3Фев

Что такое электродвигатель: типы, устройство, принцип работы, параметры, производители

Что такое электродвигатель?

В этом разделе представлены определения и термины на тему электродвигатели, а также приведены сокращения слов с данной тематикой.

Термины и их определения по тематике – электродвигатели*:

Термин

Определение термина

Асинхронная машина

машина переменного тока, в которой скорость вращения ротора зависит от частоты приложенного напряжения и от величины нагрузки (противодействующего момента на валу)

Бесконтактная машина

вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без применения коммутирующих или скользящих электрических контактов

Вращающийся электродвигатель

вращающаяся электрическая машина, предназначенная для преобразования электрической энергии в механическую

Двигатель с фазным ротором

двигатель, концы фазных обмоток ротора которого прикреплены к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора

ИСО

международная организация, занимающаяся выпуском стандартов

Исполнительный электродвигатель

Вращающийся электродвигатель для высокодинамического режима работы

Коэффициент полезного действия

отношение полезной (отдаваемой) мощности к затрачиваемой (подводимой)

Международная электротехническая комиссия

международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий. Некоторые из стандартов МЭК разрабатываются совместно с Международной организацией по стандартизации (ISO)

Механическая характеристика двигателя 

зависимость между вращающимся моментом и скольжением

Минимальный пусковой момент асинхронного двигателя с короткозамкнутым ротором (синхронного двигателя, синхронного компенсатора)

минимальный вращающий момент, развиваемый асинхронным электродвигателем с короткозамкнутым ротором (синхронным двигателем, синхронным компенсатором) между нулевой частотой вращения и частотой вращения, соответствующий максимальному моменту при номинальных значениях напряжения и частоты питающей сети

Момент трогания вращающегося электродвигателя

минимальный вращающий момент, который необходимо развить вращающемуся электродвигателю для перехода от состояния покоя к устойчивому вращению

Моментный электродвигатель

вращающийся электродвигатель, предназначенный для создания вращающего момента при ограниченном перемещении, неподвижном состоянии или медленном вращении ротора

Номинальная мощность

мощность, для работы с которой в номинальном режиме машина предназначена заводом-изготовителем

Номинальная частота вращения

частота вращения, соответствующая работе машины при номинальных напряжении, мощности и частоте тока и номинальных условиях применения

Номинальный входной момент синхронного вращающегося электродвигателя

вращающий момент, который развивает синхронный вращающийся электродвигатель при номинальных напряжении и частоте питающей сети, замкнутой накоротко обмотке возбуждения и при частоте вращения, равной 95% синхронной

Номинальный ток

ток, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении

Номинальными данными электрической машины

данные, характеризующие работу машины в режиме, для которого она предназначена заводом-изготовителем – это мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и др.

Реактивный синхронный двигатель

синхронный двигатель, вращающий момент которого обусловлен неравенством магнитных проводимостей по поперечной и продольной осям ротора, не имеющего обмоток возбуждения или постоянных магнитов

Реактивный шаговый электродвигатель

шаговый электродвигатель с неактивным ротором из магнитного материала

Ротор

вращающаяся часть машины

Серводвигатель

серводвигатель используется в составе сервомеханизма для точного управления угловым положением, скоростью и ускорением исполнительного механизма

Скольжение

разность скоростей ротора и вращающегося поля статора

Статор

неподвижная часть машины

Тормозной момент вращающегося электродвигателя

вращающий момент на валу вращающегося электродвигателя, действующий так, чтобы снизить частоту вращения двигателя

Универсальный электродвигатель

вращающийся электродвигатель, который может работать при питании от сети как постоянного, так и однофазного переменного тока

Шаговый электродвигатель

вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления

Шаговый электродвигатель с постоянными магнитами

шаговый электродвигатель, возбуждаемый постоянными магнитами

Электрический двигатель

электрическая машина, осуществляющая преобразование электрической энергии в механическую

Электродвигатель пульсирующего тока

вращающийся электродвигатель постоянного тока, рассчитанный на питание от выпрямителя при пульсации тока более 10%

