинающих (для чайников) очень важно.
Ничего сложного в этом нет. Пошаговым рассмотрением процессов мы постараемся рассказать, как взаимодействуют между собой основные части двигателя при работе. Из какого материала выполнены механические составляющие ДВС.
Все автомобильные двигатели работают на одном принципе: сжигание бензина или дизельного топлива. Для чего? Для получения необходимой нам энергии, конечно. Двигатели автомобилей, иногда говорят – моторы, могут быть двухтактными и четырехтактными. Тактом считается движение поршня либо вверх, либо вниз. Говорят еще от верхней мертвой точки (ВМТ), до нижней (НМТ). Мертвой эта точка называется потому, что поршень как бы замирает на мгновение и начинает движение в обратную сторону.
Итак, в двухтактном двигателе весь процесс (или цикл) происходит за 2 хода поршня, в четырехтактном – за 4. И совершенно не важно, бензиновый это двигатель, дизельный или работающий на газу.
Как ни странно, рассказывать принцип работы лучше на 4-х тактном бензиновом карбюраторном двигателе.
Первый такт — всасывание.
Поршень идет вниз и затягивает за собой смесь из воздуха и топлива. Эта смесь готовится в отдельном устройстве – в карбюраторе. При этом впускной, его еще называют «всасывающий» клапан, конечно, открыт. На рисунке он показан синим.
Следующий, второй такт – сжатие смеси.
Поршень поднимается вверх от НМТ до ВМТ. При этом растет давление и, естественно, температура над поршнем. Но этой температуры недостаточно, для того, чтобы смесь самовоспламенилась. Для этого служит свеча. Она выдает искру в нужный момент. Обычно это 6…8 угловых градусов не доходя до ВМТ. Для начала понимания процесса можно предположить, что искра зажигает смесь точно в верхней точке.
Третий такт – расширение продуктов сгорания.
При сгорании столь энергоемкого топлива, продуктов сгорания в цилиндре очень мало, а вот усилие появляется только потому, что воздух нагрелся при повышении температуры, а значит, расширился, в нашем случае увеличил давление. Именно это давление и совершает нужную работу. Нужно знать, что нагревая воздух на 273 0С, получаем увеличение давления практически в 2 раза. Температура зависит от того сколько топлива сжечь. Максимальная температура внутри рабочего цилиндра может достигать 2500 0С при работе ДВС на полной мощности.
Четвертый такт последний.
После него опять будет первый. Поршень направляется от НМТ к ВМТ. При этом выпускной клапан открыт. Цилиндр очищается, выбрасывая все что сгорело, и что не сгорело, в атмосферу.
Что касается дизельного двигателя, то все основные детали с карбюраторным практически одинаковы. Ведь и тот и другой, это двигатель внутреннего сгорания. Исключение составляет смесеобразование. В карбюраторном смесь готовится отдельно, в том самом карбюраторе. А вот в дизельном – смесь готовиться непосредственно в цилиндре, перед сжиганием. Топливо (солярка) подается специальным насосом в определенный момент времени. Зажигание смеси происходит от самовоспламенения. Температура внутри цилиндра в дизеле гораздо выше, чем в карбюраторном ДВС. По этой причине детали там детали мощнее и система охлаждения лучше. Необходимо отметить, что, несмотря на высокую температуру внутри цилиндра, рабочая температура двигателя никогда не повышается выше 90…95 0С. Иногда, детали дизельных двигателей делают из более твердого металла, что позволяет снизить массу, но увеличивает цену ДВС. Однако, коэффициент полезного действия (КПД) в дизельном двигателе выше. То есть он более экономичен и дороговизна деталей себя окупает.
У дизельного ДВС ресурс выше, если соблюдать правила эксплуатации. Особенно часто механизмы дизелей выходят из строя из-за плохого топлива.
Схема работы дизельного двигателя представлена на рисунке слева. В третьем такте подача топлива показана в момент ВМТ, хотя это и не совсем так.
Системы ДВС обеспечивающие их работоспособность практически одинаковы: система смазки, топливная система, система охлаждения и система газообмена. Есть еще несколько, но они не относятся к главным.
Глядя на устройство любого двигателя внутреннего сгорания можно подумать, что все детали выполнены из стали. Это далеко не так. Корпуса бывают и чугунные и выполненные из алюминиевого сплава, а вот поршни из чугуна не делают, они либо стальные, либо из высокопрочного алюминиевого сплава. Зная общее устройство данного двигателя внутреннего сгорания и условия работы его деталей, очевидно, что и клапана и головку цилиндра нужно делать прочными, поскольку они должны выдерживать давление внутри цилиндра более 100 атмосфер. А вот поддон, где собирается масло не несет на себе особой механической нагрузки и выполняется из тонкой листовой стали или алюминия.
Характеристики ДВС
Когда говорят об автомобиле, то обычно, в первую очередь отмечают двигатель внутреннего сгорания, не его устройство, а его мощность. Она (мощность) измеряется как обычно (по-старинке) в лошадиных силах или (по-современному) киловаттах. Безусловно, чем больше мощность, тем быстрее автомобиль набирает скорость. И в принципе экономичность тем выше, тем двигатель машины более мощный. Однако, это только тогда, когда двигатель постоянно работает на номинальных (экономически оправданных) оборотах. Но на малых скоростях (при неиспользовании полной мощности) КПД сильно падает и если на номинальных режимах дизельный двигатель имеет 40…42% КПД, то на малых только 7%. Бензиновый двигатель не может похвастаться даже этим. Использование полной мощности позволяет экономить топливо. По этой причине расход топлива на 100 километров в малолитражных автомобилях ниже. Этот показатель может составлять и 5 и даже 4 л/100 км. Расход у мощных внедорожников может составлять и 10 и даже 15 л/100 км.
Еще одним показателем для автомобилей является разгон от 0 км/час до 100 км/час. Конечно, чем мощнее двигатель, тем быстрее разгон автомобиля, но про экономичность при этом говорить вообще не приходится.
Итак, двигатель внутреннего сгорания устройство которого Вы теперь знаете, совсем не кажется сложным. И на вопрос «ДВС – что это такое?» Вы можете ответить «Это то, что я знаю».
Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.
В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.
Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.
Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.
Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.
А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.
Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро для двигателя автомобиля!
Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:
- Такт впуска топлива
- Такт сжатия топлива
- Такт сгорания топлива
- Такт выпуска отработавших газов
Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!
На рисунке буквами обозначены следующие элементы двигателя:
A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал
Вот что происходит, когда двигатель проходит свой полный четырёхтактный цикл:
- Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
- Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
- Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
- После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.
Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.
Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:
Как работает двигатель — анимация
Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.
Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!
Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:
Типы двигателей
Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:
- Рядный
- V-образный
- Оппозитный
Вот они — все три типа расположения цилиндров в двигателе:
Рядное расположение 4-х цилиндров
Оппозитное расположение 4-х цилиндров
V-образное расположение 6 цилиндров
Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.
Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:
Давайте рассмотрим некоторые ключевые детали двигателя более подробно:
А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:
Полный цикл работы двигателя
Почему двигатель не работает?
Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится . Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:
- Плохая топливная смесь
- Отсутствие сжатия
- Отсутствие искры
Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.
Плохая топливная смесь может быть следствием одной из причин:
- У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
- Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
- Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
- В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.
Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:
- Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
- Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
- Появилось отверстие в цилиндре.
Отсутствие искры может быть по ряду причин:
- Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
- Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
- Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.
И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:
- Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
- Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
- Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
- Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
- Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.
В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.
Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.
Как работают клапаны?
Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом . Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.
Большинство современных двигателей имеют то, что называют накладными кулачками . Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).
Как работает система зажигания?
Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.
Как работает охлаждение?
Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.
Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.
Как работает пусковая система?
Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его ! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.
Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:
- Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
- Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
- Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
- Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.
Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.
Как работает впрыск и смазочная система?
Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.
Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).
Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.
Система выпуска отработавших газов
Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.
Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора . Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле,
Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.
Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.
Как устроен ДВС
Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.
Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- КШМ – кривошипно-шатунный механизм.
- ГРМ – механизм регулировки фаз газораспределения.
- Система смазки.
- Система охлаждения.
- Система подачи топлива.
- Выхлопная система.
Также к системам ДВС относятся электрические системы пуска и управления двигателем.
КШМ – кривошипно-шатунный механизм
КШМ – основной механизм поршневого мотора. Он выполняет главную работу – преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:
- Блок цилиндров.
- Головка блока цилиндров.
- Поршни с пальцами, кольцами и шатунами.
- Коленчатый вал с маховиком.
ГРМ – газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал.
- Впускные и выпускные клапаны с пружинами и направляющими втулками.
- Детали привода клапанов.
- Элементы привода ГРМ.
ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их
В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя
- Насос (помпа)
- Радиатор
- Вентилятор
- Расширительный бачок
Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.
Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.
Система смазки ДВС
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон).
- Насос подачи масла.
- Масляный фильтр с .
- Маслопроводы.
- Масляный щуп (индикатор уровня масла).
