17Фев

Физические и химические свойства бензина: Состав бензина, физические и химические свойства

Содержание

Состав бензина, физические и химические свойства

Автор admin На чтение 5 мин. Просмотров 6.2k.

В качестве топлива для большинства легковых автомобилей применяется бензин. Это смесь углеводородов, имеющих температуру кипения от 30 до 205 градусов Цельсия. Помимо углеводородов в составе бензина имеются примеси, содержащие азот, серу и кислород.


В зависимости от количества тех или иных соединений автомобильный бензин делится на разные марки, имеющие несколько различные эксплуатационные свойства:
  • АИ-92;
  • АИ-95;
  • АИ-98.

С ужесточением экологических требований бензины, имеющие более низкое октановое число, такие как А-76 или АИ-80, а, следовательно, более «грязный» химический состав, в настоящее время не производятся.

Основные свойства

Основные свойства бензина – его химический состав, способности к испарению, горению, воспламенению, образованию отложений, а также коррозионная активность и стойкость к детонации.

Физико-химические свойства бензина варьируются в зависимости от того, какие углеводороды и в каких пропорциях в нем содержатся.

Температура замерзания бензина достигает –60 градусов по Цельсию, в случае применения специальных присадок можно понизить это значение до –71 градуса. Бензин активно испаряется при температуре выше 30 градусов, и с повышением температуры испарение происходит интенсивнее. Когда концентрация его паров в воздухе достигает 74 – 123 граммов на кубический метр, образуется взрывоопасная смесь.


Фракционный состав бензина напрямую влияет на эксплуатационные свойства. При производстве важно добиться правильного соотношения легких и тяжелых фракций, чтобы, с одной стороны, обеспечить достаточно высокую испаряемость при низких температурах, а с другой – не допустить перебоев в работе мотора из-за образования паровых пробок в топливопроводе, которые могут возникнуть вследствие интенсивного испарения большого количества легких фракций. В связи с этим бензины, применяющиеся в местах с жарким климатом и в районе полярного круга, имеют разный химический состав для того, чтобы обеспечить необходимые эксплуатационные свойства.

Получить бензин можно несколькими способами: прямой перегонкой нефти и отбором определенных фракций (такой способ применялся в начале эры автомобилизации), в середине прошлого века стали применять крекинг и риформинг. Основная составляющая бензина, полученного путем прямой перегонки, – цепочки алканов. При крекинге и риформинге они преобразуются в разветвленные алканы и ароматические соединения.

Два последних способа позволяют получить высокооктановое топливо марок АИ-92, 95 и выше.

Октановое число

Название марки бензина состоит из буквенно-цифрового обозначения. Буквы А или АИ указывают на метод определения октанового числа:

  1. моторный (А)
  2. исследовательский (АИ)

а цифра определяет октановое число (92, 95 и т.д.).

Значение октанового числа указывает на такое свойство, как стойкость бензина к детонации. Цифра эта относительная. В качестве эталона принимается изооктан, детонационная стойкость которого очень высока и принимается равной 100. Шкала октанового числа была предложена в начале прошлого века. Оно определялось содержанием изооктана в смеси с нормальным гептаном (его детонационная стойкость очень низкая и принимается равной нулю). Соответственно, бензин марки АИ-92 эквивалентен по своей устойчивости к детонации 92-процентной смеси изооктана с гептаном, АИ-95 – 95% и так далее. Октановое число может быть и больше 100, если антидетонационные свойства топлива еще выше, чем у чистого изооктана.


Это значение очень важно, поскольку детонация приводит к быстрому разрушению цилиндро-поршневой группы. Объясняется это скоростью распространения фронта пламени – до 2,5 км/с, тогда как в нормальных условиях пламя распространяется со скоростью не более 60 м/с.

Чтобы повысить антидетонационные свойства, можно либо добавить присадки, содержащие соединения свинца (тетраэтилсвинец), либо изменить фракционный состав при получении. Первый способ получает с легкостью получить из бензина АИ-92 АИ-95, или 98, однако в настоящее время от него отказались. Поскольку, хотя такие присадки значительно повышают эксплуатационные свойства топлива и имеют низкую себестоимость, они так же весьма ядовиты и на экологию оказывают куда более губительное воздействие, чем чистый бензин, а также разрушают каталитический нейтрализатор автомобиля (температура сгорания этилированного бензина выше, чем у неэтилированного, в результате керамические элементы нейтрализатора попросту спекаются, и устройство выходит из строя).

В качестве присадок могут быть использованы и другие соединения, менее токсичные, такие как этиловый спирт или ацетон. Например, если добавить 100 мл спирта в литр бензина АИ-92, то октановое число увеличится до 95. Однако применение таких присадок экономически невыгодно.

Химическая стабильность

Рассматривая химические свойства бензина, следует основной упор сделать на то, насколько долго состав углеводородов останется неизменным, поскольку при длительном хранении более легкие соединения испаряются, и эксплуатационные свойства сильно ухудшаются. Особенно остро эта проблема стоит в том случае, если из топлива с меньшим октановым числом (например, АИ-92) получили бензин более высокой марки (АИ-95) путем добавления в его состав пропана или метана. Их антидетонационные свойства выше, чем у изооктана, но и испаряются они очень быстро.

Государственный стандарт требует, чтобы химический состав бензина любой марки, будь то АИ-92, 95 или 98 оставался неизменным не менее пяти лет при соблюдении правил хранения. Однако на деле зачастую даже только что купленное горючее уже имеет октановое число ниже заявленного (например, не 95, а 92). Виной тому недобросовестность продавцов, добавляющих сжиженный газ в резервуары с топливом, срок хранения которого истек, и состав не соответствует ГОСТу. Как правило, к одному и тому же бензину добавляют разное количество газа, чтобы получить октановое число, равное 92 или 95. Очевидным подтверждением подобных ухищрений служит сильный запах газа на АЗС. Вполне вероятно, что эксплуатационные свойства такого бензина заметно ухудшатся прямо на глазах, до того времени, как опустеет топливный бак.

Мне нравится3Не нравится1
Что еще стоит почитать

основные характеристики бензина – petrolcards.ru

Бензином регулярно пользуется практически каждый автовладелец. Нефтеперерабатывающие компании и АЗС по всей стране предлагают большое разнообразие горючего. Оно различается составом, наличием присадок, физическими и химическими свойствами, маркировкой. 

Несложно заметить, что использование бензина разных марок обычно сразу же сказывается на работе двигателя и общих ходовых характеристиках авто. Но от правильного выбора топлива зависит не только скорость, но также надежность, безопасность и долговечность топливной и иных систем. 

Какие параметры следует учитывать и на что обратить внимание владельцам автомобилей с бензиновыми двигателями?

Виды и типы бензинов

На отечественных заправках представлен бензин разного типа. Топливо различается составом, чистотой и некоторыми другими параметрами. Все они обычно маркируются с учетом их основного показателя – октанового числа. 

Требованиями ГОСТ, ТУ и других нормативных документов в РФ предусмотрены следующие марки бензинов: А-72, А-76, А-80, АИ-91, А-92, АИ-93, АИ-95, А-96, АИ-98. Потребление низкооктанового топлива в последнее время существенно снижается, высокооктанового, наоборот, растет. Бензин А-72 сегодня практически не используется, так как просто нет техники, которая бы на нем работала.

Более современная классификация бензинов насчитывает шесть основных видов этого топлива с различным октановым показателем:

  • Нормаль – АИ-80.
  • Регуляр – АИ-92.
  • Премиум – АИ-95.
  • Супер – АИ-95+.
  • Экстра – АИ-98.
  • ЭКТО – АИ-100.

Раньше в некоторые марки бензина для увеличения октанового числа добавлялись этиловые соединения, что позволяло повысить физико-химические свойства топлива с минимальным ростом его стоимости. Сегодня официально производство этилированного топлива прекращено.

Также современная маркировка предполагает указание не только отечественных, но и европейских стандартов: Евро-4, Евро-5 и т.д. Поэтому полное наименование бензина обычно выглядит следующим образом «АИ-98-5». Это означает, что бензин автомобильный (А), его октановое число определено по исследовательскому методу (И) и составляет 98, а по экологическим стандартам топливо соответствует техническим регламентам «Евро-5».

Октановое число бензина

Если говорить про основные параметры топлива, то его октановый показатель – едва ли не самая важная характеристика. При работе двигателя внутреннего сгорания топливная смесь сжимается под высоким давлением и потом воспламеняется. Происходит ее расширение. Для безопасности, надежности работы, сохранности двигателя и его отдельных элементов – важно, чтобы сгорание бензина происходило в нормальном режиме – без детонации. Октановое число как раз определяет детонационную стойкость топлива, что особенно важно в бензиновых двигателях с высокой степенью сжатия. Чем более качественный бензин, тем выше его октановое число. Кроме того, этот параметр сказывается и на расходе топлива при движении. 

Высокооктановые бензины расходуются медленнее, что заметно нивелирует разницу в цене разного топлива.

Определяется октановое число бензина соотношением содержания изомеров октана в сравнении с количеством гептана в топливе. То есть в топливе АИ-92 содержание изооктана в смеси с гептаном составляет 92%. Следует отметить, что октановое число не определяет именно содержание, а вычисляется путем сравнения антидетонационных качеств конкретного бензина с эталонной смесью. Поэтому у некоторых специализированных видов топлива октановое число может быть больше 100. Это означает, что по устойчивости к детонации данный бензин превосходит чистый изооктан.

На показатели октанового числа влияет фракционный состав топлива (более подробно о котором мы расскажем далее). Чем больше в бензине легких фракций, тем он качественнее и безопаснее в плане детонационной составляющей. 

Также изменить октановое число топлива можно путем добавления в него различных присадок. Раньше широко использовались соединения на основе свинца и этила (например, тетраэтилсвинец). Их введение в состав бензина позволяет легко превратить АИ-92 в АИ-95. Но с 2003 года из-за высокого вреда, наносимого атмосфере и окружающей среде, от использования соединений свинца в составе бензина отказались.

Также повысить октановый показатель можно добавлением этилового спирта. Но такой метод экономически невыгоден, поэтому в промышленных масштабах не применяется. Еще один способ повышения октанового показателя – добавление в бензин ацетона. Часто в качестве присадок используются соединения пропана и метана, у которых более высокая детонационная устойчивость, чем у изооктана.

Химическая стабильность бензина

Еще один важный показатель в бензине, особенно актуальный для топлива с присадками, – его химическая стабильность. С одной стороны, добавление присадок – например, метана и пропана в бензин позволяет повысить его октановое число. Но эти элементы достаточно легкие и летучие, а потому испаряются с большей скоростью и при более низких температурах, чем основная фракция топлива. 

Нормативными требованиями установлено, что бензин должен сохранять свои физико-химические свойства в течение пяти лет – при условии соблюдения норм и правил хранения. Поэтому, если производитель вводит в топливо присадки с целью повышения его детонационной устойчивости, то должен использовать устойчивые химические соединения. В противном случае бензин довольно быстро потеряет свои качества.

На недобросовестность производителя или продавца указывает сильный специфический запах газа, который нередко присутствует на АЗС. Это значит, что метан и/или пропан, добавленные в бензин, активно испаряются, а само топливо заведомо не соответствует маркировке.   

Другие показатели топлива

Одним из важных показателей ГСМ является его фракционный состав. Бензин состоит из различных нефтепродуктов – легких и тяжелых углеводородов, входящих в состав топлива в разном количестве. Именно фракционным составом в первую очередь определяются основные физико-химические параметры и эксплуатационные свойства бензина, такие как летучесть, вязкость, температура замерзания. Чем больше легких фракций в топливе, тем лучше оно испаряется и тем ниже температура его замерзания. Поэтому в условиях сверхнизких температур и сурового северного климата обычно используются специализированные бензины пониженной вязкости и с низкой температурой застывания. Стоит такой бензин дороже обычного, но в некоторых случаях его использование – неизбежная необходимость.

Еще один важный фактор, определяющий экологическую безопасность бензина, – содержание различных примесей. В основном оценивается количество соединений серы и ароматических углеводородов в бензинах. Эти вещества при сгорании образуют ядовитые соединения, которые наносят вред не только окружающей среде, но и топливной и выхлопной системе автомобиля, а также жизни и здоровью людей.

Содержание опасных примесей в бензине регламентируется соответствующими нормативными документами. Оптимальным выбором сейчас является бензин с маркировкой Евро-5, который наряду с более высококачественным топливом Евро-6 сегодня применяется в большинстве европейских стран. В России же на бензин приняты и действуют экологические стандарты Евро-4 и Евро-5.

Среди основных параметров следует отметить и испаряемость, которая также зависит от фракционного состава бензина. Этот показатель важен для климатических условий, в которых эксплуатируется автомобиль с бензиновым двигателем. Так для холодной полосы важно, чтобы показатель испаряемости был высоким. В противном случае будут неизбежно возникать проблемы с запуском двигателя. В жарком климате, наоборот, высокая испаряемость – это угроза взрывоопасности.

Параллельно испаряемости существует еще один значимый показатель – давление насыщенных паров. Оно дает дополнительное представление о фракционном составе и испаряемости топлива. Чем выше это значение, тем больше вероятность образования газовых пробок в бензиновых двигателях, что также представляет опасность из-за вероятности воспламенения и взрыва.

Как выбирать бензин

Правильно подобранное топливо – залог долгой и эффективной службы авто. При выборе мы советуем прислушиваться к рекомендации производителя конкретного автомобиля (и, соответственно, бензинового двигателя). Если в руководстве указано топливо с октановым показателем 95, то лучше использовать именно АИ-95, а не 92-й или 98-й бензины. В таком случае вы сможете быть уверены в надежности и стабильности работы авто.

Еще один важный момент, на который стоит обращать внимание, экологические параметры бензинов. Стандарты Евро – 4, 5 или 6 – гарантия того, что вы сможете не только беспрепятственно выезжать на авто за границу, но и залог долгой службы двигателя, топливной и выхлопной систем автомобиля.
К сожалению, оценить, насколько качественный бензин в конкретной АЗС сложно. Как уже упоминалось выше, ключевым фактором, что свидетельствует о невысоком качестве топлива, является наличие сильного запаха газа на заправке. Таким бензином авто лучше не заправлять.

Для проверки качества можно приобрести бензин, налив его в прозрачную емкость. Топливо должно быть прозрачным с легким бледно-желтым оттенком без осадков и примесей. Если добавить в бензин марганцовку, то качественное топливо не окрасится в розовый цвет. Появление же оттенка говорит о том, что в бензин добавлена вода.


Химическая формула бензина, состав бензина

Бензин – это продукт, полученный в результате перегонки нефти. Он представляет собой горючее с пониженными детонационными составляющими. Из сырого нефтепродукта получается пятьдесят процентов бензина, который предназначен для двигателей, а конкретно при внутреннем сгорании. Он бывают двух типов: авиационный и автомобильный. В зависимости от применения различаются физико-химические свойства бензина.

Нас сегодняшний день бензины должны соответствовать следующим критериям:

  • оптимальная испаряемость элементов;
  • групповой состав углеводородов, который обеспечивает бездетонационное образование на каждом этапе действия двигателя;
  • стабильность состава в условиях долгого хранения;
  • отсутствие побочных эффектов, оказываемых на детали.

Физико-химические свойства бензина

Свойства бензина различаются по количеству углеродов и водородов в составе. Он замерзает при шестидесяти градусах ниже нуля, но можно добиться цифры ниже (- 71). Испаряется при тридцати градусах, а повышение температуры лишь ускоряет этот процесс. Бензин производится с помощью перегонки нефтепродукта путем выборки отдельных фракций. Это самый старый способ. В двадцатом веке появились такие методы как крекинг и риформинг (преобразование в алканы и другие соединения).