Электромашинный преобразователь

вращающаяся электрическая машина, предназначенная для изменения параметров электрической энергии

Электромашинный тормоз

вращающаяся электрическая машина, предназначенная для создания тормозного момента

Электростартер

Вращающийся электродвигатель, предназначенный для пуска двигателя внутреннего сгорания или газовой турбины

* Более подробную информацию см в ГОСТ 27471-87 —  МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ (Термины и определения)

 

Сокращения по теме электродвигатели:

Сокращения

Определение сокращения

International Organization for Standardization, ISO

международная организация, занимающаяся выпуском стандартов

АД

асинхронный двигатель

АДКР

асинхронный двигатель с короткозамкнутым ротором

АДФР

асинхронный двигатель с фазным ротором

БД

база данных

ВРД

вентильный реактивный двигатель

ВЭМЗ

Владимирский электромоторный завод

ГОСТ

региональный стандарт, принятый Межгосударственным советом по стандартизации, метрологии и сертификации Содружества независимых государств

ДПР

датчик положения ротора

КДПТ

коллекторный двигатель постоянного тока

ЛЭЗ

Ленинградский Электромашиностроительный Завод

МЭК

международная электротехническая комиссия (англ. International Electrotechnical Commission)

НПЗ

нефтеперерабатывающий завод

ПМ

постоянные магниты

ПТ

постоянный ток

СД

синхронный двигатель

СДПМ

синхронный двигатель с постоянными магнитами

СДПМВ

синхронный двигатель со встроенными постоянными магнитами

СДПМП

синхронный двигатель c поверхностной установкой постоянных магнитов

СРД

синхронный реактивный двигатель

СЭЗ

Сафоновский электромашиностроительный завод

ЭП

электрический преобразователь

ЭГ

электрогенератор

Электродвигатель: все, что вам нужно знать об этих компонентах

Как известно, существует большое количество моделей электродвигатель на рынке, с различными типами. В этом блоге мы уже проанализировали некоторые очень конкретные типы электродвигателей для использования в проектах DIY, например, управление ими с помощью плат Arduino с использованием ШИМ, но у них также есть много других приложений, таких как робототехника и т. д.

В этой статье вы познакомиться с этим типом двигателя поближе которые сейчас становятся весьма актуальными в различных сферах …

Индекс

  • 1 Что такое электродвигатель?
    • 1.1 Характеристики
    • 1.2 Тип
    • 1.3 приложений
  • 2 Dónde Comprar
  • 3 Подробнее о двигателях

Что такое электродвигатель?

Un электродвигатель это не что иное, как устройство, преобразующее подводимую к нему электрическую энергию во вращающуюся механическую энергию. То есть ротор заставляет вал вращаться, когда к нему подается ток, поскольку он генерирует внутри себя магнитные поля, способные действовать через катушки и магниты для создания вращения.

Внутри будет статор и ротор. Первый находится во внешней области и прикреплен к корпусу электродвигателя, в дополнение к тому, что он обычно состоит из фиксированных магнитов (представленных на предыдущем изображении красным и синим магнитными экранами). Вместо этого ротор представляет собой движущуюся часть, которая будет вращаться из-за магнитного действия статора благодаря его катушкам, которые составляют электромагнит (представленный на предыдущем изображении красной и синей катушками).

Я имею в виду, магнетизм он будет создавать притягивающую и отталкивающую силу на обмотках ротора, в зависимости от знака, и, таким образом, заставляет его вращаться внутри статора.

Кроме того, некоторые электродвигатели реверсивныеЭто не означает, что они могут изменить направление вращения, поскольку это может сделать каждый, но что они могут быть как двигателем, так и генератором. То есть, когда вы прикладываете энергию, они вращаются, а когда вы вращаете их оси, они генерируют электрический ток на своих выводах.

