Как пользоваться мультиметром в автомобиле: подробная инструкция
Всем привет! Думаю, многие автомобилисты и просто электрики согласятся, что наличие мультиметра очень помогает в повседневной жизни. Он может пригодиться в быту и при обслуживании или ремонте транспортного средства. Потому сегодня поговорим немного о том, как пользоваться мультиметром и делать это правильно.
Можете называть устройство тестером, мультиметром (МТМ) или цешкой. Хотя тестер и МТМ не совсем одно и то же. Но предлагаю не зацикливаться на обозначениях, а просто поговорить на актуальную тему.
С помощью таких устройств можно проверить параметры напряжения, работу электрического оборудования, сделать замеры тока и сопротивления. Вообще МТМ являются многофункциональными устройствами, и должны находиться в автомобиле каждого водителя.
Знакомство с устройством
Для начала предлагаю поговорить про сами мультиметры как электронные устройства. Далее будет представлена подробная инструкция для начинающих или, как это принято говорить, для чайников.
Посмотрим на переднюю панель устройства для измерений показателей в машине и дома. Обычно на лицевой части указано несколько значений. А именно:
- OFF. Здесь все понятно. Прибор находится в выключенном состоянии;
- ACV. Такое обозначение указывает на переменное напряжение;
- Значок Ω означает тут сопротивление;
- DCA является постоянным током;
- Завершает все DCV или постоянное напряжение;
- 3 разъема с соответствующими указателями;
- Непосредственно сам циферблат или электронное табло.
Что касается 3 разъемов. Через них подключаются щупы. Набор с клещами идет в комплекте к МТМ, потому тут все должно быть понятно.
Есть одно замечание относительно того, как и когда подключать те или иные щупы к тестеру. Есть черный провод, который неизменно всегда идет в гнездо, которое обозначено символами COM.
А вот с красным ситуация более сложная. Все зависит от того, какие именно измерения своим цифровым мультиметром вы собираетесь проводить. Когда делаются замеры напряжения в электросети, сопротивления или силы тока номиналом до 200 мА, тогда вам нужен только выход VmA. Если же величина превышает 200 мА, тогда подключайтесь красным щупом к 10 ADC.
Думаю, с этим разобрались. Если сделать все наоборот, долго пользоваться тестером вам не удастся. Причиной тому станет сгоревший предохранитель. Как и в случае с предохранителем прикуривателя в авто, здесь также применяются плавкие элементы.
Аналоговые МТМ
Большинство автомобилистов и электриков отдают предпочтение цифровым мультиметрам. Это современные устройства с широкими функциональными возможностями.
Но на рынке также присутствуют устаревшие приборы. Их называют аналоговыми или стрелочными. Кому как удобнее. Но вот их характеристики и эффективность значительно уступают цифровым решениям. Пользоваться стрелочным тестером не лучший вариант, поскольку у шкалы больше погрешность.
Да и в целом пользоваться подобными аппаратами не особо удобно. Лучше сразу переходить на цифровые приборы хорошего качества.
К таковым я бы отнес следующие модели:
- DT830;
- DT832;
- DT838;
- Ресанта DT 181;
- Ресанта DT 182;
- ДТ9205а;
- Ермак;
- Mastech и пр.
Хотя не буду скрывать, что некоторые продолжают пользоваться цифровыми тестерами. Вероятно, они у них давно в наборе инструментов, либо просто автомобилист не хочет тратить деньги на цифровой аппарат, поскольку его полностью устраивает его стрелочный мультиметр.
Инструкция по использованию
Теперь немного подробнее расскажу вам о том, как своими руками воспользоваться мультиметром цифрового типа, чтобы сделать разные замеры параметров.
В нашем материале будет рассмотрено измерение:
- напряжения;
- силы тока;
- сопротивления;
- прозвонки.
Чтобы все было более понятно, про каждую процедуру поведаю отдельно. Если вам есть чем дополнить эту инструкцию, обязательно пишите в комментариях.
Напряжение
Измерить напряжение самостоятельно не сложно. Но подробная инструкция на такой случай точно не помешает.
Последовательность ваших действий будет такая:
- Переведите переключатель в соответствующее положение;
- В сети, где имеется переменное напряжение, стрелка должна располагаться в зоне ACV;
- Щупы МТМ идут в гнезда СОМ и VΩmA;
- Теперь выставляйте подходящий примерный диапазон;
- Если сомневаетесь, переводите в максимальное значение;
- Когда на табло появится цифра, можно отрегулировать положение;
- Если это сеть с постоянным напряжением, МТМ применяется так же;
- Но во втором случае переключатель лучше поставить в положение 20 В;
- Щупы к цепям следует подключать строго параллельно.
Вы наглядно можете видеть, что ничего сложного в этой процедуре нет. А потому вы с легкостью своими руками сможете измерять напряжение, которое сейчас наблюдается в электросети. Как переменное, так и постоянное.
Тут главное не касаться голыми руками к щупу, поскольку он будет находиться под воздействием тока.
Сила тока
Для определения параметров тока первым шагом является ответ на вопрос о том, какой именно ток идет по проводке. Он бывает переменным и постоянным.
Далее вы смотрите по оборудованию или прибору, какое ориентировочное значение тут может быть. Измеряется показатель в Амперах, то есть обозначается буквой А.
- В зависимости от параметров примерного напряжения, красный щуп идет в соответствующее гнездо Ω;
- Сначала щуп лучше поставить туда, где токовое значение выше;
- Если на табло увидите меньшее значение, можно переключиться;
- При необходимости уменьшите диапазон измерения;
- Когда МТМ используется в роли амперметра, подключение к цепи происходит последовательно.
И тут, как видите, можно легко справиться самостоятельно. Задача по замерам силы тока выполнена. Потому переходим к следующему пункту.
Сопротивление
Самым простым и безопасным мероприятием с применением МТМ является замеры сопротивления.
Тут действуйте следующим образом:
- Переключатель ставится в любое положение в зоне ;
- Выбирается подходящий диапазон измерений;
- Перед операцией отключается питание в сети обязательно;
- Иначе тестер не покажет правильное значение;
- Если видите цифру 1 на табло, либо значения Over и Ol, тогда следует выставить более высокий диапазон;
- В противном случае произойдет перегрузка;
- При появлении 0 тестер переводится в меньший диапазон.
Соблюдение этих простых правил и последовательности в ваших действиях позволит быстро и без особых проблем сделать все необходимые процедуры по измерению сопротивлений.
Хорошая функция мультиметра, которая часто выручает при ремонте домашней бытовой техники. Я, к примеру, недавно починил жене утюг. И тестер оказался крайне полезным в этой работе.
Прозвонка
Я вам ничего не говорил о задней панели мультиметра. Хотя там находится еще несколько функций. Они в основном предназначены для радиотехников, которые профессионально занимаются своей работой. Для задач в домашних условиях или при ремонте авто они не понадобятся.
За исключением одного режима. Его называют режимом прозвонки. Предназначен он для поиска обрывов в электроцепи. Для этого цепь нужно прозвонить. Когда она замкнута, то есть обрыв отсутствует, тогда появляется звуковой сигнал. Если же обрыв есть, тогда звуков никаких не возникнет. Это означает, что вы нашли проблемный участок.
Для проверки нужно разместить два щупа с двух сторон прозваниваемой цепи. Это позволяет отыскать даже незначительный обрыв на протяженной электроцепи.
Но и тут есть важная особенность. Когда вы соберетесь прозванивать цепь, обязательно убедитесь, что электричество выключено. То есть сначала выключается автомат на распределительном щитке, а уже затем делается прозвонка. Так же и при ремонте автомобиля. Нужно выключить мотор и снять минусовую клемму с аккумулятора.
Чем смог, постарался помочь. С вас комментарии и вопросы. Дополнительно можете посмотреть наглядное видео.
Думаю, каждый при желании легко разберется в работе любого современного мультиметра цифрового типа. К тому же, производитель всегда прилагает подробную инструкцию к прибору. Потому работу с устройством всегда нужно начинать с изучения руководства по эксплуатации.
Спасибо всем вам за внимание! Подписывайтесь, оставляйте свои комментарии и задавайте актуальные вопросы!
Как пользоваться тестером для различных искомых характеристик? + видео
Этот маленький, но очень способный прибор есть у каждого любителя электроники, поэтому, как пользоваться тестером, мы расскажем как раз на основании опыта одного из наших друзей. Но сначала разберемся, что это такое, и какие же параметры мы сможем анализировать, имея данный инструмент.
Мультиметр и кабель-тестер – в чем разница?
Тестер – довольно всеобъемлющее понятие, в него входит как привычный мультиметр, так и кабельный тестер, который проверяет целостность провода по всей длине и даже может указать место обрыва цепи. Мультиметр, как понятно из его названия, умеет многое. В его основные функции входит определение напряжения, сопротивления и силы тока, что соответствует отдельным приборам вольтметру, омметру и амперметру. Может быть переносным и стационарным, а шкала у него может быть аналоговой либо в виде цифрового дисплея.
Кабель-тестер также различается по своему назначению. Существует измеритель состояния оптических кабелей и витой пары (сетевых). Ко второму виду относится также измеритель телефонного и коаксиального кабеля. На выходе мы можем получить следующие параметры: длину провода, схему разводки, степень наводки и затухание, сопротивление и потери. По классам приборы делятся, исходя из их достоверности. Существуют базовые (читай бытовые, для простой проверки), с квалифицированной степенью проверки и сертификационным уровнем.
Они отличаются не только точностью и достоверностью, но и функциями. Например, сертификационный тестер имеет возможность провести диагностику и найти причины в том случае, если ваша проводка тест не прошла, то есть неисправна.
Кабельный тестер и мультиметр – особенности измерений
Прежде чем использовать тестер напряжения или кабельный, следует знать, чего же нам ждать, когда подключим прибор. Также важно помнить, как правильно им пользоваться. Иначе мы можем не только получить неверные результаты или вовсе их не увидеть, но и учинить пожар или неприятно пахнущее оплавление изоляции проводов. Для мультиметра важно обстоятельство, что он измеряет то, что чувствует лично он, то есть «измеряет себя». А значит, нужно пропустить все интересующие нас параметры в полной мере через прибор.
Как в тех или иных случаях следует его подключать в цепь, нам расскажут законы физики школьного уровня, но об этом мы упомянем ниже. Тестер для кабелей не капризен в плане подключения, так как разъем у него обычно перепутать невозможно. Для работы с ним следует лишь понять, как распознать те или иные сигналы, но об этом лучше читать в каждом конкретном руководстве к прибору, собственно как и про сигналы, которые показывает его дисплей. Перед работой следует всего лишь выяснить, в каком диапазоне скоростей должен работать кабель, а потом замерить, соответствует ли реальное значение ожидаемому.
Если значение не соответствует, то нужна диагностика сертифицирующим тестером, важно провести ее в режиме NEXT (наводка на конце кабеля) и Return Loss (потери при возврате). Тогда можно определить, что не в порядке – сам кабель или его разъемы.
Как пользоваться тестером для различных измерений?
Независимо от того, какой у вас тестер, электрический или аналоговый, следует знать общий подход к измерению самых распространенных параметров.
Постоянное и переменное напряжение
Чтобы измерить данный параметр, нужно переключить тестер в режим вольтметра, для этого найдите обозначения DCV (V) и ACV (V~), обозначают эти буквы соответственно постоянное и переменное напряжение. Согласно физическим законам, значение напряжения следует снимать при параллельно подключенном приборе, только так на нем будет разность потенциалов, как и в основной цепи.
Во всем этом процессе есть несколько особенностей. Например, ваши показания будут не точны, если сопротивление измеряемого участка цепи будет порядка 1 МОм, потому что собственное сопротивление тестера в таком режиме очень велико, и он будет давать заниженный результат. Таким образом, для достоверности результатов нужно соблюдать условие, чтобы ток источника был намного больше, чем отношение U/R, где U – искомое напряжение, а R – собственное сопротивление измерительного прибора.
Но и это еще не все, при измерении ACV прибор делает его выпрямление с помощью диодов, но и они имеют свою разность потенциалов, что дает погрешность при измерении переменного напряжения в районе 1-3 Вольт, значение просто будет занижено. Точно также прибор будет привирать в случае измерения падения напряжения большой частоты, причем порог не так и высок, значения станут отличаться от реальных уже в районе пары сотен кГц.
Постоянный ток
Опять возвращаемся к школьной физике, чтобы через прибор прошло такое же количество зарядов, как и через анализируемую цепь, он должен быть подключен последовательно, то есть вклинен в нее (в разрыв цепи). Режим называется DCA, а для высоких значений есть функции 10А и 20А. Правда, не забудьте заменить штатные провода на усиленные для этих режимов, потому что стандартные не держат такие нагрузки и оплавляются, а то и горят, потому что рассчитаны максимум на 5 Ампер.
А вот переменный ток напрямую измерить не получится, можно только извратиться, подключив в цепь резистор с крайне малым сопротивлением. Ток измеряется уже на этом элементе цепи, а потом искомое значение тока находится по формуле U/R, только вот погрешность такого измерения довольно большая, и то метод работает в случае крайностей – либо очень высокий ток, либо очень низкий.
Сопротивление
Измеряется эта величина на резисторе при отключенной цепи, то есть ток идти не должен. Режим омметра в тестере включается через обозначение буквой «Омега» (подкова). Если вы все же не перекроете ток в цепи, то получите значение, которое даже для расчетов использовать будет нельзя, так как против сопротивления резистора будет играть сопротивление оставшейся части цепи, которое, кстати, неизвестно. А вот дифференциальное сопротивление некоторых элементов (нелинейных) получить с помощью тестера тоже нельзя, только косвенно, причем придется не только считать, а даже строить графики U=f(I), предварительно изменив анализируемую цепь.
Прозвон диодов
Режим включается соответствующим значком, который изображает диод. Нельзя пользоваться при включенном токе. Берем красный провод и подносим к одному концу, а потом ко второму. Тот, от которого будет показано цифровое значение, и является анодом. Если на экране знак бесконечности, то вы наткнулись на катод.
Распиновка транзисторов
Тестер работает в режиме прозвона диодов, красный провод крепим к одному из концов резистора, вторым проводом (черным) проверяем контакты (оба). Если дисплей выдаст нам два числа, то это n-p-n транзистор. Цифры будут почти одинаковы, но запомните их, а лучше отметьте, в каком случае значение было меньше. Теперь можно определить базу, эмиттер и коллектор: в качестве первого объекта выступает контакт, за который у нас держится красный провод, второй – тот, для которого цифра была больше, а последний – для которого цифра была меньше.
Если прием с красным стационарным проводом не дал нам значений, то красный провод отсоединяем и стационарно крепим черный провод, а красным проверяем контакты в поисках цифр на экране. Так подбираем комбинацию с адекватным поведением. Если с черным проводом повезло, то транзистор является типом p-n-p, а эмиттер и коллектор вычисляют по той же закономерности.
Емкость и индуктивность
В некоторых моделях тестеров могут быть функции измерения численного значения этих параметров, и обозначаются режимы C (емкость) и L (индуктивность). Подключаются как омметр. Если специальных режимов нет, то наличие (работоспособность) этих характеристик можно установить с помощью режима омметра, но вот численное выражение вы не получите. Как это определить: сопротивление исправной катушки должно стремиться к нулю и выражаться каким-нибудь малым конечным числом, а конденсатор – наоборот, его сопротивление должно быть очень большим, вплоть до бесконечности. Подключая электролитический конденсатор к тестеру, соблюдайте полярность (красный – к плюсу, черный – к минусу), и не вздумайте схватиться за выводы руками.
фото обзор, видео — Asutpp
Мультиметр – это инструмент, используемый для проверки постоянного или переменного напряжения, сопротивления или непрерывности тока в цепи. Рассмотрим, 3 способа, как пользоваться мультиметром для чайников, чтобы узнать, есть ли ток в локальной электрической сети.
Строение мультиметра
Перед началом работы необходимо изучить составляющие устройства, т.к. инструкция далеко не всегда прилагается, мы подготовили их описание:
- Циферблат: Имеет дугообразные весы, видимые через стеклянный или пластмассовый дисплей. Указатель на дисплее показывает значения по шкале. Если будете цифровым мультиметром (mastech mas838, ms8230b, m890d, dt700d, dt 9202a, 59002, mas830, my64), то его циферблат будет заменен лед-дисплеем.
- Указатель или стрелка: Это тонкая черная игла на самой левой позиции в окне циферблата, предназначена для показаний измеренных данных на стрелочных устройствах — yx 360trn, pmm 600, sunwa yx 1000a, м83. Перед те, как пользоваться стрелочным мультиметром обязательно прочтите инструкцию, особенно раздел «значения делений».
