Устройство и работа стартеров
Устройство и работа стартеров
На автомобилях ЗИЛ-130 устанавливаются стартеры типа СТ-130 с дистанционным управлением.
Основными частями стартера являются стальной цилиндрический корпус с четырьмя полюсными сердечниками и обмоткой возбуждения, якорь, в пазах которого уложена обмотка, коллектор и щетки, укрепленные на передней крышке. Обмотка возбуждения стартера включена последовательно с обмоткой якоря.
Стартер имеет четыре щетки, изготовленные из материала, содержащего 90% меди, 4% графита и 6% свинца. Вал якоря стартера вращается во втулках из пористой графитовой бронзы. С валом якоря связана шестерня. внодимая в зацепление с зубчатым венцом маховика во время пуска двигателя.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Привод стартера должен вводить шестерню в зацепление с венцом маховика на период пуска двигателя и автоматически разъединять вал стартера, когда двигатель начнет работать.
На всех современных отечественных автомобилях устанавливают стартеры, имеющие привод с принудительным включением шестерни. В момент включения стартера шестерня вводится в зацепление принудительно рычагом включения. Посредством винтов, и серьги производят регулировку зазора между шестерней и упорным кольцом. Разобщение якоря с коленчатым валом после пуска двигателя производится роликовой муфтой свободного хода или специальным сцепляющим механизмом.
После поворота ключа в замке выключателя зажигания по часовой стрелке до отказа ток от аккумуляторной батареи поступит в обмотку реле включения. Сердечник реле намагнитится и замкнет контакты. включив тем самым втягивающую и удерживающую обмотки тягового реле. При прохождении тока по втягивающей и удерживающей обмоткам якорь втягивается внутрь втулки. При этом связанный с якорем рычаг включения через Муфту включения и буферную пружину введет шестерню в зацепление с венцом маховика. Поступательное движение шестерни ограничивается упорным кольцом.
Рис. 182. Стартер типа СТ 130 и его электрическая схема
При замыкании контактов тягового реле втягивающая обмотка закорачивается, после чего якорь реле удерживается только одной обмоткой 8. Магнитное поле, создаваемое этой обмоткой, оказывается достаточным для удержания стартера во включенном состоянии, так как после включения стартера между сердечником и якорем тягового реле остается очень незначительный воздушный зазор.
После пуска двигателя якорь стартера разобщается с венцом маховика муфтой свободного хода. Ее основными частями являются наружная обойма с втулкой и внутренняя обойма с шестерней. Наружная обойма имеет четыре клиновидных паза, в которых помещены стальные ролики. Усилием пружины через толкатель ролики отжимаются в узкую часть пазов и заклиниваются между обоймами, благодаря чему при вращении якоря против часовой стрелки шестерня передает крутящий момент от вала якоря на венец маховика.
После того как двигатель запущен, частота вращения внутренней обоймы превысит частоту вращения наружной. При этом сила трения, преодолев сопротивление пружины, отведет ролики в широкую часть пазов. Обоймы муфты окажутся разобщенными, и якорь стартера будет предохранен от разноса.
Муфта свободного хода не рассчитана на продолжительную работу, поэтому во избежание повреждений стартер надо выключать сразу же после пуска двигателя.
После выключения стартера якорь тягового реле, а вместе с ним и все детали привода возвращаются в исходное положение возвратной пружиной.
Пружина смягчает удар втулки о крышку корпуса стартера.
Быстрому выходу шестерни из зацепления способствует винтообразная нарезка вала якоря. на которую муфта свободного хода, вращаясь после пуска двигателя быстрее якоря, навертывается подобно гайке. Если, пустив двигатель, не выключить стартер вовремя, то выключение произойдет автоматически благодаря тому, что обмотка 42 реле включения соединена с массой через якорь генератора 46, и генератор сразу после пуска двигателя пошлет в обмотку реле ток, идущий навстречу току от аккумуляторной батареи. Сердечник реле размагнитится, его контакты разомкнутся, и цепь обмотки тягового реле будет разомкнута .
Стартеры с механическим приводом и непосредственным управлением применяются в настоящее время преимущественно для запуска пусковых двигателей тракторов.
Рис. 183. Стартер типа СТ-350Б
На пусковом двигателе трактора ДТ-75М устанавливается стартер СТ-350 Б.
