31Мар

Детали двс: Основные детали двигателя внутреннего сгорания

Содержание

Детали ДВС: основы основ

Страницы: 1 2

Все двигатели от прошлых до современных моделей включают в себя: кривошипно-шатунный механизм; механизм газораспределения; систему охлаждения; смазочную систему; систему питания; систему зажигания (у карбюраторных двигателей).
Детали, составляющие двигатель, можно разделить на две группы: подвижные и неподвижные. К неподвижным деталям относятся блок цилиндров, цилиндры, головка блока цилиндров, поддон картера.

Цилиндры двигателя выполнены или установлены в массивном жестком корпусе, называемом блоком цилиндров двигателя. Блок изготавливается из чугуна или алюминиевого сплава. Между цилиндрами в нем выполнены каналы для охлаждающей жидкости, служащей для отвода теплоты от сильно нагревающихся деталей. Сверху на блоке закреплена головка блока цилиндров. Снизу к блоку цилиндров прикреплен поддон картера, служащий емкостью для масла, необходимого для смазывания деталей двигателя во время его работы.

 

Кривошипно-шатунный механизм. Преобразует прямолинейное (возвратно-поступательное) движение поршня во вращательное движение коленчатого вала. Включает в себя следующие детали, имеющие определенное назначение.

Поршень (рис. 7) изготовлен из алюминиевого сплава и имеет сложную форму. Он состоит из днища, уплотняющей и направляющей частей. На уплотняющей части поршня выполнены кольцевые канавки под поршневые кольца — компрессионные и маслосъемные.

Компрессионные кольца 2 препятствуют проникновению газов из камеры сгорания в зазор между цилиндром и поршнем. Маслосъемные кольца 1 снимают излишки масла со стенок цилиндра. Кольца разрезные, при установке поршня в цилиндр они пружинят и плотно прижимаются к его стенке.

Поршневой палец 3 соединяет поршень с шатуном. Поршневой палец может быть запрессован в теле поршня, при этом он свободно вращается в верхней головке шатуна. Другая конструкция предполагает свободное вращение пальца в бобышках (утолщениях) поршня и запрессовку его в верхнюю головку шатуна. От осевого перемещения в поршне палец удерживается стопорными кольцами 4, установленными в проточках бобышек поршня.

Шатун штампуется из стали. Он состоит из стержня, верхней и нижней головок. В верхнюю головку шатуна запрессована втулка 8, в которой вращается (или запрессован) поршневой палец. Нижняя головка выполнена разъемной и имеет проточки для установки шатунных вкладышей. Части нижней головки соединены между собой специальными шатунными болтами 6.

Коленчатый вал изготавливают из стали или чугуна. Коленчатый вал четырехцилиндрового двигателя состоит из пяти опорных (коренных) шеек, расположенных по одной оси, и четырех шатунных шеек, попарно направленных в противоположные стороны. Коренные шейки вращаются в подшипниках (в виде двух половин вкладышей). Для разгрузки коренных подшипников от действия центробежных сил служат противовесы 10.

На переднем конце вала устанавливается звездочка, шкив или шестерня привода распределительного вала. В торец переднего конца вала ввертывают храповик или болт для проворачивания коленчатого вала вручную при техническом обслуживании. В торце заднего конца вала помещен подшипник первичного вала коробки передач. В задней же части коленчатого вала имеется фланец, к которому прикреплен маховик. На его обод напрессован стальной зубчатый венец, с которым соединяется шестерня стартера при пуске двигателя.

Страницы: 1 2

Порекомендуйте статью друзьям:

Основные детали двигателей внутреннего сгорания

Фундаментная рама является основанием двигателя и состоит из двух продольных балок коробчатого или двутаврового сечения, на которые устанавливаются стойки и станины, и нескольких поперечных балок необходимой формы для установки рамовых подшипников. Фундаментные рамы могут быть сварными или литыми (стальными, чугунными). Они бывают закрытые и открытые, цельные и составные. Нижняя часть закрытой фундаментной рамы, т. е. поддон, выполнена за одно целое с продольными балками. Между поперечными балками вращаются кривошипы (мотыли) коленчатого вала, поэтому пространства между ними и продольными балками называют мотылевыми колодцами. Поперечные балки в нижней части имеют отверстия для перетекания масла из одного мотылевого колодца в другой. В быстроходных и легких двигателях применяют так называемые картерные рамы, позволяющие устанавливать блок цилиндров непосредственно на раме, в результате чего отпадает необходимость в станине. На рис. 55 показан общий вид фундаментной рамы. По блокам рамы по всей длине имеются горизонтальные полки с приливами, в которых сделаны отверстия для болтов, крепящих фундаментную раму к судовому фундаменту.


Рис. 55. Общий вид фундаментной рамы двигателя.

Станина двигателя устанавливается на фундаментную раму и соединяется с ней болтами. Станины бывают цельными и составными и могут иметь различную конструкцию. Некоторые двигатели большой мощности имеют станины открытого типа в виде соединенных между собой вверху и внизу колонн. Сверху на колонны устанавливают цилиндры двигателя.

На рис. 56 показана литая станина 3 мощного двигателя, которая так называемыми анкерными связями — длинными стяжными шпильками 1 — соединяется с рубашками цилиндров 2 и фундаментной рамой 4 в одно целое.


Рис. 56. Литая станина мощного двигателя.