Бензины легко воспламеняются, не имеют конкретного цвета, а также обладают летучестью. Кипение достигается на отрезке от тридцати до двухсот градусов. Застывает при температуре ниже шестидесяти градусов. В процессе сгорания появляется диоксид углерода и вода. Формула бензина это подтверждает (C3h21O2). Характеристики бензина, относящегося к автомобильному виду, следующие:

  • смесь должна быть однородной;
  • плотность равная 690-750 кг.м2 при плюс двадцати градусах;
  • малая вязкость, не препятствующая протеканию топлива;
  • способность испаряться. Соединение может осуществлять переход в газообразное состояние из жидкого. В автомобиле это обязательно, так как обеспечивает облегченный запуск двигателя, особенное в зимнее время года;
  • состояние давления паров. Высокие показатели давления обеспечивают интенсивность конденсации. Слишком высокое давление способно образовывать паровые пробки, которые приводят к утере мощности транспорта;
  • низкотемпературные качества, то есть свойство выдержки при низких температурах;
  • процесс сгорания смеси. Понимается скоростная реакция углеводорода и кислорода.

Химический состав бензина

Состав бензина имеет в себе соединения углерода и водорода. Но этим не ограничивается. Популярное топливо включает в себя и другие молекулы бензина. Химический состав бензина дополняют: кислород, сера, азот и свинец. Сырье дополняется присадками, которые повышают конечный продукт. Количественные составляющие этих микроэлементов определяют видовое разнообразие топлива: 92 марка, 95 марка, 98.

Нефть является основополагающим сырьем для выработки бензина. Нефть добывается из природы, содержит примеси углеводородов и других соединений. Считается ценным ископаемым. Углеводород – важный компонент нефтепродукта и природного газа. Химические составляющие нефти разнообразные и постоянно изменяются в зависимости от парафиновых. В природе известные промежуточные и смешанные типы.

Парафиновые отличаются тем, что имеют большее содержание бензина, а сера, наоборот, в меньшем количестве. Нафтеновый вид сырого нефтепродукта разительно отличается от предыдущего типа. Он содержит бензин в ограниченном количестве, а сера, мазут и асфальт превалируют.

Определение фракционного состава бензина

Физические свойства бензина имеют зависимость от такого понятия как фракционный состав. Под этим подразумевается испарительная возможность, которая считается главным показателем, учитывающимся при использовании топлива в разном климате. Производство должно получить пропорциональное соотношение фракций как тяжелых, так и легких. Полученное топливо при нагревании испаряется без проблем – это хороший показатель. За это отвечают легкие, а тяжелые способствуют оптимальной интенсивности этого испарения. Нарушение баланса приведет к паровым пробкам, и двигатель столкнется с перебоями в работе. Испарение намечается, когда происходит нагревание при высоких температурах внутри прибора.

Фракционные свойства бензинов влияют на параметры пользования. Грамотное соотношение вышеуказанных составляющих обеспечит оптимальную испаряемость при низких температурных показателях, защиту от перебоев в конструкции. Топливо имеет характеристики, которые напрямую зависят от погодных и климатических условий, то есть в жарких странах и на полярном круге в состав бензина входят отличные друг от друга элементы.

Октановое число бензина

Марка топлива полностью раскрывает молекулярную массу бензина. Допустим, АИ 92. октановое число обозначено цифрами, а буквы определяют показатель. А – это значение класса моторных. Чем выше показатель числа, тем ниже детонационные характеристики бензина. Следовательно, цилиндры и поршни будут подвергаться меньшим разрушениям. Качество бензина улучшается с повышением октанового числа.

76 и 80 топливо бензина пропало на автозаправках, так как они плохо влияют на экологию и критичны для работы агрегатов. Продолжительно эксплуатации зависит от данного показателя. Автолюбитель всегда должен обращать внимание на это число, так как это, прежде всего, влияет на работоспособность транспорта.

Бензин состоит из изооктана и гептана. Первый обладает взрывоопасностью, а второй имеет нулевую детонацию. Именно октановый показатель определяет соотношение двух составляющих топлива. При помощи определенных присадок (свинцовых) повышается это число. Но свинцовые присадки не рекомендуют применять, так как они не благоприятно действуют на двигатель. Также его повышают спиртом. Если к 92 марке долить 100 гр. названной смеси, то получится 95.

Маркировка автомобильных бензинов

Межгосударственный стандарт маркирует бензины для автомобилей с помощью трех групп знаков, которые разделятся дефисами (АИ-95-3). Буквы в начале марки говорит о том, что бензин относится к автомобильному типу, который прошел исследовательские испытания согласно ГОСТ. Октановое число также измеряется с помощью исследования. Топливо может иметь следующее число: 95, 92, 98 и так далее.

Цифры от двух до пяти указывают на классность бензина. Оно совпадает с показателем стандартов экологии, который соответствует категории «Евро». Бензин обязан соответствовать определенной серии. То есть цифра два подходит для Евро-2, а цифра три для Евро-3 и так далее.

В качестве примера можно привести марку топлива «АИ-95-4». Из названия становится понятно, что бензин относится к автомобильному классу, а октановый показатель равен 92. Буквы говорят об исследовательском методе измерения. А конечная цифра указывает на то, что топливо соответствует 4-ой экологической категории (Евро-4 –стандарт).

С 2003 г. в Российской Федерации на официальном уровне запретили производство бензина, относящегося к этилированным смесям, который считается вредным. Поэтому сегодня все топливо неэтилированное, и в маркировке это не указывается.

Детонационная стойкость бензина

Детонационная стойкость заключается в способности автомобильного топлива оказывать сопротивление такому процессу как самовоспламенение, которое может произойти при сжатии. Наивысший показатель данной характеристики обеспечивает оптимальное сгорание при каждом эксплуатационном режиме двигателя. Горение бензина как процесс имеет кардинальный характер. Сжатие рабочего состава проходит при повышенной температуре и давлении. Далее происходит окисление соединений углерода и водорода, которое набирает интенсивность после того, как смесь воспламенится.

Если соединение углерода и водорода, которые остались в части несгоревшего состава, имеет недостаточную окислительную стойкость, то начнется ускоренный и интенсивный процесс накапливания соединений перекиси. А это ведет к взрывному распаду.

Повышенная концентрация соединений, возникших посредством перекиси, становится катализатором теплового взрыва, который спровоцирует самовоспламенение бензина. Именно этот процесс, происходящий внутри активного состава, становится активатором взрывного горения остатков топлива. Это приводит к детонационному сгоранию.

Детонация, как процесс внутри двигателя, вызывает следующие последствия:

  • перегрев;
  • интенсивный износ и локальные разрушения в двигателе;
  • наличие резкого специфического звука;
  • упадок мощности;
  • увеличенный порог выхлопных дымов.

Детонация напрямую зависит от химического и физического состава используемого бензина, а также от особенностей конструкции самого двигателя. Октановое число считается основополагающим показателем детонации и ее стойкости в автомобильных бензинах.

Бензин и его свойства.


Автомобильные бензины




Топливо для бензиновых двигателей и его характеристики

Для бензиновых двигателей применяют бензин – легкое топливо, представляющее собой светлую жидкость, быстро испаряющуюся на воздухе и хорошо воспламеняющуюся. С химической точки зрения бензин является смесью лёгких углеводородов, получаемых из нефти и нефтепродуктов.
Температура кипения бензина может варьировать в достаточно широких пределах - от 33 до 205 °C (в зависимости от содержания примесей).
Бензин несколько легче дизельного топлива – его плотность составляет 0,71…0,74 г/см³, тогда как у дизтоплива этот показатель может достигать 0,85 г/см³.
При сжигании бензина выделяется значительная тепловая энергия – его теплотворная способность может превышать 10 тыс. ккал/кг.
Замерзает бензин (в отличие от дизельного топлива) при достаточно низкой температуре – примерно -70…-74 °C.

Наиболее важными свойствами бензина являются испаряемость, антидетонационная стойкость и теплота сгорания.

***

Испаряемость бензина

Испаряемость бензина характеризует условия смесеобразования и состав горючей смеси во впускной системе двигателя, склонность бензина к образованию паровых пробок в топливной системе автомобиля, а также полноту сгорания бензина и степень разжижения моторного масла бензиновыми фракциями.

Испаряемость бензина оценивается следующими комплексными и единичными показателями, определяемыми лабораторными методами: фракционным составом, давлением насыщенных паров, склонностью к образованию паровых пробок (соотношение пар-жидкость).

Испаряемость бензина должна обеспечивать оптимальный состав топливовоздушной смеси на всех режимах работы двигателя независимо от способа ее приготовления (карбюрация, впрыск).
С испаряемостью бензина связаны такие характеристики двигателя, как пуск при низких температурах, вероятность образования паровых пробок в системе питания в летний период, приемистость автомобиля, скорость прогрева двигателя, а также износ цилиндропоршневой группы и расход топлива.

Содержание тяжелых фракций бензина ограничивают, так как в определенных условиях эксплуатации они могут испаряться не полностью и попадать в цилиндры двигателя в жидком состоянии. При этом топливо в цилиндрах смывает масляную пленку, из-за чего увеличивается износ, разжижается масло, повышается расход топлива.

Давление насыщенных паров - фактор, влияющий на надежность работы топливной системы, а также на потери от испарения, загрязняющие атмосферу при хранении, транспортировании и применении бензина.

***

Детонационная стойкость бензина

Детонационная стойкость – свойство бензина, определяющее возможную степень сжатия двигателя.
Детонация представляет собой особый вид сгорания горючей смеси, протекающего с явлениями взрыва отдельных объемов смеси при чрезвычайно высоких скоростях распространения фронта пламени в камере сгорания (2000 м/с и выше). Для сравнения: при нормальном сгорании эта скорость составляет 20…40 м/с, т. е. в 50…100 раз меньше, чем при детонационном сгорании. Детонационное сгорание топлива сопровождается значительным повышением давления в зоне детонации.

При детонационном сгорании смеси в двигателе слышны резкие металлические стуки, объясняемые ударами волн высокого давления о стенки камер сгорания, цилиндров и днищ поршней и возникновением вибрации деталей.
Кроме того, наблюдаются дымный выпуск с искрами вследствие неполного сгорания топлива и закипания жидкости в системе охлаждения из-за усиленной теплоотдачи стенкам камер сгорания и цилиндров.
В результате неполного сгорания топлива, усиленной теплоотдачи и увеличения механических потерь мощность и экономичность двигателя резко снижаются.

Длительная работа двигателя при детонационном сгорании может привести не только к повышенному износу его деталей, но и к образованию крупных дефектов в виде трещин и деформации деталей или даже их разрушения. Детонация обычно возникает в случае применения топлива несоответствующего сорта, а также при перегрузке и перегреве двигателя.

Возникшая в двигателе детонация при работе автомобиля, не имеющая систематического характера, может быть устранена уменьшением нагрузки на двигатель (путем перехода на низшую передачу) и прикрытием дроссельной заслонки карбюратора.
Систематическая детонация при работе двигателя с правильно установленным зажиганием свидетельствует о недостаточно высоких антидетонационных свойствах используемого топлива.

Показателем, характеризующим антидетонационные свойства бензина, является его октановое число.

***

Октановое число бензина

Октановое число бензина определяют на специальной установке, представляющей собой одноцилиндровый двигатель с изменяемой степенью сжатия, сравнением антидетонационных свойств испытуемого бензина со свойствами эталонного топлива – приготовляемой в разных пропорциях смеси сильнодетонирующего топлива (гептана) и стойкого против детонации топлива (изооктана) – эквивалентной смеси.

При одинаковых антидетонационных свойствах эквивалентной смеси и испытуемого бензина октановое число бензина принимают равным процентному содержанию изооктана в эквивалентной смеси. Чем больше октановое число бензина, тем меньше он детонирует при сжатии и тем большую степень сжатия может иметь двигатель, работающий на этом бензине.
Октановое число бензина является очень важным свойством топлива, поскольку, как мы знаем из теплотехники, от степени сжатия зависят многие динамические и экономические характеристики двигателя внутреннего сгорания, в том числе – его КПД. Т. е. чем выше степень сжатия в цилиндрах двигателя, тем эффективнее протекают процессы преобразования тепловой энергии в механическую.

Для повышения октанового числа бензина и уменьшения возможности его детонации в двигателях с повышенной степенью сжатия в некоторых сортах бензина используют специальные добавки – антидетонаторы. Наиболее сильным из применяемых антидетонаторов является этиловая жидкость, добавляемая к бензину в небольших количествах. Бензин с добавками этиловой жидкости называют этилированным. Этилированный бензин ядовит, поэтому в него добавляют красящее вещество для отличия от обычного бензина. Обращаться с этилированным бензином следует очень осторожно, соблюдая правила техники безопасности. В последнее время производство этилированного бензина в России запрещено.

Для автомобилей с карбюраторными двигателями применяют бензин марок: АИ-92, АИ-95, АИ-98. Буква «А» в маркировке бензина означает «автомобильный», буква «И» - метод определения октанового числа (исследовательский), цифры – октановое число бензина.

***



Оптимальный состав горючей смеси

Процесс смесеобразования заключается в смешивании бензина в распыленном состоянии с воздухом в определенной пропорции. Горючая смесь должна удовлетворять двум основным требованиям:

  • при воспламенении в цилиндре двигателя смесь должна сгорать очень быстро (в течение короткого промежутка времени), чтобы обеспечить соответствующее давление газов на поршень в начале рабочего хода;
  • бензин, входящий в состав горючей смеси, должен сгорать полностью, чтобы выделялось наибольшее количество теплоты, и работа двигателя была наиболее экономичной. Неполное сгорание топлива ведет к его выбросу в систему выпуска отработавших газов, что приводит к его неоправданному перерасходу. Кроме того, двигатель сильно дымит, а на стенках цилиндров интенсивно откладывается копоть и сажа.

Подробнее процессы горения топлива рассматриваются на отдельной странице сайта.

Для быстрого и полного сгорания горючей смеси необходимо, чтобы бензин с воздухом смешивались в строго определенной массовой пропорции, было очень мелко распылен и хорошо перемешан с воздухом. В этом случае каждая мельчайшая частица бензина будет окружена частицами кислорода в требуемом для полного окисления количестве. Не следует забывать, что горение – это процесс окисления топлива, т. е. его химическое взаимодействие с кислородом, сопровождающееся выделением тепловой энергии.

Состав горючей смеси в зависимости от соотношения топлива и воздуха в ней характеризуют специальным показателем – коэффициентом избытка воздуха α, представляющим собой отношение действительного количества воздуха в смеси (в кг), приходящегося на 1 кг топлива, к теоретически необходимому количеству, обеспечивающему полное сгорание 1 кг топлива.

Как указывалось в предыдущей статье, в зависимости от соотношения масс бензина и воздуха различают нормальную, обедненную, обогащенную и богатую горючую смесь.

Нормальной называют смесь, в которой на 1 кг бензина приходится 15 кг воздуха – теоретически необходимое количество воздуха для полного сгорания бензина. Коэффициент α для нормальной горючей смеси равен единице.
Соотношение 1:15 является примерным (обычно системы питания бензиновых двигателей регулируются на нормальный состав 1:14,7), поскольку с точки зрения химии количество кислорода в смеси должно обеспечивать окисление водорода и углерода, содержащихся в данной марке бензина. В процессе сгорания участвует не только кислород воздуха, но и кислород, в том или ином количестве содержащийся в самом топливе. Если учесть этот факт, а также то, что в разных марках и сортах бензина может содержаться разное массовое количество водорода и углерода (основных теплотворных компонентов топлива), то можно понять, что состав нормальной смеси для разных сортов бензина будет несколько отличаться.

Обедненной (α = 1,1…1,15) называют смесь, в которой имеется незначительный избыток воздуха по сравнению с нормальной смесью, а бедной (α > 1,2) – смесь, в которой воздуха существенно больше, чем необходимо для полного сгорания бензина.

Обогащенная смесь (α = 0,85…0,9) имеет недостаток воздуха – до 13 кг на 1 кг топлива. Скорость сгорания обогащенной смеси возрастает, в результате чего давление газов в цилиндрах двигателя увеличивается. Такая смесь позволяет развить двигателю максимальную мощность, но при этом общий расход топлива увеличивается из-за неполноты его сгорания.

Богатая смесь имеет значительный недостаток воздуха (α < 0,85). В такой смеси из-за нехватки кислорода бензин сгорает не полностью, что вызывает снижение мощности двигателя при значительном расходе топлива.
В результате догорания несгоревшего топлива в выпускном трубопроводе возникают хлопки, что является внешним признаком сильного обогащения рабочей смеси. При чрезмерно обогащенной смеси, когда содержание воздуха достигает 5 кг на 1 кг бензина (α < 0,4), смесь совсем не воспламеняется.

