24Ноя

Из чего состоит аккумуляторная батарея: Из чего состоит аккумулятор

Содержание

Из чего состоит автомобильный аккумулятор [Строение подробно]

Информация из чего состоит автомобильный аккумулятор может заинтересовать не только автомобилистов, но и предприимчивых предпринимателей, которые хотят заработать. Содержащийся в АКБ лом, является цветным, а значит имеет высокую стоимость и может принести достаточно высокий доход, если сдать его в пункт приема. Давайте разберемся из чего изготавливают автомобильные аккумуляторы и какие вещества в нем содержатся, а также рассмотрим виды электролитов и принцип работы АКБ в современных транспортных средствах.

Из чего сделан автомобильный аккумулятор

Аккумуляторная батарея обеспечивает необходимым электричеством автомобиль, поэтому его можно встретить во всех машинах. Но в зависимости от модели и типа, АКБ могут иметь различный состав, конструкцию и принцип работы. В общем автомобильные аккумуляторы похожи, но только по внешним признакам и элементам. А вот состав деталей и конструктивные особенности значительно отличаются у обслуживаемых и необслуживаемых АКБ.

Элементы аккумулятора

Устройство АКБ может отличаться в зависимости от его разновидности, но при этом обычно во всех используется стандартный набор элементов. Эти части могут изготавливаться из разных материалов, но все компоненты играют важную роль в устройстве аккумулятора. Стандартный АКБ состоит из следующих частей:

  • Корпус – в современных моделях он изготавливается из ударопрочных видов полипропилена, что позволяет увеличить переносимость механического воздействия, постоянную вибрацию, внутри корпуса располагается 6 секций;
  • Сепараторы – выполняют роль диэлектриков, которые предохраняют элементы АКБ от замыкания, их изготавливают также обычно из устойчивого к кислоте полимера, установлены они между электродами;
  • Электроды – большинство современных АКБ имеют в роли этих элементов свинцовые пластины, в сплаве которых используются примеси, например, свинца и серной кислоты или легированного свинца;
  • Электролит – раствор из дистиллированной воды и серной кислоты, позволяющий протекать электрическому току от отрицательных к положительным электродам, в некоторых моделях используются отличительные составы, например, в дорогостоящих АКБ применяют гелевый электролитов.
  • Клеммы – обычно в автомобильных АКБ установлены 2 клеммы, но в некоторых моделях используют 4 клеммы, стандартного, азиатского или винтового типа.

В необслуживаемых аккумуляторных батареях вместо 6 пробок на корпусе установлено 2 клапана для сброса давления — через них сбрасывается газ который образовывается в процессе закипания электролита. Также некоторые модели дополнительно оснащаются «глазком», который позволяет контролировать уровень заряда и количество электролита.

Виды электролита АКБ

Основным отличительным компонентом автомобильной аккумуляторной батареи является электролит. На его основе формируется также наименование современных АКБ, что позволяет производителю заранее раскрыть карты перед потребителем и помочь с выбором определенной разновидности батареи. Раствор из активных веществ, которые обеспечивают накопление и удержание внутренней энергии в автомобильном источнике питания может быть щелочным или кислотным.

Самый популярный электролит в АКБ, это раствор из дистиллированной воды и кислоты. Такой состав регулярно требует обслуживания, так как при эксплуатации кислотной батареи, при заряде или из-за эксплуатации, происходит испарение электролита. В роли кислоты применяются различные химические составы, с применением мышьяка, хлора, железа, марганца.

Щелочные аккумуляторы изготавливаются с применением электролита из калиево-литиевого состава и дистиллированной воды. Такой состав является едким и опасным, поэтому обслуживание щелочных АКБ в домашних условиях не рекомендуется производить.

В некоторых современных моделях используются инновационные составы электролита. К таковым относятся составы из гелия, с графитом и углеродом, а также кремнием. Обычно производитель указывает это на упаковке. Такие составы повышают КПД в автомобильных аккумуляторах и увеличивают их срок службы.

Возможна ли переработка аккумуляторов

Вышедший из строя автомобильный аккумулятор нужно утилизировать, для чего автолюбители обращаются в специализированные сервисы по переработке электролита. На этом можно заработать, если обратиться в пункт приема «ВторБаза», который занимается переработкой АКБ, разбором и переплавкой металла из батареи. В организации помогут избавиться от отработанной батареи, нейтрализуя вредные вещества в электролите, безопасным для окружающей среды способом. Утилизация АКБ в Москве производится во всех приемных пунктах «ВторБаза» — кроме необходимого оборудования, все сотрудники компании умеют обращаться с ядовитыми химическими соединениями и соблюдают технику безопасности. Это гарантирует чистоту окружающей среды и вторичное использование всех элементов аккумуляторной батареи для автомобиля.

Принцип работы АКБ и основные характеристики

Чтобы понять, как работает автомобильный аккумулятор, нужно разбираться не только в физике, но и химии. Принцип работы этого устройства основан на электрохимической реакции, которая происходит со свинцом внутри электролита. При заряде АКБ, диоксид свинца уменьшается в количестве на отрицательных пластинах, при этом на положительных увеличивается количество металла. При разряде батареи и ее эксплуатации, происходит процесс окисления свинца на положительных пластинах, в то время как на отрицательных восстанавливается количество диоксида свинца. Одновременно с этим увеличивается количество воды, а серная кислота уменьшается в пропорциях. При зарядке АКБ – состав электролита приходит в норму при помощи обратного химического процесса.

Приобретая аккумулятор для своего автомобиля, не обязательно знать все параметры и характеристики, указываемые на батарее, а только к какой категории принадлежит ваш ДВС и какой объем двигателя у вашего автомобиля. Из особенностей которые нужно учитывать при выборе АКБ можно выделить следующее:

  • Чем больше объем двигателя, тем более емкий аккумулятор требуется;
  • В дизельных моторах используются АКБ с большей емкостью, чем в бензиновых, того же объема;
  • Если вы эксплуатируется автомобиль в условиях сильных морозов, нельзя покупать гелиевые АКБ.

Конечно многие обращают внимание и на другие параметры, указанные на аккумуляторе, что не обязательно. Обычно на самой батарее или в ее названии указывают какого типа батарея (например стартерная), ее емкость, мощность, время заряда, масса залитой батареи, параметры согласно стандартов других стран.

Перед тем как покупать АКБ, изучите технический паспорт своего транспортного средства, либо ознакомьтесь с параметрами старой батареи – это поможет не ошибиться с выбором и правильно сделать выбор с учетом особенностей вашего автомобиля. Если самостоятельно выбрать аккумулятор не получается, можно обратиться за консультацией к специалисту, например, к продавцу в автомобильном магазине.

Строение автомобильного АКБ

Устройство аккумуляторов | Эко Технологии

Устройство стартерных аккумуляторов


О стартерных аккумуляторах

Стартерные аккумуляторные батареи представляют собой вторичный источник электроэнергии. Поэтому купить стартерные аккумуляторы означает получить батареи, способные полностью восстанавливаться после нового электрического заряда. Как правило, заказать стартерные аккумуляторы автолюбители стремятся для использования главной функции данных аппаратов – обеспечение запуска двигателей. Однако подобрать стартерный аккумулятор можно и для  реализации его второй функции: это прекрасный аварийный источник питания при выходе из строя генератора. Современная промышленность позволяет купить стартерные аккумуляторы, которые работают по принципу превращения при заряде электрической энергии в химическую и при разряде обратного превращения – из химической энергии в электрическую. В результате, можно заказать стартерные аккумуляторы, в которых активная масса как отрицательного, так и положительного электродов преобразуется в сульфат свинца. При этом сегодня потребитель имеет возможность подобрать стартерные аккумуляторы емкостью от 36 до 225 А/ч.

Конструкция аккумулятора

Аккумулятор — химический источник тока, который преобразует химическую энергию в электрическую и накапливает ее. Стандартная 12-вольтовая автомобильная аккумуляторная батарея выполнена из шести последовательно соединенных между собой блоков разноименно заряженных пластин, каждый из которых и представляет собой простейший аккумулятор с выходным напряжением около 2 вольт. Положительно заряженная пластина (электрод) представляет собой свинцовую решетку с активной массой из двуокиси свинца (PbO2), а электрод со знаком минус — решетку с активной массой из губчатого свинца (Pb). Полублоки разноименно заряженных пластин вставляются друг в друга. Во избежание возникновения короткого замыкания между пластинами, их разделяют пористыми сепараторами из изоляционного материала. Собранные блоки помещаются в корпус и заливаются электролитом (раствором серной кислоты плотностью 1.27-1.29 г/см3). Полюса (баретки) крайних элементов соединяются с расположенными снаружи корпуса контактными выводами — борнами.

Аккумулятор состоит из следующих основных частей:
  • Моноблок  — это корпус аккумулятора, служащий резервуаром для электролита. Современные аккумуляторы и аккумуляторные батареи имеют полипропиленовые или эбонитовые корпуса.  Эбонитовый корпус характерен для аккумуляторов российского производства. Внутри моноблок любой аккумуляторной батареи разделен на ячейки (три или шесть, в зависимости от напряжения батареи- 6 В либо 12 В) для отдельных блоков пластин.
  • Крышка — закрывает межэлементные соединения аккумулятора и приваривается к корпусу. В обслуживаемых и малообслуживаемых аккумуляторах в крышке могут располагаться индикатор уровня плотности электролита (косвенно свидетельствующий о степени заряженности того аккумулятора, в банке которого индикатор установлен) и отверстия для контроля уровня и доливки электролита, закрываемые пробками. Для того, чтобы избежать повышения давления внутри закрытого корпуса в крышке (или в пробках) выполнены специальные газоотводные каналы. В современных аккумуляторах газоотводные каналы имеют форму лабиринта, позволяющего задержать внутри корпуса капли электролита, уносимые газом, и возвратить их в электролит. Тем самым с одной стороны устраняется выход во внешнюю среду вредных кислотных испарений, а с другой — предотвращается потеря электролита. В аккумуляторах с эбонитовыми корпусами общая крышка отсутствует, ее роль выполняет мастика, которой заливаются межэлементные перемычки.
  • Пластины —  представляют собой свинцовые решетки с нанесенной на них активной массой. Химическая реакция между активной массой и электролитом аккумулятора происходит на поверхности частиц активной массы, поэтому ее делают пористой, чтобы материал хорошо пропитывался электролитом, и в реакции участвовал его максимальный объем.
  • Сепараторы – диэлектрическая прослойка в аккумуляторе, необходимая для предотвращения короткого замыкания между разноименно заряженными пластинами. Современные сепараторы изготавливают из микропористой пластмассы (мипласта) в виде конверта.
    Преимущества конверт-сепаратора
    • повышает надежность аккумуляторных батарей, так как стекающая активная масса  остается внутри конверта;
    • небольшие габаритные размеры, так как пластины установлены на дне моноблока.
  • Соединительные выводы (борны) – выходящие наружу аккумулятора электрические контакты, сделанные из свинца и имеющие стандартные размеры.
По технологии изготовления аккумуляторы бывают:
  • Малосурьмянистые (Pb) аккумуляторы – электролит жидкий.
  • Кальцивые – в положительные и отрицательные пластины добавляется кальций, электролит жидкий.
  • Кальцево-серебряные (Са/Аg9) – в пластины добавляют серебро и кальций, электролит жидкий.
  • AGM (гелевые) – аккумуляторные пластины находятся не в жидком электролите, в загустевшем электролите — геле.
Стандарты производителей
  • Европейский стандарт аккумуляторов  DIN(EN) —  обычные клеммы – А или плоские клеммы – D.
  • Азиатский стандарт аккумуляторов JIS — обычные клеммы расположены на крышке – А или тонкие клеммы – В.
  • Американский стандарт аккумуляторов ССА —  клеммы вкручивающиеся – G.
Основные типы конструкций аккумуляторных батарей

Обслуживаемые аккумуляторы –  из-за добавления в пластины таких аккумуляторов сурьмы, происходит разложение электролита при низком напряжении, вода испаряется и возникает необходимость ее доливать. Долив воды в аккумулятор осуществляется в отверстия на крышке, закрытые пробками. Малообслуживаемые аккумуляторы – в пластины аккумуляторов вместо сурьмы добавляется кальций, что снижает газовыделение в аккумуляторах, а следовательно и скорость выкипания воды. Необслуживаемые аккумуляторы – конструктивно сделаны так, чтобы срок выкипания воды превышал срок службы самой батареи. В результате, необслуживаемым аккумуляторам не требуется контроль уровня электролита, что делает ее самой легкой в эксплуатации.

Из чего состоит корпус аккумулятора. Что внутри банок?

Корпус большинства аккумуляторов состоит из ударопрочного полипропилена. Этот материал выбран не случайно. Он легкий, а так же не вступает в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, которые порой достигают диапазона от -30̊ С до +60 ̊С под капотом Вашего автомобиля.

Давайте разберем из каких элементов состоит сам корпус аккумуляторной батареи.

Итак, большинство АКБ имеют такие элементы:

— ручка, которая используется для удобства переноса батареи человеком, что бы он не уронил случайно источник питания, который довольно прилично весит.

— пробки, 6 штук. Пробки позволяют проникнуть внутрь каждой секции (банки) аккумулятора. Когда мы открутим пробки, то сможем проверить уровень электролита, цвет его, плотность и определить в каком состоянии находится батарея.

— индикатор заряда или ещё часто называют «глазок». Он устанавливается на какую-то конкретную секцию батареи. Может быть на крайней банке АКБ или посередине, зависит от производителя и не имеет особого значения. Этот индикатор показывает уровень заряда батареи. Хочется обратить Ваше внимание, что «глазок» стоит только на одной банке, поэтому если соседняя секция замкнула, то Ваш индикатор может показывать что АКБ полностью исправен, а на самом деле это будет не так.

Поэтому, желательно проводить диагностику всех секций (банок) аккумулятора, нежели ориентироваться только на «глазок». Это даст более точную картину состояния аккумуляторной батареи.

— Также, на верхней поверхности любого аккумулятора есть клеммы. Через которые он и подключается к электросети автомобиля. Клеммы, в основном, стандартного размера, но плюсовой вывод всегда больше минусового по диаметру. Это сделано для того, что бы невнимательный водитель не перепутал полярность при установке АКБ на авто.

Корпус необслуживаемой АКБ

Давайте отметим, что много производителей аккумуляторных батарей делают необслуживаемые корпуса. К ним относятся такие «гиганты» как Varta, Bosch, Rocket, Mutlu и многие другие. В чём отличия обслуживаемых от необслуживаемых АКБ? Если есть пробки, которые откручиваются, то батарея подлежит обслуживанию. То есть, производитель рекомендует доливать дистилированую воду, когда она выкипит в процессе эксплуатации.

