15Фев

Принцип работы двс: Общее устройство двигателя автомобиля, схема работы двигателя внутреннего сгорания (ДВС)

Принцип работы ДВС | AUTO-GL.ru

Двигатели 

0

Время прочтения:

Двигатели внутреннего сгорания построены по одному принципу – энергия сгорания топлива превращается в кинетическую энергия вращения коленвала. Существуют два типа моторов – двухтактные и четырехтактные. Оба обладают своими преимуществами и недостатками, попробуем разобраться в чем отличия.

Схема устройства двухтактного двигателя

Рабочий цикл двухтактного двигателя состоит из впуска и выпуска происходящего за один оборот коленчатого вала, тогда как 4-х тактный имеет следующие циклы — впуск, сжатие, рабочий ход, выпуск. И протекают они за два оборота маховика. В двигателе с 4 тактами впуск и выпуск осуществляются в виде разных процессов, в двухтактнике они совмещены со сжатием топливной смеси и расширением рабочих газов. Принцип действия двухтактного двигателя:

  1. Первый такт – сжатие.
    Происходит движение поршня от нижней мертвой точки, при этом вначале закрывается продувочное окно. Отработанные выхлопные газы выводятся через выпускное отверстие. В этот момент в кривошипной камере под днищем поршня образуется область разрежения, куда поступает обогащенная топливная смесь из карбюратора (инжектора). Эта порция свежего воздуха выталкивает остатки выхлопных газов в выпускной коллектор. В момент наивысшего положения поршня происходит воспламенение смеси от свечи зажигания.
  2. Второй такт – рабочий ход или расширение. Температура и давление газов в камере сгорания резко увеличивается, под его действием поршень начинает движение к нижней мертвой точке, совершая полезную работу. Повышенное давление в кривошипной камере перекрывает впускной клапан, препятствуя попаданию отработанных газов в карбюратор. Через систему выпускных окон отработавшие газы уходят в глушитель, а через продувочное окно начинает поступать свежая горючая смесь в камеру сгорания.
    В самой нижней точке действие второго такта заканчивается и процесс повторяется.

Двухтактный дизельный двигатель работает по такому же принципу, только у него отсутствует свеча зажигания, а воспламенение топлива происходит от сжатия. Поэтому степень сжатия в дизельных двс намного выше бензиновых.

Содержание статьи

  • Особенности мотора с двумя тактами
  • Система смазки и приготовление топлива
  • Тюнинг двухтактного двигателя
  • Эксплуатация и причины поломки двигателей

Особенности мотора с двумя тактами

Двухтактный двигатель совершает полный цикл за один оборот коленвала, это позволяет получить большую удельную литровую мощность чем у 4-х тактного движка при тех же оборотах двигателя. Однако, кпд двухтактника будет ниже из-за несовершенства механизма фаз газораспределения, неизбежных потерь топливной смеси в процессе продувки и неполного рабочего хода поршня.

Двухтактный двигатель сильно греется, потому что во время работы высвобождается большая тепловая энергия. Иногда может потребоваться дополнительное охлаждение. В мотоциклах редко используются двухтактные моторы с большим количеством цилиндров, чаще всего применяется одноцилиндровый мотор с воздушным охлаждением.

При работе по двухтактному циклу поршень совершает меньше движений за один такт, а нагрузка вспомогательных газораспределительных, смазочных и охлаждающих систем на коленвал ниже или отсутствует совсем. Поэтому износ поршневой группы у них будет ниже. Если для легкой техники это не является решающим фактором, то тихоходный двухтактный дизельный двигатель может иметь в несколько раз больший ресурс, чем все остальные двс. Поэтому они нашли широкое распространение в тепловозах, генераторах, судовых двигателях.

Двухтактный бензиновый двигатель быстрее набирает обороты максимальной мощности. Этим активно пользуются мотоспортсмены, особенно в кроссовых дисциплинах, когда необходим мгновенный отклик на рукоятку газа. Кроме того, он проще в обслуживании, дешевле и легче четырехтактного.

Расход топлива у двухтактника будет выше на 25-30 %, шумность и вибрации тоже. Двигатель невозможно вписать в жесткие экологические нормы, даже если использовать инжекторные системы впуска и наддув. Большой расход воздуха требует применения специальных воздушных фильтров.