- Переключатель или кнопка: Позволяет изменять функции (вольтметр, амперметр, омметр) и масштаб (x1, x10 и т.д.) счетчика. Многие функции имеют несколько диапазонов, как и в сенсорных выключателях. Важно иметь полный набор режимов работы. Большинство измерителей используют ручку такого типа, как показано на картинке, но есть и другие. Независимо от этого, они работают аналогично. Некоторые метров оснащены положением «Выкл» , которая служит переключателем, а другие имеют отдельную кнопку, чтобы включить прибор. Измеритель должен быть установлен в положение «Выкл» при хранении.
- Валеты или отверстия в корпусе, чтобы вставить щупы. Большинство мультиметров имеют несколько гнезд. Одно, как правило, с надписью COM или (-) для общего и отрицательным. Для подключения черного щупа. Другой разъем помечен V (+) и символом Omega для Вольт и Ом, соответственно, и положительных зарядов. + и — символы представляют полярность зонда, при установке и тестировании величины постоянного тока. Если измерительные провода устанавливаются в соответствии с инструкцией, красный провод будет положительным, а черный отрицательным. Многие приборы имеют дополнительные разъемы, которые требуются для высоковольтных испытаний.
- Тестовые провода с клещами: С тестером идет 2 провода: один черный и красный.
- Отсек для батарей и предохранителей: обычно находится на обратной стороне. Полностью заряженные аккумуляторы будут необходимы для сопротивления и непрерывности испытаний.
- Регулировка нуля: Это маленькая кнопка обычно располагается около набора, который называется Ом Adjust, 0 ADJ, или аналогично. Используется только в режиме омметра или измерения диапазона сопротивления, в то время как датчики замкнуты, например, для установки терморегулятора котла.
Видео обзор работы с мультиметром
Использование мультиметра для измерения сопротивления
Многие не знают, как мультиметром пользоваться для измерения сопротивления, а ведь это его основная функция, которая особенно будет полезна, если нужно провести монтаж электропроводки в квартире или доме. Установить мультиметр на показатель Ом, путем поворота ручки до соответствующего показателя (рисунок 1).
Рисунок 1. Измерение сопротивления мультиметромОбратите внимание на показания счетчика. Если измерительные провода не находятся в контакте с каким-либо предметом, игла указателя или аналоговый измеритель тестера будет отклоняться в левую сторону, при работе с цифровым аппаратом – значение будет «скакать» в большую сторону. Это представляет собой бесконечное количество сопротивления, или «обрыв», но также означает, что нет никакой связи путь между черным и красным зондами.
- Подключите черный щуп к разъему -COM (рисунок 2)
- Подключите красный щуп к гнезду отмеченные Omega (символ обозначающий Ом) или букве «R» или «P» рядом с ним (рисунок 3)
- Установите диапазон (если имеется) в R х 100 (рисунок 4)
- Держите зонды измерительных проводов вместе. Стрелка прибора должна полностью перейти на правую сторону циферблата. Найдите «настройки нуля» и вращайте ручку так, чтобы измеритель показывал 0 (или как можно ближе к 0, насколько это возможно) (рисунок 5)
Обратите внимание, что эта позиция называется «Короткое замыкание» или «Ом на нуле» показанием для этого диапазона – 1 R X. Ом Рисунок 6
Рисунок 6. Ом на нуле мультиметраЗамените батареи (при необходимости). Если омметр не показывает 0 – это может означать, что батарейки разряжены и должны быть заменены.
Использование мультиметра для измерения напряжения (Вольт)
Установите измеритель на самом высоком диапазоне предусмотренным для Вольт переменного тока. Пока неизвестно, какое напряжение будет наибольшим, поэтому чтобы устройство не повредит устанавливаем показатель на максимум.
- Вставьте черный щуп в отверстие СОМ или -. Вольт Рисунок 1
- Вставьте красный щуп в отверстие V или +. Вольт Рисунок 2
- Поверните ручку измерителя на нужный режим (DCV или ACV) (рисунок 3). Максимальное значение шкалы должно совпадать с селектором диапазонов ручки. Показатели напряжения являются линейными. Точность деления до 0,001 (рисунок 4)
- Проверьте общую электрическую розетку.
- Вставьте черный провод в одно из отверстий установленной розетки, красный в другое. Выньте провода из розетки, и проверните ручку переключателя до самого низкого диапазона. Вольт Рисунок 5
- Если указатель не двигался, вполне вероятно, что был выбран режим постоянного тока вместо переменного. Дело в том, что эта ошибка может оказаться смертельной, особенно если измерение проводится для изменения разводки в квартире, поэтому лучше проверьте напряжение в обоих режимах.
Режим амперметра у мультиметра
Как правильно пользоваться мультиметром dt 832, dt 838, dt 830b, dt9205a в режиме измерения напряжения в автомобиле? Этому не сложно научится. Установите измеритель на самом высоком показателе переменного или постоянного тока, если Amp диапазон поддерживается.
Учтите, что большинство мультиметров будет измерять только очень небольшое количество тока в мкА и мА диапазонах. Это значения тока, которые проходят только в самых тонких электронных схемах, и в тысячи (и даже миллионы) раз меньше, чем значения в любой домашней электрической сети. Например, для обычной лампочки 100W / 120V аварийного освещения необходимо 0,833 ампер.
- Вставьте черный щуп в СОМ или -.
- Вставьте красный щуп в -. Выключите питание схемы, отключите разделительный трансформатор.
- Амперметр размещается последовательно со схемой для измерения силы тока. Необходимо соблюдать полярность. Ток течет от положительной стороны к отрицательной. Установите диапазон тока к наибольшему показателю (рисунок 1)
- Подайте питание и отрегулируйте диапазон данных к уменьшению. Не превышайте диапазон расходомера, в противном случае он может быть поврежден. Чтение около 2 мА должно быть указано, так как из закона Ома I = V / R = (9 вольт) / (4700 Ω) = 0,00191 = 1,91 усилители мА.
Некоторые важные нюансы:
- Если мультиметр перестает работать, проверьте предохранитель. В отдельных случаях необходимо использовать накладные клеммы (рисунок 2)
- Никогда не подключайте прибор через источник напряжения батареи или если он установлен для измерения силы тока (ампер).
- Важно не только уметь пользоваться устройством, но и выбирать качественные приборы. Тестируйте прибор сразу во время покупки!
- Кроме теоретических знаний, предлагаем получить практические навыки и просмотреть видео, как пользоваться мультиметром стрелочным и аналоговым цифровым серии digital — дт 830в, dt 181, dt9208a, dt 182.
Как пользоваться мультиметром — учимся проводить измерения с подробной инструкция
Быт современного человека насыщен электрической техникой и устройствами. Поэтому у любого хорошего хозяина в его «арсенале» должны быть, помимо набора обычных инструментов, еще и приборы, позволяющие провести простейшую диагностику или замерить параметры электрических цепей, схем, источников питания и т.п. Простейшая индикаторная отвертка – это один из таких приборов, но, увы, ее функциональность уж слишком узка. Иное дело – мультиметр, позволяющий решать множество задач.
Как пользоваться мультиметромТакие приборы в наше время представлены в большом разнообразии, и многие модели довольно приличного качества обладают вполне доступной каждому стоимостью. Так что не стоит проходить мимо них в магазине, оправдывая себя тем, что, мол, не умею с ними работать. Научиться простейшим измерительным и диагностическим операциям несложно – в это статье мы как раз и расскажем о том, как пользоваться мультиметром. Причём, с изложением информации именно для начинающих. Так что сомнения в сторону — подобный прибор должен быть у каждого рачительного хозяина.
Проектирование или диагностика электрических приборов основаны на точном измерении основных их параметров в целом или на отдельных участках цепей и элементах схемы, на оценке взаимосвязи этих физических характеристик и взаимного влияния. К таким базовым величинам относятся сила тока, напряжение и сопротивление. Существует и ряд других величин, но они чаще всего являются производными от указанных.
Для определения основных величин используются специальные приборы – в их названии как раз фигурируют единицы измерения: для силы тока это амперметр, для напряжения вольтметр, и для сопротивления – омметр. Но иметь на рабочем месте целое «скопище» приборов – крайне неудобно. Поэтому со временем научились их объединять в одном корпусе, так, чтобы в любой момент можно было переключиться на необходимый режим измерений. Так и появились на свет мультиметры.
Кстати, одно из применяемых названий для подобный приборов – авометры (первые три буквы – это аббревиатура ампер-вольт-ом). Встречается наименование мультитестеры. А профессиональной среде их часто и вовсе часто «кличут» коротким термином — тестеры. Сути это не меняет.
Мультиметр по своей сути представляет собой контрольно-измерительный прибор, который сочетает в себе функции вольтметра, амперметра, омметра, а нередко — и ряд других, специфического предназначенияИтак, приходим к тому, что современный мультитестер в обязательно порядке предоставляет возможность измерений напряжения, силы тока и электрического сопротивления. Многие приборы оснащаются функцией проверки целостности участка проводки (цепи), то есть, как ее чаще называют – прозвонки (или же это выполняется на низшем пределе измерения сопротивления проводника). Полезным дополнением становится возможность проверки работоспособности полупроводниковых элементов — диодов и транзисторов. Наконец, мультитестеры, предназначенные для профессионального использования, способны проводить замеры индуктивности катушек, емкостей конденсаторов, частоты и даже температуры.
Все мультитестеры можно разделить на две больших группы.
- Аналоговые (стрелочные) модели – считаются уже устаревшими, хотя находятся мастера «старой закалки», которые до сих пор именно им отдают предпочтение.
Такие приборы были удобны своей «наглядностью» в работе. Аналоговые мультиметры выпускаются и сейчас, в довольно компактном исполнении. Стоят они недорого, но, пожалуй, на этом их достоинства и заканчиваются.
В основе прибора лежит магнитоэлектрический амперметр, а система встроенных резисторов и шунтов позволяет переходить к оценке напряжения и сопротивления. Погрешность – довольно высока, и во многом еще зависит от субъективных факторов, то есть от правильности восприятия пользователем положения стрелки и умения читать показания шкалы.
Проблема еще и в том, что шкал – несколько, а для некоторых измеряемых параметров – шкала имеет еще и выраженную нелинейность, что может запутать неопытного человека. Кроме того, считываемый номинал зависит еще и от цены деления – а она меняется вместе с переключением режимов работы и пределов измерений. Опытному работнику, понятно, достаточно просто бросить взгляд, чтобы увидеть результат, а вот у начинающего не исключены ошибки.
Еще один недостаток – обязательность соблюдения полярности при замере напряжения или силы тока в цепях или на источниках постоянного тока. В противном случае стрелка просто заваливается до упора влево. Вроде бы мелочь – но не вполне удобно.
И еще одно – при работе со стрелочными аналоговыми приборами им в обязательном порядке следует придавать «штатное», предусмотренное инструкцией по эксплуатации положение. Например, только горизонтальное. В противном случае будет страдать точность снятия показаний, а иногда измерения и вовсе станут невозможными. При работе за столом – это полбеды, но если приходится проводить замеры на распределительном щите или на участках домашней проводки – соблюдение подобного требования превращается в немалую проблему.
- Цифровые мультиметры пришли на смену аналоговым, и сейчас являются наиболее распространёнными. Показатели точности у них – намного выше. Даже самые недорогие модели бытового класса дают погрешность не более 1%, что уже очень неплохо. А приборы профессионального предназначения порой имеют точность измерений, оцениваемую и в 0.1%.
Такая точность измерений обусловлена, во-первых, принципиально совершенно другим устройством прибора. Механического измерительного узла здесь нет – параметры обрабатываются в электронном блоке, а результаты показываются абсолютными значениями на цифровом дисплее. То есть нет никакой необходимости «приноравливаться» к шкалам или вводить какие-то поправочные коэффициенты. Кроме самого значения, у многих приборов предусмотрена индикация установленного пользователем режима работы и единиц измерения. Это снижает вероятность случайных ошибок, чем нередко грешат новички.
Пространственное положение прибора не играет никакой роли – его можно разместить так, чтобы было максимально удобно пользователю. Не случится никакой беды, если при замере постоянного тока или напряжения будет перепутана полярность – просто результат будет показан со знаком «минус».
Так что если читателю еще только предстоит приобретение мультитестера для своего хозяйства, безусловное предпочтение следует отдавать цифровым моделям. Они, кстати, сейчас уже не настолько дороги, чтобы это обстоятельство могло отпугнуть потенциального покупателя.
Еще несколько слов о разновидностях мультитестеров, теперь уже конкретно цифровых. Речь идет об исполнении приборов.
Цены на мультиметр
мультиметр
- Самыми распространенными являются легкие компактные, портативные мультиметры, легко помещающиеся в руке работника. Небольшой электронный блок, работающий от автономного источника питания (батареек) и комплект проводов. Именно такие приборы обычно приобретают для бытового использования, но в этой категории представлено множество моделей и профессионального класса, которыми пользуются и опытные специалисты.
- Одна из наиболее сложных, а в ряде случаев даже в какой-то мере опасных измерительных операций с мультитестером – это определение силы тока. Обычный прибор приходится подключать последовательно, то есть каким-то образом разрывать цепь, что не всегда видится возможным. Специалисты в таких случаях чаще прибегают к так называемым токоизмерительным клещам, которые позволяют снять показатели силы тока не только не разрывая цепи, но даже и не нарушая изоляции проводников.
Большинство современных моделей таких токоизмерительных клещей оснащено и всеми остальными функциями мультиметра. Отличное решение для специалиста. Цена подобных приборов, безусловно, существенно выше, что, в принципе, и ограничивает их спрос в непрофессиональной среде.
- Для условий сервисного центра, хорошо оборудованной мастерской, для тех специалистов, которым требуется высокая точность измерений и расширенная функциональность, выпускаются стационарные мультитестеры профессионального класса.
Такие приборы уже могут получать питание от обычной сети. Нередко они оснащаются интерфейсами для подключения к компьютерам, имеют собственное программное обеспечение. Естественно, перечень доступных функций у них – гораздо шире, а точность измерений – значительно выше.
Понятно, что для бытового использования приобретать такую «роскошь» — неблагоразумно.
- На высшей ступени по функциональности и точности измерений стоят скопметры. Это – сочетание двух приборов в одном: мультиметра и осциллографа. Скопметры тоже бывают портативными или стационарными. Стоимость таких приборов очень немалая, и, естественно, приобретаются они исключительно профессионалами высокого класса.
Но зато подобный прибор позволяет проводить, помимо обычных измерений, глубокий анализ электрических цепей, находить неисправности в трансформаторах, обмотках электродвигателей, импульсных блоках питания и т.п.
Знакомимся с устройством мультиметраРаз эта статья предназначена в основном для тех, кто делает только первые шаги в деле измерения электрических параметров, можно порекомендовать приобрести несложный и недорогой мультитестер типа DT830b. Могут встречаться и несколько иные модификации: DT832, DT838 — разница невелика, и на процесс освоения влияния не окажет.
Одна из наиболее популярных моделей бытового класса – мультиметр DT830bПараллельно предлагаю рассматривать еще одну модель – ZT102, которую приобрёл буквально на днях взамен, кстати, DT832, банально пропавшего по вине соседа по гаражу. Модель тоже не из дорогих, но имеет некоторые особенности. В частности, она интересна будет тем, что там несколько иначе построена «технология» переключения режимов измерений.
Мультитестер ZT102 CATIII 600 V – тоже недорогая, но очень удобная в пользовании модельДумается, что если разобраться с обоими принципами переключения режимов, то не возникнет сложностей с освоением и других мультиметров, так как в большинстве современных приборов реализован или один, или другой способ управления.
Начнем с общего устройства этих моделей.
Мультиметр DT830bВ базовый комплект входит сам мультиметр и пара проводов со щупами и разъемами для подключения к клеммам прибора. Для удобства провода делаются цветными – красный (как правило, используется для положительных контактов), и черный (общий).
Провода из комплекта мультиметра DT830bНа щупах проводов предусмотрены кольцевые бортики – гарды, для предотвращения соскальзывания пальцев к оголенному наконечнику. Надо постараться взять себе за правило никогда не нарушать эту «границу» — во избежание получения электрических травм.
Маленькая ремарка – нередко качество проводов, идущих в комплекте, не выдерживает никакой критики. Особо уязвимое место – соединение провода со щупом, так как здесь не исключаются обрывы, которые даже не всегда могут быть заметны. Тот, кто сталкивался с подобным, одновременно с этим недорогим и очень неплохим, в принципе, мультиметром сразу часто отдельно приобретает и пару качественных проводов. А иногда и две пары – одну со щупами, а вторую – с зажимами-«крокодилами».
