3Сен

Принцип двс: Принцип работы ДВС. Рабочие циклы двигателя

Содержание

Двигатель внутреннего сгорания (ДВС): устройство, принцип работы и классификация

Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания, плюсах и минусах ДВС – в нашем материале.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  • Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  • Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  • Система впрыска. Позволяет организовать дозированную подачу топлива.
  • В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

    Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

    Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

    А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

    Принцип работы двигателя

    Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

    При этом сам процесс преобразования энергии может отличаться.

    Самый распространённый вариант такой:

    1. Поршень в цилиндре движется вниз.
    2. Открывается впускной клапан.
    3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
    4. Поршень поднимается.
    5. Выпускной клапан закрывается.
    6. Поршень сжимает воздух.
    7. Поршень доходит до верхней мертвой точки.
    8. Срабатывает свеча зажигания.
    9. Открывается выпускной клапан.
    10. Поршень начинает двигаться вверх.
    11. Выхлопные газы выдавливаются в выпускной коллектор.

    Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

    При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.

    Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

    Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

    Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

    1. Такт выпуска.
    2. Такт сжатия воздуха.
    3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
    4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

    4 такта образуют рабочий цикл.

    При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

    Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

    • Поршень двигается снизу-вверх.
    • В камеру сгорания поступает топливо.
    • Поршень сжимает топливно-воздушную смесь.
    • Возникает компрессия. (давление).
    • Возникает искра.
    • Топливо загорается.
    • Поршень продвигается вниз.
    • Открывается доступ к выпускному коллектору.
    • Из цилиндра выходят продукты сгорания.

    То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

    Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

    Важно! Кроме количества тактов есть отличия в механизме газообмена.

    В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

    У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

    Классификация двигателей

    Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

    Классификация двигателей в зависимости от рабочего цикла

    В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:

    1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
    2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

    Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

    А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

    И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.

    Классификация двигателей в зависимости от конструкции

    • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
    • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

    Классификация двигателей по принципу подачи воздуха

    Подача воздуха также разделяет ДВС на два класса:

    1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
    2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

    Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

    Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

    Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

    Преимущества ДВС

    1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
    2. Высокая скорость заправки двигателя топливом.
    3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе

    4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.

  • Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
  • Недостатки ДВС

    При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

    Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

    Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

    Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

    Сердце автомобиля – ДВС или двигатель внутреннего сгорания, сложный технологический узел, обладающий множеством параметров. Их необходимо знать автолюбителю , чтобы ориентироваться при выборе автомобиля и ориентироваться во время эксплуатации и при ремонте. Наиболее значимыми параметрами являются:

    • Объем камер сгорания – определяет показатель расхода топлива и в значительной степени мощности;
    • Мощность – измеряется в киловаттах, но чаще используются лошадиные силы;
    • Крутящий момент – тяговое усилие;
    • Расход топлива – показатель указывается в литрах на 100 км. При этом учитываются дорожные условия: город, шоссе, смешанный режим;
    • Расход масла — тут важно учитывать тип, а порой и марку потребляемого масла.

    Типовые параметры работы двигателей

    Существует разделение ДВС на такие типы:

    • Бензиновые – часто используются в гражданском автомобилестроении, наиболее распространенный тип;
    • Дизельные – эти агрегаты отличаются надежностью и экономичностью. При этом несколько уступают бензиновым аналогам в динамике (набор скорости), но выигрывают по показателям проходимости. Широко используются военными, распространены в гражданском автомобилестроении;
    • Газовые – используют в качестве топлива сжиженный, природный, сжатый газ, который закачивается в специальные баллоны;

    В список можно включить гибридные газодизельные агрегаты и роторно-поршневые. Последний тип широко использовался авиацией до середины XX века, в современных условиях встречается редко.

    Количество цилиндров двигателя

    Количество цилиндров в ДВС определяют его мощность. В процессе технической и технологической эволюции их количество постепенно увеличилось с 1 до 16. С увеличением количества цилиндров сами агрегаты становились больше. Решением в части экономии пространства стала концепция расположения цилиндров.

    Расположение цилиндров

    Существует такое понятие, как конфигурация двигателя, она определяется компоновкой цилиндров, их расположением. Можно выделить 2 основных типа – рядный, когда цилиндры расположены в ряд и V-образный. Второй тип наиболее часто используется в современном автопроме. В этом случае цилиндры располагаются под углом и соединяются с коленчатым валом, образуя латинскую букву V. Такая компоновка имеет подвиды:

    • W-образное расположение цилиндров;
    • Y-образное расположение цилиндров.

    Реже применяются компоновки, образующие форму латинских букв U и H.

    Объем двигателя

    Рабочий объем ДВС определяет его мощность. Этот параметр измеряется в см3, но чаще в литрах. Он определяется путем суммирования внутреннего объема всех цилиндров силового агрегата. За основу в вычислениях берется поперечное сечение цилиндра и умножается на длину хода по нему поршня. В результате получается рабочий объем.
    Параметр также определяет во многих странах мира сумму сборов. Соответственно чем больше объем, тем мощнее двигатель, а значит, его владелец заплатит больший взнос. Перспективным направлением разработок современности являются ДВС с изменяемым объемом. Это технология, когда при определенных условиях цилиндры отключаются.

    Материал, из которого изготавливается двигатель

    Основным материалом в производстве двигателей являются металлы и их сплавы:

    • Чугун – обеспечивает надежность и прочность, но минусом является внушительный вес;
    • Алюминиевые сплавы – дают неплохую прочность, при этом легкие. Недостаток – большая стоимость;
    • Магниевые сплавы – наиболее дорогостоящий материал, отличается высокой прочностью.

    Многие производители автомобилей комбинируют материалы. Это во многом диктуется принадлежностью модели к тому или иному классу, что ставит ее в определенные ценовые рамки.

    Мощность двигателя

    Основополагающий параметр ДВС. Он измеряется в лошадиных силах, реже в кВт (киловатты). Мощность определяет скоростной предел и динамику разгона. Это еще один важный момент в условиях высокой конкуренции между производителями. Серьезная борьба идет в сегменте премиумных, спортивных автомобилей, а также в классе роадстеров и мускулкаров. Здесь разгон от 0 до 100 км/ч играет важную роль и может быть меньше 4 секунд.

    Крутящий момент

    Крутящий момент – параметр, определяющий тяговую силу мотора, обозначается Н/м (Ньютоны на метр). Значение непосредственно связано с мощностью и динамикой, хотя и не является для них определяющим. В значительной степени крутящий момент влияет на «эластичность» силового агрегата. Под этим словом подразумевается возможность ускоряться при низких оборотах. Соответственно, чем больше ускорение, тем эластичней мотор.

    Расход топлива

    Показатель потребления топлива двигателем зависит от его рабочего объема, а соответственно мощности. Основополагающую роль играет тип топливной системы:

    • Карбюраторная;
    • Инжекторная.

    Измеряется показатель в литрах на 100 км. Техническая документация современных автомобилей предоставляет данные о расходе топлива при нескольких режимах движения: езда по городу, трассе, смешанный тип. В некоторых моделях, преимущественно внедорожниках, указывается расход при движении в условиях бездорожья, так как задействуются все 4 колеса и потребление бензина, дизеля значительно возрастает.

    Тип топлива

    ДВС могут потреблять разные виды топлива, но в основном используются:

    • Бензин – продукт переработки нефти-сырца или вторичной перегонки нефтепродуктов. Основополагающим показателем является октановое число, которое указывается в цифрах. Буквенное сочетание, стоящее перед цифрами «АИ» означает:
      А – бензин автомобильный;
      И – октановое число определено исследовательским способом. Если этой буквы в маркировки нет, значит, октановое число выведено моторным методом.
      Российские стандарты предусматривают такие марки бензина: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее востребованными в настоящее время являются марки с октановым числом 92,95,98;
    • Дизель или дизельное топливо – получается путем промышленного перегона нефти. В его состав входят 2 вещества:
      1. Цетан – легковоспламеняющийся компонент, чем его содержание больше, тем выше качество топлива;
      2. Метилнафталин – не горючий компонент.
      Основополагающими характеристиками дизеля являются: прокачиваемость и воспламеняемость. В зависимости от спецификации подразделяется на: летнее, зимнее, арктическое (ориентировано на использование при экстремально низких температурах).

    Также ДВС в качестве топлива может использовать газы: метан, пропан, бутан. Для этого на автомобиль устанавливаются специальные системы.

    Расход масла

    Показатель расхода масла указывается производителем автомобиля в технической документации к нему. Нормальным считается потребление смазки в соотношении 0,8–3% от потребляемого количества топлива. Также на этот показатель влияет размер двигателя, он увеличивается на больших, мощных агрегатах, особенно дизельных.
    Различают расход масла:

    • Штатный – испарение смазочного материала с цилиндров, выдавливание через картер газами, смазка компрессора турбины;
    • Нештатный – течи уплотнений, потеря масла через сальники коленвала, маслосъемные поршневые кольца, перемычки поршня, когда происходит их разрушение.

    К чрезмерному расходу приводит использование масла низкого качества и несоответствующей требованиям технической эксплуатации марки.

    Ресурсная прочность

    Ресурсная прочность – показатель, определяющий частоту проведения ТО. Измеряется пробегом. Оптимальное количество пройденных километров от 5000 до 30 000. Этот показатель дает возможность рассчитать максимальный срок эксплуатации силового агрегата.

    Тип топливной системы

    На бензиновые и дизельные моторы устанавливаются разные типы топливных систем. Бензиновые агрегаты могут оснащаться карбюраторной или инжекторной системой. Первая основана на механическом принципе, подача топлива регулируется дроссельной заслонкой. Второй тип – инжекторный позволяет осуществлять настройки с помощью электронных средств. Это значительно увеличивает КПД двигателя, сокращает расход топлива.
    Дизельные агрегаты оснащаются ТНВД (топливными насосами высокого давления). Это устройство считается устаревшим и ненадежным. Чаще всего оно используется совместно с форсунками, обладающими функциями насоса. Но сами по себе они не могут обеспечить стабильную работу двигателя.

    Тип бензиновой системы впуска

    Существует 2 разновидности топливных бензиновых систем: карбюраторная, инжекторная. Они отличаются конструктивным устройством, а также принципами подачи топлива в цилиндры:

    • Карбюратор вливает бензин сплошным потоком, что затрудняет его смешивание с воздухом и детонацию. Это приводит к увеличенному расходу топлива, снижению технических характеристик мотора;
    • Инжекторная система превращает топливо в мелкодисперсную субстанцию – распыляет его. Это дает ему возможность быстро смешиваться с воздухом внутри цилиндра и приводит к увеличению характеристик двигателя и уменьшению расхода топлива.

    Тип бензиновой системы впрыска

    Существует одноточечная и многоточечная система впрыска. Первая не используется на современных моторах, вторая, в свою очередь, многоточечная система бывает:

    • Распределенной . Она обеспечивает стабильную работу силового агрегата, но не обеспечивает высокую динамику и не увеличивает мощность;
    • Прямой . В этом случае обеспечивается оптимальный расход топлива, увеличивается мощность двигателя и его ресурсная прочность. Недостатком системы является нестабильность работы на малых оборотах. Также минусом можно считать высокую требовательность к качеству бензина.

    Дизельная система впрыска

    Классическая схема впрыска топлива дизельного ДВС выглядит так:

    • ТНВД – топливный насос высокого давления подает горючее в рампу;
    • В рампе дизельное топливо нагнетается и с помощью форсунок-насосов подается в камеру сгорания.

    На сегодняшний день это наиболее надежная схема впрыска дизельного топлива.

    Форсунки впрыска

    По принципу работы форсунки впрыска бывают:

    • Механические;
    • Пьезотронные.

    Последние обеспечивают плавную работу двигателя. Больше ни на какие характеристики мотора форсунки впрыска не влияют.

    Количество клапанов

    Клапана, их количество влияет на показатель мощности мотора. Считается, что при большем количестве клапанов, работа двигателя становится плавнее. Устанавливаются они на впуск и выпуск цилиндра от 2 до 5 штук. Недостатком большого количества клапанов является увеличенный расход топлива.

    Компрессор

    Главная функция компрессора – повышение мощности ДВС без увеличения его размеров. Это делается с помощью нагнетания в камеру сгорания большего объема воздуха, что позволяет делать взрыв топливной смеси более мощным. Устанавливается компрессор на впускную систему автомобиля.
    Компрессор приводится в движение механическим способом через соединение с коленвалом. Это делается посредством ремня или цепи. Турбокомпрессор нагнетает воздух под действием потока газов, которые крутят турбину, отвечающую за подачу дополнительной порции атмосферной массы.
    Компрессоры по принципу подачи воздуха делятся на:

    • Центробежные – простая конструкция, где нагнетателем является крыльчатка;
    • Роторные – воздух нагнетается кулачковыми валами;
    • Двухвинтовые – функции нагнетателей выполняют винты, расположенные параллельно друг другу.

    Система газораспределения

    ГРМ или газораспределительный механизм отвечает за потоками газов в цилиндре. Он также выполняет функцию переключателя фаз процесса распределения. Принцип действия основан на блокировании и открывании впускных и выпускных отверстий камер сгораний. Это делается при помощи регулировочных элементов:

    • Клапанов;
    • Валов с приводами;
    • Толкателей;
    • Коромысел;
    • Шлангов.

    По принципу управления процессом распределения газов ГРМ разделяются на:

    • Клапанные;
    • Золотниковые;
    • Поршневые.

    Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.

    Типы двигателей

    Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

    • впуск воздуха или его смеси с топливом;
    • сжатие рабочей смеси,
    • рабочий ход при сгорании рабочей смеси;
    • выпуск отработавших газов.

    Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

    Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

    • в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
    • в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
    • двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

    Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).

    Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

    • большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
    • большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
    • меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

    Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

    Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

    Компоновка поршневых двигателей

    Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

    Рядный двигатель V-образный двигатель

    Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

    V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

    Оппозитный двигатель VR-двигатель

    Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

    VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

    W-двигатель W-двигатель

    W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

    Конструктивные параметры двигателей

    Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

    Конструктивные параметры двигателей

    Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.

    Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.

    Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.

    Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.

    Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

    Показатели двигателей

    Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

    Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

    Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

    Крутящий момент увеличивается с ростом:

    • рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
    • давления горящих газов в цилиндрах , которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется “стуком поршневых пальцев”) или ростом нагрузок в дизелях.

    Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

    Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

    Двигатели большей мощности производители получают увеличением:

    • рабочего объема , что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
    • оборотов коленчатого вала , число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
    • давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

    Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

    Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

    Характеристики двигателей

    При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

    Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

    Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

    Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

    Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

    Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

    Пунктирной линией на графике показаны более оптимальные характеристики двигателя.