Рабочие цилиндры изготовляют каждый в отдельности или в виде блочной конструкции. Конструкция отдельного цилиндра четырехтактного двигателя показана на рис. 57. Цилиндр состоит из рубашки 1 (или блока цилиндров) и рабочей втулки 2, запрессованной в расточку рубашки и опирающейся буртиком 9 на верхний кольцевой выступ рубашки. Между рубашкой и втулкой образуется замкнутая полость — зарубашечное пространство, куда непрерывно нагнетается насосом циркулирующая охлаждающая вода; через отверстие 3 вода вначале попадает в нижнюю часть зарубашечного пространства, а затем поднимается и переходит через отверстие 8 в полость охлаждения крышки цилиндра. Рубашка имеет фланец 4, которым цилиндр соединен со станиной двигателя. В нижней части рубашки расположен поясок 6 для фиксирования положения втулки. В пояске делают кольцевую выточку, в которую укладывают резиновые кольца 5 круглого сечения, что обеспечивает плотность соединения, т. е. предотвращает проникновение охлаждающей воды из зарубашечного пространства в картер двигателя. Для очистки и осмотра зарубашечного пространства в наружной рубашке предусмотрены горловины 7, плотно закрываемые крышками. Если рубашки цилиндров выполнены за одно целое, то такая общая конструкция называется блоком цилиндров.


Рис. 57. Цилиндр четырехтактного двигателя.

Рабочие цилиндры двухтактных двигателей отличаются от рабочих цилиндров четырехтактных тем, что имеют окна для подвода продувочного воздуха и удаления отработавших газов. Это приводит к необходимости обеспечивать уплотнение между втулкой и рубашкой не только в нижней ее части, но и в районе окон. В канавки, прилегающие к окнам, закладывают медные кольца, а в остальные канавки— резиновые кольца.

Крышка цилиндра — наиболее ответственная и сложная по конфигурации деталь двигателя. Она должна выдерживать высокое давление и температуру. Если две или более крышек выполнены за одно целое, то такая деталь называется головкой блока. Самой сложной по конфигурации является крышка четырехтактного двигателя, где кроме отверстий для форсунки и клапанов имеются канал для подвода воздуха к пусковому клапану и каналы для газообмена между цилиндром и атмоферой.

Простейшая конструкция крышки цилиндра двухтактного двигателя показана на рис. 58. Крышка имеет центральное отверстие в котором устанавливают объединенные в одном корпусе форсунку и пусковой клапан. В кольцевом пространстве 2 циркулирует охлаждающая вода. Крышка крепится к цилиндру при помощи шпилек 3. Для увеличения жесткости во внутренних полостях крышки имеются ребра 4. Уплотнение крышки осуществляется при помощи буртика 5, входящего в кольцевую выточку фланца цилиндра. В выточку для уплотнения устанавливают медное отожженное кольцо.


Рис. 58. Простейшая конструкция крышки цилиндра двухтактного двигателя.

Основные подвижные детали двигателя входят в состав кривошипно-шатунного механизма, назначение которого — преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Кривошипно-шатунный механизм тронковых двигателей состоит из поршня, поршневого пальца, поршневых колец, шатуна и коленчатого вала. В крейцкопфных двигателях в состав кривошипно-шатунного механизма входят, кроме того, поршневой шток и поперечина (крейцкопф) с ползунами. Крейцкопфом называется узел, соединяющий нижнюю часть штока с верхней головкой шатуна.

Поршень тронкового двигателя, выполняющий дополнительно функции ползуна, имеет сравнительно длинную направляющую часть, называемую «юбкой» или тронком. Поршень тронкового двигателя соединен с шатуном шарнирно — при помощи поршневого пальца. На рис. 59 показано устройство тронкового поршня, у которого головка 3 и тронк 1 отлиты за одно целое. Применяется наиболее часто такой способ установки поршневого пальца 5 в бобышках направляющей части поршня, когда он может свободно проворачиваться вокруг своей оси, но лишен возможности передвигаться вдоль оси. Такой палец называется плавающим. В верхних канавках 4 поршня установлены уплотнительные поршневые кольца 2, а в нижней части — маслосъемные кольца 6.


Рис. 59. Поршень тронкового двигателя.

На рис. 60 показана конструкция поршня крейцкопфного двигателя. Вогнутое днище 1 поршня подкреплено ребрами 2. В верхних канавках поршня установлены уплотнительные кольца 3, а в нижней части — маслосъемные кольца 4. Поршень соединен со штоком 6 при помощи шпилек 5 фланцем 7. Диск 8 закрывает внутреннюю полость поршня, охлаждаемую водой.


Рис. 60. Поршень крейцкопфного двигателя.

Поршневые кольца обеспечивают не только уплотнение цилиндра от прорыва газов и воздуха, но и передачу теплоты от головки поршня к стенкам втулки цилиндра. Кольца выполняют самопружинящими. Для надевания на поршень они снабжены косым или ступенчатым разрезом, который называют замком. Разрезные кольца хорошо пружинят и при движении поршня плотно прижимаются к стенкам цилиндра. В четырехтактных двигателях поршневые кольца в канавках обычно не фиксируют. В двухтактных двигателях кольца приходится фиксировать, если имеется опасность попадания их замков в зону продувочных или выпускных окон. Если такую фиксацию не предусмотреть, кольца могут сломаться.

Маслосъемные кольца имеют обычно скос на наружной поверхности. Благодаря этому при ходе поршня вниз маслосъемные кольца удаляют с поверхности цилиндра излишки смазочного масла, а при ходе вверх свободно проскальзывают по масляному слою.

Поршневой шток крейцкопфного двигателя соединен с поперечиной крейцкопфа фланцем или конусным соединением. Для уменьшения массы шток часто выполняют полым.

Крейцкопф состоит из поперечины и присоединенных к ней башмаков (ползунов). Поперечина имеет две цапфы для соединения с вилкой шатуна. Рабочую поверхность башмаков заливают баббитом. Крейцкопфы реверсивных двигателей имеют башмаки с обеих сторон. Для соединения с поршневым штоком поперечина имеет конусное отверстие, соответствующее конусу поршневого штока, или пятку для соединения с фланцем штока.