При нажатии на рычаг (рис. 183) включения он поворачивается и через установленные на валу якоря муфту включения, пружину и муфту свободного хода перемещает шестерню в осевом направлении, вводя ее в зацепление с шестерней, закрепленной на маховике пускового двигателя.
После запуска двигателя муфта свободного хода под действием пружины выведет шестерню из зацепления с маховиком двигателя.
Система электропуска двигателя: назначение. Стартер: устройство, работа.
Система запуска двигателя, как следует из названия, предназначена для запуска двигателя автомобиля. Система обеспечивает вращение двигателя со скоростью, при которой происходит его запуск.
На
современных автомобилях наибольшее
распространение получила стартерная
система запуска.
Система запуска двигателя входит в
состав электрооборудования
автомобиля.
Питание системы осуществляется постоянным
током от аккумуляторной батареи.
Система запуска имеет следующее устройство:
Стартер создает необходимый крутящий момент для вращения коленчатого вала двигателя. Он представляет собой электродвигатель постоянного тока. Конструктивно стартер состоит из статора (корпуса), ротора (якоря), щеток со щеткодержателем, тягового реле и механизма привода.
Тяговое реле обеспечивает питание обмоток стартера и работу механизма привода. Для выполнения своих функций тяговое реле имеет обмотку, якорь и контактную пластину. Внешнее подключение к тяговому реле осуществляется через контактные болты.
Механизм
привода предназначен
для механической передачи крутящего
момента от стартера на коленчатый вал
двигателя. Конструктивными элементами
механизма являются: рычаг привода
(вилка) с поводковой муфтой и демпферной
пружиной,
Передача
крутящего момента осуществляется путем
зацепления ведущей шестерни с зубчатым
венцом маховика коленчатого вала.
Замок зажигания при включении обеспечивает подачу постоянного тока от аккумуляторной батареи к тяговому реле стартера.
Система запуска, устанавливаемая на бензиновые и дизельные двигатели, имеет аналогичную конструкцию. Для облегчения запуска дизельных двигателей в холодное время система запуска может оборудоваться свечами накаливания, которые подогревают воздух во впускном коллекторе. С этой же целью на автомобилях применяются системы предпускового подогрева
.Дальнейшим развитием системы запуска двигателя являются:
система автоматического запуска двигателя;
система интеллектуального доступа в машину и запуска двигателя;
система Стоп-Старт;
система непосредственного запуска Direct Start.

Работа системы запуска осуществляется следующим образом. При повороте ключа в замке зажигания ток от аккумуляторной батареи поступает на контакты тягового реле. При протекании тока по обмоткам тягового реле происходит втягивание якоря. Якорь тягового реле перемещает рычаг механизма привода и обеспечивает зацепление ведущей шестерни с зубчатым венцом маховика.
При движении якорь также замыкает контакты реле, при котором происходит питание током обмоток статора и якоря. Стартер начинает вращаться и раскручивает коленчатый вал двигателя.
Как только происходит запуск двигателя, обороты коленчатого вала резко возрастают. Для предотвращения поломки стартера срабатывает обгонная муфта, которая отсоединяет стартер от двигателя. При этом стартер может продолжать вращаться.
При повороте ключа
в замке зажигания стартер останавливается.
Возвратная пружина тягового реле
перемещает якорь, который в свою очередь
возвращает механизм привода в исходное
положение.
Система электропуска предназначена для предания вращения КВ двигателя с пусковой частотой, при которой обеспечиваются необходимые условия смесеобразования, воспламенения рабочей смеси.
Основными частями стартера являются: стальной цилиндрический корпус с 4 полюсными сердечниками и обмоткой возбуждения, якорь, в пазах которого уложена обмотка, коллектор и 4 щетки, укрепленные на передней крышке корпуса стартера. Обмотка возбуждения стартера включена последовательно в обмотку якоря.
Вал якоря стартера вращается во втулках. С валом якоря связана шестерня, вводимая в зацепление с зубчатым венцом маховика во время пуска двигателя.
Взаимодействие элементов стартера при пуске двигателя происходит следующим образом.
При замыкании
контактов выключателя по обмотке
тягового реле проходит ток, сердечник
электромагнита втягивается внутрь
обмотки, а соединенный с ним рычаг
перемещает шестерню привода и вводит
ее в зацепление с зубчатым венцом
маховика.
При полном зацеплении зубчатой
передачи сердечник через контактный
диск замыкает контакты, и ток АКБ
поступает в обмотку электродвигателя.