- Указатель давления в системе.
- Маслоналивная горловина.
Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.
Система питания
Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак.
- Датчик уровня топлива.
- Фильтры очистки топлива – грубой и тонкой.
- Топливные трубопроводы.
- Впускной коллектор.
- Воздушные патрубки.
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры – воздушный фильтр и патрубки – тоже относятся к топливной системе.
Система выпуска
Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор.
- Приемная труба глушителя.
- Резонатор.
- Глушитель.
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.
Устройство и принцип действия двухтактного двигателя внутреннего сгорания
Многие из нас ездят на мотороллерах, но вот как устроен и работает двигатель внутреннего сгорания (далее ДВС), который приводит в движение Вашу двухколесную технику, знает не каждый. А вот хорошо зная все принципы работы ДВС, Вы сможете быстро и правильно диагностировать его неполадки. Да и вообще, в ознакомительных целях знание принципов работы не помешает.Вообще-то существует два основных типа двигателей: двухтактные и четырехтактные. Практически на каждом мотороллере, особенно до 2000 года выпуска, установлен двухтактный двигатель. В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала за два основных такта. У двигателей такого типа отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.
Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60…70%.
Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:
Двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндра. Внутри цилиндра движется поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Далее уже, в частности на мотороллере, вращательное движение передается на вариатор, принцип работы которого описан в статье: Устройство и принцип работы вариатора.
Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений.
Теперь о принципе работы. Весь рабочий цикл в двигателе осуществляется за два такта.
Такт сжатия.
1. Такт сжатия. Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.
2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.
Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.
Далее цикл повторяется.
Стоит упомянуть о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем поршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому-что поршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя. Практически у мотороллеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением. С ним двигатель развивает больше мощности.
Наглядно просмотреть работу двухтактного ДВС можно на этом ролике:
Двигатель внутреннего сгорания
Двигателями называют большую группу двигателей, в которых сгорание топлива происходит внутри двигателя.
Первый двигатель внутреннего сгорания изобрел 1860 французский инженер Этьен Ленуар. В 1876 г. немецкий инженер Николаус Отто предложил более совершенный двигатель. В 1897 г. немецкий инженер Рудольф Дизель предложил еще совершеннее двигатель, впоследствии названный дизелем.
Работа двигателя внутреннего сгорания состоит из нескольких повторяющихся друг за другом этапов, или, как говорят, тактов. Всего их четыре. Отсчет тактов начинается с момента, когда поршень находится в крайней верхней точке и оба клапана закрыты.
Первый такт называется впуск (см. рисунок а). Впускной клапан открывается, и поршень опускается, засасывает бензиново -воздушную смесь внутрь камеры сгорания. После этого впускной клапан закрывается. Второй такт — сжатие (рисунок б). Поршень, поднимаясь вверх, сжимает бензиново -воздушную смесь.
Третий такт — рабочий ход поршня (рисунок в). На конце свечи загорается электрическая искра. Бензиново -воздушная смесь почти мгновенно сгорает, и в цилиндре возникает высокая температура. Это приводит к сильному росту давления, и горячий газ выполняет полезную работу — толкает поршень вниз.
Четвертый такт — выпуск (рисунок г). Выпускной клапан открывается, и поршень, двигаясь вверх, выталкивает газы из камеры сгорания в выхлопную трубу. Затем клапан закрывается.
Итак, один рабочий цикл двигателя происходит в течение четырех тактов. При этом коленчатый вал делает два полных оборота. Итак, в двигателе внутреннего сгорания нагревателем является бензин, сгорает, рабочим телом — раскаленные газы, холодильником — окружающая среда.
В автомобильных двигателях ставят часто несколько цилиндров. Действие их согласовывают так, чтобы при каждом такте в каком-то цилиндре осуществлялся рабочий ход: тогда при каждом такте вал получает энергию от одного или нескольких цилиндров.
Благодаря малой массе при сравнительно большой мощности двигатели внутреннего сгорания получили широкого применения на транспорте: появились автомобили, тепловозы, теплоходы, самолеты.
категория: Физика14 Двигатель внутреннего сгорания.
Физика 8 класс
14. ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ
Вариант 1
I (1) Горючая смесь, поступающая и цилиндр двигателя автомобиля, состоит из …
различных видов жидкого топлива.
распыленного керосина с воздухом.
воздуха и паров бензина.
масла и бензина.
Рассмотрите разрез двигателя внутреннего сгорания, изображенного на рисунке и дополните следующие предложения.
II (3) При первом такте поршень движется …, 1. вверх… закрыт…открыт клапан А …, а клапан Б … 2. вверх… закрыт… закрыт
III (3) При втором такте поршень движется …,
клапан А …, а клапан Б … 3. вниз… открыт… закрыт
IV (3) При третьем такте поршень движется …, 4. вниз… закрыт… открыт
клапан А …, а клапан Б …
V (3) При четвертом такте поршень движется …, 5. вниз… закрыт… закрыт
клапан А …, а клапан Б …
Что происходит с горючей смесью и газом, образовавшимися от сгорания этой смеси, при …
VI (2) первом такте? 1. Горючая смесь сжимается.
2. Газ, образовавшийся при сгорании го-
VII (2) втором такте? рючей смеси, удаляется из цилиндра.
3. Сгорание горючей смеси и расширение
VIII (2) третьем такте? газов, получившихся при сгорании.
Горючая смесь всасывается в цилиндр.
IX (2) четвертом такте?
Физика 8 класс
14. ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ
Вариант 2
На рисунке 1 изображен разрез двигателя внутреннего сгорания. Каким номером обозначен …
I (1) поршень? 1. Один.
II (1) цилиндр? 2. Два.
III (1) шатун? 3. Три.
IV (1) коленчатый вал? 4. Четыре.
V (1) маховое колесо? 5. Пять.
Рис 1
На рисунке 2 показаны различные положения
частей четырехтактного двигателя
внутреннего сгорания. Какое из них …
VI (4) рабочий ход? 1. Рисунок 1.
(4) выпуск? 2. Рисунок 2.
(4) впуск? 3. Рисунок 3.
IX (4) сжатие? 4. Рисунок 4.
Рис 2
Физика 8 класс
14. ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ
Вариант З
Какое устройство в бензиновом двигателе внутреннего сгорания выполняет …
I (1) зажигание горючей смеси? 1. Карбюратор.
2. Свеча.
II (1) приготовление горючей смеси? 3. Маховое колесо.
4. Кулачки, насаженные на
III (1) выход двигателя из мертвых точек? распределительный вал.
IV (1) открывание клапанов?
На рисунке изображены различные положения частей четырехтактного двигателя внутреннего сгорания во время работы. Определите по расположению взаимодействующих частей, какое из них …
V (4) третий такт? 1. Рисунок 1.
VI (4) четвертый такт? 2. Рисунок 2.
(4) первый такт? 3. Рисунок 3.
(4) второй такт? 4. Рисунок 4.
IX (1) Каков приблизительно КПД двигателей внутреннего сгорания?
1. 7—15%. 2. 20 — 40%. 3. 40 — 50%. 4. 50 — 60%.
Физика 8 класс
14. ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ
Вариант 4
I (1) Двигатель внутреннего сгорания работает на …
1. нефти. 2. каменном угле. 3. торфе и дровах. 4. бензине.
Изменяется ли во время рабочего хода …
II (1) температура газа? 1. Не изменяется.
III (1) внутренняя энергия газа? 2. Уменьшается.
3. Увеличивается.
IV (1) давление газа?
В каком направлении должен двигаться поршень (см. рис. 104) и каково должно быть положение клапанов во время …
V (4) такта впуска? 1. Поршень движется вниз, оба клапана закрыты.
VI (4) такта сжатия? 2. Поршень движется вниз, впускной клапан открыт,
впускной закрыт.
VII (4) рабочего хода? 3. Поршень движется вверх, впускной
клапан закрыт, выпускной открыт.
VIII (4) выпуска? 4. Поршень движется вверх, оба клапана закрыты.
IX (1) Тактом называют ход поршня …, что соответствует повороту коленчатого вала на …
в обе стороны… пол-оборота.
в одну сторону… полный оборот.
в одну сторону… пол-оборота.
в обе стороны… полный оборот.