Шатун двигателя передает усилие от поршня коленчатому валу двигателя. На рис. 61 показан шатун тронкового двигателя. Он состоит из трех основных частей — нижней головки с мотылевым подшипником, стержня и верхней головки с головным подшипником. В неразрезной верхней головке устанавливают путем запрессовки головной подшипник 12, имеющий вид втулки. Эта втулка может фиксироваться шпонкой и пластиной 11 для обеспечения неизменного положения в головке. Стержень шатуна имеет центральное отверстие 10 для подачи под давлением смазки к головному подшипнику. Мотылевый подшипник состоит из двух половин 2 и 4, рабочая поверхность которых залита антифрикционным сплавом. Выступ 1 разгружает винты 7 от срезывающих усилий и служит также для центровки стержня с мотылевым подшипником. Изменяя толщину прокладки 9, установленной между пяткой шатуна и верхней половиной мотылевого подшипника, можно регулировать объем камеры сгорания. Набор прокладок 3 в разъеме мотылевого подшипника служит для установки и регулирования масляного зазора между мотылевой шейкой коленчатого вала и подшипником; прокладки фиксируют шпильками 8 и винтами 7. Обе половины мотылевого подшипника стягиваются двумя шатунными болтами 6, которые имеют три посадочных пояска и крепятся корончатыми гайками 5. У быстроходных дизелей наличие прокладок в разъеме мотылевого подшипника не допускается.


Рис. 61. Шатун тронкового двигателя.

Шатуны крейцкопфного двигателя отличаются от шатунов тронкового тем, что имеют два головных подшипника, соединяющихся с цапфами поперечины крейцкопфа, если шатун имеет вильчатую форму.

Коленчатый вал — одна из самых ответственных и дорогостоящих деталей двигателя. Валы изготовляют из высококачественной стали, а также отливают из модифицированного и легированного чугуна. В зависимости от конструкции и числа цилиндров коленчатый вал может иметь разное число колен (кривошипов). Кривошипы вала развертывают по отношению друг к другу на определенный угол, который зависит от числа цилиндров и от тактности двигателя. Коленчатые валы чаще всего бывают цельноковаными и реже сборными, состоящими из двух-трех отдельных частей, соединенных между собой фланцами.

Основными элементами коленчатого вала (рис. 62, а) являются рамовые или коренные шейки 1, мотылевые или шатунные шейки 2 и щеки 3, соединяющие шейки между собой. Иногда для уравновешивания сил инерции вращающихся масс к щекам 1 крепят противовесы 2 (рис. 62, б). Мотылевые шейки коленчатого вала охвачены подшипником нижней головки шатуна, а рамовые шейки опираются на рамовые подшипники, установленные в фундаментной раме двигателя. Смазка шеек осуществляется так: к рамовым шейкам масло подается под давлением через отверстие в крышке подшипника и верхнем вкладыше, а затем через сверление в щеке (рис. 62, в) направляется к мотылевой шейке.


Рис. 62. Коленчатый вал двигателя.

В коленчатых валах с полыми шейками масло поступает на рабочие поверхности мотылевых шеек через полости рамовых шеек и радиальные отверстия, выполненные в мотылевых шейках. Для предотвращения утечки масла из полостей шеек последние с торцов закрыты заглушками, стянутыми болтами или шпильками.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

Исследование отложений в автомобильных двигателях.

Одним из резервов повышения показателей эксплуатационной надежности ДВС является снижение отложений нагаров, лаков и осадков на поверхностях их деталей, контактирующих с моторным маслом. В основе их образования лежат процессы старения масел (окисление углеводородов, входящих в состав масляной основы). Определяющее влияние на процессы окисления масла в двигателях, на образование отложений и эффективность работы ДВС в целом оказывает тепловой режим теплонагруженных деталей.

Ключевые слова: температура, поршень, цилиндр, моторное масло, отложения, нагар, лак, работоспособность, надежность.

Отложения на поверхностях деталей ДВС делятся на три основных вида – нагары, лаки и осадки (шламы).

Нагар – твердые углеродистые вещества, откладывающиеся во время работы двигателя на поверхностях камеры сгорания (КС). При этом отложения нагаров, главным образом, зависят от температурных условий даже при аналогичном составе смеси и одинаковой конструкции деталей двигателей. Нагар оказывает весьма существенное влияние на протекание процесса сгорания топливовоздушной смеси в двигателе и на долговечность его работы. Почти все виды ненормального сгорания (детонационное сгорание, калильное воспламенение и прочие) сопровождаются тем или иным влиянием нагара на поверхностях деталей, образующих КС.

Лак – продукт изменения (окисления) тонких масляных пленок, растекающихся и покрывающих детали цилиндропоршневой группы (ЦПГ) двигателя под действием высоких температур. Наибольший вред для ДВС наносит лакообразование в зоне поршневых колец, вызывая процессы их закоксовывания (залегания с потерей подвижности). Лаки, откладываясь на поверхностях поршня, контактирующих с маслом, нарушают должную теплопередачу через поршень, ухудшают теплоотвод от него.

На количество осадков (шламов), образующихся в ДВС, решающее влияние оказывает качество моторного масла, температурный режим деталей, конструкционные особенности двигателя и условия эксплуатации. Отложения этого типа наиболее характерны для условий зимней эксплуатации, интенсифицируются при частых пусках и остановках двигателя.

Тепловое состояние ДВС оказывает определяющее влияние на процессы образования различных видов отложений, прочностные показатели материалов деталей, выходные эффективные показатели двигателей, процессы изнашивания поверхностей деталей. В этой связи необходимо знать пороговые значения температур деталей ЦПГ, по крайней мере, в характерных точках, превышение которых приводит к указанным ранее негативным по следствиям.

