28Июн

Принцип работы электромотора: Устройство и принцип работы электродвигателя

Содержание

Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Содержание статьи

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

 

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками

 коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

 

Понравилась статья? Поделиться с друзьями:

Классификация электродвигателей - устройство и принцип работы

В быту, коммунальном хозяйстве, на любом производстве двигатели электрические являются неотъемлемой составляющей: насосы, кондиционеры, вентиляторы и пр. Поэтому важно знать типы наиболее часто встречающихся электродвигателей.

Электродвигатель является машиной, которая преобразует в механическую энергию электрическую. При этом выделяется тепло, являющееся побочным эффектом.

Видео: Классфикация электродвигателей

Все электродвигатели разделить можно на две большие группы:

  • Электродвигатели постоянного тока
  • Электродвигатели переменного тока.

Электродвигатели, питание которых осуществляется переменным током, называются двигателями переменного тока, которые имеют две разновидности:

  • Синхронные – это те, у которых ротор и магнитное поле питающего напряжения вращаются синхронно.
  • Асинхронные. У них отличается частота вращения  ротора от частоты, создаваемого питающим напряжением магнитного поля. Бывают они  многофазными, а также одно-, двух- и  трехфазными.
  • Электродвигатели  шаговые отличаются тем, что имеют конечное число положений ротора. Фиксирование заданного положения ротора происходит за счет подачи питания на определенную обмотку. Путем снятия напряжения с одной обмотки и передачи его на другую осуществляется переход в другое положение.

К электродвигателям постоянного тока относят те, которые питаются постоянным током.  Они, в зависимости от того, имею или нет щёточно-коллекторный узел, подразделяются на:

  • Бесколлекторные
  •  
  • Коллекторные
  •  

Коллекторные также, в зависимости от типа возбуждения, бывают нескольких видов:

  • С возбуждением постоянными магнитами.
  • С параллельным соединением обмоток соединения и якоря.
  • С последовательным соединением якоря и обмоток.
  • Со смешанным их соединением.

Электродвигатель постоянного тока в разрезе. Коллектор со щетками – справа

Какие электродвигатели входят в группу «электродвигатели постоянного тока»

Как уже говорилось, электродвигатели постоянного тока составляют группу, в которую входят коллекторные электродвигатели и бесколлекторные,  которые выполнены в виде замкнутой системы, включающей датчик положения ротора, систему управления и силовой полупроводниковый преобразователь. Принцип работы бесколлекторных электродвигателей аналогичен принципу работы двигателей асинхронных. Устанавливают их в бытовых прибора, например, вентиляторах.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от  бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность —  наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.

Ротор

Щетки

Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и  двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки бесколлекторных электродвигателей

В отличие от описанных, у этих электродвигателей подвижной частью является статор с постоянным магнитом (корпус), а ротор с трехфазной обмоткой – неподвижен.

К недостаткам этих двигателей постоянного тока отнести можно менее плавную регулировку скорости вращения вала, но зато они способны за доли секунды набрать максимальные обороты.

Бесколлекторный электродвигатель  помещен в закрытый корпус, поэтому он более надежен при неблагоприятных условиях эксплуатации, т.е. ему не страшны пыль и влага. К тому же, его надежность возрастает благодаря отсутствию щеток, как и скорость, с которой вращается вал. При этом, по конструкции мотор более сложен, следовательно, не может быть дешевым. Стоимость его в сравнении с коллекторным, выше в два раза.

Таким образом,  коллекторный электродвигатель, работающий на переменном и на постоянном токе, является универсальным, надежным, но более дорогим. Он и легче, и меньше по размерам двигателя переменного тока  той же мощности.

Поскольку электродвигатели переменного тока, питающиеся  от 50 Гц (питание промышленной сети)  не позволяют получать высокие частоты (выше 3000 об/мин),  при такой необходимости, используют коллекторный двигатель.

Между тем, его ресурс ниже, чем у асинхронных электродвигателей переменного тока, который  зависит от состояния подшипников и изоляции обмоток.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают  с частотой  сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Строение синхронного электродвигателя

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и  подобном оборудовании,  рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на  мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания  магнитного поля, разрывается  связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при  любых нагрузках на валу.

Однофазный электродвигатель: устройство и принцип работы

Использующий после пуска только одну обмотку статора (фазу) и не нуждающийся в частном преобразователе электродвигатель, работающий от электросети однофазного переменного тока, является асинхронным или однофазовым.

Однофазовый электродвигатель имеет вращающуюся часть – ротор и неподвижную – статор, который и создает магнитное поле, необходимое для вращения ротора.

Из двух, расположенных в сердечнике статора друг к другу под углом 90 градусов обмоток, рабочая занимает 2/3 пазов. Другая обмотка, на долю которой приходится 1/3 пазов, называется пусковой (вспомогательной).

Ротор – это тоже короткозамкнутая обмотка. Его стержни из алюминия или меди замкнуты с торцов кольцом, а пространство между ними залито алюминиевым сплавом. Может быть выполнен ротор в виде полого ферромагнитного или немагнитного цилиндра.

Однофазный электродвигатель, мощность которого может быть от десятков ватт до десятка киловатт, применяются в бытовых приборах, устанавливаются в деревообрабатывающих станках, на транспортерах, в компрессорах и насосах. Преимущество их – возможность использования в помещениях, где нет трехфазной сети. По конструкции они не сильно отличаются от электродвигателей асинхронных трехфазного тока.

Принцип работы универсального коллекторного двигателя - Moy-Instrument.Ru

Универсальный двигатель

Конструкция универсального электродвигателя

Конструкция универсального коллекторного электродвигателя не имеет принципиальных отличий от конструкции коллекторного электродвигателя постоянного тока с обмотками возбуждения, за исключением того, что вся магнитная система (и статор, и ротор) выполняется шихтованной и обмотка возбуждения делается секционированной. Шихтованная конструкция и статора, и ротора обусловлена тем, что при работе на переменном токе их пронизывают переменные магнитные потоки, вызывая значительные магнитные потери.

Секционирование обмотки возбуждения вызвано необходимостью изменения числа витков обмотки возбуждения с целью сближения рабочих характеристик при работе электродвигателя от сетей постоянного и переменного тока [2].

Универсальный коллекторный электродвигатель может быть выполнен как с последовательным, так и с параллельным и независимым возбуждением.

В настоящее время универсальные коллекторные электродвигатели выполняют только с последовательным возбуждением .

Принцип работы универсального двигателя

Возможность работы универсального двигателя от сети переменного тока объясняется тем, что при изменении полярности подводимого напряжения изменяются направления токов в обмотке якоря и в обмотке возбуждения. При этом изменение полярности полюсов статора практически совпадает с изменением направления тока в обмотке якоря. В итоге направление электромагнитного вращающего момента не изменяется:

,

  • где M — электромагнитный момент, Н∙м,
  • – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • – ток в обмотке якоря, А,
  • Ф — основной магнитный поток, Вб.