Анализируя свойства горючей смеси разных составов, можно сделать следующие выводы:

Если двигатель по условиям работы не должен развивать полно мощности (при средних нагрузках), то самой выгодной является обедненная смесь, поскольку расход топлива при этом значительно снижается. Некоторое уменьшение мощности двигателя в этом случае при его работе с неполной нагрузкой значения не имеет.

При больших нагрузках целесообразно работать на обогащенной смеси, так как двигатель при этом развивает наибольшую мощность. Несколько повышенный расход топлива вследствие кратковременности работы двигателя на данном режиме не вызывает заметного увеличения общего расхода топлива за большой период времени.

Работа двигателя на бедной или богатой смесях, вызывающих снижение мощности и экономичности двигателя, недопустима.

***

Принцип работы простейшего карбюратора


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Физико-химические свойства бензина реферат по технологии

Реферат Дисциплина: материаловедение Тема: Физико-химические свойства бензина 2009 Применение бензина с высокой температурой конца перегонки приводит к повышенному износу цилиндров и поршневой группы вследствие смывания масла со стенок цилиндров и его разжижения в картере, а также вследствие неравномерного распределения рабочей смеси по цилиндрам. Давление насыщенных паров характеризует испаряемость головных фракций бензинов, и в первую очередь их пусковые качества. Чем выше давление насыщенных паров бензина, тем легче он испаряется и тем быстрее происходит пуск и нагрев двигателя. Однако если бензин имеет слишком высокое давление насыщенных паров, то он может испаряться до смесительной камеры карбюратора. Это приведет к ухудшению наполнения цилиндров, возможному образованию паровых пробок в системе питания и снижению мощности, перебоям и даже остановке двигателя. Поэтому давление насыщенных паров бензина устанавливается таким, чтобы при хорошем его испарении не образовывались паровые пробки в системе питания двигателя. При оценке испаряемости бензина необходимо наряду с давлением насыщенных паров учитывать его фракционный состав. Октановое число характеризует детонационную стойкость бензина, являющуюся важнейшим его эксплуатационным качеством. Детонационная стойкость бензина оценивается октановым числом, указываемым в стандартах или технических условиях в числе важнейших физико-химических свойств бензина. Показатель октанового числа входит и маркировку бензина. Октановое число бензина численно равно процентному (по объему) содержанию изооктана в такой смеси с нормальным гептаном, которая равноценна по детонационной стойкости испытуемому бензину. Чем выше октановое число, тем более стоек бензин перед детонацией и тем лучшими эксплуатационными качествами он обладает. При сопоставимых условиях бензины с более легким фракционным составом имеют более высокое октановое число. Лучше противостоят детонации бензины, в которых преобладают ароматические углеводороды, затем следуют нафтеновые, и наименьшая детонационная стойкость у бензинов, состоящих в основном из нормальных парафиновых углеводородов. Наличие в бензине сернистых соединений и смолистых веществ понижает его октановое число, поэтому содержание их в бензине строго контролируется. Детонация чаще всего возникает при работе прогретого двигателя на полной нагрузке при небольшом числе oборотов коленчатого вала. Возникновению детонации способствует ухудшение охлаждения двигателя (нагар, накипь, пробуксовка ремня вентилятора и др.), увеличение открытия дросселя, уменьшение числа оборотов коленчатого вала двигателя, увеличение угла опережения зажигания. Изменяя режим работы двигателя, можно предотвратить или прекратить уже начавшуюся детонацию Октановое число бензина повышается путем добавления к бензину высокооктановых компонентов или присадок-антидетонаторов. Механические примеси в бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя, увеличивает износ цилиндров и поршневых колец, Наличие воды в бензине также исключено. Она опасна прежде всего при температуре ниже 0°С, так как, замерзая, образует кристаллы, которые могут преградить доступ бензина в цилиндры двигателя; она способствует осмолению бензина, а также вызывает коррозию топливных баков и резервуаров. На безотказную работу двигателя, развиваемую им мощность и расход бензина кроме рассмотренных свойств оказывают некоторое влияние и другие физико-химические свойства. Так, развиваемая двигателем мощность зависит от теплоты сгорания топлива. В то же время у применяемых марок бензинов теплота сгорания практически различается незначительно. Для автомобильных бензинов не нормируются вязкость и плотность. Фактическое отклонение вязкости и плотности бензинов одной марки не вызывает необходимости изменять регулировку и режим работы двигателя для разных партий бензина. Однако в этом может возникнуть необходимость при переходе на летний или зимний период эксплуатации или на бензин другой марки. Плотностью бензина называется его масса, содержащаяся в единице объема. Чаще всего плотность определяется нефтеденсиметром при 20°С. С понижением температуры вязкость и плотность возрастают. Увеличение вязкости уменьшает пропускную способность жиклеров, а с повышением плотности увеличивается количество одного и того же объема бензина, поступающего через жиклеры, Автохозяйства получают бензин с нефтебаз в весовых единицах (кг), а при заправке автомобилей через заправочные станции (бензоколонки) замер производится в объемных (л). Поэтому, зная плотность, производят пересчет весовых единиц (единиц массы) в объемные. Кроме перечисленных физико-химических свойств на износ двигателя и на затраты по уходу за автомобилем влияет также содержание в бензине минеральных и органических кислот, щелочей, смол, серы и ее соединений. Водорастворимые (минеральные) кислоты и щелочи коррозируют металлы, и их присутствие в бензине вызывает интенсивный износ деталей двигателя. В бензине в результате некачественной очистки могут оказаться серная кислота и щелочь. Стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и описанию клапанов, самовоспламенению рабочей смеси, работе с детонацией и другим неисправностям Количество смол в бензине непостоянно, оно увеличивается за счет полимеризации непредельных углеводородов и окисления их кислородом воздуха. Процесс усиливается при повышенной температуре и хорошем доступе воздуха. Кроме смол, которые могут образовываться, различают фактические смолы, т. е. те, которые уже имелись и бензине или же образовались при испытании. Содержание фактических смол в бензине строго ограничивается и устанавливается предельное их содержание на месте производства и на месте потребления, т. е. на нефтебазе, в момент получения бензина. Содержание фактических смол определяется прибором, в котором при температуре 150 ± 3°С производится выпаривание 25 мл бензина, омываемого струей горячего воздуха. Полученный после выпаривания остаток взвешивается (в мг) и увеличивается в 4 раза. Первоначальные качества бензина вследствие происходящих в них физико-химических процессов постепенно ухудшаются. Особенно это характерно для бензинов термического крекинга. Сохранение первоначальных качеств бензина в процессе транспортирования, хранения и применения зависит от его физической и химической стабильности. Окисление и осмоление возрастает с повышением температуры бензина. Поэтому все меры, которые способствуют понижению температуры бензина при хранении и транспортировании, будут уменьшать его окисление и осмоление. Понижение температуры также уменьшает потери легкоиспаряемых углеводородов. Окислению и осмолению способствует контакт бензина с воздухом, поэтому он быстрее осмоляется при неполном заполнении тары. Процесс окисления является самоускоряющимся и поэтому бензин, залитый в тару, не очищенную от остатков старого осмолившегося бензина, осмоляется преждевременно. Ускоряют образование смол ржавчина и загрязнение тары, нежелательно попадание в бензин воды, О химической стабильности бензина судят по величине индукционного периода. Токсичность является важнейшей характеристикой бензина. В связи с этим чрезвычайно важно, чтобы ни сам бензин, ни его пары и нагар не представляли повышенной опасности для здоровья лиц, соприкасающихся с ними. Реферат Дисциплина: материаловедение Тема: Физико-химические свойства бензина 2009 Применение бензина с высокой температурой конца перегонки приводит к повышенному износу цилиндров и поршневой группы вследствие смывания масла со стенок цилиндров и его разжижения в картере, а также вследствие неравномерного распределения рабочей смеси по цилиндрам. Давление насыщенных паров характеризует испаряемость головных фракций бензинов, и в первую очередь их пусковые качества. Чем выше давление насыщенных паров бензина, тем легче он испаряется и тем быстрее происходит пуск и нагрев двигателя. Однако если бензин имеет слишком высокое давление насыщенных паров, то он может испаряться до смесительной камеры карбюратора. Это приведет к ухудшению наполнения цилиндров, возможному образованию паровых пробок в системе питания и снижению мощности, перебоям и даже остановке двигателя. Поэтому давление насыщенных паров бензина устанавливается таким, чтобы при хорошем его испарении не образовывались паровые пробки в системе питания двигателя. При оценке испаряемости бензина необходимо наряду с давлением насыщенных паров учитывать его фракционный состав. Октановое число характеризует детонационную стойкость бензина, являющуюся важнейшим его эксплуатационным качеством. Детонационная стойкость бензина оценивается октановым числом, указываемым в стандартах или технических условиях в числе важнейших физико-химических свойств бензина. Показатель октанового числа входит и маркировку бензина. Октановое число бензина численно равно процентному (по объему) содержанию изооктана в такой смеси с нормальным гептаном, которая равноценна по детонационной стойкости испытуемому бензину. Чем выше октановое число, тем более стоек бензин перед детонацией и тем лучшими эксплуатационными качествами он обладает. При сопоставимых условиях бензины с более легким фракционным составом имеют более высокое октановое число. Лучше противостоят детонации бензины, в которых преобладают ароматические углеводороды, затем следуют нафтеновые, и наименьшая детонационная стойкость у бензинов, состоящих в основном из нормальных парафиновых углеводородов. Наличие в бензине сернистых соединений и смолистых веществ понижает его октановое число, поэтому содержание их в бензине строго контролируется. Детонация чаще всего возникает при работе прогретого двигателя на полной нагрузке при небольшом числе oборотов коленчатого вала. Возникновению детонации способствует ухудшение охлаждения двигателя (нагар, накипь, пробуксовка ремня вентилятора и др.), увеличение открытия дросселя, уменьшение числа оборотов коленчатого вала двигателя, увеличение угла опережения зажигания. Изменяя режим работы двигателя, можно предотвратить или прекратить уже начавшуюся детонацию Октановое число бензина повышается путем добавления к бензину высокооктановых компонентов или присадок-антидетонаторов. Механические примеси в бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя, увеличивает износ цилиндров и поршневых колец, Наличие воды в бензине также исключено. Она опасна прежде всего при температуре ниже 0°С, так как, замерзая, образует кристаллы, которые могут преградить доступ бензина в цилиндры двигателя; она способствует осмолению бензина, а также вызывает коррозию топливных баков и резервуаров. На безотказную работу двигателя, развиваемую им мощность и расход бензина кроме рассмотренных свойств оказывают некоторое влияние и другие физико-химические свойства. Так, развиваемая двигателем мощность зависит от теплоты сгорания топлива. В то же время у применяемых марок бензинов теплота сгорания практически различается незначительно. Для автомобильных бензинов не нормируются вязкость и плотность. Фактическое отклонение вязкости и плотности бензинов одной марки не вызывает необходимости изменять регулировку и режим работы двигателя для разных партий бензина. Однако в этом может возникнуть необходимость при переходе на летний или зимний период эксплуатации или на бензин другой марки. Плотностью бензина называется его масса, содержащаяся в единице объема. Чаще всего плотность определяется нефтеденсиметром при 20°С. С понижением температуры вязкость и плотность возрастают. Увеличение вязкости уменьшает пропускную способность жиклеров, а с повышением плотности увеличивается количество одного и того же объема бензина, поступающего через жиклеры, Автохозяйства получают бензин с нефтебаз в весовых единицах (кг), а при заправке автомобилей через заправочные станции (бензоколонки) замер производится в объемных (л). Поэтому, зная плотность, производят пересчет весовых единиц (единиц массы) в объемные. Кроме перечисленных физико-химических свойств на износ двигателя и на затраты по уходу за автомобилем влияет также содержание в бензине минеральных и органических кислот, щелочей, смол, серы и ее соединений. Водорастворимые (минеральные) кислоты и щелочи коррозируют металлы, и их присутствие в бензине вызывает интенсивный износ деталей двигателя. В бензине в результате некачественной очистки могут оказаться серная кислота и щелочь. Стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и описанию клапанов, самовоспламенению рабочей смеси, работе с детонацией и другим неисправностям Количество смол в бензине непостоянно, оно увеличивается за счет полимеризации непредельных углеводородов и окисления их кислородом воздуха. Процесс усиливается при повышенной температуре и хорошем доступе воздуха. Кроме смол, которые могут образовываться, различают фактические смолы, т. е. те, которые уже имелись и бензине или же образовались при испытании. Содержание фактических смол в бензине строго ограничивается и устанавливается предельное их содержание на месте производства и на месте потребления, т. е. на нефтебазе, в момент получения бензина. Содержание фактических смол определяется прибором, в котором при температуре 150 ± 3°С производится выпаривание 25 мл бензина, омываемого струей горячего воздуха. Полученный после выпаривания остаток взвешивается (в мг) и увеличивается в 4 раза. Первоначальные качества бензина вследствие происходящих в них физико-химических процессов постепенно ухудшаются. Особенно это характерно для бензинов термического крекинга. Сохранение первоначальных качеств бензина в процессе транспортирования, хранения и применения зависит от его физической и химической стабильности. Окисление и осмоление возрастает с повышением температуры бензина. Поэтому все меры, которые способствуют понижению температуры бензина при хранении и транспортировании, будут уменьшать его окисление и осмоление. Понижение температуры также уменьшает потери легкоиспаряемых углеводородов. Окислению и осмолению способствует контакт бензина с воздухом, поэтому он быстрее осмоляется при неполном заполнении тары. Процесс окисления является самоускоряющимся и поэтому бензин, залитый в тару, не очищенную от остатков старого осмолившегося бензина, осмоляется преждевременно. Ускоряют образование смол ржавчина и загрязнение тары, нежелательно попадание в бензин воды, О химической стабильности бензина судят по величине индукционного периода. Токсичность является важнейшей характеристикой бензина. В связи с этим чрезвычайно важно, чтобы ни сам бензин, ни его пары и нагар не представляли повышенной опасности для здоровья лиц, соприкасающихся с ними. Определение качества и марки бензина Рассмотренные физико-химические свойства бензинов, которые указываются в ГОСТ и технических условиях, достаточно полно характеризуют их эксплуатационные качества. Для определения качества полученного бензина необходимо правильно отобрать пробу. Для отбора проб бензина используют пробоотборники или приспособления с бутылкой. После опускания на необходимую глубину открывается крышка пробоотборника или пробка бутылки и после прекращения выделения пузырьков воздуха извлекают пробоотборник (бутылку) с пробой бензина. Когда нет возможности провести лабораторный анализ и важно ориентировочно определить возможность применения имеющегося бензина, внешним осмотром определяют цвет, прозрачность, а также простейшими способами проверяют смолистость и испаряемость бензина. Бензины «Нормаль 80», «Регулятор 91 и 92», «Премиум 95» и «Супер 98» неэтилированные, на цвет чистые прозрачные, бензин А-76 — желтого, а АИ-95 —- бледно-желтого цвета. Бензины А-80Э А-92, А-96 — бесцветны или бледно-желтого цвета. Для проверки испаряемости на белую бумагу стеклянной палочкой наносят каплю топлива и по истечении 1—2 мин осматривают остаток после испарения. После испарения бензина А-76 остается незначительное пятно, после испарения бензина остальных марок следок практически не остается. Бензин, содержащий смолистые вещества, оставляет на белой бумаге кольца желтого или коричневого цвета.

Физико-химические свойства бензина | reshebniki-online.com

Реферат

Дисциплина: материаловедение

Тема: Физико-химические свойства бензина

2009

Введение

Отечественные легковые автомобили и автобусы, а также большинство грузовых автомобилей имеют карбюраторные двигатели. Топливом для этих двигателей служит автомобильный бензин.