Температурное состояние деталей ЦПГ ДВС целесообразно анализировать по значениям температур в характерных точках, расположение которых показано на рис. 1 . Значения температур в данных точках следует учитывать при производстве, испытаниях и доводке двигателей для оптимизации конструкций деталей, при выборе моторных масел, при сравнении тепловых состояний различных двигателей, при решении целого ряда других технических проблем конструирования и эксплуатации ДВС.

Рис. 1. Характерные точки цилиндра и поршня ДВС при анализе их температурного состояния для дизельных (а) и бензиновых (б) двигателей

Эти значения имеют критические уровни:

1. Максимальное значение температур в точке 1 (в дизельных двигателях – на кромке КС, в бензиновых – в центре донышка поршня) не должно превышать 350С (кратковременно, 380С) для всех серийно применяемых в автомобильном двигателестроении алюминиевых сплавов, иначе происходит оплавление кромок КС в дизелях и, нередко, прогар поршней в бензиновых двигателях. Ко всему прочему высокие температуры огневой поверхности днища поршня вызывают образование нагаров высокой твердости на этой поверхности. В практике двигателестроения это критическое значение температуры удается повышать путем добавления в поршневой сплав кремния, бериллия, циркония, титана и других элементов.

Недопущение превышения критических значений температур в этой точке, равно как и в объемах деталей ДВС, обеспечивается также путем оптимизации их форм и правильной организацией охлаждения. Превышение температурами деталей ЦПГ двигателей допустимых значений обычно является основным сдерживающим фактором для форсирования их по мощности. По температурным уровням следует иметь определенный запас с учетом возможных экстремальных условий эксплуатации.

2. Критическое значение температур в точке 2 поршня – над верхним компрессионным кольцом (ВКК) – 250…260С (кратковременно, до 290С). При превышении этой величины все массовые моторные масла коксуются (происходит интенсивное лакообразование), что приводит к “залеганию” поршневых колец, то есть потере их подвижности, и в результате – к существенному уменьшению компрессии, увеличению расхода моторного масла и др.

3. Предельное максимальное значение температур в точке 3 поршня (точка расположена симметрично по сечению головки поршня на внутренней его стороне) – 220С. При более высоких температурах на внутренней поверхности поршня происходит интенсивное лакообразование. Лаковые отложения, в свою очередь, являются мощным тепловым барьером, препятствующим теплоотводу через масло. Это автоматически приводит к повышению температур во всем объеме поршня, а значит, и на поверхности зеркала цилиндра.

4. Максимально допустимое значение температур в точке 4 (расположена на поверхности цилиндра, напротив места остановки ВКК в ВМТ) – 200С. При его превышении моторное масло разжижается, что приводит к потере стабильности образования масляной пленки на зеркале цилиндра и «сухому» трению колец по зеркалу. Это вызывает интенсификацию молекулярно-механического изнашивания деталей ЦПГ. С другой стороны, известно, что пониженная температура стенок цилиндра (ниже точки росы отработавших газов) способствует ускорению их коррозионно-механического изнашивания [1,2]. Ухудшается также смесеобразование и уменьшается скорость сгорания топливовоздушной смеси, что снижает эффективность и экономичность работы двигателя, вызывая повышение токсичности отработавших газов. Также следует отметить, что при существенно заниженных температурах поршня и цилиндра сконденсированные водяные пары, проникающие в картерное масло, вызывают интенсивную коагуляцию примесей и гидролиз присадок с образованием осадков – «шламов». Эти осадки, загрязняя масляные каналы, сетки маслоотстойников, масляные фильтры, существенно нарушают нормальную работу смазочной системы.

На интенсивность протекания процессов образования отложений нагаров, лаков и осадков на поверхностях деталей ДВС существенно влияет старение моторных масел при их работе. Старение масел состоит в накоплении примесей (в том числе воды), изменении их физико-химических свойств и окислении углеводородов.

Изменение фракционного состава чистого залитого масла по мере работы двигателя вызывается в основном причинами, изменяющими состав его масляной основы и процентное соотношение присадок по отдельным составляющим (парафиновым, ароматическим, нафтеновым).

К ним относятся:

  • процессы термического разложения масла в зонах перегрева (например, в клапанных втулках, зонах верхних поршневых колец, на поверхностях верхних поясов зеркала цилиндров). Такие процессы приводят к окислению наиболее легких фракций масляной основы или даже их частичному выкипанию;

  • добавление к углеводородам основы неиспарившегося топлива, попадающего в начальные периоды пусков (или при резком увеличении подачи топлива в цилиндры для осуществления ускорения автомобиля) в маслосборник картера через зону поршневых уплотнений;

  • попадание в поддон картера или маслосборник двигателя воды, образующейся при сго-рании топлива в КС цилиндров.

Если система вентиляции картера действует достаточно эффективно, а стенки картера находятся в подогретом состоянии до 90-95°С, вода не конденсируется на них и удаляется в атмосферу системой вентиляции картера. Если температура стенок картера существенно понижена, то попавшая в масло вода будет принимать участие в процессах его окисления. Количество сконденсировавшейся воды при этом может быть весьма значительным [2]. Даже если считать, что только 2% газов могут прорваться через все компрессионные кольца цилиндра, то через картер двигателя с рабочим объемом 2-2,5 л за каждые 1000 км пробега будет прокачиваться по 2 кг воды. Допустим, что 95% воды удаляется системой вентиляции картера, то все равно после пробега в 5000 км на 4,0 л моторного масла будет приходиться около 0,5 л Н2О. Эта вода при работе двигателя преобразуется антиокислительной присадкой, содержащейся в моторном масле, в примеси – кокс и золу.