В качестве универсального используют двигатель последовательного возбуждения, у которого ток якоря является и током возбуждения, что обеспечивает почти одновременное изменение направления тока в обмотке якоря Iа и магнитного потока возбуждения Ф при переходе от положительного полупериода переменного напряжения сети к отрицательному.

Если двигатель подключить к сети синусоидального переменного тока, то ток якоря Ia и магнитный поток Ф будут изменяться по синусоидальному закону:

,

  • где i — ток, А,
  • – амплитуда тока, А,
  • – частота, рад/c.

,

  • где – наибольшее значение магнитного потока, Вб,
  • – угол сдвига фаз между током возбуждения и магнитным потоком, обусловленный магнитными потерями в двигателе, рад.

Отсюда получим формулу электромагнитного момента коллекторного двигателя последовательного возбуждения, включенного в сеть синусоидального переменного тока, Нм:

.

.

Первая часть выражения представляет собой постоянную составляющую электромагнитного момента Mпост , а вторая часть — переменную составляющую этого момента Мпер , изменяющуюся во времени с частотой, равной удвоенной частоте напряжения питания.

Таким образом, результирующий электромагнитный момент при работе двигателя от сети переменного тока пульсирует. Пульсации электромагнитного момента практически не нарушают работу двигателя. Объясняется это тем, что при значительной частоте пульсаций электромагнитного момента () и большом моменте инерции якоря вращение последнего оказывается равномерным.

Особенности универсального двигателя

Коэффициент полезного действия универсального двигателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть переменного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и якоря, что ведет к наведению в коммутируемых секциях трансформаторной ЭДС, ухудшающей процесс коммутации в двигателе.

Наличие щеточно-коллекторного узла является причиной ряда недостатков универсальных коллекторных двигателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при частоте питающего напряжения f = 50 Гц позволяют получать частоту вращения до 10 000 об/мин и более (наибольшая синхронная частота вращения при f = 50 Гц равна 3000 об/мин) [3].

Области использования

Благодаря тому, что универсальный двигатель может иметь высокую скорость вращения при работе от однофазной сети переменного тока без использования дополнительных преобразовательных устройств, он получил широкое применение в таких домашних приборах как пылесосы, блендеры, фены и др. Так же универсальный электродвигатель широко используется в таких инструментах, как дрели и шуруповерты.

Благодаря тому, что скорость вращения универсального двигателя легко регулируется изменением величины питающего напряжения ранее он широко использовался в стиральных машинах. Сейчас благодаря развитию преобразовательной техники более широкое использование получают бесщеточные электродвигатели (СДПМ, АДКР) скорость вращения которых регулируется изменением частоты напряжения питания.

Универсальные коллекторные двигатели

Универсальные коллекторные двигатели — это электродвигатели малой мощности последовательного возбуждения с секционированной обмоткой возбуждения, благодаря чему они могут работать как на постоянном, так и на переменном стандартных напряжениях примерно с одинаковыми свойствами и характеристиками. Такие электродвигатели используют для привода маломощных быстроходных устройств и многих бытовых приборов. Они допускают простое, широкое и плавное регулирование скорости.

По своему устройству эти двигатели отличаются от двигателей постоянного тока общего применения конструкцией статора, магнитную систему которого собирают из топких изолированных друг от друга листов электротехнической стали с выступающими полюсами, на которых размещают по две секции обмотки возбуждения. Эти секции соединяют последовательно с якорем и располагают по обе стороны от его выводов, что снижает радиопомехи от ценообразования на коллекторе под щетками, которое при питании двигателя от сети переменного напряжения особенно усиливается из-за существенного ухудшения условий коммутации.

В зависимости от конструкции двигателя обмотка возбуждения может быть соединена с якорем внутри машины или может иметь самостоятельные наружные зажимы, что удобнее для изменения направления вращения якоря путем перемены мест проводов, подходящих к его зажимам или к зажимам обмотки возбуждения. Якорь универсальных двигателей устроен так же, как и якорь машин постоянного тока, а обмотка его присоединена к коллекторным пластинам, к которым прижаты щетки.

Пуск этих двигателей выполняют непосредственным включением в сеть постоянного или переменного напряжения, которое соответствует номинальному напряжению, указанному в ее табличке.

Скорость якоря универсального коллекторного двигателя последовательного возбуждения прямо пропорциональна напряжению на его зажимах и обратно пропорциональна амплитуде магнитного потока, зависящей от нагрузки на валу электродвигателя.

Механические характеристики у таких электродвигателей отличаются в зависимости от того на каком напряжении (переменном или постоянном) работает электродвигатель, так как при питании от сети постоянного напряжения присутствует только падение напряжения, созданное сопротивлениями обмоток возбуждения и якоря постоянному току, в то время как при присоединении к сети переменного напряжения возникает еще значительное индуктивное падение напряжения на обмотках возбуждения и якоря. Кроме этого, при переменном токе при малой скорости якоря имеет место значительный сдвиг фаз между напряжением и током, что резко снижает момент на валу двигателя.

Для получения примерно одинаковых механических характеристик на переменном и постоянном токе включают секционированную обмотку возбуждения двигателя на постоянный ток полностью, а при включении на переменный ток — частично, для чего двигатель присоединяют к соответствующей сети зажимами с обозначениями «+» и » — » или зажимами с обозначениями «

При номинальных режимах, отвечающих питанию от сети постоянного и переменного напряжений, номинальная скорость якоря одинакова. Однако при перегрузке двигателя, присоединенного к сети переменного напряжения, скорость якоря уменьшается сильнее, а при разгрузке возрастает быстрее, чем при работе его от сети постоянного напряжения.

При холостом ходе скорость якоря может превысить номинальную в 2,5 — 4 раза и выше, а это не допустимо из-за значительных центробежных сил, которые могут разрушить якорь. По этой причине режим холостого хода допустим только для двигателей малой номинальной мощности с относительно большими механическими потерями, ограничивающими скорость якоря. Двигатели с незначительными механическими потерями всегда должны нести нагрузку не менее 25% номинальной.

Регулирование скорости якоря осуществляют изменением напряжения на зажимах машины, а также шунтированием обмотки возбуждения или обмотки якоря резистором. Из этих способов полюсное регулирование, осуществляемое параллельным включением обмотки возбуждения регулируемого резистора, является наиболее экономичным.

Основным преимуществом универсальных коллекторных двигателей по сравнению с асинхронными и синхронными двигателями является то, что они развивают значительный начальный пусковой момент благодаря последовательной обмотке возбуждения и позволяют без применения повышающего редуктора получить скорость якоря значительно выше синхронной.

Быстроходность универсальных коллекторных двигателей ограничивает их размеры и массу.

Номинальный к. п. д. этих машин зависит от их номинальной мощности, быстроходности и рода тока. Так, у двигателей номинальной мощностью от 5 до 100 Вт он составляет от 0,25 до 0,55, а в машинах номинальной мощностью до 600 Вт его значение доходит до 0,70 и выше, причем работа двигателей на переменном токе всегда сопровождается пониженным к. п. д., что вызвано повышенными магнитными и электрическими потерями. Номинальный коэффициент мощности этих двигателей составляет 0,70 — 0,90.