Якорь электродвигателя начинает
вращаться и передает крутящий момент
через шестерню и зубчатый венец маховика
на КВ двигателя. После пуска двигателя
выключатель размыкает контакты, и цепь
обмотки электродвигателя прерывается.
Под действием пружины контактный диск
и шестерня механизма привода возвращаются
в исходное положение.
Основы пускателя двигателя: пускатели, контакторы и перегрузки
Доступны дополнительные опции! Звоните 801-532-2706
- Меню продукта
- Инженерные решения
- Производители
- Образование
- Панельные услуги
Дом Образовательная серия Блок управления двигателем Основы пускателя двигателя
Образовательная серия
Антенны Образование
Прерыватели и предохранители
Аккумуляторы Образование
Кабели, провода и сборки Образование
Корпуса Образование
Ethernet и сетевое образование
Блок управления двигателем
Промышленные панели управления Обучение
Обучение аппаратному обеспечению панели
Блоки питания Образование
Реле Образование
Солнечное образование
Обучение работе с сигналами и преобразованием сигналов
Клеммные колодки Обучение
youtube.com/embed/eHjppUsbk_g» frameborder=»0″ allowfullscreen=»»>- Основное назначение пускателя двигателя — запускать и останавливать двигатель, к которому он подключен.
- Они позволяют дистанционно управлять двигателем
- Они состоят из двух основных частей: Контакторы и устройства защиты от перегрузки
- Контакторы используют электрический ток для работы и защиты от перегрузки двигателя от перегрева
- Работает как реле
- Детали состоят из катушки и набора электрических контактов
- Когда на катушку подается напряжение, она замыкает набор контактов, позволяя электричеству течь
- Предназначен для дистанционного управления
- Перегрузки предназначены для защиты от длительных перегрузок по току
- Детали состоят из: устройства измерения тока, механизма отключения цепи .
- Часто имеют временную задержку, чтобы двигатели не отключались преждевременно
Расшифровка:
[0m:4s] Привет, я Джош Блум, добро пожаловать в очередной видеоролик из серии образовательных материалов RSP Supply.
Сегодня мы поговорим о стартере двигателя и основах управления двигателем. Основная цель пускателя двигателя — позволить нам безопасно запускать и останавливать двигатель. Это также позволяет нам запускать и останавливать двигатель из удаленного места. Таким образом, пускатель двигателя представляет собой коммутационное устройство с электрическим приводом. В основном они состоят всего из нескольких компонентов. Первый — это контактор, второй — защита от перегрузки, и они обычно используются с какой-либо защитой цепи. Таким образом, контакторы фактически обеспечивают ток для нашего двигателя. Их работа заключается в установлении и отключении питания в электрической цепи.
[0m:46s] Защита от перегрузки защищает двигатель от потребления слишком большого тока в течение длительного периода времени, что может привести к перегреву и возгоранию двигателя.
[0m:55s] Итак, давайте сначала поговорим о контакторе.
[0m:57s] Контактор работает так же, как реле в том смысле, что когда электричество подается на катушку, он захлопывает контакт, пропуская ток, обеспечивая питание нашего двигателя.
Для получения дополнительной информации о том, как работают реле и контакторы, посмотрите наше другое видео, ссылку на которое мы приведем в описании ниже. Магнитный контактор управляется электромеханически без вмешательства. Это позволяет нам управлять контактором удаленно, поэтому нам не нужно помещать каких-либо операторов в какую-либо опасную ситуацию, которая может находиться рядом с нашим пускателем двигателя.
[1m:28s] Таким образом, для правильной работы контактор использует небольшой управляющий ток для размыкания и замыкания контактора. Большинство контакторов обычно также имеют вспомогательные контакты. Эти контакты позволяют нам контролировать состояние контактора, независимо от того, включен двигатель или нет. Некоторые подрядчики имеют несколько вспомогательных контактов для контроля других типов систем в контакторе. Далее поговорим о защите от перегрузок. Защита от перегрузки предназначена для защиты двигателя от длительного перегрузки по току. Это означает, что если двигатель слишком долго работает со слишком высоким током, он может перегреться и вывести двигатель из строя.
Как перегрузка обеспечивает эту защиту, так это то, что она имеет блок измерения тока, встроенный в саму перегрузку.