Основные технико-экономические требования к бензинам сводятся к следующему:

— бензин должен обеспечивать безотказную работу автомобильного двигателя на всех режимах и во всех практически встречающихся условиях эксплуатации;

— двигатель должен развивать предусмотренную для него мощность при минимальном расходе бензина;

— бензин должен обеспечивать минимальные износы двигателя, трудовые и материальные затраты на ремонт и техническое обслуживание двигателя;

— качество бензина не должно ухудшаться при транспортировании, хранении и использовании;

— обращение с бензином не должно вызывать повышенной опасности для персонала, занимающегося эксплуатацией, техническим обслуживанием и ремонтом автомобилей.

Исходя из названных выше требований устанавливается соответствие бензина данным конкретным условиям и возможность его применения.

Физико-химические свойства

Соответствие бензина перечисленным требованиям зависит, прежде всего, от его физико-химических свойств, которые определяются рядом показателей. Основные показатели физико-химических свойств бензинов указываются в стандарте или в технических условиях на бензин данной марки.

Приведенные показатели могли бы значительно изменяться в зависимости от природы нефти, способов ее переработки и очистки бензина. Стандартизация основных показателей физико-химических свойств обеспечивает одно и то же качество бензина данной марки.

Фракционный состав, давление насыщенных паров, детонационная стойкость, а также содержание механических примесей и воды в бензине определяют способность данного бензина образовывать бензино-воздушную смесь нужного состава при различных условиях работы двигателя, в том числе при низких и высоких температурах, минимальных и максимальных числах оборотов коленчатого вала, при приоткрытом или полностью открытом дросселе, т. е. определяют карбюрационные качества бензина, от которых зависит безотказность работы двигателя.

От них зависят также быстрота и полнота сгорания бензино-воздушной смеси в цилиндрах двигателя, возможность работы двигателя на наиболее экономичных режимах, т. е, мощность, развиваемая двигателем, и количество расходуемого при этом бензина.

Фракционный состав устанавливает зависимость между количеством топлива (в % по объему) и температурой, при которой оно перегоняется. Для характеристики фракционного состава в стандарте указывается температура, при которой перегоняется 10, 50 и 90 % бензина, а также температура конца его перегонки, иногда и начала.

Применение бензина с высокой температурой конца перегонки приводит к повышенному износу цилиндров и поршневой группы вследствие смывания масла со стенок цилиндров и его разжижения в картере, а также вследствие неравномерного распределения рабочей смеси по цилиндрам.

Давление насыщенных паров характеризует испаряемость головных фракций бензинов, и в первую очередь их пусковые качества. Чем выше давление насыщенных паров бензина, тем легче он испаряется и тем быстрее происходит пуск и нагрев двигателя. Однако если бензин имеет слишком высокое давление насыщенных паров, то он может испаряться до смесительной камеры карбюратора.

Это приведет к ухудшению наполнения цилиндров, возможному образованию паровых пробок в системе питания и снижению мощности, перебоям и даже остановке двигателя.

Поэтому давление насыщенных паров бензина устанавливается таким, чтобы при хорошем его испарении не образовывались паровые пробки в системе питания двигателя.

При оценке испаряемости бензина необходимо наряду с давлением насыщенных паров учитывать его фракционный состав.

Октановое число характеризует детонационную стойкость бензина, являющуюся важнейшим его эксплуатационным качеством.

Детонационная стойкость бензина оценивается октановым числом, указываемым в стандартах или технических условиях в числе важнейших физико-химических свойств бензина. Показатель октанового числа входит и маркировку бензина. Октановое число бензина численно равно процентному (по объему) содержанию изооктана в такой смеси с нормальным гептаном, которая равноценна по детонационной стойкости испытуемому бензину.

Чем выше октановое число, тем более стоек бензин перед детонацией и тем лучшими эксплуатационными качествами он обладает.

При сопоставимых условиях бензины с более легким фракционным составом имеют более высокое октановое число. Лучше противостоят детонации бензины, в которых преобладают ароматические углеводороды, затем следуют нафтеновые, и наименьшая детонационная стойкость у бензинов, состоящих в основном из нормальных парафиновых углеводородов.

Наличие в бензине сернистых соединений и смолистых веществ понижает его октановое число, поэтому содержание их в бензине строго контролируется.

Детонация чаще всего возникает при работе прогретого двигателя на полной нагрузке при небольшом числе oборотов коленчатого вала. Возникновению детонации способствует ухудшение охлаждения двигателя (нагар, накипь, пробуксовка ремня вентилятора и др.), увеличение открытия дросселя, уменьшение числа оборотов коленчатого вала двигателя, увеличение угла опережения зажигания.

Изменяя режим работы двигателя, можно предотвратить или прекратить уже начавшуюся детонацию

Октановое число бензина повышается путем добавления к бензину высокооктановых компонентов или присадок-антидетонаторов.

Механические примеси в бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя, увеличивает износ цилиндров и поршневых колец,

Наличие воды в бензине также исключено. Она опасна прежде всего при температуре ниже 0°С, так как, замерзая, образует кристаллы, которые могут преградить доступ бензина в цилиндры двигателя; она способствует осмолению бензина, а также вызывает коррозию топливных баков и резервуаров.

На безотказную работу двигателя, развиваемую им мощность и расход бензина кроме рассмотренных свойств оказывают некоторое влияние и другие физико-химические свойства. Так, развиваемая двигателем мощность зависит от теплоты сгорания топлива. В то же время у применяемых марок бензинов теплота сгорания практически различается незначительно.

Для автомобильных бензинов не нормируются вязкость и плотность. Фактическое отклонение вязкости и плотности бензинов одной марки не вызывает необходимости изменять регулировку и режим работы двигателя для разных партий бензина. Однако в этом может возникнуть необходимость при переходе на летний или зимний период эксплуатации или на бензин другой марки.

Плотностью бензина называется его масса, содержащаяся в единице объема. Чаще всего плотность определяется нефтеденсиметром при 20°С. С понижением температуры вязкость и плотность возрастают. Увеличение вязкости уменьшает пропускную способность жиклеров, а с повышением плотности увеличивается количество одного и того же объема бензина, поступающего через жиклеры,

Автохозяйства получают бензин с нефтебаз в весовых единицах (кг), а при заправке автомобилей через заправочные станции (бензоколонки) замер производится в объемных (л). Поэтому, зная плотность, производят пересчет весовых единиц (единиц массы) в объемные.

Кроме перечисленных физико-химических свойств на износ двигателя и на затраты по уходу за автомобилем влияет также содержание в бензине минеральных и органических кислот, щелочей, смол, серы и ее соединений.

Водорастворимые (минеральные) кислоты и щелочи коррозируют металлы, и их присутствие в бензине вызывает интенсивный износ деталей двигателя. В бензине в результате некачественной очистки могут оказаться серная кислота и щелочь. Стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и щелочей. Поэтому бензин подвергают качественной проверке на нейтральность, чтобы установить его соответствие требованиям стандарта и части содержания в нем водорастворимых кислот и щелочей.

Для этой цели бензин тщательно перемешивают с таким же количеством дистиллированной воды и после отстоя йодную вытяжку сливают в две пробирки, в которые соответственно добавляют по 1—2 капли индикаторов метилоранжа и фенолфталеина. Если в бензине присутствует кислота, то при добавлении к водной вытяжке метилоранжа она окрашивается в оранжево-красный цвет, если щелочь — то при добавлении фенолфталеина ее цвет становится розовым или красным.

Органические (высокомолекулярные нафтеновые нерастворимые в воде) кислоты коррозируют металлы значительно слабее, чем минеральные, В основном, они представляют опасность для цветных металлов, и в первую очередь для свинца и меди. Железо, например, поддастся коррозии под действием органических кислот в десятки раз слабее, чем свинец и медь. Поэтому органические кислоты в бензине приводят к ускоренному износу вкладышей; коренных шатунных подшипников коленчатого вала,, втулок верхней головки шатуна и других деталей из цветных металлов (кроме алюминиевых).

Органические кислоты могут вызвать закупорку топливопроводов системы питания в результате попадания в них смол, вызванных наличием кислоты и продуктов коррозии.

Содержание органических кислот в автомобильных бензинах строго ограничивается и оценивается по количеству едкого калия (КОН) в мг, требующегося для нейтрализации кислот, находящихся в 300-м3 бензина. Для этой цели 50 см3 бензина кипятят в смеси с таким, же количеством нейтрализованного этилового (винного) спирта с добавкой нескольких капель индикатора нитрозинового желтого для извлечения из бензина органических кислот и затем нейтрализуют горячую смесь спиртовым раствором едкого калия до тех пор, пока ее цвет не начнет переходить из желтого в зеленый.

Кислотность бензинов не должна превышать 3 мг/100 см3 .

Особой коррозионной, агрессивностью отличаются активные сернистые соединения, к которым относятся элементарная сера (S), сероводород (H2 S) и меркаптаны (R-S-H). Присутствие активной серы в бензине не допускается. Неактивные сернистые соединения вызывают коррозию только при их сгорании вместе с бензином. При этом образуются газы вызывающие коррозию деталей двигателя. Кроме того, эти газы, проникая в картер двигателя и соприкасаясь с конденсировавшимися парами воды и кислородом воздуха, образуют сильно коррозирующие серную и сернистую кислоты, которые окисляют масло и вызывают износ деталей. Некоторое количество неактивной серы в бензине все же допускается, так как избавиться от нее трудно, особенно при переработке сернистых нефтей. Так, содержание серы стандартом ограничено до G.,00i —ОД %. Проверка -присутствия в бензине активной .серы производится качественной пробой путем наблюдения за поверхностью медной отполированной пластинки до и после пребывания ее в течение 3 ч в бензине, подогретом до температуры 50 ± 2°С, или в течение 18 мин при 100С. Пластинка не должна покрываться черными, тёмно - коричневыми и серо-стальными пятнами и налетами.

Количество неактивной серы в бензине определяется так называемым ламповым методом.

Смолы в бензине образуют нерастворимые липкие, вязкие осадки темного цвета, которые отлагаются на стенках топливных баков, топливопроводов, в карбюраторе, во впускном трубопроводе, камере сгорания, на стержнях и тарелках впускных клапанов и т. д. Под действием высокой температуры смолистые образования коксуются и превращаются в нагар. Осадки смолы ухудшают подачу бензина в цилиндры двигателя, а иногда и полностью нарушают ее, превратившись в нагар, приводят к описанию клапанов, самовоспламенению рабочей смеси, работе с детонацией и другим неисправностям Количество смол в бензине непостоянно, оно увеличивается за счет полимеризации непредельных углеводородов и окисления их кислородом воздуха. Процесс усиливается при повышенной температуре и хорошем доступе воздуха.

Кроме смол, которые могут образовываться, различают фактические смолы, т. е. те, которые уже имелись и бензине или же образовались при испытании. Содержание фактических смол в бензине строго ограничивается и устанавливается предельное их содержание на месте производства и на месте потребления, т. е. на нефтебазе, в момент получения бензина. Содержание фактических смол определяется прибором, в котором при температуре 150 ± 3°С производится выпаривание 25 мл бензина, омываемого струей горячего воздуха. Полученный после выпаривания остаток взвешивается (в мг) и увеличивается в 4 раза.

Первоначальные качества бензина вследствие происходящих в них физико-химических процессов постепенно ухудшаются. Особенно это характерно для бензинов термического крекинга.

Сохранение первоначальных качеств бензина в процессе транспортирования, хранения и применения зависит от его физической и химической стабильности.

Окисление и осмоление возрастает с повышением температуры бензина. Поэтому все меры, которые способствуют понижению температуры бензина при хранении и транспортировании, будут уменьшать его окисление и осмоление. Понижение температуры также уменьшает потери легкоиспаряемых углеводородов.

Окислению и осмолению способствует контакт бензина с воздухом, поэтому он быстрее осмоляется при неполном заполнении тары.

Процесс окисления является самоускоряющимся и поэтому бензин, залитый в тару, не очищенную от остатков старого осмолившегося бензина, осмоляется преждевременно.

Ускоряют образование смол ржавчина и загрязнение тары, нежелательно попадание в бензин воды, О химической стабильности бензина судят по величине индукционного периода.

Токсичность является важнейшей характеристикой бензина.

В связи с этим чрезвычайно важно, чтобы ни сам бензин, ни его пары и нагар не представляли повышенной опасности для здоровья лиц, соприкасающихся с ними.

Определение качества и марки бензина

Рассмотренные физико-химические свойства бензинов, которые указываются в ГОСТ и технических условиях, достаточно полно характеризуют их эксплуатационные качества. Для определения качества полученного бензина необходимо правильно отобрать пробу. Для отбора проб бензина используют пробоотборники или

приспособления с бутылкой. После опускания на необходимую глубину открывается крышка пробоотборника или пробка бутылки и после прекращения выделения пузырьков воздуха извлекают пробоотборник (бутылку) с пробой бензина.

Когда нет возможности провести лабораторный анализ и важно ориентировочно определить возможность применения имеющегося бензина, внешним осмотром определяют цвет, прозрачность, а также простейшими способами проверяют смолистость и испаряемость бензина.

Бензины «Нормаль 80», «Регулятор 91 и 92», «Премиум 95» и «Супер 98» неэтилированные, на цвет чистые прозрачные, бензин А-76 — желтого, а АИ-95 —- бледно-желтого цвета. Бензины А-80Э А-92, А-96 — бесцветны или бледно-желтого цвета.

Для проверки испаряемости на белую бумагу стеклянной палочкой наносят каплю топлива и по истечении 1—2 мин осматривают остаток после испарения. После испарения бензина А-76 остается незначительное пятно, после испарения бензина остальных марок следок практически не остается. Бензин, содержащий смолистые вещества, оставляет на белой бумаге кольца желтого или коричневого цвета.

Показатели физико-химических свойств бензина, характеризующие его эксплуатационные качества

Категория:

   Автомобильные эксплуатационные материалы

Публикация:

   Показатели физико-химических свойств бензина, характеризующие его эксплуатационные качества

Читать далее:



Показатели физико-химических свойств бензина, характеризующие его эксплуатационные качества

Соответствие бензина перечисленным выше технико-экономическим требованиям зависит прежде всего от его физико-химических свойств, которые определяются рядом показателей.

Приведенные показатели могли бы значительно изменяться в зависимости от природы нефти, способов ее переработки, очистки бензина и добавляемых к нему присадок. Стандартизация основных показателей физико-химических свойств обеспечивает одно и то же качество бензина данной марки.

По каждому из показателей установлены количественные значения, определяемые стандартными методами, что гарантирует полную сопоставимость результатов испытаний.

Рекламные предложения на основе ваших интересов:

Соответствие бензина тому или иному технико-экономическому требованию характеризуется не одним, а несколькими показателями его физико-химических свойств. В то же время в ряде случаев от одного и того же показателя физико-химических свойств зависит соответствие нескольким технико-экономическим требованиям.

Свойства бензина, влияющие на безотказную работу двигателя

Фракционный состав, давление насыщенных паров, а также содержание механических примесей и воды в бензине определяют способность данного бензина образовывать однородную бензино-воздуш-ную смесь нужного состава при различных условиях работы двигателя, в том числе при низких и высоких температурах, минимальной и максимальной частоте вращения коленчатого вала, при прикрытом и полностью открытом дросселе, т. е. определяют карбюрационньге качества бензина, от которых зависит безотказность работы двигателя.

От них зависит также быстрота и полнота сгорания бензино-воздушной смеси в цилиндрах двигателя, т. е. мощность, развиваемая двигателем, и количество расходуемого при этом бензина.

Фракционный состав устанавливает зависимость между количеством топлива (в процентах по объему) и температурой, при которой оно перегоняется. Фракционный состав позволяет судить о полноте испарения бензина в процессе карбюрации. От испаряемости бензина зависит качество бензино-воздушной смеси, ее однородность и состав. Время, за которое должен испариться бензин, незначительно и для современных двигателей, имеющих большую частоту вращения коленчатого вала, составляет примерно 0,02 с. Поэтому, чтобы за столь короткое время весь бензин, поступающий в цилиндры двигателя,, мог превратиться из жидкости в пар, он должен обладать высокой испаряемостью и для этого распыллваться на возможно мелкие частички.