Устройство и схема подключения коллекторного двигателя переменного тока

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

  • Особенности конструкции и принцип действия
  • Упрощенная схема подключения
  • Управление работой двигателя
  • Преимущества и недостатки
  • Типичные неисправности

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора;
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
  • в результате ротор вращается равномерно при любых нагрузках;
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты;
  • увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
  • быстрота и независимость от частоты сети;
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма;
  • искрение между и коллектором и щетками;
  • повышенный уровень шумов;
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Принцип работы коллекторного двигателя

Принцип действия коллекторного электродвигателя (рис.) основан на следующем: если проводник с током — рамку прямоугольной формы, имеющую ось вращения, — поместить между полюсами постоянного магнита (или электромагнита), то эта рамка начнет вращаться. Направление вращения будет зависеть от направления тока в рамке. Ток в рамку от источника постоянного тока может подаваться через контакты-полукольца, прикрепленные к концам рамки, и через упругие скользящие контакты — щетки (рис, а). Отметим, что вращающаяся часть электродвигателя называется якорем, а неподвижная — статором.
Контакты-полукольца обеспечивают переключение тока в рамке через каждые пол-оборота, т. е. непрерывное вращение рамки в одном направлении. У реальных коллекторных двигателей таких рамок много, поэтому вся контактная окружность делится уже не на две, а на большее количество контактов.

Рис.. Коллекторный электродвигатель: а — принцип действия; б — учебный коллекторный двигатель; в — якори учебных коллекторных двигателей; г — якорь реального электродвигателя
Эти контакты образуют коллектор — отсюда и название этого электродвигателя. Контакты коллектора изготовляют из меди, а щетки — из графита. Простейший ремонт электродвигателя заключается в замене щеток, запасной комплект которых часто прилагается при продаже устройств с такими двигателями.
Коллекторные электродвигатели имеют широкое применение

Коллекторные электродвигатели. Они названы по одному из узлов ротора — коллектору (цилиндр, набранный из изолированных пластинок меди, к которому припаяны концы проводов обмотки). С коллектором соприкасаются щетки статора. Коллектор подводит ток к обмотке ротора, последовательно соединенной с обмоткой статора.

Коллекторные электродвигатели отличаются высокой скоростью вращения ротора, поэтому их используют в таких изделиях и машинах, как пылесосы, кухонные машины, и др. Они имеют малые массу и габаритные размеры. Для бытовых машин в основном применяют универсальный встраиваемый коллекторный электрический двигатель.

Коллекторные двигатели, работающие от источника переменного и постоянного тока, называют универсальными. Существуют двигатели для работы на низком напряжении от источников тока. Коллекторные двигатели развивают большие скорости вращения без нагрузки, поэтому их пуск в бытовых машинах чаще всего осуществляется под нагрузкой, для чего приводимые в движение части машины насаживают непосредственно на вал двигателя, например вентилятор у пылесоса.

В процессе эксплуатации коллекторных двигателей проявляются такие их недостатки, как повышенный уровень шума, создание помех радиоприему, искрение и выход из строя угольных щеток, сложность ухода. Такие двигатели являются менее надежными, слож­ными в производстве и дорогостоящими. Однако они имеют и ряд существенных преимуществ перед асинхронными, благодаря которым и используются в бытовых машинах. Это хорошие пусковые данные, возможность получения больших скоростей вращения (до 25000 об/мин) и плавной регулировки скорости в широких пределах, универсальность.

Эффективность работы двигателя в бытовых приборах зависит от соблюдения требований к режиму работы изделия, который обязательно указывается в эксплуатационном документе. Особенно важно соблюдение этих требований для изделий и машин с кратковременным и повторно-кратковременным режимами работу (фены, миксеры и др.), чтобы исключить перегрев двигателя и выход его из строя.

По способу охлаждения двигатели подразделяются на двигатели с естественным и искусственным охлаждением. Кроме того, необходимо вентилирующее приспособление, особенно независимое, которое следует поддерживать в рабочем состоянии.

Коллекторный двигатель постоянного и переменного тока

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ро

Что такое электродвигатель? Определение и типы

Определение : Электродвигатель - это электромеханическая машина, которая преобразует электрическую энергию в механическую. Другими словами, устройство, создающее вращающую силу, называется двигателем. Принцип работы электродвигателя в основном зависит от взаимодействия магнитного и электрического поля. Электродвигатели в основном подразделяются на два типа. Это двигатель переменного тока и двигатель постоянного тока. Двигатель переменного тока принимает переменный ток в качестве входа, тогда как двигатель постоянного тока принимает постоянный ток.

Типы электродвигателей

Классификация электродвигателя показана на рисунке ниже.

Двигатель переменного тока

Двигатель переменного тока преобразует переменный ток в механическую энергию. Он подразделяется на три типа; это асинхронный двигатель, синхронный двигатель, линейный двигатель. Подробное описание двигателя приведено ниже.

1. Асинхронный двигатель

Машина, которая никогда не работает с синхронной скоростью, называется асинхронным или асинхронным двигателем.Этот двигатель использует явление электромагнитной индукции для преобразования электроэнергии в механическую. По конструкции ротора различают два типа асинхронных двигателей. А именно асинхронный двигатель с короткозамкнутым ротором и асинхронный двигатель с фазной обмоткой.

  • Ротор с короткозамкнутым ротором - Двигатель, который состоит из ротора с короткозамкнутым ротором, известен как асинхронный двигатель с короткозамкнутым ротором. Ротор с короткозамкнутым ротором снижает гудение и магнитную блокировку ротора.
  • Ротор с фазовой обмоткой - Этот ротор также известен как ротор с контактным кольцом, а двигатель, использующий этот тип ротора, известен как ротор с фазовой обмоткой.

По фазам асинхронный двигатель подразделяется на два типа. Это однофазный асинхронный двигатель и трехфазный асинхронный двигатель.

  • Однофазный асинхронный двигатель - Устройство, которое преобразует электрическую мощность однофазного переменного тока в механическую с помощью явления электромагнитной индукции, известно как однофазный асинхронный двигатель.
  • Трехфазный асинхронный двигатель
  • T - Двигатель, преобразующий трехфазную электрическую мощность переменного тока в механическую энергию, такой тип двигателя известен как трехфазный асинхронный двигатель.

2. Линейный двигатель

Двигатель, который создает линейную силу вместо силы вращения, известен как линейный двигатель. Этот двигатель имеет развернутые ротор и статор. Такой тип двигателя используется в раздвижных дверях и в приводах.

3. Синхронный двигатель

Машина, которая преобразует переменный ток в механическую энергию с желаемой частотой, известна как синхронный двигатель.В синхронном двигателе скорость двигателя синхронизирована с частотой питающего тока.