Система смазки и приготовление топлива

Работа двухтактного двигателя требует эффективной смазки движущихся узлов. Централизованная раздельная система смазки с масляным насосом, как у четырехтактных двигателей, здесь отсутствует, поэтому масло добавляется в бензин в соотношении 1:25 – 1:50. Полученный состав, находясь в поршневой и кривошипно-шатунной камере, смазывает подшипники шатуна, стенки цилиндра и поршневые кольца. При воспламенении воздушной смеси масло сгорает и удаляется вместе с выхлопными газами.

Моторное масло должно быть специальное — для двухтактного двигателя, обычно оно имеет маркировку 2Т на канистре. Использование обычного автомобильного масла недопустимо по ряду причин:

  • Масло для двухтактных двигателей обязано обладать хорошей растворимостью в бензине;
  • Обладает прекрасными смазывающими свойствами, улучшая работу двигателя и уменьшая трение;
  • Защита от коррозии трущихся деталей поршневой группы;
  • Двухтактное масло должно сгорать без остатка, не образовывая нагар и сажу. Высокая зольность обычного масла приводит к закоксовыванию поршневых колец.

Подачу смазки в двухтактный двигатель можно осуществить двумя способами. Первый и самый простой – смешивать с топливом в нужной пропорции. Второй – это раздельная система смазки двухтактного двигателя, когда состав из топлива и масла готовится непосредственно перед попаданием внутрь в специальном патрубке. В этом случае устанавливается отдельный бачок для масла, а его подача осуществляется с помощью специального плунжерного насоса.

Эта система получила широкое распространение на современных мотоциклах и скутерах. Кроме удобства использования (теперь не нужно доливать масло в бак на глаз каждую заправку), происходит серьезная экономия масла, потому что впрыск его зависит от оборотов двигателя. На холостых оборотах пропорция масла может составлять всего 1:200.

Тюнинг двухтактного двигателя

Любой двухтактный мотор имеет возможности для форсировки. Увеличение мощности при таком же объеме оправдано в спорте, а в повседневной эксплуатации двигатель становится эластичнее и экономичнее. Основные способы доработки:

  1. Увеличить диаметр выпускного отверстия и обеспечить его максимально продолжительное время открытия. Это позволяет выпустить максимальное количество газов. Таким образом повышаются тяговые возможности двигателя и его крутящий момент.
  2. Обеспечить эффективную продувку. Для этого можно увеличить диаметр впускного окна, тогда горючая смесь не будет задерживаться в картере и обеспечится своевременный впрыск в камеру сгорания.
  3. Применение на карбюраторе вихревого диффузора, который за то же время подает большее количество топливной смеси.
    Вместе с ним целесообразно применение воздушного фильтра нулевого сопротивления.
  4. Установка резонатора выпуска, расчет которого произведен под конкретный объем двигателя. Такое устройство возвращает часть топливной смеси назад в цилиндр через выпускное отверстие.
  5. Доработка шатунно-поршневой группы, ее облегчение и тщательная балансировка. Клапана и каналы должны быть притерты и не иметь заусенец (задиров), тормозящие и завихряющие потоки. Это уменьшает наполняемость цилиндра и снижает мощность.
  6. Применение инжекторных систем впрыска и регулирование фазами газораспределения. Это позволяет точнее дозировать количество подаваемого топлива и уменьшить потери горючей смеси во время продувки цилиндра.
  7. Установка систем наддува. Обычно это компрессорные нагнетатели, а на двухтактный дизельный двигатель может быть установлен традиционный турбокомпрессор. С его помощью увеличивается количество поступаемого в цилиндры воздуха, соответственно и количество горючего может быть увеличено.

Эксплуатация и причины поломки двигателей

Чаще всего двухтактные моторы встречаются в мототехнике, лодочных двигателях, газонокосилках, цепных пилах и прочих устройствах, где требуется применение легкого и надежного двигателя. Тем не менее, даже такой простой по конструкции движок может выйти из строя из-за нарушения правил эксплуатации.