Вариант 1 На рисунке 103 изображен разрез двигателя внутреннего сгорания. Каким номером обозначен … 1. поршень? 1. Один. 2. цилиндр? 2. Два. 3. шатун? 3. Три. 4. коленчатый вал? 4. Четыре. На рисунке 104 показаны различные положения частей четырехтактного двигателя внутреннего сгорания. Какое из них … 6. рабочий ход? 1. Рисунок 1. 7. выпуск? 2. Рисунок 2. 8. впуск? 3. Рисунок 3. Вариант2 Какое устройство в бензиновом двигателе внутреннего сгорания выполняет … 1. зажигание горючей смеси? 1. Карбюратор. 2. приготовление горючей смеси? 2. Свеча. 3. выход двигателя из 3. Маховое колесо. мертвых точек? 4. Кулачки, насаженные 4. открывание клапанов? на распределительный вал. На рисунке 104 изображены различные положения частей четырехтактного двигателя внутреннего сгорания во время работы. Определите по расположению взаимодействующих частей, какое из них … 5. третий такт? 1. Рисунок /. 6. четвертый такт? 2. Рисунок 2. 7. первый такт? 3. Рисунок 3.
|
4 такта работы ДВС. Основные решения поломок ДВС
Рассмотрим 4 такта работы ДВС:
- Впуск
- Сжатие
- Сгорание
- Выпуск
- При первом такте открывается клапан и в блок цилиндра добавляется топливная смесь. Топливная смесь состоит из воздуха и топлива в пропорции 14.7 к 1. При этом различают обогащенную топливную смесь, где пропорция бензина к воздуху примерно 40 к 1 и обедненную топливную смесь, где соотношение воздуха по отношению к бензину преобладает.
- При втором такте происходит сжатие топливной смеси в камере сгорания в блоке цилиндра.
- При третьем такте топливная смесь зажигается при помощи свечи зажигания.
- На четвертом такте происходит выпуск отработанных газов через выпускные клапаны ГБЦ.
Маслосъемные кольца позволяют оптимально использовать топливо, смазывая весь цилиндр и равномерно распределяя масло по его поверхности.
!!! Закоксовка колец — проблема, с которой сталкиваются автовладельцы. Ее суть в том, что компрессионные кольца становятся слишком плотными и больше не могут обеспечивать герметичность внутри цилиндра.
Верхняя мертвая точка — это верхняя граница хода поршня, нижняя мертвая точка — это нижняя граница хода поршня.
Впускные и выпускные клапаны цилиндра имеют клапанную пружину, клапанную тарелку и фиксирующий сухарь.
Привод ГРМ приводит в движение распределительный вал, масляный и водяной насос.
Различают верхневальные и нижневальные двигатели.
Главное отличие нижневальных и верхневальных двигателей в том, что в верхневальных двигателях больший крутящий момент на высоких оборотах, а в нижневальных — на низких.
| Самые частые поломки ДВС | и их основные решения: |
| — износ деталей цилиндро-поршневой группы | — замена деталей цилиндро-поршневой группы |
| — разрыв или растяжение привода на распредвал | — замена, правильная установка и регулировка элементов привода ГРМ!!! При заказе деталей учитывайте обстоятельства малой выработки шестерней и направляющих, чтобы ремонт не обошелся еще дороже. !!! Соблюдайте метки при замене цепи, ремня, шестерни или эвольвенты привода ГРМ. Так вы точно правильно выставите положение коленчатого и кулачкового (распределительного) валов двигателя. |
| — неисправность системы зажигания | — чаще всего замена катушки зажигания или конденсатора распределителя зажигания решают проблему |
| — поломка топливного насоса | — чаще всего проблему решает замена топливного фильтра или промывка сетки приемника — замена топливного насоса |
| — нарушение зазоров между элементами | — необходимо отрегулировать зазоры |
| — заклинивание шатунов, поршней | — ремонт ДВС посредством гильзовки цилиндра/цилиндров, замена цилиндра/цилиндров, замена маслосъемных колец!!! Желательно загильзовывать все цилиндры, в противном случаеесть вероятность изменения геометрии цилиндров полублока |
| — отсутствие компрессии | — замена компрессионных колец\ поршня или клапанов |
| — прогар поршня | — замена поршня!!! Соблюдайте правила, прописанные в рукаводстве эксплуатации. Не допускайте прогара поршня, ведь это эксплуатационный дефект |
Опубликовано: 18.05.2016
Анализ конструктивных решений по созданию транспортной энергоустановки на базе свободнопоршневого двигателя внутреннего сгорания
В настоящей статье проведен анализ существующих конструктивных решений, используемых при создании транспортной энергоустановки на базе свободнопоршневого двигателя внутреннего сгорания. Определена оптимальная кинематическая схема энергоустановки, наиболее эффективная конструкция теплового двигателя и нагружающего устройства, а также предъявлены требования к вспомогательным системам и агрегатам.
Ключевые слова: двигатель внутреннего сгорания, кривошипно-шатунный механизм, свободнопоршневой двигатель, энергоустановка, линейный генератор
Введение
Основным источником энергии как на автомобильном транспорте, так и в малой энергетики в настоящее время остаются тепловые двигатели, основным конструктивным узлом в которых является кривошипно-шатунный механизм (КШМ). Устойчивую позицию этим двигателям обеспечивают распространенность используемого топлива, преимущественно нефтяного происхождения, высокая технологичность конструкции и, как следствие, доступная стоимость изготовления, относительно не высокие эксплуатационные расходы, ресурсные параметры, а также относительно неплохие показатели энергоэффективности и экологичности. Однако, для достижения высоких удельных мощностных показателей, хорошей топливной экономичности и низкого уровня выбросов вредных веществ с отработавшими газами все современные тепловые двигатели, основанные на кинематике КШМ, вынуждены использовать в своем составе большое количество сложных и дорогостоящих систем, в основе которых лежат как механические узлы и агрегаты, так и мехатронные и микропроцессорные системы, действия которых направлены на повышение эффективности термодинамического цикла двигателя [1, 2, 3, 4]. Стоит отметить, что чем более совершенными и отточенными являются рабочие процессы в конкретном двигателе, т. е. чем выше показатели его топливной экономичности и ниже концентрация вредных веществ в отработавших газах, тем выше его себестоимость и, следовательно, дороже его обслуживание и ремонт, причем это вызвано не только более высокой стоимостью запасных частей и расходных материалов, но и необходимостью привлечения высококвалифицированного персонала для проведения регламентных работ.
Современные тепловые двигатели вплотную приближаются к границе своего технического совершенства, а применяемые конструктивные и прочие мероприятия, становясь все более изощреннее, в конструктивном смысле, и дороже, приносят все менее ощутимый эффект. Вполне обоснованно можно предположить, что в ближайшие десятилетия дальнейшее совершенствование традиционных тепловых двигателей будет уже экономически нецелесообразно, т. к. будет пройден тот рубеж, при переходе через который стоимость изготовления, а также дальнейшей эксплуатации и обслуживания превысят экономическую выгоду от снижения расхода топлива, которую смогут обеспечить внедряемые технические решения, а единственным стимулом, оправдывающим усложнение конструкции двигателей и энергоустановок в целом, будет снижение эмиссии вредных веществ.
Все это предопределяет необходимость поиска свежих идей в области создания альтернативных конструкторских решений и новых типов двигателей, которые позволят поднять показатели тепловых двигателей на новую ступень, при этом сохранив рациональность их использования в автотранспортных средствах и малой энергетике.
Одним из таких решений, набирающим популярность в последнее десятилетие, является использование свободнопоршневых кинематических схем в тепловых двигателях, позволяющих получать механическую энергию, произведенную в результате сжигания топлива, непосредственно с рабочего поршня. Причины возобновления интереса научной общественности к данному направлению кроются в ряде преимуществ, которыми обладают свободнопоршневые (СП) тепловые двигатели в сравнении с традиционными двигателями, у которых тепловая энергия передается от поршня через кривошипно-шатунный механизм на вращающийся коленчатый вал двигателя. В частности, можно отметить, что свободнопоршневые двигатели внутреннего сгорания (ДВС) превосходят кривошипно-шатунные аналоги по материалоемкости, технологичности и стоимости изготовления, массогабаритным параметрам, ресурсу, показателям удельного эффективного расхода топлива при низких требованиях, предъявляемых к используемому топливу, а также по уровню эмиссии вредных веществ [5]. Все эти преимущества в основном объясняются более высоким эффективным КПД таких двигателей, в частности, вследствие меньших механических потерь, а также простотой конструкции, потенциально лучшей уравновешенностью двигателя и возможностью обеспечения изменяемой степени сжатия.
В ходе проведения исследований одной из поставленных задач являлось формирование технического облика автотранспортной энергоустановки на базе СП ДВС.
Обзор ианализ существующих конструктивных решений
Очевидно, что на транспорте СП ДВС целесообразнее использовать в составе гибридной энергоустановки [6], а также в роли основной составляющей «увеличителя пробега» (в переводе с англ. «range extender») электромобилей [7] совместно с линейным генератором для выработки электроэнергии, которая в последствии должна использоваться для привода автомобиля и питания бортовых систем, а не в качестве движителя транспортного средства. В ходе сравнения существующих видов и концепций энергоустановок на базе СП ДВС, основанного на анализе современных научно-технических источников, были сделаны следующие выводы:
1) Наиболее предпочтительным по энергетическим показателям для СП ДВС является двухтактный рабочий процесс. Применение четырехтактного рабочего процесса для СП ДВС нецелесообразно в виду значительного снижения эффективности за счет большего числа преобразований энергии для реализации четырех рабочих тактов, а так же в связи с проблемами, связанными с неравномерностью работы установки, усложнения конструкции двигателя и потенциального увеличения его стоимости.