Синхронная скорость измеряется относительно вращения магнитного поля и зависит от частоты и полюсов двигателя. Синхронный двигатель подразделяется на два типа: реактивный и гистерезисный.

  • Реактивный двигатель - Двигатель, процесс пуска которого аналогичен асинхронному двигателю и который работает как синхронный двигатель, известен как реактивный двигатель.
  • Двигатель с гистерезисом - Двигатель с гистерезисом представляет собой тип синхронного двигателя, который имеет равномерный воздушный зазор и не имеет системы возбуждения постоянным током. Крутящий момент в двигателе создается гистерезисом и вихревым током двигателя.

Двигатель постоянного тока

Машина, преобразующая электрическую мощность постоянного тока в механическую, известна как двигатель постоянного тока. Его работа зависит от основного принципа: когда проводник с током помещается в магнитное поле, на него действует сила и возникает крутящий момент.Электродвигатели постоянного тока подразделяются на два типа: электродвигатели с самовозбуждением и электродвигатели с независимым возбуждением.

1. Двигатель с автономным возбуждением

Двигатель, в котором обмотка постоянного тока возбуждается от отдельного источника постоянного тока, известен как двигатель постоянного тока с отдельным возбуждением. С помощью отдельного источника на обмотку якоря двигателя подается напряжение и создается магнитный поток.

2. Двигатель с самовозбуждением

По подключению обмотки возбуждения электродвигатели постоянного тока с самовозбуждением подразделяются на три типа.Это последовательные, параллельные и комбинированные двигатели постоянного тока.

  • Shunt Motor - Двигатель, в котором обмотка возбуждения расположена параллельно якорю, такой тип двигателя известен как параллельный двигатель.
  • Двигатель серии - В этом двигателе обмотка возбуждения соединена последовательно с якорем двигателя.
  • Двигатель с комбинированной обмоткой - Двигатель постоянного тока, который имеет как параллельное, так и последовательное соединение обмотки возбуждения, известен как комбинированный ротор.Электродвигатели с комбинированной обмоткой также подразделяются на электродвигатели с коротким и длинным шунтом.
    • Короткий шунтирующий двигатель - Если шунтирующая обмотка возбуждения параллельна только якорю двигателя, а не последовательному полю, то это известно как короткое шунтирующее соединение двигателя.
    • Длинный шунтирующий двигатель - Если шунтирующая обмотка возбуждения параллельна якорю и последовательной обмотке возбуждения, то двигатель называется длинным шунтирующим двигателем.

Помимо вышеупомянутых двигателей, существуют различные другие типы специальных машин, которые имеют дополнительные функции, такие как шаговый двигатель, серводвигатель переменного и постоянного тока и т. Д.

Строительство, работа, типы и применение

Преобразование энергии из электрической в ​​механическую было объяснено Майклом Фарадеем, британским ученым в 1821 году. Преобразование энергии может быть выполнено путем размещения проводника с током в магнитном поле. Таким образом, проводник начинает вращаться из-за крутящего момента, создаваемого магнитным полем и электрическим током. Британский ученый Уильям Стерджен сконструировал машину постоянного тока в 1832 году на основе своего закона.Однако это было дорого и не подходило ни для каких приложений. Итак, наконец, первый электродвигатель был изобретен в 1886 году Фрэнком Джулианом Спрагом.

Что такое электродвигатель?

Электродвигатель можно определить как; это один из видов машин, используемых для преобразования энергии из электрической в ​​механическую. Большинство двигателей работают за счет связи между электрическим током и магнитным полем обмотки двигателя для создания силы в форме вращения вала.Эти двигатели могут запускаться от источника постоянного или переменного тока. Генератор механически аналогичен электродвигателю, однако работает в противоположном направлении, преобразуя механическую энергию в электрическую. Схема электродвигателя представлена ​​ниже.

Классификация электродвигателей может быть сделана на основе таких соображений, как тип источника питания, конструкция, тип выхода движения и применение. Они бывают переменного тока, постоянного тока, бесщеточные, щеточные, фазного типа, например, однофазные, двух- или трехфазные и т. Д.Двигатели с типичными характеристиками и размерами могут обеспечивать подходящую механическую мощность для использования в промышленности. Эти двигатели применимы в насосах, промышленных вентиляторах, станках, воздуходувках, электроинструментах, дисководах. Электродвигатель

Конструкция электродвигателя

Конструкция электродвигателя может быть выполнена с использованием ротора, подшипников, статора, воздушного зазора, обмоток, коммутатора и т. Д.

Конструкция электродвигателя

Ротор

Ротор в электрическом Двигатель - движущаяся часть, и его основная функция - вращать вал для выработки механической энергии.Обычно ротор включает в себя проводники, которые проложены для проведения токов и сообщаются с магнитным полем в статоре.

Подшипники

Подшипники в двигателе в основном служат опорой для ротора для активации его оси. Вал двигателя расширяется с помощью подшипников под нагрузку двигателя. Поскольку силы нагрузки используются за пределами подшипника, эта нагрузка называется консольной.

Статор

Статор в двигателе является неактивной частью электромагнитной цепи.Он включает постоянные магниты или обмотки. Статор может быть изготовлен из различных тонких металлических листов, известных как ламинаты. В основном они используются для уменьшения потерь энергии.

Воздушный зазор

Воздушный зазор - это пространство между статором и ротором. Эффект воздушного зазора в основном зависит от зазора. Это основной источник низкого коэффициента мощности двигателя. Как только воздушный зазор между статором и ротором увеличивается, ток намагничивания также увеличивается.По этой причине воздушный зазор должен быть меньше.

Обмотки

Обмотки в двигателях представляют собой провода, проложенные внутри катушек, обычно покрытые вокруг гибкого железного магнитного сердечника, чтобы образовывать магнитные полюса при подаче тока. Для обмоток электродвигателей чаще всего используется медь. Медь является наиболее распространенным материалом для обмоток, также используется алюминий, хотя он должен быть твердым, чтобы надежно выдерживать аналогичную электрическую нагрузку.

Коммутатор

Коммутатор представляет собой полукольцо в двигателе, которое изготовлено из меди. Основная функция этого - связать щетки с катушкой. Кольца коммутатора используются для обеспечения того, чтобы направление тока внутри катушки менялось на противоположное каждый полупериод, поэтому одна поверхность катушки часто подталкивается вверх, а другая поверхность катушки толкается вниз.

Работа электродвигателя

В основном, большинство электродвигателей работают по принципу электромагнитной индукции, однако существуют различные типы двигателей, в которых используются другие электромеханические методы, а именно пьезоэлектрический эффект и электростатическая сила.

Основной принцип работы электромагнитных двигателей может зависеть от механической энергии, которая воздействует на проводник с помощью потока электрического тока, и он находится в магнитном поле. Направление механической силы перпендикулярно магнитному полю, проводнику и магнитному полю.