  • Низкое качество бензина. Плохое топливо часто приводит к появлению детонации. Чаще всего это заметно на невысоких оборотах при подгазовках. Возникающие ударные нагрузки приводят к поломке перегородок поршней, чрезмерным нагрузкам на подшипники коленвала. Детонация может возникать из-за перегрева двигателя, нагара на поршне и бедной смеси.
  • Низкое качество деталей, из которых собран мотор. Особенно это актуально для китайских производителей, часто допускающих брак в производстве комплектующих. Это приводит к раннему выходу из строя поршня, коленчатого вала, цилиндра и прочих деталей, а затем и капитальному ремонту.
    Обычно помогает оценить состояние поршневой простой замер компрессии.
  • Низкокачественное моторное масло. Топливомасляная смесь для двухтактных двигателей имеет очень важное значение. Именно от его качества будет зависеть как мягко работает мотор, чистота выхлопа, отсутствие перегрева и лишних шумов. Плохое масло приводит к образованию слоя нагара на поршне, в коренных и шатунных подшипниках, к задирам на стенках цилиндра и юбке поршня, проходное сечение глушителя уменьшается из-за нагара. Масла для двухтактных двигателей следует применять синтетические или полусинтетические, использование минералки нежелательно.
  • Перегрев на двухтактном двигателе воздушного охлаждения не редкость. К этому приводит длительная работа с полностью открытым дросселем, или неисправность системы охлаждения. Перегрев может быть кратковременным, когда наблюдается потеря мощности и максимальных оборотов, после снижения нагрузки и охлаждения двигателя все приходит в норму. Клин возникает вследствие очень сильного перегрева, когда тепловой зазор между поршнем и цилиндром уменьшается настолько, что силы трения намертво прихватывают их между собой. После него требуется ремонт ЦПГ.
  • Карбюратор не настроен. Топливная смесь получается слишком бедной или очень богатой. Езда на переобогащенной смеси чревата высоким расходом топлива, потерей мощности и образованию нагара. Бедная смесь может вызывать детонацию и снижение максимальной мощности двигателя.

Чтобы продлить срок службы и отсрочить капремонт, следует провести правильную обкатку двухтактного лодочного или мотоциклетного мотора. Для этого пропорция масла смешиваемого с бензином должна быть немного выше установленной для нормальной эксплуатации. На такой смеси дать двигателю поработать в режиме неполной мощности несколько часов, что эквивалентно 500-1000 км пробега для скутера и мотоцикла.

Все же из-за токсичности выхлопа двухтактные двигатели постепенно вытесняются современными четырехтактными. Они продолжают использоваться только там, где требуется высокая удельная мощность при минимальной массе и простоте конструкции – мототехника, бензопилы и триммеры, модели самолетов и многое другое.

Принцип работы ДВС. Рабочие циклы двигателя внутреннего сгорания.

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

1
2
3
4


Рабочий цикл двигателя — ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.
Автомобильные двигатели работают, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня. Состоит из: такта впуска, сжатия, расширения (рабочего хода) и выпуска.
Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Принцип работы ДВС 

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

  • Впуск. Коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
  • Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
  • Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал. При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
  • Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

  • Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
  • Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
  • Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.
  • Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.


Диаграмма работы двигателя по схеме 1-2-4-3


Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

 

← Поршневые кольца двигателя внутреннего сгорания.  |  Проблемы холостого хода Nissan. Решаем проблему своими руками →

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Двигатель внутреннего сгорания (ДВС) был доминирующим первичным двигателем в нашем обществе с момента его изобретения в последней четверти XIX века [подробнее см. , например, Heywood (1988)]. Его цель состоит в том, чтобы генерировать механическую энергию из химической энергии, содержащейся в топливе и высвобождаемой при сгорании топлива внутри двигателя. Именно этот конкретный момент, когда топливо сжигается внутри рабочей части двигателя, дает двигателям внутреннего сгорания их название и отличает их от других типов, таких как двигатели внешнего сгорания. Хотя газовые турбины удовлетворяют определению двигателя внутреннего сгорания, этот термин традиционно ассоциируется с двигатели с искровым зажиганием (иногда называемые Отто, бензиновые или бензиновые двигатели ) и дизельные двигатели (или двигатели с воспламенением от сжатия ).