Теперь – внешнее устройство прибора.
Лицевая сторона мультиметраСразу обращает на себя внимание расположенный сверху жидкокристаллический дисплей (поз. 1). Он имеет четыре разряда. На нем будут высвечиваться снимаемые показания, а также информация о выбранном режиме и другие данные, касающиеся работы прибора.
В правом нижнем углу – вертикальный ряд круглых гнезд (поз. 2). Они предназначены для установки разъёмов измерительных проводов. О назначении каждого – будет сказано чуть ниже.
По центру расположен вращающийся по кругу переключатель (поз. 3). Его назначение – включение мультитестера, выбор необходимого режима и диапазона измерений. Вокруг переключателя нанесены обозначения этих режимов и диапазонов (поз. 4), разбитые по группам.
Наконец, в данной модели имеется еще один разъем (поз. 5), предназначенный для проверки транзисторов. Он также имеет свои обозначения – левая сторона предназначена для npn-элементов, правая – для pnp. Буквами около отверстий, в которые вставляются выводы транзистора, обозначены: е – эмиттер, с – коллектор и b – база.
С обратной стороны прибора нет ничего, кроме головок винтов, которые необходимо выкрутить, чтобы добраться до батарейного отсека. Не вполне удобно – требуется полностью отделить нижнюю половинку корпуса, чтобы установить или заменить питание, но приходится мириться.
Мультитестер со снятой задней половиной корпуса – иначе до батарейного отсека не добратьсяВ качестве источника питания используется одна батарейка типа «Крона» с номиналом напряжения 9 вольт.
Теперь подробнее рассмотрим основные элементы коммутации и управления. Начнем с группы контактных гнезд.
Гнезда для подключения измерительных проводов мультиметра1 — гнездо СOM, универсальное, предназначенное для проведения любых измерений. В него вставляется разъем черного провода.
2 — гнездо для разъема красного провода, который при измерении показаний силы тока или напряжения в цепи постоянного тока будет играть роль положительного контакта (+). Используется чаще всего – для любых измерений сопротивления и напряжения, вплоть до установленных максимальных для этого прибора значений – 1000 В постоянного или 750 В переменного. Но по измерению силы тока – серьёзное ограничение: не более 500 мА. Надпись «FUSED» говорит о том, что данная цепь защищена предохранителем.
3 — гнездо для провода красного цвета, в которое он переключается для замера показаний силы тока более 500 мА. Для данного прибора установлен и максимум – 10 А постоянного тока, о чем говорит предупреждающая надпись.
Но даже и в этом допустимом диапазоне токовая нагрузка на прибор будет очень немалой. Поэтому ниже указано еще одно предупреждение – длительность замера не должна превышать 10 секунд, а пауза между очередными замерами больших токов должна выдерживаться не менее 15 минут. В противном случае можно просто перегреть и спалить мультитестер. Кстати, надпись «UNFUSED» как раз говорит о том, что защиты в виде плавкого предохранителя здесь даже не предусмотрено.
Теперь – рассмотрим переключатель режимов.
Переключатель режимов работы мультитестера DT830bДля удобства пользователя режимы разбиты по группам, а в группах – по пределам измерений. Эти группы обведены криволинейными фигурами-границами, которые могут еще и выделяться цветом.
1 – переключатель смотрит строго вертикально вверх. Питание прибора выключено.
2 – группа положений переключателя для измерений постоянного напряжения. Может встречаться такое графическое обозначение, как показано на иллюстрации, или же надпись DCV (DC Voltage — от английского термина Direct Current Voltage – постоянное напряжение). Предусмотрено пять пределов: нижний – до 200 мВ, верхний – до 1000 В.
3 – группа положений для измерения переменного напряжения. Обозначается или символом, как на иллюстрации, или аббревиатурой ACV (AC Voltage – от английского Alternating Current Voltage – переменное напряжение). Здесь всего два диапазона – до 200 В и до 750 В.
4 – группа положений для измерений значений силы тока. Обратите внимание – в данной модели допускается замер исключительно постоянного тока DCA (от английского Direct Current Amperage). Предусмотрено пять диапазонов измерений. Нижний – с пределом до 200 микроампер (μА), далее идут 2000 μА, 20 и 200 мА (миллиампер), и, наконец – максимальный – до 10 А. При переключении на этот максимальный режим в обязательном порядке переставляется провод в соответствующее гнездо – об этом уже говорилось.
5 – группа положений для измерений электрического сопротивления. Пять диапазонов: минимальный – до 200 Ом, максимальный – до 2000 кОм (2 Мом). На минимальном диапазоне обычно производится и простая прозвонка участка цепи (проводника), если, как в данном примере, эта функция не предусмотрена в приборе отдельно.
6 – режим для проверки работоспособности диодов. Показывает падение напряжения на pn-переходе диода. В обратном направлении проводимости быть не должно.
7 – специфическая функция, позволяющая проверить работоспособность pnp или npn транзисторов и измерить их коэффициент усиления по току. В этом режиме измерительные провода не используются – транзистор вставляется непосредственно в специфическое гнездо, о котором говорилось выше.
По сути, с устройством этого прибора – разобрались полностью.
Мультиметр ZT102Теперь выкладываю перед собой на стол новый приобретённый тестер ZT102, и начинаю разбираться с ним. Много интересного…
| Иллюстрация | Краткое описание элемента управления и его функций |
|---|---|
| Новый прибор упакован в коробку. На ней сразу заметно предупреждение – модификация мультитестера ZT102 – CATIII, с максимальным пределом измерений напряжения до 600 вольт в любом режиме. | |
| Сам прибор находится в матерчатом непромокаемом чехле с завязками. | |
| Проверяю комплектность. Во-первых, это сам мультиметр, во-вторых несколько пар проводов. | |
| Первая пара – с обычными щупами. Удобные рукоятки, очень мягкие, пластичные, но при этом — довольно толстые провода. Продуман и колпачок, который можно снять, оголив металлический щуп по всей его длине, или надеть, оставив лишь едва выступающий кончик. Надо думать, в такой позиции будет безопаснее работать в тех условиях, когда имеется вероятность случайного задевания соседнего контакта на схеме или в коммутационной колодке. | |
| Вторая пара – вместо щупов на конце проводов зажимы-«крокодилы». Очень удачное дополнение – не придется приобретать отдельно. | |
| Третья пара – это не провода для измерений электрических параметров, а термопара для определения температуры того или иного объекта. Честно говоря, при приобретении мультиметра даже не обратил внимание на наличие этой функции. | |
| На задней половинке корпуса предусмотрена откидывающаяся подставка – можно удобно расположить прибор для считывания результатов измерений. | |
| Под этой подставкой расположилась крышка батарейного отсека, фиксирующаяся одним винтом. В качестве источника питания используются две батарейки формата ААА, номиналом по 1,5 В. | |
| После установки элементов питания – пробный пуск. Загорелся дисплей – видно, что цифры очень крупные, хорошо различимые. | |
| Теперь – знакомство с органами управления и контактами. Внизу по горизонтали расположились три гнезда. Центральное — общее «СОМ), куда будет включаться провод черного цвета. Слева – для подключения красного провода при измерении силы тока от 500 мА до 10 А. Справа – красный провод для всех остальных режимов работы. Оба контура, если верить надписям, защищены плавким предохранителем | |
| У переключателя – всего восемь положений, но некоторые из них подразумевают несколько режимов работы. А это переключение уже производится с помощью кнопки «SELECT» — желтая справа вверху. Крайнее левое положение переключателя – прибор выключен. | |
| Следующее положение: V — измерение напряжения в вольтах, постоянного… | |
| …и переменного. При всех режимах измерения переменного напряжения или тока появляется надпись «TRUR RMS». Это означает, что прибор рассчитывает и выдает «истинное среднеквадратичное значение» параметра, которое считается максимально достоверным. | |
| — Hz – частоты, в герцах | |
| — % — скважности сигнала (отношения периодичности импульса к его длительности). | |
| Третье положение: mV — измерение напряжения в милливольтах, постоянного… | |
| … и переменного. | |
| Четвертое положение – в нем несколько функций: Ω – измерение электрического сопротивления, единицы измерения – мегаомы, килоомы, омы. Единицы автоматически будут показываться в правом верхнем углу. | |
| Ω со значком звуковых волн слева – прозвонка проводника, то есть проверка целостности. Сопровождается звуковым сигналом. | |
| — значок диода – соответственно, проверка диодов с индикацией падения напряжения на pn-переходе, в вольтах. При обратной полярности проводимости быть не должно (OL). | |
| — Значок конденсатора – измерение емкости конденсатора в nF или μF. | |
| Пятое положение – две функции: — измерение частоты в Hz… | |
| …и скважности сигнала. Отчего-то эти две функции продублированы – на положении измерения напряжения, и отдельным положением переключателя. | |
| Следующее положение: измерение силы тока в амперах, постоянного… | |
| …и переменного. Это положение переключателя предполагает и переустановку красного провода в левое гнездо. | |
| Следующее положение: измерение силы тока до 500 мА. Опять же, можно выбрать постоянный… | |
| …и переменный ток. Красный провод – на своем обычном месте, в правом гнезде. | |
| Крайнее правое положение переключателя – определение температуры. Кнопкой «SELEСT» можно изменить единицы измерения – градусы Цельсия (°С)… | |
| …или градусы Фаренгейта (°F). | |
| Слева вверху расположена голубая кнопка. Она имеет две функции. Кратковременное нажатие на нее запускает режим «HOLD» — последнее измеренное значение будет удерживаться на дисплее до сброса вручную или до перехода на другой режим. Удобно, особенно в тех случаях, когда измерение требует минимального времени контакта, или для сверки с эталонными значениями. Повторное кратковременное нажатие выключает режим удержания. | |
| Длительное нажатие на эту кнопку включает подсветку дисплея. Тоже большой плюс, когда работа проводится в условиях недостаточной освещенности. |
Очень важное качество данного мультитестера – автоматическое определение диапазона и единиц измерения. Единственное, что необходимо – установить режим. Как мы видели при измерении напряжения есть градация вольты – минивольты, для силы тока – один диапазон до 500 мА, и второй – выше, до 10 А. Но более мелкого «дробления» нет – прибор работает по принципу «плавающей десятичной запятой», и выведет на дисплей абсолютное значение с указанием единиц измерения: В или мВ, А или мА, Ω, кΩ или МΩ, нF или μF.
Буквенное обозначение на экране «OL» обозначает отсутствие замкнутой цепи – «Out Line»
Обратим внимание еще и на надпись «AUTO POWER OFF». Это означает, что если прибор будет в бездействии определенное время, то произойдет автоматическое выключение питания. Кстати, эта опция в определенной степени и стала для меня решающей при выборе модели. Печальный личный опыт уже не раз показывал, что в суматохе работы порой забывается производить выключение вручную, поворотом переключателя. И в итоге в самый ненужный момент приходится сталкиваться с ситуацией, когда батарейка оказывается севшей.
Вот, в принципе, и все общее устройство. Можно переходить к основным измерениям.
Как производятся измерения электрических параметров мультиметромНесколько общих важных правил- Любая работа, связанная с электричеством, требует безусловного выполнения всех требований безопасности и максимальной осмотрительности. Не следует тешить себя пустыми надеждами, типа, «со мной точно ничего не случится», или «электрические параметры в этом приоре настолько незначительны, что не представляют никакой опасности».
Расхолаживаться нельзя никогда – внимательность и осторожность должны войти в привычку. Некоторые из нас даже не представляют, насколько опасен электрический ток даже совсем небольшой силы. И к каким тяжелым, порой – необратимым последствиям может привести внезапный электрический удар.
Никогда не стоит недооценивать опасность электрического тока!
Электричество при неаккуратном обращении с ним способно превратиться в коварного врага, разящего неожиданно и молниеносно. Причем даже в таких случаях, когда, казалось бы, неоткуда ждать опасности. Если у читателя эта аксиома вызывает недоверчивую ухмылку – то ему еще рано браться за самостоятельные электротехнические работы. А для начала будет полезно ознакомиться с публикацией нашего портала, той, что полностью посвящена опасности электрического тока.
Кроме того, допущенные ошибки запросто могут привести в полную негодность и сам измерительный прибор. Не фатально, конечно, но лучше избегать и этого.
- Следует придерживаться важного правила – никогда не браться за щупы двумя руками, особенно если проводятся измерения в цепях с опасным для жизни напряжением и током. В случае пробоя изоляции (а на дешевых китайских щупах такого никак нельзя исключить) ток пойдет из руки в руку через тело человека как раз наиболее опасным путем – через область сердца. Так что при замере, например, напряжения в сети, следует вначале установить одной рукой первый щуп, затем, ею же – второй. Вероятность серьёзного поражения при таком подходе снижается многократно. И это правило желательно бы утвердить на уровне привычки, независимо от того, какая цепь проверяется.
- Зачастую приходится производить измерение параметров силы тока или напряжения, даже примерно не зная заранее, в каких пределах окажется получаемый результат. Поэтому следует руководствоваться следующим важным правилом – начинать замеры рекомендуется на максимальном диапазоне. Это позволит сориентироваться с примерным значением, и, если результат такого измерения не устраивает – постепенно снизить диапазон для повышения точности. Причем, как уже не раз говорилось выше, замеры силы тока (как постоянного, так и переменного) на максимальном диапазоне одновременно требуют переустановки красного измерительного провода в специальное гнездо.
- Приведенная выше информация по устройству мультиметров – вовсе не является общей для всех изделий. Многие модели могут иметь свои особенности, прием, иногда – весьма значительные. Поэтому начинать работу с приобретённым мультиметром нужно только после внимательного ознакомления с его инструкцией по эксплуатации (если, конечно, она имеется и читабельна).
Впрочем, если читатель уяснил общие принципы «организации» таких приборов, надо полагать, что и с особенностями своей модели ему будет разобраться несложно.
- Следует внимательно относиться к проведению замеров на приборах, только что выключенных из сети питания. Остаточный заряд, накопленный в конденсаторах, бывает настолько мощным, что можно или получить вполне чувствительный электрический удар, или спалить мультитестер. То есть должна даваться выдержка на разрядку элементов схемы.
- Существуют общие правила включения мультиметра в цепь при замере тех или иных электрических параметров:
А — При измерении силы тока мультитестер должен включаться в цепь последовательно. То есть прибор сам становится одним из звеньев этой цепи. Таким образом, приходится предусматривать разрыв для его установки. что порой несколько осложняет эту операцию.
V — При работе в режиме вольтметра мультиметр подключается параллельно к тестируемому участку цепи или непосредственно к источнику питания, если проверяется именно он.
Кстати, на схеме изображены проверки цепей с источником постоянного тока. Но и в цепях с переменным током принцип не меняется.
Ω — Если измеряется сопротивление или производится прозвон участка, то внешнее питание вообще не требуется – для работы прибора достаточно встроенной батареи. Под напряжением такие замеры проводить категорически запрещено.
- Следует по возможности стремиться к тому, чтобы проведение замера и снятие показаний заняли минимально короткое время. При необходимости полученный результат можно, как мы видели, просто зафиксировать кнопкой «HOLD». Слишком длительные замеры, например, сопротивлений на участке цепи, приведет к быстрой разрядке встроенного источника питания. А при измерении силы тока – к ненужному нагреву элементов схемы мультитестера.
Теперь, ознакомившись с основными правилами, можно перейти к специфике проведения измерений различных электрических параметров.
Измерения сопротивленияОдна из самых несложных операций, хотя бы потому что предмет исследования находится не под напряжением.
Измерительные провода находятся в обычных гнездах. Полярность при проведении замеров сопротивления роли никакой не играет.
Если заведомо известно примерное значение сопротивления (например, проверяется на работоспособность резистор определённого номинала), то на мультитестерах с переключателем по типу DT830 следует сразу установить необходимый диапазон. Если сопротивление неизвестно – начинать лучше с верхнего предела, постепенно опускаясь вниз до достижения максимальной точности показаний.
Если мультитестер автоматически определяет диапазон, то просто устанавливается режим замера сопротивления.
Подключение проводов и одно из положений переключателя (на максимальном диапазоне) при измерении электрического сопротивления мультитестером DT830После установки режима измерений на дисплее появляются определённые символы, говорящие о том, что цепь разомкнута. У приборов типа DT это обычно единица в крайнем левом разряде. В моем новом приборе, как уже говорилось – буквы «OL».
Следующим шагом необходимо замкнуть щупы между собой – тем самым проверяется прибор на работоспособность. При замыкании в идеале на дисплее должен высвечиваться ноль – сопротивления нет. Но могут и появляться небольшие по номиналу значения, порядка 0,07-0,1 Ома, показывающее сопротивление самих проводов и щупов. Если это принципиально, то есть требуется высочайшая точность, можно такую поправку учесть в конечном результате. Но обычно ею пренебрегают за незначительностью.