Завод-производитель необслуживаемых АКБ, вроде как, предусмотрел этот процесс. Вместо пробок они сделали систему клапанов. Эти клапаны не дают испарениям выйти из корпуса батареи, а они стекают обратно в банки. Обслуживания как такового не требуется, а только приодическая зарядка.

Что же под верхней крышкой?

Далее, если мы снимем верхнюю крышку АКБ, то мы увидим шесть секций. В каждой из этих банок находятся как положительные, так и отрицательные пластины. Каждая из этих пластин упакована в сепаратор. Сепаратор – это такой конверт, который предотвращает замыкание между пластинами.

В зависимости от того, сколько пластин положительных и отрицательных сложено в каждую секцию и соответственно мы получаем большую либо меньшую рабочую поверхность. И из этого складывается ёмкость самого аккумулятора. Соответственно, чем больше пластин тем больше ёмкость. Поэтому корпуса разные по размеру, в зависимости от ёмкости.

Каждая заряженая секция (банка) аккумулятора имеет напряжение 2,13 В. Так как автомобильный АКБ 12-ти вольтовый, мы имеем 6 таких секций и полностью заряженный источник питания имеет напряжения около12,78 В.

Электролит

Электролит — химический элемент, который служит проводником электрического тока. Он состоит из двух компонентов это серная кислота и вода. Оптимальное соотношение электролита, которое необходимо для нормального функционирования аккумуляторной батареи 1,27 грамма кислоты на см3 воды.

Электролит различают трех видов:

1.    Жидкий электролит;

2.    В виде геля;

3.    Абсорберы или связанный электролит.

Давайте разберем более подробно каждый из видов.

Жидкий электролит

Это обычный раствор кислоты и воды, который находится в жидком состоянии в АКБ. Такие батареи у большинства автовладельцев.

Гелевый электролит

Как Вы уже догадались у самого слова «гелевый», означает что он находится в загущенном состоянии, в виде геля. Какие преимущества этих аккумуляторов? Преимущества их в том что, как правило, они имеют герметичный корпус, то есть, полностью запаянный, доступа к банкам или к секциям аккумулятора у них нет. И за счет того, что электролит находится в густом состоянии, он не вытекает.    То есть, при кипении аккумулятора, допустим генератор подаёт большое напряжения, он перезаряжается. Начинают накапливаться газы и происходить перезаряд, то обычный электролит начинает обильно кипеть. В результате кипения испаряется вода. И из-за перезаряда (неисправного генератора) аккумулятор выходит из строя.  В гелевых батареях это происходит не таким образом. Аккумулятор имеет более густой электролит, не так подвержен кипению, корпус герметичный и все процессы циркулируют внутри самого корпуса. И нет выкипания воды из геля. Даже если в корпусе образовалось какое-то отверстие, батарея не теряет свою работоспособность. Он может потерять только ёмкость, если мы механически повредили секции внутри.

Плюс еще в том, что в загущеном состоянии проводимость тока у него улучшается. В таком электролите более быстро происходят химические реакции. АКБ быстрее отдает ток, который необходим и так же быстрее его восстанавливает. Гелевые аккумуляторы, как правило, заряжаются во много раз чем обычный кислотный.

Также, к достоинствам нужно отнести, что они не боятся глубокого разряда. У них не происходит, в таких случаях сульфатация пластин. И имеют высокий пусковой ток.

Технология  AGM

Так называемые абсорберы или связанный электролит. В чем их отличия? Сепаратор или «конверт» в который укладывается пластина, состоит из микроволокна, похожего на стекловату. Если мы на стекловату добавим какую-то жидкость, то капельки будут находится на маленьких ворсинках из которых состоит структура самого сепаратора. Получается что электролит не в жидком состоянии бультыхается как вода, а держится на ворсинках материала. Он вроде как жидкий, но в то же время не вытекает.

Преимущества схожи с гелевыми АКБ. Они тоже не так боятся повреждения корпуса батареи, меньше подвержены сульфатации пластин. Выкипания воды практически нет.

Также на эту тему:

2.3. Устройство стартерных аккумуляторных батарей

Стартерные аккумуляторные батареи состоят из отдельных аккумуляторов, соединенных между собой последовательно с помощью перемычек.

Каждый аккумулятор состоит из чередующихся отрицательных и положительных электродов, разделенных сепараторами и собранных в блок.

Блоки электродов каждого аккумулятора помещаются либо в отдельных ячейках моноблока, либо в отдельных баках из эбонита, устанавливаемых в деревянном ящике или в стеклопластиковом корпусе. Каждый аккумулятор закрывается отдельной крышкой, которая при сборке аккумуляторной батареи герметизируется с помощью специальной заливочной битумной мастики.

Для танковых аккумуляторных батарей кроме заливочной мастики для уплотнения крышек применяются резиновые уплотнительные прокладки (рамки).

Различные типы аккумуляторных батарей имеют свои конструктивные особенности, однако в их устройстве много принципиально общего. Устройство танковой аккумуляторной батареи показано на рис. 4, а устройство автомобильной аккумуляторной батареи — на рис. 5.


4. Устройство танковой аккумуляторной батареи

Устройство танковой аккумуляторной батареи

  1. крышка батареи
  2. отверстие для крепления крышки
  3. болт крепления защитного кожуха
  4. защитный кожух
  5. выступ для крепления крышки
  6. ящик батареи
  7. ручка
  8. щиток для крепления защитного кожуха
  9. предохранительный винипластовый щиток
  10. полюсные электроды батареи
  11. пробка заливного отверстия
  12. перемычка
  13. захват для крепления крышки батареи
  14. крышка аккумулятора
  15. гайка стяжной ленты
  16. борн
  17. предохранительный щиток
  18. мостик борна
  19. стяжная лента
  20. отрицательный электрод
  21. призма
  22. сепаратор
  23. положительный электрод

5. Устройство автомобильной аккумуляторной батареи

Устройство автомобильной аккумуляторной батареи

  1. моноблок
  2. электрод положительный
  3. сепаратор
  4. электрод отрицательный
  5. мостик
  6. щиток предохранительный
  7. борн
  8. свинцовая втулка
  9. отражатель
  10. крышка аккумулятора
  11. перемычка
  12. пробка вентиляционная
  13. полюсный вывод
  14. заливочная мастика
  15. шламовое пространство
  16. опорная призма

Электрод каждой полярности состоит из токоотвода и активной массы. Токоотводы электродов стартерных аккумуляторов отливают из свинцово-сурьмянистого сплава.

Для токоотводов положительных электродов некоторых типов батарей применяется свинцово-сурьмянистый сплав с небольшой добавкой мышьяка, что увеличивает коррозионную стойкость токоотводов. При изготовлении электродов ячейки токоотводов заполняются специальной пастой, которая после электрохимической обработки (формирования) превращается в пористую активную массу.

Электроды одной полярности о определенным зазором свариваются между собой в полублоки посредством свинцового мостика, к которому приваривается борн (рис. 6).


6. Блок электродов аккумуляторной батареи
  • а — положительный полублок
  • б — отрицательный полублок
  • блок в сборе
  1. электрод
  2. свинцовый мостик
  3. борн

Полублоки положительных и отрицательных электродов собираются в блок электродов так, что положительные и отрицательные электроды чередуются. В собранном аккумуляторе крайние электроды, как правило, являются отрицательными. Поэтому полублок отрицательных электродов имеет на один электрод больше, чем полублок положительных электродов.

Блок электродов опирается выступами («ножками») электродов на опорные призмы, имеющиеся на дне каждой ячейки моноблока или отдельного эбонитового бака. Таким образом, между нижними кромками электродов и дном имеется свободное пространство, необходимое для накапливания шлама (осадка, образующегося с течением времени из активной массы). Тем самым предотвращаются короткие замыкания разноименных электродов выпадающим шламом.

При сборке блока положительные и отрицательные электроды отделяются друг от друга микропористыми прокладками, которые называются сепараторами.

Сепараторы предохраняют разноименные электроды от коротких замыканий и обеспечивают необходимый запас электролита между электродами.

Сепараторы изготавливаются в виде тонких листов из мипора (микропористого эбонита на основе натурального каучука) или из мипласта (микропористого полихлорвинила) и имеют с одной стороны гладкую, а с другой ребристую поверхность (рис. 7). Ребристая поверхность сепаратора обращена к положительному электроду для лучшего доступа к нему электролита.


7. Сепаратор

Размеры сепараторов несколько больше, чем размеры электродов, что предотвращает замыкания между кромками разноименных электродов. Для повышения срока службы положительных электродов в некоторых типах автомобильных и мотоциклетных батарей применяются комбинированные сепараторы — мипор или мипласт со стекловолокном. При этом сепаратор стекловолокном устанавливается к положительному электроду. Прилегая плотно к его поверхности, он предохраняет активную массу от оплывания.

Для предохранения верхних кромок сепараторов от механических повреждений (при измерении температуры, плотности и уровня электролита) сверху над сепараторами устанавливается перфорированный предохранительный щиток.

Каждый аккумулятор закрывается крышкой (рис. 8), изготовленной из эбонита или пластмассы. В двух крайних отверстиях для выводных борнов блоков электродов запрессованы свинцовые втулки, которые затем свариваются с борнами и перемычками, что создает надежное уплотнение. Среднее отверстие для заливки электролита закрывается резиновой пробкой, имеющей вентиляционное отверстие для выхода газа. Однако применяются также крышки (рис. 9) с автоматическим ограничением уровня электролита и отдельными вентиляционными отверстиями. Такие крышки закрываются глухой пробкой (без вентиляционного отверстия).


8. Крышка аккумулятора

Крышка аккумулятора

  1. корпус
  2. отверстие для полюсного вывода
  3. пробка в разрезе
  4. пробка заливного отверстия с вентиляционным каналом
  5. уплотнительная резиновая шайба
  6. отражательный диск пробки
  7. свинцовая втулка

9. Крышка аккумулятора с автоматическим ограничением уровня электролита

Крышка аккумулятора с автоматическим ограничением уровня электролита

  1. корпус
  2. отверстие для полюсного вывода
  3. пробка в разрезе
  4. вентиляционный штуцер
  5. пробка заливного отверстия
  6. уплотнительная шайба
  7. резиновая втулка
  8. свинцовая втулка

Для автомобильных аккумуляторных батарей, устанавливаемых на машинах, преодолевающих глубокие броды, применяются гидростатические пробки (рис. 10), предотвращающие попадание забортной воды в аккумуляторы.


10. Гидростатическая пробка

Гидростатическая пробка

  1. корпус
  2. заглушка
  3. воздушная подушка
  4. отверстие для выхода газов
  5. крышка аккумулятора

При сборке батарей на заводе под пробки заливных отверстий подкладываются уплотнительные резиновые диски, создающие герметичность, необходимую при хранении батарей в сухом виде. У некоторых типов батарей герметичность обеспечивается за счет применения полиэтиленовых пробок с глухими выступами (рис. 11) на месте вентиляционного отверстия или с помощью заклейки вентиляционного отверстия пленкой.

При приведении аккумуляторных батарей в рабочее состояние глухие выступы над вентиляционными отверстиями срезаются, уплотнительные резиновые диски и пленки удаляются.


11. Полиэтиленовая пробка с глухим выступом

Полиэтиленовая пробка с глухим выступом

  • корпус
  • заглушка
  • воздушная подушка
  • отверстие для выхода газов
  • крышка аккумулятора

Выводные борны отдельных аккумуляторов последовательно соединяются между собой посредством перемычек (рис. 12) способом сварки. Борны, перемычки и выводы танковых, а также автомобильных (ЗСТ-215, 6СТ-182, 6СТ-190) батарей, рассчитанных на большие величины стартерных токов, имеют внутренние медные вкладыши, снижающие падение напряжения на перемычках. К выводным борнам крайних аккумуляторов навариваются полюсные выводы. В зависимости от назначения батарей применяются полюсные выводы в виде конусов или в виде проушин с отверстиями под болт.


12. Перемычки

Полюсные выводы батарей обозначаются знаками «+» (положительный) и «—» (отрицательный), такие же знаки ставятся на стенках моноблока (ящика) у полюсных выводов.

Танковые аккумуляторные батареи 6СТЭН-140М и 6СТ-140Р собираются из шести отдельных аккумуляторов, помещенных в общий деревянный корпус (ящик). Танковые батареи 12СТ-70М, 12СТ-70 и 12СТ-85Р собираются из двенадцати аккумуляторов. Каждые четыре аккумулятора собраны в четырехкамерный бак и три таких бака помещены в деревянный ящик или корпус из стеклопластика. Для повышения прочности деревянный ящик стянут двумя стальными лентами, проходящими между эбонитовыми баками батареи. Батареи 12СТ-85Р собраны в корпусе из стеклопластика (рис. 13). Полюсные выводы батарей в виде проушин с отверстиями под болт выведены на переднюю стенку корпуса и привернуты к нему двумя винтами. Полюсные выводы закрываются защитным кожухом, который крепится болтом к передней стенке корпуса батареи. Деревянные ящики батарей покрываются кислотостойким лаком БТ-783. Батареи закрываются деревянной прессованной крышкой (в батарее 12СТ-85Р крышка из стеклопластика).


13. Танковая аккумуляторная батарея 12СТ-85Р в корпусе из пресс-материала ДСВ-К-1 (стеклопластика)

Автомобильные аккумуляторные батареи (рис. 14… 25) собираются в моноблоках из эбонита или пластмассы с внутренними перегородками, образующими ячейки для каждого аккумулятора.

Мотоциклетные батареи (рис. 26 и 27) собираются в моноблоках из эбонита, полиэтилена и холодостойкого полипропилена.


26. Мотоциклетная аккумуляторная батарея 3МТ-8. Общий вид

27. Мотоциклетная аккумуляторная батарея 6МТС-9. Общий вид

Все аккумуляторные батареи большой емкости, имеющие массу более 30 кг, снабжены ручками для удобства переноски, снятия и установки на машину.

Для обеспечения работоспособности системы электрического пуска дизельных двигателей колесных машин и гусеничных транспортеров-тягачей при низких температурах окружающего воздуха разработана стартерная аккумуляторная батарея 6СТ-190ТРН с внутренним электрообогревом. По габаритным и присоединительным размерам батарея на колесных машинах и гусеничных тягачах взаимозаменяема с серийными батареями 6СТЭН-140М, 6СТЭ-128 и 12СТ-70. Общий вид и устройство аккумуляторной батареи 6СТ-190ТРН показаны на рис. 28 и 29.