    Источник Источник Источник Источник http://pro-sensys.com/info/articles/obzornye-stati/dvigatel-vnutrennego-sgoraniya/
    Источник http://gearavto.ru/parametry-dvigatelej-avtomobilya/

    Типы и параметры ДВС

    Понятие двс. Устройство и принцип работы двигателя внутреннего сгорания

    Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.

    Виды двигателей

    Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

    Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

    Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

    • Паровая машина
    • Бензиновый двигатель
    • Карбюраторная система впрыска
    • Инжектор
    • Дизельные двигатели
    • Газовый двигатель
    • Электрические моторы
    • Роторно-поршневые ДВС

    Паровая машина

    Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.

    На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.

    Бензиновый двигатель

    Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:

    • С карбюратором.
    • Инжекторного типа.

    Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).

    Карбюраторная система впрыска

    Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.

    Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.

    Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.

    Инжектор

    Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

    С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

    Дизельные двигатели

    Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

    На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

    Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

    Газовый двигатель

    Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

    Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

    Электрические моторы

    Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

    Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

    Гибриды

    Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.

    1. Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
    2. Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.

    Роторно-поршневые ДВС

    Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

    Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

    Водородный мотор

    НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня в ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.

    В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.

    Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.

    Вывод

    Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.

    На наших дорогах чаще всего можно встретить автомобили, потребляющие бензин и дизельной топливо. Время электрокаров пока не настало. Поэтому рассмотрим принцип работы двигателя внутреннего сгорания (ДВС). Отличительной чертой его является превращение энергии взрыва в механическую энергию.

    При работе с бензиновыми силовыми установками различают несколько способов формирования топливной смеси. В одном случае это происходит в карбюраторе, а потом это все подается в цилиндры двигателя. В другом случае бензин через специальные форсунки (инжекторы) впрыскивается непосредственно в коллектор или камеру сгорания.

    Для полного понимания работы ДВС необходимо знать, что существует несколько типов современных моторов, доказавших свою эффективность в работе:

    • бензиновые моторы;
    • двигатели, потребляющие дизельное топливо;
    • газовые установки;
    • газодизельные устройства;
    • роторные варианты.

    Принцип работы ДВС этих типов практически одинаковый.

    Такты ДВС

    В каждом есть топливо, которое взрываясь в камере сгорания, расширяется и толкает поршень, установленный на коленчатом валу. Далее это вращение посредством дополнительных механизмов и узлов передается на колеса автомобиля.

    В качестве примера будем рассматривать бензиновый четырехтактный мотор, так как именно он является самым распространенным вариантом силовой установки в машинах на наших дорогах.

    Такты :

    1. открывается впускное отверстие и происходит заполнение камеры сгорания подготовленной топливной смесью
    2. происходит герметизация камеры и уменьшение ее объема в такте сжатия
    3. взрывается смесь и выталкивает поршень, который получает импульс механической энергии
    4. камера сгорания освобождается от продуктов горения

    В каждом из этих этапов работы ДВС заложена своя происходит несколько одновременных процессов. В первом случае поршень находится в самой нижней своей позиции, при этом открыты все клапаны, впускающие топливо. Следующий этап начинается с полного закрытия всех отверстий и перемещения поршня в максимальную верхнюю позицию. При этом все сжимается.

    Достигнув снова крайней верхней позиции поршня, на свечу поступает напряжение, и она создает искру, зажигая смесь для взрыва. Сила этого взрыва толкает поршень вниз, а в это время открываются выпускные отверстия и камера очищается от остатков газа. Затем все повторяется.

    Работа карбюратора

    Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.

    Устройство карбюратора

    Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.

    Недостатки карбюраторных систем:

    • нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
    • превышение лимитов вредных веществ в выхлопных газах;
    • низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.

    Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.

    Работа инжекторных моторов

    Принцип работы инжекторного двигателя заключается в непосредственном впрыске бензина во впускной коллектор или камеру сгорания. Визуально все схоже с работой дизельной установки, когда подача выполняется дозировано и только в цилиндр. Разница лишь в том, что у инжекторных агрегатов установлены свечи для поджигания.

    Конструкция инжектора

    Этапы работы бензиновых моторов с прямым впрыском не отличаются от карбюраторного варианта. Разница лишь в месте формирования смеси.

    За счет этого варианта конструкции обеспечиваются достоинства таких двигателей:

    • увеличение мощности до 10% при схожих технических характеристиках с карбюраторным;
    • заметная экономия бензина;
    • улучшение экологических характеристик по выбросам.

    Но при таких достоинствах есть и недостатки.

    Основными являются обслуживание, ремонтопригодность и настройка. В отличие от карбюраторов, которые можно самостоятельно разобрать, собрать и отрегулировать, инжекторы требуют специального дорогостоящего оборудования и установленного большого числа разных датчиков в автомобиле.

    Способы впрыска топлива

    В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.

    Одноточечный вариант впрыска

    Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку.

    Выгода заключается в получении экономии при расходе.

    Моноточечный вариант подачи топлива

    Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.

    Прямой впрыск в камеру

    Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.

    Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.

    Двигатель внутреннего сгорания на жидком топливе, разработанный и впервые применённый на практике во второй половине 19-го века, являлся вторым в истории, после парового двигателя, примером создания агрегата, преобразующего энергию в полезную работу. Без этого изобретения невозможно себе представить современную цивилизацию, ведь транспортные средства с ДВС различного типа широко задействованы в любой отрасли, обеспечивающей существование человека.

    Транспорт, приводимый в действие двигателем внутреннего сгорания, играет решающую роль в приобретающей все большее и большее значение на фоне глобализационных процессов всемирной логистической системе.

    Все современные транспортные средства можно разделить на три больших группы, в зависимости от типа используемого двигателя. Первая группа ТС использует электродвигатели. Сюда входят и привычный городской общественный транспорт – троллейбусы и трамваи, и электропоезда с электромобилями, и огромные суда и корабли, использующие атомную энергию – ведь и современные ледоколы, и атомные субмарины, и авианосцы стран НАТО используют электродвигатели. Вторая группа – это техника, оснащенная реактивными двигателями.

    Разумеется, такой тип двигателей используется преимущественно в авиации. Наиболее многочисленной, привычной и значимой является третья группа транспортных средств, которая использует двигатели внутреннего сгорания. Это – наибольшая и по количеству, и по разнообразию, и по влиянию на хозяйственную жизнь человека группа. Принцип работы ДВС одинаков для любых транспортных средств, оснащённых таким двигателем. В чем он заключается?

    Как известно, энергия не берется ниоткуда и не уходит в никуда. Принцип работы двигателя автомобиля в полной мере основывается на этом постулате закона сохранения энергии.

    Максимально обобщенно можно сказать, что для выполнения полезной работы используется энергия молекулярных связей жидкого топлива, сжигаемого в процессе работы двигателя.

    Распространению ДВС на жидком топливе способствовали несколько уникальных свойств самого топлива. Это:

    • высокая потенциальная энергия молекулярных связей используемых в качестве топлива смеси легких углеводородов «например, бензина»
    • достаточно простой и безопасный, в сравнении, например, с атомной энергией, способ ее высвобождения
    • относительная распространенность легких углеводородов на нашей планете
    • природное агрегатное состояние такого топлива, позволяющее удобно хранить и транспортировать его.

    Еще одним важнейшим фактором является то, что в качестве окислителя, необходимого для процесса высвобождения энергии, выступает кислород, их которого более чем на 20 процентов состоит атмосфера. Это избавляет от необходимости возить не только запас топлива, но и запас катализатора.

    В идеальном случае вступить в реакцию должны все молекулы определённого объёма топлива и все молекулы определённого объёма кислорода. Для бензина эти показатели соотносятся как 1 к 14,7, т.е., для сгорания килограмма топлива необходимо почти 15 кг кислорода. Однако такой процесс, называемый стехиометрическим, на практике нереализуем. В действительности всегда остаётся какая-то часть топлива, не соединившаяся с кислородом во время протекания реакции.

    Более того, для определённых режимов работы ДВС стехиометрия даже вредна.

    Теперь, когда химические процесс в общих чертах понятны, стоит рассмотреть механику процесса превращения энергии топлива в полезную работу, на примере четырёхтактного ДВС, работающего по так называемому циклу Отто.

    Наиболее известным и, что называется, классическим циклом работу является запатентованный еще в 1876 году Николаусом Отто процесс работы двигателя, состоящий из четырех частей. «тактов, отсюда и четрыехтактные ДВС». Первый такт – создание поршнем разрежения в цилиндре собственным перемещением под воздействием веса. В результате цилиндр заполняется смесью кислорода и паров бензина «природа не терпит пустоты». Продолжающий движение поршень сдавливает смесь – получаем второй такт. На третьем такте смесь воспламеняется «Отто применял обычную горелку, сейчас за это ответственна свеча зажигания».

    Воспламенение смеси создаёт выделение большого количества газа, который давит на поршень и заставляет его подниматься – выполнять полезную работу. Четвёртый такт – открытие выпускного клапана и вытеснение продуктов сгорания возвращающимся поршнем.

    Таким образом, только запуск двигателя требует воздействия извне – прокручивания коленвала, соединённого с поршнем. Сейчас это делается с помощью силы электричества, а на первых автомобилях коленвал приходилось проворачивать вручную «этот же принцип используется и в автомобилях, в которых предусмотрен принудительный ручной пуск двигателя».

    Со времени выпуска первых автомобилей немало инженеров пытались изобрести новый цикл работы ДВС. Вначале это было связано с действием патента, которое многим хотелось обойти.

    В результате уже в начале прошлого века был создан цикл Аткинсона, который изменил конструкцию двигателя таким образом, чтобы все движения поршня совершались за один оборот коленвала. Это позволило повысить КПД двигателя, но уменьшило его мощность. Кроме того, двигатель, работающий по такому циклу, не нуждается в отдельном распределительном вале и редукторе. Однако этот двигатель не получил распространения из-за снижения мощности агрегата и достаточно сложной конструкции.

    Вместо него на современных атвомобилях зачастую используется цикл Миллера.

    Если Аткинсон уменьшил такт сжатия, увеличив КПД, но изрядно усложнив работу двигателя, то Миллер предложил уменьшить такт впуска. Это позволило снизить фактическое время сжатия смеси без уменьшения ее геометрического сжатия. Таким образом, КПД каждого цикла работы ДВС увеличивается, за счет чего снижается расход топлива, сжигаемого «впустую».

    Однако большинство двигателей работают по циклу Отто, так что более подробно необходимо рассмотреть именно его.

    Даже наиболее простой вариант ДВС включает четырнадцать важнейших элементов, необходимых для его работы. Каждый элемент имеет определённые функции.

    Так, цилиндр выполняет двоякую роль — в нем происходит активация воздушной смеси и двигается поршень. В части, называемой камерой сгорания, установлена свеча, и два клапана, один из которых перекрывает поступление топлива, другой – выпуск отработанных газов.

    Свеча – устройство, обеспечивающее поджиг смеси с необходимой цикличностью. По сути, представляет собой устройство для получения достаточно мощной электрической дуги на короткий промежуток времени.

    Поршень перемещается в цилиндре под действием расширяющихся газов или от воздействия коленвала, переданного через кривошипно-шатунный механизм. В первом случае поршень превращает энергию сгорания топлива в механическую работу, во втором – сжимает смесь для лучшего возгорания либо создает давление для удаления отработанных остатков смеси из цилиндра.

    Кривошипно-шатунный механизм передаёт момент от поршня к валу и наоборот. Коленчатый вал благодаря своей конструкции преображает поступательное «вверх-вниз» движение поршня во вращательное.

    Впускной канал, в котором располагается впускной клапан, обеспечивает попадание смеси в цилиндр. Клапан обеспечивает цикличность поступления смеси.

    Выпускной клапан, соответственно, удаляет накопившиеся продукты сгорания смеси. Для обеспечения нормальной работы двигателя в момент нагнетания давления и поджога смеси он закрыт.

    Работа бензинового ДВС. Подробный разбор

    При такте всасывания поршень опускается вниз. Одновременно открывается впускной клапан, и в цилиндр подаётся топливо. Таким образом, в цилиндре оказывается топливовоздушная смесь. В определённых типах бензиновых двигателей эта смесь приготавливается в специальном устройстве – карбюраторе, в других смешение происходит непосредственно в цилиндре.

    Далее поршень начинает подниматься. Одновременно впускной клапан закрывается, что обеспечивает создание достаточно большого давления внутри цилиндра. При достижении поршнем крайней верхней точки вся топливно-воздушная смесь оказывается сжатой в части цилиндра, называемой камерой сгорания. В этот момент свеча дает электрическую искру, и смесь воспламеняется.

    В результате сгорания смеси выделяется большое количество газов, которые, стремясь заполнить собой весь предоставленный объем, давят на поршень, заставляя его опускаться. Эта работа поршня передается посредством кривошипно-шатунного механизма на вал, который начинает вращаться и вращать привод колес автомобиля.

    Как только поршень завершает свое движение вниз, открывается клапан выпускного коллектора.

    Оставшиеся газы устремляются туда, так как на них давит поршень, идущий вверх под воздействием вала. Цикл закончен, далее поршень снова опускается вниз, начиная новый цикл.

    Как видно, полезную работу выполняет лишь одна фаза цикла. Остальные фазы — это работа двигателя «на самого себя». Даже такой положение вещей делает двигатель внутреннего сгорания одной из наиболее удачных по КПД систем, внедренных в производство. В то же время, возможность уменьшения «холостых» в смысле КПД циклов приводит к появлению новых, более экономичных систем. Кроме того, разрабатываются и ограниченно внедряются двигатели, которые вообще лишены поршневой системы. Например, некоторые японские автомобили оснащены роторными двигателями, имеющими более высокий коэффициент полезного действия.

    В то же время, такие двигатели имеют ряд недостатков, связанных, в основном, с дороговизной производства и сложностью обслуживания таких моторов.

    Система питания

    Для того чтобы поступающая в камеру сгорания горючая смесь правильно сжигалась и обеспечивала бесперебойную работу двигателя, она должна вводится четко отмеренными порциями и быть соответствующим образом подготовлена. Для этой цели служит топливная система, важнейшими частями которой являются бензобак, топливопровод, топливные насосы, устройство для смешивания топлива и воздуха, коллектор, различные фильтры и датчики.

    Понятно, что назначение бензобака – хранить необходимое количество топлива. Топливо воды используются в качестве магистралей для перекачки с помощью бензинового насоса, фильтры бензина и воздуха нужны, чтобы не допустить засорения тонких коллекторов, клапанов и топливоводов.

