26Ноя

Бензиновый двигатель это: Бензиновый двигатель: устройство, принцип действия, достоинства и недостатки — Autodromo

Содержание

Бензиновый двигатель

К концу XVIII века человечество осознало необходимость найти замену сложным и требующим слишком много внимания паровым машинам. Основную часть промышленного сектора в тот момент составляли небольшие предприятия и мастерские. Наиболее распространенными на производстве двигателями на тот момент громоздкие паровые машины. Они устраивали далеко не всех. Инженеры понимали, что для повышеня эффективности производства необходимы другие силовые установки — легко запускающиеся, малых размеров и мощности.

                                    

История изобретения бензинового двигателя

Предтечей появления двигателей внутреннего сгорания стало открытие светильного газа, сделанное на рубеже XVIII и XIX столетий французским инженером Ф. Лебоном.

Патент на способ его получения и использования он получил в 1799 году. Светильный газ стал настоящим прорывом в технике освещения.

А уже через 2 года Лебоном был получен следующий патент — на разработанную им конструкцию газового двигателя. Он состоял из камер смешения и двух компрессоров. Один из них накачивал в камеру сжатый воздух, другой – сжатый светильный газ из газогенератора. Эта смесь поступала в рабочий цилиндр и воспламенялась. Рабочие камеры располагались по обе стороны поршня и действовали попеременно.

Газовый двигатель стал первым шагом к созданию двигателя внутреннего сгорания. Но, к сожалению, разработки в этом направлении приостановились с трагической гибелью Лебона. Дальнейшие попытки многих изобретателей не привели к появлению газовой силовой установки, способной конкурировать с паровой.

Первым в мире двигателем внутреннего сгорания считается агрегат, запатентованный Жаном Этьеном Ленуаром в 1859 году.

Бельгийский инженер решил воспламенять газовую смесь с помощью электрической искры. Двигатель Ленуара был двойного действия. Воздух и газ поочередно подавались нижним золотником в полости цилиндров, расположенных по обе стороны поршня. За выпуск отработанных газов отвечал верхний золотник. Воздух и газ поступали к золотнику по отдельным каналам, при этом всасывание смеси в полость происходило только до половины хода. Потом впускное окно перекрывалось, и электрическая искра воспламеняла получившуюся смесь, заставляя ее расширяться и толкать поршень. Когда реакция заканчивалась, второй золотник выпускал отработанные газы. В это время в цилиндре, расположенном с другой стороны поршня, происходило воспламенение топливовоздушной смеси.

Чтобы избежать заклинивания поршня из-за термического расширеня, Ленуар дополнил свою конструкцию водяной системой охлаждения и системой смазки. Несмотря на низкий КПД (около 4%), сбои в системе зажигания, большой расход газа и смазки, двигатели Ленуара получили большое распространение и имели коммерческий успех.

В 1864 году появилась более совершенная газовая силовая установка, разработанная Августом Отто. Хотя он и отказался от электрического зажигания, предложенная им конструкция позволила добиться более полного расширения продуктов сгорания, а значит, и повысить КПД двигателя до 15%. Это превосходило показатели всех существовавших на тот  момент устройств! К тому же, новый двигатель был экономичнее двигателя Ленуара в 5 раз.

Совершенствуя свое изобретение, Отто применил в конструкции кривошипно-шатунную передачу, заменившую зубчатую рейку. А вскоре, вместе с промышленником Лангеном, приступил к выпуску четырехтактных газовых двигателей. Этот цикл является основой работы ДВС и до сегодняшнего дня.

  

Использование светильного газа в качестве топлива для двигателей внутреннего сгорания существенно ограничивало область их применения, поэтому активные поиски доступной альтернативы не прекращались. В 1872 году американцем Брайтоном был предложен «испарительный» карбюратор, в котором в качестве топлива применялся керосин. Но конструкция его была слишком несовершенна.

По настоящему работоспособный бензиновый двигатель появился только спустя 10 лет. Его разработал Готлиб Даймлер, бывший членом правления фирмы Отто. Он представил проект бензиновой силовой установки, применимой на транспорте, но идея была отвергнута его патроном. Поэтому в 1882 году Даймлер и Майбах уходят из фирмы «Отто и компания» и создают собственную мастерскую. Их цель была амбициозна: создать легкий, компактный и мощный двигатель, способный перемещать экипаж.