Подготовка к проведению замера сопротивления резистораВот теперь можно проводить замер. Щупами касаются концов или выводов тестируемого участка, прибора, элемента – и снимают показания по дисплею. Часто бывает удобнее зафиксировать провода с помощью зажимов – чтобы высвободить руку.
При необходимости – уточняется диапазон, и замер повторяется.
Если прибор автоматически определяет единицы измерения и диапазон – будет достаточно и одной попытки.
При проведении замеров часто бывает удобнее использовать не щупы, а зажимы-«крокодилы». Резистор установлен между ними – и на дисплее появилось значение его сопротивления – 558 кОмИзмерением сопротивления можно проверять и работоспособность некоторых простейших электрических приборов. Например, прозвонить лампу накаливания. Показания ее сопротивления могут быть и не особо нужны, но зато убеждаемся в наличии проводимости через цоколь, внутренние провода и нить накаливания.
Прозвон маломощной лампы накаливания – прибор показывает сопротивление в 300 ОмНесложно выполнить и прозвонку просто участка проводки или, например, шнура питания. Если на мультитестере предусмотрен такой режим – переходят на него. Если нет – устанавливают минимальный диапазон измерений сопротивления, например, на DT830 – это 200 Ом. Измерительные провода подключают к концам тестируемого участка (шнура, провода).
Если проводимость не нарушена, то на дисплее будет или ноль, или очень близкое к нему значение. А при установленном режиме прозвонки о целостности участка дополнительно подскажет звуковой сигнал (удобно – нет нужды переключать внимание на дисплей).
Прозвонка шнура питания. Один «крокодил» на штыре вилки, второй – на зачищенном конце провода. звуковой сигнал и показания менее 1 Ома говорят о том, что проводник в порядкеЕсли проверяется шнур питания, то следует сразу протестировать его и на предмет короткого замыкания. Проводимости между двумя контактами вилки быть не должно.
По такому же принципу проверяются и другие провода, в том числе и сигнальные, типа «витой пары».
О некоторых «прикладных» случаях замера сопротивления будет рассказано чуть ниже, после того как будут рассмотрены все основные виды измерений.
Измерения напряженияТоже ничего особо сложного. Единственное – уже требуется повышенная осторожность, так как замеры проводятся при включенном в тестируемую цепь питании.
Опять, первым шагом устанавливается режим работы (переменное или постоянное напряжение) и предел измерения. Принцип не меняется – если значение заранее неизвестно, то начинают с максимального предела. Если же информация о примерном уровне напряжения есть – то граница диапазона должна быть выше него.
Пример – при измерении напряжения в бытовой сети питания необходимо установить ACV с максимальным пределом – это обычно или 750, или 600 ВИзмерительные провода – на обычном месте.
При измерении переменного напряжения полярность щупов никакого значения не имеет. Если замеряется постоянное напряжение, то рекомендуется соблюдать полярность, просто из «правил хорошего тона». Но большой беды не будет и в случае обратного положения – просто на дисплее высветится значение со знаком минус.
Если точность показаний кажется недостаточной (при замере небольших напряжений), то диапазон можно снизить, уже ориентируясь на первично полученные значения. Но и в этом случае граница диапазона должна быть выше ожидаемого значения.
Несколько примеров измерений напряжения, выполненных с мультитестером ZT102:
| Иллюстрация | Краткое описание выполняемой операции |
|---|---|
| Необходимо замерить напряжение в бытовой сети питания. Переключатель установлен в положение V, кнопкой «SELECT» выбран режим AC. | |
| Со щупов сняты защитные колпачки. Затем щупы заводятся в гнезда розетки (в данном примере это – розетка на удлинителе). | |
| На дисплее считывается значение напряжения. В рассматриваемом примере оно получилось равным 222,7 В. На иллюстрации хорошо заметны горящие символы именно переменного тока (АС) и единиц измерения – V. | |
| Другой пример – необходимо проверить выходное постоянное напряжение блока питания для зарядного устройства шуруповерта. По номиналу должно быть не менее 12 вольт. | |
| Положение переключателя остается тем же, но режим переводится в DC. | |
| Измерительные провода подключаются к разъему блока питания «крокодил» на минусе – на внешнюю гильзу, щуп на плюсовом проводе – в центральное гнездо. Блок питания подключается в розетку. На дисплее – показатель напряжения: 13,77 В. Для блока не под нагрузкой – все отлично. | |
| Еще один пример, хотя и не вполне характерный – проверка напряжения на элементах питания. Почему так – просто нормальное напряжение батарейки еще ни о чем конкретно не говорит. Правда, если и напряжение не дотягивает до заявленного номинала – элемент питания можно сразу выбрасывать, не утруждая себя дальнейшими проверками. Уже польза… Положение переключателя не изменилось – вольты, режим DC. | |
| Касаемся щупами контактов батарейки – мультитестер показывает напряжение более 1.5 В. По этому показателю к ней нет никаких претензий. Но впоследствии она еще будет проверена и по показателям силы тока. | |
| Для «тренировки» и демонстрации процесса измерений проведу еще проверку трансформатора, валяющегося пока без дела в мастерской. Заодно будет ясность с его работоспособностью и выдаваемыми выходными напряжениями. Маркировка модели – сохранилась, это ТПП-270-220-50К. «Распиновку» контактов нашел в интернете. | |
| Для начала – прозвон первичной обмотки, а точнее – измерение ее сопротивления. Мультитестер переведен в режим замера сопротивлений. Подключаю провода к контактам первичной обмотки – показывается сопротивление в 50 Ом. | |
| К контактам первичной обмотки припаян шнур питания – тот самый, который был проверен на целостность несколько ранее. | |
| Мультитестер переключается в режим замера переменного напряжения. Примерные показатели известны, так что оставляется единица измерения – вольты. Измерительные провода «крокодилами» фиксируется на выводах одной из вторичных катушек. По паспорту здесь должно быть 10 В. Включаю трансформатор в сеть – на выходе 11.65 В. (несколько больше, так как трансформатор не нагружен). Обмотка исправна. | |
| Ранее кем-то были соединены последовательно три вторичных обмотки, каждая из которых должна давать по 10 вольт. По идее, на выходе должно быть не менее 30 вольт. Посмотрим, что получится здесь – 35 В «переменки» — всё в норме. | |
| Ну и, наконец, проверка еще одной пары контактов – эта самая небольшая вторичная обмотка по паспорту должна выдать 1,34 В. На деле получилось побольше – около трех. Всё, трансформатор полностью исправен, и ему найдется применение. |
Кстати, умея измерять напряжение питания и сопротивление нагрузки можно вычислить и потребляемую мощность. Не любых приборов, безусловно, а только тех, у которых имеется возможность напрямую замерить сопротивление. Скажем, не составит большого труда проверить мощность, например, паяльника, простейшего утюга без электроники, ТЭНа, лампочки накаливания и т.п.
Давайте поэкспериментируем.
Для начала – проверим, какое сопротивление преодолевает электрический ток при прохождении через нагревательный элемент обыкновенного паяльника. Для этого переводим мультитестер в режим измерения Ω, щупы – на штыри вилки шнура питания. На дисплее появляется значение – 2,055 кОм. То есть – 2055 Ом.
Цены на мультитестер ZT102
мультитестер ZT102
Напряжение в сети недавно было проконтролировано – оно, как мы помним, равно 222,7 В. Несложно вычислить, на какую мощность нагрева паяльника можно рассчитывать при таких показателях.
Формула проста —
P = U² / R
где:
P — мощность, ватт;
U — напряжение, вольт;
R — электрическое сопротивление, ом.
Или, чтобы читателю было проще проводить самостоятельные расчеты – подставляем данные в онлайн-калькулятор:
Калькулятор расчета мощности от напряжения питания и сопротивления нагрузкиПерейти к расчётам
Подставляем полученные значения и получаем мощность, равную 24.1 Вт. Сверяемся с «номиналом» паяльника: действительно, его паспортная мощность – 25 ватт, то есть результат близок к заявленному.
Давайте еще один пример – проверим пистолет для силиконового термоклея. На нем нет никаких регулировок – надо полагать, что нагревательный элемент подключается непосредственно к сетевому напряжению.
Замеряется сопротивление нагрузки – оно получается равным 1,482 кОм или 1482 Ом.
Замер сопротивления нагревательного элемента пистолета для силиконового клея дал несколько неожиданный результатПодставляем имеющиеся значения напряжения питания и сопротивления нагрузки в калькулятор – и получается мощность прибора 33,5 Ватт. А между тем – на корпусе пистолета нанесена «гордая надпись» о том, что его мощность – 78 Ватт. На деле же получается более, чем в два раза ниже. Вот так – можно ли верить всему тому, что написано?
Измерения силы токаЭто, пожалуй, самый «проблемный» тип измерений. Причины уже пояснялись выше, но можно еще раз повториться:
- Во-первых, эти измерения можно назвать самыми опасными и для пользователя, и для прибора.
- Во-вторых, мультитестер в режиме амперметра должен устанавливаться в разрыв цепи. А это далеко не всегда просто получается. Хорошо, если в каком-то месте цепи имеется разборный разъем (клемма), как, например, в бортовой сети автомобиля. Если такого нет, а требуется измерить силу тока в цепи, например, работающего бытового прибора или устройства, приходится придумывать те или иные приспособления.
- В-третьих, показатели силы тока самые, так сказать, неочевидные. В цепях с, казалось бы, совсем небольшим напряжением питания, сила тока может достигать весьма внушительных значений. Всё, безусловно, подчиняется законом физики, но для неопытного пользователя могут быть «сюрпризы».
- И в-четвертых – это единственные измерения, при которых на большинстве мультитестеров приходится не только правильно устанавливать режим, но и изменять расположение проводов. А в некоторых случаях – еще и придерживаться ограничений по длительности разовых замеров и паузах между ними.
При измерениях силы тока правило всегда начинать с максимального диапазона – актуально в наибольшей степени. Иначе можно просто спалить свой мультиметр. И только если первично снятые показания явно меньше 0,5 А (500 мА) – допускается переустановить измерительные провода и перейти на меньший диапазон для повышения точности результата. А для некоторых приборов эта первично допустимая нижняя граница и еще ниже – всего 0,2 А или 200 мА.
Чтобы не спалить мультитестер, начинать замеры силы тока следует всегда с максимального диапазона, измеряемого амперами, с красным проводом в соответствующем гнездеИ только убедившись, что значение силы тока действительно ниже максимально допустимого, например, 500 или 200 мА, можно, после переустановки красного провода, перейти в другой диапазон измерений для повышения точности результатаПроблема с измерением силы тока может заключаться еще и в том, что многие мультиметры, в частности, тот же DT830, не рассчитаны на работу с переменным током. Такого режима в них попросту не предусмотрено – об этом приходится помнить.
А как же можно замерить силу тока для подключенной техники, работающей от переменного напряжения? Например, если необходимо проконтролировать потребление того или иного бытового прибора.
Разрыв цепи для подключения амперметра организовать, оказывается, не столь сложно. Для этого потребуется изготовить небольшое приспособление, для которого необходимы сетевой шнур и две накладные розетки.
Несложное приспособление для организации «разрыва цепи» для подключения амперметра при ревизии бытовой техникиПотребуется небольшая площадка (поз. 1), на которой уместятся две розетки (поз. 2). Их взаимное расположение хорошо показано на иллюстрации. Готовится сетевой шнур (поз. 4) с вилкой (поз. З), которая будет включаться в обыкновенную домашнюю розетку. Провода этого шнура разделяются – один (допустим, фазный) идет на контакт 1а первой розетка, другой, нулевой – на контакт 2а второй розетки. А вторые контакты розеток 1б и 2б коммутируются между собой перемычкой.
Что получается в итоге?
После подключения сетевого шнура к сети питания на контактах 1а и 2а легко замерить переменное напряжение.
Для полноты картины, измерение силы тока, проходящего через нагрузку, желательно предварить определением напряжения питанияПосле этого прибор, работа которого будет тестироваться, подключается в одну из розеток устройства (в любую). Работать он не будет – так как цепь разомкнута, и этот разрыв – на второй розетке. Вот именно в ее гнезда остается подключить мультиметр, переведенный в режим замера силы тока. Цепь замкнется, и после включения нагрузки амперметр покажет искомое значение силы тока.
Мультитестер, переведенный в режим амперметра, установлен в организованный разрыв цепиИмея значения напряжения и силы тока – несложно определить и текущую мощность нагрузки.
Калькулятор расчета мощности от напряжения питания и силы токаПерейти к расчётам
А как поступить, если подобные тестирования выполнить надо, но мультиметр не имеет режима измерения силы переменного тока.
Можно «схитрить» — для этого понадобится мощный резистор номиналом ровно в 1 Ом. Подобные керамические элементы есть в продаже – например, такой, как показан на иллюстрации.
Резистор должен быть высокой мощности и и номиналом ровно 1 ОмЕсли такового найти в магазине не удалось, или не хочется тратить на него деньги, вполне можно изготовить эквивалент и самостоятельно – намотать на текстолитовую полосу нужное количество нихромовой проволоки.
Самодельный резистор – его сопротивление несложно проконтролировать мультитестером в режиме омметраДлину проводника рассчитать несложно – значения удельных сопротивления нихромовой проволоки различных диаметров опубликованы в интернете.
К примеру, будет использоваться проволока сечением 0,123 мм² (Ø 0,4 мм). Находим, что ее табличное сопротивление составляет 7,94 Ома на погонный метр. Простейшая пропорция приведет к результату, что для номинала в 1 Ом потребуется намотать 126 мм такой проволоки. После сборки резистора его сопротивление несложно проверить омметром и, при необходимости, подкорректировать.
А для чего все это делается?
Вспоминаем закон Ома.
I = U / R
То есть, если сопротивление на каком-то конкретном участке цепи равно 1 ому, то сила тока станет равной падению напряжения на этом участке. А это означает, что можно заменить замер силы тока измерением напряжения.
Вот как это будет выглядеть на уже ранее приводимой схеме:
Замена измерения силы тока замером падения напряжения на участке цепи с сопротивлением ровно в 1 ОмТо есть показываемое в процессе измерения напряжение в вольтах одновременно будет показывать и силу проходящего тока в амперах.
Уместно будет сделать небольшое замечание – и самодельный, и керамический резистор в таких условиях будут очень сильно нагреваться, буквально докрасна. Поэтому замер напряжения должен проводиться максимально быстро, буквально в течение нескольких секунд, после чего нагрузка должны быть отключена.
Проверка элементов питания с помощью амперметраС помощью мультитестера в режиме амперметра можно проверить и состояние имеющихся элементов питания. Как они проверяются по напряжению – уже рассказывалось, но тот контроль не дает никакой ясности – при, казалось бы, нормальном напряжении батарейка вполне может оказаться совершенно непригодной для дальнейшего использования. А вот контроль по току уже дает более развернутую картину.
Для такой проверки мультитестер должен быть переведен в режим амперметра и выставлен на предельно высокий диапазон (10 А), с соответствующей переустановкой красного измерительного провода в нужное гнездо. Да-да, не удивляйтесь, если это покажется кому-то странным. Ток разряда даже самых маленьких элементов питания достигает весьма значительных величин.
Мультитестер переведен в положения для замера тока разрядки элементов питанияВажное предупреждение – замер должен проводиться максимально быстро – как только показатель достиг пикового значения, он начнет снижаться. Желательно, чтобы касание щупами контактов элемента питания не превышало одной секунды, а то и меньше.
Проверяю большую новую батарейку – максимальный ток порядка 3.2 амперУже явно побывавшая в употреблении батарейка формата ААА показала ток разряда чуть ниже 2 ампер«Рекордсмен» среди проверяемых элементов питания – новая батарейка АА показала ток 4.35 ампераПодобная проверка порой помогает «расчистить залежи» скопившихся в доме элементов питания – какие из них еще послужат, а каким пора в утилизацию. Можно примерно ориентироваться на следующие «нормативы»:
- Если ток не превышает 1.1 ампера – жалеть нечего, элемент уже практически ни для чего не пригоден.
- Батарейки с показателем до 2,0 ампер могут еще послужить какое-то время, но только в пультах дистанционного управления.
- Элементы питания, показывающие при такой проверке ток разряда от 2 до 3 ампер, хотя уже и изрядно подсевшие, но еще пригодны для применения в устройствах с небольшим потреблением.
- Показатели от 3 до 4 ампер – это вполне приличные элементы питания, пригодные для любого использования, хотя до «идеала» всё же недотягивают.