    Подробнее стоит остановиться на работе карбюратора. Несмотря на то, что автомобили с такими устройствами больше не выпускаются, немало машин с карбюраторным типом двигателя до сих пор эксплуатируется во многих странах мира. Карбюратор смешивает топливо с воздухом следующим образом.

    В поплавковой камере поддерживается постоянный уровень топлива и давления благодаря балансировочному отверстию, стравливающему лишний воздух,и поплавку, открывающему клапан топливовода, как только уровень топлива в камере карбюратора снижается. Карбюратор через жиклер и диффузор связан с цилиндром. Когда давление в цилиндре снижается, точно отмеренное благодаря жиклеру количество топлива устремляется в диффузор воздушной камеры.

    Тут, за счет очень маленького диаметра отверстия, оно под большим давлением проходит в цилиндр, бензин смешивается с атмосферным воздухом, прошедшим через фильтр, и образованная смесь попадает в камеру сгорания.

    Проблема карбюраторных систем – в невозможности максимально точно отмерить количество топлива и количество воздуха, попадающие в цилиндр. Поэтому все современные автомобили оснащены системой впрыска, называемой также инжекторной.

    В инжекторном двигателе вместо карбюратора впрыск осуществляется форсункой или форсунками – специальным механическим распылителем, важнейшей частью которого является электромагнитный клапан. Эти устройства, особенно работая в паре со специальными вычислительными микрочипами, позволяют впрыскивать точно отмеренное количество топлива в необходимый момент. В результате двигатель работает ровнее, запускается легче, потребляет меньше топлива.

    Механизм газораспределения

    Понятно, каким образом карбюратор подготавливает горючую смесь из бензина и воздуха. Но как работают клапаны, обеспечивающие своевременную подачу этой смеси в цилиндр? За это ответственен механизм газораспределения. Именно он выполняет своевременное открытие и закрытие клапанов, а также обеспечивает необходимую длительность и высоту их подъема.

    Именно эти три параметра и являются в совокупности фазами газораспределения.

    Современные двигатели имеют специальное устройство для изменения этих фаз, называемое фазовращатель двс принцип работы которого основан на повороте в случае необходимости распредвала. Эта муфта при увеличении количества впрыскиваемого топлива поворачивает распределительный вал на определённый угол по ходу вращения. Такой изменение его положения приводит к тому, что впускные клапаны открываются раньше, и камеры сгорания наполняются смесью лучше, компенсируя постоянно возрастающую потребность в мощности. На наиболее технически передовых моделях стоит несколько таких муфт, они управляются достаточно сложной электроникой и могут регулировать не только частоту открытия клапана, но и его ход, что отлично сказывается на работе двигателя при максимальных оборотах.

    Принцип работы системы охлаждения двигателя

    Разумеется, далеко не вся выделяемая энергия связей молекул топлива превращается в полезную работу. Основная ее часть теряется, превращаясь в тепло, да и трение деталей ДВС также создает тепловую энергию. Лишнее тепло необходимо отводить. Именно этой цели служит система охлаждения.

    Разделяют воздушную систему, жидкостную и комбинированную. Наиболее распространена жидкостная система охлаждения, хотя встречаются автомобили и с воздушной – ее использовали для упрощения конструкции и удешевления бюджетных машин, либо для уменьшения веса, если речь шла о спорткарах.

    Основные элементы системы представлены теплообменником, радиатором, центробежным насосом, расширительным бачком и термостатом. Кроме того, в систему охлаждения входят масляный радиатор, вентилятор радиатора, датчик температуры охлаждающей жидкости.

    Жидкость циркулирует через теплообменник под воздействием насоса, снимая температуру с двигателя. Пока двигатель не нагреется, специальный клапан закрывает радиатор – это называется «малый круг» движения. Такая работа системы позволяет быстро прогреть двигатель.

    Как только температура поднимается до рабочей, термодатчик дает команду на открытие клапана, и охлаждающая жидкость начинает двигаться через радиатор. Тонки трубки этого агрегата обдуваются стильным потоком встречного ветра, охлаждая таким образом жидкость, которая опять поступает в коллектор, начиная круг охлаждения заново.

    Если воздействия набегающего воздуха недостаточно для нормального охлаждения – автомобиль работает со значительной нагрузкой, движется с малой скоростью или стоит очень жаркая погода, включается вентилятор охлаждения. Он обдувает радиатор, принудительно охлаждая рабочую жидкость.

    Машины, оборудованные турбонаддувом, имеют два контура охлаждения. Один – для охлаждения непосредственно ДВС, второй – для снятия лишнего тепла с турбины.

    Электрика

    Первые автомобили обходились минимумом электрики. В современных машинах появляется все больше и больше электрических цепей. Электроэнергию потребляют система подачи топлива, зажигание, система охлаждения и отопления, освещение. При наличии немало энергии потребляет система кондиционирования, управления двигателем, электронные системы обеспечения безопасности. Такие агрегаты, как система запуска и свечи накаливания потребляют энергию кратковременно, но в больших количествах.

    Для обеспечения всех этих элементов необходимой электроэнергией используются источники тока, электрическая проводка, элементы управления и блоки предохранителей.

    Источники тока автомобиля – аккумуляторная батарея, работающая в паре с генератором. Когда двигатель работает, привод от вала крутит генератор, вырабатывающий необходимую энергию

    Генератор работает, преобразовывая энергию вращения вала в электрическую энергию, используя принципы электромагнитной индукции. Для того, чтобы осуществить пуск ДВС, используется энергия аккумулятора.

    Во время запуска основным потребителем энергии является стартер. Это устройство является двигателем постоянного тока, предназначенным для прокрутки коленчатого вала, обеспечивающей начало цикла работы ДВС. Принцип работы двигателя постоянного тока основывается на взаимодействии, возникающем между магнитным полем, образующимся в статоре, и токе, протекающем в роторе. Эта сила влияет на ротор, который начинает вращаться, причем его вращение совпадает с вращением магнитного поля, характерного для статора. Таким образом электрическая энергия преобразовывается в механическую, а стартер начинает раскручивать вал двигателя. Как только двигатель запускается и начинает работать генератор, аккумулятор перестает отдавать энергию и начинает ее накапливать. Если генератор не работает или по какой-то причине его мощности недостаточно, аккумулятор продолжает отдавать энергию и разряжаться.

    Такой тип двигателя тоже является ДВС, но имеет отличительные особенности, позволяющие резко отделять двигатели, работающие по принципу, изобретенному Рудольфом Дизелем, от прочих ДВС, работающих на «легком» топливе вроде бензина «в автомобилистике» или керосина «в авиации».

    Различие в используемом топливе предопределяют различия конструкции. Дело в том, что «солярку» относительно сложно поджечь и добиться ее мгновенного сгорания в обычных условиях, поэтому способ воспламенения от свечи для этого топлива не подходит. Воспламенения дизеля осуществляется за счет его контакта с разогретым до очень большой температуры воздухом. С этой целью используется свойство газов нагреваться при сжатии. Поэтому поршень, работающий на дизельном ДВС, сжимает не топливо, а воздух. Когда степень сжатия доходит до максимума, а сам поршень – до крайней верхней точки, стоящая вместо свечи форсунка «электромагнитный насос» впрыскивает дисперсно распыленное топливо. Оно взаимодействует с горячим кислородом и воспламеняется. Далее происходит работа, характерная и для бензинового ДВС.

    При этом мощность ДВС меняется не пропорцией смеси воздуха и топлива, как в бензиновых моторах, а исключительно количеством впрыскиваемого дизеля, в то время как количество воздуха постоянно и не меняется. При этом принцип действия современного бензинового агрегата, оснащенного форсункой, абсолютно не схож с принципом работы дизельного ДВС.

    Работающие с бензином электромеханические распылительные насосы предназначены, прежде всего, для более точного отмеривания впрыскиваемого топлива, и взаимодействуют со свечей зажигания. В чем эти два типа ДВС схожи — так это в повышенной требовательности к качеству топлива.

    Так как давление воздуха, создаваемое работой поршня дизельного мотора, значительно выше давления, оказываемого сжатой воздушно-бензиновой смесью, такой двигатель более требователен к зазорам между поршнем и стенками цилиндра. К тому же, дизельный двигатель труднее запустить зимой, так как «солярка» под воздействием низких температурных показателей густеет, и форсунка не может достаточно качественно распылить ее.

    И современный бензиновый мотор, и его дизельный «родственник» крайне неохотно работают на бензине «ДТ» несоответствующего качества, и даже кратковременное его применение чревато серьезными проблемами с топливной системой.

    Современные двигатели внутреннего сгорания – наиболее эффективные устройства перехода тепловой энергии в механическую. Несмотря на то, что большая часть энергии тратится не на непосредственно полезную работу, а на поддержание цикла самого двигателя, человечество пока не научилось массово производить устройства, которые были бы практичнее, мощнее, экономичнее и удобнее, чем ДВС. Вместе с тем, удорожание углеводородных энергоносителей и забота об окружающей среде заставляют искать новые варианты двигателей для легковых автомобилей и общественного транспорта. Наиболее перспективными на данный момент выглядит использование автономных, оснащенных батареями большой емкости, электрических двигателей, КПД которых намного выше, и гибридов таких двигателей с бензиновыми вариантами. Ведь обязательно настанет время, когда использовать углеводороды для приведения в движение личного автотранспорта станет абсолютно невыгодно, и ДВС займут место на музейных полках, как паровозные двигатели – полвека назад.

    Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

    Определение и общие особенности работы ДВС

    Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

    Классификация двигателей внутреннего сгорания

    В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

    • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
    • карбюраторные , в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные , в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные , в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
    • Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
    • Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

    Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.

    Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

    Корпус двигателя объединяет в единый организм:

    • блок цилиндров , внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
    • кривошипно-шатунный механизм , который передаёт энергию движения на коленчатый вал;
    • газораспределительный механизм , который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
    • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси ;
    • система удаления продуктов горения (выхлопных газов).

    Четырёхтактный двигатель внутреннего сгорания в разрезе

    При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

    Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

    Определимся в терминологии. Такт — это рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз. Цикл — это совокупность тактов, повторяющихся в определённой последовательности. По количеству тактов в пределах одного рабочего цикла ДВС подразделяются на двухтактные (цикл осуществляется за один оборот коленвала и два хода поршня) и четырёхтактные (за два оборота коленвала и четыре ходя поршня). При этом, как в тех, так и в других двигателях, рабочий процесс идёт по следующему плану: впуск; сжатие; сгорание; расширение и выпуск.

    Принципы работы ДВС

    — Принцип работы двухтактного двигателя

    Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

    В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

    В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

    При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

    В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

    Сферами практического применения двухтактных двигателей внутреннего сгорания стали мопеды и мотороллеры; лодочные моторы, газонокосилки, бензопилы и т.п. маломощная техника.

    Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

    Процесс работы двигателя внутреннего сгорания

    Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

    • Такт первый, впуск . Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
    • Такт второй, сжатие . При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2-1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
    • Такт третий, расширение . Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
    • Такт четвёртый, выпуск . Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

    Вспомогательные системы двигателя внутреннего сгорания

    Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры , воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

    • Источник питания . Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
    • Включатель, или замок зажигания . Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
    • Накопитель энергии . Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
    • Распределитель зажигания (трамблёр) . Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

    Система зажигания ДВС

    — Впускная система

    Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

    • Воздухозаборник . Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
    • Воздушный фильтр . Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
    • Дроссельная заслонка . Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
    • Впускной коллектор . Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.

    Топливная система, или система питания ДВС, «отвечает» за бесперебойную подачу горючего для образования топливно-воздушной смеси. В состав топливной системы входят:

    • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
    • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
    • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
    • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
    • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
    • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

    Схема топливной системы ДВС

    — Система смазки

    Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла ; удаление продуктов нагара и износа ; защита металла от коррозии . Система смазки ДВС включает в себя:

    • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
    • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
    • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
    • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

    Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

    • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
    • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
    • Резонатор , или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
    • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
    • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

    Выхлопная система ДВС

    — Система охлаждения

    Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

    • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
    • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
    • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
    • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

    Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

    В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

    Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

    Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

    При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

    В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы .

    Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

    Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

    Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

    Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

    В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

    Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

    В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

    Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

    Принцип работы двигателя внутреннего сгорания

    Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

    В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

    • рабочий объем,
    • количество цилиндров,
    • мощность системы,
    • скорость вращения узлов,
    • применяемое для работы топливо и др.

    Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

    Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

    Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

    В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

    Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

    От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

    Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

    Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

    Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

    Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

    Варианты конструкций внутреннего двигателя

    Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

    Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

    Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

    Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

    Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

    Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

    Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

    Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

    Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

    Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

    Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

    Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

    Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

    Принцип увеличения гибкости характеристик современных автомобильных ДВС / Хабр


    Насколько важно иметь совершенный код в программе для ее быстрой и качественной работы? Настолько же важно для ДВС тратить меньше энергии там, где этих затрат можно избежать.
    Прошлая статья

    из-за упрощений вызвала вопросы критического характера у части хабра-людей. В этой я попробую ответить на них подробнее как и обещал, а так же раскрыть один из основных принципов ДВС последних десятилетий упомянутый в статье

    «Эволюция развития автомобильных двигателей с начала 90-х годов.»

    Агрегаты с гибкой характеристикой срабатывания в ДВС

    Первым, и наверно самым известным примером повышения гибкости характеристик в ДВС стали гидрокомпенсаторы, обеспечившие отказ от теплового зазора и более плавную работу клапанов.

    Саморегуляция и плавность работы гидравлики так же использовалась и в других узлах и агрегатах ДВС.

    Например гидронатяжители цепи обеспечили те же преимущества что и толкатели, но наиболее ярким примером триумфа гидравлики можно считать систему Fiat MultiAir.


    Двигатель, как и машина

    , где устанавливается данная система уникальны сами по себе, поэтому остановимся лишь на отдельных моментах.

    Так из видео видно, что пока гидравлическим способом открывается только клапан впуска, но далее я покажу что и на клапан выпуска так же есть воздействие в другой системе, связанной с полным управлением процесса закрытия клапанов. Поэтому фактически гидравлика на сегодня уже способна управлять практически всеми процессами в ГБЦ. Поразительно, но при всей сложности системы ее работа является оправданием-примером перспектив следующего этапа — электро клапанов.

    Есть правда и компромиссный вариант от koenigsegg

    Следующий пример — регулируемый маслонасос уже можно считать скорее давно ожидаемой доработкой, чем техническим прорывом.

    Как видно сложность работы тут оправдана оптимизированным диапазоном работы.

    Последующий «гидравлический» пример — система впрыска, где происходили действительно революционные изменения.

    Начнем пожалуй с того факта что переход от моно-впрыска к распределенному, а далее к непосредственному у бензиновых моторов затронул целый ряд характеристик.

    Таких, как давление впрыска, время цикла впрыска и цену на это оборудование (последнее наверно самый очевидный момент).