Двигатели внутреннего сгорания используются в различных устройствах, начиная от судовых силовых установок и электростанций мощностью более 100 МВт и заканчивая ручными инструментами, мощность которых составляет менее 100 Вт. Это означает, что размер и характеристики современных двигателей сильно различаются между от крупных дизелей с диаметром цилиндра более 1000 мм, совершающих возвратно-поступательные движения со скоростью до 100 об/мин, до небольших бензиновых двухтактных двигателей с диаметром цилиндра около 20 мм. В эти две крайности входят среднеоборотные дизельные двигатели, автомобильные дизели большой мощности, двигатели грузовых и легковых автомобилей, авиационные двигатели, двигатели мотоциклов и небольшие промышленные двигатели. Из всех этих типов бензиновые и дизельные двигатели для легковых автомобилей занимают видное место, поскольку они, безусловно, являются самыми крупными двигателями, производимыми в мире; как таковые, их влияние на социальную и экономическую жизнь имеет первостепенное значение.

Большинство поршневых двигателей внутреннего сгорания работают по так называемому четырехтактному циклу (рис. 1), который подразделяется на четыре процесса: впуск, сжатие, расширение/мощность и выпуск. Каждый цилиндр двигателя требует четырех ходов поршня, что соответствует двум оборотам коленчатого вала, чтобы завершить последовательность, которая приводит к производству мощности.

Рисунок 1. Цикл четырехтактного двигателя.

Такт впуска начинается с движения поршня вниз, который всасывает в цилиндр свежую топливно-воздушную смесь через порт/клапан в сборе, и заканчивается, когда поршень достигает нижней мертвой точки (НМТ). Смесь образуется либо с помощью карбюратора (как в обычных двигателях), либо путем впрыска бензина под низким давлением во впускной канал через форсунку игольчатого типа с электронным управлением (как в более совершенных двигателях). По сути, процесс впуска начинается с открытия впускного клапана непосредственно перед верхней мертвой точкой (ВМТ) и заканчивается, когда впускной клапан (или клапаны в двигателях с четырьмя клапанами на цилиндр) закрывается вскоре после НМТ. Время закрытия впускного клапана (клапанов) зависит от конструкции впускного коллектора, которая влияет на газодинамику и объемный КПД двигателя, а также на частоту вращения двигателя.

За тактом впуска следует такт сжатия , который фактически начинается при закрытии впускного клапана. Его целью является подготовка смеси к горению за счет повышения ее температуры и давления. Сгорание инициируется энергией, выделяемой через свечу зажигания в конце такта сжатия, и связано с быстрым повышением давления в цилиндре.

Такт мощности или расширения начинается с поршня в ВМТ сжатия и заканчивается в НМТ. В этот момент газы высокой температуры и высокого давления, образующиеся при сгорании, толкают поршень вниз, тем самым заставляя кривошип вращаться. Непосредственно перед тем, как поршень достигает НМТ, выпускной клапан (клапаны) открывается, и сгоревшие газы выходят из цилиндра из-за перепада давления между цилиндром и выпускным коллектором.

Этот такт выхлопа завершает цикл двигателя, удаляя из цилиндра сгоревшие, частично сгоревшие или даже несгоревшие газы, выходящие из процесса сгорания; следующий цикл двигателя начинается, когда впускной клапан открывается около ВМТ, а выпускной клапан закрывается на несколько градусов позже угла поворота коленчатого вала.

Важно отметить, что свойства бензина в сочетании с геометрией камеры сгорания оказывают существенное влияние на продолжительность сгорания, скорость повышения давления и образование загрязняющих веществ . При определенных условиях смесь в концевом газе может самовоспламениться до того, как пламя достигнет этой части цилиндра, что приведет к стуку , который вызывает колебания давления высокой интенсивности и частоты.

Свойство бензинового топлива сопротивляться самовоспламенению и таким образом предотвращать возможное повреждение двигателя в результате детонации характеризуется его октановым числом . До недавнего времени добавление небольшого количества свинца в бензин было предпочтительным методом подавления детонации, но связанные с этим риски для здоровья в сочетании с необходимостью использования катализаторов для снижения выбросов выхлопных газов обусловили необходимость использования неэтилированного бензина. Это требует уменьшения степени сжатия двигателя (отношение объема цилиндра в НМТ к объему в ВМТ), чтобы предотвратить детонацию с нежелательным влиянием на тепловой КПД.