2) Важным вопросом при создании СП ДВС является выбор кинематической схемы с точки зрения количества, вида связи и взаимного направления перемещения рабочих поршней.
Применение компоновок с отдельной камерой сгорания для каждого рабочего поршня, в т. ч. одноцилиндровых или двух цилиндровых конструкций, но с жестко связанными поршнями, осложняется за счет неуравновешенности сил инерции, вследствие чего при работе двигателя будут возникать повышенные вибрации. Использование данных кинематических схем возможно при модульном подходе в создании энергоустановок, предусматривающим наличие четного числа СП ДВС, работающих в противофазе, и тем самым обеспечивающих взаимное уравновешивание, однако в данном случае могут возникнуть сложности с обеспечением их синхронизации.
Наиболее оптимальной кинематической схемой для СП ДВС, представленной на рисунке 1, является конструкция с двумя противоположно движущимися поршнями, объединенными общим цилиндром.
Рис. 1. Кинематическая схема СП ДВС с противоположно движущимися поршнями
Применение такого технического решения позволяет избавиться от вибраций за счет компенсации инерционных нагрузок при сохранении приемлемых массогабаритных показателей.
3) В качестве нагружающего устройства для СП ДВС в транспортной энергоустановке наиболее подходят асинхронные линейные машины на постоянных магнитах из редкоземельных металлов [8] за счет простоты конструкции, высокой эффективности, низкого уровня тепловых потерь, хороших динамических показателей и высокой точности позиционирования. Учитывая вышеописанную схему СП ДВС, основанную на двух противоположно движущихся поршнях, очевидно, что конструкция энергоустановки должна включать в себя две линейные электромашины, подвижные части которых жестко связаны с рабочими поршнями.
4) Результаты динамического анализа [9] показали, что для оптимизации энергоэффективных и массогабаритных показателей в состав энергоустановки на базе СП ДВС целесообразно ввести пневматические пружины, поршни которых жестко связаны с рабочими поршнями СП ДВС и подвижными частями электромашин (см. рисунок 2), выполняющие роль, во-первых, накопителей кинетической энергии, необходимой для возврата поршней в верхнюю мертвую точку для сжатия свежего заряда на каждом последующем такте, а во-вторых, дополнительного источника механической энергии для обеспечения работы линейных электрических машин в режиме генератора на всех тактах работы СП ДВС. Такой подход позволяет существенно минимизировать размеры подвижных частей линейных электромашин при значительном снижении инерционных нагрузок в системе.
Рис. 2. Схема энергоустановки на базе СП ДВС
Стоит отметить, что при выборе геометрических параметров пневмопружин необходимо искать компромисс между диаметром поршней и рабочим давлением. Увеличение диаметра, безусловно, позволяет понизить величину рабочего давления внутри пневмопружин, тем самым снижая требования к конструкционным параметрам их деталям, однако негативно сказывается на габаритных показателях энергоустановки в целом. Применение дополнительного жидкостного охлаждения позволяет нивелировать негативное влияние повышенного давления за счет понижения рабочей температуры в пневмопружинах.
5) Особое внимание при создании энергоустановок с СП ДВС необходимо уделить вопросу организации газообмена в двигателе. Процесс газообмена в свободнопоршневом двигателе целесообразнее осуществлять по двухтактной схеме через впускные и выпускные окна, поэтому рассмотрим подробнее различные методы организации продувки для данного типа двигателей и определим оптимальный из них.
Для свободнопоршневого двигателя аналогом кривошипно-камерной продувки является запоршневое пространство. Применение продувки посредством запоршневого пространства осложняется тем, что в нём должна осуществляться смазка цилиндропоршневой группы, при этом часть масла неизбежно будет попадать в рабочий цилиндр двигателя вместе с продувочным воздухом и сгорать вместе с топливовоздушной смесью, что негативно повлияет на экологические показатели СП ДВС. Другим вариантом газообмена является установка дополнительной продувочной камеры, которая будет обеспечивать продувку, но ее наличие будет увеличивать габаритные размеры двигателя. Оба указанные варианты имеют недостаток, свойственный всем классическим двухтактным двигателям, который заключается в том, что при газообмене кривошипно-камерной продувкой возникают проблемы с высоким процентом остаточных газов, кроме того, такая продувка не позволяет эффективно применять наддув.
Улучшение процесса газообмена может быть обеспечено за счет применения выпускных клапанов в системе газообмена двигателя по аналогу прямоточно-клапанной продувки цилиндра. Применение такой схемы позволяет управлять моментом закрытия выпускного клапана, что позволяет избежать выброса топливовоздушной смеси в выпускной коллектор, тем самым снизить расход топлива, а также позволяет эффективно использовать системы наддува и повысить мощность. Однако, применение клапанов в системе газообмена свободнопоршневого двигателя затруднено отсутствием вращающихся узлов, необходимых для привода кулачкового механизма, и невозможно без использования отдельных приводных агрегатов. Современный уровень развития электротехники и систем управления позволяет применить индивидуальный электромагнитный привод клапанов, но стоит учитывать, что его интеграция в двигатель принесет и ряд недостатков, к которым, например, можно отнести большие энергозатраты на электропривод и проблему обеспечения безударной посадки клапана в седло.
Учитывая тот факт, что концепция свободнопоршневого двигателя внутреннего сгорания не предусматривает наличие вращающихся элементов, которые могли бы обеспечить привод механизма газораспределения аналогично традиционным двигателям с КШМ, наиболее технологичным способом организации газообмена остается использование прямоточно-щелевой продувкой, схема которой представлена на рисунке 3. В данной схеме один поршень перекрывает выпускные окна, а второй продувочные.
Рис. 3. Прямоточно-щелевая схема газообмена в СП ДВС с противоположно движущимися поршнями
Применение прямоточно-щелевой продувки, предусматривающей наличие системы наддува, компрессора или продувочного насоса, позволяет производить качественную продувку цилиндра, за счет чего снижается коэффициент остаточных газов и повышается эффективность двигателя. Естественно, такая схема не лишена недостатков. Одним из них является снижение действительной степени сжатия за счет расположения окон возле НМТ, что обязательно должно учитываться при моделировании процессов в СП ДВС. Также стоит отметить, что данная концепция газообмена существенно ограничит возможность регулирования процесса наполнения свежим зарядом и отвода отработавших газов в ходе работы двигателя, однако, учитывая специфику применения СП ДВС для работы в составе автомобильной энергоустановки, которой характерны квазистационарные режимы, это техническое решение позволит достичь требуемых энергоэффективных показателей двигателя при значительном упрощении его конструкции и повышении надежности. Для повышения эффективных показателей СП ДВС целесообразно организовать продувку посредством турбокомпрессора, приводимого кинетической энергией отработавших газов.
6) Рассматривая проблему организации смазки в СП ДВС, можно отметить, что применение в свободнопоршневых двигателях смазки путем разбавления топлива маслом, характерной для двухтактных двигателей, неэффективно, так как это возможно только при использовании продувки запоршневым пространством, кроме того такая организация смазки приводит к росту концентрации вредных веществ, выбрасываемых двигателем в атмосферу. Стоит также отметить снижение потребительских и эксплуатационных показателей ДВС с описанной организацией системы смазки вследствие необходимости подготовки бензо-масляной смеси в процессе каждой заправки топливом.
Применение классической комбинированной системы смазки, характерной для четырехтактных двигателей, в свободнопоршневом двигателе осложнено наличием в зоне хода компрессионных и маслосъемных (в некоторых случаях) колец органов газообмена, поэтому разработка системы смазки требует особого внимания. Одним из перспективных на сегодняшний день технических решений, позволяющих повысить экономические, экологические и ресурсные показатели ДВС, является совместное использование комбинированной системы смазки пониженной производительности и твердых смазочных покрытий, наносимых на детали трения [10, 11].
7) При создании энергоустановок на базе СП ДВС, учитывая характер тепловыделения в таких двигателях, которым свойственны большая скорость и величина тепловыделения в сравнении с кривошипно-шатунными ДВС (см. рисунок 4), вопрос правильной организации охлаждения деталей двигателя играет важное место. Ситуацию усугубляет также необходимость минимизации массы всех подвижных частей двигателя, в т. ч. рабочих поршней, в угоду снижения инерционных нагрузок, что предъявляет повышенные требования к отводу тепла от нагревающихся деталей, учитывая повышенную теплонапряженность двухтактного двигателя.
Для свободнопоршневого двигателя внутреннего сгорания в составе энергоустановки предпочтительно использование жидкостной системы охлаждения с регулируемой производительностью и независимым электроприводом, которая позволит точно регулировать температурный режим двигателя вне зависимости от параметров окружающей среды, а также даст возможность в перспективе повысить энергоэффективность энергоустановки в целом путем реализации различных мероприятий по утилизации тепловой энергии, в том числе отводимой в систему охлаждения [13, 14, 15] и с отработавшими газами [16, 17, 18], в том числе, используемыми в системе рециркуляции отработавших газов.