    Давление впрыска — при разных режимах работы двигателя может быть от 3 до 11 МПа.

    Время цикла впрыска может изменятся (а иногда впрыск может проходить за один рабочий такт до нескольких раз).

    Прямой впрыск способен обеспечить шесть вариантов смешивания топлива.

    • послойное распределение смеси;
    • гомогенная смесь;
    • гомогенно-обедненная смесь;
    • гомогенно-послойное распределение смеси;
    • двойной впрыск для защиты двигателя от детонации;
    • двойной впрыск для разогрева нейтрализатора.

    Цена последнего вида впрыска считается самой высокой для бензиновых ДВС (поэтому не случайно появления комбинированных систем впрыска).

    Одним из возможных вариантов удешевления прямого впрыска являются форсунки Orbital.
    Принцип работы тут такой — воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
    Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

    Ford Sci ( Smart Charge injection), Mitsubishi GDI (Gasoline Direct Injection), VW FSI (Fuel Stratified Injection), HPi (High Pressure Injection), Mersedes Benz CGI, Renault IDE, SCC (Saab Combustion Control. Отличительной особенностью системы является интеграция свечи зажигания и инжектора в один модуль(SPI). С помощью сжатого воздуха топливо попадает напрямую в блок цилиндров и тут же воспламеняется.) — все эти системы различные варианты прямого впрыска.

    У дизельных моторов различия в топливной аппаратуре стали менее значимы, так как они изначально были с прямым впрыском. Тут рост давления впрыска был попутным фактором, и больше сказывалось улучшенное управление процессами. Механические форсунки у дизеля сейчас практически везде заменены на электромеханические. У «дизелей» как и у бензиновых с прямым впрыском так же присутствует «многоимпульсный режим» ( впрыск за один цикл от 1 до 7 раз).

    Главное противостояние в дизель-технологиях впрыска идет

    между индивидуальными насос-форсунками и системой Common Rail.

    Еще одним значимым изменением в системе впрыска стало увеличение количества и качества датчиков используемых для коррекции впрыска. Система управления двигателем<на данный момент имеет все больше данных для обработки и коррекции напрямую, а не разными обходными путями, как это было ранее.

    На ранних этапах становления электронных систем управления двигателем процесс ручной настройки впрыска через ЭСУД напоминал работу с Big Data. И там, и там в принципе не знаешь точно конечный результат в начале процесса, но все же надеешься нащупать «золотое дно». При ручной настройке впрыска рассчитывать приходилось только на опыт и интуицию, чтоб получить нужный результат.

    В системе зажигания преобразования так же прошли в сторону повышения мощности и точности работы.

    Контактное зажигание с одной катушкой сменило бесконтактное (с одной, а далее с двумя катушками), а итогом развития стали индивидуальные катушки зажигания на каждом цилиндре.


    небольшая отсылка к предыдущей статье — есть так же и две катушки зажигания на весь мотор, которые из-за особенностей работы дают искру два раза за цикл (причем одна искра проходит в цилиндре не в такте зажигания).

    Электро генерация так же стала экономнее, так одним из итогов развития стал отключаемый генератор.

    Принцип работы тут следующий — когда машина замедляется, генератор включается на максимальный режим работы. При последующем ускорении… отключается до определенных пределов, которые зависят от ряда параметров. Такой режим работы позволяет распределять нагрузку лучше, так как при торможении двигателем дополнительное сопротивление оказывает генератор, а при ускорении он наоборот — снимает нагрузку с ДВС.

    Генератор с муфтой INA. Кондиционер с помощью то же с помощью отключаемой муфты стал экономнее. Теперь он не нагружает вал «холостой» работой компрессора.

    Турбина как элемент изначально мало подверженный усложнению все же стала «гибче».

    Но не всегда выхлопные газы выходят в «трубу», иногда часть из них «возвращается» обратно в камеру сгорания.

    Работа этой системы позволяет регулировать температуру в камере сгорания за счет рециркуляции выхлопных газов (Бывают

    системы с охлаждением

    выпускных газов, и без, при рециркуляции).

    Последним «невозможным» преобразованием на данный момент можно считать цикл Homogeneous Charge Compression Ignition (HCCI).

    Смысл данной технологии объединить 2 типа сгорания топлива в одном моторе. При применении этого цикла становится возможным сжигать смесь бензина как с помощью свечи, так и по «дизельному» (с помощью сжатия).

    Агрегаты потерявшие механическую связь с ДВС

    Под это определение первым подпадает бензонасос.

    В большинстве современных инжекторных автомобилей этот агрегат, как правило, размещен в бензобаке, имеет незначительные различия по конструкции… и полностью лишен какой-либо механической связи с ДВС. Правда сейчас уже даже в качестве тюнинга научились ставить электрический бензонасос даже на карбюраторные машины.

    Эффективность его работы выросла, особенно после того как стали устанавливать системы без «обратки» (подачи топлива по обратному каналу в бензобак).

    Следующий чисто электрически «связанный» элемент — дроссельная заслонка, которая традиционно всегда была связана с педалью газа, но теперь это «независимый» от педали элемент.

    Дело в том что с точки зрения работы различных взаимосвязанных систем в двигателе не всегда нужно напрямую воздействовать на заслонку и прямая связь тут скорее помеха, чем помощь. Поэтому в силу многих причин разделение на педаль газа (Потенцио́метр) и заслонку с электроприводом вполне оправданно. Определенную роль во внедрении электро-дросселя так же сыграли и нормы токсичности выхлопа.

    Последующей системой потерявшей «связи» стала система охлаждения.

    Про электро-вентилятор охлаждения думаю уже все знают (хотя ранее в 90-х было еще такое понятие как привод через вязкостную муфту вентилятора охлаждения).

    Замена вискомуфты на электровентилятор и сейчас актуальна.

    А вот про наличие 2 контуров охлаждения отдельно для ГБЦ и блока цилиндров?

    Все это «приправлено» тем что термостаты тут более «шустрые» т. е. То же потерявшие прямую физическую взаимосвязь за счет внедрения электрической составляющей (поэтому быстродействие тут зависит уже не столько от воздействия температуры на рабочий расширяющийся элемент, а

    от работы нагревающего элемента внутри

    ).

    Разделение контуров на ГБЦ и Блок цилиндров позволило поддерживать различную температуру охлаждающей жидкости в них. В отличие от стандартной, в двухконтурной системе охлаждения обеспечивается температура в головке блока цилиндров в пределе 87°С, в блоке цилиндров – 105°С.

    Так как в контуре головки блока цилиндров должна поддерживаться более низкая температура, то в нем циркулирует больший объем охлаждающей жидкости (порядка 2/3 от общего объема). Остальная охлаждающая жидкость циркулирует в контуре блока цилиндров.
    При запуске двигателя оба термостата закрыты. Обеспечивается быстрый прогрев двигателя. Охлаждающая жидкость циркулирует по малому кругу контура головки блока цилиндров: от насоса через головку блока цилиндров, теплообменник отопителя, масляный радиатор и далее в расширительный бачок. Данный цикл осуществляется до достижения охлаждающей жидкостью температуры 87°С.

    При температуре 87°С открывается термостат контура головки блока цилиндров и охлаждающая жидкость начинает циркулировать по большому кругу: от насоса через головку блока цилиндров, теплообменник отопителя, масляный радиатор, открытый термостат, радиатор и далее через расширительный бачок. Данный цикл осуществляется до достижения охлаждающей жидкостью в блоке цилиндров температуры 105°С.

    При температуре 105°С открывается термостат контура блока цилиндров и в нем начинает циркулировать жидкость. При этом в контуре головки блока цилиндров всегда поддерживается температура на уровне 87°С.

    Последним достойным упоминания можно назвать электро-помпу BMW. Решение «электрофицировать» водяной насос рискованное, так как требует не малых энергозатрат, и наверно поэтому не встречается пока у большинства остальных автопроизводителей. Применяется электрическая помпа на двигателях N52: E60, E61, E63, E64, E65, E66, E87, E90, E91.

    Помимо непосредственно навесного оборудования связанного с работой ДВС, механическую связь потерял гидроусилитель… став в некоторых случаях электрогидроусилителем, и в максимуме — электроусилителем.

    «Гибкие» в зависимости от оборотов…

    В предыдущей статье был вопрос — «а может ли работать 4-х клапанный ДВС без части клапанов, или вообще без них?»

    Ответ прост — не только может, но и работает (правда есть нюансы).

    Технология Twinport от Опель позволяет обходиться и 3-мя в режиме частичных нагрузок.

    Причина такой частичной работы кроется в снижении наполняемости цилиндра воздухом при частично открытой дроссельной заслонке при небольшой нагрузке на двигатель. Эту проблему частично решает рециркуляция выхлопных газов (EGR), но немецкие инженеры посчитали что этого недостаточно. Для увеличения скорости воздушного потока они решили «заткнуть» один впускной клапан заслонкой (на фото справа), что позволило закрутить поток воздуха и увеличить его скорость.

    В итоге применение Twinport экономит 6% топлива на двигателе объемом 1.6 л. В общем совместно с EGR экономия может доходить до 10%.

    Подобная система применяется Opel и на двигателях с прямым впрыском топлива.

    на рено шафран для создания завихрения в цилиндре использовали форсунку впрыска воздуха в камере сгорания. Впрыск воздуха улучшает процесс сгорания на малых оборотах, оптимизируя сгорание топлива, что обеспечивает экономию топлива от 8 до 14 %.

    Занимательно, но факт что впрыск воздуха в последствии еще использовался в выпускном тракте для улучшения экологии выхлопа холодного двигателя, а в суперкаре Koenigsegg Jesko сжатый воздух так же впрыскивается в выпускной тракт чтобы… раскрутить турбину для устранения турболага.

    Следующая система более радикально подходит к вопросу деактивации клапанов.

    Принцип схож с big.LITTLE .

    В одном моторе, при полном отключении клапанов в нескольких цилиндрах, появляется возможность получить меньший рабочий объем для экономии топлива.


    Volkswagen cylinder deactivation technology



    Audi A1 Sportback 1.4 TSI при 4 цилиндровом моторе способен с помощью системы отключения цилиндров «превращаться» при оборотах 1400 до 4000 об/мин (частичная нагрузка) в двухцилиндровый!

    Honda Variable Cylinder Management

    Был и отечественный аналог подобной системы.

    Профессор П. И. Андрусенко в 1967 году предложил более простой способ регулировки мощности ДВС — отключение отдельных рабочих циклов. В 1996 году совместно с «АвтоВазом» это метод рекламировался на выставке в Детройте.

    Принцип работы идеи профессора простой, надо лишь отключать подачу топлива в разные цилиндры, что и обеспечит получение необходимого количества энергии в данный момент. Реализуется это с помощью управления впрыском, а дроссельная заслонка во всем диапазоне изменения нагрузок мотора остается полностью открытой! (напомню что в системе BMW Valvetronic то же есть дроссельная заслонка, которая полностью открыта для повышения индикаторного К.П.Д., но там это «страховка» на случай выхода из строя системы).

    Преимущества системы:

    • На режиме частичных нагрузок 20 — 23% с уменьшением токсичности в 2.5 — 4 раза.
    • Расход топлива на холостом ходу сокращается в два раза.

    Отличия от используемых сейчас.

    • Количество отключаемых циклов может быть любым. Работа ДВС в данном режиме может быть оптимизирована по составу топлива в широком диапазоне оборотов и нагрузок.
    • При регулировании мощности отключением цилиндров изменяется их температурный режим, так как они остаются незадействованными в течение длительного времени. При методе ДРЦ пропущенные циклы приходятся на различные цилиндры, поэтому они практически не успевают охлаждаться.
    • Не требуется серьезных изменений конструкции ДВС.

    Сдвиг фаз.

    Следующая технология манипуляции работы клапанов — фазовращатели. Технология сдвига фаз с успехом улучшила идею 4-х клапанов, и по исполнению настолько простая что «добрались» и до моторов АвтоВаза.

    Суть процесса состоит в том, чтобы изменять время открытия клапанов в цилиндре в зависимости от роста оборотов двигателя. Причина тут простая — сгорание топлива на более высоких оборотах происходит не так быстро, а значит нужно время для «продувки-открытия» клапанов выставлять раньше. Достигается это небольшим смещением распределительного вала с помощью гидроуправляемой муфты.

    VVT-i

    BMW VANOS


    «дедушкой» сдвига фаз принято считать разрезную шестерню.

    В основном разрезная шестерня используется в тюнинге и… при несовершенстве некоторых моторов так как позволяет установить «правильные» фазы открытия и закрытия клапанов.

    Регулирование высоты подъема клапана.

    Кроме сдвига, используется и еще одна «гибкая» технология — «подъем клапанов».

    MITSUBISHI MIVEC

    Honda VTEC

    BMW Valvetronic

    Variocam Porsche

    Последним достижением ДВС на данный момент является изменяемая характеристика степени сжатия.

    Примеры подобной системы от шведов

    и немецкий аналог…

    По итогу развития эти системы так и не нашли применения, но вот Nissan решил исправить ситуацию, и представил свой серийный вариант системы.

    Несмотря на сложность этого мотора ему далеко до главного лидера по «гибкости» — гибридного привода Toyota Prius.

    Сочетание совместной работы двигателя по циклу Аткинсона (Миллера) с электромотором дает недостижимый для обычных ДВС расход топлива, экологию выхлопа и КПД.

    Таким образом развитие двигателей внутреннего сгорания пришло к закономерному итогу электрификации, и даже запустились процессы обратные всей тенденции развития моторов до этого момента.

    P.S. Период с начала 80-х по наше время смело можно назвать временем отсечения лишних затрат в ДВС. О параллельном процессе — миниатюризации ДВС (даунсайзинге) будет в следующей статье.

    P.P.S. Если у вас есть примеры-аналогии из it-сферы по перечисленным ДВС-технологиям можете написать ниже в комментариях (лучшее добавлю в статью).

    Принцип работы ДВС (+ видео)

     Полезное

    Каждый уважающий себя автолюбитель должен знать каким образом работает ДВС – двигатель внутреннего сгорания. Название пошло от того, что топливо сгорает непосредственно внутри камеры сгорания (внутри).

    В цилиндр мотора всасывается горючая смесь (топливо + воздух). В момент, когда поршень достигнет верхней мертвой точки (ВМТ) сжатая смесь поджигается свечей зажигания. Происходит воспламенение. В камере образуется высокое давление и за счет этого поршень перемещается вниз. Таким образом давление от сгорания газов преобразуется в механическую энергию. Обработанные газы выбрасываются через выпускной клапан.

    За своевременное открытие/закрытие впускных и выпускных клапанов отвечает газораспределительный механизм (ГРМ).