- А высококачественные элементы питания, только приобретённые и, естественно, с не закончившимся сроком хранения, могут на первых порах показывать значения тока разряда от 4 до 6 ампер.
Важно помнить – такая технология проверки все же не без недостатков, и к ней можно прибегать только для ревизии бытовых источников питания. Но не вздумайте проверить ток разряда, например, автомобильного аккумулятора. Там значения достигают десятков ампер, и в цепи без подключенной нагрузки мультиметр гарантированно выйдет из строя.
Тестирования бортовой электросети автомобиля – вообще отдельная тема, так как она изобилует очень важными нюансами.
Измерение других электрических параметровЭто, так сказать, «факультативная» информация, так как неспециалистам, и тем более — новичкам прибегать к подобным измерениям практически не придется. Просто потому, что на моем новом мультитестере имеются некоторые дополнительные функции, было решено проверить некоторые из них.
Проверка диодаКак известно, диод пропускает ток исключительно в одном направлении. По сути, проверить такой элемент можно и в режиме омметра – в одном положении щупов проводимость должна быть, при смене полярности – отсутствовать. Но если имеется режим проверки диодов, то он покажет еще и падение напряжения на pn-переходе. Его можно будет сравнить с номиналом, чтобы сделать окончательный вывод о пригодности диода и соответствии его характеристик заявленным.
Для пробной проверки нашел два диода (один из них – светодиод) с неизвестными номиналами. Просто для примера.
Прибор в режиме проверки диодовПереключателем и кнопкой «SELEСT» перевёл мультитестер в режим проверки диодов. На дисплее высветились буквы отсутствия цепи, значок диода и единицы измерения – вольты.
Первое приложению щупов – изменений нет, то есть проводимость в этом направлении отсутствует.Смена полярности – диод просто перевернут другой сторонойПри проверке оказалось, что в одну сторону проводимость полупроводникового элемента отсутствует. При смене полярности сразу видно, что диод работает – ток пошел, и на дисплее высветились показания падения напряжения на pn-переходе – 0,613 В. Если бы был известен номинал – можно было бы сравнить с паспортной характеристикой.
Аналогичные действия проделываем и со светодиодом.
Цены на популярные модели мультитестеров
мультитестер
Как видите, ничего сложного в такой проверке нет.
Проверка емкости конденсатораПротестируем еще один режим – попробуем замерить емкость конденсатора и сравнить ее с номинальной, указанной на корпусе элемента.
Обычный керамический конденсатор с номиналом емкости в 1 μF. Проверим его работоспособностьДля этого на мультиметре предусмотрен специальный режим – выбирается переключателем и кнопкой «SELECT».
Единицы измерения в правом верхнем углу однозначности говорят, что это режим проверки ёмкости конденсатора.К выводам конденсатора подключаются щупы проводов. Далее, следует небольшая пауза, а затем на дисплее сразу появляется измеренное значение емкости.
Показания емкости измерены – практически в «десятку»!Прибор самостоятельно выбрал необходимые единицы измерения. Результат – 982,7 nF, что практически равно номиналу – 1000 nF = 1 μF. Погрешность для столь малых величин – очень незначительная.
Измерение температурыРаз в комплект входит термопара для измерения температуры, и прибор имеет соответствующую функцию, было бы «грешно» не опробовать и ее. Тем более что никаких сложностей с этим нет.
Контактные штыри термопары устанавливаются к гнезда мультитестера. Сам прибор переводится переключателем в режим измерения температуры, а затем кнопкой «SELECT» выбираются более привычные для нас единицы измерения – градусы Цельсия.
Прибор переведен в режим измерения температуры. На дисплее сразу высветилась температура окружающей среды – в комнате +24 °С.В качестве эталона решено взять температуру тела – на пальцах рук она должна составлять примерно около 35 градусов. Головку термопары просто зажимаю двумя пальцами.
Очевидно, что показания температуры — в пределах нормыЗначение температуры на дисплее мультиметра начинает расти практически мгновенно. Уже спустя несколько секунд достигает показателя в 35 градусов и останавливается на этом. Все очень точно, быстро и удобно.
* * * * * * *
Итак, были рассмотрены основные приемы проведения замеров электрических параметров с помощью мультитестера.
Подчеркнём – далеко не всех.
Так, опущена была тема проверки транзисторов. В моем приборе подобной функции нет, а для проведения ревизии с помощью омметра все же требуется небольшой «экскурс» в теорию этих полупроводниковых приборов. Тем более что для разных типов транзисторов требуется и различный подход. Такая тема, как видится, все же требует более пристального, отдельного рассмотрения.
Узнайте, как пользоваться мегаомметром, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.
Остались не опробованными режимы измерения частоты и скважности сигнала. Признаемся – автор в таких вопросах не особо компетентен, и будет неплохо, если кто-нибудь сможет описать этот процесс более квалифицированно и доступно для понимания. Ждем комментариев.
В остальном же, надеемся, что публикация принесет пользу начинающим мастерам, делающим первые шаги в электротехнике.
В дополнение – очень информативный видеосюжет, посвященный работе с мультиметром
Видео: Урок работы с цифровым мультиметромКак правильно пользоваться мультиметром: подробная инструкция
Автор aquatic На чтение 7 мин. Просмотров 3.2k. Обновлено
Современный дом заполнен разными устройствами, которые функционируют с применением электричества. Проверить их работоспособность и выполнить ремонт можно с помощью специализированного измерительного оборудования. Если знать, как правильно пользоваться мультиметром, будет проще решать сложные вопросы без обращения в профильные сервисные центры. После правильной диагностики легче определиться с объемом ремонтных работ и покупкой необходимых запасных частей.
Любой человек в силах освоить работу с этим универсальным устройством
Как правильно пользоваться мультиметром: общие определенияЭти приборы созданы для измерения силы тока, напряжения, сопротивления и других электрических параметров. Устройство разбирать не имеет смысла, так как современная техника данного класса отличается высокой сложностью. Ее ремонт без профессиональных навыков и специализированного метрологического оборудования невозможен.
Ранее применяли только стрелочные приборы
Но пользоваться цифровыми устройствами легче. С экрана проще считывать показания. Не оказывают сильного влияния на процесс измерений вибрации. Отсутствие механических движущихся частей увеличивает долговечность.
При выборе модели обращают внимание на следующие параметры:
- Пределы измерений и дискретность.
- Достаточные размеры дисплея, наличие подсветки.
- Форму, размеры, вес.
- Оснащение, повышающее уровень комфорта.
- Дополнительную функциональность.
Выдвигающаяся подставка позволяет устанавливать прибор в удобном положении
При соответствующем оснащении мультиметр можно использовать для измерения комнатной температуры
Хорошая эргономика обеспечивает надежный захват рукой. Демпфирующие накладки повышают стойкость к механическим воздействиям
Такой аппарат выполняет функции мультиметра и осциллографа
Методики измеренийОбратите внимание! Точность измерений не зависит от вида оборудования (аналоговой, цифровой). Она указана в техническом паспорте на соответствующее изделие.
Для выполнения рабочих операций переключатель переводится в нужное положение. Черный провод щупа подключают к общему гнезду («Com»). Красный – устанавливают с учетом максимальной силы тока.
Обратите внимание! В стандартном положении для данного прибора действует ограничение 200 мА. В нем есть плавкая вставка, которая перегорает после превышения данного порога.
Органы управления
Сначала можно рассмотреть, как измерить напряжение мультиметром в розетке. Эта операция выполняется по следующему алгоритму:
- Провода подсоединяют так, как указано на рисунке выше.
- Переключатель переводят из «Off»в режим измерения переменного напряжения«V~». В данном случае используют диапазон «750», так как предполагаемое значение – 220 Вольт.
- Прибор устанавливают поблизости от розетки
- Щупы вставляют в нее, держась руками за изолированные части щупов.
Обратите внимание! Если подобные измерения выполняются часто, имеет смысл приобрести специальную отвертку со встроенным световым индикатором фазы.
Демонтировать аккумулятор для измерений не обязательно. Но надо не забыть перевести регулятор в положение «Постоянное напряжение»
Как проверить мультиметром сопротивлениеТакую процедуру выполняют со снятием напряжения в месте измерения. Невыполнение правила ухудшит точность данных, либо выведет технику из строя. Это же не следует делать, чтобы предотвратить потенциально опасные для человека ситуации. Если не известно, вначале устанавливают максимальное значение. Далее переключателем снижают диапазон вплоть до выбора оптимального варианта.
Для удобства работы применяют специальные зажимы («крокодилы»)
Если знать, как мультиметром замерить сопротивление, можно выяснить исправность нагревательного элемента чайника, другой бытовой техники
Как измерить силу тока мультиметромСтатья по теме:
Какой мультиметр лучше выбрать для дома. Как приобрести прибор с нужными функциями и при этом не переплатить? Читайте наши советы и обзор моделей в специальной публикации.
Для этой операции необходимо создать разрыв цепи. К нему подключают прибор с учетом предполагаемой величины тока. Как и в предыдущем случае, выбирается диапазон с максимальным значением. Если необходимо, регулятор переводят постепенно в нужную позицию.
Для определения силы тока прибор устанавливают в электрическую цепь последовательно
Как проверить мультиметром полевой транзисторДиагностика этих электронных приборов помогает выяснить исправность полупроводниковых переходов. В стандартном варианте применения ток течет по направлению от истока (И/ S) к стоку (С/ D). Этот процесс регулируется изменением электрического потенциала на затворе (З/ G).
Полевой n-канальный транзистор
[quote align=”center” color=”#e5e5e5″]
Обратите внимание! Особенностью этих приборов является повышенная чувствительность к статическому напряжению. Даже в режиме хранения создают постоянный электрический контакт между всеми выводами с применением металлической проволоки, фольги.
Проверку выполняют по следующему алгоритму:
- Регулятор мультиметра переводится в режим работы с диодами.
- «Минусовой» черный щуп присоединяют к истоку (И/ S), красный – к стоковому (С/ D) контактному выводу. В нормальном состоянии на дисплее отобразится 0,6 V (допустимое отклонение в пределах ±0,1V).
- Далее щупы меняют местами. В этом положении на экране появляется горизонтальная восьмерка (знак «бесконечность»). Вместо нее в некоторых приборах выводится единица.
- Чтобы открыть p-n-p переход щуп «минус» присоединяют к истоку, «плюс» – к затвору (З/ G).
- Далее «плюс» перемещают на сток. В этом положении должно индицироваться напряжение в диапазоне0 – 0,8V.
- Результат измерений на исправном транзисторе не изменяется, если сменить полярность.
Приборы, установленные в печатных платах, предварительно осматривают. При обнаружении вытекшего электролита, трещин и вздутий на корпусе, проверка не нужна. Изделие меняют на новое.
Измерение выполняют с извлечением конденсатора из электрической схемы, чтобы обеспечить хорошую точность. После демонтажа любым проводником с изолированной рукояткой (отверткой) разряжают прибор, замкнув выводы. Также используют лампу накаливания, чтобы процесс был плавным.
Далее мультиметром проверяют отсутствие короткого замыкания. Для проверки зарядки устанавливают регулятор в режим измерения сопротивления и подсоединяют щупы. Показания на табло будут постепенно расти, пока не достигнут максимума.
Обратите внимание! При работе с конденсаторами полярных типов необходимо учитывать данный фактор.
В некоторых моделях мультиметров есть специальные контактные площадки и регулировки диапазонов для измерения емкости конденсаторов
Диагностика простых поврежденийЕсли досконально выяснить, как прозвонить транзистор мультиметром, то применять иные методики будет не трудно. Но в действительности, чаще всего требуется определять разрывы в электрических цепях. Для упрощения этих операций многие мультиметры оснащают специальной функцией. Она активизируется при переводе регулятора в положение «прозвонка». О наличии контакта сообщает сигнализация.
Синей линией выделено включение прибора в режим проверки со звуковым сопровождением
Вывод и дополнительные рекомендацииПри необходимости не составит большого труда найти инструкции,как правильно пользоваться мультиметрами при проверке других электронных компонентов и устройств. Но на практике не нужны избыточные функции. Приобретение слишком сложного оборудования будет сопряжено с дополнительными затратами. Если не предполагается глубокое изучение радиотехники, вряд ли понадобится осциллограф. Большее значение для домашнего применения имеет соответствие диапазона измерений. Пригодятся также простота обращения и разумная стоимость.
Возможностей недорогой модели мультиметра вполне достаточно для решения большинства бытовых задач
Видео: как проверить конденсатор мультиметромКак измерить сопротивление мультиметром – что надо знать
Есть немало ситуаций, когда будет полезно знать, как измерить сопротивление мультиметром и есть ли разница, каким устройством это лучше делать. Даже если человек не является заядлым радиолюбителем, то при домашних работах с электрикой часто возникает необходимость как минимум «прозвонить» провода – по сути, убедиться, что сопротивление провода находится в пределах допустимого.
Как мультиметр измеряет сопротивление
Принцип измерения сопротивления основан на законе Ома, который в упрощенном варианте гласит, что сопротивление проводника равно отношению напряжения на этом проводе к силе тока, которая по нему протекает. Формула выглядит как R (сопротивление) = U (напряжение) / I (сила тока). То есть, 1 Ом сопротивления говорит о том, что по проводу протекает ток номиналом в 1 Ампер и напряжением 1 Вольт.
Соответственно, при пропускании заранее измеренного тока с известным напряжением через проводник, можно вычислить его сопротивление. По сути, омметр (прибор, которым измеряют сопротивление) представляет собой источник тока и амперметр, шкала которого проградуирована в Омах.
Какой мультиметр использовать
Измерительные приборы делятся на универсальные (мультиметры) и специализированные, которые предназначены для выполнения одной операции, но проводят ее максимально быстро и точно. В мультиметре омметр является только составляющей частью прибора и его еще надо включить в соответствующий режим. Специализированные устройства, в свою очередь, также требуют некоторых навыков использования – надо знать, как их правильно подключить и интерпретировать полученные данные.
Как пользоваться аналоговым и цифровым мультиметрами – на следующем видео:
Специализированные измерительные приборы
Из закона Ома понятно, что стандартным мультиметром не получится замерить большие сопротивления, так как в качестве источника питания там используются стандартные пальчиковые, либо батарейка типа «Крона» – прибору попросту не хватит мощности.
Если часто возникает необходимость выполнить замер большого сопротивления, к примеру, изоляции, то надо приобретать мегаомметр.
В качестве источника тока он использует динамомашину или мощную батарею с повышающим трансформатором – в зависимости от класса устройства он может генерировать напряжение от 300 до 3000 Вольт.
Отсюда следует вывод, что у задачи, к примеру, как измерить мультиметром сопротивление заземления, не может быть однозначного ответа – в этом случае надо воспользоваться специализированным прибором, предназначенным именно для этой цели. Измерение проводятся по определенным правилам и применение таких устройств это удел специалистов – без профильных знаний получить правильный результат достаточно проблематично. Теоретически можно проверить у заземления сопротивление тестером, но это потребует сборки дополнительной электроцепи, для которой потребуется как минимум мощный трансформатор, наподобие такого, что используется на сварочных аппаратах.
Цифровой и аналоговый мультиметры
Внешне эти устройства легко отличить друг от друга – у цифрового данные выводятся на дисплей цифрами, а у аналогового циферблат проградуирован и на нужное значение указывает стрелка. Соответственно, цифровое устройство проще в использовании, так как сразу показывает готовое значение, а при работе с аналоговым придется еще дополнительно интерпретировать выдаваемые данные.
Дополнительно, при работе с такими устройствами, надо учитывать, что у цифрового мультиметра есть датчик разрядки источника питания – если силы тока батареи недостаточно, то он просто откажется работать.
Аналоговый же в такой ситуации ничего не скажет, а будет просто выдавать неправильные результаты.
В остальном, для бытовых целей подойдет любой мультиметр, на шкале которого указан достаточный предел измерения сопротивления.
Включение мультиметра в режим омметра и выбор пределов измерений
Управление мультиметром производится с помощью круглой поворотной ручки, вокруг которой расчерчена шкала, поделенная на секторы. Друг от друга они отделены линиями или просто надписи на них отличаются цветом. Чтобы включить мультиметр в режим омметра надо повернуть ручку в зону сектора, обозначенного значком «Ω» (омега). Цифры, которыми будет обозначаться режимы работы могут быть подписаны тремя способами:
- Ω, kΩ – x1, x10, x100, MΩ. Обычно такие обозначения используются на аналоговых устройствах, у которых то, что показывает стрелка еще надо переводить в привычные значения. Если шкала проградуирована, к примеру, от 1 до 10, то при включении каждого из режимов отображаемый результат надо домножать на указанный коэффициент.