По указанным ранее причинам необходимо поддерживать при работе двигателя температуру стенок картера достаточно высокой, а в случае необходимости – применять системы смазки с сухим картером и отдельным масляным баком.

Следует отметить, что мероприятия, замедляющие процессы изменения состава масляной основы, существенно замедляют образование нагара, лака и осадков, а также снижают интенсивность изнашивания основных деталей автомобильных двигателей .

Фракционный и химический состав масел может изменяться в достаточно широких
пределах под влиянием различных факторов:

  • характера сырья, зависящего от месторождения, свойств нефтяной скважины;

Для предварительной оценки свойств нефтепродуктов применяют различные лабораторные методы: определение кривой разгонки, температур вспышки, помутнения и застывания, оценку окисляемости в средах с различной агрессивностью и т.п.

В основе старения автомобильного моторного масла лежат процессы окисления, разложения и полимеризации углеводородов, которые сопровождаются процессами загрязнения масла различными примесями (нагаром, пылью, металлическими частичками, водой, топливом и пр.). Процессы старения существенно изменяют физико-химические свойства масла, приводят к появлению в нѐм разнообразных продуктов окисления и износа, ухудшают его эксплуатационные качества. Различают следующие виды окисления масла в двигателях: в толстом слое – в поддоне картера или в масляном баке; в тонком слое -на поверхностях горячих металлических деталей; в туманообразном (капельном) состоянии – в картере, клапанной коробке и т.п. При этом окисление масла в толстом слое даѐт осадки в виде шлама, а в тонком слое – в виде лака.

Окисление углеводородов подчиняется теории перекисей А.Н. Баха и К.О. Энглера, дополненной П.Н. Черножуковым и С.Э. Крейном. Окисление углеводородов, в частности, в моторных маслах ДВС, может идти по двум основным направлениям, представленным на рис. 2, результаты окисления по которым различны. При этом результатом окисления по первому направлению являются кислые продукты (кислоты, оксикислоты, эстолиды и асфальтогенные кислоты), образующие осадки при пониженных температурах; результатом окисления по второму направлению являются нейтральные продукты (карбены, карбоиды, асфальтены и смолы), из которых образуются в различных пропорциях при повышенных температурах или лаки, или нагары.

Рис. 2. Пути окисления углеводородов в нефтяном продукте (например, в моторном масле для ДВС)

В процессах старения масла весьма значительна роль воды, попадающей в масло при конденсации ее паров из картерных газов или другими путями. В результате этого образуются эмульсии, которые впоследствии усиливают окислительную полимеризацию молекул масла. Взаимодействие оксикислот и других продуктов окисления масла с водомасляными эмульсиями вызывает усиленное образование осадков (шламов) в двигателе.

В свою очередь, образовавшиеся частички шлама, если они не будут нейтрализованы присадкой, служат центрами катализации и ускоряют разложение еще не окислившейся части масла. Если при этом не произвести своевременную замену моторного масла, процесс окисления будет происходить по типу цепной реакции с увеличивающейся скоростью, со всеми вытекающими отсюда последствиями.

Решающее влияние на образование нагаров, лаков и осадков на поверхностях деталей ДВС, контактирующих с моторным маслом, оказывает их тепловое состояние. В свою очередь, конструкционные особенности двигателей, условия их эксплуатации, режимы работы и т.д.  определяют тепловое состояние двигателей и влияют, таким образом, на процессы образования отложений. 

Не менее важное влияние на образование отложений в ДВС оказывают и характеристики применяемого моторного масла. Для каждого конкретного двигателя важно соответствие рекомендованного заводом-изготовителем масла температуре поверхностей деталей, контактирующих с ним.

В данной работе произведен анализ взаимосвязи температур поверхностей поршней двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 и процессов образования на них отложений нагаров и лаков, а также произведена оценка осадкообразования на поверхностях картера и клапанной крышки двигателей при использовании рекомендованного заводом изготовителем моторного масла М 63/12Г1.

Для исследования зависимостей количественных характеристик отложений в двигателях от их теплового состояния и условий работы можно использовать различные методики, например, Л-4 (Англия), 344-Т (США), ПЗВ (СССР) и др. [2, 3]. В частности, по методике 344-Т, являющейся нормативным документом США, состояние «чистого» неизношенного двигателя оценивается в 0 баллов; состояние предельно изношенного и загрязненного двигателя в 10 баллов. Аналогичной методикой оценки лакообразования на поверхностях поршней является отечественная методика ПЗВ (авторы – К.К. Папок, А.П. Зарубин, А.В. Виппер), цветовая шкала которой имеет баллы от 0 (отсутствие лаковых отложений) до 6 (максимальные отложения лака). Для пересчета баллов шкалы ПЗВ в баллы методики 344-Т показания первой необходимо увеличить в полтора раза. Указанная методика аналогична отечественной методике отрицательной оценки отложений ВНИИ НП (10 балльная шкала).

Для экспериментальных исследований использовались по 10 двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 [2]. Эксперименты по исследованию процессов образования отложений проводились совместно с лабораториями испытаний легковых и грузовых автомобилей УКЭР ГАЗ на моторных стендах. В процессе испытаний, кроме прочего, контролировались расходы воздуха и топлива, давление и температура отработавших газов, температура масла и охлаждающей жидкости. При этом на стендах выдерживались режимы: частота вращения коленчатого вала, соответствующая максимальной мощности (100% нагрузки), и, поочередно, в течение 3,5 часов – 70% нагрузки, 50% нагрузки, 40% нагрузки, 25% нагрузки и без нагрузки (при закрытых дроссельных заслонках), т.е. эксперименты проведены по нагрузочным характеристикам двигателей. При этом температура охлаждающей жидкости выдерживалась в интервале 90…92С, температура масла в главной масляной магистрали – 90…95С. После этого двигатели разбирались и производились необходимые замеры.