Для характеристики фракционного состава в стандарте указывается температура, при которой перегоняется 10,50 и 90% бензина, а также температура конца его перегонки. В некоторых случаях указывается температура начала перегонки. Кроме того, ограничивается количество бензина, которое не перегоняется (остаток в колбе), и количество бензина, которое улетучивается в процессе перегонки.

При высокой температуре перегонки 10% бензина затрудняется пуск холодного двигателя вследствие того, что рабочая смесь будет слишком обеднена, так как основное количество бензина будет попадать в цилиндры в жидком виде.

Однако, если бензин имеет слишком низкие температуры начала перегонки и перегонки 10%, то при горячем двигателе и особенно в жаркое время в системе питания могут испаряться наиболее низко-кипящие углеводороды, образуя пары, объем которых в 150—200 раз больше объема бензина. При этом горючая смесь обедняется, что вызывает перебои или остановку двигателя, а также создает затруднения при пуске прогретого двигателя. Это явление внешне проявляется так же, как и в случае засорения топливной системы, поэтому получило название «паровой пробки».

После пуска двигателя интенсивность его прогрева, устойчивость работы на малой частоте вращения коленчаюго вала и приемистость (интенсивность разгона автомобиля при полностью открытом дросселе) зависят главным образом от температуры перегонки 50% бензина. Чем ниже эта температура, тем легче испаряются средние фракции бензина, обеспечивая поступление в ненро-гретый еще двигатель горючей смеси необходимого состава, устойчивую его работу на малой частоте вращения коленчатого вала двигателя и хорошую приемистость.

При трогании и разгоне автомобиля резко открывается дроссель и во впускной трубовод устремляется большое количество топлива и холодного воздуха, что приводит к снижению температуры и ухудшению испарения. Чем ниже у бензина температура перегонки 50%, тем легче и быстрее обеспечивается в этих условиях образование смеси нужного состава (а-0175—028) и будет выше приемистость двигателя.

Интенсивность подогрева смеси во впускном трубопроводе зависит от температуры перегонки 50% бензина: чем больше эта температура,; тем интенсивнее должен быть подогрев. Применение бензина с несоответственно низкой £60 может понизить коэффициент наполнения и мощность двигателя.

По температуре перегонки 90% (tso) и температуре конца перегонки (кипения) судят о наличии в бензине тяжелых трудноиспаряемых (хвостовых) фракций, об интенсивности и полноте сгорания рабочей смеси, о мощности, развиваемой двигателем, и количестве расходуемого топлива, об износах двигателя. Желательно, чтобы эта температура была по возможности более низкой для обеспечения полного испарения всего бензина, поступившего в цилиндры двигателя Улучшение испаряемости бензинов тяжелого фракционного состава за счет более интенсивного подогрева впускного трубопровода не дает должного эффекта, так как при этом снижаются коэффициент наполнения двигателя и литровая мощность. Такой способ повышения испаряемости тем более неприемлем для современных форсированных двигателей.

Применение бензина с высокой температурой конца перегонки приводит к повышенным износам цилиндров и поршневой группы вследствие смывания масла со стенок цилиндров и его разжижения в картере, а также неравномерного распределения рабочей смеси по цилиндрам.

Особенно резко увеличивается износ двигателя при работе на бензине с высокой температурой конца перегонки в условиях низких температур окружающего воздуха. Поэтому, например, бензин зимнего вида А-76 имеет температуру конца перегонки 185 °С, а летнего вида 195 °С.

По величине потерь при перегонке бензина судят о склонности его к испарению при транспортировании и хранении. Бензин, характеризующийся повышенными потерями при перегонке, т. е. с большим количеством особо легких фракций, интенсивно испаряется в жаркое время года. Поэтому при транспортировании и хранении бензина потребовалось бы применять дополнительные меры, направленные на уменьшение потерь от испарения.

Результаты фракционной перегонки бензина изображают в виде кривых, откладывая па оси абсцисс температуру (°С) и на осп ординат количество бензина (%) по объему, перегоняемого при этой температуре.

Давление насыщенных паров характеризует испаряемость головных фракций бензинов и прежде всего их пусковые качества.

Чем выше давление насыщенных паров бензина, тем легче он испаряется и тем быстрее происходит пуск и прогрев двигателя. Однако, если бензин имеет слишком высокое давление насыщенных паров, то он может испаряться до смесительной камеры карбюратора. Это приводит к ухудшению наполнения цилинров, возможному образованию «паровых пробок» в системе питания и снижению мощности, перебоям и даже остановке двигателя.

Бензин с чрезмерно высоким давлением насыщенных паров имеет большие потери вследствие испарения при хранении и транспортировании. Поэтому давление насыщенных паров бензина устанавливается таким, чтобы при хорошем его испарении не образовались «паровые пробки» в системе питания двигателя.

Для бензинов летнего вида давление насыщенных паров не должно превышать 500 мм рт. ст., а для зимнего вида оно должно быть в пределах 500—700 мм рт ст.

В высокогорных районах с жарким климатом желательно применение бензина с более низким давлением насыщенных паров, так как понижение барометрического давления и повышение температуры воздуха способствуют образованию «паровых пробок» в системе питания двигателя.

При оценке испаряемости бензина нельзя ограничиться только одним давлением насыщенных паров. Необходимо также учитывать его фракционный состав, поскольку бензин может иметь нужное давление насыщенных паров за счет незначительного количества очень легких фракций и в то же время может содержать тяжелые фракции с недопустимо высокой температурой конца кипения.

Рис. 1. Влияние температур перегонки 10% (а), 50% (б) бензина и температуры конца кипения (в) бензина на его эксплуатационные качества: I — паровые пробки; II — трудным пуск; III — пуск невозможен; IV — плохая приемистость; V — разжижение масла; VI — интенсивный износ

Рис. 2. Кривая перегонки бензина

Механические примеси в бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя Попадая в двигатель, примеси увеличивают износ цилиндров и поршневых колец, а также отложения нагара.

Бензин, налитый в стеклянный цилиндр диаметром 40—50 мм, должен быть прозрачным и не содержать взвешенных и осевших на дно цилиндра посторонних примесей, в том числе и воды.

Вода в бензине не допускается. Она опасна прежде всего при температуре ниже 0 °С, так как, замерзая, образует кристаллы, которые могут преградить доступ бензина в цилиндры двигателя. Кроме того, вода способствует осмолению бензина, так как в ней растворяется ингибитор, а также является основным источником коррозии топливных баков, трубопроводов и других стальных деталей системы питания.

Вода в бензине может находиться в трех видах: в свободном состоянии, в виде эмульсий и в растворенном состоянии. Вода в свободном состоянии практически не смешивается с бензином и легко удаляется из него путем отстаивания в течение нескольких часов.

Эмульсия воды с бензином образуется в результате сильного перемешивания свободной воды с бензином пли же в результате выделения растворенной воды при понижении температуры Эмульсионная вода значительно труднее удаляется из бензина и в то же время она представляет большую опасность при низких температурах, когда ее мелкие капельки, взвешенные в бензине, могут превратиться в льдинки, закупоривающие топливные фильтры.

Растворенная или гигроскопическая вода может содержаться в бензинах только в сотых или даже тысячных долях процента.

Механические примеси и вода могут попасть в бензин при неправильном транспортировании, хранении и заправке автомобилей.

Свойства бензина, влияющие на мощность двигателя и расход топлива

Развиваемая двигателем мощность зависит от энергетических свойств топлива, т. е. в данном случае от энергетических свойств бензина. Энергетические свойства топлива характеризуются теплотой сгорания и зависят от элементарного состава топлива. например, теплота сгорания водорода почти в 3,5 раза выше, чем углерода. Однако у различных марок автомобильных бензинов теплота сгорания практически отличается незначительно и равна примерно 10300—10600 ккал/кг. В ГОСТах или технических условиях на бензии теплота сгорания не приводится

Развиваемая двигателем мощности в большой степени зависит от характера сгорания бензино-воздушной (рабочей) смеси: скорости сгорания, полноты сгорания, моментов начала и конца сгорания.

Сгорание рабочей смеси может быть нормальное, в результате самовоспламенения (калильное зажигание) и детонационное. Последние два вида сгорания ухудшают рабочий процесс двигателя.

Рис. 3. Скорость сгорааин боп-зино-ноздушиои смеси в зависимости от ее состава

При нормальном сгорании смесь, сжатая до 10—16 кгс/см2 и нагретая теплом сжатия до 350—380 °С, воспламеняется от искры свечи зажигания и пламя распространяется по камере сгорания со средней скоростью 20—30 м/с**. Длительность основ-пой фазы сгорания составляет 25—30° угла поворота коленчатого вала или примерно 0,0025 с при 2000об/мин. Такое сгорание обеспечивает наиболее полное тепловыделение и плавное нарастание давления в цилиндрах.

13 случае самовоспламенения (калильное зажигание) часть смеси воспламеняется не от электрической искры, а самопроизвольно от перегретых деталей (выпускного клапана, днища поршня, электродов свечи) или раскаленных частиц нагара на стенках камеры сгорания. Самовоспламенение может произойти до и после воспламенения смеси искрой.

Для современных форсированных карбюраторных двигателей калильное зажигание представляет большую опасность нарушения нормального протекания процесса сгорания и является основным препятствием дальнейшего форсирования двигателей.

Склонность бензина к самовоспламенению пока не нормируется. Сгорание от самовоспламенения возможно при наличии большого количества нагара в камере сгорания, перегреве двигателя, уменьшении угла опережения зажигания, обеднении горючей смеси. При сгорании вследствие самовоспламенения мощность двигателя уменьшается, повышается расход бензина, увеличивается износ, а иногда ломаются детали кривошнпно-шатунного механизма. Такое сгорание обычно сопровождается стуками в двигателе. Характерный внешний признак самовоспламенения в карбюраторном двигателе — это продолжение работы двигателя с очень низкой частотой вращения коленчатого вала (200—300 об/мнн) после выключения зажигания.

Калильное зажигание может вызывать детонацию, в то же время продолжительная детонация может переходить в калильное зажигание.

При детонационном сгорании рабочей смеси пламя распространяется со сверхзвуковой скоростью 2000—2500 м/с, т. е. примерно в 100 раз быстрее нормального, а температура сгоревшей смеси повышается до 2500—3000 °С.

В настоящее время на основе учений академиков А. Баха и Н. Семенова принято считать, что детонационное сгорание рабочей смеси происходит в результате цепных реакций образования и самопроизвольного распада углеводородных перекисей под воздействием высоких температур и давлений, которым подвергается рабочая смесь, сгорающая в последнюю очередь. При самопроизвольном разложении перекисей выделяется большое количество тепла и образуются новые активные частицы.

Первоначальное воспламенение рабочей смеси происходит от искры свечи зажигания, и пламя, имеющее температуру 2000—2500 °С,( распространяется с нормальными скоростями. Так сгорает даже при сильной детонации, как правило, 75% рабочей смеси, а прп слабой детонации нормально сгорает около 95% смеси.

В дальнейшем под воздействием повысившихся температуры (400—450 °С) и давления (30—40 кгс/см) в еще части смеси в результате предпламенных реакций происходит предварительное окисление углеводородов с образованием перекисных соединений. При достижении определенной концентрации перекисей и активных продуктов их распада в одном каком-либо участке зоны несгоревшей рабочей смеси вследствие самовоспламенения появляется новый очаг пламени, распространяющийся со сверхзвуковой скоростью навстречу фронту нормального пламени, резко повышается давление от возникшей детонационной волны, от которой воспламеняется соседний слой смеси, а образующаяся новая детонацноиная волна, в свою очередь, воспламеняет следующий участок смеси и т. д.

Давление в цилиндре повышается скачкообразно, а затем, вибрируя, затухает при такте расширения, вызывая появление характерного звонкого металлического стука вследствие вибрации стенок и головки цилиндров от ударов о них детонационной волны. Детонация сопровождается появлением черного дыма в отработавших газах.

При детонационш м сгорании двигатель перегревается, работает жестко и неустойчиво, его мощность снижается, а расход бензина увеличивается. Перегрев двигателя объясняется увеличенной теплоотдачей рабочей смеси вследствие того, что ее слои сильно прижимаются к стенкам головки цилиндров и днищу поршня детонационной водной.

Детонация ведет к уменьшению срока службы двигателя, к повреждению деталей двигателя (подгорание выпускных клапанов, выкрашивание коренных и шатунных подшипников, погнутость шатуна, прогорание днища поршней, прокладок головки цилиндров п др.).

Появление детонации зависит от наличия условий для образования перекисей, поэтому все факторы, способствующие образованию перекисей, будут содействовать появлению детонации в двигателе. На появление детонации влияют детонационная стойкость бензина, состав рабочей смеси, режим работы двигателя, конструкция Двигателя.

Рис. 4. Индикаторные диаграммы карбюраторного двигателя: а — при нормальном сгорании рабочей смеси; б — при детонационном сгорании рабочей смеси

Рис. 5. Влияние детонации на износ цилиндров двигателя: 1 — при работе с детонацией; 2 — при работе без детонации

Детонационная стойкость бензина оценивается октановым числом, указанным в стандартах и технических условиях в числе важнейших физико-химических свойств бензина. Показатель октанового числа входит в маркировку бензина.

Октановое число бензина равно процентному (по объему) содержанию и з о-октана в такой смеси с нормальным гептаном, которая равноценна по детонационной стойкости испытуемому бензину. Чем выше октановое число, тем более стоек бензин против детонации и тем лучшими эксплуатационными качествами он обладает.

Октановое число определяется путем сравнительных испытаний данного бензина с эталонным топливом, октановое число которого известно, на стандартной установке с одноцилиндровым двигателем с переменной степенью сжатия.

В качестве эталонного топлива применяют смеси с различным содержанием по объему двух углеводородов — изооктана (С8Н18) и нормального гептана (C_h2G). а также другие более дешевые жидкие топлива, протарированн >ie по изооктану и гептану. При этом октановое число изооктана принято за 100, а нормального гептана — за О. Поэтому, например, топливо, состоящее из 76% изооктана п 24% нормального гептана, будет иметь октановое число, равное 76.

Октановые числа, определяемые по исследовательскому методу, как правило, на несколько единиц выше, чем определяемые по моторному, так как в первом случае предусмотрен более легкий режим работы установки. Разница в октановых числах по исследовательскому и моторному методам характеризует чувствительность бензина к режиму работы двигателя. В обоих случах после прогрева двигателя постепенно увеличивается степень сжатия до появления детонации определенной стандартной интенсивности, определяемой по шкале указателя детонации. Затем сравнивают испытуемое топливо со смесями эталонных топлив. Для этого подбирают две смеси эталонных топлив, различающиеся между собой не более чем на две октановые единицы, из которых одна детонирует сильнее, а другая сла-боее, чем образец топлива, подлежащего испытанию. Работу двигателя трижды переводят попеременно на испытуемое топливо и на смеси эталонных топлив и записывают показания указателя детонации.

Процентное содержание изооктана в этой смеси и будет октановым числом испытуемого бензина.

Как правило, с возрастанием молекулярной массы у углеводородов одной и той же группы октановое число понижается. Так, например, октановое число бутана 92, пентана уже 62, гексана 26 и гептана 0. Поэтому при прочих равных условиях бензины с более легким фракционным составом имеют и более высокое октановое число. Углеводороды с изомерной структурой имеют большую детонационную стойкость, чем соответствующие им углеводороды с нормальной структурой.

При сопоставимых молекулярных массах лучше противостоят детонации бензины, в которых преобладают ароматические углеводороды, затем следуют нафтеновые, и наименьшая детонационная стойкость у бензинов, состоящих в основном из нормальных парафиновых углеводородов. Изопарафиновые углеводороды обладают высокой детонационной стойкостью.

Октановое число непредельных углеводородов выше, чем парафиновых, имеющих ту же молекулярную массу. Наличие в бензине сернистых соединений и смолистых веществ понижает октановое число.

Детонания чаще всего возникает при работе прогретого двигателя на полной нагрузке при небольшой частоте вращения коленчатого вала. Возникновению детонации способствует ухудшение охлаждения двигателя (нагар, накипь, пробуксовка ремня вентилятора и др.), увеличение открытия дросселя, уменьшение частоты вращения коленчатого вала, двигателя, увеличение угла опережения зажигания. Влияние частоты вращения коленчатого вала двигателя 3A3-53 на требования к детонационной стойкости бензина показано на рис. 30.