Рис. 4. График скорости тепловыделения [12]: 1 — свободнопоршневой двигатель; 2 — обычный дизельный двигатель
8) Учитывая целесообразность реализации двухтактного рабочего цикла в СП ДВС, для обеспечения в нем лучшей топливной экономичности и высоких экологических показателей необходимо использовать систему непосредственного впрыска топлива, которая позволит обеспечить точное дозирование цикловой подачи топлива и исключить выброс топлива в выпускной коллектор в процессе продувки цилиндра.
Выводы
В настоящей статье проведен сравнительный анализ конструктивных параметров основных элементов и сформирован технический облик транспортной энергоустановки на базе свободнопоршневого двигателя внутреннего сгорания. Объединение предложенных технических решений позволит обеспечить оптимальное сочетание экологических, энергоэффективных и многих эксплуатационных показателей при интеграции свободнопоршневого двигателя в состав транспортного средства.
Статья подготовлена в рамках проведения НИР по теме «Разработка научных основ и практических способов совершенствования показателей свободнопоршневых тепловых двигателей для транспортных и стационарных энергоустановок» в рамках стипендии Президента Российской Федерации для молодых ученых и аспирантов, осуществляющих перспективные научные исследования и разработки по приоритетным направлениям модернизации российской экономики, регистрационный номер СП-264.2015.1 при финансовой поддержке Министерства образования и науки Российской Федерации.
Литература:
1. Хрипач Н. А., Лежнев Л. Ю., Папкин Б. А., Шустров Ф. А., Татарников А. П., Тингаев Н. В. Анализ конструкций, обеспечивающих максимальную термодинамическую эффективность поршневых двигателей//Известия МГТУ «МАМИ». Научный рецензируемый журнал. -М.: МГТУ «МАМИ», 2012. — № 2 (14). -Т. 1 -С. 360–367.
2. Петриченко Д. А., Хрипач Н. А., Лежнев Л. Ю., Папкин Б. А., Шустров Ф. А., Татарников А. П. Использование многопараметрической нейросетевой модели управления энергоустановками на базе двигателя внутреннего сгорания. Известия Московского государственного технического университета МАМИ. 2012. Т. 1. № 1. — 81 с.
3. Лежнев Л. Ю. Улучшение топливно-экономических и экологических показателей ДВС в составе комбинированных энергетических установок автотранспортных средств. Дисс. на соиск. Ученой степени канд. техн. наук — М: НАМИ, (2005) — 134с.
4. Лежнев Л. Ю., Иванов Д. А. Способы повышения энергоэффективных показателей двигателей с внешним подводом теплоты, работающих в составе установок автономного энергоснабжения//Современные проблемы науки и образования. 2013. № 5; URL: www.science-education.ru/111–10139.
5. Шустров Ф. А. и др. Оценка эффективности использования свободнопоршневых тепловых двигателей в составе транспортных и стационарных энергоустановок. / Международный журнал прикладных и фундаментальных исследований. 2015. № 10–3. С. 449–453.
6. Лежнев Л. Ю., Минкин И. М. АТС с комбинированной энергетической установкой//Автомобильная промышленность. 2003. — № 11 — С. 15–17.
7. Эйдинов А. А., Каменев В. Ф., Лежнев Л. Ю. Электромобили и автомобили с КЭУ//Автомобильная промышленность. 2002, № 11.
8. Goncharov V. I., Ezhov E. V., Chirkin V. G., Shirinsky S. V., Petrichenko D. A. Linear Alternator with Reciprocating Mover: Review of Designs and Machine Types. Biosciences Biotechnology Research Asia, 2015, Vol. 12(Spl. Edn. 2), pp. 409–418.
9. Petrichenko D., Tatarnikov A., Papkin I. Approach to Electromagnetic Control of the Extreme Positions of a Piston in a Free Piston Generator. Modern Applied Science. Vol. 9, No. 1, 2015, pp. 119–128.
10. Nikolay Khripach, Leonid Lesnevskiy, Maxim Lyahovetskiy, Alexander Troshin. Potential of Microarc Oxidation for Implementation of Dry Friction and Boundary Lubrication Modes in Free-piston Internal Combustion Engines. International Journal of Applied Engineering Research ISSN 0973–4562 Volume 10, Number 20 (2015), pp 40956–40964.
11. L. N. Lesnevskiy, L. Yu. Lezhnev, M. A. Lyakhovetskiy,A. E. Troshin, P. V. Gavrilov, and A. M. Ushakov. Inorganic Solid Lubricating Coatings for Heat Engines and Power Plants. Journal of Machinery Manufacture and Reliability, 2015, Vol. 44, No. 5, pp. 455–463.
12. R. Mikalsen, A. P. Roskilly «A Review of Free-Piston Engine History and Applications», Applied Thermal Engineering, Vol. 27, № 14–15, 2007.
13. Nikolay Anatolyevich Khripach, Viktor Sergeyevich Korotkov and Igor Arkadyevich Papkin. Thermoelectric cooling system for internal combustion engine. Part 1: development of the technical aspects. International Journal of Applied Engineering Research, ISSN 0973–4562, Volume 11, Number 15 (2016), pp 8547–8552.
14. Nikolay Anatolyevich Khripach, Denis Alekseevich Ivanov and Igor Arkadyevich Papkin. Thermoelectric Cooling System for Internal Combustion Engine Part 2: Experimental Studies. International Journal of Applied Engineering Research ISSN 0973–4562 Volume 11, Number 15 (2016), pp 8540–8546.
15. Boris Arkadyevich Papkin, Nikolay Anatolyevich Khripach, Viktor Sergeevich Korotkov and Denis Alekseevich Ivanov. Thermoelectric generator for a vehicle engine cooling system research and development. International Journal of Applied Engineering Research ISSN 0973–4562 Volume 11, Number 15 (2016), pp 8557–8564.
16. Khripach N., Papkin B., Korotkov V. Thermoelectric generators of motor vehicle powertrains, problems and prospects. Life Sci J 2014;11(12):503–507.
17. Nikolay Anatolyevich Khripach, Boris Arkadyevich Papkin, Viktor Sergeevich Korotkov and Dmitriy Vladimirovich Zaletov. Study of the Influence of Heat Exchanger Body Design Parameters on the Performance of a Thermoelectric Generator for Automotive Internal Combustion Engine. BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, September 2015. Vol. 12(Spl. Edn. 2), pp. 677–689.
18. NikolayAnatolyevichKhripach, BorisArkadyevichPapkin, ViktorSergeevichKorotkov, AlexanderSergeevichNekrasovandDmitriyVladimirovichZaletov. Effect of a Thermoelectric Generator on the Fuel Economy of a Vehicle Operating in a Real-world Environment. BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, September 2015. Vol. 12(Spl. Edn. 2), pp. 375–386.
Основные термины (генерируются автоматически): свободнопоршневой двигатель, двигатель, баз СП, внутреннее сгорание, показатель, кривошипно-шатунный механизм, поршень, создание энергоустановок, транспортная энергоустановка, Российская Федерация.
Двигатель внутреннего сгорания возвращается к чертежной доске
Поднимите свой современный седан рядом с Ford Model T, и они вряд ли будут похожи друг на друга. Да, есть еще четыре колеса и руль, но на этом сходство, похоже, заканчивается.
Современные автомобили, большие, обтекаемые и аэродинамичные; изготовлены из современных легких материалов и оснащены множеством функций безопасности. Модель T для сравнения не имела ремней безопасности, подушек безопасности или антиблокировочной системы тормозов, сидела высоко над землей и была сделана из стали, дерева и даже из конского волоса.
Но откройте капот — или капот, если хотите — и это странный анахронизм. Двигатели обоих автомобилей, вероятно, по-прежнему будут состоять из очень схожей технологии с четырьмя поршнями, перемещающимися вверх и вниз в четырех цилиндрах.
Более того, топливная экономичность этих двигателей практически не изменилась. Этот первый серийный автомобиль имел рядный четырехцилиндровый двигатель мощностью 20 л.с. (15 кВт) с заявленной экономией топлива 13-21 миль на галлон (миль на галлон). Ваш седан, вероятно, будет иметь современный четырехцилиндровый двигатель, который, вероятно, выдает больше примерно 200 л.с., но только с немного улучшенной экономией топлива где-то в диапазоне 20-30 миль на галлон.
Но вскоре все это может измениться. Соединенные Штаты только что объявили о новых правилах, которые потребуют от автопроизводителей производить более продвинутые автомобили с меньшим расходом топлива. «Мы поставили агрессивную цель, и компании делают шаг вперед», — сказал президент Обама в заявлении. «К 2025 году средняя экономия топлива их автомобилей почти удвоится и составит почти 55 миль на галлон».