Как уже упоминалось, четырехтактный цикл, также известный как цикл Отто в честь его изобретателя Николауса Отто, построившего первый двигатель в 1876 году, производит рабочий такт за каждые два оборота коленчатого вала. Одним из способов увеличения выходной мощности двигателя данного размера является преобразование его в двухтактный цикл (рис. 2), в котором мощность вырабатывается при каждом обороте двигателя.

Рисунок 2. Цикл двухтактного двигателя.

Поскольку этот режим работы приводит к увеличению выходной мощности, хотя и не до двойного уровня, ожидаемого при простых расчетах, он широко используется в мотоциклах, легковых автомобилях и морских судах как с искровым зажиганием, так и с дизельными двигателями. Дополнительным преимуществом является простая конструкция двухтактных двигателей, поскольку они могут работать с боковыми отверстиями в гильзе, закрывающимися и открываемыми движением поршня, вместо громоздкой и сложной конструкции с верхним кулачком.

В двухтактном цикле такт сжатия начинается после того, как впускное и выпускное отверстия закрываются поршнем; топливно-воздушная смесь сжимается, а затем воспламеняется свечой зажигания, аналогично воспламенению в четырехтактном бензиновом двигателе, чтобы инициировать сгорание вблизи ВМТ. При этом в картер допускается поступление свежего заряда перед последующим его сжатием движущимся вниз поршнем во время такта мощности или такта расширения . В этот период сгоревшие газы толкают поршень до тех пор, пока он не достигнет НМТ, что позволяет открыть сначала выпускные, а затем впускные (перекачивающие) каналы. Открытие выпускных отверстий позволяет сгоревшим газам выходить из цилиндра, в то время как частично в то же время свежий заряд, сжатый в картере, поступает в цилиндр через правильно ориентированные передаточные отверстия.

Перекрытие тактов впуска и выпуска в двухтактных двигателях является причиной того, что часть свежего заряда вытекает непосредственно из цилиндра в процессе продувки. Несмотря на различные попытки уменьшить масштабы этой проблемы путем введения дефлектора в поршень (рис. 2) и направления поступающего заряда в сторону от расположения выпускных отверстий, эффективность наддува в обычных двухтактных двигателях остается относительно низкой. Решение этой проблемы состоит в том, чтобы подавать топливо непосредственно в цилиндр, отдельно от свежего воздуха, через пневматические форсунки в период, когда и выпускное, и перепускное отверстия закрыты. Несмотря на короткий период, доступный для смешивания, распылители с подачей воздуха могут обеспечить гомогенную обедненную смесь во время воспламенения, генерируя капли бензина со средним диаметром менее 40 мкм, которые очень легко испаряются во время такта сжатия.

Среди различных типов двигателей внутреннего сгорания дизельный двигатель или двигатель с воспламенением от сжатия известен своим высоким КПД, сниженным расходом топлива и относительно низким общим выбросом газов. Его название происходит от имени немецкого инженера Рудольфа Дизеля (1858–1913 гг.), который в 1892 г. описал в своем патенте форму двигателя внутреннего сгорания, не требующую внешнего источника воспламенения и в которой сгорание инициируется самовоспламенением жидкого топлива, впрыскиваемого в двигатель. высокая температура и давление воздуха в конце такта сжатия.

Неотъемлемые преимущества эффективности дизельного двигателя проистекают из его обедненной смеси в целом, высокой степени сжатия двигателя, обеспечиваемой отсутствием воспламенения конечных газов (детонации) и более высокими степенями расширения. Как следствие, дизельные двигатели в двухтактной или четырехтактной конфигурации традиционно были предпочтительными силовыми установками для коммерческого применения, такого как корабли/лодки, энергогенераторы, локомотивы и гусеницы, и за последние 20 лет или около того , легковых автомобилей, а особенно в Европе.

Недостаток дизельных двигателей с низкой выходной мощностью был устранен за счет использования нагнетателей или турбонагнетателей, которые увеличивают отношение мощности к весу двигателя за счет увеличения плотности воздуха на входе. Ожидается, что турбокомпрессоры станут стандартными компонентами всех будущих дизельных двигателей, независимо от области применения.