Первое детище Даймлера и Майбаха было стационарным. Процесс испарения бензина и система зажигания в нем были далеки от совершенства.

Простую и надежную систему предложил конструктор Д. Банки в 1893 году. Изобретенный им карбюратор стал прообразом современных. После этого прогресс в развитии ДВС начал стремительно набирать обороты. Увеличивались объем цилиндров и их количество. Широкое распространение получили 4-цилиндровые силовые установки, обеспечивающие равномерность вращения коленчатого вала.

В первый раз бензиновый двигатель был использован на  велоколяске Карла Бенца. Немецкий автоконструктор построил ее в 1885 году. Трехколесная машина развивала скорость до 16 км/ч. А через 13 лет Карл Бенц создал уже четырехколесную велоколяску, мощностью 3 лошадиные силы, которая могла «мчаться» со скоростью 30 км/ч!

 Первый — в привычном нам понимании — автомобиль с бензиновым двигателем увидел свет в 1895 году. Его создали французские инженеры Р. Панар и Э. Левассор. Машина имела кузов типа седан и оснащалась силовой установкой Даймлера, которая располагалась впереди и закрывалась крышкой капота. Крутящийся момент передавался на задние колеса с помощью корданового вала. Автомобиль имел стенки кузова, лобовое стекло, крышу, резиновые шины, коробку передач и рычаг переключения скоростей. Так началась эпоха автомобилей с бензиновыми двигателями. Среди пионеров построения таких самоходных экипажей были З. Маркус, А. Пежо, Братья Рено, Ф. У. Ленчестер, Г. Остин и Г. Форд.

                                        

Устройство и принцип работы бензинового двигателя

Устройство и принцип работы современных бензиновых двигателей удобнее всего рассмотреть на примере одноцилиндровой четырехтактной установки, поскольку отличаются они только количеством цилиндров. Одноцилиндровый бензиновый двигатель состоит из:
- глушителя;
- пружины клапана;
- карбюратора;
- впускного клапана;
- поршня;
- свечи зажигания;
- выпускного клапана;
- шатуна;
- маховика;
- распределительного вала;
 — коленчатого вала.

Такт сжатия происходит при следующей половине оборота коленчатого вала. Поршень перемещается из НМТ в ВМТ. Оба клапана в этот момент остаются закрытыми. Рабочая смесь сжимается, в цилиндре возрастает давление и температура.

Такт расширения по сути является рабочим ходом. После завершения сжатия рабочей смеси, происходит ее воспламенение от искры, создаваемой свечой. Процесс сгорания приводит к возрастанию температуры и давления (2,500 гр.С и 5 МПа). Поршень начинает двигаться вниз и воздействует на шатун, который толкает коленчатый вал, предавая ему вращательное движение. Полезная работа такта расширения заключается в преобразовании тепловой энергии в механическую. Когда поршень приближается к НМТ, происходит открытие выпускного клапана, открывающего путь отработанным газам. Температура и давление в цилиндре падает (1,200 гр. С, 0,65 МПа).

Такт выпуска начинается с движением поршня в ВМТ. При этом выталкиваются отработанные газы в полностью открытый выпускной клапан. По окончании такта выпуска температура и давление в цилиндре падают (500 гр. С, 0,1 МПа). Но определенный процент отработанных газов остается в цилиндре и участвует в образовании рабочей смеси следующего такта.

Четыре такта работы двигателя повторяются циклически. Маховик, прикрепленный к коленчатому валу, способствует ровной и устойчивой работе установки.

                                                 

Достоинства и недостатки бензиновых двигателей ДВС

Преимущества бензиновых ДВС — значительная мощности на единицу объема, большой ресурс, простота выхлопной системы.

Кроме того, следует отметить низкий уровень шума работы силовой установки и отсутствие необходимости в стартере. Бензиновые ДВС достигают больших оборотов и поэтому успешно применяются в небольших автомобилях и обеспечивают агрессивную динамику езды.

Недостатками бензиновых двигателей являются низкий КПД (до 30%), высокие требования к качеству топливной смеси и низкая эффективность на малых оборотов. В последнее время много нареканий звучит в адрес экологических показателей бензиновых ДВС. Высокое содержание в выхлопных газах окиси углерода пагубно влияет на окружающую среду.

Кроме этого, подобные двигатели укрепляют зависимость мирового автомобильного парка от, увы, небезграничных природных ресурсов. И, хотя, бензиновые ДВС далеко не полностью исчерпали свои потенциальные возможности, во всем мире ведутся активные поиски и разработки альтернативного топлива и источников энергии.