Конечно, в европейских странах, где небольшие автомобили и дизельные двигатели являются обычным явлением, такие цели не кажутся такими агрессивными.Но для США, где законы о выбросах запрещают использование некоторых технологий, уже используемых в других местах, они амбициозны. Более того, они, вероятно, будут стимулировать новую эру конструкции двигателей, которая не только заменит устаревшие четырехтактные двигатели, но также может изменить принцип работы двигателей в США и других странах.
Бесполезная работа
Практически все современные двигатели работают по принципу: если вы поместите небольшое количество топлива, например бензин, в небольшое замкнутое пространство и воспламените его, он взорвется с огромным количеством энергии.Затем через шатун и коленчатый вал он может приводить в движение колеса.
Большинство двигателей делают это несколько раз в секунду, используя так называемый четырехтактный цикл. При этом поршни двигателя поднимаются и опускаются в цилиндре четыре раза — так называемые такты впуска, сжатия, мощности и выпуска. В современном двигателе с прямым впрыском топлива воздух всасывается, когда поршень падает в цилиндр, а затем сжимается, когда поршень толкает его обратно вверх. Почти сразу же впрыскивается и воспламеняется топливо, заставляя поршень снова опускаться вниз в так называемом рабочем такте.Последний ход поршня выбрасывает продукты сгорания.
Чтобы обеспечить постоянную мощность, большинство автомобилей имеют ряд цилиндров, обычно четыре, что позволяет поршням находиться в разных точках цикла. По такому же принципу работают шестицилиндровые или восьмицилиндровые двигатели. Эти двигатели используются практически во всех автомобилях, лодках, грузовиках, винтовых самолетах, генераторах и т. Д.
Существуют варианты этих конструкций, которые могут помочь США достичь поставленных целей. Например, гибридные автомобили, в которых используется комбинация электродвигателей и бензиновых двигателей, уже достигают топливной экономичности около 50 миль на галлон.Кроме того, такие производители, как Ford и Fiat, представили двигатели с меньшим количеством цилиндров по сравнению с обычным минимумом из четырех; три в случае Ford и два для Fiat. Оба используют турбокомпрессоры и интеллектуальную систему управления синхронизацией, чтобы сжигать меньше топлива, сохраняя при этом ту же мощность, что и другие двигатели. Двигатели Ford будут представлены на автомобилях США в следующем году.
Но для того, чтобы повысить показатели топливной экономичности, некоторые конструкторы задаются вопросом, нужно ли нам вообще радикально переконструировать двигатели.
«Более 100 лет обычный двигатель внутреннего сгорания был эффективен только на 33%», — говорит Билл Ринн из инженерной фирмы Scuderi, которая разработала двигатель нового типа.«Оно должно быть выше — если вы залите галлон бензина в бак, две трети его будет потрачено впустую».
Scuderi разрабатывает двигатель, в котором поршни в цилиндрах по-прежнему поднимаются и опускаются, но с одним существенным отличием. «Что мы делаем, так это разделяем четыре штриха», — говорит Ринн. В одном цилиндре у нас есть 2 такта, которые связаны со сжатием, а в другом цилиндре у нас есть 2 такта, которые связаны с выхлопом ».
На практике это означает, что воздух втягивается в цилиндр сжатия, когда поршень движется вниз , , а затем сжимается, когда он движется обратно вверх . Вместо того, чтобы впрыскивать топливо в эту камеру, сжатый воздух проходит через трубку в отдельный цилиндр, где топливо впрыскивается и воспламеняется, чтобы обеспечить мощность. Четырехцилиндровый двигатель, работающий по этой конструкции, будет иметь два цилиндра сжатия и два цилиндра сгорания.
«Поскольку мы можем разделить эти две функции, мы можем максимизировать процесс сжатия, а также максимизировать процесс сгорания, чтобы сделать его более эффективным и чистым», — говорит Винн.В некоторых приложениях Скудери считает, что эта, казалось бы, простая настройка может улучшить топливную экономичность на 40% и более.
На первый взгляд кажется, что у двигателя Scuderi должно быть вдвое больше цилиндров, чтобы обеспечить такую же мощность, но это не так. У него есть «силовой» ход на каждый оборот двигателя, а не на каждые два.
«Unexotic»
Инновационный дизайн позволяет реализовать некоторые другие умные идеи. Сжатие и сгорание не обязательно должны происходить последовательно, и Scuderi работает над тем, что он называет «воздушно-гибридной» системой.Вместо электрических генераторов, накапливающих энергию в батареях, как это происходит в современных гибридах, двигатель может отключать цилиндр сгорания, когда транспортное средство движется по инерции, и перенаправлять воздух из цилиндра сжатия в резервуар для хранения. Сильно сжатый воздух может быть выпущен позже для работы двигателя без топлива.
В течение последнего столетия предлагались и другие радикальные модификации двигателей, но автомобильная промышленность двигалась медленно, отчасти потому, что этого никогда не было. Двигатель внутреннего сгорания, каким мы его знаем, был доработан и улучшен, и он оказался очень надежным, очень безопасным и, в конечном итоге, дешевым в производстве.
«Существует множество отличных идей и концепций двигателей, но реальность такова, что с такой отраслью, как она есть, и с имеющейся у нас экономикой намного легче двигаться небольшими пошаговыми шагами. Это больше подходит для нынешних сборочных и производственных линий », — говорит Ринн.
Но Скудери считает, что именно его двигатель может наконец сбить обычный четырехтактный двигатель с пьедестала. Помимо повышения эффективности, его базовая конструкция цилиндров и поршней также очень похожа на традиционный двигатель.
«Мы рассматриваем примерно 95% или 96% одинаковых деталей. У нас не так много экзотических материалов, — говорит Ринн.
В настоящее время компания ведет переговоры с производителями по всему миру, но, скорее всего, двигатель впервые появится в Азии. Компания считает, что автопроизводители в таких странах, как Китай, более склонны к экспериментам. После получения лицензии пройдет около трех-пяти лет, прежде чем мы увидим на дорогах автомобиль с двигателем Scuderi, и это будет как раз вовремя, чтобы соответствовать новым американским стандартам эффективности.
Если вы хотите прокомментировать эту статью или что-нибудь еще, что вы видели в Future, перейдите на нашу страницу в Facebook или напишите нам в Twitter.
[Двигатель внутреннего сгорания мощностью 3 л.с., работающий на угольном газе]
Подробнее об авторских правах и других ограничениях
Чтобы получить рекомендации по составлению полных цитат, обратитесь к Ссылаясь на первоисточники.
- Консультации по правам человека : Нет известных ограничений на публикацию.
- Номер репродукции : LC-USZ62-110411 (ч / б пленка, копия негр.)
- Телефонный номер : Illus. в TJ755 .C63 [Общие коллекции]
- Консультации по доступу : —
Получение копий
Если изображение отображается, вы можете скачать его самостоятельно.(Некоторые изображения отображаются только в виде эскизов вне Библиотеке Конгресса США из-за соображений прав человека, но у вас есть доступ к изображениям большего размера на сайт.)
Кроме того, вы можете приобрести копии различных типов через Услуги копирования Библиотеки Конгресса.
- Если отображается цифровое изображение: Качество цифрового изображения частично зависит от того, был ли он сделан из оригинала или промежуточного звена, такого как копия негатива или прозрачность.Если вышеприведенное поле «Номер воспроизведения» включает номер воспроизведения, который начинается с LC-DIG …, то есть цифровое изображение, сделанное прямо с оригинала и имеет достаточное разрешение для большинства публикационных целей.
- Если есть информация, указанная в поле «Номер репродукции» выше: Вы можете использовать номер репродукции, чтобы купить копию в Duplication Services. Это будет
составлен из источника, указанного в скобках после номера.
Если указаны только черно-белые («черно-белые») источники, и вы хотите, чтобы копия показывала цвет или оттенок (если они есть на оригинале), вы обычно можете приобрести качественную копию оригинал в цвете, указав номер телефона, указанный выше, и включив каталог запись («Об этом элементе») с вашим запросом.
- Если в поле «Номер репродукции» выше нет информации: Как правило, вы можете приобрести качественную копию через Службу тиражирования.Укажите номер телефона перечисленных выше, и включите запись каталога («Об этом элементе») в свой запрос.
Прайс-листы, контактная информация и формы заказа доступны на Веб-сайт службы дублирования.
Доступ к оригиналам
Выполните следующие действия, чтобы определить, нужно ли вам заполнять квитанцию о звонках в Распечатках. и Читальный зал фотографий для просмотра оригинала (ов). В некоторых случаях суррогат (замещающее изображение) доступны, часто в виде цифрового изображения, копии или микрофильма.
Товар оцифрован? (Миниатюрное (маленькое) изображение будет видно слева.)
- Да, товар оцифрован. Пожалуйста, используйте цифровое изображение вместо того, чтобы запрашивать оригинал. Все изображения могут быть
смотреть в большом размере, когда вы находитесь в любом читальном зале Библиотеки Конгресса. В некоторых
случаях доступны только эскизы (маленькие) изображения, когда вы находитесь за пределами библиотеки
Конгресс, потому что права на товар ограничены или права на него не оценивались.