28. Автомобильная аккумуляторная батарея 6СТ-190ТРН с внутренним электрообогревом. Общий вид

Батарея собрана на тонких унифицированных электродах с увеличенным количеством активной массы. В сплав, из которого изготовлены токоотводы электродов, введена добавка мышьяка, позволившая увеличить срок их службы.


29. Устройство аккумуляторной батареи 6СТ-190ТРН с внутренним электрообогревом

Устройство аккумуляторной батареи 6СТ-190ТРН с внутренним электрообогревом

  1. полюсный вывод
  2. болт крепления защитного кожуха
  3. пробка аккумуляторная
  4. перемычка
  5. крышка батареи
  6. моноблок
  7. щиток предохранительный
  8. крышка аккумулятора
  9. реле температурное
  10. электрод положительный
  11. сепаратор
  12. электрод отрицательный
  13. призма вставная
  14. электронагреватель ЭНА-100
  15. ручка
  16. крышка коммутационной панели
  17. выводы электронагревателя ЭНА-100
  18. вывод температурного реле
  19. защитный кожух

В активную массу отрицательных электродов введен эффективный расширитель, позволивший повысить отдачу батареи в стартерном режиме разряда при низких температурах. В состав активной массы отрицательного электрода введен также ингибитор окисления свинца, что обеспечивает сохранение сухозаряженности батареи в течение одного года.

Для сокращения потерь энергии уменьшены зазоры между сепараторами и электродами, использованы сепараторы из мипора с высокой пористостью, перемычки и борны армированы медными вкладышами.

Моноблок батареи выполнен из полиэтилена низкого давления с наполнителем.

Каждый аккумулятор батареи 6СТ-190ТРН оборудован отдельным нагревательным элементом типа ЭНА-100 (электрический нагреватель аккумуляторный номинальной мощностью 100 Вт). Нагревательный элемент выполнен из графитированного шнура на основе вискозного кордного волокна в изоляции из фторопласта.

Нагреватели расположены в придонном пространстве под блоком электродов (рис. 30).


30. Электронагреватель ЭНА-100

Устройство аккумуляторной батареи 6СТ-190ТРН с внутренним электрообогревом

  1. выводы электронагревателя
  2. крышка аккумулятора
  3. блок электродов
  4. призма вставная
  5. электронагреватель ЭНА-100

Система обогрева батарей имеет два основных эксплуатационных режима:

  • форсированный разогрев батареи до температуры, при которой осуществляется надежный пуск стартером;
  • длительный подогрев с целью поддержания температуры батареи на уровне, обеспечивающем достаточную эффективность зарядно-разрядных процессов.
  • Номинальная мощность системы обогрева батареи составляет 600 Вт в режиме форсированного разогрева и 125 Вт в режиме длительного подогрева.

    Управление режимами обогрева осуществляется с помощью несложного коммутационного устройства, устанавливаемого вне батареи.

    Для предотвращения перегрева батареи внутри нее встроено температурное реле, отключающее нагревательные элементы от источника питания при достижении температуры электролита 15±5 °С.

    Питание системы обогрева аккумуляторных батарей предусматривается в движении от собственной генераторной установки машины, а на стоянке — от внешнего источника электроэнергии постоянного или переменного тока с номинальным напряжением 28.0 В.

    Особенности эксплуатации системы внутреннего электрообогрева аккумуляторных батарей 6СТ-190ТРН и основные рекомендации по применению режимов электрообогрева в условиях эксплуатации батарей на машинах приведены в других статьях раздела.

    что это, значение, принцип работы

    В автомобилях и мотоциклах аккумулятор используется для запуска двигателя электростартером. Он служит вспомогательным источником электроэнергии при заглушенном двигателе или в случаях, когда генератор на малых оборотах не справляется с нагрузкой.

    Что такое аккумуляторная батарея

    Аккумулятор — это перезаряжаемый источник электроэнергии, используемый в машинах и мотоциклах. В автомобилях используются свинцово-кислотные аккумуляторные батареи. Этот выбор обоснован тремя качествами:

    • доступная цена;
    • высокая удельная энергоемкость;
    • низкое внутреннее сопротивление (большой пусковой ток).

    Принцип действия АКБ (автомобильной кислотной батареи) основан на реакции свинца и его диоксида. При разряде электроэнергия вырабатывается за счет взаимодействия свинца с серной кислотой (образование сульфата). Во время заряда окисляется свинец анода и восстанавливается диоксид свинца на катоде.

    Устройства состоят из последовательно соединенных секций («банок») напряжением 2 вольта. Напряжение зависит от сферы применения:

    • 6-вольтовые АКБ применяются на легкой моторной технике;
    • 12-вольтовые — на большинстве мотоциклов, автомобилей, грузовиков и автобусов с бензиновыми моторами;
    • 24-вольтовые — на тяжелых дизельных грузовиках и автобусах, на специальной и армейской технике.

    Какие бывают аккумуляторы. Виды аккумуляторов

    Аккумуляторные батареи делятся на два типа:

    • Пусковые, главное назначение первых — питание стартера двигателя. Они отличаются большим пусковым током, однако разрушаются при глубоком разряде и не могут долгое время выдавать большой ток. Такие АКБ устанавливаются на технику с двигателями внутреннего сгорания.
    • Тяговые, предназначенные для обеспечения ходовых двигателей электроэнергией. Они не могут выдать ток в сотни ампер, зато могут без вреда разряжаться «в ноль» — пластины не разрушаются при глубоком разряде. Более толстые прочные пластины кислотных тяговых АКБ увеличивают вес и стоимость устройств. Такие аккумы используются на электромобилях, погрузчиках и прочей технике с электродвигателями.

    В зависимости от сплава состава пластин и электролита, автомобильные пусковые АКБ делятся на следующие типы:

    • Сурьмянистые. Самая старая разновидность «аккумов», отличающаяся высоким содержанием сурьмы в свинцовых электродах (более 5%). Сурьма увеличивает прочность пластин, однако усиливает процесс электролиза — вода разлагается на кислород и водород. Такие аккумуляторы требуют постоянного контроля уровня содержимого банок и доливки дистиллированной воды.
    • Малосурьмянистые. АКБ с небольшим содержанием сурьмы (до 5%) медленнее выкипают и не требуют частых проверок уровня электролита. Это позволило создать необслуживаемые батареи, которые практически не требуют вмешательства. В отличие от кальциевых и гелиевых батарей, малосурьмянистые менее требовательны к показателям напряжения бортовой сети. Если напряжение на генераторе превышает норму, АКБ не разрушаются и не теряет емкость.
    • Кальциевые. Более современные модели, в которых свинец пластин содержит кальций вместо сурьмы. Это позволило еще больше снизить интенсивность газовыделения и уменьшить саморазряд. Они хранятся дольше, однако теряют емкость при систематическом перезаряде и резких скачках напряжения бортовой сети. Поэтому для старых отечественных авто с ненадежным электрооборудованием актуальны малосурьмянистые аккумы.
    • Гибридные. Малосурьмянистые аноды и кальциевые катоды таких устройств позволяют совместить положительные качества двух типов батарей. Они имеют средние характеристики: расход воды ниже, чем у сурьмянистых, устойчивость к перезаряду выше, чем у кальциевых.
    • Гелевые и AGM. Электролит в них находится в связанном гелеобразном состоянии. Это исключает возможность утечки кислоты при повреждении или опрокидывании аккума. AGM-устройства заполнены пористым материалом, предотвращающим осыпание пластин. Высокая цена, резкое падение емкости при низкой температуре и уязвимость к большому току заряда делает их востребованными лишь на дорогих иномарках, оборудованных системами «стоп-старт».

    Отдельно стоит отметить два вида батарей, используемых на технике с электроприводом:

    • Щелочные. Никель-железные и никель-кадмиевые аккумы со щелочью вместо кислоты отличаются устойчивостью к глубокому разряду и долговечностью. Однако они обладают высоким внутренним сопротивлением и не могут выдать ток, достаточный для работы стартера.
    • Литий-ионные. Изделия отличаются высокой энергоемкостью и быстрым зарядом. Однако они дорого стоят, чувствительны к температуре и быстро теряют емкость. Их используют на электромобилях типа Tesla, Nissan Leaf.

    Щелочные и литиевые батареи не применяются в качестве пусковых.

    Из чего состоит аккумулятор автомобиля (конструкция аккумулятора)

    12-вольтовая аккумуляторная батарея состоит из корпуса с отделениями для 6 ячеек. В ячейки помещены сборки из положительных и отрицательных электродов, разделенных сепараторами. Перемычки обеспечивают электрический контакт между анодами и катодами соседних банок. К крайнему катоду и аноду подключена отрицательная и положительная клеммы. Банки заполнены электролитом — водным раствором серной кислоты. Для его заливки и контроля уровня в крышке корпуса имеются пробки.

    Основные характеристики автомобильного аккумулятора

    При выборе аккума для машины следует обратить внимание на такие показатели:

    • Емкость — количество электроэнергии, которую может отдать аккумулятор до момента полного разряда.
    • Напряжение, которое должно соответствовать напряжению бортовой сети.
    • Пусковой ток, определяющий эффективность работы аккумулятора.
    • Полярность — расположение положительной и отрицательной клеммы. Если расположить АКБ лицевой частью к себе (стороной с клеммами), при прямой полярности плюс находится слева, при обратной — справа. В отечественных авто и большинстве иномарок предусмотрены аккумы с прямой полярностью.
    • Габариты. Слишком большую или маленькую батарею не получится закрепить на штатном месте.

    Следует учитывать тип АКБ. Для машин с системами «старт-стоп» нужно покупать гелевые и AGM-системы, а на более простые авто следует ставить кальциевые и гибридные.

    Аккумуляторы для ИБП. Классификация


    Содержание:

    Аккумулятор ИБП — основная часть бесперебойника

    Очень важной частью любого источника бесперебойного питания является аккумуляторная батарея. От технических характеристик аккумулятора для ИБП зависят все основные параметры бесперебойника. Именно аккумулятор ИБП определяет в конечном счете и мощность источника и длительность резерва бесперебойника. Вот почему необходимо грамотно подойти к вопросу выбора аккумулятора для источника бесперебойного питания.

    Аккумуляторы для бесперебойников. Классификация по конструктивному типу

    В наше время в мире выпускаются аккумуляторы различных типов. Вот далеко не полный список: свинцово-кислотные, медно-литиевые, никель-кадмиевые, никель-металлогидридные, железо-никелевые, серно-натриевые, серебряно-цинковые, серебряно-кадмиевые, литий-ионные, литий-полимерные, никель-водородные, марганцево-цинковые. Все типы аккумуляторных батарей имеют различную конструкцию, различные свойства и различные цены.
    Рассмотрим основные типы аккумуляторов, применяемых для источников бесперебойного питания.

    Свинцово-кислотные аккумуляторы для ИБП

    Свинцово-кислотные (с английского Sealed Lead Acid) аккумуляторные батареи получили наибольшее распространение. К положительным свойствам относятся: низкая стоимость, низкий саморазряд, высокая надежность, стабильность напряжения, работа в широком диапазоне температур, длительность циклов работы, возможность совершать до тысячи циклов заряда / разряда. К отрицательным свойствам можно отнести: большой вес и габариты, маленькая удельная ёмкость, теряют работоспособность при глубоких разрядах.

    Никелево-кадмиевые аккумуляторы для ИБП

    Никелево-кадмиевые (Ni-Cd) аккумуляторные батареи получили большую известность в последние годы благодаря маленькому весу и размерам широко применяются в различных электронных устройствах. К положительным свойствам относятся: высокая энергетическая плотность, возможность осуществления до 1500 перезарядок, низкий саморазряд (менее 20 % в месяц), не дорогая цена, высокая надежность, простота в эксплуатации, хорошая стойкость к перепадам температур. К отрицательным свойствам относятся: наличие «эффекта памяти», постепенное уменьшение ёмкости АКБ, использует высокотоксичное вещество, высокая стоимость переработки и утилизации.

    Никелево-металлогидридные аккумуляторы для ИБП

    Никелево-металлогидридные (Ni-MH) аккумуляторные батареи известны довольно давно и обладают рядом улучшенных характеристик, но они не получили большого распространения, прежде всего из-за сложностей в эксплуатации. К положительным свойствам относятся: высокая удельная ёмкость, стабильная работа, большая энергетическая плотность, не снижает уровень ёмкости. К отрицательным свойствам относятся: малое число циклов заряда / разряда, высокая цена батареи, более узкий температурный режим работы, малая нагрузочная способность, не переносит глубоких разрядов, высокий уровень саморазряда, сложность процесса зарядки, большие расходы на эксплуатацию.

    Литиево-ионные аккумуляторы для ИБП

    Литиево-ионные (Li-Ion) аккумуляторные батареи были изобретены ещё в первой половине 20 века, однако их массовое производство началось только в 90-х годах. Сегодня они являются наиболее перспективными для использования в электронных устройствах. Такие батареи имеют большую удельную ёмкость и могут обеспечить мощного потребителя при малом собственном весе и размере. К положительным свойствам относятся: высокая надёжность работы, большая энергетическая плотность (около 100 Вт*ч/кг), очень маленькая скорость саморазряда (около пяти процентов в месяц), АКБ не теряет ёмкости в процессе работы, низкая стоимость обслуживания. К отрицательным свойствам относятся: высокая цена, не достаточно широкий диапазон температур работы, АКБ необходимо хранить в заряженном виде, есть эффект старения, необходимо использовать специальные зарядные устройства.

    В настоящее время наибольшее распространение получили обычные свинцово-кислотные аккумуляторы для ИБП. Основные причины — высокая надёжность аккумуляторных батарей, низкая стоимость приобретения, простота в обслуживании, работоспособность в тяжелых климатических условиях, возможность многократных процедур заряда.

    Аккумуляторы для бесперебойников. Классификация по типу электролита

    По типу используемого электролита все аккумуляторные батареи можно разделить на три основные группы: АКБ с жидким электролитом, АКБ по технологии GEL, АКБ по технологии AGM. Рассмотрим основные характеристики этих типов аккумуляторов.

    Аккумуляторы для источника бесперебойного питания с жидким электролитом

    Аккумуляторные батареи с жидким электролитом имеют наибольшее распространение. Эта технология включает использование раствора серной кислоты в качестве электролита. К такому типу относятся обычные автомобильные АКБ. Основной их недостаток состоит в том, что они не герметичны. В процессе работы такие батареи выделяют водород и пары серной кислоты, что негативно сказывается на их экологичности. Негерметичные аккумуляторы требуют сложного обслуживания, специального помещения для проведения работ по зарядке и обслуживанию. К положительным свойствам следует отнести низкую стоимость приобретения батареи. Такие аккумуляторы редко используются для источников бесперебойного питания, однако могут быть применены в случае внешнего подключения АКБ и наличия специального не жилого помещения.