Бензиновый двигатель внутреннего сгорания | это… Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновый двигатель W16 Bugatti Veyron

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Содержание

  • 1 Классификация бензиновых двигателей
  • 2 Рабочий цикл бензинового двигателя
    • 2.1 Рабочий цикл четырёхтактного двигателя
    • 2.2 Рабочий цикл двухтактного двигателя
  • 3 Преимущества 4-тактных двигателей
    • 3.1 Преимущества двухтактных двигателей
  • 4 Карбюраторные и инжекторные двигатели
  • 5 Основные вспомогательные системы бензинового двигателя
    • 5. 1 Системы, специфические для бензиновых двигателей
  • 6 Некоторые особенности современных бензиновых двигателей
    • 6.1 Системы, общие для большинства типов двигателей
  • 7 См. также
  • 8 Ссылки

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).
    ;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые
    виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя.
Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов.
В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе.

Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405. 24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

  • Выхлопные газы
  • Карбюратор
  • Инжектор
  • Дизельный двигатель
  • Роторно-поршневой двигатель
  • Роторный двигатель: конструкции и классификация

Ссылки

  • Бен Найт «Увеличиваем пробег»//Статья о технологиях, которые уменьшают расход топлива автомобильным ДВС
  • Советы по экономии топлива от чемпиона по экономичному вождению.

Сайт о скутерах с 2х тактными двигателями

Бензиновый двигатель — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Подвижная схема рядного четырехцилиндрового двигателя. Поршни серые, коленчатый вал зеленый, блок прозрачный. [1]

Бензиновый двигатель — это разновидность теплового двигателя, в частности, внутреннего сгорания, работающего на бензине. Эти двигатели являются наиболее распространенными способами приведения в движение автомобилей. В то время как турбины могут работать на бензине, бензиновый двигатель относится именно к бензиновым двигателям с поршневым приводом.

Бензиновые двигатели во многом являются причиной того, что мир берет так много нефти из-под земли для переработки в нефтепродукты, такие как бензин. Во всем мире транспорт составляет примерно 18% нашего потребления первичной энергии, а бензин — немногим меньше половины этого объема. [2] Это означает, что бензиновые двигатели потребляют примерно 8% всей первичной энергии в мире.

Устройство двигателя

Блок

Блок является основой двигателя. Это большой металлический блок, обычно алюминиевый или стальной (в Формуле-1 используется магниевый сплав), с прорезанными в нем отверстиями для цилиндров.

Цилиндры

В цилиндрах двигателя выполняется работа. Топливо впрыскивается в цилиндры, где оно воспламеняется свечами зажигания, которые перемещают поршни, совершая работу.

Поршни

Поршни — это устройства, которые скользят вверх и вниз внутри цилиндров. Их работа состоит в том, чтобы скользить внутрь и наружу, соединенные с коленчатым валом, чтобы превращать горящий бензин в работу.

Свечи зажигания

Задача свечи зажигания заключается в воспламенении топлива внутри цилиндра. Быстрое расширение топлива из-за создаваемого тепла воздействует на поршень, отодвигая его от свечи зажигания.

Распределительный вал

основной артикул

Распределительный вал — это устройство, которое управляет синхронизацией двигателя. Работа распределительного вала заключается в регулировании подачи топлива в двигатель и выпуска выхлопных газов.

Форсунки

Топливная форсунка предназначена для распыления топлива. Это означает превращение жидкого топлива в туман, что резко увеличивает площадь его поверхности. Это позволяет топливу сгорать быстрее, давая больший импульс поршню.

Коленчатый вал

основной артикул

Коленчатый вал — это клей, соединяющий части двигателя. Его цель состоит в том, чтобы превратить прямолинейное (вверх и вниз) движение поршней во вращательное движение. Один конец коленчатого вала прикреплен к распределительному валу через зубчатый ремень. Другой конец подключен к маховику, который регулирует мощность, выходящую из двигателя, что-то вроде защиты от перенапряжения для вашего компьютера.

Маховик

Маховик — это устройство управления мощностью двигателя. Он соединен со сцеплением, которое соединено с коробкой передач. Чтобы узнать больше о том, как двигатель передает свою мощность на колеса, нажмите здесь.