Работа дизельного двигателя отличается от работы двигателя с искровым зажиганием главным образом способом образования смеси перед сгоранием. Только воздух вводится в двигатель через спиральный или направленный порт, а топливо смешивается с воздухом во время такта сжатия, после его впрыска под высоким давлением в форкамерный дизель с непрямым впрыском или IDI) или в основную камеру (дизель с непосредственным впрыском). или DI) непосредственно перед началом горения.

Потребность в хорошем смешивании топлива с воздухом в дизельных двигателях удовлетворяется системами впрыска топлива под высоким давлением, которые создают капли со средним диаметром около 40 мкм. Для легковых автомобилей системы впрыска топлива состоят из роторного насоса, нагнетательных трубок и форсунок топливных форсунок, которые различаются по своей конструкции в зависимости от применения; в дизельных двигателях с непосредственным впрыском используются форсунки с отверстиями, а в дизелях с непрямым впрыском используются форсунки игольчатого типа. В более крупных дизельных двигателях используются рядные топливные насосы высокого давления, насос-форсунки (насос и форсунка объединены в один блок) или отдельные одноствольные насосы, которые устанавливаются рядом с каждым цилиндром.

За последние 20 лет или около того осознание того, что ресурсы сырой нефти ограничены и что окружающая среда, в которой мы живем, становится все более и более загрязненной, побудило правительства принять законы, которые ограничивают уровней выбросов выхлопных газов транспортных средств. и двигателей всех типов. С момента их введения в Японии и США в конце 60-х годов и в Европе в 1970 году нормы выбросов постоянно становятся все более строгими, и производители двигателей сталкиваются с самой сложной задачей, связанной со стандартами, согласованными для 19 лет.96 и далее, которые обобщены для легковых автомобилей в таблице  1. Ожидается, что новые стандарты, которые будут введены в Европе в 2000 году, будут еще ниже, после калифорнийских уровней, которые требуют нулевых уровней выбросов после начала века. Однако неясно, удовлетворят ли существующие двигатели этим ограничениям, несмотря на отчаянные попытки инженеров по всему миру.

Таблица 1. Европейские нормы выбросов за 1996 год

Рисунок 3. Модель трехкомпонентного каталитического нейтрализатора.

Из таблицы 1 видно, что основными загрязняющими веществами в двигателях с искровым зажиганием являются углеводороды (HC), монооксид углерода (CO) и оксиды азота (NO x = NO + NO 2 ), а в дизельных двигателях , NO x и твердые частицы, состоящие из частиц сажи, образующихся при сгорании смазочного масла и углеводородов, являются наиболее вредными.

В настоящее время трехкомпонентные катализаторы, являющиеся стандартным компонентом современных легковых автомобилей, оснащенных двигателями с искровым зажиганием, работающими на неэтилированном бензине, пропускают около 90% сокращение выбросов HC, CO и NO x путем их преобразования в диоксид углерода (CO 2 ), воду (H 2 O) и N 2 .

К сожалению, эти катализаторы требуют стехиометрической (соотношение воздух-топливо ~14,5) работы двигателя, что нежелательно как с точки зрения расхода топлива, так и с точки зрения выбросов CO 2 . Альтернативным подходом является концепция сжигания обедненной смеси, которая обещает одновременное снижение расхода топлива и выбросов выхлопных газов за счет удовлетворительного сжигания бедных смесей с соотношением воздух-топливо намного выше 20. Ожидается, что разработка катализаторов сжигания обедненной смеси с эффективностью преобразования более 60% может позволить двигателям, работающим на обедненной смеси, соответствовать требованиям будущего законодательства по выбросам; это область активных исследований как в промышленности, так и в научных кругах. С другой стороны, новые дизельные двигатели зависят от двухкомпонентных или окислительных катализаторов для снижения содержания твердых частиц в выхлопных газах за счет преобразования углеводородов в CO 9 .0089 2 и H 2 O, а также по рециркуляции отработавших газов и замедленному впрыску для снижения уровней NO x .

ССЫЛКИ

Аркуманис, К. (ред.) (1988) Двигатели внутреннего сгорания . Академическая пресса.

Blair, G. P. (1990) Базовая конструкция двухтактных двигателей . Общество Автомобильных Инженеров.