[2m:11s] У нас есть либо электронный датчик тока, либо тепловой датчик тока, в зависимости от типа используемой перегрузки. Так, например, при электронной перегрузке у нас есть возможность установить с помощью циферблата на перегрузке величину тока, которую мы хотим дать нашему двигателю в течение определенного периода времени.
[2m:29s] Таким образом, при тепловой перегрузке у нас есть возможность вставить термоэлемент для нашего конкретного приложения и потребности. Таким образом, как только перегрузка обнаруживает, что двигатель потребляет слишком большой ток в течение длительного периода времени, она может отключить ток, проходящий через пускатель. Таким образом, для удовлетворения потребностей в защите перегрузки имеют временную задержку, позволяющую небольшим перегрузкам происходить без разрыва цепи. Это позволяет нам эксплуатировать наш двигатель без его частого включения и выключения из-за небольших перегрузок.
[2m:59s] И, наконец, обычно используемые с пускателями электродвигателей устройства защиты цепи электродвигателя. По сути, это автоматические выключатели, специально разработанные для использования с пускателями двигателей. Они работают, предотвращая большие скачки тока, которые могут быть вызваны коротким замыканием.
[3m:15s] В устройствах защиты цепи двигателя используется форма магнитной защиты, которая специально разработана для этих типов скачков напряжения. Для получения дополнительной информации о магнитной защите см. наше видео об автоматических выключателях, в котором рассказывается об этом. Мы дадим ссылку в описании ниже. Другой тип защиты, который используется вместо предохранителей цепей двигателя, — это разъединитель с плавким предохранителем. Однако важно, чтобы мы использовали предохранители, предназначенные для такого типа применения.
[3m:39s] Итак, давайте поговорим о нескольких вещах, которые мы хотим учитывать при покупке пускателя двигателя.
Во-первых, мы хотим определить, нужен ли нам пускатель NEMA или пускатель IEC. Затем мы хотим убедиться, что наш двигатель соответствует определенному типу пускателя двигателя, который мы покупаем. Для этого нам нужно знать напряжение двигателя. Нам также необходимо знать ток полной нагрузки двигателя или мощность в лошадиных силах. И мы также хотим убедиться, что знаем, каким должно быть напряжение нашей катушки.
[4м:3с] Зная эти вещи, мы можем лучше определить, какой тип пускателя двигателя купить.
[4m:7s] Чтобы ознакомиться с полной линейкой контакторов, устройств защиты от перегрузок или защиты цепи двигателя, а также с тысячами других продуктов, посетите наш веб-сайт. Для получения дополнительной информации или других обучающих видеороликов перейдите на сайт RSPSupply.com, крупнейшего в Интернете источника промышленного оборудования. Также не забывайте: ставьте лайки и подписывайтесь.
Поболтай с нами, на базе LiveChat
Что такое стартер двигателя? Различные типы пускателей двигателей
Основная функция пускателя двигателей заключается в пуске и остановке двигателя, к которому он подключен.
Это специально разработанные электромеханические переключатели, похожие на реле. Основное отличие реле от пускателя состоит в том, что пускатель содержит защиту двигателя от перегрузки. Таким образом, назначение пускателя двоякое: автоматически или вручную переключать питание на двигатель и в то же время защищать двигатель от перегрузки или неисправностей.
Пускатели двигателей доступны с различными номиналами и размерами в зависимости от номинала и размера двигателя (двигателя переменного тока). Эти статеры безопасно переключают необходимую мощность на двигатель, а также предотвращают потребление двигателем больших токов. Давайте посмотрим более подробно о необходимости пускателя двигателя, различных типах пускателя двигателя, а также их электрических схемах. В этой статье мы будем иметь дело только с пускателями двигателей переменного тока, поскольку они являются рабочими лошадками в промышленности и коммерческих приложениях.
Описание
Зачем двигателям нужен пускатель?
Статор необходим для асинхронного двигателя (трехфазного типа) для ограничения пускового тока.
В трехфазном асинхронном двигателе ЭДС, индуцированная ротором, пропорциональна скольжению (это относительная скорость между статором и ротором) асинхронного двигателя. Эта ЭДС ротора пропускает ток через ротор.
Когда двигатель находится в состоянии покоя (при пуске), скорость двигателя равна нулю и, следовательно, скольжение максимально. Это индуцирует очень высокую ЭДС в роторе в начальных условиях, и, таким образом, через ротор протекает очень большой ток.