Это начало генераторы которые используются в энергетической отрасли, например, генераторы ветряных мельниц или генераторы тепловых, гидроэлектростанций и т. д. Фактически, в некоторых приложениях они могут работать в обоих режимах, например, в двигателях некоторых транспортных средств, таких как KERS, или рекуперативном торможении некоторых поездов …

Характеристики

Двигатель имеет серию характер который определит качества двигателя. Вы должны знать самые важные из них, чтобы знать, как правильно выбрать агрегат. Например, выделяется:

  • мощность: они могут быть от нескольких мВт в случае самых маленьких и легких, до тысяч ватт в случае самых мощных и тяжелых. И это расширяет диапазон использования — от небольших электронных устройств до промышленных приложений. В зависимости от его мощности у вас будет большее или меньшее вращающее усилие.
  • Тип напряжения и тока: есть все меньше и больше напряжения, от маленьких двигателей 5v, 12v, до других, которые работают от 220v или больше. Конечно, подаваемый ток может быть постоянным (DC) или переменным (AC).
  • Крутящий момент двигателя: сила, с которой будет вращаться вал двигателя. В отличие от других двигателей она обычно практически постоянна, но вы можете найти менее мощные двигатели и другие, гораздо более мощные. Некоторые даже смогут создавать высокий крутящий момент для движения тяжелых транспортных средств.
  • Производительность: Дело не в силе, а в энергоэффективности. Обычно это около 75%, причем одни модели менее эффективны, а другие более эффективны.
  • Выбросы 0: двигатель этого типа не выбрасывает в атмосферу загрязняющие газы, как другие газы внутреннего сгорания или реакционные газы. В этом случае единственным загрязнителем может быть способ производства электричества, от которого они работают. Будь то возобновляемые источники или нет.
  • холодильный: они обычно не нуждаются в охлаждении, как другие двигатели внутреннего сгорания. Они самовентилируются, хотя для некоторых из них с более высокими характеристиками, вероятно, потребуется некоторое охлаждение.
  • Коробка передач: им не нужны сложные редукторы, скорость и направление вращения можно регулировать электронным способом. Тем не менее, могут быть понижающие или умножающие шестерни для увеличения силы или скорости по желанию …

Тип

Как я уже упоминал, существует не только один тип электродвигателя, но и несколько типов. Ты должен знать самый выдающийся, хотя в этой статье мы делаем акцент на CC по очевидным причинам тематики этого блога.

типы электродвигателя являются:

  • Универсальный мотор: Это тип двигателя, который может работать как с постоянным, так и с переменным током, хотя это встречается не очень часто. Это однофазный двигатель, похожий на последовательный двигатель постоянного тока, хотя и с некоторыми модификациями. Они используются в различных приложениях, поскольку имеют более высокий пусковой момент, чем индукционные, и высокую скорость вращения, несмотря на свою компактность и дешевизну. Они распространены в портативных инструментах всех видов и мелкой бытовой технике.
  • Двигатели постоянного тока (DC)— Эти двигатели работают от постоянного тока, как и большинство небольших двигателей, которые вы используете с Arduino и другими проектами производителей. В этом семействе есть такие подгруппы, как:
    • Независимое возбуждение
    • Последовательное возбуждение
    • Шунтирующее или шунтирующее возбуждение
    • Сложное возбуждение или компунд
    • прочее: шаговый или серводвигатель, бесщеточный двигатель, бесщеточный (бесщеточный).
  • Двигатели переменного тока: они работают с переменным током, имеют больший размер и предназначены для использования в крупных электрических приборах, промышленности, машинном оборудовании и т. д. Внутри вы можете найти такие подтипы, как:
    • Синхронный: В этом типе двигателя ось вращения вращается с частотой питающего тока. Поэтому его скорость вращения постоянна и всегда зависит от частоты напряжения электрической сети, к которой он подключен. Например, в домашней сети это будет 220 В, 50/60 Гц.
    • Асинхронный: это тот, ротор которого вращается с другой скоростью, чем магнитное поле. Внутри также есть такие подразделения, как:
      • Отдельная фаза: это те, которые используют однофазный источник питания, например, дом. Внутри находятся:
        • Вспомогательная обмотка
        • Шлейф закорочен
        • Универсальный (см. Первый пункт)
      • Трехфазный: его обмотка индуктора статора спроектирована так, чтобы иметь три разные катушки, смещенные на 120º на электрическом уровне, так что при питании трехфазным переменным током вращение ротора может быть вызвано действием каждой из фаз. Внутри вы найдете:
        • Ротор с обмоткой (обычный).
        • Закороченный ротор (беличья клетка).