    Работа ДВС разбита на такты. Есть двигатели у которых все необходимые процессы происходят за 2 такта (один оборот коленвала), они называются 2-х тактные. Двигатели, у которых процессы происходят за 4 такта (два оборота) – 4-х тактные. Как правило, на автомобилях устанавливаются 4-х тактные ДВС. Они включают в себя такты впуска, сжатия, рабочий ход, выпуск.

    Такт впуска

    Во время опускания поршня вниз, при этом клапан впуска открыт, выпуска – закрыт, в цилиндре образуется малое давление и за счет этого с него всасывается горючая смесь – пары бензина и воздуха.

    Такт сжатия

    После заполнения цилиндра горючей смесью впускной клапан закрывается и поршень начинает двигаться вверх (от нижней мертвой точки к ВМТ). Смесь сжимается и нагревается.

    Такт рабочего хода

    В самом конце сжатия смеси происходит ее воспламенение при помощи электрической искры. Топливо воспламеняется, температура в камере сгорания резко увеличивается и поршень опускается вниз. Во время этого такта осуществляется полезная работа. Когда поршень дойдет до НМТ откроется выпускной клапан, давление в цилиндре уменьшиться.

    Интересное: какое давление в грузовых шинах?

    Такт выпуска

    Поршень начинается подниматься к ВМТ. Выпускной клапан находиться в открытом состоянии. Отработанные газы выводятся наружу.

    Далее такты повторяются. Все эти процессы происходят в определенной последовательности в каждом цилиндре ДВС.


    Устройство ДВС автомобиля

    Наверное, уже всем известно, что ДВС автомобиля называют сердцем автомобиля. В современном мире без автомобиля никуда, поэтому следует изучить принцип работы двигателя автомобиля и изучить устройство автомобиля.

    Общее устройство ДВС предполагает наличие поршня, который является деталью кривошипно-шатунного механизма автомобиля. Поршень ДВС выливается в форме стакана и состоит из следующих частей: днище, головка поршня, направляющая часть поршня (юбка), канавки для компрессионных и маслосъемных колец. Поршневые кольца ДВС обеспечивают герметичность во время движения поршня в цилиндре, что необходимо для исключения попадания масла в камеру сгорания и газов в картер двигателя. Поршневые кольца представляют собой уплотнители. Бывают компрессионные поршневые кольца и маслосъемные поршневые кольца. Компрессионные поршневые кольца ДВС обеспечивают высокую степень сжатия при работе двигателя.

    Когда из топливной системы подается топливная смесь, поршень двигается вверх-вниз. Когда поршень поднимается вверх, то горючая смесь сжимается, после чего начинает работать система зажигания — свеча зажигания подает искру и горючая смесь воспламеняется (карбюраторные и инжекторные ДВС). В дизельных ДВС происходит самовоспламенение от высокой степени сжатия.

    После сгорания горючей смеси выделяется огромное количества газов, которые воздействуют на поршень, толкая его вниз, и передавая усилие через шатун коленчатому валу, тем самым раскручивая его.

    Как работает ДВС

    Принцип работы ДВС заключается в преобразовании кинетической энергии в механическую работу (преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала).

    Как возвратно-поступательно движение поршня-шатуна преобразуется во вращательное движение коленчатого вала?

    Поршень крепится к шатуну с помощью поршневого пальца, который располагается внутри юбки поршня и фиксируется стопорными кольцами. Для стопорных колец в юбке поршня имеются специальные канавки. Коленчатый вал ДВС вращается на подшипниках скользящего типа в картере ДВС.

    Крутящий момент коленчатого вала ДВС через трансмиссию (сцепление, коробка передач, карданная передача, главная передача, дифференциал, полуоси) передается на ведущие колеса автомобиля.

    Принцип работы двигателя внутреннего сгорания

    Двигатель внутреннего сгорания на жидком топливе, разработанный и впервые применённый на практике во второй половине 19-го века, являлся вторым в истории, после парового двигателя, примером создания агрегата, преобразующего энергию в полезную работу. Без этого изобретения невозможно себе представить современную цивилизацию, ведь транспортные средства с ДВС различного типа широко задействованы в любой отрасли, обеспечивающей существование человека.

    Транспорт, приводимый в действие двигателем внутреннего сгорания, играет решающую роль в приобретающей все большее и большее значение на фоне глобализационных процессов всемирной логистической системе.

    Все современные транспортные средства можно разделить на три больших группы, в зависимости от типа используемого двигателя. Первая группа ТС использует электродвигатели. Сюда входят и привычный городской общественный транспорт – троллейбусы и трамваи, и электропоезда с электромобилями, и огромные суда и корабли, использующие атомную энергию – ведь и современные ледоколы, и атомные субмарины, и авианосцы стран НАТО используют электродвигатели. Вторая группа – это техника, оснащенная реактивными двигателями.

    Разумеется, такой тип двигателей используется преимущественно в авиации. Наиболее многочисленной, привычной и значимой является третья группа транспортных средств, которая использует двигатели внутреннего сгорания. Это – наибольшая и по количеству, и по разнообразию, и по влиянию на хозяйственную жизнь человека группа. Принцип работы ДВС одинаков для любых транспортных средств, оснащённых таким двигателем. В чем он заключается?

    Физика процесса

    Как известно, энергия не берется ниоткуда и не уходит в никуда. Принцип работы двигателя автомобиля в полной мере основывается на этом постулате закона сохранения энергии.

    Максимально обобщенно можно сказать, что для выполнения полезной работы используется энергия молекулярных связей жидкого топлива, сжигаемого в процессе работы двигателя.

    Распространению ДВС на жидком топливе способствовали несколько уникальных свойств самого топлива. Это:

    • высокая потенциальная энергия молекулярных связей используемых в качестве топлива смеси легких углеводородов «например, бензина»
    • достаточно простой и безопасный, в сравнении, например, с атомной энергией, способ ее высвобождения
    • относительная распространенность легких углеводородов на нашей планете
    • природное агрегатное состояние такого топлива, позволяющее удобно хранить и транспортировать его.

    Еще одним важнейшим фактором является то, что в качестве окислителя, необходимого для процесса высвобождения энергии, выступает кислород, их которого более чем на 20 процентов состоит атмосфера. Это избавляет от необходимости возить не только запас топлива, но и запас катализатора.

    В идеальном случае вступить в реакцию должны все молекулы определённого объёма топлива и все молекулы определённого объёма кислорода. Для бензина эти показатели соотносятся как 1 к 14,7, т.е., для сгорания килограмма топлива необходимо почти 15 кг кислорода. Однако такой процесс, называемый стехиометрическим, на практике нереализуем. В действительности всегда остаётся какая-то часть топлива, не соединившаяся с кислородом во время протекания реакции.

    Более того, для определённых режимов работы ДВС стехиометрия даже вредна.

    Теперь, когда химические процесс в общих чертах понятны, стоит рассмотреть механику процесса превращения энергии топлива в полезную работу, на примере четырёхтактного ДВС, работающего по так называемому циклу Отто.

    Отто, Аткинсон и Миллер. Циклы работы бензиновых ДВС

    Наиболее известным и, что называется, классическим циклом работу является запатентованный еще в 1876 году Николаусом Отто процесс работы двигателя, состоящий из четырех частей. «тактов, отсюда и четрыехтактные ДВС». Первый такт – создание поршнем разрежения в цилиндре собственным перемещением под воздействием веса. В результате цилиндр заполняется смесью кислорода и паров бензина «природа не терпит пустоты». Продолжающий движение поршень сдавливает смесь – получаем второй такт. На третьем такте смесь воспламеняется «Отто применял обычную горелку, сейчас за это ответственна свеча зажигания».

    Воспламенение смеси создаёт выделение большого количества газа, который давит на поршень и заставляет его подниматься – выполнять полезную работу. Четвёртый такт – открытие выпускного клапана и вытеснение продуктов сгорания возвращающимся поршнем.

    Таким образом, только запуск двигателя требует воздействия извне – прокручивания коленвала, соединённого с поршнем. Сейчас это делается с помощью силы электричества, а на первых автомобилях коленвал приходилось проворачивать вручную «этот же принцип используется и в автомобилях, в которых предусмотрен принудительный ручной пуск двигателя».

    Со времени выпуска первых автомобилей немало инженеров пытались изобрести новый цикл работы ДВС. Вначале это было связано с действием патента, которое многим хотелось обойти.

    В результате уже в начале прошлого века был создан цикл Аткинсона, который изменил конструкцию двигателя таким образом, чтобы все движения поршня совершались за один оборот коленвала. Это позволило повысить КПД двигателя, но уменьшило его мощность. Кроме того, двигатель, работающий по такому циклу, не нуждается в отдельном распределительном вале и редукторе. Однако этот двигатель не получил распространения из-за снижения мощности агрегата и достаточно сложной конструкции.

    Вместо него на современных атвомобилях зачастую используется цикл Миллера.

    Если Аткинсон уменьшил такт сжатия, увеличив КПД, но изрядно усложнив работу двигателя, то Миллер предложил уменьшить такт впуска. Это позволило снизить фактическое время сжатия смеси без уменьшения ее геометрического сжатия. Таким образом, КПД каждого цикла работы ДВС увеличивается, за счет чего снижается расход топлива, сжигаемого «впустую».

    Однако большинство двигателей работают по циклу Отто, так что более подробно необходимо рассмотреть именно его.

    Простейший четырёхтактный двигатель. Строение

    Даже наиболее простой вариант ДВС включает четырнадцать важнейших элементов, необходимых для его работы. Каждый элемент имеет определённые функции.

    Так, цилиндр выполняет двоякую роль — в нем происходит активация воздушной смеси и двигается поршень. В части, называемой камерой сгорания, установлена свеча, и два клапана, один из которых перекрывает поступление топлива, другой – выпуск отработанных газов.

    Свеча – устройство, обеспечивающее поджиг смеси с необходимой цикличностью. По сути, представляет собой устройство для получения достаточно мощной электрической дуги на короткий промежуток времени.

    Поршень перемещается в цилиндре под действием расширяющихся газов или от воздействия коленвала, переданного через кривошипно-шатунный механизм. В первом случае поршень превращает энергию сгорания топлива в механическую работу, во втором – сжимает смесь для лучшего возгорания либо создает давление для удаления отработанных остатков смеси из цилиндра.

    Кривошипно-шатунный механизм передаёт момент от поршня к валу и наоборот. Коленчатый вал благодаря своей конструкции преображает поступательное «вверх-вниз» движение поршня во вращательное.

    Впускной канал, в котором располагается впускной клапан, обеспечивает попадание смеси в цилиндр. Клапан обеспечивает цикличность поступления смеси.

    Выпускной клапан, соответственно, удаляет накопившиеся продукты сгорания смеси. Для обеспечения нормальной работы двигателя в момент нагнетания давления и поджога смеси он закрыт.

    Работа бензинового ДВС. Подробный разбор

    При такте всасывания поршень опускается вниз. Одновременно открывается впускной клапан, и в цилиндр подаётся топливо. Таким образом, в цилиндре оказывается топливовоздушная смесь. В определённых типах бензиновых двигателей эта смесь приготавливается в специальном устройстве – карбюраторе, в других смешение происходит непосредственно в цилиндре.

    Далее поршень начинает подниматься. Одновременно впускной клапан закрывается, что обеспечивает создание достаточно большого давления внутри цилиндра. При достижении поршнем крайней верхней точки вся топливно-воздушная смесь оказывается сжатой в части цилиндра, называемой камерой сгорания. В этот момент свеча дает электрическую искру, и смесь воспламеняется.

    В результате сгорания смеси выделяется большое количество газов, которые, стремясь заполнить собой весь предоставленный объем, давят на поршень, заставляя его опускаться. Эта работа поршня передается посредством кривошипно-шатунного механизма на вал, который начинает вращаться и вращать привод колес автомобиля.

    Как только поршень завершает свое движение вниз, открывается клапан выпускного коллектора.

    Оставшиеся газы устремляются туда, так как на них давит поршень, идущий вверх под воздействием вала. Цикл закончен, далее поршень снова опускается вниз, начиная новый цикл.

    Как видно, полезную работу выполняет лишь одна фаза цикла. Остальные фазы — это работа двигателя «на самого себя». Даже такой положение вещей делает двигатель внутреннего сгорания одной из наиболее удачных по КПД систем, внедренных в производство. В то же время, возможность уменьшения «холостых» в смысле КПД циклов приводит к появлению новых, более экономичных систем. Кроме того, разрабатываются и ограниченно внедряются двигатели, которые вообще лишены поршневой системы. Например, некоторые японские автомобили оснащены роторными двигателями, имеющими более высокий коэффициент полезного действия.

    В то же время, такие двигатели имеют ряд недостатков, связанных, в основном, с дороговизной производства и сложностью обслуживания таких моторов.

    Система питания

    Для того чтобы поступающая в камеру сгорания горючая смесь правильно сжигалась и обеспечивала бесперебойную работу двигателя, она должна вводится четко отмеренными порциями и быть соответствующим образом подготовлена. Для этой цели служит топливная система, важнейшими частями которой являются бензобак, топливопровод, топливные насосы, устройство для смешивания топлива и воздуха, коллектор, различные фильтры и датчики.

    Понятно, что назначение бензобака – хранить необходимое количество топлива. Топливо воды используются в качестве магистралей для перекачки с помощью бензинового насоса, фильтры бензина и воздуха нужны, чтобы не допустить засорения тонких коллекторов, клапанов и топливоводов.

    Подробнее стоит остановиться на работе карбюратора. Несмотря на то, что автомобили с такими устройствами больше не выпускаются, немало машин с карбюраторным типом двигателя до сих пор эксплуатируется во многих странах мира. Карбюратор смешивает топливо с воздухом следующим образом.

    В поплавковой камере поддерживается постоянный уровень топлива и давления благодаря балансировочному отверстию, стравливающему лишний воздух,и поплавку, открывающему клапан топливовода, как только уровень топлива в камере карбюратора снижается. Карбюратор через жиклер и диффузор связан с цилиндром. Когда давление в цилиндре снижается, точно отмеренное благодаря жиклеру количество топлива устремляется в диффузор воздушной камеры.

    Тут, за счет очень маленького диаметра отверстия, оно под большим давлением проходит в цилиндр, бензин смешивается с атмосферным воздухом, прошедшим через фильтр, и образованная смесь попадает в камеру сгорания.

    Проблема карбюраторных систем – в невозможности максимально точно отмерить количество топлива и количество воздуха, попадающие в цилиндр. Поэтому все современные автомобили оснащены системой впрыска, называемой также инжекторной.