    Аккумуляторы GEL для источника бесперебойного питания

    Аккумуляторы GEL (гелиевые аккумуляторы) производятся по технологии GEL-Electrolite. Для получения нужного желеобразного состояния в состав электролита АКБ добавляют специальный загуститель. Аккумуляторы, созданные по этой технологии, не имеют выделения газов. Поэтому они изготавливаются герметичными. Герметичные аккумуляторы для ИБП безопасны и не требуют специального обслуживания. GEL АКБ имеют высокую надёжность, работоспособны в широком диапазоне температур, имеют высокую ёмкость и длительный срок эксплуатации. Однако их стоимость более высокая, чем у негерметичных АКБ. Также необходимо не допускать глубокого разряда таких батарей.

    Аккумуляторы AGM для источника бесперебойного питания

    Аккумуляторы по технологии AGM (Absorptive Glass Mat) являются самыми современными. По сути они являются модернизацией АКБ типа GEL. В качестве электролита в таких батареях используют жидкий электролит, абсорбированный специальными пористыми волокнами. Такая технология позволяет делать батареи герметичными. При их работе не выделяются вредные пары. В то же время электрическое сопротивление таких АКБ ниже, что существенно улучшает показатели. В производстве источников бесперебойного питания именно аккумуляторы по технологии AGM получили большое распространение. Такие АКБ имеет ряд положительных свойств: высокая надёжность работы, простое обслуживание, большая эпикритическая ёмкость, низкая стоимость приобретения и низкая стоимость обслуживания, большой срок службы.

    Купить аккумуляторы для ИБП в Ростове-на-Дону, Москве, Санкт-Петербурге, Новосибирске в магазинах СКАТ

    Получить необходимые консультации специалистов, подобрать нужный аккумулятор по размерам и техническим характеристикам помогут специалисты сети магазинов СКАТ. Большой выбор различных моделей аккумуляторов для бесперебойников вы найдете в фирменных салонах в городах: Москва, Ростов-на-Дону, Санкт-Петербург, Новосибирск.

    Читайте также:

    Стационарная аккумуляторная батарея 20OPzS2500 — ООО «Курс»

    Назначение стационарной аккумуляторная батареи 20OPzS2500

    В энергетике важнейшими потребителями электроэнергии являются системы защиты энергоблоков и электрических сетей, от надежности которых зависит безаварийная работа всей энергетической системы. Переключения в электрических сетях при аварийных ситуациях производится за счет энергии подстанционных аккумуляторных батарей, что значительно снижает тяжесть последствий таких ситуаций. С учетом назначения стационарных аккумуляторных батарей к ним предъявляются особые требования, к которым относятся:

    • высокая надежность;
    • длительный срок службы;
    • пологость разрядных характеристик;
    • малое внутреннее сопротивление.

    Дополнительным требованием для работы в энергетической системе является возможность обеспечения «толчковых» нагрузок, которые на 1-2 порядка превышают ток постоянного режима. Длительность таких нагрузок — секунды и доли секунд, в течение которых производятся различные переключения. Гарантия выполнения переключения должна быть максимальна. Всем перечисленным требованиям в наибольшей степени отвечает свинцовая аккумуляторная батарея 20OPzS2500.

    Особенности стационарных аккумуляторных батарей

    • Стационарные аккумуляторные батареи 20OPzS2500 выпускаются в корпусах из прозрачного полимера.
    • Материал корпуса обладает повышенной прочностью к ударам и вибрациям и не поддерживает горение.
    • Крышка изготовлена из прозрачного пластика, который позволяет контролировать уровень электролита.
    • На корпусе с двух сторон нанесены липкие аппликации с отметками максимального и минимального уровня электролита.


    Отрицательные электроды имеют решетчатую структуру, в которую впрессовано активное вещество. Блок электродов состоит из положительных и отрицательных электродов, разделенных между собой сепарацией. Крайними в блоке являются отрицательные электроды, имеющие меньшую толщину, чем средние отрицательные.

    Полный средний срок службы стационарных аккумуляторных батарей 20OPzS2500 в режиме постоянного подзаряда при температуре электролита плюс 20C и напряжении подзаряда 2,23 В на аккумулятор не менее 20 лет. Допустимый срок сохраняемости аккумуляторов без электролита – 4 года. Гарантийный срок эксплуатации – 5 лет с даты ввода в эксплуатацию.

    В качестве транспортной тары для стационарных аккумуляторов применяются поддоны по ГОСТ 9557 или деревянные ящики по ГОСТ 2991.

    Применение стационарной аккумуляторной батареи 20OPzS2500

    Применение стационарных аккумуляторов вызвано необходимостью функционирования важнейших энергопотребляющих систем в условиях нарушения сетевого электроснабжения.

    Кроме того, указанные аккумуляторы широко применяются при использовании альтернативных источников энергии, где выработка электроэнергии имеет переменный характер. В таком случае аккумуляторная батарея, работающая в буферном режиме, позволяет обеспечить постоянство параметров питающей сети. Примером являются солнечные и ветроэнергетические установки.

    Критерием применения стационарных аккумуляторных батарей является тяжесть последствий, вызванных нарушением подачи электроэнергии. Нетрудно представить последствия, когда не срабатывает система атомного реактора, пропадает освещение и отключаются приборы в операционной при проведении хирургической операции, обесточивается система посадки на аэродроме при заходе на посадку самолета в ночных условиях. Примеров подобных последствий можно привести множество, и всегда надежным гарантом энергообеспечения является стационарная аккумуляторная батарея.

    Не менее важна роль стационарных аккумуляторов в энергетике, телекоммуникационных и компьютерных системах, где вопросы обеспечения надежности функционирования имеют первостепенное значение.

    Что такое аккумулятор? — learn.sparkfun.com

    Добавлено в избранное Любимый 22

    Введение

    Батареи представляют собой совокупность одной или нескольких ячеек, химические реакции которых создают поток электронов в цепи. Все батареи состоят из трех основных компонентов: анода (сторона «-»), катода (сторона «+») и какого-то электролита (вещество, которое химически реагирует с анодом и катодом).

    Когда анод и катод батареи подключены к цепи, между анодом и электролитом происходит химическая реакция. Эта реакция заставляет электроны проходить через цепь и возвращаться к катоду, где происходит другая химическая реакция. Когда материал катода или анода расходуется или больше не может быть использован в реакции, батарея не может производить электричество. В этот момент ваша батарея «разряжена».

    Батареи, которые необходимо выбросить после использования, известны как первичные батареи .Батареи, которые можно перезаряжать, называются вторичными батареями и .

    Литий-полимерные батареи, например, заряжаемые

    Без батарей ваш квадрокоптер пришлось бы привязать к стене, вам пришлось бы вручную провернуть машину, а ваш контроллер Xbox должен был бы быть постоянно подключен к розетке (как в старые добрые времена). Батареи позволяют хранить потенциальную электрическую энергию в переносном контейнере.

    Батареи бывают разных форм, размеров и химического состава.

    Изобретение современной батареи часто приписывают Алессандро Вольта. На самом деле все началось с удивительной аварии, связанной с рассечением лягушки.

    Что вы узнаете

    В этом руководстве будут подробно рассмотрены следующие темы:

    • Как были изобретены батарейки
    • Из каких частей состоит аккумулятор
    • Как работает аккумулятор
    • Общие термины, используемые для описания батарей
    • Различные способы использования батарей в схемах

    Рекомендуемая литература

    Есть несколько концепций, с которыми вы, возможно, захотите ознакомиться перед тем, как начать читать это руководство:


    Хотите изучить различные батареи?

    Мы вас прикрыли!

    Щелочная батарея 9 В

    В наличии PRT-10218

    Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…

    1

    История

    Термин Батарея

    Исторически слово «батарея» использовалось для описания «серии подобных объектов, сгруппированных вместе для выполнения определенной функции», как в артиллерийской батарее. В 1749 году Бенджамин Франклин впервые использовал этот термин для описания серии конденсаторов, которые он соединил вместе для своих экспериментов с электричеством.Позже этот термин будет использоваться для любых электрохимических ячеек, связанных вместе с целью обеспечения электроэнергии.

    Батарея «конденсаторов» Лейденской банки, соединенная вместе
    (Изображение любезно предоставлено Альвинруном из Wikimedia Commons)

    Изобретение батареи

    В один роковой день 1780 года итальянский физик, врач, биолог и философ Луиджи Гальвани рассекал лягушку, прикрепленную к медному крючку. Когда он коснулся лягушачьей лапы железным отростком, нога дернулась.Гальвани предположил, что энергия исходит от самой ноги, но его коллега-ученый Алессандро Вольта считал иначе.

    Вольта выдвинул гипотезу, что импульсы лягушачьей лапки на самом деле были вызваны различными металлами, пропитанными жидкостью. Он повторил эксперимент, используя ткань, пропитанную рассолом, вместо трупа лягушки, что привело к аналогичному напряжению. Вольта опубликовал свои открытия в 1791 году, а позже создал первую батарею, гальваническую батарею, в 1800 году.

    Гальваническая свая состояла из набора цинковых и медных пластин, разделенных тканью, пропитанной рассолом

    Стопка

    Volta страдала от двух основных проблем: вес стопки вызывал утечку электролита из ткани, а особые химические свойства компонентов приводили к очень короткому сроку службы (около часа).Следующие двести лет уйдут на совершенствование конструкции Вольты и решение этих проблем.

    Исправления к гальванической свае

    Уильям Круикшанк из Шотландии решил проблему утечки, положив гальваническую батарею на бок, чтобы сформировать «желобную батарею».

    Лотковая батарея решила проблему утечки гальванической сваи

    Вторая проблема, короткий срок службы, была вызвана разложением цинка из-за примесей и скоплением пузырьков водорода на меди.В 1835 году Уильям Стерджен обнаружил, что обработка цинка ртутью предотвратит разложение.

    Британский химик Джон Фредерик Дэниелл использовал второй электролит, который вступал в реакцию с водородом, предотвращая накопление на медном катоде. Батарея Даниэля с двумя электролитами, известная как «ячейка Даниэля», станет очень популярным решением для обеспечения энергией зарождающихся телеграфных сетей.

    Коллекция клеток Даниэля из 1836 г.

    Первая аккумуляторная батарея

    В 1859 году французский физик Гастон Планте создал батарею из двух прокатанных листов свинца, погруженных в серную кислоту.Путем реверсирования электрического тока через батарею химия вернется в исходное состояние, создав первую перезаряжаемую батарею.

    Позже, в 1881 году, Камилла Альфонса Фор улучшила конструкцию Планте, превратив листы свинца в пластины. Эта новая конструкция упростила производство аккумуляторов, и свинцово-кислотные аккумуляторы получили широкое распространение в автомобилях.

    -> Дизайн обычного «автомобильного аккумулятора» существует уже более 100 лет
    (Изображение любезно предоставлено Эмилианом Робертом Виколом из Wikimedia Commons) <-

    Сухая камера

    Вплоть до конца 1800-х годов электролит в батареях был в жидком состоянии.Это сделало транспортировку аккумуляторов очень осторожным делом, и большинство аккумуляторов никогда не предназначались для перемещения после подключения к цепи.

    В 1866 году Жорж Лекланше создал батарею с цинковым анодом, катодом из диоксида марганца и раствором хлорида аммония в качестве электролита. Хотя электролит в элементе Лекланше был все еще жидким, химический состав батареи оказался важным шагом для изобретения сухого элемента.

    Карл Гасснер придумал, как создать электролитную пасту из хлорида аммония и Парижского гипса.Он запатентовал новую батарею с «сухими элементами» в 1886 году в Германии.

    Эти новые сухие элементы, обычно называемые «угольно-цинковыми батареями», производились массово и пользовались огромной популярностью до конца 1950-х годов. Хотя углерод не используется в химической реакции, он играет важную роль в качестве электрического проводника в углеродно-цинковой батарее.

    -> Цинк-угольная батарея 3 В 1960-х годов
    (Изображение любезно предоставлено PhFabre из Wikimedia Commons) <-

    В 1950-х годах Льюис Урри, Пол Марсал и Карл Кордеш из компании Union Carbide (позже известной как «Eveready», а затем «Energizer») заменили электролит хлористого аммония щелочным веществом на основе химического состава батареи, сформулированного Вальдемаром. Юнгнер в 1899 году.Щелочные батареи с сухими элементами могут содержать больше энергии, чем угольно-цинковые батареи того же размера, и имеют более длительный срок хранения.

    Щелочные батареи приобрели популярность в 1960-х годах, обогнали угольно-цинковые батареи и с тех пор стали стандартными первичными элементами для потребительского использования.

    -> Щелочные батареи бывают разных форм и размеров
    (Изображение любезно предоставлено Aney ~ commonswiki из Wikimedia Commons) <-

    Аккумуляторы 20-го века

    В 1970-х годах компания COMSAT разработала никель-водородную батарею для использования в спутниках связи.Эти батареи хранят водород в газообразной форме под давлением. Многие искусственные спутники, такие как Международная космическая станция, по-прежнему используют никель-водородные батареи.

    Исследования нескольких компаний с конца 1960-х годов привели к созданию никель-металлгидридной (NiMH) батареи. NiMH батареи были выпущены на потребительский рынок в 1989 году и стали более дешевой альтернативой никель-водородным аккумуляторным элементам меньшего размера.

    Компания Asahi Chemical из Японии построила первую литий-ионную батарею в 1985 году, а Sony создала первую коммерческую литий-ионную батарею в 1991 году.В конце 1990-х годов был создан мягкий гибкий корпус для литий-ионных аккумуляторов, в результате чего появилась «литий-полимерная» или «LiPo» батарея.

    Химические реакции в литий-полимерной батарее практически такие же, как и в литий-ионной батарее

    Очевидно, что было изобретено, произведено и устарело гораздо больше химикатов батарей. Если вы хотите узнать больше о современных и популярных технологиях аккумуляторов, ознакомьтесь с нашим руководством по технологиям аккумуляторов.

    Компоненты

    Батареи

    состоят из трех основных компонентов: анода , катода и электролита . Сепаратор часто используется для предотвращения соприкосновения анода и катода, если электролита недостаточно. Для хранения этих компонентов аккумуляторы обычно имеют какой-то кожух .

    Хорошо, большинство аккумуляторов на самом деле не разделены на три равные части, но идею вы поняли.Лучшее поперечное сечение щелочной ячейки можно найти в Википедии.

    И анод, и катод относятся к типу электродов . Электроды — это проводники, через которые электричество входит или выходит из компонента в цепи.

    Анод

    Электроны выходят из анода в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет в анод.