Предварительно были проведены исследования по изменению физико-химических параметров моторных масел при испытаниях двигателей ЗМЗ-402.10 в составе автомобилей ГАЗ-3110 на автополигоне УКЭР ГАЗ. При этом выдержаны условия: средняя техническая скорость 30…32 км/ч, температура окружающего воздуха 18…26С, пробег до 5000 км. В результате испытаний получено – при увеличении пробегов автомобилей (времени работы двигателей) увеличивалось количество механических примесей и воды в моторных маслах, его коксовое число и зольность, происходили прочие изменения, что представлено в табл. 1

Нагарообразование на поверхностях днищ поршней двигателей ЗМЗ-5234.10 характеризовалось данными, представленными на рис. 3 (для двигателей ЗМЗ-402.10 результаты подобны). Из анализа рисунка следует, что при повышении температур днищ поршней от 100 до 300С толщина (зона существования) нагара уменьшалась с 0,45…0,50 до 0,10…0,15 мм, что объясняется выжиганием нагара при повышении температуры поверхностей двигателей. Твердость же нагара повышалась с 0,5 до 4,0…4,5 баллов по причине спекания нагара при высоких температурах.

Рис. 3. Зависимости нагарообразования на поверхностях днищ поршней двигателей ЗМЗ-5234.10 от их температур:
а – толщина нагара; б – твердость нагара;
символами нанесены усредненные экспериментальные значения

Оценка величин отложений лаков на боковых поверхностях поршней и их внутренних (нерабочих) поверхностях производилась также по десятибалльной шкале, согласно методике 344-Т, используемой во всех ведущих научно-исследовательских учреждениях страны.

Данные по лакообразованию на поверхностях поршней двигателей представлены на рис. 4 (результаты по исследуемым маркам двигателей совпадают). Режимы испытаний указаны ранее и соответствуют режимам при исследованиях нагарообразования на деталях.

Из анализа рисунка следует, что лакообразование на поверхностях поршней двигателей однозначно увеличивается с увеличением температур их поверхностей. На интенсивность лакообразования влияет не только повышение температур поверхностей деталей, но и длительность ее действия, т.е. продолжительность работы двигателей [3]. При этом, однако, процессы лакообразования на рабочих (трущихся) поверхностях поршней существенно замедляются по сравнению с внутренними (нерабочими) поверхностями, вследствие стирания слоя лака в результате трения.

Рис. 4. Зависимости отложений лака на поверхностях поршней двигателей ЗМЗ-5234.10 от их температур:
а – внутренние поверхности; б – боковые поверхности; символами нанесены усредненные экспериментальные значения

Нагаро- и лакообразование на поверхностях деталей существенно интенсифицируется при применении масел групп «Б» и «В», что подтверждено рядом исследований, проведенных авторами на подобных и других типах автомобильных двигателей.

Планомерное увеличение отложений лаков на внутренних (нерабочих) поверхностях поршней вызывает уменьшение теплоотвода в картерное масло при увеличении наработки двигателей. Это вызывает, например, постепенное увеличение уровня теплового состояния двигателей по мере приближения наработки к смене масла при очередном ТО-2 автомобиля.

Образование осадков (шламов) из моторных масел происходит в наибольшей степени на поверхностях картера и клапанной крышки. Результаты исследований осадкообразования в двигателях ЗМЗ-5234.10 представлены на рис. 5 (для двигателей ЗМЗ-402.10 результаты подобны). Осадкообразование на поверхностях указанных ранее деталей оценивалось в зависимости от их температур, для измерения которых были смонтированы термопары (приварены конденсаторной сваркой): на поверхностях картера по 5 штук у каждого двигателя, на поверхностях клапанных крышек – по 3 штуки.

Как следует из рис. 5, при повышении температур поверхностей деталей двигателей осадкообразование на них уменьшается вследствие уменьшения содержания воды в картерном масле, что не противоречит результатам ранее проведенных экспериментов другими исследователями. Во всех двигателях осадкообразование на поверхностях деталей картера оказались больше, чем на поверхностях клапанных крышек.

На моторных маслах групп форсирования «Б» и «В» осадкообразование на деталях ДВС, контактирующих с моторным маслом, происходит интенсивнее, чем на маслах групп форсирования «Г», что подтверждено рядом исследований [1, 2, 3 и др.].

По сравнению с поверхностями поршней, отложения на зеркалах цилиндров следует считать незначительными. Далее, на рис. 6 приводятся данные по лакообразованию на зеркале цилиндра двигателей ЗМЗ-5234.10 при работе на маслах М-8В («автол») и М6з/12Г1, полученные также по методике 344-Т (для двигателей ЗМЗ-402.10 результаты подобны).

В данной работе исследования отложений на зеркалах цилиндров при эксплуатации двигателей на самых современных маслах не проводилось, однако, можно уверенно предположить, что для исследуемых двигателей они будут не больше, чем при их работе на менее качественных маслах.

Полученные результаты по взаимосвязи изменения температур основных деталей двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 (поршней, цилиндров, клапанных крышек и масляных картеров) и количества отложений позволили выявить закономерности процессов образования нагаров, лаков и осадков на поверхностях указанных деталей. Для этого результаты аппроксимированы функциональными зависимостями методом наименьших квадратов и представлены на рис. 3-5. Полученные закономерности процессов образования отложений на поверхностях деталей автомобильных карбюраторных двигателей должны учитываться и использоваться конструкторами и инженерно-техническими работниками, занимающимися доводкой и эксплуатацией ДВС.