приложений

Электродвигатель можно использовать для большое количество приложений. От электромобилей через определенные механические исполнительные механизмы до дронов, роботов, миксеров, 3D-принтеров, жестких дисков, водяных насосов, бытовой техники, такой как стиральные и посудомоечные машины, обычных принтеров, вентиляторов, генераторов электроэнергии и многого другого.

Как правило, отдельная фаза Они наиболее часто используются в небольших приложениях, и их легко изменить направление вращения, просто изменив полярность приложенного тока. Они типичны для небольших электронных устройств. Трехфазные используются для более мощных приложений, например, для промышленных.

Что касается переменного тока. Но в мире производителей и DIY для вас нормально использовать двигатели постоянного тока. Эти небольшие двигатели постоянного тока типичны для роботов, дронов, 3D-принтеров, небольших электромобилей и т. Д.

Dónde Comprar

Вы покупать разные виды этого устройства, например, модели электродвигателей, которые вы найдете на Amazon и других специализированных магазинах:

  • Товар не был найден.

  • ANGEEK 10pcs DC 3V 6V 130 Mini Motor

  • Двигатели постоянного тока, постоянный магнит 31ZY 6V / 12V / 24V 3500-8000 об / мин

  • Малый электродвигатель 775 12 В 12 об / мин

  • DC12V 15 Вт 500 об / мин 37GB555

  • WiMas 3 части постоянного тока, 6 В, 30 об / мин, микро-редукторный двигатель

  • EsportsMJJ 7. 2 / 12 / 14.4 / 18V 12 зубьев

  • EsportsMJJ 775 Двигатель постоянного тока 12В-36В 3500-9000об / мин

Подробнее о двигателях

Я рекомендую вам также прочитать другие Похожие сообщения с такими двигателями:

  • Двигатель Nema17
  • Шаговый двигатель
  • 28BYJ-48
  • Контроллер мотора L298N
  • Контроллер DRV8825
  • Больше компонентов

Содержание статьи соответствует нашим принципам редакционная этика. Чтобы сообщить об ошибке, нажмите здесь.

Вы можете быть заинтересованы

Каково назначение электродвигателя?

Электродвигатели можно найти во многих бытовых приборах, а также в крупных промышленных предприятиях, но какова их цель и как они работают? Электродвигатели Parvalux питают промышленность по всему миру, от конвейерных систем и автоматических дверей до систем стеклоочистителей поездов и даже игровых автоматов. В этом блоге мы обсуждаем, как работают компоненты электродвигателей и как их использовать в различных отраслях промышленности.

Как работают электродвигатели?

В общих чертах, электродвигатели работают путем преобразования электрической энергии в механическую. Когда это происходит в магнитном поле, создается сила, вызывающая вращение вала. Электродвигатели могут питаться от сил переменного или постоянного тока, следовательно, двигатели переменного и постоянного тока.

Каковы основные компоненты электродвигателя?

В зависимости от их использования и типа тока, проходящего через электродвигатель, каждый из них имеет различные компоненты, обеспечивающие работу двигателя. Вот некоторые из ключевых частей двигателя:

  • Ротор – Ротор представляет собой катушку, установленную на оси, и обеспечивает механическую энергию вращения. Он вращается с высокой скоростью и может включать в себя проводники, несущие ток и взаимодействующие с магнитным полем в статоре
  • .
  • Статор — действует противоположно ротору, поскольку является неподвижной частью электромагнитной цепи. Он состоит из постоянных магнитов или обмоток и часто состоит из тонких металлических листов, называемых пластинами, которые могут помочь уменьшить потери энергии. В основном они встречаются в коллекторных двигателях постоянного тока 9.0014 Коммутатор
  • — эта деталь является очень важным компонентом двигателей постоянного тока, поскольку без нее ротор не сможет непрерывно вращаться. Коллектор представляет собой полукольцо в электродвигателе, обычно сделанное из меди, и позволяет ротору вращаться за счет изменения направления тока каждый раз, когда ротор поворачивается на 180 градусов
  • .