Для дополнительной информации

  • Двигатель внутреннего сгорания
  • Использование энергии на транспорте
  • Дизельный двигатель
  • Свеча зажигания
  • Или просмотрите случайную страницу

Ссылки

  1. ↑ http://auto.howstuffworks.com/engine2.htm
  2. ↑ EIA «Переработка сырой нефти» онлайн: https://www.eia.gov/energyexplained/index.cfm?page=oil_refining, по состоянию на 18 августа 2017 г.

Двигатели: дизельные, бензиновые и газовые

Просмотреть все дизельные двигатели

Двигатели внутреннего сгорания преобразуют энергию различных видов топлива в полезную механическую энергию, которая приводит в движение поршни двигателя. Линейное движение поршней облегчает вращательное движение коленчатого вала, который вращает колеса или гребные винты и обеспечивает движение транспортных средств. Дизельные двигатели предназначены для обеспечения устойчивой и экономичной мощности в широком диапазоне применений, что делает их одним из самых популярных типов двигателей внутреннего сгорания.

В Central Diesel мы поставляем дизельные двигатели, генераторы, железнодорожное оборудование, сопутствующие детали и запчасти для автомобилей, чтобы ваше оборудование работало с оптимальным потенциалом. Мы поддерживаем обширный склад запасных частей для дизельных двигателей и систем, чтобы обеспечить быструю доставку любой важной детали или компонента, необходимого для поддержания работоспособности вашего дизельного оборудования.

Различные типы двигателей

Двигатели чаще всего различаются по типу топлива. Три основных типа топлива (и двигатели, которые их используют) следующие:

  • Бензин
  • Природный газ

Каждый источник энергии обладает своими сильными сторонами. Все три типа двигателей являются обычными двигателями внутреннего сгорания, которые используют воспламененное топливо для толкания поршней вверх и вниз.

Для бензиновых двигателей A требуется свеча зажигания, чтобы облегчить начальное зажигание. В двигателях, работающих на природном газе, также используется свеча зажигания. Дизельные двигатели достигают того же эффекта за счет сжатия. Дизель также является одним из самых безопасных источников топлива с точки зрения хранения и обращения.

Использование и применение

Многие коммерческие и промышленные операторы предпочитают дизельные двигатели, потому что дизель является энергоемким источником топлива. Дизель сжимает воздух в поршнях почти в два раза быстрее, чем бензин, что означает большую эффективность и мощность. Благодаря высокой плотности энергии дизельные двигатели могут эффективно перемещать большие транспортные средства, такие как:

  • Тракторы и крупная сельскохозяйственная техника
  • Полуприцепы
  • Морские суда
  • Большие локомотивы

Поскольку размеры и мощность автомобилей уменьшаются, они будут широко доступны как с бензиновыми, так и с дизельными двигателями. Хотя природный газ часто считается более экологичным источником энергии, на самом деле он не прижился из-за более низкой эффективности использования топлива, повышенных требований безопасности и более высоких затрат на техническое обслуживание. Таким образом, дизель остается основным типом двигателя, когда применение требует эффективной и стабильной работы.

Предотвращение проблем с дизельными двигателями

Регулярное профилактическое техническое обслуживание — лучший способ поддерживать работу дизельных двигателей в оптимальном состоянии. Впрыск топлива напрямую влияет на эффективность двигателя, поэтому необходимы регулярные проверки, чтобы убедиться, что он работает должным образом. Раннее обнаружение утечек масла и проблем с выхлопными газами снижает риск повреждения и продлевает срок службы двигателя и автомобиля.

Включите эти шаги в свои процедуры технического обслуживания, чтобы увеличить срок службы двигателя и улучшить его работу:

  • Обслуживание масляной системы. Следите за регулярной заменой масла, чтобы очистить систему двигателя. Кроме того, отслеживайте утечки масла до их источника, чтобы лучше отслеживать возникающие проблемы.
  • Проверка и замена фильтров. Дизельные двигатели нуждаются в постоянном потоке воздуха и кислорода для питания поршней. Грязные фильтры, особенно на лодках, могут ограничивать поток воздуха до такой степени, что транспортное средство становится неработоспособным.

Когда загорается индикатор проверки двигателя, это может означать, что двигатель уже серьезно поврежден. Central Diesel предоставляет услуги по диагностике и ремонту, чтобы вернуть ваш дизельный двигатель в рабочее состояние. Мы также заменим неисправные детали в гидравлической, выхлопной и топливной системах вашего автомобиля.