- 200, 2000, 20k, 200k, 2000k. Такая запись применяется на электронных мультиметрах и показывает в каком диапазоне можно измерять сопротивление при установке переключателя в определенную позицию. Приставка «k» обозначает префикс «кило», что в единой системе измерений соответствует цифре 1000. Если выставить мультиметр на 200k и он покажет цифру 186 – это значит, что сопротивление равно 186000 Ом.
- Ω – Если на корпусе омметра есть только такой значок, значит мультиметр способен автоматически определять диапазон. Циферблат такого устройства обычно может отображать не только цифры, но и буквы, к примеру, 15 kОм или 2 MОм.
У первых двух способов подписи шкалы есть прямая зависимость точности отображения результатов и их погрешности. Если сразу включить максимальный диапазон, то сопротивление порядка 100-200 Ом скорее всего будет показано неправильно.
Щупы прибора надо воткнуть в соответствующие гнезда – черный в «COM», а красный в то, возле которого среди других обозначений есть значок «Ω».
Прозвонка проводов – проверка целостности участка электрической цепи
Прозванивать провода мультиметром можно двумя способами, использование которых зависит от наличия в приборе звукового сигнала. Эта функция, если она есть, на разных приборах может включаться разными положениями переключателя – поэтому надо обращать внимание на значки, что нарисованы на корпусе прибора.
Зуммер показан как точка, справа от которой нарисованы три полукруга, каждый из последующих больший предыдущего. Искать такой значок надо либо отдельно, либо над самой маленькой цифрой из сопротивлений, либо возле значка диода, который отображается как стрелка на линии, острым концом упирающаяся в еще одну, перпендикулярную первой, линию.
Если включить тестер в режим прозвонки, то он будет подавать звуковой сигнал, если сопротивление измеряемого проводника будет меньше 50 Ом. В некоторых приборах это может быть 100 Ом, поэтому если нужна точность, то надо свериться с паспортом устройства.
Наглядно про прозвонку проводов на видео:
Порядок прозвонки прост и интуитивно понятен – установить переключатель напротив значка зуммера и щупами коснуться концов проводника, который надо «прозвонить»:
- Если провод целый, то мультиметр издаст звуковой сигнал.
- Если провод целый, но из-за его длины сопротивление больше чем то, при котором срабатывает зуммер, то на дисплее отобразится цифра, показывающая его значение.
- Если сопротивление значительно больше чем диапазон, на который рассчитан этот режим работы, то на дисплее отобразится единица – значит надо переставить переключатель на другой режим и повторить измерение.
- Если целостность провода нарушена, то никакой индикации не произойдет.
Если для «прозвонки» проводников используется аналоговый мультиметр без звукового сигнала, то он выставляется на минимальный диапазон измерений – если при прикосновении щупов к проводу стрелка показывает значение стремящееся к нолю, значит провод целый. То же самое касается цифровых приборов без зуммера.
Перед тем, как проверить сопротивление проводников, сначала всегда надо выполнить тест самого устройства – прикоснуться щупами друг к другу. Также надо проверить как прибор реагирует на человеческое тело – у некоторых людей достаточно низкое сопротивление и если прижимать концы провода к щупам руками, то прибор может показать что проводник целый, даже если это не так.
Проведение измерений сопротивления и какие могут возникнуть нюансы
Щупы мультиметра подключаются в те же гнезда и в целом, измерение сопротивления выполняется практически так же, как и прозвонка проводов, но так как проверить при этом надо не просто целостность проводника, то у этого процесса есть некоторые особенности.
- Выбор границ измерений. Когда измеряемое сопротивление хотя бы примерно известно, то регулятором выставляется ближайшее большее значение (если мультиметр не определяет его автоматически). Если сопротивление точно неизвестно, то стоит начать измерения с самого большого значения, постепенно переключая мультиметр на меньшее.
- Когда нужна точность, то обязательно надо учитывать погрешности. К примеру, если есть на резисторе указано сопротивлением 1 кОм (1000 Ом), то во-первых надо учитывать допуски для его изготовления, которые составляют 10%. Как итог – реальные цифры могут быть в диапазоне от 900 до 1100 Ом. Во-вторых – если взять тот же резистор и выставить мультиметр на максимальное значение, к примеру 2000 kОм, то прибор может показать единицу, т.е. 1000 Ом. Если после этого перевести переключатель в положение 2 kОм, то вероятнее всего прибор покажет другую – более точную цифру, к примеру, 0,97 или 1,04.
- Если надо проверить сопротивление детали, которая впаяна в плату, то как минимум один из ее выводов надо выпаивать. В противном случае прибор покажет неправильный результат, так как с высокой долей вероятности параллельно проверяемой детали на схеме есть другие проводники.
Если проверяется элемент с несколькими выводами, то эту деталь надо полностью выпаивать из схемы.
- Человеческое тело проводит ток и обладает определенным электрическим сопротивлением. Поэтому, как и в случае с впаянными в плату деталями, надо исключить возможность их контакта с посторонними предметами – в данном случае это руки замеряющего. В крайнем случае можно прижимать пальцами одной руки контакт к щупу, но прикасаться другой рукой ко второму категорически недопустимо – результат измерений в таком случае будет заведомо неверным.
- В ряде случаев надо учитывать переходное сопротивление контактов – даже чистый припой или ножки неиспользованных радиодеталей со временем может покрываться оксидной пленкой, поэтому место контакта желательно хотя бы минимально зачистить или процарапать концом щупа.
Как проверить сопротивление провода наглядно показано на видео:
Как измерять сопротивление мультиметром – итоги
Управление современных цифровых мультиметров, да и большинство аналоговых, сделано максимально удобным для оператора и не требует глубоких познаний. Оно интуитивно понятно даже непрофессионалу без профильного образования – зачастую для освоения и правильного использования прибора достаточно вспомнить школьные уроки физики по построению и проверке электроцепей. Желательно при проведении измерений помнить про перечисленные выше нюансы, ведь они в любом случае «вылезут» в процессе использования мультиметра.
Как пользоваться мультиметром правильно — Лайфхакер
Как устроен мультиметр
Как понятно из названия, мультиметр служит для измерения нескольких электрических величин. Многофункциональный прибор объединяет в себе вольтметр, амперметр, омметр, прозвонку, а также может иметь дополнительные функции вроде термопары или низкочастотного генератора, проверки конденсаторов и транзисторов.
Аналоговые тестеры со шкалой и стрелкой почти не встречаются, так как давно вытеснены доступными цифровыми приборами. Последние же, помимо точности и количества режимов, отличаются по типу определения величин. Автоматические показывают результат сразу после выбора режима, в ручных нужно дополнительно выставить диапазон измерений.
Все мультиметры имеют схожую конструкцию. На передней панели располагается экран, под ним находится поворотный переключатель режимов, а чуть ниже — разъёмы для подключения щупов. В некоторых моделях есть кнопки для включения подсветки, запоминания показаний и для других дополнительных функций.
Провода с щупами, которыми нужно коснуться детали при измерении, подключаются к соответствующим разъёмам. Чёрный провод всегда к гнезду с обозначением COM, а красный — в зависимости от величины тока. Если он не превышает 200 мА, то к разъёму VΩmA, если превышает, то к 10ADC (10A MAX). В быту такие высокие токи не встречаются, поэтому в основном используется гнездо VΩmA.
Цифры на шкале указывают на максимальное значение, которое можно проверить в этом диапазоне. Например, в режиме DCV 20 измеряют постоянное напряжение от 0 до 20 В. Если оно составляет 21 В, то нужно переключиться на одну ступень выше, в положение 200. Важно выбирать диапазон в соответствии с измеряемым, иначе мультиметр испортится.
Как измерить постоянное напряжение мультиметром
Убедитесь в правильности подключения щупов.
YouTube‑канал electronoffПереключитесь в режим постоянного напряжения. Обычно он обозначается символами V с прямой и пунктирной линией или DCV.
В мультиметрах с ручным выбором диапазонов дополнительно установите примерное значение измерений, а лучше на ступень выше. Если не уверены, начинайте с максимального и постепенно понижайте.
YouTube‑канал electronoffКоснитесь щупами контактов и посмотрите на экран. Если вместе с цифрой отображается знак минус, значит, перепутана полярность: красный щуп касается минуса, а чёрный — плюса.
YouTube‑канал electronoffВ ручном мультиметре, возможно, придётся подкорректировать диапазон измерений.
YouTube‑канал electronoffЕсли на дисплее единица, нужно повысить предел измерения, если ноль, символы OL или OVER — понизить .
Как измерить переменное напряжение мультиметром
Проверьте, что щупы подключены верно.
Включите режим переменного напряжения. Он маркируется символами V~ или ACV.
В ручных мультиметрах также установите примерное значение измерений. Лучше на одну ступень выше или на самую максимальную.
Поднесите щупы к контактам и считайте показания с дисплея.
YouTube‑канал electronoffЕсли мультиметр с ручным определением диапазонов и на экране единица, повысьте предел измерения, если ноль (OL, OVER) — понизьте.
Как измерить сопротивление мультиметром
Убедитесь в правильности подключения щупов.
Поставьте режим измерения сопротивления. Он обозначается символом Ω.
Если тестер ручной, выберите приблизительный диапазон измерений.
Прикоснитесь щупами к выводам резистора и посмотрите на экране его сопротивление.
YouTube‑канал electronoffНа ручном мультиметре при необходимости подстройте диапазон измерений в большую или меньшую сторону.
Как проверить диод или цепь мультиметром
Вставьте щупы в правильные разъёмы мультиметра.
Переключитесь в режим прозвонки диодов, отмеченный символом стрелки с вертикальной линией.
Приложите иглы щупов к выводам диода. Мультиметр покажет на экране падение напряжения. Если поменять щупы местами, то при рабочем диоде на экране будет единица, а на неисправном — любое другое число.
YouTube‑канал electronoffВ этом же режиме можно прозвонить цепь или провод, но надо предварительно обесточить их. Если целостность не нарушена, прозвучит звуковой сигнал, если есть обрыв — на экране просто отобразится единица, OL или OVER.
YouTube‑канал electronoffНа некоторых мультиметрах звуковой режим прозвонки включается отдельно. Например, на чёрном тестере, как на фото выше. Этот режим обозначается символом увеличения громкости, нотой или динамиком.
Как измерить силу тока мультиметром
Присоедините щупы к нужным разъёмам мультиметра в зависимости от величины тока.
YouTube‑канал electronoffУстановите режим измерения силы тока (DCA, mA).
В мультиметре с ручным выбором диапазонов установите максимальный порог.
При последовательном подключении мультиметр является частью цепи.Последовательно подключите щупы в цепь. В отличие от напряжения и сопротивления ток измеряется не параллельно. То есть нужно не просто коснуться двух точек схемы или выводов детали, а подключить мультиметр в разрыв цепи. При параллельном включении прибор может выйти из строя!
YouTube‑канал electronoffНа экране отобразится потребляемый ток. Если мультиметр ручной, то, возможно, придётся переключить диапазон для более точных результатов.
Читайте также 🛠💡🔌
Видеоурок: Устройство омметра
Стенограмма видеозаписи
В этом видео мы собираемся глядя на конструкцию омметра.
Омметр — это устройство, которое используется для измерения электрического сопротивления компонента. На принципиальных схемах мы можем представляют собой омметр с прописной буквой Ω в кружке. На этой принципиальной схеме омметр используется для измерения сопротивления испытательного резистора.В этом видео мы увидим, как мы можем построить омметр, используя ячейку, гальванометр, переменный резистор и фиксированный резистор включен последовательно.
Итак, для начала давайте рассмотреть резистор. Допустим, у этого резистора есть какое-то сопротивление, 𝑅 𝑥, и мы хотим построить омметр, чтобы мы могли измерить значение из 𝑅 𝑥. Что ж, закон Ома говорит нам, что Сопротивление компонента определяется напряжением на этом компоненте, деленным на ток в этом компоненте.Итак, в качестве общей идеи, если бы мы могли прикладываем известное напряжение 𝑉 к резистору, а затем измеряем ток, затем мы можно было рассчитать его сопротивление, разделив напряжение на ток.
Имея это в виду, давайте подключимся ячейку к нашему резистору. Теперь, когда мы используем потенциал разница, назовем это 𝑉, на нашем резисторе, мы обнаружим, что есть ток в цепи, и мы можем назвать этот ток.Если известно наше напряжение, то все нам нужно измерить ток 𝐼, и мы можем рассчитать сопротивление, используя Закон Ома. Чтобы помочь нам измерить ток, давайте введем в нашу схему гальванометр. И давайте быстро вспомним, что гальванометр — это устройство, которое может измерять величину и направление тока с помощью иглы и диска.
В качестве небольшого примечания, потому что большинство гальванометры измеряют ток в обоих направлениях, ноль обычно находится посередине шкалы.С омметра мы пытаемся build — это цепь постоянного тока, то есть цепь, в которой ток идет только в одном направлении, мы можем изменить наш гальванометр так, чтобы ноль находился на одном конце шкала. Итак, теперь все настроено так, что игла будет отклоняться в этом направлении в ответ на ток в этом направлении в нашем схема. С этим слегка измененным гальванометр установлен, теперь у нас есть способ получить информацию о текущем в цепи и, следовательно, сопротивление нашего тестового резистора.
Потому что мы пытаемся построить омметр, мы хотим изменить циферблат на нашем гальванометре, чтобы он показывал сопротивление а не текущие. Закон Ома гласит, что если ток в нашей цепи действительно мал, тогда сопротивление должно быть очень большим. И точно так же, если мы получаем действительно большой ток, значит, сопротивление небольшое. Доводя эту идею до крайности, мы мог бы сказать, что если в цепи есть нулевой ток, то она должна иметь фактически бесконечное сопротивление.Это было бы эквивалентно помещению разрыв в нашей цепи, что сделало бы невозможным существование тока.
Итак, поскольку нулевой ток означает, что сопротивление бесконечно, тогда мы могли бы изменить циферблат на нашем гальванометре так, чтобы когда циферблат находится в этом положении, вместо показания нулевого тока он читает бесконечное сопротивление. Итак, теперь, если это конец нашей шкалы соответствует бесконечному сопротивлению, что означает, что в идеале нам нужен другой конец шкала нашего омметра должна соответствовать нулевому сопротивлению.
Теперь мы знаем, что гальванометры очень чувствительные инструменты. Так они обычно достигают максимума отклонение в этом направлении при довольно небольшом токе, обычно в районе микроампер или миллиампер. Мы можем назвать этот ток 𝐼 𝑔. Если мы хотим настроить наш омметр так, чтобы игла достигла этого положения, когда испытательное сопротивление равно нулю, что означает, что нам нужно внести некоторые изменения в нашу схему, чтобы при значении испытательное сопротивление равно нулю, значение тока в цепи 𝑔, максимальный ток отклонения гальванометра.
Для этого нам нужно подключить пара резисторов к нашей схеме, переменный резистор в виде резистора знак со сквозной диагональной стрелкой и обычным постоянным резистором. И можно сказать, что сопротивление переменного резистора 𝑉, а сопротивление постоянного резистора 𝐹. Пока мы обсуждаем тему резисторов, важно помнить, что гальванометр имеет свой внутренний сопротивление, 𝑅 𝐺.Функция этих дополнительных резисторы должны гарантировать, что, когда значение этого испытательного сопротивления равно нулю, тока в гальванометре достаточно, чтобы вызвать максимальное отклонение иголка.
Теперь мы можем сделать некоторые вычисления, чтобы определить, какими должны быть эти значения сопротивления, чтобы сделать это кейс. Поскольку сейчас мы рассматриваем ситуация, когда испытательное сопротивление равно нулю, это эквивалентно замене тестовый резистор с помощью просто провода.Итак, поскольку все это эффективно наш омметр, мы эффективно замыкаем омметр накоротко. Для определения номиналов резисторов что нам нужно использовать, мы можем использовать закон Ома. Мы хотим построить наш омметр, так что полное эффективное сопротивление этой цепи при испытательном сопротивлении равно равного нулю достаточно, чтобы ограничить ток до 𝐼 𝑔. Другими словами, мы стремимся сделать полное сопротивление нашего омметра, которое мы можем назвать 𝑅 Ω, удовлетворять этому уравнение.
Давайте также вспомним, что когда у нас несколько резисторов, соединенных последовательно, общее эффективное сопротивление равно равняется сумме отдельных сопротивлений. Это означает, что эффективная сумма сопротивление всех последовательно включенных компонентов нашего омметра равно 𝑉, сопротивление переменного резистора, плюс 𝐹, сопротивление фиксированного резистор, плюс 𝐺, сопротивление гальванометра.Таким образом, мы можем заменить 𝑅 Ω в нашем выражение с 𝑅 𝑉 плюс 𝑅 𝐹 плюс 𝑅 𝐺. Если теперь вычесть 𝑅 𝐹 и 𝑅 𝐺 с обеих сторон этого уравнения остается это выражение, которое позволяет нам чтобы вычислить значение, которое нам нужно установить для нашего переменного резистора, чтобы правильно откалибруйте положение нуля на нашем омметре.