Поскольку ротору требуется большой ток, обмотка статора потребляет очень большой ток от источника питания. Этот начальный ток потребления может в 5-8 раз превышать ток полной нагрузки двигателя.
Этот огромный ток при пуске двигателя может повредить обмотки двигателя, а также вызвать сильное падение напряжения в линии.
Эти скачки напряжения могут повлиять на другие устройства, подключенные к той же линии. Следовательно, для ограничения этого пускового тока необходим стартер, чтобы избежать повреждения двигателя, а также другого соседнего оборудования.
Пускатель — это устройство, которое снижает начальный высокий ток двигателя за счет снижения напряжения питания, подаваемого на двигатель. Такое снижение применяется в течение очень короткого промежутка времени, и как только двигатель разгоняется, значение скольжения уменьшается, и, следовательно, применяется нормальное напряжение.
В дополнение к защите от пускового тока, пускатель двигателя также обеспечивает защиту от перегрузки, однофазную защиту и защиту от низкого напряжения.
Защита от перегрузки необходима, поскольку двигатель потребляет больший ток в условиях перегрузки, что приводит к чрезмерному нагреву обмоток. Это дополнительное тепло сокращает срок службы двигателя и может вызвать возгорание обмоток и, следовательно, возгорание.
Все пусковые устройства снабжены элементами защиты от перегрева для ограничения высокого тока при перегрузке. Большинство этих устройств работают по концепции перегрузки по времени, в которой ток перегрузки допускается на короткое время (очень несколько секунд), а затем останавливает двигатель, если ток существует дольше этого времени.
Большинство стартеров оснащены биметаллическими планками для выполнения этой операции.
Некоторые двигатели мощностью менее 5 л.с. подключаются напрямую (с помощью пускателя DOL) без снижения напряжения питания (в исходном состоянии), но они снабжены защитой от перегрузки, пониженного напряжения и однофазной защиты. Это связано с тем, что такие двигатели могут кратковременно выдерживать высокий пусковой ток.
Как работает стартер двигателя?
В основном пускатель представляет собой коммутационное устройство, состоящее из электрических контактов (как входящих, так и выходящих). По принципу действия пускатели в первую очередь делятся на ручные и электрические.
Ручной стартер состоит из рычага сбоку, который можно включить или выключить. Обычно они используются для небольших двигателей, поскольку они не могут работать дистанционно.
Этот тип пускателей двигателей обеспечивает повторный пуск двигателей сразу же после отключения питания. Это мгновенное срабатывание двигателя после сбоя питания может привести к протеканию опасных токов в двигатель и, следовательно, к повреждению двигателя.
По этой причине большинство стартеров оснащены электрическими выключателями.
В пускателях с электрическим приводом для переключения силовых проводников используются электромеханические реле. Эти реле называются контакторами. Когда катушка в контакторе находится под напряжением, она создает электромагнитное поле, которое притягивает контакты переключателя.
А когда катушка обесточена, контакты возвращаются в нормальное положение под действием пружины. Обычно пускатели электродвигателей снабжены нажимными кнопками (кнопками пуска и остановки) для включения и выключения питания катушки, чтобы контакты срабатывали. Эти пускатели с электрическим приводом не будут перезапускаться после сбоя питания, пока не будет нажата кнопка пуска.
Различные технологии, используемые в пускателях электродвигателей
В большинстве промышленных операций используются трехфазные асинхронные двигатели по сравнению с двигателями любого другого типа. Существуют различные методы запуска трехфазного асинхронного двигателя.
Прежде чем знакомиться с различными типами пускателей, давайте сначала обсудим методы, используемые для пускателей асинхронных двигателей.
Метод полного напряжения
Этот метод часто называют прямым пуском от сети (DOL) и является наиболее распространенным способом пуска трехфазного асинхронного двигателя. В этом методе к двигателю прикладывается полное напряжение (или номинальное напряжение), поскольку по своей сути это самозапускающийся двигатель, для запуска которого требуется полное напряжение.
Этот метод применяется только для двигателей мощностью менее 5 л.с., как описано выше. Пускатели двигателей, использующие этот метод, называются пускателями DOL.
Метод пониженного напряжения: Этот метод используется для больших двигателей мощностью от 100 л.с. и выше (или для двигателей, потребляющих очень высокие пусковые токи). Как обсуждалось ранее, эти двигатели с высоким номиналом потребляют очень высокие пусковые токи, а также могут вызвать падение напряжения в линии.