    В инжекторном двигателе вместо карбюратора впрыск осуществляется форсункой или форсунками – специальным механическим распылителем, важнейшей частью которого является электромагнитный клапан. Эти устройства, особенно работая в паре со специальными вычислительными микрочипами, позволяют впрыскивать точно отмеренное количество топлива в необходимый момент. В результате двигатель работает ровнее, запускается легче, потребляет меньше топлива.

    Механизм газораспределения

    Понятно, каким образом карбюратор подготавливает горючую смесь из бензина и воздуха. Но как работают клапаны, обеспечивающие своевременную подачу этой смеси в цилиндр? За это ответственен механизм газораспределения. Именно он выполняет своевременное открытие и закрытие клапанов, а также обеспечивает необходимую длительность и высоту их подъема.

    Именно эти три параметра и являются в совокупности фазами газораспределения.

    Современные двигатели имеют специальное устройство для изменения этих фаз, называемое фазовращатель двс принцип работы которого основан на повороте в случае необходимости распредвала. Эта муфта при увеличении количества впрыскиваемого топлива поворачивает распределительный вал на определённый угол по ходу вращения. Такой изменение его положения приводит к тому, что впускные клапаны открываются раньше, и камеры сгорания наполняются смесью лучше, компенсируя постоянно возрастающую потребность в мощности. На наиболее технически передовых моделях стоит несколько таких муфт, они управляются достаточно сложной электроникой и могут регулировать не только частоту открытия клапана, но и его ход, что отлично сказывается на работе двигателя при максимальных оборотах.

    Принцип работы системы охлаждения двигателя

    Разумеется, далеко не вся выделяемая энергия связей молекул топлива превращается в полезную работу. Основная ее часть теряется, превращаясь в тепло, да и трение деталей ДВС также создает тепловую энергию. Лишнее тепло необходимо отводить. Именно этой цели служит система охлаждения.

    Разделяют воздушную систему, жидкостную и комбинированную. Наиболее распространена жидкостная система охлаждения, хотя встречаются автомобили и с воздушной – ее использовали для упрощения конструкции и удешевления бюджетных машин, либо для уменьшения веса, если речь шла о спорткарах.

    Основные элементы системы представлены теплообменником, радиатором, центробежным насосом, расширительным бачком и термостатом. Кроме того, в систему охлаждения входят масляный радиатор, вентилятор радиатора, датчик температуры охлаждающей жидкости.

    Жидкость циркулирует через теплообменник под воздействием насоса, снимая температуру с двигателя. Пока двигатель не нагреется, специальный клапан закрывает радиатор – это называется «малый круг» движения. Такая работа системы позволяет быстро прогреть двигатель.

    Как только температура поднимается до рабочей, термодатчик дает команду на открытие клапана, и охлаждающая жидкость начинает двигаться через радиатор. Тонки трубки этого агрегата обдуваются стильным потоком встречного ветра, охлаждая таким образом жидкость, которая опять поступает в коллектор, начиная круг охлаждения заново.

    Если воздействия набегающего воздуха недостаточно для нормального охлаждения – автомобиль работает со значительной нагрузкой, движется с малой скоростью или стоит очень жаркая погода, включается вентилятор охлаждения. Он обдувает радиатор, принудительно охлаждая рабочую жидкость.

    Машины, оборудованные турбонаддувом, имеют два контура охлаждения. Один – для охлаждения непосредственно ДВС, второй – для снятия лишнего тепла с турбины.

    Электрика

    Первые автомобили обходились минимумом электрики. В современных машинах появляется все больше и больше электрических цепей. Электроэнергию потребляют система подачи топлива, зажигание, система охлаждения и отопления, освещение. При наличии немало энергии потребляет система кондиционирования, управления двигателем, электронные системы обеспечения безопасности. Такие агрегаты, как система запуска и свечи накаливания потребляют энергию кратковременно, но в больших количествах.

    Для обеспечения всех этих элементов необходимой электроэнергией используются источники тока, электрическая проводка, элементы управления и блоки предохранителей.

    Источники тока автомобиля – аккумуляторная батарея, работающая в паре с генератором. Когда двигатель работает, привод от вала крутит генератор, вырабатывающий необходимую энергию

    Генератор работает, преобразовывая энергию вращения вала в электрическую энергию, используя принципы электромагнитной индукции. Для того, чтобы осуществить пуск ДВС, используется энергия аккумулятора.

    Во время запуска основным потребителем энергии является стартер. Это устройство является двигателем постоянного тока, предназначенным для прокрутки коленчатого вала, обеспечивающей начало цикла работы ДВС. Принцип работы двигателя постоянного тока основывается на взаимодействии, возникающем между магнитным полем, образующимся в статоре, и токе, протекающем в роторе. Эта сила влияет на ротор, который начинает вращаться, причем его вращение совпадает с вращением магнитного поля, характерного для статора. Таким образом электрическая энергия преобразовывается в механическую, а стартер начинает раскручивать вал двигателя. Как только двигатель запускается и начинает работать генератор, аккумулятор перестает отдавать энергию и начинает ее накапливать. Если генератор не работает или по какой-то причине его мощности недостаточно, аккумулятор продолжает отдавать энергию и разряжаться.

    Дизельный двигатель. Схожесть и различие

    Такой тип двигателя тоже является ДВС, но имеет отличительные особенности, позволяющие резко отделять двигатели, работающие по принципу, изобретенному Рудольфом Дизелем, от прочих ДВС, работающих на «легком» топливе вроде бензина «в автомобилистике» или керосина «в авиации».

    Различие в используемом топливе предопределяют различия конструкции. Дело в том, что «солярку» относительно сложно поджечь и добиться ее мгновенного сгорания в обычных условиях, поэтому способ воспламенения от свечи для этого топлива не подходит. Воспламенения дизеля осуществляется за счет его контакта с разогретым до очень большой температуры воздухом. С этой целью используется свойство газов нагреваться при сжатии. Поэтому поршень, работающий на дизельном ДВС, сжимает не топливо, а воздух. Когда степень сжатия доходит до максимума, а сам поршень – до крайней верхней точки, стоящая вместо свечи форсунка «электромагнитный насос» впрыскивает дисперсно распыленное топливо. Оно взаимодействует с горячим кислородом и воспламеняется. Далее происходит работа, характерная и для бензинового ДВС.

    При этом мощность ДВС меняется не пропорцией смеси воздуха и топлива, как в бензиновых моторах, а исключительно количеством впрыскиваемого дизеля, в то время как количество воздуха постоянно и не меняется. При этом принцип действия современного бензинового агрегата, оснащенного форсункой, абсолютно не схож с принципом работы дизельного ДВС.

    Работающие с бензином электромеханические распылительные насосы предназначены, прежде всего, для более точного отмеривания впрыскиваемого топлива, и взаимодействуют со свечей зажигания. В чем эти два типа ДВС схожи — так это в повышенной требовательности к качеству топлива.

    Так как давление воздуха, создаваемое работой поршня дизельного мотора, значительно выше давления, оказываемого сжатой воздушно-бензиновой смесью, такой двигатель более требователен к зазорам между поршнем и стенками цилиндра. К тому же, дизельный двигатель труднее запустить зимой, так как «солярка» под воздействием низких температурных показателей густеет, и форсунка не может достаточно качественно распылить ее.

    И современный бензиновый мотор, и его дизельный «родственник» крайне неохотно работают на бензине «ДТ» несоответствующего качества, и даже кратковременное его применение чревато серьезными проблемами с топливной системой.

    Вывод

    Современные двигатели внутреннего сгорания – наиболее эффективные устройства перехода тепловой энергии в механическую. Несмотря на то, что большая часть энергии тратится не на непосредственно полезную работу, а на поддержание цикла самого двигателя, человечество пока не научилось массово производить устройства, которые были бы практичнее, мощнее, экономичнее и удобнее, чем ДВС. Вместе с тем, удорожание углеводородных энергоносителей и забота об окружающей среде заставляют искать новые варианты двигателей для легковых автомобилей и общественного транспорта. Наиболее перспективными на данный момент выглядит использование автономных, оснащенных батареями большой емкости, электрических двигателей, КПД которых намного выше, и гибридов таких двигателей с бензиновыми вариантами. Ведь обязательно настанет время, когда использовать углеводороды для приведения в движение личного автотранспорта станет абсолютно невыгодно, и ДВС займут место на музейных полках, как паровозные двигатели – полвека назад.

    Двигатель (ДВС): устройство, принцип работы, классификация

    Что такое ДВС в автомобиле, расшифровка кратко, Типы ДВС, бензин и дизель, Как устроен, Как работает, описание и анимация, Ремонт ДВС в автомобиле, стоимость

    Что такое ДВС?

    ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

    ДВС работает, благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

    Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

    Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

    Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

    • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
    • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
    • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

    Источник: http://zen.yandex.ru/media/sensys/dvigatel-vnutrennego-sgoraniia-ustroistvo-princip-raboty-i-klassifikaciia-5e6f3274e843ec4f8c3b0c1e

    Что такое ДВС?

    На самом деле, слова: двигатель, мотор и ДВС – это все одно и тоже.

    ДВС – это двигатель внутреннего сгорания. А двигатель – это сердце любой машины.

    По сути, двигатель внутреннего сгорания – это тепловое пространство, в котором топливо сгорает. Особенностью является то, что данный процесс происходит именно внутри двигателя, а точнее во внутреннем отсеке.

    Помощи из вне не требуется. Сгорание происходит благодаря эффекту расширения газов. Смесь во время сгорания воспламеняется, сильно увеличивается в объемах и в итоге энергия высвобождается.

    Источник: http://v12motors.ru/articles/ustroystvo-dvigatelya-avtomobilya-ili-chto-takoe-dvs/

    Что такое ДВС и для чего он нужен?

    Устройство двигателя

    Чтобы транспорт ехал, что-то должно приводить его в движение. В разные времена это были запряженные животные, затем на смену пришли паровые и электродвигатели (да, прародители современных автомобилей появились даже раньше, чем традиционные ДВС), затем моторы, работающие на горючем топливе.

    Современный двигатель внутреннего сгорания – это механизм, преобразующий энергию вспышки топлива (тепла) в механическую работу. Несмотря на достаточно громоздкую конструкцию, на сегодняшний день ДВС остается самым удобным источником энергии.

    Электротранспорт, конечно, всё больше входит в обиход, но время его «заправки» сводит на нет все преимущества – канистру с электричеством в багажник не положишь.

    Свое применение ДВС нашел во многих сферах: по одинаковому принципу работают автомобили, мотоциклы и скутеры, сельскохозяйственная и строительная техника, водный транспорт, двигатели самолетов, военная техника, газонокосилки… То есть, практически всё, что ездит или летает.

    Источник: http://vaznetaz.ru/dvigatel-dvs

    Что такое ДВС в автомобиле, расшифровка кратко

    По дорогам мира перемещаются миллионы автомобилей, автобусов и грузовиков. Такое развитие транспорта было бы невозможным без ДВС – главной движущей силы всех современных машин. Расшифровка аббревиатуры ДВС несложная – двигатель внутреннего сгорания.

    Что такое ДВС в автомобиле, что в нем горит и почему внутри – поясняем кратко. Паровой котел – это двигатель внешнего сгорания: дрова, уголь или мазут горят, подогревая воду, которая превращается в пар, который толкает поршни. Получается длинный и неэффективный цикл. Принципиальное отличие ДВС в том, что топливо сгорает внутри цилиндров, передавая энергию непосредственно поршням и валу, эффективность преобразования существенно выше. Кроме этого ДВС занимают немного места, мало весят, экономичны, работают на разнообразных видах топлива.

    Краткое содержание статьи

    1.Типы ДВС;

    2. Как устроен ДВС автомобиля;

    3. Как работает ДВС, описание, анимация;

    4. Ремонт ДВС, стоимость.

    Источник: http://vigodnozap.ru/chto-takoe-dvs-v-avtomobile/

    Расширение и работа газа

    Газ, расширяясь, может совершать работу. От кастрюльки с кипящей водой, накрытой крышкой, слышен звук постукивающей крышки. Звук возникает благодаря тому, что кипящая вода бурно испаряется. Пар поднимается над водой, занимая пространство между поверхностью воды и крышкой. Расширяясь, пар приподнимает крышку (рис. 1).

    Рис. 1. Расширяясь, горячий пар поднимает крышку, совершая работу

    Часть пара покидает кастрюльку через образовавшуюся под крышкой щель. И крышка опускается. Этот процесс будет повторяться до тех пор, пока мы не прекратим подогревать кастрюльку.

    Главным здесь является то, что нагретый пар (газ), расширяясь, может совершать работу, сдвигая крышку.

    Джеймс Уатт в конце 17-го века придумал способ увеличить эффективность использования этого свойства нагретого пара. Он изобрел конденсатор пара, благодаря ему усовершенствовал паровую машину Ньюкомена. Это позволило увеличить ее эффективность в 3 раза.

    Источник: http://formulki.ru/molekulyarka/teplovye-dvigateli

    Устройство двигателя внутреннего сгорания

    При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

    • Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
    • Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
    Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).Замену ГРМ проводят через каждые 60000 – 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

    Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).Замену ГРМ проводят через каждые 60000 – 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

    • Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
    • Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
    • Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
    Выхлопная система. Служит для отвода от мотора продуктов сгорания.Включает:- выпускной коллектор (приёмник отработанных газов),- газоотвод (приёмная труба, в народе- «штаны»),- резонатор для разделения выхлопных газов и уменьшения их скорости,- катализатор (очиститель) выхлопных газов,- глушитель (корректирует направление потока газов, гасит шум).

    Выхлопная система. Служит для отвода от мотора продуктов сгорания.Включает:- выпускной коллектор (приёмник отработанных газов),- газоотвод (приёмная труба, в народе- «штаны»),- резонатор для разделения выхлопных газов и уменьшения их скорости,- катализатор (очиститель) выхлопных газов,- глушитель (корректирует направление потока газов, гасит шум).

    • Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
    • Система впрыска. Позволяет организовать дозированную подачу топлива.

    В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

    Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС. 

    Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

    RSS

    А изучить устройство мотора основательно помогает дистанционный курс для самообучения “Базовое устройство двигателя внутреннего сгорания автомобиля”, на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

    Источник: http://zen.yandex.ru/media/sensys/dvigatel-vnutrennego-sgoraniia-ustroistvo-princip-raboty-i-klassifikaciia-5e6f3274e843ec4f8c3b0c1e

    Дополнительные агрегаты, требующиеся для ДВС

    Недостатком ДВС является то, что он производит высокую мощность только в узком диапазоне оборотов. Поэтому неотъемлемыми атрибутами двигателя внутреннего сгорания являются трансмиссия и стартёр. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

    Также ДВС нужны топливная система (для подачи топливной смеси) и выхлопная система (для отвода выхлопных газов).