Интенсивность детонации уменьшается при обогащении и обеднении смеси: при обогащении—вследствие снижения образования перекисей из-за недостатка кислорода воздуха, а при обеднении — вследствие снижения теплоты сгорания смеси.

Изменяя режим работы двигателя, можно предотвратить или прекратить уже начавшуюся детонацию. Однако чрезмерное уменьшение, например, угла опережения зажигания влечет увеличение Расхода бензина и снижение динамических качеств автомобиля. Поэтому октановое число бензина должно быть таким, чтобы двигатель мог работать в любых условиях на наивыгоднейших режимах без появления детонации.

Рис. 6. Зависимость требования к антидетонационной стойкости бензина от частоты вращения вала

Так как у новых моделей двигателей в целях улучшения их топливной экономичности, повышения литровой мощности (рис. 7), снижения удельной массы и уменьшения размеров увеличивают степень сжатия, то требования к детонационной стойкости бензина все время возрастают.

В то же время существующие способы переработки нефти и ее состав не всегда обеспечивают получение бензина с необходимой детонационной стойкостью. Поэтому октановое число бензина повышается путем добавления к нему высокооктановых компонентов или присадок — антидетонаторов. Высокооктановые компоненты (бензол, изооктан, изопентан, продукты каталитического крекинга, риформинга, гидрогенизации) добавляются к бензинам в значительных количествах, а антидетонаторы — в долях процента. Антидетонаторы, повышая О. Ч., могут изменить и другие свойства (например, токсичность) бензина.

В качестве антидетонатора для автомобильных бензинов применяют этиловые жидкости Р-9 и жидкость автомобильную. Такие бензины называют этилированными. Жидкость Р-9 содержит антидетонатор-тетраэтилсвинец (ТЭС) * РЬ(СгНб)4 — 54%, выноситель — бромистый этил (ВгСгШ) 33% и а — монохлорнафталии (С10Н.С1) — 6,3— 7,3%, наполнитель (бензин Б-70) — 5,7—6,7%, антиокислитель (параоксидифениламип) — 0,02—0,03% и краситель (синий, оранжево-красный, желтый).

Этилированный бензин, сгорая, выделяет свинец и его окиси, которые должны быть удалены из камеры сгорания. Этому способствует выноситель. В присутствии последнего свинец и его окиси образуют соединения РЬВг2 и РЬС12, которые превращаются в камере сгорания в пары и удаляются с отработавшими газами.

Добавление этиловой жидкости к бензину делает бензин ядовитым вследствие большой токсичности, которой обладает ТЭС.

Жесткое ограничение количества ТЭС, добавляемого к этилированному бензину (от 0,24 г на 1 кг топлива для А—76 и до 0,5 г для АИ-93 и АИ-98), объясняется рядом причин и прежде всего желанием не делать его слишком токсичным.

Добавление к бензину тетраэтилсвинца даже в таком небольшом количестве превращает его в жидкость, при пользовании которой необходимо соблюдать дополнительные меры предосторожности. Кроме того, эффективность повышения октанового числа при дальнейшем увеличении содержания ТЭС снижается.

Одним из новых антидетонаторов является марганцевый антидетонато р (ЦТМ), равноценный по эффективности ТЭС, который в отличие от последнего неядовит1. ЦТМ (циклопеп-тадиенилтрикарбонил марганца) СвШМн (СО)з представляет собой кристаллическое вещество, хорошо растворяющееся в бензине.

Симметричное строение молекул ЦТМ предопределяет его высокую летучесть и низкие температуры распада.

К антидетонатору ЦТМ добавляется выноситель (бисэтилксан-тоген) и антинагарная присадка (трикрезилфосфат) по 0,25 мл/кг каждого. Последняя существенно снижает появление калильного зажигания вследствие уменьшения нагарообразования.

По данным приведенных опытов бензин с марганцевым антидетонатором вызывает не больший износ, чем с ТЭС. ЦТМ не повышает кислотности бензина и лишь незначительно повышает содержание фактических смол. ЦТМ не увеличивает коррозионную агрессивность и не ухудшает химическую стабильность бензина по сравнению с ТЭС.

Бензин, содержащий ЦТМ, по токсичности приближается к чистому бензину.

Основной недостаток марганцевого антидетонатора состоит в том, что при концентрациях уже около 0,5 г/кг он вызывает отложение, нагара на поверхности изолятора свечей зажигания и образование между их электродами тонких токопроводящих нитей, что приводит к перебоям в их работе вследствие нарушения электроизоляции, а затем и к полному прекращению работы. Средняя продолжительность работы свечей без очистки пока составляет всего лишь около 90 ч.

В настоящее время проводятся экспериментальные исследования по повышению эффективности ЦТМ путем применения в качестве выносителя других соединений.

На безотказную работу двигателя, развиваемую им мощность и расход бензина, кроме рассмотренных показателей (фракционный состав, упругость паров, октановое число, содержание механических примесей и воды), оказывают некоторое влияние и другие физико-химические свойства (скрытая теплота испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность). Однако их не приводят в стандарте или технических условиях на бензины, так как в одних случаях они практически мало зависят от марки бензина (например, теплоемкость, коэффициент диффузии), в других случаях их значение ограничивается показателями физико-химических свойств, уже указанных в стандартах или технических условиях.

Для автомобильных бензинов не нормируется вязкость. Фактическое отклонение вязкости бензинов одной марки не вызывает необходимости изменять регулировку и режим работы двигателя для разных партий бензина. Однако в этом может возникнуть необходимость при переходе на летний или зимний период эксплуатации главным образом из-за изменения вязкости, которая может отличаться в 1,5—2 раза и вызывать изменение состава смеси на 10-15%.

Увеличение вязкости уменьшает пропускную способность жиклеров, а с повышением плотности увеличивается масса одного и того же объема бензина, поступающего через жиклеры.

По величине плотности можно приближенно судить о виде топлива. В табл. приведена средняя плотность для некоторых автомобильных топлив и масел, а на рис. 33 показана зависимость теплоты сгорания нефтепродуктов от их плотности.

Если плотность бензина выше его средних значений, то это косвенно указывает на относительно худшую его испаряемость и пониженную детонационную стойкость. По сравнению со всеми другими физико-химическими показателями бензинов наиболее часто на автотранспортных предприятиях приходится определять плотность, что вызвано принятой системой учета расхода и нормирования бензина, а ие с целью определения качества бензина.

Рис. 8. Изменение плотности бензина в зависимости от температуры

Рис. 9. Теплота сгорания нефтепродуктов в зависимости от их плотности

Автотранспортные предприятия получают бензин с нефтебаз в единицах массы (кг,т), а при заправке автомобилей через топливозаправочные колонки замер производится в объемных единицах (л). Поэтому, зная плотность, пересчитывают количество бензина из единиц массы в объемные единицы.

На автотранспортных предприятиях плотность бензина определяется нефтеденсиметром (рис. 10), который обеспечивает точность замера до 0,001. Нефтеденсиметр погружают в стеклянный цилиндр, заполненный бензином. По глубине погружения нефтеденсиметра, отсчитываемой на верхней шкале, определяют плотность, а по нижней шкале находят температуру, при которой установлена плотность.

Рис. 10. О пределепие плотности бензина: а — нефтеденсиметр; б — замер плотности

Свойства бензина, влияющие на износы деталей двигателя, затраты на ремонт и техническое обслуживание автомобилей

Износы двигателя и затраты по уходу за автомобилем зависят от уже рассмотренных физико-химических свойств бензина, а также от содержания в нем минеральных и органических кислот, щелочей, смол, серы и ее соединений.

Водорастворимые кислоты и щелочи корродируют металлы, и их присутствие в бензине вызывает интенсивный износ деталей двигателя и коррозию деталей его системы питания. В бензине могут оказаться водорастворимые кислоты вследствие использования загрязненной тары, а щелочь, кроме того, — в результате некачественно выполненной его очистки. Стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и щелочей. Их отсутствие определяется по величине рН водной вытяжки бензина рН-метром или реакцией водной вытяжки бензина с помощью индикаторов фенолфталеина и метиловый оранжевый.

Органические кислоты корродируют металлы значительно слабее, чем минеральные. В основном они представляют опасность (особенно в присутствии воды) для цветных металлов и в первую очередь для свинца и цинка. Железо, например, поддается коррозии под действием органических кислот в десятки раз слабее, чем свинец и цинк. Поэтому органические кислоты в бензине приводят к ускоренному износу вкладышей коренных и шатунных подшипников коленчатого вала, втулок верхней головки шатуна и других деталей из цветных металлов (кроме алюминиевых). Их количество в бензине возрастает в результате окисления непредельных углеводородов за время его хранения.

Продукты коррозии, вызванные органическими кислотами и представляющие собой нерастворимые в бензине хлопьевидньи? осадки, могут вызывать закупорку топливопроводов системы питания.

Содержание органических кислот (кислотность) в автомобильных бензинах строго ограничивается. За кислотность принимают количество едкого кали в миллиграммах, израсходованного на нейтрализацию всех кислых соединений, содержащихся в 100 мл бензина.

Сера и ее соединения в бензине крайне нежелательны, так как, помимо преждевременного износа деталей, снижают детонационную стойкость бензина, способствуют его осмолению, нагарообразова-нию в двигателе и ускоряют процесс старения масла.

Особой коррозионной агрессивностью отличаются активные сернистые соединения, к которым относятся элементарная сера (S), сероводород (h3S) и меркаптаны (R—S—Н). Присутствие активной серы в бензине строго ограничивается, что проверяют коррозией медной пластинки.

Отрицательная проба на коррозию медной пластинки указывает на то, что содержание сероводорода в бензине не более 0,0003, а элементарной серы не более 0,0015%.

Неактивные сернистые соединения — сульфиды (11—S—К), дисульфиды (R — — S2—R), полисульфиды (R—Sn—R), тиофаны (CnIbnS), теофены (Cnh3n„2S) — вызывают коррозию только при их сгорании вместе с бензином. При этом образуются сернистый (SO2) и серный (SO3) газы, которые вызывают коррозию деталей двигателя. Кроме того, сернистый и серный газы, проникая в картер двигателя и соприкасаясь со сконденсировавшимися парами воды и кислородом воздуха, образуют сильно корродирующую сернистую (h3S03) и серную (ll2SOJ кислоты, которые окисляют масло и вызывают износ деталей. Получены также данные, указывающие на то, что увеличение содержания серы в бензине А-76 с 0,10 до 0,15% вызвало увеличение износа деталей двигателя до 36%.

Некоторое количество серы в бензине все же допускается, так как избавиться от нее трудно, особенно при переработке сернистых нефтей. В бензинах по ГОСТ 2084-77 марок А-76, АИ-93, АИ-93 ее может содержаться до 0,1%, в А-72 до 0,12%, а в бензинах со Знаком качества марок А-76 — 0,02, АИ-93 – 0,01 и АИ-98 — 0,05%.

Смолы в бензине образуют липкие, вязкие осадки темно-корич-певого цвета, которые отлагаются на деталях, соприкасающихся с бензином или его парами, например на стенках топливных баков, топливопроводов, в карбюраторе, во впускном трубопроводе, па стержнях впускных клапанов и т. д.

Осадки смолы ухудшают подачу бензина в цилиндры двигателя, а иногда и полностью нарушают ее. Не исключено попадание смол и в камеру сгорания. В этом случае они образуют нагар, способствующий самовопламенению рабочей смеси, работе с детонацией, зависанию клапанов и другим неисправностям.

Для восстановления работоспособности двигателя приходится периодически удалять образовавшиеся отложения, что увеличивает затраты на техническое обслуживание и ремонт автомобилей и снижает их техническую готовность и надежность.

С увеличением содержания смол в бензине снижается его детонационная стойкость, ухудшается испаряемость. Количество смол в бензине непостоянно, оно увеличивается за счет окислительной полимеризации углеводородов.

Интенсивно этот процесс протекает при повышенной температуре и хорошем доступе воздуха.

Низкомолекулярные смолы растворяются в бензине, придавая ему желтизну, усиливающуюся с повышением содержания смолы. Высокомолекулярные смолы в бензине растворяются плохо и поэтому выпадают из него в осадок.

Рис. 11. Износ цилиндра двигателя в зависимости от содержания серы в бензине

Концентрация фактических смол в бензине строго ограничивается и устанавливается в миллиграммах на 100 мл бензина. При этом, учитывая неизбежность осмоления бензина в процессе хранения, устанавливается предельное содержание смол на месте производства и на месте потребления, т. е. на нефтебазе, в момент получения бензина автотранспортным предприятием. Так, например, для бензинов А-76 концентрация фактических смол на месте производства не должна превышать 5 мг на 100 мл топлива, а на месте потребления — 10 мг на 100 мл. Для бензинов той же марки, но со Знаком качества содержание фактических смол не должно превышать соответственно 3 и 8 мг на 100 мл. Для бензинов марки АИ-93 со Знаком качества наличие смол на месте производства не допускается.

Свойства, влияющие на сохранение первоначальных качеств бензина

Первоначальные качества бензина вследствие происходящих в нем физико-химических процессов постепенно ухудшаются. Особенно это характерно для бензинов термического крекинга. Сохранение первоначальных качеств бензина в процессе транспортирования, хранения и применения зависит от его физической и химической стабильности.

Несмотря на сравнительно небольшой срок хранения бензина на автотранспортных предприятиях (объем хранилищ обычно не превышает объема десятидневного расхода топлива), требования к стабильности бензина не утрачивают своего значения и в этих условиях.

Поступающий на автотранспортное предприятие и на АЗС бензин сливают в резервуар, где находится остаток ранее доставленного бензина. Поэтому практически бензин содержится в резервуаре в течение более длительного времени, чем дни его запаса. На некоторые автотранспортные предприятия бензин завозят только в определенное время года, поэтому срок его хранения исчисляется месяцами. Часто (консервация автомобиля, ожидание ремонта и т. д.) один и тот же бензин длительное время находится в топливном баке автомобиля. Кроме того, бензин поступает на автотранспортное предприятие не сразу после его производства.

Помимо химического состава бензина, на интенсивность образования смол и кислот оказывают влияние факторы, зависящие от условий использования его на автотранспортном предприятии. Так, окисление и осмоление возрастают с повышением температуры бензина. Поэтому все меры, которые способствуют понижению температуры бензина при хранении и транспортировании, будут уменьшать его окисление и осмоление. Понижение температуры также уменьшит потери легкоиспаряемых углеводородов.

Окиелению и осмолению способствует контакт бензина с воздухом, поэтому он быстрее осмоляется при неполном заполнении тары.

Зависимость образования смол от продолжительности хранения при полностью заполненной таре и заполненной на 50% показана на рис. 36, из которого видно, что осмоление бензина в резервуаре, залитом только на 50%, в 2—3 раза превышает количество смол в полностью залитом резервуаре.

Процесс окисления является самоускоряющим с я, поэтому бензин, залитый в тару, не очищенную от остатков старого осмелившегося бензина, осмоляется быстрее. Каталитически ускоряюще на образование смол действует ржавчина и загрязнение тары. Нежелательно попадание в бензин воды, так как она растворяет ингибиторы и снижает их эффективность. О химической стабильности бензина судят по величине индукционного периода, указанного в стандарте.

Индукционный период определяют в приборе, в котором подогретые до 100° С (в кипящей воде) 100 мл бензина находятся в закрытом сосуде (бомбе), наполненном кислородом. Через некоторое время бензин начинает окисляться, на что расходуется часть кислорода, и поэтому давление в сосуде падает. Индукционным периодом называют время в минутах с момента погружения сосуда в кипящую воду до начала уменьшения давления. Чем это время больше, тем выше стойкость бензина против окисления.

О физической стабильности бензина по показателям качества, приводимым в стандартах, можно судить лишь косвенно. Такими показателями являются давление насыщенных паров и потери при перегонке. Чем больше их величина, тем ниже физическая стабильность бензина.