    На аккумуляторах анод обозначен как отрицательная (-) клемма

    В батарее химическая реакция между анодом и электролитом вызывает накопление электронов на аноде.Эти электроны хотят перейти к катоду, но не могут пройти через электролит или сепаратор.

    Катод

    Электроны текут в катод в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет из катода.

    На аккумуляторах катод помечен как положительный (+) вывод

    В батареях в химической реакции внутри катода или вокруг него используются электроны, образующиеся на аноде.Электроны могут попасть на катод только через цепь, внешнюю по отношению к батарее.

    Электролит

    Электролит — это вещество, часто жидкость или гель, которое способно переносить ионы между химическими реакциями, происходящими на аноде и катоде. Электролит также препятствует потоку электронов между анодом и катодом, так что электроны легче проходят через внешнюю цепь, чем через электролит.

    -> В щелочных батареях может протекать электролит, гидроксид калия, если они подвергаются воздействию высоких температур или обратного напряжения
    (Изображение любезно предоставлено Вильямом Дэвисом из Wikimedia Commons) <-

    Электролит имеет решающее значение в работе аккумулятора.Поскольку электроны не могут проходить через него, они вынуждены проходить через электрические проводники в форме цепи, соединяющей анод с катодом.

    Сепаратор

    Сепараторы представляют собой пористые материалы, которые предотвращают соприкосновение анода и катода, что может вызвать короткое замыкание в батарее. Сепараторы могут быть изготовлены из различных материалов, включая хлопок, нейлон, полиэстер, картон и синтетические полимерные пленки. Сепараторы не вступают в химическую реакцию ни с анодом, ни с катодом, ни с электролитом.

    В гальванической куче использовалась ткань или картон (разделитель), пропитанные рассолом (электролитом), чтобы электроды разнесены.

    Ионы в электролите могут быть положительно заряженными, отрицательно заряженными и иметь различные размеры. Могут быть изготовлены специальные сепараторы, которые пропускают одни ионы, но не пропускают другие.

    Кожух

    Большинству батарей требуется способ удерживать химические компоненты. Кожухи, также известные как «кожухи» или «оболочки», представляют собой просто механические конструкции, предназначенные для удержания внутренних компонентов батареи.

    Свинцово-кислотный аккумулятор в пластиковом корпусе

    Корпуса батарей

    могут быть изготовлены практически из чего угодно: из пластика, стали, пакетов из мягкого полимерного ламината и так далее. В некоторых батареях используется токопроводящий стальной корпус, который электрически соединен с одним из электродов. В случае обычного щелочного элемента AA стальной корпус соединен с катодом.

    Операция

    Батареи обычно требуют нескольких химических реакций для работы.По крайней мере, одна реакция происходит внутри или вокруг анода, и одна или несколько реакций происходят внутри или вокруг катода. Во всех случаях реакция на аноде дает дополнительные электроны в процессе, называемом окислением , а реакция на катоде использует дополнительные электроны во время процесса, известного как восстановление .

    Когда переключатель замкнут, цепь замыкается, и электроны могут течь от анода к катоду. Эти электроны активируют химические реакции на аноде и катоде.

    По сути, мы разделяем определенный вид химической реакции, реакцию окисления-восстановления или окислительно-восстановительную реакцию, на две отдельные части. При переносе электронов между химическими веществами происходят окислительно-восстановительные реакции. Мы можем использовать движение электронов в этой реакции, чтобы они выходили за пределы батареи и питали нашу цепь.

    Анодное окисление

    Эта первая часть окислительно-восстановительной реакции, окисление, происходит между анодом и электролитом и производит электроны (обозначены как e ).

    В некоторых реакциях окисления образуются ионы, например, в литий-ионной батарее. В других химических реакциях расходуются ионы, как в обычных щелочных батареях. В любом случае ионы могут свободно проходить через электролит, а электроны — нет.

    Катодное восстановление

    Другая половина окислительно-восстановительной реакции, восстановление, происходит в катоде или рядом с ним. Электроны, образующиеся в результате реакции окисления, расходуются во время восстановления.

    В некоторых случаях, например, в литий-ионных батареях, положительно заряженные ионы лития, образующиеся во время реакции окисления, расходуются во время восстановления.В других случаях, например, в щелочных батареях, во время восстановления образуются отрицательно заряженные ионы.

    Электронный поток

    В большинстве батарей некоторые или все химические реакции могут происходить, даже если батарея не подключена к цепи. Эти реакции могут повлиять на срок годности батареи.

    По большей части, реакции будут происходить с полной силой только тогда, когда между анодом и катодом замыкается электропроводящая цепь. Чем меньше сопротивление между анодом и катодом, тем больше электронов может течь и тем быстрее протекают химические реакции.

    Короткое замыкание в аккумуляторе (в данном случае даже случайное) может быть опасным. Известно, что литий-ионные батареи перегреваются и даже задыхаются или загораются при коротком замыкании.

    Мы можем пропускать эти движущиеся электроны через различные электрические компоненты, известные как «нагрузка», для выполнения чего-то полезного. В анимационном ролике в начале этого раздела мы зажигаем виртуальную лампочку движущимися электронами.

    Батарея разряжена

    Химические вещества в батарее в конечном итоге достигают состояния равновесия. В этом состоянии химические вещества больше не будут реагировать, и в результате аккумулятор больше не будет генерировать электрический ток. На данный момент аккумулятор считается «мертвым».

    Первичные элементы необходимо утилизировать, когда батарея разряжена. Вторичные элементы можно перезаряжать, и это достигается путем подачи через батарею обратного электрического тока.Перезарядка происходит, когда химические вещества выполняют еще одну серию реакций, чтобы вернуть их в исходное состояние.

    Терминология

    Люди часто используют общий набор терминов, говоря о напряжении батареи, емкости, возможности источника тока и так далее.

    Ячейка

    Элемент относится к одному аноду и катоду, разделенным электролитом, используемым для выработки напряжения и тока. Батарея может состоять из одной или нескольких ячеек.Например, одна батарея AA — это одна ячейка. Автомобильные аккумуляторы содержат шесть ячеек по 2,1 В.

    Обычная 9-вольтовая батарея содержит шесть щелочных элементов по 1,5 В, установленных друг над другом

    Первичный

    Первичные клетки содержат химический состав, который нельзя обратить вспять. В результате аккумулятор необходимо выбрасывать после того, как он разрядился.

    Среднее

    Вторичные элементы можно перезаряжать, и их химический состав возвращается в исходное состояние.Эти элементы, также известные как «перезаряжаемые батареи», можно использовать много раз.

    Номинальное напряжение

    Номинальное напряжение аккумулятора — это напряжение, указанное производителем.

    Например, щелочные батареи типа AA указаны как имеющие 1,5 В. В этой статье Mad Scientist Hut показано, что их испытанные щелочные батареи начинаются с напряжения около 1,55 В, а затем медленно теряют напряжение по мере разряда. В этом примере номинальное напряжение «1,5 В» относится к максимальному или пусковому напряжению батареи.

    Этот аккумуляторный блок Storm для квадрокоптеров показывает кривую разряда для их LiPo-элементов, начиная с 4,2 В и снижаясь до 2,8 В по мере разряда. Номинальное напряжение, указанное для большинства литий-ионных и LiPo-элементов, составляет 3,7 В. В этом случае номинальное напряжение «3,7 В» относится к среднему напряжению аккумулятора в течение его цикла разряда.

    Вместимость

    Емкость аккумулятора — это показатель количества электрического заряда, который он может доставить при определенном напряжении. Большинство батарей рассчитаны на ампер-часы (Ач) или миллиампер-часы (мАч).

    Этот LiPo аккумулятор рассчитан на 1000 мАч, что означает, что он может обеспечить 1 ампер в течение 1 часа, прежде чем он будет считаться разряженным.

    Большинство графиков разряда батареи показывают зависимость напряжения батареи от емкости, например, эти тесты батареи AA, проведенные PowerStream. Чтобы выяснить, достаточно ли емкости аккумулятора для питания вашей схемы, найдите самое низкое допустимое напряжение и найдите соответствующий номинал мАч или Ач.

    C-скорость

    Многие батареи, особенно мощные литий-ионные, обозначают ток разряда как «C-Rate», чтобы более четко определить характеристики батареи.C-Rate — это скорость разряда относительно максимальной емкости аккумулятора.

    1С — это количество тока, необходимое для разрядки аккумулятора за 1 час. Например, аккумулятор емкостью 400 мАч, обеспечивающий ток 1С, будет обеспечивать 400 мА. 5С для той же батареи будет 2 А.

    Большинство батарей теряют емкость при более высоком потреблении тока. Например, этот график информации о продукте от Chargery показывает, что их LiPo-элемент имеет меньше мАч при более высоких показателях C-Rates.

    ПРИМЕЧАНИЕ: Общий совет гласит, что вы должны заряжать LiPo батареи при 1С или ниже.


    MIT предлагает фантастическое руководство по спецификациям и терминологии аккумуляторов, которое идет намного дальше этого обзора.

    Использование

    Однокамерный

    Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.

    Этот экран для фотонной батареи питается от одного элемента LiPo

    Если напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.

    серии

    Чтобы увеличить напряжение между выводами батареи, вы можете расположить элементы последовательно. Последовательность означает штабелирование ячеек встык, соединение анода одного с катодом следующего.

    Последовательно соединяя батареи, вы увеличиваете общее напряжение. Сложите напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.

    В этом примере четыре ячейки на 1,5 В соединены последовательно.Напряжение на нагрузке составляет 6 В, а общий набор аккумуляторов имеет емкость 2000 мАч.

    В большинстве бытовых электронных устройств, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель батареек 2x AA может поднять номинальное напряжение до 3 В для проекта.

    ПРИМЕЧАНИЕ: Если вы заряжаете литий-ионные или литий-полимерные батареи последовательно, вам необходимо обязательно использовать специальные схемы, известные как «балансировщик», чтобы гарантировать равномерное напряжение между элементами.Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.

    Параллельно

    Если напряжение одного элемента соответствует нагрузке, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).

    Будьте осторожны при параллельном подключении аккумуляторов! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо различия в напряжении, может произойти короткое замыкание, что приведет к перегреву и, возможно, возгоранию.

    В этом примере четыре ячейки 1,5 В подключены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.

    Серия

    и параллельный

    Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения одинаков для батарей, включенных параллельно, так как может произойти короткое замыкание.

    В этом примере полное напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.

    В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием «S» и «P» для последовательного и параллельного подключения. Конфигурация схемы выше — 2S2P. В качестве практического примера современные электромобили используют массивные массивы батарей, соединенных последовательно и параллельно.

    Ресурсы и дальнейшее развитие

    К настоящему времени вы должны понимать, как были изобретены батареи и как они работают. Батареи — это один из способов обеспечения вашего проекта электроэнергией, и они могут быть невероятно полезны, если вам нужен портативный источник питания.

    Если вы хотите больше узнать о батареях, вот еще несколько уроков:

    Хотите увидеть аккумуляторы в действии? Взгляните на эти проекты, в которых используются разные батареи в разных конфигурациях:

    Simon Splosion Wireless

    Это учебное пособие, демонстрирующее один из многих методов «взлома» Саймона Сэйса. Мы выделим технику, чтобы взять ваш Simon Says Wireless.

    Что внутри батареи

    Главная »Что внутри батареи?

    Что внутри батареи?

    Для выработки электричества типичной батарее требуется 3 части:

    • Анод — минус АКБ
    • Катод — плюс батареи
    • Электролит — химическая паста, которая разделяет анод и катод и преобразует химическую энергию в электрическую.

    Внутри каждой батареи есть восстанавливаемые ресурсы, независимо от ее типа

    Возьмем, к примеру, одноразовую щелочную батарею.Это неперезаряжаемые батареи, которые бывают AAA, AA, C, D, 9 вольт и различных размеров кнопочных элементов.

    В среднем батарея на 25% состоит из стали (корпуса). Знаете ли вы, что сталь можно перерабатывать бесконечно? Наш механический процесс позволяет восстановить 100% стали в каждой батарее для повторного использования.

    Аккумулятор на 60% состоит из таких материалов, как цинк (анод), марганец (катод) и калий. Эти материалы — все элементы земли. Эта комбинация материалов на 100% восстанавливается и повторно используется в качестве питательных микроэлементов при производстве удобрений для выращивания кукурузы.

    Остальные 15% по весу составляют бумага и пластик (этикетка и защитная крышка). Эти материалы отправляются на предприятие по переработке отходов для производства электроэнергии.

    Утилизируя щелочные батареи в Raw Materials Company, вы можете быть уверены, что 100% каждой батареи используется повторно и никакие материалы не будут отправляться на свалку.

    Вы живете в Онтарио, Канада?

    В таком случае вы можете найти ближайший к вам магазин, который занимается переработкой батарей.Просто введите свой почтовый индекс или название города в наш инструмент поиска. Если вы живете за пределами Онтарио, обратитесь в местный муниципалитет, чтобы найти ближайший пункт переработки.


    Спасибо

    Мы получили ваше сообщение и вскоре ответим вам.

    Быстрые ссылки

    Для вашего удобства здесь приведены важные ссылки, связанные с этой страницей.


    Знаете ли вы?

    Отработанные батареи составляют менее 1% всех отходов, обнаруживаемых на городских свалках.Этот 1% аккумуляторов отвечает за 88% всех токсичных тяжелых металлов, обнаруженных на свалках.

    Узнайте больше о нашей технологии и о том, как вместе мы превращаем отходы в ценный ресурс.

    аккумуляторов | Безграничная химия

    Сухая батарея

    В сухих батареях используется иммобилизованный электролит, который сводит к минимуму влажность и обеспечивает превосходную портативность.

    Цели обучения

    Обсудите рабочие компоненты сухой аккумуляторной батареи и их основные преимущества

    Основные выводы

    Ключевые моменты
    • Батарея содержит электрохимические элементы, которые могут накапливать химическую энергию для преобразования в электрическую.
    • Сухая батарея аккумулирует энергию в виде иммобилизованной электролитной пасты, что сводит к минимуму потребность в воде.
    • Общие примеры батарей с сухими элементами включают угольно-цинковые батареи и щелочные батареи.
    Ключевые термины
    • катод : электрод электрохимической ячейки, на которой происходит восстановление.
    • электролит : Вещество, которое в растворе или в расплавленном состоянии ионизирует и проводит электричество.
    • анод : электрод электрохимической ячейки, на котором происходит окисление.

    Определение сухой ячейки

    В электричестве аккумулятор — это устройство, состоящее из одной или нескольких электрохимических ячеек, которые преобразуют накопленную химическую энергию в электрическую. Сухая ячейка — это один из многих общих типов электрохимических ячеек.