Типы электродвигателей

В настоящее время наиболее часто используемые электродвигатели включают электродвигатели переменного тока и электродвигатели постоянного тока

Электродвигатели переменного тока

Двигатели переменного тока подразделяются на три типа, а именно: асинхронные, синхронные и линейные двигатели

  • Асинхронные двигатели подразделяются на два типа, а именно однофазные и трехфазные двигатели
  • Синхронные двигатели подразделяются на два типа, а именно гистерезисные и реактивные двигатели

Двигатель постоянного тока

Двигатели постоянного тока подразделяются на два типа: двигатели с самовозбуждением и двигатели с независимым возбуждением

  • Самовозбуждающиеся двигатели подразделяются на три типа, а именно: последовательные, составные и параллельные двигатели.
  • Составные двигатели подразделяются на два типа, а именно: короткие и длинные параллельные двигатели.

Применение электродвигателя

Применение электродвигателя включает следующее.

  • Применения электродвигателя в основном включают нагнетатели, вентиляторы, станки, насосы, турбины, электроинструменты, генераторы переменного тока, компрессоры, прокатные станы, корабли, грузчики, бумажные фабрики.
  • Электродвигатель является важным устройством в различных приложениях, таких как HVAC- отопление, вентиляционное и охлаждающее оборудование, бытовая техника и автомобили.

Преимущества электродвигателя

Электродвигатели имеют несколько преимуществ по сравнению с обычными двигателями, которые включают следующее.

  • Первичная стоимость этих двигателей невысока по сравнению с двигателями, работающими на ископаемом топливе, но их номинальная мощность в лошадиных силах одинакова.
  • Эти двигатели содержат движущиеся части, что увеличивает срок их службы.
  • При надлежащем обслуживании мощность этих двигателей составляет до 30 000 часов. Таким образом, каждый двигатель требует минимального обслуживания.
  • Эти двигатели чрезвычайно эффективны и позволяют автоматически управлять функциями автоматического пуска и останова.
  • Эти двигатели не используют топливо, потому что они не требуют обслуживания моторным маслом или аккумулятором.

Недостатки электродвигателя

К недостаткам этих электродвигателей можно отнести следующее.

  • Большие электродвигатели нелегко перемещать, и следует учитывать точное напряжение и ток питания.
  • В некоторых ситуациях дорогостоящее расширение линии является обязательным для изолированных областей, где электрическая энергия недоступна.
  • Обычно эти двигатели работают более эффективно.

Итак, все дело в электродвигателе, и его основная функция - преобразование энергии из электрической в ​​механическую.Эти двигатели очень тихие и удобные, в них используется переменный ток или постоянный ток. Эти двигатели доступны везде, где механическое движение может происходить с использованием переменного или постоянного тока. Вот вам вопрос, как сделать электродвигатель?

Эксперименты с электродвигателями для планов уроков и проектов научной ярмарки


Определение

Электродвигатель - это устройство, которое использует электрическую энергию для производства механической энергии за счет взаимодействия магнитных полей и проводников с током.

Основы

См. Также:
Униполярный двигатель
Шаговый двигатель

Электродвигатель использует электрическую энергию для производства механической энергии. Обратный процесс - использование механической энергии для производства электрической энергии - осуществляется генератором или динамо-машиной. Тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оборудован динамическими тормозами. Электродвигатели используются в бытовых приборах, таких как вентиляторы, холодильники, стиральные машины, насосы для бассейнов, напольные пылесосы и духовки с принудительной вентиляцией.

Большинство электродвигателей работают за счет электромагнетизма, но также существуют электродвигатели, основанные на других электромеханических явлениях, таких как электростатические силы, пьезоэлектрический эффект и тепловые электродвигатели. Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой токоведущий провод, находящийся внутри магнитного поля, действует механическая сила. Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю. Большинство магнитных двигателей являются вращающимися, но существуют и линейные двигатели.В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть - статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент. Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно. Правильно, якорь - это та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины якорь может служить как ротор, так и статор.

Электродвигатели используются в самых разных областях, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовые приборы, электроинструменты и дисководы. Они могут питаться от постоянного тока (например, портативного устройства с батарейным питанием или автомобиля) или от переменного тока от центральной распределительной сети. Самые маленькие моторы можно найти в наручных электрических часах. Двигатели среднего размера с строго стандартизованными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования.Самые большие электродвигатели используются для приведения в движение больших кораблей и для таких целей, как трубопроводные компрессоры, с мощностью в миллионы ватт. Электродвигатели можно классифицировать по источнику электроэнергии, внутренней конструкции и применению.

История и развитие

Принцип преобразования электрической энергии в механическую с помощью электромагнитных средств был продемонстрирован британским ученым Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью.Постоянный магнит был помещен в середину ртутной ванны. Когда через провод пропускали ток, он вращался вокруг магнита, показывая, что ток порождает круговое магнитное поле вокруг провода. Этот двигатель часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода). Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка - колесо Барлоу. Это были демонстрационные устройства, непригодные для практического применения из-за ограниченной мощности.

Первый электродвигатель постоянного тока коммутаторного типа, пригодный для практического применения, был изобретен британским ученым Уильямом Стердженом в 1832 году. Следуя работе Стерджена, компания создала электродвигатель постоянного тока коммутаторного типа, предназначенный для коммерческого использования. американец Томас Дэвенпорт и запатентован в 1837 году. Хотя некоторые из этих двигателей были построены и использовались для работы такого оборудования, как печатный станок, из-за высокой стоимости энергии первичной батареи двигатели не имели коммерческого успеха, и Давенпорт обанкротился.Несколько изобретателей последовали за Sturgeon в разработке двигателей постоянного тока, но все столкнулись с одними и теми же проблемами стоимости с питанием от первичной батареи. В то время не было развито распределение электроэнергии. Как и в случае с двигателем Стерджена, эти двигатели не имели практического коммерческого рынка.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил изобретенную им динамо-машину со вторым аналогичным устройством, управляя им как двигателем. Машина Gramme была первым электродвигателем, получившим успех в отрасли.

В 1888 году Никола Тесла изобрел первый реально работающий двигатель переменного тока, а вместе с ним и многофазную систему передачи энергии. Тесла продолжил свою работу над двигателем переменного тока в последующие годы в компании Westinghouse.

Классификация электродвигателей

Классическое разделение электродвигателей на типы постоянного и переменного тока. Это скорее де-факто соглашение, чем жесткое различие. Например, многие классические двигатели постоянного тока успешно работают от сети переменного тока.

Продолжающаяся тенденция к электронному управлению еще больше затрудняет различие, поскольку современные драйверы вынесли коммутатор из корпуса двигателя.Для этого нового поколения двигателей схемы драйверов используются для генерации синусоидальных приводных токов переменного тока или некоторого их приближения. Два лучших примера: бесщеточный двигатель постоянного тока и шаговый двигатель, оба являются многофазными двигателями переменного тока, требующими внешнего электронного управления.