На повышенное содержание смол и органических кислот в бензине, как отмечалось выше, указывает изменение цвета бензина. При осмолении бензин приобретает желтый цвет и даже с коричневым оттенком. Но. иногда более светлый бензин может содержать больше смол, чем темный. Поэтому, если бензин хранится длительное время, необходимо производить его лабораторный анализ.

Токсичность бензина и особенности применения этилированного бензина

Токсичность является важнейшей характеристикой бензина. По условиям использования бензина трудно исключить случайное попадание его на кожу (особенно рук) водителей, рабочих по техническому обслуживанию и ремонту автомобилей, заправщиков и других работников автотранспортных предприятий. Еще более трудно избежать вдыхания паров бензина, работая в производствен-пых цехах или управляя автомобилем. При ремонте двигателя неизбежно приходится соприкасаться с деталями, покрытыми нагаром. В связи с этим важно, чтобы ни бензин, ни его пары и нагар не представляли бы повышенной опасности для здоровья лиц, соприкасающихся с ними.

Рис. 12. Образование фактических смол при хранении: 1 — в резервуаре, заполненном полностью; 2 — в резервуаре, заполненном на 50%

Обычный бензин не представляет такой опасности, хотя частое его попадание на кожу и вдыхание паров, особенно при концентрации в воздухе бензина свыше 0,3 мг/л, является вредным. Частое попадание бензина па кожу вызывает раздражение, сушит ее, i рi-водит к шелушению,-экземе п другим заболеваниям. Кроме того, бензин, всасываясь через кожу, может вызвать явления общего отравления. Характерно, например, что при опускании руки в бензин на 5—7 мин в выдыхаемом человеком воздухе содержатся пары бензина.

Продолжительное вдыхание паров бензина при повышенной концентрации вредно влияет на нервную систему, вызывает головную боль п общее недомогание, а при содержании в 1 л воздуха 35— 40 мг бензина даже кратковременное их вдыхание в течение 5— 10 мин опасно для жизни.тилсвинец, относится к ядовитым жидкостям, требующим соблюдения особых мер предосторожности при его применении.

О степени ядовитости тетраэтплсвпнца можно судить по предельно допустимой его концентрации в воздухе, которая составляет всего лишь 0,000005 мл/л.

Неосторожное обращение с этилированным бензином может вызвать серьезное расстройство нервной системы и послужить причиной других заболеваний. Причем оно может наступить со временем. так как свинец имеет свойство накапливаться в организме человека.

Меры предосторожности при использовании этилированного бензина направлены прежде всего на то, чтобы он не попадал на кожу п внутрь организма через пищевой тракт в виде жидкости и нагара. Что же касается паров этилированного бензина, то по токсичности они часто не отличаются от неэтилированного бензина, так как при испарении до 30% этилированного бензина весь тетраэтилсвинец остается в неиспарившемся бензине.

При использовании этилированного бензина применяется особая спецодежда для работающих, дооборудуются производственные помещения и выполняются дополнительные операции при техническом обслуживании и ремонте автомобилей.

В связи с непрерывным увеличением парка автомобилей в последние годы все большее и большее значение приобретает проблема уменьшения токсичности отработавших газов автомобилей. Уже теперь в воздухе крупнейших городов мира от 50 до 90% общего количества вредных веществ составляют отработавшие газы автомобилей. В отработавших газах содержится до 200 веществ, часть из которых токсична.

Токсичность отработавших газов обусловлена неполным сгоранием топлива и содержанием в них окиси углерода, окиси и двуокиси азота, альдегидов (формальдегида, ацетольдегида, акролеина), углеводородов (алканов, алкенов, алкадиенов, цикланов) и др. Среди перечисленных токсичных веществ у карбюраторных двигателей преобладает окись углерода.

Предельное содержание окиси углерода в отработавших газах автомобилей с бензиновыми двигателями ограничивается ГОСТом 17.2.2.03—77. Согласно ГОСТу, нормируется содержание окиси углерода в режиме холостого хода при двух частотах вращения коленчатого вала двигателя: минимальной и повышенной, равной 0,6 номинальной, для автомобилей трех груни выпуска до 1.07.1978 г., с 1.07.1978 г. до 1.07.1980 г. и после 1.01.1980 г. Так, для автомобилей последней группы объемное содержание СО в отработавших газах не должно превышать 1,5% при минимальной частоте вращения коленчатого вала и 1% при повышенной частоте. Этим нормам должны отвечать автомобили, эксплуатирующиеся в столицах союзных республик, городах-курортах, в городах с населением 300 тыс. чел. и более.

Уменьшение загрязнения окружающего воздуха отработавшими газами автомобилей достигается в результате:
— применения специальных присадок к топливам; тщательной регулировки приборов систем питания и зажигания, а также поддержания в полной исправности других деталей двигателя, влияющих на полноту сгорания;
— установки на автомобилях специальных устройств — централизаторов;
— применения других видов топлива для автомобилей, а также других видов энергии для них.

Присадки к бензину позволяют добиться более полного его сгорания и таким образом уменьшения содержания в отработавших газах некоторых токсичных веществ. Так, добавление к бензину смеси некоторых спиртов значительно снижает содержание окиси углерода в отработавших газах.

Проведенные исследования показали, что при неправильно отрегулированном двигателе содержание токсичных веществ в отработавших газах увеличивается в 3—5 раз и более по сравнению с правильно отрегулированным. Так, например, в зависимости от технического состояния карбюраторного двигателя содержание окиси углерода в отработавших газах колеблется от 0,5 до 13% (по объему). При этом основное внимание должно быть уделено регулировке карбюраторов в режимах холостого хода и средних нагрузок, угла опережения зажигания, зазоров клапанов, а также исправности свечей зажигания и деталей, влияющих на компрессию в двигателе.

Однако и у тщательно отрегулированного двигателя отработавшие газы содержат все еще значительное количество токсичных веществ. Их снижение особо важно при работе автомобилей в руд пиках, карьерах, закрытых помещениях, городах-курортах и в дру Гих подобных условиях.

Для этого отработавшие газы пропускаются через так называе мый нейтрализатор, где вредные элементы либо дожигают ся, либо поглощаются.

Дожигание токсичных веществ производится в пламенных каталитических нейтрализаторах. В качестве катализатора используются платина и палладий. Токсичные вещества поглощаются в жидкостных и адсорбционных нейтрализаторах. Характерный недостаток первых нейтрализаторов заключается в том, что они не уменьшают содержание в отработавших газах окиси азота, а вторых — нечувствительность к нейтрализации окиси углерода. Нейтрализаторы всех типов пока еще недостаточно надежны, недолговечны, некомпактны, дороги и сложны в эксплуатации.

Применение автомобилей с электрической тягой позволяет снять с повестки дня проблему загрязнения воздуха отработавшими газами. Частичным решением этого вопроса может служить применение сжиженных и сжатых газов в качестве топлива для автомобилей, а также дизельных двигателей, двигателей с форкамерио-факельным зажиганием, двигателей, у которых осуществляется впрыск бензина вместо карбюризации двигателей, работающих по новому термодинамическому циклу (карбюраторное смесеобразование и самовоспламенение топлива), рециркуляции (отвода) части отработавших газов и др.

В современных условиях найдут практическое применение прежде всего те способы, которые обеспечивают одновременно снижение токсичности и расхода нефтяного топлива. Идеальным автомобильным топливом в этом отношении мог бы служить водород, продукты сгорания которого состоят из паров воды.

Учитывая, что, кроме отработавших газов (65%), воздух загрязняется также картерными газами (20%) и испаряющимся топливом (15%). важно, чтобы исправно работала система вентиляции картера, поддерживалась хорошая компрессия в цилиндрах двигателя и не допускались бы подтекания бензина.

Рекламные предложения:


Читать далее: Марки бензинов и область их применения

Категория: - Автомобильные эксплуатационные материалы

Главная → Справочник → Статьи → Форум


Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Бензин - обзор | Темы ScienceDirect

II Бензин

В основном автомобильный бензин используется в качестве топлива для автомобилей и легких грузовиков для использования на шоссе. Меньшие количества используются для езды по бездорожью, лодок, прогулочных транспортных средств, различных ферм и другого оборудования.

Характеристики топлива должны соответствовать требованиям к топливу двигателя для достижения желаемой производительности. В результате бензин и двигатель - взаимозависимые партнеры.Двигатель не был разработан без учета бензина, доступного на рынке, и наоборот. Партнерство стало триумвиратом в последние десятилетия 20-го века, поскольку экологические соображения начали изменять как конструкцию двигателя, так и характеристики бензина.

Природный бензин или нафта имеет низкое октановое число, поэтому его необходимо улучшать методами риформинга. На более сложных этапах негазолиновые компоненты сырой нефти превращаются в бензин (процессы крекинга), а молекулы бензина перестраиваются для улучшения их характеристик.

II.A Состав

Бензин представляет собой сложную смесь сотен углеводородов. Углеводороды различаются по классам - парафины, олефины, нафтены и ароматические углеводороды - и в пределах каждого класса по размеру. Смесь углеводородов (и оксигенатов) в бензине определяет его физические свойства и рабочие характеристики двигателя.

Бензин производится в соответствии с ограничениями свойств, указанными в спецификациях и нормах, а не для достижения определенного распределения углеводородов по классам и размерам.Но в той или иной степени пределы свойств определяют химический состав. Например, летучесть бензина выражается кривой его дистилляции. Каждый отдельный углеводород кипит при определенной температуре, называемой его точкой кипения, и, как правило, температура кипения увеличивается с размером молекулы. Следовательно, требование кривой дистилляции эквивалентно требованию определенного распределения углеводородов с диапазоном размеров.

Самый распространенный способ охарактеризовать размер молекулы - это молекулярная масса.Для углеводорода альтернативным способом является число атомов углерода - число атомов углерода в его молекулярной структуре. Бутан, например, имеет молекулярную массу 58 г / моль и число атомов углерода 4 (C 4 ). На рисунке 19 показано распределение числа атомов углерода типичного бензина. Обратите внимание, что диапазон размеров варьируется от C 4 до C 12 с наиболее распространенным размером C 5 и средним размером C 6,8 . Октановое число - еще один пример того, как пределы свойств определяют химические пределы.RON углеводородов для того же числа атомов углерода в молекуле составляет

РИСУНОК 19. Распределение числа атомов углерода в бензине.

ароматические углеводороды> изопарафины> нафтены> олефины> нормальные парафины

RON изооктана (2,2,4-триметилпентана) по определению составляет 100, в то время как RON нормального октана меньше нуля. Другие свойства, такие как летучесть, также зависят от структуры изомера.

Нормы загрязнения воздуха и спецификации собственности были дополнены некоторыми спецификациями по составу.Первое постановление о загрязнении воздуха, связанном с бензином, ограничивало количество олефинов в бензине, продаваемом в Южной Калифорнии, путем установления максимального бромного числа . Более поздние правила ограничивают количество как олефинов, так и ароматических углеводородов (и, в частности, бензола) в реформулированных бензинах.

Бензины содержат небольшие количества - менее 0,1% по объему - соединений с атомами серы, азота и кислорода в своей структуре (за исключением добавленных оксигенатов). Эти соединения либо присутствуют в сырой нефти, либо образуются в процессе очистки.Процессы очистки разрушают много азота, в частности соединения серы, но некоторые остаются в конечном топливе.

II.B Присадки к бензину

Химические вещества, растворимые в бензине, смешиваются с бензином для улучшения определенных эксплуатационных характеристик или обеспечения характеристик, не присущих бензину. Обычно их получают из нефтяного сырья, а их функции и химический состав являются узкоспециализированными. Они производят желаемый эффект в диапазоне концентраций ppm.

Ингибиторы окисления, также называемые антиоксидантами , представляют собой ароматические амины и затрудненные фенолы. Они предотвращают реакцию компонентов бензина с кислородом воздуха с образованием пероксидов или камедей . Они особенно необходимы для бензинов с высоким содержанием олефинов. Перекиси могут ухудшить антидетонационные свойства и разрушить пластмассовые или эластомерные детали топливной системы, растворимые камеди могут привести к образованию отложений в двигателе, а нерастворимые камеди могут забить топливные фильтры. Запрещение окисления особенно важно для топлива, используемого в современных транспортных средствах с впрыском топлива, поскольку их конструкция рециркуляции топлива может подвергать топливо более высоким температурам и стрессу от воздействия кислорода.

Ингибиторы коррозии представляют собой карбоновые кислоты и карбоксилаты. Объекты - резервуары и трубопроводы - системы распределения и сбыта бензина построены в основном из стали без покрытия. Ингибиторы коррозии предотвращают ржавление или коррозию этих объектов свободной водой в бензине. Когда бензин заправлен в автомобиль, ингибиторы коррозии становятся менее важными. Металлические детали в топливных системах современных автомобилей изготавливаются из коррозионно-стойких сплавов или из стали, покрытой антикоррозийными покрытиями.

Дезактиваторы металлов представляют собой хелатирующие агенты - химические соединения, которые захватывают определенные ионы металлов. Более активные металлы, такие как медь и цинк, эффективно катализируют окисление бензина. Эти металлы не используются в большинстве систем распределения бензина и топлива транспортных средств. Однако, когда они присутствуют, дезактиваторы металлов подавляют их каталитическую активность.

Деэмульгаторы являются производными полигликоля. Эмульсия - это стабильная смесь двух взаимно нерастворимых материалов.Бензин-водная эмульсия может образоваться, когда бензин проходит через поле с высокой скоростью сдвига центробежного насоса, если бензин загрязнен свободной водой. Деэмульгаторы улучшают водоотделительные свойства бензина, предотвращая образование стабильных эмульсий.

Антидетонационные соединения представляют собой алкилы свинца - тетраэтилсвинец (TEL) и тетраметилсвинец (TML) - и метилциклопентадиенилтрикарбонил марганца (MMT). Антидетонационные составы повышают антидетонационные качества бензина.Поскольку количество необходимых присадок невелико, они представляют собой недорогой метод увеличения октанового числа, чем изменение химического состава бензина.

Переход с этилированного на неэтилированный бензин приводит к определенным проблемам с седлами выпускных клапанов старых некаталитических автомобилей. Для решения этой проблемы в неэтилированный бензин могут быть добавлены присадки, вызывающие рецессию седла клапана (VSR); Эти присадки обычно содержат соединения калия, фосфора или марганца, которые доказали свою эффективность в качестве замены свинца при защите выпускных клапанов старых автомобилей.Из добавок VSR только добавки на основе марганца также действуют как улучшители октанового числа.

Добавки для контроля отложений (DC) являются первой добавкой этого класса. Они были представлены в 1970 году и основывались на химии полибутенаминов и использовались в сочетании с маслом-носителем. Хотя они должны использоваться в более высоких концентрациях, чем детергенты-диспергаторы, добавки постоянного тока обеспечивают преимущества во всей системе впуска двигателя. Они очищают и содержат в чистоте корпус дроссельной заслонки и верхние части карбюратора, топливные форсунки, впускной коллектор, впускные каналы и впускные клапаны.

Противогололедные добавки - это поверхностно-активные вещества, спирты и гликоли. Они предотвращают образование льда в карбюраторе и топливной системе. Потребность в этой добавке исчезает, поскольку автомобили с системами впрыска топлива заменяют старые модели автомобилей с карбюраторами.

Красители - это растворимые в масле твердые и жидкие вещества, используемые для визуального различения партий, марок или областей применения бензиновых продуктов. Например, бензин для авиации общего назначения, который производится по другим и более строгим требованиям, окрашивается в синий цвет, чтобы отличить его от автомобильного бензина по соображениям безопасности.

Маркеры - это средство различения определенных партий бензина без очевидной визуальной подсказки. Нефтепереработчик может добавить маркер в свой бензин, чтобы его можно было идентифицировать по мере его прохождения через систему распределения.

Понизители сопротивления представляют собой высокомолекулярные полимеры, улучшающие характеристики текучести маловязких нефтепродуктов. По мере роста затрат на энергию трубопроводы искали более эффективные способы доставки продукции. Редукторы сопротивления снижают затраты на перекачку за счет уменьшения трения между протекающим бензином и стенками трубы.

Октановое число бензина измеряется двумя следующими методами, исследовательским и моторным:

ASTM D 2699 - Стандартный метод испытаний на RON топлива для двигателей с искровым зажиганием.