    В сухом элементе электролит иммобилизован в виде пасты с достаточным количеством влаги для протекания тока. В отличие от влажного элемента, сухой элемент может работать в любой ориентации, не проливаясь, так как он не содержит свободной жидкости.Эта универсальность делает его пригодным для портативного оборудования. Для сравнения: первые батареи с жидкими элементами обычно представляли собой хрупкие стеклянные контейнеры со свинцовыми стержнями, свисающими с открытого верха. Поэтому с ними нужно было осторожно обращаться, чтобы избежать утечки. Разработка батарей с сухими элементами позволила значительно повысить безопасность и портативность батарей.

    Обычная батарея с сухими элементами — это угольно-цинковая батарея, в которой используется элемент, который иногда называют элементом Лекланше. Ячейка состоит из внешнего цинкового контейнера, который действует как анод.Катод представляет собой центральный углеродный стержень, окруженный смесью углерода и диоксида марганца (IV) (MnO 2 ). Электролит представляет собой пасту из хлорида аммония (NH 4 Cl). Волокнистая ткань разделяет два электрода, а латунный штифт в центре ячейки проводит электричество во внешнюю цепь.

    Углеродно-цинковая батарея с сухим элементом : иллюстрация сухого элемента с углеродным цинком. В нем цинковый корпус действует как анод, окружая углеродный стержень, который действует как катод.- \ rightarrow 2 \ text {NH} _3 (\ text {g}) + \ text {H} _2 (\ text {g}) [/ latex]

    Оксид марганца (IV) в ячейке удаляет водород, производимый хлоридом аммония, в соответствии со следующей реакцией:

    [латекс] 2 \ text {MnO} _2 (\ text {s}) + \ text {H} _2 (\ text {g}) \ rightarrow \ text {Mn} _2 \ text {O} _3 (\ text { s}) + \ text {H} _2 \ text {O} (\ text {l}) [/ latex]

    Совместный результат этих двух реакций имеет место на катоде. — [/ latex]

    Следовательно, общее уравнение для ячейки:

    [латекс] \ text {Zn} (\ text {s}) + 2 \ text {MnO} _2 (\ text {s}) + 2 \ text {NH} _4 (\ text {aq}) \ rightarrow \ text {Mn} _2 \ text {O} _3 (\ text {s}) + \ text {H} _2 \ text {O} (\ text {l}) + \ text {Zn} _2 + 2 \ text {NH} _3 (\ text {g}) [/ latex]

    Потенциал указанной выше реакции равен 1.50 В.

    Еще одним примером сухих элементов питания является щелочная батарея. Щелочные батареи почти такие же, как угольно-цинковые батареи, за исключением того, что в качестве электролита используется гидроксид калия (КОН), а не хлорид аммония. В некоторых более современных типах так называемых «высокомощных» батарей, которые имеют гораздо меньшую емкость, чем стандартные щелочные батареи, хлорид аммония заменен хлоридом цинка.

    Ртутная батарея

    Ртутные батареи были обычными электрохимическими батареями, которые были постепенно выведены из основного использования в США.S. Законом о батареях 1996 года.

    Цели обучения

    Обсудить применение ртутно-оксидной батареи

    Основные выводы

    Ключевые моменты
    • Ртутные батареи были очень распространены в 20 веке и использовались во многих обычных малых и больших приборах.
    • Преимущества ртутной батареи включают длительный срок хранения и стабильное выходное напряжение.
    • В ртутных батареях в качестве катода с цинковым анодом используется соединение ртути.
    • Наряду с другими батареями, которые основаны на тяжелых металлах, ртутные батареи были постепенно выведены из обращения в соответствии с Законом о батареях, который направлен на уменьшение воздействия одноразовых батарей на окружающую среду.
    Ключевые термины
    • анод : электрод электрохимической ячейки, на которой происходит окисление.
    • электролит : Вещество, которое в растворе или в расплавленном состоянии ионизирует и проводит электричество.
    • катод : электрод электрохимической ячейки, на котором происходит восстановление.

    Ртутная батарея, также называемая батареей из оксида ртути или ртутным элементом, представляет собой неперезаряжаемую электрохимическую батарею. Эти батареи использовались в форме кнопочных элементов для часов, слуховых аппаратов и калькуляторов, а также в более крупных формах для других устройств, включая рации.

    Батарея для часов Mercury : Батарейки Mercury удобны из-за своего размера. Это маленькая ртутная батарейка для часов.

    Батареи

    Mercury имеют преимущества длительного срока хранения до 10 лет и стабильного выходного напряжения.Хотя эти батареи были очень распространены в середине 20-го века, Закон об управлении ртутьсодержащими и перезаряжаемыми батареями (Закон о батареях), принятый в 1996 году в Соединенных Штатах, в значительной степени отказался от ртутных батарей из-за экологических проблем.

    В батареях

    Mercury в качестве катода используется либо чистый оксид ртути, либо смесь оксида ртути с диоксидом марганца. Ячейки с оксидом ртути сконструированы с цинковым анодом, катодом из оксида ртути и гидроксидом калия или гидроксидом натрия в качестве электролита.Поскольку оксид ртути не является проводником, с ним примешивается немного графита. Это помогает предотвратить скопление ртути в крупные капли. Во время разряда цинк окисляется до оксида цинка, а оксид ртути восстанавливается до элементарной ртути. В элемент помещается немного дополнительного количества оксида ртути, чтобы предотвратить выделение газообразного водорода в конце срока его службы.

    В ртутных батареях в качестве электролита используется гидроксид натрия или гидроксид калия. Ячейки с гидроксидом натрия имеют почти постоянное напряжение при низких токах разряда, что делает их идеальными для слуховых аппаратов, калькуляторов и электронных часов.Ячейки с гидроксидом калия, в свою очередь, обеспечивают постоянное напряжение при более высоких токах, что делает их пригодными для приложений, требующих скачков тока, таких как фотоаппараты со вспышкой и часы с подсветкой. Ячейки с гидроксидом калия также лучше работают при более низких температурах.

    Закон о батареях

    В 1996 году в США был принят Закон о ртутьсодержащих и перезаряжаемых батареях (Закон о батареях; Публичный закон 104-142). Предполагаемая цель закона заключалась в сокращении содержания тяжелых металлов в городских отходах, ручьях и грунтовых водах.Это произошло в результате утилизации ртути в одноразовых батареях, а также других токсичных металлов, таких как свинец из свинцово-кислотных батарей и кадмий в аккумуляторных батареях. Таким образом, закон стремился поэтапно отказаться от использования ртути в батареях из-за нанесенного ею ущерба окружающей среде.

    Свинцовая аккумуляторная батарея

    Свинцово-кислотные батареи обеспечивают высокий ток и длительное время хранят заряд, что делает их незаменимыми для транспортных средств.

    Цели обучения

    Вспомните химическую реакцию, которая происходит в свинцовых аккумуляторных батареях

    Основные выводы

    Ключевые моменты
    • Свинцово-кислотные батареи, также известные как свинцовые аккумуляторные батареи, могут накапливать большой заряд и обеспечивать высокий ток в течение коротких периодов времени.
    • Базовая конструкция свинцово-кислотных аккумуляторов не претерпела значительных изменений с 1859 года, когда их спроектировал Планте, хотя некоторые улучшения были внесены Форе.
    • Свинцово-кислотные аккумуляторы можно заряжать, что важно при их использовании в автомобилях.
    • Разрядка накопленной энергии зависит от того, как положительная, так и отрицательная пластины превращаются в сульфат свинца (II), а электролит теряет большую часть растворенной серной кислоты.
    Ключевые термины
    • лигносульфонат : водорастворимые анионные полиэлектролитные полимеры; они являются побочными продуктами производства древесной массы с использованием сульфитной варки.

    Свинцовые батареи

    Свинцовая аккумуляторная батарея, также известная как свинцово-кислотная батарея, является самым старым типом аккумуляторных батарей и одним из наиболее распространенных устройств хранения энергии. Эти батареи были изобретены в 1859 году французским физиком Гастоном Планте, и они до сих пор используются во множестве приложений. Большинство людей привыкло использовать их в транспортных средствах, где они могут обеспечивать высокие токи для запуска.

    Хотя батареи надежны, у них ограниченный срок службы, они тяжелы при транспортировке и содержат токсичные материалы, которые требуют специальных методов удаления по окончании срока службы.Свинцово-кислотные аккумуляторы имеют умеренную удельную мощность и хорошее время отклика. В зависимости от используемой технологии преобразования энергии батареи могут перейти от приема энергии к мгновенной подаче энергии. Свинцово-кислотные аккумуляторы подвержены влиянию температуры и должны поддерживаться в надлежащем состоянии для достижения максимального срока службы.

    Разработка свинцовой батареи

    В конструкции свинцово-кислотного элемента Планте положительная и отрицательная пластины были сделаны из двух спиралей свинцовой фольги, разделенных листом ткани и скрученных.Ячейки изначально были малой вместимостью. Требовался медленный процесс «формовки» для коррозии свинцовой фольги, образования диоксида свинца на пластинах и придания им шероховатости для увеличения площади поверхности. Пластины Планте все еще используются в некоторых стационарных приложениях, где на пластинах имеются механические канавки для увеличения площади поверхности.

    Свинцовая аккумуляторная батарея : Схема, показывающая, как свинцовая аккумуляторная батарея состоит из шести последовательно соединенных двухвольтовых элементов. Также показан состав каждой ячейки.

    Конструкция из клееных пластин Камиллы Альфонса Фор типична для современных автомобильных аккумуляторов. Каждая пластина состоит из прямоугольной свинцовой сетки. Отверстия решетки заполнены пастой из красного свинца и 33-процентной разбавленной серной кислоты. Эта пористая паста позволяет кислоте реагировать со свинцом внутри пластины, что увеличивает площадь поверхности. После высыхания пластины складываются с помощью подходящих разделителей и вставляются в аккумуляторный контейнер. Обычно используется нечетное количество пластин, на одну отрицательную пластину больше, чем положительной.Каждая альтернативная пластина подключается.

    Паста содержит технический углерод, сульфат бария и лигносульфонат. Сульфат бария действует как затравочный кристалл для реакции сульфата свинца в свинец. Лигносульфонат предотвращает образование твердой массы отрицательной пластиной во время цикла разряда, а вместо этого позволяет формировать длинные игольчатые кристаллы. Технический углерод противодействует эффекту ингибирования образования, вызванному лигносульфонатами.

    Разрядная химия

    В разряженном состоянии как положительная, так и отрицательная пластины становятся сульфатом свинца (II) (PbSO 4 ).Электролит теряет большую часть растворенной серной кислоты и превращается в основном в воду. Процесс разряда управляется проводимостью электронов от отрицательной пластины обратно в ячейку на положительной пластине во внешней цепи.

    Отрицательная реакция пластины: Pb (s) + HSO 4 (вод.) → PbSO 4 (s) + H + (вод.) + 2e

    Положительная реакция на пластине: PbO 2 (s) + HSO 4 (водн.) + 3H + (водн.) + 2e → PbSO 4 (s) + 2H 2 O (л)

    Комбинируя эти две реакции, можно определить общую реакцию:

    Pb (s) + PbO 2 (s) + 2H + (вод.) + 2HSO 4 (водн.) → 2PbSO 4 (s) + 2H 2 O (l)

    Зарядная химия

    Аккумулятор этого типа можно заряжать.В заряженном состоянии каждая ячейка содержит отрицательные пластины из элементарного свинца (Pb) и положительные пластины из оксида свинца (IV) (PbO 2 ) в электролите примерно 4,2 М серной кислоты (H 2 SO 4 ). . Процесс зарядки осуществляется за счет принудительного удаления электронов с положительной пластины и принудительного введения их в отрицательную пластину источником заряда.

    Отрицательная реакция пластины: PbSO 4 (т.

    Положительная реакция на пластине: PbSO 4 (с) + 2H 2 O (л) → PbO 2 (с) + HSO 4 (водный) + 3H + (водный) + 2e

    Объединение этих двух реакций дает полную реакцию, обратную реакции разряда:

    2PbSO 4 (с) + 2H 2 O (л) → Pb (с) + PbO 2 (с) + 2H + (вод.) + 2HSO 4 (вод.)

    Обратите внимание, что реакция зарядки прямо противоположна реакции разряда.

    Другие аккумуляторные батареи

    Спрос на многие разновидности аккумуляторных батарей обусловлен их более низкой стоимостью и меньшим воздействием на окружающую среду.

    Цели обучения

    Обсудить общие характеристики аккумуляторов

    Основные выводы

    Ключевые моменты
    • Перезаряжаемые батареи накапливают энергию за счет обратимой химической реакции, которая позволяет снова сохранять заряд после разряда батареи.
    • Перезаряжаемые батареи имеют более низкую общую стоимость использования и меньшее воздействие на окружающую среду, чем одноразовые батареи, что может быть причиной того, что спрос на аккумуляторные батареи в США растет намного быстрее, чем спрос на неперезаряжаемые батареи.
    • Обычными типами аккумуляторных батарей являются свинцово-кислотные, никель-кадмиевые (NiCd), никель-металлогидридные (NiMH), литий-ионные (Li-ion), литий-ионные полимерные (LiPo) и перезаряжаемые щелочные батареи.
    Ключевые термины
    • вторичный элемент : электрический элемент, который можно перезаряжать, поскольку он преобразует химическую энергию в электрическую с помощью обратимой химической реакции.
    • плотность энергии : количество энергии, которое может быть сохранено относительно объема батареи.

    Аккумуляторы

    Аккумуляторная батарея — это тип электрической батареи, состоящей из одного или нескольких электрохимических элементов. Он известен как вторичный элемент, потому что его электрохимические реакции электрически обратимы. Другими словами, после того, как накопленный заряд был истощен, химические реакции батареи могут произойти снова, в обратном порядке, чтобы сохранить новый заряд.Спрос на аккумуляторные батареи в США растет вдвое быстрее, чем спрос на неперезаряжаемые батареи, отчасти потому, что аккумуляторные батареи оказывают меньшее воздействие на окружающую среду и общую стоимость использования, чем одноразовые.

    Сетевые накопители энергии используют перезаряжаемые батареи для выравнивания нагрузки. Выравнивание нагрузки включает в себя хранение электроэнергии для использования в период пиковой нагрузки. Заряжая батареи в периоды низкого потребления электроэнергии для использования в периоды высокого спроса, выравнивание нагрузки помогает устранить необходимость в дорогостоящих пиковых электростанциях и помогает снизить стоимость генераторов в течение большего количества часов работы.

    Конструкция аккумуляторной батареи

    Как и все батареи, аккумуляторные батареи состоят из анода, катода и электролита. Во время зарядки материал анода окисляется, образуя электроны, а катод восстанавливается, потребляя электроны.