Двигатель автомобиля работает с наибольшей эффективностью лишь при определенных условиях. Оптимальный температурный режим теплонагруженных деталей является одним из таких условий и обеспечивает высокие технические характеристики двигателя с одновременным снижением износов, отложений и, следовательно, повышением показателей его надежности.

Оптимальное тепловое состояние ДВС характеризуется оптимальными температурами поверхностей их теплонагруженных деталей. Анализируя проведенные исследования процессов образования отложений на деталях исследуемых карбюраторных двигателей ЗМЗ и подобные исследования по бензиновым двигателям [1, 2, 3 и др.], можно с достаточной степенью  точности определить интервалы оптимальных и опасных температур поверхностей деталей данного класса двигателей. Полученная информация представлена в табл. 2.

При температурах деталей двигателей в опасной высокотемпературной зоне существенно увеличивается твердость нагара на деталях КС цилиндра, что вызывает процессы калильного зажигания топливовоздушных смесей, количество лаковых отложений на поверхностях поршней и цилиндров, а значит, нарушается нормальный тепловой баланс. Рис. 7.

При температурах деталей двигателей в опасной низкотемпературной зоне увеличивается толщина нагара на поверхностях деталей, образующих КС, что приводит к возникновению детонационного сгорания топливовоздушных смесей, а также при низких температурах поверхностей деталей двигателей на них увеличивается количество осадков из моторных масел. Все это нарушает нормальную работу двигателей. В свою очередь отложения приводят к перераспределению тепловых потоков, проходящих через поршни, и повышению температур поршней в критических точках – в центре огневой поверхности днища поршня и в канавке ВКК. Температурное поле поршня двигателя ЗМЗ-5234.10 с учетом отложений нагаров и лаков на его поверхностях представлено на рис. 7.

Задача теплопроводности методом конечных элементов решалась с ГУ 1-рода, полученными при термометрировании поршня на режиме номинальной мощности при стендовых испытаниях двигателя. Термоэлектрические эксперименты проводились с тем же поршнем, для которого предварительно выполнены исследования температурного состояния без учета отложений. Эксперименты осуществлялись при идентичных условиях. Предварительно двигатель работал на стенде более 80 часов, после чего наступает стабилизация нагаров и лаков. В результате, температура в центре днища поршня повысилась на 24°С, в зоне канавки ВКК – на 26°С в сравнении с моделью поршня без учета отложений. Значение температуры поверхности поршня над ВКК 238°С входит в опасную высокотемпературную зону (табл. 2). Близко к опасной высокотемпературной зоне и значение температуры в центре днища поршня.

На этапе проектирования и доводки двигателей влияние отложений нагаров на тепловоспринимающих поверхностях поршней и лаков на их поверхностях, контактирующих с моторным маслом, учитывается крайне редко. Это обстоятельство в совокупности с эксплуатацией двигателей в составе АТС при повышенных тепловых нагрузках увеличивает вероятность отказов – прогары поршней, закоксовывание поршневых колец и т.д.

Н.А Кузьмин, В.В. Зеленцов, И.О. Донато

Нижегородский государственный технический университет им. Р.Е. Алексеева, Управление автомагистрали “Москва — Н.Новгород»

Из чего делают современные двигатели: новые материалы на службе автопроизводителей

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.

Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil, в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.

Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC), более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.

Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150–200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.

каталог деталей для ТО и ремонта мотора

Устройство автомобильного двигателя и принцип его работы

Двигатель автомобиля преобразует энергию любого топлива в механическую. За счет смешения топлива с воздухом получается топливно-воздушная смесь, которая сгорает и создает тем самым нужное давление для вращения коленвала. Данная энергия вращения переходит к трансмиссии транспортного средства.
Двигатели внутреннего сгорания различаются по:

  • Виду топлива
  • Количеству и месторасположению цилиндров
  • Методу создания топливной смеси
  • Числу тактов
  • Способу охлаждения
  • Степени сжатия

Самыми распространенными считаются бензиновые моторы, в которых бензин поступает во впускной коллектор или карбюратор. Карбюраторная система практически не используется на современных авто, чаще применяется механическая или электронная инжекторная система.
В дизельных моторах получившаяся воздушная смесь проходит в цилиндры через форсунки.
Газовые применяют в качестве топлива сжиженный, генераторный или сжатый природный газ. Он находится под давлением в специальных баллонах, откуда проникает в газовый редуктор через систему испарителя.

В автомобилестроении используются следующие подвиды ДВС:

  • Поршневой. Находящийся в цилиндре поршень запускается благодаря тепловой энергии сгоревшего топлива
  • Роторно-поршневой или роторный. Применяется трехгранный ротор, который вращается внутри цилиндра. Он соединяется с зубчатым колесом, в результате чего вращается стартер

Современные автомобили в основном используют усовершенствованные модели моторов прошлого столетия. Снижается расход топлива, повышается степень сжатия, благодаря чему увеличивается КПД цикла и всего мотора. В частности основные параметры двигателя улучшились при внедрении регулируемых фаз и системы непосредственного впрыска бензина. Она исключает неравномерность подачи топлива, повышает наполняемость цилиндров и сдвигает режимы детонации.

В последних тенденциях мирового автомобилестроения двигатель внутреннего сгорания все еще занимает лидирующие позиции, хотя все большую популярность, за счет высокой экологической безопасности, завоевывает электромотор. Для его работы используется электрическая энергия, находящаяся в аккумуляторах. Недостатком подобных систем считается небольшой ход, маленькая емкость батареи и недостаточно развитая инфраструктура для обслуживания и заправки электрокаров.

Также достаточно большое распространение получили гибридные силовые установки, объединяющие электродвигатель и ДВС, которые связываются через генератор.
 