ASTM D 2700 - Стандартный метод испытания моторного октанового числа (MON) топлива для двигателей с искровым зажиганием.

Октановое число бензинового топлива представляет собой среднее значение RON и MON.

II.C Бензин, насыщенный кислородом

Бензин, насыщенный кислородом, представляет собой смесь обычного бензина на углеводородной основе и одного или нескольких оксигенатов.Оксигенаты - это горючие жидкости, состоящие из углерода, водорода и кислорода. Современные оксигенаты принадлежат к одному из двух классов органических молекул: спиртам и эфирам. В спиртах углеводородная группа и атом водорода связаны с атомом кислорода: ROH, где «R» представляет собой углеводородную группу. Все спирты содержат пару атомов ОН. В простых эфирах две углеводородные группы связаны с атомом кислорода; группы могут быть одинаковыми или разными: ROR или ROR ′.

Кислородные бензины имеют более низкую теплотворную способность, поскольку теплотворная способность кислородсодержащих компонентов ниже, чем у углеводородов, которые они вытесняют.Процентное снижение теплотворной способности близко к процентному содержанию кислорода в бензине. Бензин с измененным составом Federal и бензин с измененным составом фазы 2 для Калифорнии необходимо насыщать кислородом круглый год до среднего содержания кислорода около 2% по массе. В результате их теплотворная способность примерно на 2% ниже, чем у обычного бензина. Кроме того, реформулированный бензин фазы 2 Калифорнии устанавливает некоторые ограничения на температуру перегонки и содержание ароматических углеводородов, которые имеют вторичный эффект снижения плотности топлива.Это снижает теплотворную способность еще примерно на 1%.

Оксигенат регулируется EPA в США. Наиболее широко применяемыми оксигенатами являются этанол, метил-трет-бутиловый эфир (МТБЭ) и трет-амилметиловый эфир (ТАМЭ). Этил-трет-бутиловый эфир (ЭТБЭ) может быть больше использован в будущем. Метанол был протестирован как альтернативный оксигенат, но он не является предпочтительным из-за его токсичности и высокого давления паров.

Присутствие воды и кислотных соединений может привести к ржавчине или коррозии некоторых металлических компонентов топливной системы.Дополнительная вода, растворенная в кислородсодержащих бензинах, не вызывает ржавчины или коррозии, но вода от фазового разделения бензина, насыщенного кислородом этанолом, со временем будет.

Оксигенаты могут набухать и размягчать натуральный и некоторые синтетические каучуки (эластомеры). Кислородсодержащие бензины меньше влияют на эластомеры; степень которого также зависит от углеводородного химического состава бензина, особенно от содержания ароматических углеводородов. Эффект может вызывать опасения, поскольку топливные системы содержат эластомеры в шлангах, соединителях (уплотнительных кольцах), клапанах и диафрагмах.Эластомерные материалы, используемые в современных автомобилях, были выбраны так, чтобы они были совместимы с кислородсодержащим бензином. В руководствах по эксплуатации разрешено использование бензина, насыщенного кислородом 10% по объему этанола или 15% по объему МТБЭ.

II.D Реформулированный бензин

В целях сокращения выбросов от двигателей с искровым зажиганием Агентство по охране окружающей среды (EPA) и Калифорнийский совет по воздушным ресурсам (CARB) за последние 35 лет установили ряд нормативных актов для контроля свойств бензина. снизить выбросы от автомобилей, работающих на бензине.На рисунке 20 вкратце показаны действия.

РИСУНОК 20. Хронология регулирования бензина в США.

Наиболее значительные изменения произошли в 1990-е годы. В 1992 году EPA потребовало снизить максимальное давление паров летнего бензина, чтобы уменьшить выбросы ЛОС в результате испарения. Они установили верхний предел давления пара на уровне 7,8 фунта на квадратный дюйм в зонах отсутствия озона в южных штатах, где средние летние температуры высоки, и на уровне 9,0 фунтов на квадратный дюйм в других местах.

В 1992 г. Калифорния Фаза 1 RFG требовалась по всей Калифорнии.Правила RFG фазы 1 устанавливают максимальное давление паров в летнее время на уровне 7,8 фунтов на квадратный дюйм для всего штата, а не только для зон, не охваченных озоном, и запрещают использование содержащих свинец добавок. Они также сделали обязательным использование присадок, предотвращающих образование отложений, на том основании, что отложения в системе впуска двигателя увеличивают выбросы.

В 1992 году EPA начало зимнюю программу оксигенации. Эта программа требует добавления оксигенатов в бензин, продаваемый в 39 регионах страны, которые не достигли национального стандарта качества окружающего воздуха для CO.Бензин в этих зонах должен содержать минимум 2,7 мас.% Кислорода, в среднем за месяцы с высоким содержанием CO.

Поправки к Закону о чистом воздухе от 1990 года предусмотрены Федеральным RFG. Федеральная фаза I RFG была введена в 1995 году. Ее необходимо использовать в девяти экстремальных или тяжелых зонах недостижения озона по всей стране. Менее тяжелые области недостижения могут принять решение по программе. Фиксированы некоторые характеристики федерального RFG фазы I. Среднее содержание бензола должно быть меньше 1 об.%, А среднее круглогодичное содержание кислорода должно быть больше 2.1% масс. В противном случае общий подход состоит в том, чтобы установить цели по сокращению выбросов от транспортных средств, а не ограничения по собственности или составу. EPA предоставило нефтепереработчикам два уравнения, которые связывают состав бензина с выбросами транспортных средств - простая модель и сложная модель . Простая модель включает меньше характеристик бензина, чем сложная модель. Простая модель использовалась только с 1995 по 1997 год. Это требует, чтобы нефтепереработчик скорректировал состав бензина, чтобы снизить среднее количество токсичных веществ на 16.5% относительно бензина по базовому сценарию 1990 года. Вместо целевого показателя ЛОС он ограничивает среднее давление пара в летнее время до 8,1 фунта на квадратный дюйм в северных штатах и ​​до 7,2 фунта на квадратный дюйм в южных штатах. Комплексная модель была необязательной с 1995 по 1997 год и обязательной с 1998 года. Она требует от нефтепереработчика корректировки состава бензина в соответствии с ограничениями по ЛОС, токсичным веществам и NO x . Федеральная фаза II RFG, которая должна быть введена в 2000 году, продолжает ограничивать фазу I по содержанию бензола и кислорода и использовать Комплексную модель, но требует более значительного сокращения выбросов ЛОС, токсичных веществ и NO x .В таблице VI приведены сокращения выбросов, которые должны быть достигнуты для бензинов, разработанных в рамках программ Фазы I и Фазы II. Ожидается, что снижение давления пара, содержания бензола и серы - это основные стратегии, которые нефтепереработчики будут использовать для выполнения требований Комплексной модели фазы I и пределов выбросов фазы II.

ТАБЛИЦА VI. Снижение выбросов от транспортных средств в рамках федеральных программ по переработке бензина фазы I и фазы II

Дата вступления в силу Снижение выбросов,% (Среднее значение по сравнению с базовым бензином НПЗ 1990 года)
VOC Ядовитые вещества NO x
Фаза I
Простая модель Пределы давления пара5 Без увеличения
Сложная модель 1998 ≥17,1 a , ≥36,6 b ≥16,5 ≥1,5
Phase II 17 Сложная модель 90 2000 ≥27,4 a , ≥29,0 b ≥21,5 ≥6,8

Калифорнийский совет по воздушным ресурсам (CARB) прогнозирует, что Фаза 2 RFG сократит выбросы ЛОС на 17%, CO и Выбросы NO x на 11% и органических токсичных веществ на 44% по сравнению с Фазой 1 RFG.Это эквивалентно удалению 3,5 миллиона автомобилей с дорог Калифорнии.

II.E Свойства бензина и тенденция

В течение 1990-х годов бензин и дизельное топливо неоднократно «изменялись», чтобы соответствовать требованиям, включенным в поправки к Закону о чистом воздухе 1990 года (CAAA90) и другим требованиям, инициированным государством (Таблица VI). Хотя изменения остались незамеченными большинством автомобилистов, они потребовали множества корректировок на нефтеперерабатывающих заводах и в системах распределения топлива. Нефтеперерабатывающие заводы изменили существующие процессы и инвестировали в новые, а системы хранения и распределения были модифицированы для обработки дополнительных продуктов.

Бензин с измененным составом «Фаза II», который требовался к 2000 году, является последним изменением качества топлива, определенным CAAA90, но дальнейшие изменения не за горами. Две широко разрекламированные проблемы качества топлива - удаление серы и уменьшение количества широко используемой присадки к бензину МТБЭ - указывают на новые проблемы для нефтеперерабатывающей промышленности. Агентство по охране окружающей среды США находится в процессе доработки правил, которые серьезно ограничат содержание серы в бензине (а также в дизельном топливе). Штат Калифорния уже выводит МТБЭ из бензина, и было множество предложений по ограничению его использования на национальном уровне.Поскольку это действующий закон, запрет Калифорнии на МТБЭ отражен в AEO2000. Основные недавние качественные изменения, а также предложенные, приведены в Таблице VII.

ТАБЛИЦА VII. Основные изменения качества топлива, прошлые и будущие

9034
Текущее
1975 Начинается поэтапное прекращение использования свинца в бензине
1989–1990 Фаза I летняя газолин 1992 Летучесть бензина , зима
Летучесть бензина фазы II летом
Бензин Калифорния Фаза I
1995 Бензин с измененной формулой фазы I: Простая модель
1996 1998 Бензин с измененным составом фазы I: Комплексная модель
2000 Бензин с измененным составом фазы II
2002 Запрет на использование MTBE в Калифорнии
Предложено 9 9035 потребности в кислороде по реформулированному бензину
Уменьшение количества МТБЭ, смешанного с бензином
2002 Калифорнийский более чистый бензин, Фаза III, предложенный
2004–2007 Бензин с пониженным содержанием серы, предложенный

Более чистый бензин - это топливо, которое соответствует требованиям, установленным Советом по воздушным ресурсам (ARB).Весь бензин, продаваемый в Калифорнии для использования в автомобилях, должен соответствовать этим требованиям, которые действуют с весны 1996 года. Более чистый бензин сокращает выбросы от автомобилей, образующие смог, на 15% и снижает риск рака от воздействия токсичных веществ автотранспортных средств за счет около 40%.

Основные спецификации для более чистого бензина:

1.

Пониженное содержание серы - Сера снижает эффективность каталитических нейтрализаторов. Более чистый горящий бензин позволяет каталитическим нейтрализаторам работать более эффективно и дополнительно сокращать выбросы из выхлопных труб.

2.

Пониженное содержание бензола. Известно, что бензол вызывает рак у людей. Более чистый горящий бензин содержит примерно половину бензола по сравнению с более ранним бензином, что снижает риск рака.

3.

Пониженный уровень ароматических углеводородов, которые легко вступают в реакцию с другими загрязнителями с образованием смога.

4.

Пониженный уровень олефинов, которые также легко вступают в реакцию с другими загрязнителями с образованием смога.

5.

Пониженное давление пара, которое снижает скорость испарения бензина.

6.

Две спецификации для пониженных температур перегонки, которые обеспечивают более полное сгорание бензина.

7.

Использование кислородсодержащих добавок, таких как МТБЭ или этанол, которые также помогают бензину гореть более чисто.

Подход в Европе не похож, хотя Европа также уделяет внимание сокращению выбросов загрязняющих веществ.Европейский Союз устанавливает ограничения на определенные свойства и не использует модели для расчета выбросов, такие как CAA. Это привело к меньшей гибкости для европейских нефтепереработчиков, чем для американцев.

Широкое использование МТБЭ сталкивается с серьезной проблемой. МТБЭ перемещается в воду быстрее, чем другие компоненты бензина, и прошел путь от протекающих труб и подземных резервуаров к источникам воды. МТБЭ не был классифицирован как канцероген, но было показано, что он вызывает рак у животных.По большей части, содержание МТБЭ в водоснабжении значительно ниже уровня опасности для здоровья, но это стало большой проблемой для качества воды, потому что только следовые количества вызывают неприятный запах и вкус воды. В 1999 году проблемы качества воды привели к объявлению губернатором Калифорнии о поэтапном прекращении использования МТБЭ во всем штате, а также к многочисленным законодательным предложениям как на уровне штата, так и на федеральном уровне, направленных на сокращение или отказ от использования МТБЭ в бензине. Будущее МТБЭ в Европе в настоящее время обсуждается.

Закон, запрещающий МТБЭ на национальном или государственном уровне без отмены требования CAAA90 для кислорода в RFG, вынудит нефтеперерабатывающую промышленность искать альтернативный источник кислорода. Другие одобренные EPA оксигенаты, включая ETBE и TAME, будут подходящей заменой; однако эти эфиры в некоторых отношениях похожи на МТБЭ и могут вызывать те же проблемы загрязнения подземных вод. Этанол, который в настоящее время используется в основном в качестве усилителя октанового числа и увеличения объема в традиционном бензине, будет основным кандидатом на замену МТБЭ.Считается, что этанол менее токсичен, чем эфиры, имеет высокое октановое число и пользуется значительной политической поддержкой как на уровне штата, так и на федеральном уровне.

Поскольку автомобильные выбросы и сера в топливе связаны, будут приняты более жесткие стандарты содержания серы в бензине. Сера снижает эффективность катализатора, используемого в системах контроля выбросов, увеличивая их выбросы углеводородов, CO и NO x . В результате для правильной работы систем управления и соответствия новым стандартам Tier 2 потребуется бензин со значительно пониженным содержанием серы.Уведомление о предлагаемых правилах EPA устанавливает среднегодовое содержание серы в бензине на уровне 30 частей на миллион по сравнению с текущим стандартом 1000 частей на миллион.

Химические и физические свойства бензина.

Во многих городах мира были введены современные автопарки для сокращения выбросов газов и твердых частиц от городских автобусов. На сегодняшний день большинство исследований выбросов ограничено несколькими транспортными средствами, что затрудняет статистически значимую оценку вариантов контроля, особенно в реальных условиях вождения.Выбросы выхлопных газов 234 отдельных городских автобусов были измерены в реальных условиях движения с остановками на автобусной остановке в Гетеборге, Швеция. Автобусы включали модели, соответствующие стандартам Euro III-VI и EEV (Enhanced Environmentally Friendly Vehicle) с различными технологиями двигателей, топлива и системами дополнительной обработки выхлопных газов, а также гибридно-электрические автобусы (HEV). Для транспортных средств, использующих сжатый природный газ (CNG), дизельное топливо (DSL), метиловый эфир рапса, были рассчитаны как газообразные (NOx, CO, HC и SO2), так и коэффициенты выбросов с определенным размером частиц (PN) и массой (PM) (EF). Сложный эфир (RME) и гидроочищенное растительное масло (HVO), оснащенные различными технологиями доочистки, e.g., сажевый фильтр (DPF), системы избирательного каталитического восстановления (SCR) и рециркуляции выхлопных газов (EGR). Самый высокий средний EFPN был получен для автобусов Euro VHEV-HVO-SCR (MdEFPN = 18 × 1014 # кг-1), когда использовались их двигатели внутреннего сгорания, хотя 53% их ускорений были ниже пределов обнаружения, что указывает на использование их электрического двигателя. Самый высокий MdEFPM был получен для автобусов Euro V-DSL-SCR (MdEFPM = 150 мг / кг), а самый низкий - для автобусов EEV-CNG (ниже порога обнаружения) и автобусов Euro VIHEV-HVO-SCR + EGR + DPF (MdEFPM = 19 мг / кг).Самый высокий MdEFNOx был получен для автобусов Euro V-RME-SCR (MdEFNOx = 30 г / кг) и Euro VHEV-HVO-SCR (MdEFNOx = 24 г / кг), а самый низкий - для автобусов CNG (MdEFNOx = 4,8 г кг-1) и автобусов Euro VIHEV-HVO-SCR + EGR + DPF (MdEFNOx = 7,4 г кг-1). Гибридные автобусы могут давать более высокие выбросы PN по сравнению с традиционными дизельными двигателями, вероятно, из-за уменьшенных размеров двигателей внутреннего сгорания.