    Зарядка аккумулятора : Схема зарядки аккумулятора.

    Эти электроны составляют ток во внешней цепи. Электролит может служить простым буфером для внутреннего потока ионов между электродами, как в литий-ионных и никель-кадмиевых элементах, или он может быть активным участником электрохимической реакции, как в свинцово-кислотных элементах.

    Типы аккумуляторных батарей

    В аккумуляторных батареях обычно используется несколько различных комбинаций химикатов. Различные типы включают свинцово-кислотные, никель-кадмиевые (NiCd), никель-металлогидридные (NiMH), литий-ионные (Li-ion), литий-ионные полимерные (LiPo) и перезаряжаемые щелочные батареи.

    Свинцово-кислотные батареи

    Свинцово-кислотные батареи, изобретенные в 1859 году французским физиком Гастоном Планте, являются старейшим типом аккумуляторных батарей. Их способность обеспечивать высокие импульсные токи означает, что элементы поддерживают относительно большое отношение мощности к весу.Эти особенности, наряду с их низкой стоимостью, делают их привлекательными для использования в автомобилях, требующих больших токов.

    Никель-металлогидридные батареи

    Никель-металлогидридная батарея, сокращенно NiMH или Ni-MH, очень похожа на никель-кадмиевый элемент (NiCd). В NiMH батареях используются положительные электроды из оксигидроксида никеля (NiOOH), как и в NiCd, но в отрицательных электродах вместо кадмия используется сплав, поглощающий водород. Аккумулятор NiMH может иметь емкость в два-три раза больше, чем аккумулятор NiCd аналогичного размера, а его плотность энергии приближается к плотности литий-ионного элемента.

    Литий-ионные батареи

    Литий-ионный аккумулятор — это семейство аккумуляторных батарей, в которых ионы лития перемещаются от отрицательного электрода к положительному во время разряда и обратно при зарядке. Отрицательный электрод обычного литий-ионного элемента сделан из углерода. Положительный электрод представляет собой оксид металла, а электролит представляет собой соль лития в органическом растворителе. Это один из самых популярных типов аккумуляторных батарей для портативной электроники, с одной из лучших плотностей энергии и лишь медленной потерей заряда, когда они не используются.Литий-ионные аккумуляторы дороже никель-кадмиевых аккумуляторов, но работают в более широком диапазоне температур, при этом они меньше и легче. Они хрупкие и поэтому нуждаются в схеме защиты для ограничения пикового напряжения.

    Литий-ионные полимерные батареи

    Литий-ионные полимерные (LiPo) батареи обычно состоят из нескольких идентичных вторичных ячеек, включенных параллельно, чтобы увеличить ток разряда. Они часто доступны в серии «упаковок» для увеличения общего доступного напряжения.Их основное отличие от литий-ионных аккумуляторов заключается в том, что их электролит из литиевой соли не содержится в органическом растворителе. Вместо этого он находится в твердом полимерном композите, таком как полиэтиленоксид или полиакрилонитрил. Преимущества LiPo по сравнению с литий-ионной конструкцией включают потенциально более низкую стоимость производства, приспособляемость к большому разнообразию форм упаковки, надежность и прочность. Их главный недостаток — меньший заряд.

    Щелочные батареи

    Существуют также перезаряжаемые формы щелочных батарей, которые представляют собой тип первичных батарей, зависящих от реакции между цинком (Zn) и диоксидом марганца (MnO 2 ).Они производятся полностью заряженными и способны сохранять заряд в течение многих лет, дольше, чем большинство никель-кадмиевых и никель-металлгидридных аккумуляторов, которые саморазряжаются. Перезаряжаемые щелочные батареи также могут иметь высокую эффективность перезарядки и оказывать меньшее воздействие на окружающую среду, чем одноразовые элементы.

    Литий-ионный аккумулятор

    Литий-ионные батареи — это перезаряжаемые батареи, обычно используемые в бытовой электронике; они полагаются на миграцию Li + .

    Цели обучения

    Обсудите химические превращения, происходящие в литий-ионной батарее во время зарядки и разрядки

    Основные выводы

    Ключевые моменты
    • Превосходная плотность энергии, отсутствие эффекта памяти и только медленная потеря заряда, когда они не используются, делают литий-ионные батареи обычным явлением для использования в бытовой электронике, военных, электромобилях и аэрокосмической промышленности.
    • Анод обычно представляет собой литийсодержащее соединение, а катод обычно представляет собой углеродсодержащее соединение.
    • Реакция разрядки основана на том, что ион лития из электролита извлекается с катода и перемещается к аноду, в то время как в реакции зарядки верно обратное.
    Ключевые термины
    • анод : электрод электрохимической ячейки, на которой происходит окисление.
    • катод : электрод электрохимической ячейки, на котором происходит восстановление.
    • электролит : Вещество, которое в растворе или в расплавленном состоянии ионизирует и проводит электричество.

    Литий-ионные батареи (литий-ионные батареи или LIB) — это семейство аккумуляторных батарей, в которых ионы лития перемещаются от отрицательного электрода к положительному во время разряда. Ионы движутся по обратному пути, когда батарея заряжается. В литий-ионных батареях в качестве электродного материала используется соединение лития.

    Применение литий-ионных батарей

    Литий-ионные батареи широко используются в бытовой электронике.Они являются одними из самых популярных типов аккумуляторных батарей для портативной электроники, потому что они имеют одну из лучших плотностей энергии и только медленную потерю заряда, когда они не используются.

    Литий-ионный аккумулятор для ноутбука : Литий-ионный аккумулятор подходит для использования в портативной электронике, включая ноутбуки.

    Помимо бытовой электроники, LIB также становятся все более популярными для военных, электромобилей и аэрокосмической отрасли. Исследования дают поток улучшений традиционной технологии LIB с упором на плотность энергии, долговечность, стоимость и безопасность.

    Типы литий-ионных батарей

    Химический состав, производительность, стоимость и характеристики безопасности зависят от типа LIB. В портативной электронике в основном используются LIB на основе оксида лития-кобальта (LCO), которые обладают высокой плотностью энергии, но имеют хорошо известные проблемы безопасности, особенно при повреждении. Литий-железо-фосфатные (LFP), литиево-марганцевые (LMO) и литий-никель-марганцево-кобальтовые (LiNMC) аккумуляторы имеют более низкую плотность энергии, но более длительный срок службы и внутреннюю безопасность. Эти химические составы или химические составы широко используются для питания электрических инструментов и медицинского оборудования.

    Зарядка и разрядка

    Три участника электрохимических реакций в литий-ионной батарее — это анод, катод и электролит. И анод, который представляет собой литийсодержащее соединение, и катод, который представляет собой углеродсодержащее соединение, являются материалами, в которые ионы лития могут мигрировать. Электролит представляет собой соль лития в органическом растворителе. Когда литиевая ячейка разряжается, положительный ион лития извлекается из катода и вставляется в анод, высвобождая накопленную энергию в процессе.Когда аккумулятор заряжается, происходит обратное.

    Материалы для катодов и анодов

    Самый популярный катодный материал — графит. Анод обычно представляет собой один из трех материалов: слоистый оксид (например, оксид лития-кобальта), полианион (например, фосфат лития-железа) или шпинель (например, оксид лития-марганца). Электролит обычно представляет собой смесь органических карбонатов, таких как этиленкарбонат или диэтилкарбонат, содержащих комплексы ионов лития.

    В литий-ионной батарее ионы лития транспортируются к катоду или аноду и от них. Переходный металл, кобальт (Co), окисляется от Co 3+ до Co 4+ во время зарядки и восстанавливается от Co 4+ до Co 3+ во время разряда.

    Топливные элементы

    Топливные элементы — отличная альтернатива батареям, но они все еще находятся на ранней стадии разработки.

    Цели обучения

    Обсудить работу типичного топливного элемента

    Основные выводы

    Ключевые моменты
    • Топливный элемент — это устройство, которое преобразует химическую энергию топлива в электричество посредством химической реакции с кислородом или другим окислителем.
    • Батареи работают в замкнутой системе, а топливные элементы требуют пополнения своих реагентов.
    • Использование водорода в качестве основного источника топлива в топливных элементах имеет несколько плюсов и минусов, которые делают его спорным для массового использования.
    • Топливные элементы состоят из трех смежных сегментов: анода, электролита и катода.
    Ключевые термины
    • анод : электрод электрохимической ячейки, на которой происходит окисление.
    • топливный элемент : устройство, преобразующее химическую энергию топлива в электричество посредством химической реакции с кислородом или другим окислителем.
    • катод : электрод электрохимической ячейки, на котором происходит восстановление.
    • аккумулятор : устройство, вырабатывающее электричество в результате химической реакции между двумя веществами.

    Введение и история

    Топливный элемент — это устройство, которое преобразует химическую энергию топлива в электричество посредством химической реакции с кислородом или другим окислителем.Наиболее распространенным топливом является водород, но иногда используются углеводороды, такие как природный газ и спирты. Топливные элементы отличаются от батарей тем, что для работы им требуется постоянный источник топлива и кислорода, но они могут производить электричество непрерывно, пока есть эти входы. Разработка миниатюрных топливных элементов может стать дешевой, эффективной и многоразовой альтернативой батареям.

    Уильям Гроув разработал первые сырые топливные элементы в 1839 году. Первое коммерческое использование топливных элементов было в космических программах НАСА для выработки энергии для зондов, спутников и космических капсул.В настоящее время топливные элементы используются в качестве основного и резервного источника питания для коммерческих, промышленных и жилых зданий, а также в удаленных или труднодоступных районах. Они используются для привода транспортных средств на топливных элементах, включая автомобили, автобусы, вилочные погрузчики, самолеты, лодки, мотоциклы и подводные лодки.

    Устройство и функции топливного элемента

    Существует много типов топливных элементов, но все они состоят из анода, который является отрицательной стороной, катода, который является положительной стороной, и электролита, который позволяет зарядам перемещаться между двумя сторонами топливного элемента.

    Топливный элемент : Топливные элементы преобразуют химическую энергию топлива в электричество посредством химической реакции с кислородом или другим окислителем. Однако использование водорода в качестве основного источника топлива в топливных элементах имеет несколько плюсов и минусов, которые делают его спорным для массового использования.

    Электроны проходят от анода к катоду через внешнюю цепь, производя электричество постоянного тока. Топливные элементы классифицируются по используемому электролиту, что является основным отличием различных типов топливных элементов.Отдельные топливные элементы создают относительно небольшие электрические потенциалы, около 0,7 вольт, поэтому элементы «уложены друг на друга» или размещены последовательно для увеличения напряжения. Помимо электроэнергии, топливные элементы производят воду, тепло и, в зависимости от источника топлива, очень небольшие количества диоксида азота и другие выбросы. Энергоэффективность топливного элемента обычно составляет 40-60 процентов; он может достигать 85 процентов, если отходящее тепло улавливается для использования.

    Несмотря на разнообразие типов топливных элементов, все они работают одинаково.На границах трех разных сегментов происходят две химические реакции. Конечным результатом двух реакций является потребление топлива, образование воды или углекислого газа и создание электрического тока, который можно использовать для питания электрических устройств, обычно называемых «нагрузкой».

    На аноде катализатор окисляет топливо, обычно водород, превращая топливо в положительно заряженный ион и отрицательно заряженный электрон. Электролит — это вещество, специально разработанное таким образом, чтобы ионы могли проходить через него, а электроны — нет.Освободившиеся электроны проходят по проводу, создавая электрический ток. Ионы проходят через электролит к катоду. Там ионы воссоединяются с электронами, и два реагируют с третьим химическим веществом, обычно кислородом, с образованием воды или углекислого газа.

    Плюсы и минусы топливных элементов

    Использование водородных топливных элементов в некоторых приложениях вызывает споры. Прежде всего, поскольку энергия, используемая для производства водорода, сопоставима с энергией в водорода, это неэффективно и, следовательно, дорого.Если бы для производства водорода использовались обычные электростанции, в лучшем случае не было бы положительных изменений в текущих уровнях загрязнения. Другие типы топливных элементов не сталкиваются с этой проблемой. Например, биологические топливные элементы берут глюкозу и метанол из пищевых отходов и превращают их в водород и пищу для бактерий, которые его расщепляют.

    Однако у водородных топливных элементов есть несколько преимуществ. Если электричество, произведенное из чистых возобновляемых источников энергии, таких как солнечная и ветровая энергия, используется для производства водорода, энергию можно будет хранить легче, чем в больших аккумуляторных комплексах.

    Есть и практические проблемы, которые необходимо преодолеть. Хотя использование топливных элементов в потребительских товарах возможно в ближайшем будущем, большинство современных конструкций не будут работать, если их перевернуть. Кроме того, существующие топливные элементы нельзя масштабировать до небольшого размера, необходимого для портативных устройств, таких как сотовые телефоны. Современные конструкции также требуют вентиляции и поэтому не могут работать под водой. Их нельзя использовать в самолетах из-за риска утечки топлива через вентиляционные отверстия. Наконец, еще не созданы технологии для безопасной заправки потребительских топливных элементов.

    Топливный элемент в автомобиле : Топливный элемент является потенциальным источником энергии для автомобилей, которые не работают на бензине. Однако, хотя топливные элементы предлагают чистую возобновляемую энергию, есть несколько препятствий на пути их широкого распространения.

    Аккумулятор (электричество)


    2

    Устройство, объединяющее солнечные элементы и батарею, может хранить электроэнергию вне сети

    Сен.27, 2018 — Ученые объединили возможности солнечной батареи и батареи в одном устройстве — «солнечной проточной батарее», которая впитывает солнечный свет и эффективно хранит его в виде химической энергии для …


    Новая система улавливает CO2 и вырабатывает электроэнергию

    17 марта 2021 г. — Недавнее исследование представило новую систему, способную быстро и эффективно производить водород и электричество, сокращая при этом выбросы углекислого газа …


    Новый растягивающийся аккумулятор для носимой электроники

    Янв.24 февраля 2020 г. — Внедрение носимой электроники до сих пор ограничено их потребностью получать питание от громоздких, жестких батарей, которые снижают комфорт и могут представлять опасность для безопасности из-за утечки химикатов или …


    Новый способ охлаждения электронных устройств и рекуперации отработанного тепла

    22 апреля 2020 г. — Слишком долгое использование электронных устройств может привести к их перегреву, что может замедлить их работу, повредить их компоненты или даже заставить их взорваться или загореться.Теперь исследователи разработали …


    Питание кардиостимулятора с помощью сердцебиения пациента

    20 февраля 2019 г. — Имплантируемые кардиостимуляторы, без сомнения, изменили современную медицину, спасая бесчисленное количество жизней, регулируя сердечный ритм. Но у них есть один серьезный недостаток: их батарей хватает всего на 5–12 …

    .