Более четкое различие между синхронными и асинхронными типами. В синхронных типах ротор вращается синхронно с колеблющимся полем или током (например, двигатели с постоянными магнитами). Напротив, асинхронный двигатель предназначен для скольжения; наиболее распространенным примером является обычный асинхронный двигатель переменного тока, который должен проскальзывать для создания крутящего момента.

Двигатели постоянного тока

Двигатель постоянного тока предназначен для работы от постоянного тока. Двумя примерами чистых конструкций постоянного тока являются униполярный двигатель Майкла Фарадея (что встречается редко) и двигатель на шариковых подшипниках, который (пока) является новинкой. Безусловно, наиболее распространенными типами двигателей постоянного тока являются щеточные и бесщеточные типы, в которых используется внутренняя и внешняя коммутация соответственно для создания колеблющегося переменного тока от источника постоянного тока, поэтому в строгом смысле они не являются чисто двигателями постоянного тока.

Щеточные двигатели постоянного тока: Классическая конструкция двигателя постоянного тока генерирует колебательный ток в заведенном роторе с помощью коммутатора с разъемным кольцом и статора с намотанным или постоянным магнитом.Ротор состоит из катушки, намотанной вокруг ротора, который питается от батареи любого типа. Этот тип двигателя постоянного тока нуждается в щетках, которые прижимаются к коммутатору, чтобы вращаться.

Бесщеточные двигатели постоянного тока: Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры.Это ограничивает максимальную скорость машины. Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и обслуживанию. Сборка коммутатора на большой машине - дорогостоящий элемент, требующий точной сборки многих деталей. Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90%, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80%.

Бесщеточные двигатели постоянного тока обычно используются там, где требуется точное управление скоростью, в дисководах компьютеров или в видеомагнитофонах, шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных товаров, таких как вентиляторы, лазерные принтеры и т. Д. копировальные аппараты.

Современные бесщеточные двигатели постоянного тока мощностью от долей ватта до многих киловатт.В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт. Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника: Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов. Преимущество этого факта заключается в бесщеточном двигателе постоянного тока, специализированной форме щеточного или бесщеточного двигателя постоянного тока.Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника. Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блина (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Двигатели переменного тока

Типичный двигатель переменного тока состоит из двух частей:

  • Внешний неподвижный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  • Внутренний ротор, прикрепленный к выходному валу, на который создается крутящий момент вращающимся полем.

Моментные двигатели: Моментные двигатели - это особая разновидность асинхронных двигателей, которые способны работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений. В этом режиме двигатель будет прикладывать к нагрузке постоянный крутящий момент (отсюда и название). Обычно моментный двигатель используется для двигателей подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимые в действие низким напряжением, характеристики этих двигателей позволяют приложить относительно постоянное легкое натяжение к ленте, независимо от того, протягивает ли ведущая лента мимо головок ленты.Управляемые более высоким напряжением (и, таким образом, обеспечивающие более высокий крутящий момент), моментные двигатели также могут выполнять операции быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты. В компьютерном мире моментные двигатели используются с рулевыми колесами с обратной связью по усилию.

Контактное кольцо или двигатель с фазным ротором представляет собой асинхронную машину, в которой ротор содержит набор катушек, оканчивающихся контактными кольцами, к которым могут быть подключены внешние сопротивления. Статор такой же, как и у стандартного двигателя с короткозамкнутым ротором.Изменяя импеданс, подключенный к цепи ротора, можно изменять кривые скорость / ток и скорость / крутящий момент.

Шаговый двигатель (или шаговый двигатель) - это бесщеточный синхронный электродвигатель, который может разделять полный оборот на большое количество шагов. Положение двигателя можно точно контролировать без какого-либо механизма обратной связи (см. «Контроллер с разомкнутым контуром»), если двигатель точно рассчитан для конкретного применения. Шаговые двигатели аналогичны вентильным реактивным двигателям (которые представляют собой очень большие шаговые двигатели с уменьшенным числом полюсов и обычно коммутируются по замкнутому контуру.)

Линейный двигатель или линейный асинхронный двигатель - это электродвигатель переменного тока (AC), статор которого «раскручен», так что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине. Наиболее распространен режим работы актуатора лоренцевского типа, в котором приложенная сила линейно пропорциональна току и магнитному полю (F = qv × B).

Универсальные двигатели

Вариантом электродвигателя постоянного тока с возбужденным полем является универсальный электродвигатель.Название происходит от того факта, что он может использовать переменный или постоянный ток питания, хотя на практике они почти всегда используются с источниками переменного тока. Принцип заключается в том, что в двигателе постоянного тока с обмоткой поля ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) в одно и то же время, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении. . На практике двигатель должен быть специально спроектирован для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и полученный двигатель обычно менее эффективен, чем эквивалентный чистый двигатель постоянного тока.При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя в электрических железных дорогах. В этом приложении, чтобы поддерживать высокий электрический КПД, они работали от источников переменного тока с очень низкой частотой, обычно 25 Гц и 16 2/3 Гц. Поскольку они являются универсальными двигателями, локомотивы, использующие эту конструкцию, также обычно могут работать от третьего рельса с питанием от постоянного тока.

Источник: Википедия (Весь текст доступен в соответствии с условиями лицензии GNU Free Documentation License и Creative Commons Attribution-ShareAlike License.)

Что такое электротехника? | Живая наука

Электротехника - одна из новейших отраслей машиностроения, возникшая в конце 19 века. Это отрасль техники, которая занимается технологиями электричества. Инженеры-электрики работают над широким спектром компонентов, устройств и систем, от крошечных микрочипов до огромных генераторов электростанций.

Ранние эксперименты с электричеством включали примитивные батареи и статические заряды. Однако фактическое проектирование, конструирование и производство полезных устройств и систем началось с реализации закона индукции Майкла Фарадея, который, по сути, гласит, что напряжение в цепи пропорционально скорости изменения магнитного поля в цепи. Этот закон применяется к основным принципам работы электрогенератора, электродвигателя и трансформатора. Наступление современной эпохи ознаменовано появлением электричества в домах, на предприятиях и в промышленности, что стало возможным благодаря инженерам-электрикам.

Среди самых выдающихся пионеров электротехники - Томас Эдисон (электрическая лампочка), Джордж Вестингауз (переменный ток), Никола Тесла (асинхронный двигатель), Гульельмо Маркони (радио) и Фило Т. Фарнсворт (телевидение). Эти новаторы превратили идеи и концепции об электричестве в практические устройства и системы, которые положили начало современной эпохе.

С момента своего зарождения область электротехники выросла и разветвлялась на ряд специализированных категорий, включая системы генерации и передачи энергии, двигатели, аккумуляторы и системы управления.Электротехника также включает электронику, которая подразделяется на еще большее количество подкатегорий, таких как радиочастотные (РЧ) системы, телекоммуникации, дистанционное зондирование, обработка сигналов, цифровые схемы, приборы, аудио, видео и оптоэлектроника.