Ferguson, C.R. (1986) Двигатели внутреннего сгорания . Джон Уайли и сыновья.

Хейвуд, Дж. Б. (1988) Основы двигателя внутреннего сгорания . Макгроу Хилл.

Стоун, Р. (1992) Введение в двигатели внутреннего сгорания . Macmillan Education Ltd., 2-е изд.

Weaving, JH (Ed.) (1990) Техника внутреннего сгорания: наука и технология . Прикладная наука Эльзевира.

Как работает двигатель внутреннего сгорания (шаг за шагом)

Ваш автомобиль работает на двигателе внутреннего сгорания. Хотя мы уверены, что вы знали эту часть. Вы здесь не для того, чтобы узнать, какой тип двигателя установлен в вашем автомобиле. Вместо этого вы хотите знать, как они работают.

Двигатели внутреннего сгорания довольно сложные штуки. Если бы мы рассказали вам все об их внутренней работе, мы бы были здесь весь день.

Вместо этого мы пошагово опишем, как они работают. К концу этой страницы у вас будет больше знаний, чем вы начали.

Содержание

Основы двигателя внутреннего сгорания

Неважно, какой у вас двигатель внутреннего сгорания, принцип тот же.

Вы впрыскиваете топливо в двигатель и поджигаете его. Когда это происходит, выделяется газ. Из-за того, что газ заключен в таком крошечном пространстве, давление нарастает. Энергия, вырабатываемая этим сгоранием топлива, приводит в действие остальную часть двигателя.

В двигателе внутреннего сгорания нет ничего нового. Хотя конструкция, конечно, с годами совершенствовалась, принцип работы двигателя внутреннего сгорания в значительной степени основан на тех же принципах, которые были установлены в середине 1800-х годов.

Есть четыре шага к двигателю внутреннего сгорания. На самом деле это четыре хода поршня, поэтому иногда вы можете увидеть автомобильные двигатели, называемые четырехтактными двигателями.

Да. Вы можете получить двухтактные двигатели, которые немного укорачивают процесс сгорания, но это выходит за рамки данного руководства. Это связано с тем, что эти двигатели, как правило, предназначены для инструментов с меньшей мощностью, например. газонокосилки, бензопилы и т. д.

Имейте в виду, что в вашем автомобиле есть множество компонентов, которые обеспечивают работу вашего двигателя внутреннего сгорания, например, двигатель внутреннего сгорания. топливный инжектор.

Однако здесь речь идет исключительно о двигателе внутреннего сгорания. Мы предполагаем, что вы уже понимаете, что будут компоненты, которые перемещают топливо из топливного бака к двигателю.

Аккумулятор автомобиля 

Помните, что хотя движением двигателя будет управлять двигатель вашего автомобиля, ему все равно потребуется немного энергии для запуска нескольких процессов.

Это питание поступает от аккумулятора вашего автомобиля. Аккумулятор автомобиля будет генерировать энергию для запуска двигателя.

Вы также должны помнить, что ваш автомобиль будет постоянно заряжать аккумулятор во время движения. Часть энергии движения от двигателя транспортного средства приводит в действие генератор переменного тока, который, в свою очередь, заряжает аккумулятор.

Однако, как это работает, выходит за рамки этой страницы. Здесь мы хотим сосредоточиться исключительно на части двигателя внутреннего сгорания.

Читайте также >> Как долго заряжать разряженный автомобильный аккумулятор от генератора?

Читайте также >> Как долго оставлять автомобиль включенным для зарядки аккумулятора (сделайте это)

Первый такт 

Хорошо, как мы уже сказали, вы уже должны знать, что в вашем автомобиле есть топливный бак. От топливного бака будет топливная форсунка.

По сути, это поршень и небольшая трубка, которая будет впрыскивать топливо в двигатель. Только небольшое количество топлива будет отправлено в двигатель за один раз.

Точное количество топлива зависит от объема двигателя. Все, что не сгорает в этот момент времени, будет храниться подальше от дороги.

Первый такт двигателя втянет в него топливо. Как мы уже говорили, это будет лишь небольшая сумма. Однако, как вы, вероятно, помните из школьных уроков химии, подача топлива в двигатель не сделает всю работу.