Важно помнить, что эти детали работают по-разному в зависимости от того, являются ли они щеточными или бесщеточными двигателями. В бесщеточном двигателе постоянного тока постоянные магниты установлены на роторе, а электромагниты на статоре.

Для чего используются электродвигатели?

Электродвигатели используются в различных отраслях промышленности по разным причинам, в первую очередь из-за их более длительного срока службы по сравнению, скажем, с двигателями, работающими на ископаемом топливе, поскольку они требуют меньше обслуживания и предлагают более экологичную альтернативу.

Двигатели переменного тока можно найти в конвейерных системах, как правило, на заводах и складах, поскольку они могут обеспечить стабильную и постоянную доставку. Другой пример их использования — в системах кондиционирования воздуха. Поскольку двигатели переменного тока являются бесщеточными, они по своей природе надежны и поэтому требуют минимального обслуживания.

Двигатель постоянного тока может справляться с перемещением более тяжелых грузов и будет хорошо работать в различных условиях, поэтому они используются в критически важных приложениях, таких как системы стеклоочистителей поездов, из-за их надежности и прочности. Эти типы двигателей также можно найти в небольших бытовых приборах, таких как пылесосы, и, как и все двигатели, их можно адаптировать в соответствии с требованиями приложения.

Узнайте больше об электродвигателях Parvalux, связавшись здесь: Ваше местное контактное лицо — Parvalux

Что такое электродвигатель?

Все, что превращает электричество в движение, то есть электрическую энергию в механическую, называется электродвигателем . Электродвигатели повсюду! Почти каждое механическое движение, которое вы видите вокруг себя, может быть создано электродвигателем.

Учитывая почти неограниченное количество применений электродвигателей, нетрудно представить, что по всему миру работают сотни миллионов двигателей. Давайте разберемся, что они из себя представляют и как они работают.

Как работают электродвигатели?

Электродвигатели работают по очень простому принципу: когда электричество и магнетизм объединяются в одну силу, это называется электромагнитной силой . Таким образом, электрические двигатели работают на принципах электромагнетизма. Когда электрический ток вводится в магнитное поле, возникает сила. В электродвигателе используется замкнутый провод — те же провода, по которым течет ток, — которые расположены под прямым углом к ​​магнитному полю в электродвигателе. Поскольку магнитное поле имеет двойную полярность, каждый конец провода перемещается в другом направлении. Это создает вращательное движение.

Крутящий момент , то есть способность вращающегося элемента преодолевать сопротивление вращению, регулируется добавлением нескольких контуров к якорю, а магнитное поле создается электромагнитом. Эта конструкция позволяет вращать ротор простым электромеханическим усилием. Есть очень мало деталей, которые на самом деле изнашиваются, и с учетом этих двух факторов электродвигатели могут продолжать работать в течение невероятно долгого времени, демонстрируя очень небольшой износ.

Действительно, одна из самых замечательных особенностей электродвигателей заключается в том, что в них очень мало деталей. По сравнению, например, с двигателем внутреннего сгорания, электродвигатель представляет собой простое устройство. На самом деле, все различные части электродвигателя можно легко вытащить и разложить на очень маленьком столе, конечно, в зависимости от размера двигателя.

Неподвижная часть электродвигателя называется статором . Статор будет снабжен постоянные магниты или обмотки, в зависимости от технологии двигателя. Обмотки будут знакомы любому, кто имеет опыт работы с другими электрическими компонентами. Обычно они представляют собой простые обмотки проволоки вокруг магнитного железного сердечника. Когда через эти обмотки проходит ток, они генерируют магнитное поле.

Ротор — это часть, которая фактически преобразует электрическую энергию в механическую. Они бывают различных конструкций. Одним из самых больших прорывов в конструкции электродвигателей был поиск способа непрерывной работы ротора, обеспечивающего непрерывный крутящий момент всему, что приводится в действие электродвигателем. Современные электродвигатели способны развивать невероятный крутящий момент. Коммутатор, тем временем, представляет собой устройство, которое используется для переключения входа электродвигателя.