Область электроники родилась с изобретением в 1904 году Джоном Амброузом Флемингом термоэлектронной ламповой диодной лампы. Электронная лампа в основном действует как усилитель тока, выдавая ток, кратный входному.Он был основой всей электроники, включая радио, телевидение и радары, до середины 20 века. Он был в значительной степени вытеснен транзистором, который был разработан в 1947 году в лабораториях AT&T Bell Laboratories Уильямом Шокли, Джоном Бардином и Уолтером Браттейном, за что они получили Нобелевскую премию по физике 1956 года.

Чем занимается инженер-электрик?

«Инженеры-электрики проектируют, разрабатывают, тестируют и контролируют производство электрического оборудования, такого как электродвигатели, радиолокационные и навигационные системы, системы связи и оборудование для выработки электроэнергии, - заявляет U.С. Бюро статистики труда. «Инженеры-электронщики проектируют и разрабатывают электронное оборудование, такое как системы вещания и связи - от портативных музыкальных плееров до систем глобального позиционирования (GPS)».

Если это практичное, реальное устройство, которое производит, проводит или использует электричество, то, скорее всего, оно было разработано инженером-электриком. Кроме того, инженеры могут проводить или составлять спецификации для разрушающих или неразрушающих испытаний производительности, надежности и долговечности устройств и компонентов.

Современные инженеры-электрики проектируют электрические устройства и системы с использованием основных компонентов, таких как проводники, катушки, магниты, батареи, переключатели, резисторы, конденсаторы, катушки индуктивности, диоды и транзисторы. Почти все электрические и электронные устройства, от генераторов на электростанции до микропроцессоров в вашем телефоне, используют эти несколько основных компонентов.

Важнейшие навыки, необходимые в электротехнике, включают глубокое понимание теории электричества и электроники, математики и материалов.Эти знания позволяют инженерам разрабатывать схемы для выполнения определенных функций и удовлетворения требований безопасности, надежности и энергоэффективности, а также прогнозировать их поведение до реализации проекта оборудования. Однако иногда схемы конструируются на «макетных платах» или прототипах печатных плат, изготовленных на станках с числовым программным управлением (ЧПУ), для тестирования перед запуском в производство.

Инженеры-электрики все больше полагаются на системы автоматизированного проектирования (САПР) для создания схем и компоновки схем.Они также используют компьютеры для моделирования работы электрических устройств и систем. Компьютерное моделирование можно использовать для моделирования национальной электросети или микропроцессора; поэтому для инженеров-электриков очень важно владение компьютерами. Помимо ускорения процесса создания схем, макетов печатных плат (PCB) и чертежей электрических и электронных устройств, системы CAD позволяют быстро и легко изменять конструкции и создавать прототипы с помощью станков с ЧПУ.Полный список необходимых навыков и способностей для инженеров-электриков и электронщиков можно найти на MyMajors.com.

Работа и зарплата в области электротехники

Инженеры-электрики и электронщики работают в основном в научно-исследовательских и опытно-конструкторских отраслях, компаниях, оказывающих инженерные услуги, на производстве и в федеральном правительстве, согласно BLS. Как правило, они работают в закрытых помещениях, в офисах, но им, возможно, придется посетить объекты, чтобы увидеть проблему или сложное оборудование, сообщает BLS.

Обрабатывающие отрасли, в которых работают инженеры-электрики, включают автомобильную, морскую, железнодорожную, аэрокосмическую, оборонную, бытовую электронику, коммерческое строительство, освещение, компьютеры и компоненты, телекоммуникации и управление движением. Государственные учреждения, в которых работают инженеры-электрики, включают транспортные департаменты, национальные лаборатории и вооруженные силы.

Для большинства рабочих мест в области электротехники требуется как минимум степень бакалавра технических наук. Многие работодатели, особенно те, которые предлагают услуги инженерного консалтинга, также требуют государственной сертификации профессионального инженера.Кроме того, многие работодатели требуют сертификации Института инженеров по электротехнике и электронике (IEEE) или Института инженерии и технологий (IET). Степень магистра часто требуется для продвижения к руководству, а постоянное образование и подготовка необходимы, чтобы идти в ногу с достижениями в области технологий, испытательного оборудования, компьютерного оборудования и программного обеспечения, а также государственных постановлений.

По состоянию на июль 2014 года, диапазон заработной платы для недавно получившего диплом инженера-электрика со степенью бакалавра составляет от 55 570 до 73 908 долларов, согласно Salary.com. Диапазон для инженера среднего звена со степенью магистра и стажем от пяти до 10 лет составляет от 74 007 до 108 640 долларов, а для старшего инженера со степенью магистра или доктора и более 15 лет опыта - от 97 434 до 138 296 долларов. Многие опытные инженеры с учеными степенями продвигаются на руководящие должности или открывают собственный бизнес, где они могут зарабатывать еще больше.

Будущее электротехники

Предполагается, что занятость инженеров-электриков и электронщиков вырастет на 4 процента в период с настоящего момента до 2022 года из-за «универсальности этих специалистов в разработке и применении новых технологий», говорится в сообщении BLS.

Приложения этих новых технологий включают изучение красных электрических вспышек, называемых спрайтами, которые парят над некоторыми грозами. Виктор Пасько, инженер-электрик из Пенсильванского университета, и его коллеги разработали модель эволюции и исчезновения странных молний.

Другой инженер-электрик, Андреа Алу из Техасского университета в Остине, изучает звуковые волны и разработал одностороннюю звуковую машину. «Я могу слушать вас, но вы не можете обнаружить меня; вы не можете слышать мое присутствие», - сказал Алу LiveScience в статье 2014 года.

А Мишель Махарбиз, инженер-электрик из Калифорнийского университета в Беркли, изучает способы беспроводной связи с мозгом.

В BLS говорится: «Быстрые темпы технологических инноваций и разработок, вероятно, будут стимулировать спрос на инженеров-электриков и электронщиков в исследованиях и разработках, в области, в которой потребуется инженерный опыт для разработки систем распределения, связанных с новыми технологиями».

Дополнительные ресурсы

История электродвигателей

Полное руководство по электродвигателям - ЧАСТЬ 1

В качестве первой части нашего полного руководства по электродвигателям мы рассмотрим сложную и спорную историю изобретения электродвигателя.


История электродвигателей долгая и сложная. Многие элементы вошли в создание того, что мы сегодня знаем как электродвигатели; вы могли бы исследовать еще 600 г. до н.э., когда Фалес Милетский писал о том, что мы теперь знаем как статическое электричество, и столь же современно, как новейшие электромобили. Таким образом, сроки обычно немного отличаются, и это ни в коем случае не исчерпывающий список всех соответствующих изобретений; мы только попытались создать максимально точную временную шкалу, относящуюся конкретно к электродвигателям.Сроки еще более запутаны, поскольку многие люди во всем мире независимо работали над одними и теми же проектами, а это означает, что часто изобретатель, получивший патент, считается истинным создателем.

Эндрю Гордон

1740-е годы

Шотландскому монаху по имени Эндрю Гордон приписывают изобретение первого в истории электростатического устройства . Его электрический водоворот был своего рода электростатическим реактивным двигателем и первым в своем роде.Он также провел исследование того, что позже станет электрической конвекцией .