    Инновационная химия батарей революционизирует цинково-воздушную батарею

    4 января 2021 г. — Воздушно-цинковые батареи — это привлекательная технология хранения энергии будущего.На основе инновационного нещелочного водного электролита международная исследовательская группа разработала новую батарею …


    Насколько легким может быть складной и долговечный аккумулятор?

    11 декабря 2019 г. — Инженеры разработали трехмерную монолитную органическую батарею …


    Простая самозарядная батарея предлагает решения для электропитания устройств

    25 февраля 2020 г. — Аккумулятор нового типа сочетает в себе отрицательную емкость и отрицательное сопротивление внутри одного элемента, что позволяет элементу самозаряжаться без потери энергии, что имеет важные последствия для…


    Тонкий слой защищает аккумулятор, позволяет заряжать его от холода

    26 августа 2020 г. — В поисках надежного, быстро заряжающегося аккумулятора для холодной погоды для автомобилей решением может стать самосборный тонкий слой электрохимически активных молекул, или …


    Литий-ионные аккумуляторы, напечатанные на 3D-принтере

    17 октября 2018 г. — Электромобили и большинство электронных устройств, таких как сотовые телефоны и портативные компьютеры, питаются от литий-ионных батарей.До сих пор производителям приходилось проектировать свои устройства на основе …

    .

    Школа инженерии Массачусетского технологического института | »Как работает аккумулятор?

    Как работает аккумулятор?

    Ваши часы, ноутбук и лазерная указка питаются от одного и того же: химии…

    Мэри Бейтс

    Существует много разных типов батарей, но все они работают на основе одной и той же концепции.«Батарея — это устройство, способное накапливать электрическую энергию в виде химической энергии и преобразовывать эту энергию в электричество», — говорит Антуан Алланор, научный сотрудник отдела материаловедения и инженерии Массачусетского технологического института. «Вы не можете улавливать и хранить электричество, но вы можете хранить электрическую энергию в химических веществах внутри батареи».

    Батарея состоит из трех основных компонентов: две клеммы, изготовленные из разных химикатов (обычно металлов), анод и катод; и электролит, разделяющий эти выводы.Электролит — это химическая среда, которая обеспечивает прохождение электрического заряда между катодом и анодом. Когда устройство подключено к батарее — лампочке или электрической цепи — на электродах происходят химические реакции, которые создают поток электрической энергии к устройству.

    Более конкретно: во время разряда электричества химическое вещество на аноде высвобождает электроны к отрицательному полюсу и ионы в электролите в результате так называемой реакции окисления.Между тем, на положительном выводе катод принимает электроны, замыкая цепь для потока электронов. Электролит предназначен для того, чтобы привести различные химические вещества анода и катода в контакт друг с другом таким образом, чтобы химический потенциал мог уравновеситься от одного вывода к другому, преобразовывая накопленную химическую энергию в полезную электрическую энергию. «Эти две реакции происходят одновременно», — говорит Алланор. «Ионы переносят ток через электролит, в то время как электроны текут во внешней цепи, и это то, что генерирует электрический ток.”

    Если батарея одноразовая, она будет вырабатывать электричество до тех пор, пока не закончатся реагенты (одинаковый химический потенциал на обоих электродах). Эти батареи работают только в одном направлении, преобразуя химическую энергию в электрическую. Но в других типах аккумуляторов реакция может быть обратной. Перезаряжаемые батареи (например, в вашем мобильном телефоне или в вашем автомобиле) сконструированы таким образом, что электрическая энергия из внешнего источника (зарядное устройство, которое вы подключаете к стене или динамо-машина в вашем автомобиле) может подаваться на химическую систему и наоборот. его работу, восстанавливая заряд аккумулятора.

    Лаборатория Group Sadoway в Массачусетском технологическом институте работает над созданием более эффективных батарей для многоцелевого использования. Для крупномасштабного хранения энергии команда работает над жидкометаллической батареей, в которой электролит, анод и катод являются жидкими. Для портативных приложений они разрабатывают тонкопленочные полимерные батареи с гибким электролитом из негорючего геля. Еще одна цель лаборатории — создать батареи с использованием ранее не изученных материалов, уделяя особое внимание распространенным, дешевым и безопасным веществам, которые имеют такой же коммерческий потенциал, как и популярные литиевые батареи.

    Спасибо 18-летнему Стивену Минкусу из Гленвью, штат Иллинойс, за этот вопрос.

    Отправлено: 1 мая 2012 г.

    О Аккумуляторы
    Гэри Л. Бертран
    Профессор химии
    Университет Миссури-Ролла
    Моделирование Вернуться к началу

    Батарея состоит из одного или нескольких электрохимических элементов. Каждая ячейка содержит два металлических электрода и как минимум один раствор электролита. (раствор, содержащий ионы, которые могут проводить электричество).Батарея действует посредством электрохимических реакций, называемых окислением и восстановлением. Эти реакции включают обмен электронами между химическими частицами. Если химическое соединение теряет один или несколько электронов, это называется окислением. Противоположный процесс — усиление электронов — называется редукцией.

    Окисление происходит на аноде.

    Восстановление происходит на катоде.

    Если реактивные компоненты электрохимические ячейки контактируют друг с другом, они будут реагируют прямым переносом электронов ( окисление — реакция восстановления) и там невозможно использовать эту энергию для выполнения электрических работ.Большинство из энергия реакции выделяется в виде тепла. Выделяемое тепло тесно связан со стандартным изменением энтальпии (дельта-Н °) реакции.


    В большинстве аккумуляторов используются разные материалы. два электрода, так что они хотят реагировать с одним материалом, окисляется, а другой восстанавливается. В ячейке ниже цинк используется для электрода слева (анод), контактирующего с раствором ионов цинка (II), возможно, раствор Цинк Нитрат.Медь используется для электрод справа (Катод) в контакте с раствором, содержащим Медь (II) ионы, возможно Нитрат меди. Разделяя материалы, электроны, производимые окисление на аноде может быть использовано для выполнения электрических работ в том виде, в котором они передаются на катод, где они будут потребляться восстановлением процесс. Количество электромонтажных работ, которые может произвести аккумулятор. тесно связано со стандартным изменением свободной энергии (дельта-G °) реакции.

    Однако процесс окисления дает положительный ионов или удаляет отрицательные ионы из раствора на аноде (или это может заменить один ион на более положительный), и процесс восстановления либо удаляет положительные ионы или производит отрицательные ионы в растворе на катод. В результате получаются электрически заряженные растворы, и очень быстро останавливает процесс до того, как будет перенесено измеримое количество электронов.

    Должен быть путь для перемещения ионов между два решения, чтобы электроны могли непрерывно течь через провод. Это создает «ионный ток» внутри аккумулятор с катионами (положительно — заряженный ионы) движутся от анода к катоду, а анионы (отрицательно заряженные ионы) движутся от катода к аноду.

    Этот путь может быть обеспечен двумя решениями контактируют друг с другом, но это позволяет диффузию всех ионов и довольно быстро «разряжает» аккумулятор.Это распространение может быть замедляется за счет разделения растворов мембраной или пористой пробкой. Все это может привести к «потенциалу жидкого перехода». из-за разной скорости движения катионов и анионов. Соль мост »можно использовать для разделения двух растворов с помощью третьего концентрированного раствор хорошо подобранных катионов и анионов, полностью устраняя «потенциал жидкого перехода». В нескольких корпусов, можно сконструировать батарею так, чтобы оба электрода могли быть помещен в тот же контейнер только с одним раствором.

    ********************************************** *

    Напряжение ячейки может зависеть от многих факторов: материалы электродов, компоненты и концентрации растворов, тип жидкостного перехода, температура и давление. В Напряжение также зависит от электрического тока, протекающего из ячейки. Напряжение (E) и ток (I) связаны с сопротивлением (R) через Закон Ома: E = IR Ток напрямую связан к скорости, с которой электроны прокачиваются через провод и любые сопротивления в цепи.Когда сопротивление понижается до нуля (короткое замыкание), ток увеличивается, а напряжение ячейки уменьшается до нуля. В виде сопротивление увеличивается, ток уменьшается, а напряжение увеличивается к предельному значению. В химии, нас в первую очередь интересует это предельное значение, максимальное напряжение что может доставить электрохимический элемент. Этот максимум напряжение или электрохимический потенциал — это мера максимума электромонтажные работы, которые можно получить от химическая реакция, происходящая внутри клетки, и это может быть связано к свободной энергии Гиббса Изменения, связанные с химической реакцией.


    Прежде чем мы закончим обсуждение, обсудим термодинамику. аккумуляторов, нам необходимо устранить влияние концентрации на напряжение ячейки. Это может быть несколько сложным и запутанным. Мы собираемся избежать этих проблем, сосредоточив внимание на ячейках с очень специфическим тип химической реакции.

    ********************************************** *

    В ячейке выше электроны производятся свинцом. металл окисляется до ионов свинца (II), а ионы меди (II) восстанавливаются к металлической меди.Даже если ионы движутся через границу между в растворах наблюдается увеличение концентрации ионов свинца на слева и уменьшение ионов меди справа. Это вызывает напряжение батареи уменьшится, и в конечном итоге напряжение будет уменьшаются до нуля. Некоторые батареи рассчитаны на перезарядку. заставляя электроны течь назад через ячейку, обращая химическая реакция.

    Уравнение Нернста описывает влияние концентраций на максимальное напряжение, которое реакция может быть произведена путем соотнесения напряжения со стандартом Электрохимический потенциал (E °).Этот стандарт Электрохимический потенциал представляет собой максимальное напряжение реакции может производить со всеми стандартными компонентами состояниях или при единичной деятельности.

    ********************************************** *

    Остальная часть этого обсуждения будет касаться с электрохимическими ячейками, не предполагающими изменения концентраций ионов или газов. В этих ячейках Стандарт Электрохимический потенциал можно измерить напрямую.

    Один из способов сделать это — использовать металл / металл. Солевые электроды, которые получают путем покрытия металла одним его нерастворимых солей (или оксида), как в Silver / Silver Хлорид, свинец / сульфат свинца или ртуть / ртуть Хлоридные (каломелевые) электроды. Эти обычно являются твердым металлом и твердой солью, хотя в случае ртути металл — чистая жидкость. Электрический контакт обычно осуществляется через платиновую проволоку, контактирующую с ртуть.

    Эта ячейка построена с отведением / отведением Сульфатный анод и серебро / сульфат серебра катод, оба в растворе сульфата натрия. Два раствора разделены анионным обменом. мембрана, которая пропускает через себя отрицательно заряженные ионы, но положительно заряженные ионы не могут. Напряжение этой ячейки все еще зависит от тока, протекающего от него, и от температуры. Однако при любой фиксированной температуре максимальное напряжение (при очень малом токе) не зависит от концентрации электролита и равна Стандартный электрохимический потенциал для это реакция.

    верх

    типов батарей | Ассоциация аккумуляторных батарей

    НИКЕЛЕВЫЕ БАТАРЕИ КАДМИЯ

    Активные компоненты перезаряжаемой NiCd батареи в заряженном состоянии состоят из гидроксида никеля (NiOOH) в положительном электроде и кадмия (Cd) в отрицательном электроде. В качестве электролита обычно используется гидроксид калия (КОН). Благодаря низкому внутреннему сопротивлению и очень хорошим токопроводящим свойствам никель-кадмиевые батареи могут обеспечивать чрезвычайно высокие токи и быстро заряжаться.Эти элементы способны выдерживать температуры до -20 ° C. Выбор сепаратора (нейлон или полипропилен) и электролита (KOH, LiOH, NaOH) влияет на условия напряжения в случае сильноточного разряда, срок службы и способность к перезарядке. В случае неправильного использования может быстро возникнуть очень высокое давление. По этой причине для элементов требуется предохранительный клапан. NiCd-элементы обычно имеют длительный срок службы, что обеспечивает высокую степень экономии.

    НИКЕЛЬ-МЕТАЛЛИЧЕСКИЕ ГИДРИДНЫЕ БАТАРЕИ

    Активные компоненты никель-металлгидридной аккумуляторной батареи в заряженном состоянии состоят из гидроксида никеля (NiOOH) в положительном электроде и металлического сплава, накапливающего водород (MH) в отрицательном электроде, а также из электролита гидроксида калия (КОН).По сравнению с перезаряжаемыми никель-кадмиевыми батареями, никель-металл-гидридные батареи имеют более высокую удельную энергию на единицу объема и веса.

    ЛИТИЕВО-ИОННЫЕ БАТАРЕИ

    Термин ионно-литиевая батарея относится к перезаряжаемой батарее, в которой материалы отрицательного электрода (анода) и положительного электрода (катода) служат в качестве хозяина для литий-ионных аккумуляторов (Li +). Ионы лития перемещаются от анода к катоду во время разряда и интеркалируются (вставляются в пустоты в кристаллографической структуре) катода.Ионы меняют направление во время зарядки. Поскольку ионы лития внедряются в материалы-хозяева во время заряда или разряда, в литий-ионном элементе нет свободного металлического лития. В литий-ионном элементе чередующиеся слои анода и катода разделены пористой пленкой (разделителем). Электролит, состоящий из органического растворителя и растворенной соли лития, обеспечивает среду для переноса ионов лития. Для большинства коммерческих литий-ионных ячеек диапазон напряжения составляет примерно от 3,0 В (в разряженном состоянии или при 0% -ном состоянии заряда, SOC) до 4.2 В (полностью заряженный или 100% SOC).

    СВИНЦОВО-КИСЛОТНЫЕ АККУМУЛЯТОРЫ НЕБОЛЬШИЕ ЗАПЛОМЛЕННЫЕ

    Перезаряжаемые небольшие герметичные свинцово-кислотные батареи (SSLA), которые представляют собой свинцово-кислотные батареи с регулируемым клапаном (батареи VRLA), не требуют регулярного добавления воды в элементы и выделяют меньше газа, чем залитые (мокрые) свинцово-кислотные батареи. батареи иногда называют «необслуживаемыми» батареями. Уменьшение вентиляции является преимуществом, поскольку они могут использоваться в ограниченных или плохо вентилируемых помещениях.

    Есть два типа батарей VRLA,

    • Аккумулятор из абсорбированного стекломата (AGM)
    • Гелевый аккумулятор («гелевый элемент»)

    В батарее из абсорбированного стекломата электролит абсорбируется в сепараторе из стекловолокна.В гелевой ячейке электролит смешан с кремнеземной пылью с образованием иммобилизованного геля.

    Батареи

    SSLA включают предохранительный клапан сброса давления.