На самом деле, потому что переменный резистор по своей природе легко настраивается, мы могли правильно откалибровать наш переменный резистор, просто уменьшив его от максимального сопротивления до стрелка на омметре достигает максимального отклонения.И на этом этапе мы узнаем, что максимальное отклонение шкалы соответствует значению испытательного сопротивления нуль. Так что мы можем уверенно написать ноль на этом конце шкалы. Итак, теперь у нас есть полностью собран и правильно откалиброван омметр. Если мы снова введем тестовый резистор, тогда стрелка на циферблате изменится, показывая сопротивление. Однако здесь мы сталкиваемся с проблема. Наш омметр измеряет значения сопротивление от ∞ до нуля.Однако мы не знаем, что эти значения в середине циферблата фактически соответствуют.
К счастью, мы можем выяснить шкалы на нашем омметре, используя тот факт, что отклонение стрелки на гальванометр пропорционален току. Это означает, что если ток 𝐼 𝑔 достаточно, чтобы вызвать полное отклонение иглы, тогда ток в два раза меньше этого размера. вызовет половинное отклонение иглы, помещая ее точно в середину набирать номер.Аналогично ток четверти 𝐼 𝑔 приведет к отклонению иглы на четверть оборота и так далее.
Теперь, если мы изменим закон Ома на сделав 𝐼 субъектом, мы получим выражение равно 𝑉 над 𝑅. Поскольку 𝑉 в нашей схеме является константа, это означает, что, ток в нашей цепи, обратно пропорционален к 𝑅 𝑇, полное сопротивление нашей цепи. Это означает, например, что если мы умножьте общее сопротивление на два, тогда ток уменьшится вдвое или если бы мы умножьте общее сопротивление на четыре, тогда мы разделим общий ток на четыре.
Итак, мы уже показали, что нужно делать от полного отклонения иглы, которое происходит при нулевом испытательном сопротивлении, до при половинном отклонении иглы нам нужно уменьшить ток вдвое. И закон Ома говорит нам, что в чтобы уменьшить ток вдвое, нам нужно было бы удвоить общее сопротивление схема. Это означает, что если мы добавим тест резистор, и стрелка переместится на половину отклонения, затем добавим этот тестовый резистор должно удвоить сопротивление всей цепи.
Это будет означать, что сопротивление тестового резистора в точности равно сопротивлению омметра, а это значит сопротивление, измеренное на половине шкалы, равно 𝑅 Ом, сопротивление самого омметра, которое, как мы показали, равно сопротивлению переменного резистора плюс сопротивление постоянного резистора плюс сопротивление гальванометра.
Следуя тем же рассуждениям, сопротивление, обозначенное этой позицией на циферблате, будет вдвое меньше сопротивления омметр.И сопротивление обозначено это положение на шкале будет вдвое больше сопротивления омметра. Итак, мы видим это, потому что отклонение стрелки гальванометра пропорционально току, но ток обратно пропорционально сопротивлению, которое шкала на нашем омметре нелинейный. То есть прогиб не пропорционально сопротивлению, которое мы измеряем.
Хорошо, теперь, когда мы узнали, как собрать и откалибровать омметр и как интерпретировать показания на циферблате, давай попробуем ответить на вопрос.
Цепь, которая может использоваться как показан омметр. В схеме используется гальванометр, источник постоянного тока с известным напряжением, постоянным резистором и переменным резистор. Угол 𝜃 — это полная шкала прогиб гальванометра. Два резистора, один и 𝑅 два, подключены к омметру, так что их сопротивление можно измерить омметр. Угол гальванометра отклонение уменьшается на угол 𝜙, когда один соединен и его угол равен уменьшается на 𝛼, когда 𝑅 два соединены.Что из следующего правильно связывает сопротивления один и два? (A) один равен 𝑅 two, (B) 𝑅 один меньше двух или (C) 𝑅 один больше двух.
Итак, в этом вопросе мы дана принципиальная схема омметра. И нам тоже показывают то же самое принципиальная схема, но на этот раз с резистором 𝑅 последовательно включенным, а затем та же схема снова, но на этот раз с резистором два вместо одного.Итак, давайте начнем с напоминания мы сами, что омметр — это устройство, которое измеряет сопротивление компонента например 𝑅 один или 𝑅 два. Чтобы измерить сопротивление компонента подключаем последовательно с омметром. Прогиб иглы на гальванометр, который на наших принципиальных схемах обозначен заглавной буквой в кружок указывает значение сопротивления.
На данном этапе полезно помните, что стрелка гальванометра действительно реагирует на ток.Идея омметра заключается в том, что приложив известное напряжение к цепи, содержащей испытательный резистор и гальванометра, стрелка гальванометра будет реагировать на величину тока в цепи. Тогда мы знаем, что если тест резистор имеет действительно большое сопротивление, тогда в цепи будет существовать только небольшой ток. схема. И наоборот, если резистор имеет очень низкое сопротивление, тогда в цепи будет больший ток.
Эти отношения резюмируются По закону Ома равно 𝑉 над 𝑅. Если рассматривать 𝐼 как текущую в цепи, 𝑉 — это напряжение, которое мы прикладываем к цепи, а 𝑅 — — полное сопротивление цепи, то можно увидеть, что, увеличивая 𝑅, сопротивление, мы уменьшим 𝐼, ток, пропорционально количество. Другими словами, ток в цепи и полное сопротивление цепи обратно пропорциональны единице Другая.Теперь, если мы посмотрим на диаграмму на слева мы видим, что стрелка гальванометра полностью отклонена. И, кстати, угол этого прогиб был назван 𝜃.
Теперь у данного гальванометра будет некоторый ток, вызывающий максимальное отклонение иглы. И мы обычно находим это в диапазон миллиампер или микроампер. Любой ток меньше этого будет вызывает только частичное отклонение стрелки, позволяя гальванометру эффективно измерить этот ток.Но любой ток больше ток полного отклонения просто приведет к полному отклонению иглы. Другими словами, гальванометр на его собственный полезен только для измерения тока в небольшом заданном диапазоне. И вот здесь эти резисторы вступают в игру.
Функция переменной и постоянные резисторы должны гарантировать, что сам по себе омметр будет иметь достаточно сопротивление так, чтобы ток был достаточно большим, чтобы вызвать максимальное отклонение игла.И как только это будет достигнуто, мы сможем говорят, что омметр откалиброван. Как только это будет сделано, тогда добавление резистора последовательно к омметру увеличит общее сопротивление цепи и, следовательно, уменьшите ток так, чтобы теперь он был меньше, чем ток, который может вызвать полное отклонение гальванометра.
И на этом этапе это может быть полезно напомнить себе, что когда мы соединяем резисторы последовательно, общая сопротивление — это просто сумма сопротивлений отдельных резисторов в схема.Итак, мы знаем, что подключение резистор, включенный последовательно с омметром, увеличивает общее сопротивление цепи и, следовательно, заставляет стрелку гальванометра отклоняться от полного отклонения из-за падению тока. Чем больше значение резистор, который мы подключаем последовательно с омметром, тем больше отклонение стрелка гальванометра уменьшится на.
В этом вопросе нам говорят, что подключение резистора 𝑅 последовательно с омметром вызовет прогиб уменьшать на угол 𝜙.И нам также сказали, что подключение резистор 𝑅 два к омметру приведет к уменьшению отклонения иглы на угол 𝛼. Что особенно важно, нам сказали, что больше. Другими словами, соединяя 𝑅 два к омметру приводит к большему уменьшению отклонения иглы. Это означает, что резистор 𝑅 два должен уменьшать общий ток в цепи больше, чем на 𝑅 один делает.Следовательно, можно заключить, что 𝑅 два больше один или, что то же самое, один меньше два.
Если угол гальванометра отклонение уменьшается на угол 𝜙, когда один соединен и его угол равен уменьшается на 𝛼, когда два связно и больше, чем 𝜙, то мы можем сделать вывод, что сопротивление один меньше, чем сопротивление два.
Давайте теперь рассмотрим ключевые моменты что мы узнали из этого видео.Во-первых, мы увидели, что омметр можно сделать, подключив источник постоянного тока, постоянный резистор, переменный резистор и гальванометр, включенные последовательно друг с другом. Мы также показали, что для калибровки резистора следует выбирать сопротивления постоянного и переменного резисторов. так что при коротком замыкании омметра ток равен ток полного отклонения гальванометра. И, наконец, мы увидели, что омметры имеют нелинейную шкалу, которая изменяется от бесконечного сопротивления, обозначенного нулевое отклонение стрелки гальванометра до нулевого сопротивления, которое указывается полным прогибом.Это краткое изложение конструкции омметр.
Основные операции, уход и обслуживание, а также расширенное устранение неисправностей для квалифицированных специалистов
Вы изучили измерения напряжения и тока, но вы обнаружите, что измерения сопротивления разными способами. Сопротивление измеряется при выключенном питании цепи. Омметр пропускает собственный ток через неизвестное сопротивление, а затем измеряет этот ток, чтобы обеспечить считывание значения сопротивления.
Роль батареи
Омметр, несмотря на то, что он считывает сопротивление, по сути остается устройством для измерения тока. Омметр создается из измерителя постоянного тока путем добавления группы резисторов (называемых резисторами умножителя ) и внутренней батареи. Батарея обеспечивает ток, который в конечном итоге измеряется измерителем. По этой причине в омметр используется только в обесточенных цепях .
В процессе измерения сопротивления измерительные провода вставляются в гнезда счетчика.Затем провода присоединяются к концам любого сопротивления, которое необходимо измерить. Поскольку ток может протекать в любом направлении через чистое сопротивление, полярность подключения выводов измерителя не требуется. Батарея измерителя пропускает ток через неизвестное сопротивление, внутренние резисторы измерителя и измеритель тока.
Омметр разработан таким образом, что он показывает 0 Ом, когда измерительные провода соединены вместе (нулевое внешнее сопротивление). Измеритель показывает бесконечное (I) сопротивление или превышение предельного (OL) сопротивления, когда провода остаются открытыми.Когда между выводами помещается сопротивление, показание увеличивается в зависимости от того, сколько тока это сопротивление позволяет течь.
Для экономии заряда батареи никогда не следует оставлять омметр включенным для измерения сопротивления, когда он не используется. Поскольку ток, доступный от измерителя, зависит от состояния заряда батареи, для запуска цифровой мультиметр должен быть установлен на ноль. Для этого может потребоваться не более чем проверка соприкосновения двух щупов друг с другом.
На рисунке 8 показано, как проводятся измерения сопротивления.
Примечание:
1000 Ом = 1 кОм
1000000 Ом = 1 МОм
Рисунок 8: Использование цифрового мультиметра для измерения сопротивления
- Отключить питание цепи.
- Вставьте черный измерительный провод в общий входной разъем. Подключите красный или желтый провод к входному гнезду сопротивления.
- Выберите настройку сопротивления.
- Коснитесь наконечниками щупов компонента или участка цепи.
- Просмотрите показания и запишите единицы измерения, ом, кило или мегом.
Процедуры измерения сопротивления
Для измерения сопротивления выполните следующие действия:
- Перед началом испытаний технический специалист всегда должен знать, каких результатов следует ожидать, основываясь на технических характеристиках производителя, паспортной табличке, законе Ома и законе Кирхгофа. Слепое тестирование опасно и контрпродуктивно.
- Выключите питание и убедитесь, что измеряемая цепь «не работает», используя метод тестирования T3 и процедуры измерения напряжения.Обязательно используйте СИЗ, поскольку мы всегда предполагаем, что цепь находится под напряжением, пока не будет доказано обратное.
- Удалите или изолируйте проверяемый компонент.
- Подключите измерительные щупы к соответствующим гнездам пробников, Common и Ω. Обратите внимание, что используемые гнезда могут быть теми же, что и для измерения вольт.
- Выберите функцию измерения сопротивления, повернув функциональный переключатель в положение измерения сопротивления. Начните с самого низкого значения.
- Соедините щупы вместе, чтобы проверить провода, соединения и срок службы батареи. Измеритель должен показывать нулевое или очень маленькое сопротивление тестовых проводов.Когда провода разнесены, на измерителе должен отображаться OL или I, в зависимости от производителя.
- Подсоедините концы щупов к разрыву в компоненте или участке цепи, для которого вы хотите определить сопротивление. Если вы получили OL (превышение предела), переключитесь на следующую максимальную настройку.
- Просмотрите показания на дисплее. Обязательно укажите единицу измерения.
- Выключите глюкометр после завершения тестирования, чтобы продлить срок службы батареи.
Видео: Измерение сопротивления
Как определить нейтральный провод с помощью мультиметра?
Естественно, большинство людей не думают о проводах, пока их свет не погаснет посреди ночи, и когда это произойдет, ваша первая проверка будет заключаться в том, чтобы определить, какой провод неисправен, а какой нужно исправить.Но проблема в том, что нейтральный провод не похож на большинство проводов, и вам может потребоваться помощь мультиметра, чтобы определить его.
Так как же определить нулевой провод мультиметром?
Первое, что нужно сделать, это установить мультиметр на максимальное напряжение в диапазоне переменного тока, а затем найти розетку. С помощью зонда проверьте, есть ли в вашей розетке электричество, потому что без электричества вы ничего не сможете правильно определить. Наконец, вытащите все три цветных провода с задней стороны розетки и приложите красный щуп мультиметра к каждому из них.И если у вас нет показаний на одном из них, это нейтральный провод.
В конце этой статьи вы не просто узнаете, как определить нейтральный, горячий или заземляющий провод, но вы также узнаете разницу между нейтралью и проводом под напряжением.
Но перед этим давайте разберемся, что такое мультиметр и почему его полезно иметь в доме.
Что такое мультиметр?
Мультиметр — это электронный прибор, используемый для проверки оборудования, который в основном используется для измерения напряжения, тока и сопротивления.Однако это еще не все, на что он способен; его также можно использовать для проверки целостности электрических компонентов и цепей.
Имейте в виду, что, хотя известно, что мультиметр действует как амперметр, омметр и вольтметр, стоит отметить, что его также можно использовать для бытовых целей, таких как тестирование батарей, источники питания и бытовая электропроводка.
Существует три типа мультиметров: аналоговые, цифровые и Fluke. Среди всех трех наиболее часто используется цифровой мультиметр, и хотя вы, вероятно, встретите разные модели с ценой от 1000 долларов и выше, просто игнорируйте их.Они предназначены для профессионалов и предназначены для решения задач, гораздо более утомительных, чем потребности такого домашнего мастера, как вы. Вместо этого вам лучше покупать те, которые стоят менее 10 долларов.
Вот короткое видео о том, как использовать мультиметр для начинающих:
Почему вам нужен мультиметр?
Мультиметр может пригодиться дома по нескольким причинам. С мультиметром в руках вы можете проверить батареи, определить провод и даже найти неисправный выключатель.Вы также можете выяснить, перегорела ли ваша лампочка или все еще работает.
Для любого другого человека это может не иметь большого значения, но для домашнего мастера это необходимость и добавит больше огневой мощи в ваш арсенал DIY. Теперь давайте посмотрим на некоторые из тех маленьких проблем, которые мультиметр может помочь вам решить, и на то, как их решать в вашем доме.
Test Batteries: представьте, что вы зовете своих друзей на игровую ночь, и ваш пульт от телевизора решил подвести вас, и у вас есть коробка, заполненная старыми батареями, но вы не знаете, поджарены ли они или все еще есть сок. их.Не волнуйтесь; ваши режимы напряжения мультиметра помогут вам.
Все, что вам нужно сделать, это подключить черный щуп к COM, а красный — к Вольт, затем установить мультиметр в положение постоянного напряжения (DC). А если ваш MM имеет функцию автоматического выбора диапазона, просто найдите символ напряжения (V) с линией над ним, указывающей на переменный ток.
Затем наденьте мультиметр и прикоснитесь черным щупом к отрицательному полюсу батареи, которую вы проверяете. Или используйте красный щуп, чтобы прикоснуться к положительному полюсу батареи.После этого вы должны увидеть, как ваш мультиметр отображает на экране напряжение вашей батареи. Если оно 1,5 В и выше, значит, батарея все еще в порядке, но если она ниже, значит, батарея разряжена или разряжена.