В таких случаях используется метод пониженного напряжения, при котором напряжение на двигателе сначала снижается на несколько секунд до тех пор, пока двигатель не начнет вращаться, а затем приложенное напряжение увеличивается до номинального напряжения питания, в результате чего двигатель вращается до номинальной скорости.
Пускатели электродвигателей, в которых используется технология понижения напряжения, называются пускателями пониженного напряжения. Обычно используемые пускатели с пониженным напряжением включают пускатели с сопротивлением статора, пускатели с автотрансформатором и пускатели с пуском по схеме «треугольник».
Техника двунаправленного пускателя
В некоторых процессах необходимо, чтобы двигатель работал как в прямом, так и в обратном направлении. Как правило, направление трехфазного двигателя можно изменить, заменив любые два провода (т. е. изменив последовательность RYB) трехфазного источника питания.
В этом методе используются два контактора с подходящим соединением и механизмом блокировки между ними для достижения двунаправленной работы.
Многоскоростная техника
В этом методе пускатели двигателей изготавливаются для подачи на двигатель различных напряжений для работы двигателя на разных скоростях.
Как правило, эти пускатели предназначены для работы двигателя на двух или трех различных скоростях с использованием двух или более контакторов. Большинство этих пускателей изготавливаются в версиях с полным и пониженным напряжением.
Типы пускателей двигателей
Ниже перечислены наиболее распространенные типы пускателей, основанные на описанных выше методах.
- Стартер сопротивления статора
- Пускатель автотрансформатора
- Стартер звезда-треугольник
- Прямой пускатель
- Устройство плавного пуска
Эти пускатели двигателей подробно рассматриваются в следующем разделе.
Пускатель сопротивления статора
В этом методе на асинхронный двигатель подается пониженное напряжение путем последовательного подключения внешних сопротивлений к каждой фазе обмотки статора.
Во время запуска двигателя эти сопротивления поддерживаются в максимальном положении, так что на двигатель подается пониженное напряжение из-за большого падения напряжения на сопротивлениях. Принципиальная схема этого типа пускателя показана на рисунке ниже.
Как только двигатель набирает скорость, сопротивление, подключенное к каждой фазе цепи статора, постепенно уменьшается. Когда эти сопротивления удаляются из цепи, на двигатель подается номинальное напряжение (полное напряжение), и, следовательно, он работает с номинальной скоростью.
В этом методе важно поддерживать пусковой момент двигателя при минимальном пусковом токе. Это связано с тем, что ток изменяется пропорционально напряжению, тогда как крутящий момент зависит от квадрата приложенного напряжения.
Предположим, если приложенное напряжение уменьшится на 50 процентов, ток уменьшится на 50 процентов, а крутящий момент уменьшится на 25 процентов.
Конструкция этого пускового устройства проста и является наиболее экономичным из всех методов.
Кроме того, этот стартер можно использовать для двигателей независимо от того, соединены они звездой или треугольником. Однако из-за высокого рассеивания мощности на резисторах в двигателе происходят большие потери мощности.
Кроме того, пониженное напряжение вызывает пониженный крутящий момент при пуске двигателя. Из-за этих ограничений метод сопротивления ограничен для некоторых приложений.
Стартер с автотрансформатором
В этом методе трехфазный автотрансформатор подключается последовательно с двигателем. Этот трансформатор снижает напряжение, подаваемое на двигатель, и, следовательно, ток. Принципиальная схема этого типа пускателя показана на рисунке ниже.
Этот пускатель состоит из переключателя, который переключает двигатель между режимами пониженного напряжения и полного напряжения. Когда этот переключатель находится в положении пуска, на двигатель подается пониженное напряжение.
Это напряжение зависит от доли процента витков и регулируется изменением положения ползунка автотрансформатора.
Когда двигатель достигает 80 процентов своей номинальной скорости, переключатель автоматически переключается в положение RUN с помощью реле. Благодаря этому на этот двигатель затем подается номинальное напряжение. Эти трансформаторы также снабжены цепями перегрузки, холостого хода и выдержки времени.
В этом методе напряжение на клеммах двигателя выше для заданного пускового тока на стороне сети по сравнению с другими методами пониженного напряжения. Следовательно, этот метод дает самый высокий пусковой момент на линейный ампер.
Этот статор может быть подключен к трехфазным двигателям как со звездой, так и с треугольником. Однако эти пускатели дороже, чем пускатели сопротивления статора.