    Источник: http://dic.academic.ru/dic.nsf/ruwiki/889547

    Принцип работы двигателя

    Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива – тепловой энергии, освобождённой от сгорания топлива, в механическую.

    При этом сам процесс преобразования энергии может отличаться.

    Самый распространённый вариант такой:

    • Поршень в цилиндре движется вниз.
    • Открывается впускной клапан.
    • В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
    • Поршень поднимается.
    • Выпускной клапан закрывается.
    • Поршень сжимает воздух.
    • Поршень доходит до верхней мертвой точки.
    • Срабатывает свеча зажигания.
    • Открывается выпускной клапан.
    • Поршень начинает двигаться вверх.
    • Выхлопные газы выдавливаются в выпускной коллектор.

    Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

    При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

    Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

    Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

    Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

    • Такт выпуска.
    • Такт сжатия воздуха.
    • Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
    • Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

    4 такта образуют рабочий цикл.

    При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

    Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

    • Поршень двигается снизу-вверх.
    • В камеру сгорания поступает топливо.
    • Поршень сжимает топливно-воздушную смесь.
    • Возникает компрессия. (давление).
    • Возникает искра.
    • Топливо загорается.
    • Поршень продвигается вниз.
    • Открывается доступ к выпускному коллектору.
    • Из цилиндра выходят продукты сгорания.

    То есть первый такт в этом процессе – одновременный впуск и сжатие, второй – опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

    Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

    Важно! Кроме количества тактов есть отличия в механизме газообмена.

    В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

    У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

    Источник: http://zen.yandex.ru/media/sensys/dvigatel-vnutrennego-sgoraniia-ustroistvo-princip-raboty-i-klassifikaciia-5e6f3274e843ec4f8c3b0c1e

    См. также

    • Автомобиль с газогенератором
    • Запуск двигателя внутреннего сгорания
    • Филипп Лебон — французский инженер, получивший в 1801 году патент на двигатель внутреннего сгорания со сжатием смеси газа и воздуха.
    • Роторно-поршневой двигатель
    • Винтовой ДВС[1]
    • Роторно-лопастной двигатель Вигриянова

    Источник: http://dic.academic.ru/dic.nsf/ruwiki/889547

    3. Как работает ДВС, описание и анимация

    Главный принцип работы ДВС – расширение объема газов в замкнутом пространстве цилиндра от тепла, возникающего в результате сгорания топлива.

    Чтобы двигатель работал непрерывно, реализуется цикл, состоящий из:

    1. Поступления топливной смеси в цилиндр, Поджога и сгорания смеси;
    2. Рабочего хода поршня;
    3. Выпуска газов.

    Импульс, полученный от сгоревшего топлива, толкает поршень, коленчатый вал поворачивается. Так энергия преобразуется в движение. Выше мы описали как работает ДВС, прикрепляем анимацию. 

    Источник: http://vigodnozap.ru/chto-takoe-dvs-v-avtomobile/

    Преимущества ДВС
    • Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
    • Высокая скорость заправки двигателя топливом.
    • Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo” P1800. Единственное, за время работы двигатель два раза проходил капремонт.
    • Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

    Источник: http://zen.yandex.ru/media/sensys/dvigatel-vnutrennego-sgoraniia-ustroistvo-princip-raboty-i-klassifikaciia-5e6f3274e843ec4f8c3b0c1e

    Недостатки ДВС

    При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

    Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

    Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

    Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

    Источник: http://zen.yandex.ru/media/sensys/dvigatel-vnutrennego-sgoraniia-ustroistvo-princip-raboty-i-klassifikaciia-5e6f3274e843ec4f8c3b0c1e

    Тюнинг

    Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

    Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

    Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

    Источник: http://dvigatels.ru/uhod/dvigatel-vnutrennego-sgoraniya.html

    Дизайн

    для естественного увеличения груди: принцип ICE

    Фон: Опубликованные авторами исследования помогли определить красоту груди, обозначив ключевые параметры, которые способствуют ее привлекательности. Принцип «ICE» воплощает дизайн в жизнь. Это упрощенная формула для планирования разреза под грудной складкой в ​​рамках процесса выбора и установки имплантата для воспроизведения соотношения 45:55, ранее описанного как фундаментального для естественного внешнего вида груди.Формула выглядит следующим образом: размеры имплантата (I) — вместимость груди (C) = требуемый избыток ткани (E). Целью этого исследования было проверить точность принципа ICE для получения устойчивых естественных красивых результатов при увеличении груди.

    Методы: Был проведен проспективный анализ 50 женщин, последовательно перенесших первичное увеличение груди с помощью разреза инфрамаммарной складки с использованием анатомических или круглых имплантатов.Принцип ICE применялся во всех случаях для определения выбора имплантата, его установки и положения разреза. Были проанализированы изменения параметров между дооперационными и послеоперационными цифровыми клиническими фотографиями.

    Полученные результаты: Среднее отношение верхнего полюса к нижнему полюсу изменилось с 52:48 до операции до 45:55 после операции (p <0,0001). Средний угол наклона соска также был статистически значимо увеличен с 11 градусов до 19 градусов к небу (p ≤ 0.0005). Точность выполнения разреза в складке составила 99,7% справа и 99,6% слева, при стандартной ошибке всего 0,2%. Произошло снижение вариабельности по всем ключевым параметрам.

    Заключение: Авторы показали, используя простой принцип ICE для хирургического планирования увеличения груди, что привлекательная натуральная грудь может быть достигнута последовательно и с точностью.

    Клинический вопрос / уровень доказательности: Терапевтический, IV.

    Дизайн для естественного увеличения груди

    Предыдущее отмеченное наградами исследование определяет естественную красоту груди

    Понимание того, что представляет собой красота груди, очень важно для тех, кто проводит эстетическую операцию на груди.Авторы, пластические хирурги из Лондона, доктор Патрик Маллуччи и доктор Оливье Александр Бранфорд, ранее определили широко признанные маркеры красоты груди в своей Международной статье года по пластической хирургии 2015 года в официальном медицинском журнале Пластическая и реконструктивная хирургия ®. Американского общества пластических хирургов (ASPS).

    Популяционный анализ идеальной груди: морфометрический анализ

    Исследователи пластической хирургии спрашивают: «Что такое идеальная грудь?»

    Это исследование с участием 1315 участников из всех демографических групп признало, что подавляющее большинство людей предпочитают естественную красоту груди: стремление к чрезмерному и негабаритному «фальшивому» виду, похоже, беспрепятственно проникло в практику за последние десятилетия.Негативные последствия слишком больших грудных имплантатов хорошо известны и являются одной из наиболее частых причин повторной операции.

    Возможно, наиболее значительным наблюдением в этом исследовании было распределение верхнего полюса полюса к нижнему полюсу — так называемое соотношение 45:55, при котором нижний полюс всегда был немного полнее, чем верхний полюс, при этом 55 процентов высоты груди было ниже. сосок и этот полный нижний полюс составляют основу естественной красоты груди. Это было фундаментальным наблюдением и противоречит общепринятым представлениям о полноте верхнего полюса как желательной конечной цели увеличения груди: красота находится в нижнем полюсе груди.

    Новое исследование применяет принципы на практике

    Следующая задача исследователей заключалась в последовательном и воспроизводимом применении этих принципов на практике на благо хирургов и, что более важно, их пациентов. Это основа принципа «ICE», цель которого — добиться естественной красоты груди и отказаться от вульгарности имплантатов большого размера.

    Дизайн для естественного увеличения груди: принцип ICE

    Принцип «ICE» касается выбора и установки имплантата, включая положение разрезов для воспроизведения оптимальной формы, и может применяться как к анатомическим, так и к круглым имплантатам.Это упрощенная формула для планирования разреза подгрудной складки как части процесса выбора и установки имплантата, чтобы воспроизвести соотношение 45:55, ранее описанное как основополагающее для естественной красоты груди.

    Принцип «ICE» — это формула, учитывающая два параметра имплантата — высоту и выступ, а также для мягких тканей, ширину основания и соска — значения складки при растяжении под грудью. Формула: I (размеры имплантата) — C (емкость груди) = E (требуется лишняя ткань, другими словами, насколько необходимо уменьшить разрез).Это было проверено на 50 пациентах, перенесших увеличение груди. Результаты показали, что положение имплантата и размещение разреза были очень точными, что привело к естественному виду груди, которое было ближе к естественному соотношению 45:55. Точное расположение разреза в подгрудной складке имеет решающее значение — это определяющий маркер нижнего полюса груди.

    Авторы предполагают, что принцип «ICE» будет способствовать более «здоровому» выбору имплантатов в долгосрочных интересах пациентов.Сочетание этой философии с эстетическими целями приведет к оптимальным результатам. Сегодня женщины все чаще требуют «естественного» образа, чтобы вернуть уверенность и женственность. Авторы полагают, что принцип «ICE» будет использоваться в качестве основы для дизайна в эстетической хирургии груди, представляя интересы пациента не только с эстетической точки зрения, но также с точки зрения долголетия и безопасности пациента.

    Взгляды, выраженные в этом блоге, принадлежат автору и не обязательно отражают мнение Американского общества пластических хирургов.

    Как хирурги стремятся к естественному увеличению груди — Atlantic Health Solutions

    Грудь бывает всех форм и размеров, что хорошо известно тем, кто, возможно, рассматривает операцию по увеличению груди. Но оказывается, что существует «идеальная» грудь, которую подавляющее большинство людей считают универсально привлекательной, и пластические хирурги придумали, как воспроизводить эту грудь последовательно и точно, что является хорошей новостью для людей, рассматривающих хирургический путь. к более эстетичной груди.

    Что такое «идеальная» грудь?

    Что же определяет «идеальную» форму груди? Представьте себе грудь как вертикальное сечение земного шара, где экватор — это сосок, северное полушарие — «верхний полюс» груди, а южное полушарие — «нижний полюс». В этой аналогии соотношение между верхним и нижним полюсами составляет 50:50 (симметрично). А теперь представьте, что у земного шара немного тяжелее дно, а ниже экватора — больший объем. Оказывается, грудь с большим объемом в нижней части груди (ниже соска) более привлекательна, чем грудь с равномерным распределением объема 50:50.Чтобы быть более конкретным, было обнаружено, что соотношение полюсов верхней и нижней частей 45:55 является «самой естественной и привлекательной формой груди».

    Если задуматься, это может показаться здравым смыслом: все знают, что грудь не идеально симметрична и что грудь, которая кажется неестественно полной или круглой, обычно выглядит фальшивой. Важно отметить, что грудь более естественной формы воспринимается как более привлекательная, и исследования показали, что это согласуется с мужчинами, женщинами, пластическими хирургами и расовыми / этническими группами.«Результаты были поразительно последовательными: все группы оценили грудь как наиболее привлекательную в соотношении 45:55». Оказывается, мужчины НЕ считают неестественно выглядящую идеально круглую грудь воплощением желанности. Кто знал?

    Что такое принцип ICE?

    Ок. Итак, как пластический хирург, вы хотите иметь возможность создавать красивую, естественную грудь для своей пациентки, используя эмпирически доказанное соотношение 45:55. Есть ли способ сделать это? Введите «Принцип ICE». Что такое принцип ДВС? Рад, что ты спросил.

    Исследование под названием «Дизайн для естественного увеличения груди», опубликованное в журнале Американского общества пластических хирургов в июне 2016 года, описывает метод последовательного и точного достижения естественной красоты груди. Для целей этого исследования «естественное увеличение груди» определяется как «стремление улучшить форму, не искажая ее, придерживаясь принципов тканевого планирования и фокусируясь на эстетическом результате». Это причудливый способ сказать: «Цель состоит в том, чтобы эти вещи выглядели естественно и эстетично, когда мы закончили здесь.

    ICE — это аббревиатура, где буквы обозначают следующие понятия:

    Размеры I-имплантата

    C-емкость груди

    Требуется избыток ткани E

    Эти буквы затем объединяются в следующую формулу: I (размеры имплантата) — C (вместимость груди) = требуемый избыток ткани (E).

    Пластические хирурги в этом исследовании использовали эту формулу для определения выбора имплантата, его установки и положения разреза у 50 женщин, перенесших «первичное увеличение груди с помощью разреза под грудной складкой с использованием анатомических или круглых имплантатов.(Если вы не знаете, что такое «разрез инфрамаммарной складки» на макушке вашей головы, это пластический хирург говорит за разрез, сделанный под грудью.) Результаты были таковы, что использование принципа ICE дало точность более 99%. размещения разрезов и среднее послеоперационное соотношение верхнего и нижнего полюсов 45:55 (волшебное соотношение!). Также произошло «снижение вариабельности по всем ключевым параметрам» (читай: «большая согласованность»).

    Исследование заключалось в том, что «авторы показали, используя простой принцип ICE для хирургического планирования увеличения груди, что привлекательная натуральная грудь может быть достигнута последовательно и с точностью.”

    Уф! Так что же в итоге? Почему это важно? Это важно, потому что, в отличие от примерно десяти лет назад, когда чрезмерный, негабаритный «искусственный» вид был нормой при увеличении груди, современные женщины все чаще просят увеличить грудь, что приведет к более «естественному виду». Увеличение груди — это достижение эстетики, и возможность постоянно добиваться наиболее привлекательной формы груди — это инструмент, который нужен каждому пластическому хирургу, и каждый пациент должен иметь его!

    Маргарет Дуркович

    Отдых, лед, сжатие и подъем (RICE)

    Обзор темы

    Как можно скорее после травмы, такой как растяжение связок колена или лодыжки, вы можете облегчить боль и отек и способствовать исцеление и гибкость с помощью RICE — Rest, Ice, Compression и Elevation.

    • Остальное . Отдохните и защитите травмированный или больной участок. Прекратите, измените или сделайте перерыв в любой деятельности, которая может вызывать у вас боль или болезненные ощущения.
    • Лед . Холод уменьшит боль и отек. Сразу же приложите лед или холодный компресс, чтобы предотвратить или минимизировать отек. Прикладывайте лед или холодный компресс на 10-20 минут 3 или более раз в день. Если через 48–72 часа отек исчез, приложите тепло к больному месту. Не прикладывайте лед или тепло непосредственно к коже.Положите полотенце на холодный или тепловой компресс, прежде чем прикладывать его к коже.
    • Сжатие . Сдавливание или обертывание травмированного или больного участка эластичным бинтом (например, бинтом Ace) поможет уменьшить отек. Не заворачивайте его слишком плотно, так как это может вызвать еще больший отек под пораженным участком. Ослабьте повязку, если она становится слишком тугой. Признаки того, что повязка слишком тугая, включают онемение, покалывание, усиление боли, прохладу или припухлость в области под повязкой.Поговорите со своим врачом, если считаете, что вам нужно использовать обертывание дольше 48–72 часов; может присутствовать более серьезная проблема.
    • Высота . Прикладывая лед, а также когда вы сидите или лежите, приподнимайте травмированный или больной участок на подушках. Старайтесь держать область на уровне сердца или выше, чтобы уменьшить отек.