Двигатели — Часто задаваемые вопросы

  1. Если мой двигатель используется очень редко в течение года (менее 150 часов), как часто я должен проводить его техническое обслуживание?
    Вы можете выполнять техническое обслуживание двигателя каждые два года при наработке менее 150 часов в год. Тем не менее, вы должны заменять топливный фильтр каждый год и убедиться, что вы используете какой-либо тип присадки в дизельном топливе, чтобы устранить любые потенциальные проблемы в будущем.
  2. Какова разница в степени сжатия бензинового двигателя (с искровым зажиганием) и дизельного двигателя (с воспламенением от сжатия)?
    Среднее значение компрессии бензиновых двигателей на цилиндр составляет 140-220 фунтов на квадратный дюйм. На дизельном двигателе это будет 350-450 фунтов на квадратный дюйм. Большой разброс показаний диктуется тем, является ли топливная система двигателя прямым или непрямым впрыском.
  3. При рассмотрении технических характеристик двигателя, что важнее: мощность или крутящий момент в футах/фунтах? Для большинства автомобильных приложений мощность, по-видимому, играет важную роль в принятии решения потребителями о транспортном средстве. Для тяжелой конструкции крутящий момент в футах/фунтах является ведущим показателем при определении того, какой двигатель необходим. Крутящий момент — это чистая мощность/энергия, которую двигатель производит для выполнения задачи.
  4. Влияет ли температура окружающей среды на работу двигателя?
    Да, на работу любого двигателя влияют барометрическое давление, температура и влажность. Вы когда-нибудь замечали, что расход топлива зимой выше, чем в летние месяцы?
  5. Какой двигатель более эффективен с точки зрения выработки энергии, бензиновый или дизельный?
    Бензиновые двигатели менее эффективны (32-38%) по сравнению с дизельным двигателем (42-46%), так как дизель производит больший крутящий момент (энергию) за цикл сгорания. Дизельный автомобиль имеет лучший MPG по сравнению с бензиновым автомобилем и может проехать дальше на одном баке топлива.

Дизельные двигатели от Central Diesel, Inc.

Central Diesel, Inc. предлагает широкий выбор моделей дизельных двигателей. У нас также есть запчасти, инструменты и опыт для ремонта и восстановления широкого спектра дизельных двигателей. Среди наших моделей дизельных двигателей:

Дизельные двигатели Deutz заслужили мировую репутацию благодаря своей высококачественной конструкции и передовым технологическим достижениям. Эти двигатели чистые и долговечные. Мы предлагаем полное обслуживание, продажу и поддержку запасных частей для этой линейки дизельных двигателей.

Промышленные дизельные двигатели

Mitsubishi являются одними из самых популярных в мире из-за надежности и долговечности, которые они обеспечивают на протяжении многих лет работы. Их линейка промышленных дизельных двигателей поставляется с широким спектром уровней сжатия и мощности, чтобы идеально соответствовать вашим потребностям.

У нас также имеется полный ассортимент запчастей для обеспечения эффективной работы двигателей Mitsubishi, а наши технические специалисты предлагают полный спектр услуг по ремонту и установке. Мы предлагаем широкий выбор моделей дизельных двигателей Mitsubishi, подходящих для широкого спектра применений. К ним относятся:

  • Дизельные двигатели Mitsubishi серии Model L. Серия Mitsubishi Model L оснащена легкими дизельными двигателями мощностью 5-20 л.с. Они рассчитаны на длительный срок службы и низкий уровень выбросов.
  • Дизельные двигатели Mitsubishi серии Model SQЛинейка дизельных двигателей Model SQ предлагает мощность в диапазоне от 27 до 46 л.с. Эти двигатели также имеют предкамерную конструкцию для более эффективного сгорания.
  • Модель SS Series Дизельные двигатели MitsubishiДизельные двигатели модели SS обеспечивают мощность от 41 до 83 л.с. Линейка SS также отличается увеличенным объемом масла и более мощными системами охлаждения, что позволяет поддерживать двигатель в оптимальном состоянии.

Компания Central Diesel предлагает больше, чем просто двигатели. Наша обученная команда технических специалистов предоставляет квалифицированную поддержку, услуги по ремонту и установке, которые помогают поддерживать работоспособность вашего парка и оборудования. Мы также предоставляем запчасти и услуги для различных других промышленных и автомобильных систем.