ограничения.
В целях сохранности мы обычно не обслуживаем оригинальные товары, когда цифровое изображение доступен. Если у вас есть веская причина посмотреть оригинал, проконсультируйтесь со ссылкой библиотекарь. (Иногда оригинал слишком хрупкий, чтобы его можно было использовать. Например, стекло и пленочные фотографические негативы особенно подвержены повреждению. Их также легче увидеть в Интернете, где они представлены в виде положительных изображений.) - Нет, товар не оцифрован. Пожалуйста, перейдите к # 2.
- Да, товар оцифрован. Пожалуйста, используйте цифровое изображение вместо того, чтобы запрашивать оригинал. Все изображения могут быть
смотреть в большом размере, когда вы находитесь в любом читальном зале Библиотеки Конгресса. В некоторых
случаях доступны только эскизы (маленькие) изображения, когда вы находитесь за пределами библиотеки
Конгресс, потому что права на товар ограничены или права на него не оценивались.
ограничения.
Указывают ли указанные выше поля Консультативного совета по доступу или Номер вызова, что существует нецифровой суррогат, типа микрофильмов или копий?
- Да, существует еще один суррогат. Справочный персонал может направить вас к этому суррогат.
- Нет, другого суррогата не существует. Пожалуйста, перейдите к # 3.
- Если вы не видите миниатюру или ссылку на другого суррогата, заполните бланк звонка. Читальный зал эстампов и фотографий. Во многих случаях оригиналы могут быть доставлены в течение нескольких минут. Другие материалы требуют записи на более позднее в тот же день или в будущем. Справочный персонал может посоветуют вам как заполнить квитанцию о звонках, так и когда товар может быть подан.
Чтобы связаться со справочным персоналом в Зале эстампов и фотографий, воспользуйтесь нашей Спросите библиотекаря или позвоните в читальный зал с 8:30 до 5:00 по телефону 202-707-6394 и нажмите 3.
IRJET-Запрошенная вами страница не найдена на нашем сайте
IRJET приглашает статьи из различных инженерных и технологических и научных дисциплин для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, Ноя 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 11 (ноябрь 2021 г.)
Отправить сейчас
IRJET Vol-8, выпуск 11, ноябрь 2021 г. Публикация продолжается…
Обзор статей
IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.
Проверить здесь
IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.
ДЛИННЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ — ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ АВТОМОБИЛЕЙ НА ЧЕРТЕЖЕ — Orlando Sentinel
DETROIT — Министр энергетики Спенсер Абрахам и руководители автопроизводителей Детройта объявили в среду о партнерстве по разработке автомобилей с водородными топливными элементами , шаг, который может революционизировать автомобильные технологии и положить конец U.Зависимость С. от иностранной нефти в течение нескольких десятилетий.
Новая программа направлена на замену ДВС, а вместе с ней и зависимость США от бензина. Он также завершает восьмилетний проект администрации Клинтона стоимостью 1,5 миллиарда долларов по разработке более экономичных обычных автомобилей.
Топливные элементы, которые работают как батареи, используют накопленный водород и кислород из воздуха для производства электроэнергии. В транспортных средствах водородные топливные элементы практически не загрязняют окружающую среду, потому что они выделяют водяной пар вместо углекислого газа, основного побочного продукта бензиновых двигателей.Таким образом, топливные элементы могут помочь уменьшить одну из основных причин загрязнения.
По сравнению с двигателями внутреннего сгорания топливные элементы дороги, и ожидается, что до их массового производства останется более десяти лет.
По данным Министерства энергетики США, транспортный сектор на 95 процентов зависит от нефти. Соединенные Штаты импортируют около 10 миллионов баррелей в день, или более 60 процентов потребляемой ими нефти. Этанол и природный газ также являются топливом для транспортировки.
Новое государственно-частное партнерство между Министерством энергетики, General Motors Corp., Ford Motor Co., Chrysler Group DaimlerChrysler AG и Совет по автомобильным исследованиям США, как ожидается, разработают технологию, доступную для водителей.
В понедельник GM представила концептуальный автомобиль на водородных топливных элементах, который она назвала Autonomy. Прототип обеспечит эквивалент топливной эффективности более 100 миль на галлон, но остаются вопросы о том, как его топливные элементы будут перезаряжаться и как создать для этого эквивалент заправочных станций.
Ford и Chrysler планируют запустить ограниченное производство автомобилей на топливных элементах к 2004 году.Японские и немецкие автопроизводители также работают над разработкой автомобилей, работающих на топливных элементах.
Экологические группы жалуются, что программа топливных элементов не требует от автопроизводителей строить автомобили на топливных элементах к определенной дате.
«Мы не можем позволить себе еще одну исследовательскую программу, которая просто дает миллиарды долларов в виде субсидий автомобильной промышленности без каких-либо обязательств с их стороны фактически производить современные автомобили для покупки потребителями», — сказал Дэвид Хокинс, директор Совета по защите природных ресурсов. Климатический центр в Вашингтоне.
Новая инициатива в Аргонне по изучению деталей процесса горения
АРГОННА, Иллинойс — Каждый научный эксперимент и каждая математическая модель сталкиваются с одной и той же проблемой: неопределенностью.
Сложная система, такая как двигатель, имеет множество параметров, которые необходимо включить в любое надежное моделирование. От топливных форсунок до химического состава сгорания, каждая часть процесса сгорания имеет параметры, с которыми связана определенная степень неопределенности. Ученым зачастую чрезвычайно трудно уменьшить эти неопределенности.Область анализа неопределенности предоставляет инструменты для исследования того, как неопределенность параметров влияет на результаты моделирования.
Группа исследователей из Аргоннской национальной лаборатории Министерства энергетики США использует особую форму анализа неопределенности, называемую анализом глобальной чувствительности (GSA), который разбивает неопределенность на составные части.
«Речь идет о множестве неизвестных», — сказал инженер-механик Сибенду Сом из Аргоннской национальной лаборатории Министерства энергетики США.«Мы используем анализ чувствительности, чтобы понять, как все они влияют на общую неопределенность».
Исследователи из Аргонны в рамках нового Виртуального научно-исследовательского института двигателей и Инициативы по топливу (VERIFI) изучают ряд параметров процесса внутреннего сгорания. VERIFI — первый и единственный в мире источник для высокоточного, трехмерного, сквозного моделирования / визуализации двигателей внутреннего сгорания и одновременного моделирования трансмиссии и топлива с анализом неопределенности.
Исследуемые параметры включают соотношение между диаметром сопла в топливной форсунке, динамикой распыления топлива, соотношением топлива к воздуху в камере сгорания и продуктами выхлопа. Получив лучшее понимание того, как эти неопределенности параметров влияют на результаты, исследователи VERIFI стремятся создать более чистые и эффективные двигатели.
В целом, инженер-механик из Сома и Аргонна Юаньцзян Пей и химик Майкл Дэвис одновременно исследовали 32 различных параметра, пытаясь установить, как неопределенности меняются в разных условиях.«Если мы сможем понять, как неопределенность влияет на наше моделирование, мы сможем сделать шаг в направлении разработки более предсказуемого моделирования», — сказал Сом.
Опираясь на несколько десятилетий работы химиков, статистиков и прикладных математиков, аргонские химики разработали инструменты для применения GSA к большим химическим моделям в сотрудничестве со своими коллегами из Университета Колорадо и Университета Лидса.
Эти методы были дополнительно усовершенствованы за последние два года, чтобы позволить их эффективное применение при моделировании двигателей, что привело к настоящему исследованию, которое предполагает сотрудничество с Университетом Коннектикута.Эти новые методы демонстрируют преимущества тесного сотрудничества между фундаментальными и прикладными исследованиями. «Мы впервые применили эти методы в такой сложной системе», — сказал Аргоннский инженер-механик Дуг Лонгман. «Мы продемонстрировали, что GSA можно систематически использовать для чего-то столь же сложного, как моделирование двигателя».
В частности, исследователи VERIFI применяют итеративный подход, при котором данные, собранные в результате моделирования, могут передаваться как разработчикам моделей двигателей, так и химикам внутреннего сгорания, чтобы еще больше снизить неопределенность и создать более предсказуемые модели двигателей.«Уникальность VERIFI заключается в том, что мы усовершенствовали инструменты для создания более надежных симуляций двигателя и применили высокопроизводительные вычислительные ресурсы, чтобы запускать симуляции быстрее и интенсивнее, чем когда-либо прежде», — сказал Сом.
Воспользовавшись невероятной вычислительной мощностью, доступной сегодня, команда VERIFI может определить наиболее важные параметры двигателя и топлива, а также разработать уникальное моделирование и анализ двигателя, чтобы обеспечить оптимальное сгорание двигателя при наличии неопределенности в любых условиях эксплуатации.В ближайшем будущем команда VERIFI планирует запустить моделирование дизельного двигателя беспрецедентного масштаба на Mira, суперкомпьютере IBM Blue Gene / Q с производительностью 10 петафлоп в Аргонне.