Чтобы был огонь, нужен воздух. Таким образом, в то же время немного кислорода тоже будет втягиваться. Точное соотношение между топливом и кислородом будет варьироваться.

Второй такт 

Задача двигателя внутреннего сгорания — обеспечить максимально контролируемый взрыв при минимальном количестве топлива. Это делает второй штрих гораздо более важным.

После того, как топливо будет втянуто в двигатель внутреннего сгорания, другой поршень поднимется и выдавит топливо и кислород.

Это известно как сжатие. Чем больше степень сжатия, тем больше мощность, исходящая от двигателя. Многие из более экономичных двигателей справятся с этой частью процесса.

Помните, что весь этот процесс будет невероятно быстрым, а сжатие займет всего доли секунды.

Третий такт 

Третий такт – это когда вступает в действие свеча зажигания вашего автомобиля.

При сжатии топлива свеча зажигания воспламеняется. Как следует из названия, свеча зажигания создает искру.

Вот почему ваш двигатель не будет работать без свечи зажигания или даже со свечой неправильного размера (она не достанет топлива).

Искра от свечи зажигания воспламеняет топливо. Это создает мощный взрыв внутри двигателя.

Это самая важная часть процесса. Это потому, что, когда произойдет этот взрыв, чистая сила, стоящая за ним, толкнет другой поршень.

У вас есть движение внутри двигателя. Именно эта небольшая реакция управляет всем движением внутри вашего двигателя.

Четвертый такт 

К настоящему времени все движение внутри этого двигателя уже произошло. Однако у нас остался еще один мазок.

Все это сгоревшее топливо находится в вашем двигателе (к настоящему времени это в основном водяной пар), и вы не хотите, чтобы оно болталось где-то рядом.

Это означает, что последний такт в этом двигателе вытолкнет все эти отходы из вашей системы. Четвертый такт, по сути, выталкивает отработавшее топливо из выхлопной трубы.

Процесс повторяется

Как мы уже говорили, весь этот процесс происходит очень быстро. Двигатель должен постоянно двигаться, а это значит, что топливо должно постоянно взрываться.

Это означает, что процесс занимает меньше секунды. Однако сейчас самое время познакомить вас с последним компонентом двигателя автомобиля.

Однако имейте в виду, что не все двигатели внутреннего сгорания не будут иметь этого компонента. Тем не менее, это очень важно для транспортного средства, потому что без него автомобиль не сможет генерировать достаточную мощность.

Если вы просматриваете рекламный материал для автомобиля, то заметите, что они часто гордятся количеством цилиндров, которые у них есть. Чем больше цилиндров в автомобиле, тем он экономичнее.

Каждый цилиндр автомобиля будет проходить четыре этапа, о которых мы упоминали ранее. Так, если у вас четырехцилиндровый двигатель, то процесс будет пройден сразу четыре раза. Если у вас шестицилиндровый двигатель, то процесс будет происходить сразу шесть раз.

Это означает, что в любой момент времени в вашем автомобиле может произойти до шести различных мини-топливных взрывов.

Каждый цилиндр будет всасывать собственное топливо и вызывать небольшие взрывы, приводящие в движение поршни автомобиля.

Это очень эффективный процесс, и одного цилиндра недостаточно, чтобы заставить работать весь автомобиль.

Как работает двигатель внутреннего сгорания ? >> Посмотрите видео ниже:

Работает ли дизельный двигатель так же, как бензиновый?

Принцип тот же. Хотя комплектующие немного отличаются, так что в бензиновый двигатель дизель не поставишь.

При этом требуется меньше дизельного топлива для запуска каждой части процесса. Это связано с тем, что дизельное топливо является более плотным топливом и, следовательно, производит больше энергии при воспламенении.

Однако компании, как правило, избегают использования дизельных двигателей просто потому, что для извлечения нужного количества энергии из дизеля требуется много усилий.

Если двигатель не был спроектирован должным образом, он не смог бы получить всю энергию от сжигания дизельного топлива, поэтому вы фактически тратите топливо впустую.

Помните, поскольку дизельное топливо более плотное, оно также создает большую нагрузку на систему.

Заключение

Как видите, принцип работы двигателя внутреннего сгорания невероятно прост. Очевидно, что двигатели транспортных средств будут невероятно хорошо спроектированы.