Обнаружение неисправного выключателя: когда гаснет свет, это не всегда лампочка; это может быть ваш выключатель. Но вы никогда не узнаете, пока не протестируете это, и ваш мультиметр может вам в этом помочь.
В отличие от предыдущего, вам придется установить мультиметр в режим измерения сопротивления, но вы все равно подключите черный щуп к COM, а красный — к Volts, и не забудьте выключить свет.
На этом этапе ваш мультиметр должен отображать «OL», что означает бесконечное сопротивление в цепи переключателя, потому что ваш переключатель выключен. Затем для настоящего теста включите выключатель и снова выполните измерения. Ваш экран должен либо показывать значение, близкое к нулю, либо по-прежнему отображать «OL». Если первое, то ваш переключатель по-прежнему работает; если последнее, значит, неисправен.
Вы по-прежнему можете делать гораздо больше с мультиметром, например считывать температуру, проверять настенный выключатель и проверять электрические розетки.
Как определить нейтральный, горячий и заземляющий провод с помощью мультиметра?
Этот процесс довольно прост; все, что вам нужно сделать, это найти розетку и установить мультиметр на самую высокую точку в диапазоне переменного тока. С помощью черно-красного щупа прикоснитесь к каждому из проводов на задней стороне розетки, чтобы определить, является ли он горячим, нейтральным или заземленным.
- Шаг 1: Для вашей безопасности приобретите зонд и пару изолированных перчаток.Прикосновение к проводу электричеством может привести к большим неприятностям
- Шаг 2: Найдите стенную розетку и вытащите все три цветных провода с задней стороны розетки. Затем установите мультиметр на максимальное значение напряжения в диапазоне переменного тока.
- Шаг 3. Подключите черный щуп мультиметра к заземляющему проводу или любому заземленному объекту, например водопроводу, крану, холодильнику или радиатору отопления. А если показания мультиметра — это заземляющий провод.
- Шаг 4: Затем, наконец, прикоснитесь к оголенным проводам красным щупом.Если мультиметр не показывает показания, значит, ваш провод нейтральный, а если вы получаете показания, значит, провод горячий.
Этот метод также применяется к розеткам людей, живущих в США и Канаде, маленькое гнездо предназначено для горячего черного провода, а большее — для нейтрального черного провода.
Однако существуют меры предосторожности, которых должен придерживаться даже старший электрик, прежде чем определять какой-либо провод в целях безопасности и плавного проведения теста.
Как отличить нейтральный провод от живого?
Провод под напряжением или под напряжением можно отличить как от нейтрального, так и от заземляющего провода несколькими способами. Цвета также играют огромную роль при определении токоведущего провода, нейтрального провода и заземляющего провода. Однако выбор типа проволоки по ее цвету не рекомендуется.
Это связано с тем, что производитель может выбрать любой цвет для любого типа провода. Токоведущий провод — это тот, который передает электрический ток от источника питания к нагрузке, в то время как нейтральный провод возвращает электрический ток к источнику питания, тем самым замыкая петлю.
Кроме того, напряжение на проводе под напряжением такое же, как у основного источника питания (например, 220 В или 230 В), а напряжение нейтрального провода равно 0 В.
Заключение
Определение типа провода с помощью мультиметра — гораздо более безопасный вариант, чем использование цветов, потому что, как указывалось ранее, нет постоянного цвета горячего, нейтрального и заземляющего проводов. Таким образом, мультиметры являются отличными инструментами, которые пригодятся, когда вы хотите определить напряжение, сопротивление и ток, протекающие по проводам в конкретном кабеле, без необходимости покупать или использовать омметр, вольтметр и амперметр по отдельности, тем самым снижая стоимость получить все три.
Israel — страстный писатель и любитель умного дома. Он страстно увлечен улучшением домов и помогает людям получить от дома максимум удовольствия. Он любит писать полезные советы, DIY и темы с практическими рекомендациями в этой области.
Как использовать омметр для проверки усилителя
Схема усилителя может давать сбой в нескольких местах. Если отдельные компоненты, такие как резисторы, трансформаторы или динамики усилителя, сломаны, цепь может быть неполной, и омметр может помочь вам определить место проблемы.Омметр измеряет сопротивление между двумя точками цепи. Если две точки электрически общие, в идеале у них не будет сопротивления. Если цепь разорвана, цепь будет иметь бесконечное сопротивление. Если вы знаете ожидаемое сопротивление между двумя точками, вы сможете найти проблемные части схемы вашего усилителя.
Выключите усилок. Омметр подает собственный испытательный ток.
Поверните омметр на диапазон сопротивления, который вы ожидаете найти между двумя точками.Например, если вы ожидаете найти сопротивление в тысячах Ом, установите омметр на шкалу в килоомах.
Соедините вместе выводы омметра. Омметр должен показывать ноль. В противном случае поверните шкалу нуля так, чтобы омметр показывал ноль, когда провода соединены.
Подключите два провода к компоненту, который вы хотите измерить. Полярность выводов не имеет значения, поскольку сопротивление не зависит от направления.
Посмотрите показания омметра.Если вы видите показание «OL» или «1» в крайнем левом углу цифрового мультиметра, ваша шкала слишком мала для текущего значения. Эта индикация может отличаться в зависимости от модели омметра. В этом случае поверните шкалу омметра в большую сторону.
Подключите выводы омметра между двумя электрически общими точками. Сопротивление между этими точками должно быть очень низким. Если показание омметра бесконечно, значит, цепь между этими двумя точками разорвана.
Наконечник
Некоторые компоненты, например транзисторы, работают только при определенных условиях. Убедитесь, что вы понимаете, как работает каждый компонент, чтобы знать, чего ожидать при использовании омметра.
Предупреждения:
- Конденсаторы могут сохранять высокое напряжение даже при выключенном усилителе. Если вам нужно проверить конденсатор, сначала разрядите его, закоротив изолированной отверткой.
Как проверить или проверить на короткое замыкание с помощью мультиметра
Проверка на короткое замыкание — это один из самых основных тестов, которые вы можете выполнить с помощью мультиметра.На простейших измерителях вы используете настройку сопротивления; В сложных моделях есть настройка непрерывности, при которой мигает свет или подается звуковой сигнал, чтобы вы знали, что соединение является коротким замыканием.
Отключить питание
Отключить все питание тестируемой цепи или устройства. Отключите оборудование от розетки переменного тока.
Предупреждения:
- Проверка электрической цепи с помощью мультиметра может привести к опасной опасности поражения электрическим током, если питание цепи включено.
Установите мультиметр на сопротивление или целостность.
Включите мультиметр и поверните ручку переключателя в положение сопротивления.Используйте настройку непрерывности, если ваш глюкометр имеет эту функцию.
Наконечник
Некоторые мультиметры могут иметь несколько настроек сопротивления; выберите самую низкую шкалу сопротивления на измерителе.
Наконечники сенсорных щупов вместе
Сложите щупы вместе и убедитесь, что показание сопротивления приближается к нулю. Для непрерывности мигает свет или раздается звуковой сигнал.
Найдите компонент цепи
Найдите компонент или часть цепи, которые вы хотите проверить на короткое замыкание.Испытываемая деталь обычно не должна иметь нулевого электрического сопротивления; например, вход усилителя звука должен иметь сопротивление не менее нескольких сотен Ом.
Наконечники датчика касания к цепи
Коснитесь металлическим наконечником черного датчика шасси цепи или электрического заземления и коснитесь концом красного датчика частей цепи, которые, как вы подозреваете, могут иметь короткое замыкание. Наконечники пробников должны касаться металлических частей схемы, таких как вывод компонента, фольга печатной платы или провод.
Наблюдайте за дисплеем измерителя
Наблюдайте за тем, что делает измеритель, когда вы касаетесь щупами цепи. Высокое сопротивление означает обрыв цепи. Очень низкое сопротивление — около 2 Ом или меньше — указывает на короткое замыкание. Измеритель с настройкой непрерывности мигает или издает звуковой сигнал только при обнаружении короткого замыкания.
Наконечник
Некоторые измерители могут указывать на обрыв цепи как на «перегрузку» или бесконечное сопротивление.
Онлайн-курс по основам цифрового мультиметра
Если вы или ваша компания ищете способы улучшить электрические навыки, рассмотрите этот двухчасовой онлайн-курс по основам цифрового мультиметра от Fluke.Мы разработали этот курс, чтобы помочь пользователям мультиметров максимально эффективно использовать их. Независимо от того, используете ли вы мультиметр для базового электрического монтажа и ввода в эксплуатацию, ремонта и поиска неисправностей или для вашей личной работы, информация этого курса поможет вам выполнить эту работу.
Использовать мультиметр для измерения напряжения довольно просто, если вы соблюдаете меры безопасности, но как насчет остальных функций на циферблате? Даже самые продвинутые клиенты Fluke часто считают, что в их глюкометре есть аспекты, которые они могли бы использовать лучше.
Цель
В этом 2-часовом онлайн-курсе вы узнаете:
- Стандартные функции и для чего они нужны
- Символы измерений и их приложения
- Когда использовать расширенные режимы
- Принадлежности
- Технические характеристики и что важно
Изучения этого курса применимы к большинству моделей мультиметров. Они также соответствуют отраслевым инструкциям по обучению использованию электрических испытательных приборов. В шести уроках используются повествование, видео, интерактивные упражнения и иллюстрации, чтобы познакомить вас с режимами и приложениями мультиметра.
Посмотрите это видео, чтобы ознакомиться со стилем обучения и участия в курсе. В Fluke мы проводим наши онлайн-курсы в соответствии с теми же высокими стандартами качества, которые наши клиенты ожидают от имени Fluke.
Для кого предназначен этот курс
Этот курс предназначен для специалистов по электрике и обслуживанию, а также для других людей, которые хотят научиться лучше использовать цифровые мультиметры. Курс также может быть способом документирования знаний для работодателей или профсоюзов. Слушатели, проходящие курс, извлекут наибольшую пользу, если у них будет практическое понимание теории электричества и требований электробезопасности.
Предварительные требования
Нет *
Получить этот курс
* Курс «Основы цифрового мультиметра» включает ссылки на основную теорию электричества, пояснения и другие вспомогательные ресурсы или материалы, содержащиеся в бесплатном онлайн-курсе Fluke по безопасности электрических измерений. Мы рекомендуем вам начать с прохождения курса «Безопасность при электрических измерениях». Рекомендуется набрать проходной балл, но не требуется для продолжения этого курса.
Этот курс предназначен только для информационных целей.Содержание этого курса не может заменить надлежащее обучение и внедрение отраслевых стандартов, применимых к обслуживанию и тестированию электрического и механического оборудования.
Вы должны внимательно изучить и соблюдать OSHA, NFPA и другие нормативные требования, инструкции производителей оборудования и процедуры безопасности вашей компании при проведении любых испытаний или обслуживания электрического и механического оборудования.
Демонстрации в этом курсе проводились обученными профессионалами в контролируемой среде.
Не пытайтесь вызвать дуговое замыкание, вспышку дуги или любое другое состояние, которое может потенциально повредить электрические испытательные инструменты или оборудование или иным образом создать повышенный риск получения травм.
Курсы Fluke написаны профильными экспертами и созданы дизайнерами, чтобы быть интересными и поучительными.
Как вручную проверить источник питания с помощью мультиметра
Правильно выполненный тест блока питания с помощью мультиметра должен подтвердить, что блок питания находится в хорошем рабочем состоянии или его необходимо заменить.
Прочтите важные советы по безопасности при ремонте ПК из-за опасностей, связанных с этим процессом. Ручное тестирование источника питания предполагает тесную работу с электричеством высокого напряжения.
Не пропускайте этот шаг! Безопасность должна быть вашей главной заботой во время проверки источника питания, и есть несколько моментов, о которых вы должны знать, прежде чем начинать этот процесс.
Откройте корпус вашего компьютера. Короче говоря, это включает в себя выключение компьютера, отсоединение кабеля питания и отключение всего остального, подключенного к внешнему компьютеру.
Чтобы упростить тестирование источника питания, вам также следует переместить отключенный и открытый корпус компьютера в удобное место для работы, например, на столе или другой плоской нестатической поверхности.
Отсоедините разъемы питания от каждого внутреннего устройства .
Простой способ убедиться, что каждый разъем питания отключен, — это работать от связки кабелей питания, идущих от блока питания внутри ПК. Каждая группа проводов должна подключаться к одному или нескольким разъемам питания.
Нет необходимости снимать сам блок питания с компьютера, а также нет причин отсоединять кабели данных или другие кабели, не исходящие от блока питания.
Сгруппируйте все силовые кабели и разъемы вместе для облегчения тестирования.
Когда вы размещаете силовые кабели, мы настоятельно рекомендуем их изменить и вытащить как можно дальше от корпуса компьютера. Это максимально упростит проверку соединений источника питания.
Замкните контакты 15 и 16 на 24-контактном разъеме питания материнской платы с помощью небольшого отрезка провода.
Вам, вероятно, потребуется взглянуть на таблицу выводов 24-контактного блока питания 12 В ATX, чтобы определить расположение этих двух контактов.
Убедитесь, что переключатель напряжения питания, расположенный на блоке питания, правильно настроен для вашей страны.
В США напряжение должно быть установлено на 110/115 В. Обратитесь к Руководству по розеткам для других стран, чтобы узнать о настройках напряжения для других стран.
Подключите блок питания к розетке и нажмите переключатель на задней панели блока питания. Предполагая, что источник питания хотя бы минимально исправен и что вы правильно закоротили контакты на шаге 5, вы должны услышать, как вентилятор начинает работать.
У некоторых источников питания нет переключателя на задней панели устройства. Если тестируемый блок питания не работает, вентилятор должен начать работать сразу после подключения блока к стене.
Просто потому, что вентилятор работает, это не означает, что ваш блок питания правильно подает питание на ваши устройства.Вам нужно будет продолжить тестирование, чтобы подтвердить это.
Включите мультиметр и поверните циферблат в положение VDC (Вольт постоянного тока).
Если используемый вами мультиметр не имеет функции автоматического выбора диапазона, установите диапазон на 10,00 В.
Проверьте 24-контактный разъем питания материнской платы:
Подключите отрицательный щуп мультиметра (черный) к любому контакту заземления и подключите положительный щуп (красный) к первой линии питания, которую вы хотите проверить.24-контактный основной разъем питания имеет линии +3,3 В постоянного тока, +5 В постоянного тока, -5 В постоянного тока (опционально), +12 В постоянного тока и -12 В постоянного тока через несколько контактов.
Мы рекомендуем проверить каждый контакт 24-контактного разъема, на который подается напряжение. Это подтвердит, что каждая линия подает правильное напряжение и что каждый вывод правильно терминирован.
Задокументируйте номер, который показывает мультиметр для каждого проверенного напряжения, и подтвердите, что указанное напряжение находится в пределах утвержденного допуска. Вы можете обратиться к допускам по напряжению источника питания, чтобы получить список подходящих диапазонов для каждого напряжения.
Есть ли напряжения за пределами утвержденного допуска? Если да, замените блок питания. Если все напряжения в пределах допуска, ваш источник питания исправен.
Если ваш блок питания прошел тесты, настоятельно рекомендуется продолжить тестирование, чтобы убедиться, что он может правильно работать под нагрузкой. Если вы не заинтересованы в дальнейшем тестировании блока питания, переходите к шагу 15.
Выключите выключатель на задней панели блока питания и отсоедините его от стены.
Подключите все ваши внутренние устройства к источнику питания. Кроме того, не забудьте удалить короткое замыкание, созданное на шаге 5, перед тем, как снова подключить 24-контактный разъем питания материнской платы.
Самая большая ошибка, сделанная на этом этапе, — это то, что вы забыли все снова подключить. Помимо основного разъема питания на материнской плате, не забудьте подключить питание к жесткому диску (-ам), оптическому дисководу (-ам) и гибкому диску. водить машину. Некоторым материнским платам требуется дополнительный 4-, 6- или 8-контактный разъем питания, а некоторым видеокартам также требуется выделенное питание.
Подключите блок питания, нажмите выключатель на задней панели, если он у вас есть, а затем включите компьютер, как обычно, с помощью выключателя питания на передней панели компьютера.
Да, вы будете запускать компьютер со снятой крышкой корпуса, что совершенно безопасно, если вы будете осторожны.
Это нечасто, но если ваш компьютер не включается при снятой крышке, вам, возможно, придется переместить соответствующую перемычку на материнской плате, чтобы сделать это возможным.В руководстве к вашему компьютеру или материнской плате должно быть объяснено, как это сделать.
Повторите шаги 9 и 10, проверяя и документируя напряжения для других разъемов питания, таких как 4-контактный разъем питания для периферийных устройств, 15-контактный разъем питания SATA и 4-контактный разъем питания для гибких дисков.