Финансирование этой работы обеспечивается Управлением энергоэффективности и возобновляемых источников энергии Министерства энергетики и Управлением фундаментальных энергетических наук в рамках Управления науки Министерства энергетики США.
Аргоннская национальная лаборатория занимается поиском решений насущных национальных проблем в области науки и технологий. Аргонн — первая в стране национальная лаборатория, которая проводит передовые фундаментальные и прикладные научные исследования практически во всех научных дисциплинах.Исследователи Аргонны тесно сотрудничают с исследователями из сотен компаний, университетов, федеральных, государственных и муниципальных агентств, чтобы помочь им решить их конкретные проблемы, продвинуть научное лидерство Америки и подготовить страну к лучшему будущему. Компания Argonne, в которой работают сотрудники из более чем 60 стран, находится под управлением UChicago Argonne, LLC для Управления науки Министерства энергетики США. Для получения дополнительной информации посетите www .anl .gov.
Старый векторный рисунок двигателя внутреннего сгорания Векторная графика в высоком разрешении
Соглашение об упрощенном доступе
Следующие ресурсы содержат неизданный и / или ограниченный контент.
Изображения, помеченные как Загрузки с легким доступом , не включены в ваш Премиум доступ или пакет подписки с Getty Images, и вам будет выставлен счет за любые изображения, которые вы используете.
Загрузки с легким доступом позволяют быстро загружать изображения в высоком разрешении без водяных знаков. Если у вас нет письменного соглашения с Getty Images, в котором указано иное, загрузки с легким доступом предназначены для совместных целей и не лицензируются для использования в окончательном проекте.
Ваша учетная запись Easy-Access (EZA) позволяет сотрудникам вашей организации загружать контент для следующих целей:
- Испытания
- Образцы
- Композиты
- Макеты
- Черновые пропилы
- Предварительные правки
Он отменяет стандартную составную онлайн-лицензию для неподвижных изображений и видео на веб-сайте Getty Images.Учетная запись EZA не является лицензией. Чтобы завершить проект с использованием материалов, которые вы загрузили из своей учетной записи EZA, вам необходимо получить лицензию. Без лицензии дальнейшее использование невозможно, например:
- презентации фокус-групп
- внешние презентации
- заключительных материалов, распределенных внутри вашей организации
- любые материалы, распространяемые за пределами вашей организации
- любые материалы, распространяемые среди населения (например, реклама, маркетинг)
Поскольку коллекции постоянно обновляются, Getty Images не может гарантировать, что какой-либо конкретный элемент будет доступен до момента лицензирования.Пожалуйста, внимательно ознакомьтесь с любыми ограничениями, сопровождающими Лицензионные материалы на веб-сайте Getty Images, и свяжитесь с вашим представителем Getty Images, если у вас возникнут вопросы по ним. Ваша учетная запись EZA останется в силе в течение года. Представитель Getty Images обсудит с вами продление.
Нажимая кнопку «Загрузить», вы принимаете на себя ответственность за использование неизданного контента (включая получение любых разрешений, необходимых для вашего использования) и соглашаетесь соблюдать любые ограничения.
Продукты
Двигатели внутреннего сгорания
GUNT предлагает различные двигатели внутреннего сгорания мощностью до 75 кВт, в том числе настоящие автомобильные двигатели с объемным рабочим объемом до двух литров. Среди этих двигателей — четырехтактные дизельные и бензиновые двигатели, бензиновые двигатели с переменной степенью сжатия и двухтактные бензиновые двигатели.
Двигатели внутреннего сгорания (базовые знания) CT 159 — CT 400 Стенды для испытаний двигателей внутреннего сгорания Индикационные системы двигателей внутреннего сгорания, обзорпоказать все закрыть все
Серия CT 159 предлагает четыре различных двигателя внутреннего сгорания в диапазоне мощности до 2,2 кВт: четырехтактный дизельный и бензиновый двигатель, бензиновый двигатель с регулируемой степенью сжатия и двухтактный бензиновый двигатель.
CT 159 Модульный испытательный стенд для одноцилиндровых двигателей, 3 кВт GUNT FEMline Cours двигатели внутреннего сгоранияКрепление двигателя, подача топлива и воздуха; измерение характеристик двигателя
Цели обучения / эксперименты
- в сочетании с силовым агрегатом HM 365 и одним из двигателей (CT 150 — CT 153)
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- определение силы трения двигателя (в пассивном режиме)
Четырехтактный бензиновый двигатель с верхним расположением клапанов и воздушным охлаждением
Цели обучения / эксперименты
- в сочетании с испытательным стендом CT 159 + блок нагрузки HM 365
- ознакомление с четырехтактным бензиновым двигателем
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
….
Двухтактный бензиновый двигатель с воздушным охлаждением
Учебные цели / эксперименты
- в сочетании с испытательным стендом CT 159 и нагрузочной единицей HM 365
- ознакомление с четырехтактным бензиновым двигателем
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
Четырехтактный бензиновый двигатель с воздушным охлаждением и различной степенью сжатия благодаря сменным камерам сгорания
Цели обучения / эксперименты
- в сочетании с испытательным стендом CT 159 + блок нагрузки HM 365, в дополнение к стандартным базовым экспериментам
- Влияние степени сжатия, состава смеси, угла опережения зажигания на характеристики двигателя и температуру выхлопных газов
Четырехтактный дизельный двигатель с воздушным охлаждением и непосредственным впрыском
Учебные цели / эксперименты
- в сочетании с испытательным стендом CT 159 и нагрузочной единицей HM 365
- ознакомление с четырехтактным дизельным двигателем
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
….
Испытательный стенд CT 110 может использоваться для широкого круга экспериментов с небольшими двигателями внутреннего сгорания с выходной мощностью до 7,5 кВт.
СТ 110 Испытательный стенд для одноцилиндровых двигателей, 7,5кВтБлок управления и нагрузки, снабжение топливом и воздухом; измерение характеристик двигателя
Цели обучения / эксперименты
- в сочетании с двигателем (CT 100.20 — КТ 100.23)
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- определение силы трения двигателя (в пассивном режиме)
Четырехтактный бензиновый двигатель с воздушным охлаждением и внешней карбюрацией
Цели обучения / эксперименты
- в сочетании с испытательным стендом CT 110
- ознакомление с четырехтактным бензиновым двигателем
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
….
Двухтактный бензиновый двигатель с воздушным охлаждением и обратной продувкой
Учебные цели / эксперименты
- в сочетании с испытательным стендом CT 110
- ознакомление с двухтактным бензиновым двигателем
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
Четырехтактный дизельный двигатель с водяным охлаждением, работающий по принципу вихревой камеры
Цели обучения / эксперименты
- в сочетании с испытательным стендом CT 110
- ознакомление с четырехтактным дизельным двигателем с водяным охлаждением
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
….
Четырехтактный дизельный двигатель с воздушным охлаждением и непосредственным впрыском
Учебные цели / эксперименты
- в сочетании с испытательным стендом CT 110
- ознакомление с четырехтактным дизельным двигателем
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
….
Стенд CT 300 позволяет проводить широкий спектр экспериментов с 4-тактными двигателями внутреннего сгорания в диапазоне мощности до 11 кВт.
CT 300 Испытательный стенд для двухцилиндровых двигателей, 11кВтСтенд для испытаний промышленных двухцилиндровых двигателей
Учебные цели / эксперименты
- в сочетании с двигателем (CT 300.04 — КТ 300.05)
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- определение силы трения (в пассивном режиме)
….
Четырехтактный дизельный двигатель с водяным охлаждением и непрямым впрыском
Цели обучения / эксперименты
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- Энергетический баланс
- определение силы трения двигателя (в пассивном режиме)
Четырехтактный бензиновый двигатель с воздушным охлаждением и внешней карбюрацией
Цели обучения / эксперименты
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- Энергетический баланс
- определение силы трения двигателя (в пассивном режиме)
Оборудование серии CT 400 предлагает широкий спектр экспериментов на промышленных двигателях с выходной мощностью до 75 кВт.
CT 400 Испытательный стенд для четырехцилиндровых двигателей, 75 кВтНагрузочное устройство с вихретоковым тормозом с воздушным охлаждением и приборами
Учебные цели / эксперименты
- в сочетании с двигателем (CT 400.01 / CT 400.02)
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- энергетические балансы
….
Бензиновый двигатель с водяным охлаждением и управляемым катализатором, макс. 75 кВт
Цели обучения / эксперименты
- в сочетании с нагрузочной единицей CT 400
- Построение кривых крутящего момента и мощности
- определение удельного расхода топлива
- определение объемного КПД и лямбда (соотношение топлива и воздуха)
- энергетические балансы
….