Если мы вернемся в историю, электродвигатели, как и многие электрические устройства, начинались как простые эксперименты, а затем использовались в качестве демонстрационных устройств, пока не нашли практического применения.

Очень краткая история электрического двигателя

В 1821 году британский ученый Майкл Фарадей объяснил преобразование электрической энергии в механическую, поместив проводник с током в магнитное поле, что привело к вращению проводника из-за к крутящему моменту, создаваемому взаимным действием электрического тока и поля. Самой примитивной из машин была машина постоянного тока, разработанная другим британским ученым Уильямом Стердженом в 1832 году. Но его модель была слишком дорогой и не использовалась для каких-либо практических целей. Позже в 1886 году Первый электродвигатель , способный вращаться с постоянной скоростью при различной нагрузке, был изобретен ученым Фрэнком Джулианом Спрагом .

Эволюция электродвигателя

Сегодня на рынке представлено несколько различных типов электродвигателей. Прежде всего, их можно отличить по тому, используют ли они мощность переменного или постоянного тока в качестве средства активации двигателя. Электродвигатели переменного тока приводятся в действие переменным током, например синхронный двигатель, который всегда работает при синхронная скорость . Здесь ротор представляет собой электромагнит, который магнитно заперт с вращающимся магнитным полем статора и вращается вместе с ним. Скорость этих машин варьируется путем изменения частоты (f) и числа полюсов (P).

Асинхронные двигатели основаны на взаимодействии магнитного поля и циркулирующих токов, так что ротор начинает вращаться и продолжает вращаться. Асинхронные двигатели, также известные как асинхронные двигатели , работают со скоростью, немного меньшей синхронной скорости. Существуют и другие типы электродвигателей, например, серводвигатели со специальными характеристиками, такими как высокий крутящий момент в компактной конструкции или высокие динамические характеристики, которые были разработаны в соответствии с потребностями отрасли. Обычно в этих двигателях в ротор встроен постоянный редкоземельный магнит.

Как запустить электродвигатель?

Электродвигатели используют различные пусковые механизмы. В самых простых и малогабаритных типах пускатель может подключаться непосредственно к сети электропитания. Это также известно как Direct On Line (DOL) 9.0032 . Для более крупных двигателей требуются более сложные устройства, такие как устройства плавного пуска .

A Устройство плавного пуска позволяет оператору запускать устройство с пониженным напряжением. Пользователь может определить пределы для пускового тока и других переменных. Пускатель звезда-треугольник — это тип устройства плавного пуска, который постепенно увеличивает напряжение до максимальной нагрузки по мере увеличения скорости двигателя. Плавный пуск имеет то преимущество, что позволяет контролировать механическую нагрузку и выходной крутящий момент нагрузки. Вместо внезапного запуска двигателя с полным крутящим моментом и скоростью, как в случае с пускателем DOL, двигатель постепенно раскручивается.

Приводы с регулируемой скоростью и электродвигатели

Приводы с регулируемой скоростью все чаще используются с трехфазными асинхронными двигателями. Эти контроллеры используются в электродвигателях всех размеров. Наиболее значительным преимуществом является то, что они обеспечивают высочайший уровень контроля и функциональности. В промышленных условиях предлагаемое ими управление крутящим моментом, натяжением, ускорением и потоком может способствовать повышению эффективности и управляемости процессов. Приводы также объединяют множество функций, таких как автоматизация и ПЛК, средства связи, полевые шины, контроль безопасности и т. д.

Электродвигатели можно найти в огромном количестве приложений. Все, начиная от насосов, компрессоров, вентиляторов, башенных кранов и погрузочно-разгрузочных работ, текстиля, полиграфии, упаковки, деревообрабатывающего оборудования и испытательных стендов, использует их возможности. Они являются одними из наиболее распространенных электрических компонентов, используемых сегодня, поэтому справедливо сказать, что электродвигатели сильно повлияли на нашу повседневную жизнь.