Пускатель «звезда-треугольник»
Пускатель «звезда-треугольник» является наиболее часто используемым пускателем с пониженным напряжением, поскольку он является самым дешевым среди всех пускателей. В этом методе асинхронный двигатель подключается в звезду при пуске и в треугольник при работе с номинальной скоростью.
Эти пускатели предназначены для работы на статоре асинхронного двигателя, соединенном треугольником. Принципиальная схема этого пускателя показана на рисунке ниже.
В этом пускателе используется переключатель TPDT (трехполюсный на два направления), который соединяет обмотку статора в звезду во время пуска. Благодаря такому соединению звездой подаваемое на двигатель напряжение уменьшается в 1/√3 раза. Это пониженное напряжение приводит к меньшему току через двигатель.
Когда двигатель набирает скорость, переключатель TPST автоматически переключается на другую сторону с помощью реле, так что теперь обмотка подключается треугольником к источнику питания. Таким образом, на двигатель подается нормальное напряжение (поскольку при соединении треугольником напряжение одинаковое, VL = VP), и, следовательно, двигатель работает с нормальной скоростью.
Этот метод дешевле и не требует обслуживания по сравнению с другими методами. Однако это подходит только для двигателей, соединенных треугольником, а также нельзя изменить коэффициент снижения пускового напряжения, т.
е. 1/√3.
Прямой пускатель
Как обсуждалось ранее, двигатели малой мощности (менее 5 л.с.) не имеют очень высоких пусковых токов. И без использования какого-либо стартера такие двигатели выдерживают пусковые токи.
Нет необходимости снижать напряжение на двигателе при пуске, поэтому двигатель можно подключить напрямую к питающей сети. Этот тип устройства, используемый в пускателе, называется пускателем прямого включения или просто пускателем DOL.
Несмотря на то, что этот пускатель не снижает пусковое напряжение, он обеспечивает защиту двигателя от перегрузки, однофазности и низкого напряжения. Принципиальная схема прямого онлайн-пускателя показана на рисунке ниже.
Во время пуска нормально разомкнутый контакт (НО) нажимается на доли секунды, что приводит к возбуждению катушки намагничивания. Этот магнитный поток, создаваемый катушкой, притягивает контактор, так что теперь двигатель подключен к источнику питания.
Контактор сохраняет это положение, пока на катушку подается питание от дополнительного выключателя.
При нажатии нормально замкнутого (НЗ) выключателя катушка обесточивается, и контактор отделяется подпружиненным устройством, при этом подача питания на двигатель прекращается.
При любой перегрузке двигатель потребляет большой ток, что вызывает перегрев. Этот чрезмерный нагрев приводит в действие тепловые реле, использующие датчики перегрузки. Затем срабатывают контакты перегрузки, чтобы отключить питание двигателя.
Это самый простой, дешевый и надежный метод, поэтому он широко используется. Основным недостатком пускателя DOL является то, что двигатель потребляет очень большой ток во время запуска в течение короткого периода времени.
Устройство плавного пуска
В этом методе полупроводниковые силовые выключатели используются для уменьшения пускового тока асинхронного двигателя. Это другой тип пускателя с пониженным напряжением, и он подключается последовательно с сетевым напряжением, подаваемым на двигатель. Принципиальная схема устройства плавного пуска показана на рисунке ниже.
Этот пускатель состоит из встречных тиристоров или симисторов в каждой фазе обмотки статора. Управляя углом открытия этих тиристоров, напряжение, подаваемое на двигатель, будет уменьшаться бесступенчато. Этот тип снижения напряжения обеспечивает более плавную работу по сравнению с другими методами, рассмотренными выше.
Это приводит к отсутствию пульсаций крутящего момента и, следовательно, к отсутствию рывков при пуске двигателя. Как только двигатель достигает нормальной скорости, к тиристорам применяется такой угол открытия, что они обеспечивают полное напряжение на двигателе.
Для более крупных двигателей используются частотно-регулируемые приводы с функцией плавного пуска. Такие приводы регулируют пусковой ток, а также скорость двигателя до желаемого значения.
Эти пускатели также снабжены дополнительными защитами, такими как перегрузка, низкое напряжение и однофазность.
Заключение
Вводное руководство по пускателям двигателей. Они являются неотъемлемой частью современных моторных приводов для безопасной и надежной работы двигателей.