    Нестероидные противовоспалительные препараты (НПВП) может также помочь уменьшить боль и отек.К ним относятся:

    • Ибупрофен, например Адвил или Мотрин.
    • Напроксен, такой как Алеве или Напросин.

    Будьте осторожны с лекарствами. Прочтите и следуйте всем инструкциям на этикетке.

    Когда болезненность и боль утихнут, медленно начинайте упражнения на растяжку и укрепление, а затем постепенно увеличивайте количество этих упражнений.

    Кредиты

    Текущий по состоянию на: 16 ноября 2020 г.

    Автор: Healthwise Staff
    Медицинский обзор:
    Уильям Х.Блахд-младший, доктор медицины, FACEP — неотложная медицина
    Адам Хусни, доктор медицины, семейная медицина
    Э. Грегори Томпсон, врач внутренних болезней
    Кэтлин Ромито, доктор медицины, семейная медицина
    Джоан Ригг, PT, OCS — физиотерапия

    Действует по состоянию на 16 ноября, 2020

    Автор: Здоровый персонал

    Медицинский обзор: Уильям Х. Блахд младший, доктор медицины, FACEP — неотложная медицина и Адам Хусни, доктор медицины — семейная медицина, и Э. Грегори Томпсон, доктор медицины — внутренние болезни, Кэтлин Ромито, доктор медицины — семейная медицина, и Джоан Ригг, PT, OCS — физиотерапия

    RICE Метод лечения травм (покой, лед, компрессия, подъем)

    Если вы когда-либо повредили лодыжку или имели другой тип растяжения или напряжения, скорее всего, ваш врач рекомендовал бы отдых, лед, сжатие и подъем (RICE) в качестве одна из ваших первых процедур.Метод RICE — это простая техника ухода за собой, которая помогает уменьшить отек, облегчить боль и ускорить заживление.

    Легкие травмы можно лечить методом RICE в домашних условиях. Вы можете попробовать это, если у вас болит колено, лодыжка или запястье после занятий спортом. Если боль или отек усиливаются или не проходят, обратитесь к врачу.

    Метод RICE включает следующие четыре этапа:

    Шаг 1. Отдых

    Боль — это сигнал вашего тела о том, что что-то не так. Как только вы получите травму, прекратите занятия и как можно больше отдыхайте в течение первых двух дней.Не пытайтесь следовать философии «нет боли — нет выгоды». Такие действия при определенных травмах, например, при растяжении связок голеностопа от средней до тяжелой, могут усугубить повреждение и замедлить ваше выздоровление. Врачи говорят, что вам не следует прикладывать вес к травмированному участку в течение 24-48 часов. Отдых также помогает предотвратить дальнейшие синяки.

    Шаг 2: Лед

    Лед — проверенный на практике инструмент для уменьшения боли и отеков. Прикладывайте пакет со льдом (накрытый легким впитывающим полотенцем, чтобы предотвратить обморожение) на 15-20 минут каждые два-три часа в течение первых 24-48 часов после травмы.Нет пакета со льдом? Подойдет пакет замороженного гороха или кукурузы.

    Шаг 3: Сжатие

    Это означает обертывание травмированного участка для предотвращения отека. Оберните пораженный участок эластичной медицинской повязкой (например, повязкой ACE). Вы хотите, чтобы она была плотно прилегающей, но не слишком тугой — если она будет слишком тугой, кровоток прервется. Если кожа под повязкой посинела, почувствовала холод, онемение или покалывание, ослабьте повязку. Если эти симптомы не исчезнут сразу, немедленно обратитесь за медицинской помощью.

    Шаг 4: Подъем

    Это означает поднятие больной части тела над уровнем сердца. Это уменьшит боль, пульсацию и отек. Это не так сложно, как вы думаете. Например, если у вас растяжение связок голеностопного сустава, вы можете подпереть ногу подушками, сидя на диване. CDC рекомендует по возможности держать травмированный участок приподнятым, даже если вы его не обледеневаете.

    Лечение с использованием риса

    Ваш врач может посоветовать использовать нестероидные противовоспалительные препараты (например, ибупрофен или напроксен) вместе с лечением RICE.Они доступны без рецепта и по рецепту. Перед приемом этих лекарств проконсультируйтесь с врачом об истории вашего здоровья.

    ICE: испытание принципа эквивалентности

    ICE или «Интерферометрия когерентных источников для космоса» — это эксперимент, проводимый лабораторией фотоники, цифровых технологий и нанонауки Института оптики в Аквитании, на юго-западе Франции.

    Научная цель

    Целью эксперимента ICE является проверка принципа эквивалентности, согласно которому две разные массы в гравитационном поле падают с одинаковым ускорением.

    Чтобы проверить или опровергнуть этот принцип в микроскопическом и квантовом масштабе, цель исследовательской группы — построить двухкомпонентный атомный интерферометр для измерения разницы в ускорении между двумя атомами разной массы и структуры.

    Чувствительность измерения увеличивается с увеличением продолжительности экспериментальной последовательности.

    Согласно принципу эквивалентности, любой объект, независимо от его массы, подвергается одинаковому ускорению в гравитационном поле.

    Более длительное время опроса в условиях невесомости

    На Земле атомы попадают под действие силы тяжести и больше не могут вносить вклад в сигнал в определенной точке, потому что они покидают зону измерения. В условиях невесомости атомы остаются в центре испытательной камеры, и можно добиться гораздо большего времени опроса и, следовательно, более высокой чувствительности.

    Эксперименты с атомным интерферометром обычно проводятся в тихой обстановке, например в лаборатории.Для того же эксперимента в Airbus A310 Zero G, где уровень вибрации очень высок, используются новые методы сборки, в частности, для лазерных источников, которые должны быть компактными, прочными и нечувствительными к тепловым и механическим колебаниям. По логике вещей, эксперимент должен стать первым шагом к пространственной системе.

    Описание экспериментальной установки

    Эксперимент был разработан таким образом, чтобы выдерживать высокие уровни вибрации и колебаний. Сложная лазерная система используется для улавливания и охлаждения двух разновидностей атомов (рубидия и калия), необходимых для эксперимента.

    Частота лазера очень точно регулируется путем измерения атомного перехода рубидия (или калия соответственно). Третий лазер на 770 нм используется для увеличения эффективности охлаждения калия.

    Та же самая лазерная система используется для генерации световых импульсов, подаваемых на свободно падающие атомы для разделения групп волн и интерференции с ними.

    Выходная фаза интерферометра измеряется флуоресцентным детектированием атомов в заданном энергетическом состоянии. Цепочка частот генерирует микроволновые сигналы, которые позволяют нам определять внутренние состояния атомов.Кварцевый генератор используется в качестве эталона для частотной гребенки и микроволновых сигналов. Синхронизация эксперимента также имеет решающее значение: вся система управляется компьютером и картами, генерирующими цифровые и аналоговые сигналы с очень высокой временной точностью.

    Волоконная лазерная система для охлаждения и улавливания атомов. Атомы находятся в испытательной камере с очень сильным вакуумом (10-9 Торр)

    Атомы захватываются на пересечении шести лазерных лучей в центре корпуса и могут охлаждаться ниже мкК, что соответствует скоростям в диапазоне миллиметров в секунду! Эта очень низкая температура значительно увеличивает когерентность источника материальной волны атомного интерферометра и, следовательно, помогает обеспечить хорошее отношение сигнал / шум.

    Экспериментальные приложения

    Переносные интерферометры холодного атома могут быть использованы в различных областях.

    Использование в космосе: средства измерения

    В космосе они могут быть ценными инструментами измерения для тестов общей теории относительности, такими как атомные часы Pharao на МКС. ICE — важный шаг в подготовке проекта STE-QUEST, цель которого — отправить на спутник атомные часы и двухкомпонентный атомный интерферометр для проверки универсальности свободного падения.

    Использование на Земле: гравиметры или атомные гироскопы

    На Земле атомные гравиметры или гироскопы могут быть полезны для инерциальной навигации, геофизики или метрологии. Например, наш атомный интерферометр использовался для измерения остаточных ускорений самолета.

    В сочетании с обычным акселерометром, который позволяет производить грубое первоначальное измерение ускорения, датчик точного измерения может обнаруживать инерционные эффекты, в 300 раз меньшие, чем типичные колебания ускорения самолета.

    P.O.L.I.C.E. Принцип для острых растяжений и деформаций

    Давно использовавшийся R.I.C.E. метод может быть не лучшим способом лечения острой травмы. Акроним означает R est, I ce, C сжатие и E levation. В течение многих лет физиотерапевты, а также спортивные тренеры, медицинские работники и специалисты по спортивной медицине рекомендовали его для лечения острых травм.

    Как лечить спортивную травму с помощью R.ЛЕД. Техника

    Однако теперь P.O.L.I.C.E. Принцип может быть новым подходом вашего физиотерапевта к лечению острых травм. Это может помочь вам правильно использовать лед и мягкие движения, чтобы быстро вернуться к своей обычной деятельности.

    Почему R.I.C.E. Был рекомендован

    Согласно R.I.C.E., при травме, такой как растяжение лодыжки, ваш лечащий врач посоветует вам сначала дать ему отдых, затем приложить лед, используя какую-либо форму сжатия (например, повязку ACE), и приподнять травмированную часть тела.

    Мыслительный процесс, лежащий в основе этого, заключается в том, что в первые дни после травмы ваше тело приносит много крови и жидкости к поврежденному месту, чтобы подготовить его к заживлению. Но ваше тело приносит слишком много жидкости в травмированную область. Эта чрезмерная жидкость ограничивает диапазон движения (ROM) вокруг вашего сустава, что на самом деле может замедлить правильное заживление.

    Проблема с R.I.C.E.

    В то время как R.I.C.E. техника имеет смысл, у нее есть несколько недостатков. Во-первых, не было доказано, что работает так, как мы думаем.

    Одно исследование, опубликованное в журнале Journal of Athletic Training , обнаружило отсутствие убедительных доказательств того, что R.I.C.E. лечение растяжения связок голеностопного сустава приводит к лучшим результатам. На самом деле, некоторые эксперты считают, что прикладывание льда сразу после травмы препятствует нормальному процессу заживления.

    Еще одна проблема с R.I.C.E. Техника состоит в том, что многие люди заходят слишком далеко на фазе «отдыха».

    Часто после острой травмы необходим небольшой отдых. Однако вы можете почувствовать необходимость дать отдых травмированной мышце или суставу гораздо дольше, чем это действительно необходимо.Это может привести к снижению мышечной силы и гибкости, что может задержать ваше возвращение к нормальному функционированию и активности.

    Почему P.O.L.I.C.E. Лучше

    Теперь некоторые физиотерапевты рекомендуют P.O.L.I.C.E. принцип вместо R.I.C.E. Полиция. аббревиатура означает:

    • Protection : В течение первых нескольких дней после травмы вам непременно следует дать отдых травмированному суставу, связке или мышце. После этого вы можете начать плавные движения, сохраняя при этом некоторую защиту травмированной области.В это время для ходьбы вам может потребоваться какое-то вспомогательное устройство, например костыли.
    • Оптимальная загрузка : Здесь описывается плавное движение, которое вы можете начать в фазе защиты. Например, после травмы плеча или операции на плече вы сможете перейти от нескольких дней отдыха к пассивному движению с диапазоном движений (ROM), активному ROM и, наконец, к упражнениям по укреплению вращательной манжеты.

    Эта прогрессирующая нагрузка на травму может способствовать оптимальному заживлению и предотвращать задержки в возвращении к норме из-за стянутости суставов и мышц или атрофии мышц.

    • Лед : Прикладывание льда может помочь снять отек вокруг травмированной мышцы или сустава, а лед может помочь уменьшить часть острой боли, которую вы, возможно, испытываете. Ваш физиотерапевт может помочь вам определить, как лучше всего приложить лед к вашей травме. Он также может научить вас делать свой собственный пакет со льдом.
    • Компрессия : прикладывая лед, вы можете добавить компрессию с помощью повязки ACE. Вы также можете использовать такой продукт, как Ice Tape, чтобы одновременно охладить и сжать травму.
    • Высота : Высота некоторых частей тела проста. Травмированную лодыжку или колено можно положить на стопку подушек, пока вы лежите. Травма локтя или запястья требует, чтобы вы подняли всю руку на чем-то. Ваш физиотерапевт может посоветовать вам лучший способ уменьшить травму.

    The P.O.L.I.C.E. принцип немного отличается от R.I.C.E. метод. «Отдых» отсутствует, заменен «оптимальной нагрузкой» и «движением». Это делает вашу травмированную часть более подвижной, снижает жесткость и может помочь вам быстрее восстановиться.

    Как может помочь физиотерапия

    Полиция. Принцип — это простой метод, который можно попробовать после острой травмы, но посещение физиотерапевта может оказаться полезным или необходимым. Сначала он или она может помочь вам найти лучшую защиту от травмы.

    Например, травма плеча может первоначально потребовать использования повязки, а травма связки колена может потребовать фиксации на начальных этапах заживления.

    Ваш физиотерапевт может посоветовать вам, в какой степени защиты нуждается ваше травмированное тело, а также когда пришло время перестать защищать травму и снова начать использовать травмированную часть.

    Технический специалист также может направить вас в части «оптимальной загрузки» P.O.L.I.C.E. принцип. После травмы вам может потребоваться выполнять простые упражнения и движения, чтобы позволить травмированной мышце или связке должным образом зажить.

    По мере заживления травмы физиотерапевт может изменить упражнения, чтобы обеспечить оптимальную нагрузку и правильное заживление. Когда все выздоровеет, вы сможете свободно двигаться и вернуться к нормальной деятельности, не беспокоясь о скованности или потере силы, которая может наступить с длительным периодом отдыха.

    Слово от Verywell

    Если вы перенесли острую травму опорно-двигательного аппарата, такую ​​как растяжение связок или растяжение мышц, визит к врачу или физиотерапевту станет первым шагом в вашем лечении. Он или она может порекомендовать P.O.L.I.C.E. способ лечения вашей травмы.

    Полиция. Метод — это простая аббревиатура, которая помогает обеспечить защиту сустава, оптимальную нагрузку на сустав и получение преимуществ от льда, сжатия и возвышения.