1820

Андре-Мари Ампер открыл теоретические принципы, лежащие в основе производства механической силы в результате взаимодействия магнитного поля и электрического тока. Он изобрел соленоид, спиральную катушку (катушка, которая очень плотно намотана в спираль).

Также в 1820 году Ганс Кристиан Эрстед заметил, что стрелка его компаса двигалась от естественного магнитного севера всякий раз, когда он включал или выключал ток от ближайшей батареи.Это считается самым первым механическим движением, вызванным электрическим током.

Из этого он сделал вывод, что когда провод заряжается электричеством, он излучает магнитные поля со всех сторон, и между электричеством и магнетизмом возникла прочная связь.

1821

Британский изобретатель Майкл Фарадей продемонстрировал преобразование электрической энергии в механическую, создав два параллельных эксперимента. В обоих случаях у него была чаша с лужей ртути, проволока, висящая в бассейне, и постоянный магнит, поднимающийся снизу.В левой чашке проволока оставалась неподвижной, а магнит закреплялся небольшой нитью, а в правой он представлял противоположное.

Когда был приложен ток, лужа ртути замкнула свою цепь и создала магнитное поле, которое взаимодействовало с собственным полем магнита. В левой чашке двигался магнит, а в правой - проволока.

1822

Колесо Барлоу

Питер Барлоу создает униполярный двигатель и называет его Колесом Барлоу.Колесо в форме звезды опускает свои концы, вращаясь в лужу ртути, которая находится между спицами U-магнита. Когда острие колеса находится в ртути, цепь замыкается, и взаимодействие между током и полем U-магнита заставляет колесо вращаться. Между спицами колеса, касающимися ртути, инерция заставляет колесо вращаться на следующей спице. Он также обнаружил, что скорость этого вращения зависит от силы магнитного поля и силы тока.

1824-25

William Sturgeon демонстрирует первый электромагнит , способный поднимать вес в девять фунтов. Это было достигнуто с помощью куска железа весом семь унций, обернутого проволокой, и через него пропускали ток только одной батареи.

1827

Ányos Jedlik экспериментировал с электромагнитным вращающимся устройством, назвав его самовращающимся магнитом-молнией. Для решения задач непрерывного вращения он изобретает коммутатор .

В 1828 году он продемонстрировал устройство, которое имело три основных элемента того, что мы считаем электродвигателем; статор, вращатель и коммутатор. Постоянного магнита не было, поскольку магнитные поля создавались токами, протекающими через обмотки устройства. Все части устройства, как стационарные, так и вращающиеся, управлялись электромагнетизмом.

1831

Фарадей возвращается на сцену, обнаружив электромагнитной индукции , когда магнитное поле меняется.

Точно в то же время в Америке Джозеф Генри сформулировал закон индукции и создал механический рокер, первого предка двигателя постоянного тока. Он был сделан из электромагнита на полюсе, который раскачивался взад и вперед между двумя элементами батареи, что вызывало изменение полярности в коромысле.

Dynamo Ипполита Пиксии

1832

Ипполит Пиксии, французский производитель инструментов, создает динамо-машину, которая генерирует переменный ток от вращения; ранняя версия того, что мы теперь знаем как генератор переменного тока.Магнит вращали с помощью рукоятки, а магнитные полюса пропускали через катушку с железным сердечником. Он обнаружил, что каждый раз, когда полюс проходит через верх катушки, он испытывает кратковременный ток, но, что более важно, порядок, в котором он проходит через катушки, будет определять направление тока.

Позже он также сделал первый осциллирующий двигатель постоянного тока .

1834

Томас Дэвенпорт разрабатывает электродвигатель с батарейным питанием , который позволяет ему приводить в действие небольшую модель автомобиля.В 1837 году он стал первым ученым - но уж точно не последним - получившим патент на электрические машины.

1839

Мориц фон Якоби, после своих исследований машин, управляющих электромагнетизмом , конструирует 28-футовую электромоторную лодку. Он питается от аккумуляторных батарей и, хотя и неэффективен, способен перевозить четырнадцать пассажиров со скоростью три мили в час.

1879

Уолтер Бейли обнаруживает, что, включая и выключая аккумулятор, он может создать очень примитивный асинхронный двигатель без коммутатора .

1886

Электрическая тележка Спрага 1886

Компания Фрэнка Дж. Спага представила неискрящий двигатель с постоянной скоростью и фиксированными щетками. Он также изобретает рекуперативное торможение, которое позже стало важным для электропоездов и лифтов. Двигатель с постоянной скоростью может сохранять ту же скорость при разном весе.

В 87 и 88 годах он также изобрел электрическую тележку , которая была представлена ​​в Ричмонде, Вирджиния

.

1887

Патент Теслы 1888 года

Никола Тесла вместе с Альфредом С. Брауном формирует Tesla Electric Company и разрабатывает асинхронный двигатель , работающий на переменном токе , а не на постоянном.В этом двигателе использовался многофазный ток для создания вращающегося магнитного поля, которое вращало двигатель, идея, над которой он работал с 1882 года. Этот самозапускающийся двигатель не нуждался в коммутаторе, что делало его более безопасным и требовало меньше поддержание.

Работа Теслы над электричеством сыграла важную роль во многих изобретениях, и его часть истории электромоторов часто преуменьшается.

В том же 1887 году Фридрих Август Хазельвандер придумал идею использования трехфазной системы переменного напряжения и тока , создав первый трехфазный синхронный генератор с явными полюсами.К сожалению, его патентная заявка отклоняется.

1889–1891

Майкл Доливо-Добровольский конструирует трехфазный асинхронный двигатель , устройство, которое используется до сих пор, а позже изобретает трехфазные асинхронные двигатели с контактным кольцом , которые имеют пусковые резисторы. В 1891 году он успешно передал электроэнергию на 176 км с КПД 75%, что было очень впечатляющим достижением для того времени.

Замечание о магнетизме

Многие материалы в определенной степени подвержены воздействию магнитных полей.Обычно мы видим его в форме «постоянных магнитов», которые всегда излучают магнитное поле, хотя большинство материалов не обладают постоянным магнетизмом. Некоторые материалы притягиваются к магнитным полям, некоторые отталкиваются, а другие реагируют очень странным образом, и, что еще больше сбивает с толку, реакция может меняться в зависимости от температуры материала!

Самый простой способ увидеть, как работает магнетизм, - это посмотреть на Землю. Ядро нашей планеты заполнено расплавленным железом, из-за чего магнитное поле распространяется между северным и южным полюсами.Представьте, что между этими полюсами посреди земли проходит гигантская магнитная палочка. Когда вы используете компас, стрелка примерно приближается к северу от полюсов, поэтому вы знаете, какой путь есть! Важно отметить, что северный и южный магнитные полюса не совпадают в точности с географическими полюсами, как показано на этом изображении магнитного поля Земли.