Конструктивные особенности двигателя

Основным механизмом типичного автомобильного двигателя является блок цилиндров, состоящий из разных каналов, которые обеспечивают циркуляцию охлаждающей жидкости. Внутри блока цилиндров находятся поршни с компрессионными и маслосъемными кольцами. Первые создают герметичную систему при сжатии для того, чтобы получилось воспламенение, а вторые отвечают за недопущение попадания моторного масла в камеру сгорания.

За правильное функционирование двигателя отвечают следующие системы:

  • Система питания. Ее функция заключается в дозировании и подаче топливно-воздушной смеси в цилиндры
  • Газораспределительная. Включает шестерни, валы, пружины, толкатели, клапаны, она регулирует подачу горючей смеси и вывод отработанных газов
  • Зажигание, подает электрический ток на контакт свечи, в результате чего происходит воспламенение рабочей смеси
  • Система охлаждения. Предотвращает перегрев и преждевременный выход из строя двигателя
  • Система смазки. Обеспечивает смазывание трущихся деталей моторным маслом, тем самым уберегая их от износа

Принцип работы мотора заключается в том, что топливо проходит в камеру сгорания, где перемешивается с воздухом, создавая особую топливную смесь. Она воспламеняется, получившиеся газы толкают поршень, приводя в движение коленчатый вал. Он вращает трансмиссию, а шестеренный механизм приводит в движение колеса транспортного средства.

 

Диагностика и обслуживание двигателя

Проведение диагностических мероприятий и обслуживание автомобильного двигателя целесообразно при покупке подержанного авто, а также при возникновении проблем в процессе эксплуатации, при запуске, появлении посторонних шумов, снижении мощности, повышении расхода масла и топлива, троении, задымлении.

Техническое обслуживание двигателя включает в себя несколько этапов:

  • Внешнюю очистку. Проводится обдуванием сжатым воздухом и протиранием материей, смоченной в специальном растворе
  • Контрольный осмотр. Заключается в визуальном определении целостности деталей, в наличии утечек масла, топлива и рабочих жидкостей. Контролируются крепления, тестируется система пуска. На данном этапе выявляются очевидные неполадки
  • Общее диагностирование. Диагностика дает возможность оценить состояние работоспособности мотора, исходя из его обобщенных параметров. Ведется инструментальное, акустическое или компьютерное обследование, анализируются внешние симптомы
  • Регулирование систем, исправление неполадок, смена расходных материалов

Для оптимального функционирования всех деталей и узлов рекомендуется проводить диагностику нового мотора после 10-40 тысяч км пробега. Техническое обслуживание осуществляется также при прохождении плановых ТО.

В этом случае проверяются основные элементы системы зажигания, свечи, модули зажигания, проводка, герметичность впускного клапана, состояние ремня ГРМ, цилиндров, замеряется давление масла. При компьютерной диагностике анализируется состояние датчиков, считываются их данные.

При необходимости меняется или доливается моторное масло, охлаждающая жидкость, проводится замена фильтров, очищаются от нагара свечи зажигания, контакты.

Несоблюдение сроков проведения диагностики и несвоевременное обслуживание двигателя может привести к преждевременному износу и перегреву деталей и узлов мотора, что впоследствии грозит поломкой самого двигателя.
 

Капитальный ремонт двигателя

Срок эксплуатации двигателя зависит от марки автомобиля, типа мотора и манеры вождения. В среднем он составляет 100-250 тысяч км, хотя основным фактором для проведения капитального ремонта служит не пробег, а техническое состояние двигателя. Несвоевременная замена моторного масла, некачественные фильтры, топливо и смазка, а также тяжелые условия эксплуатации снижают долговечность мотора.

Появление характерных стуков, а также синего дыма из выхлопной трубы на фоне повышенного потребления масла свидетельствует о необходимости проведения диагностики двигателя. Если повреждения существенные, изношены цилиндры, поршни или другие важные составляющие системы, принимается решение о проведении капитального ремонта.

Он включает в себя:
  • Визуальный осмотр
  • Разборка. В зависимости от модели авто может потребоваться снятие двигателя
  • Ремонт поверхности корпуса или головки блока цилиндров, коленвала. Меняются прокладки, опоры двигателя, поршневые кольца, маслосъемные колпачки, фильтры, шатунные и коренные вкладыши, регулируются клапаны. Производится проточка и отшлифовка кривошипно-шатнунного механизма, других деталей и узлов двигателя. Если стоимость поврежденного элемента невысокая, то обычно проводят замену, в противном случае пытаются восстановить его работоспособность
  • Сборка и последующая диагностика функционирования систем силового агрегата

В некоторых случаях вместо капитального ремонта проводят полную замену двигателя. Это происходит из-за высокой стоимости или невозможности приобретения некоторых составляющих данного механизма, а также тогда, когда мотор не поддается ремонту из-за сильных повреждений.

 

Выбор запчастей для двигателя

Для проведения капитального ремонта или обслуживания двигателя необходимо приобрести запчасти для замены поврежденных элементов. В этом случае перед водителем возникает проблема, какие комплектующие лучше: оригинальные или неоригинальные.

Оригинальные детали и узлы поставляет завод-изготовитель, они отличаются надежностью и высоким качеством, имеют фирменную упаковку и гарантированно подойдут ко всем системам автомобиля. Оригинальные комплектующие обычно устанавливаются в сертифицированных автосервисах при гарантийном техобслуживании. Главным недостатком таких запчастей является их высокая стоимость.

В настоящее время появились качественные неоригинальные детали для двигателей, которые практически не уступают оригиналам по производительности и долговечности, но стоят при этом на 25-30% дешевле. Найти подобные аналоги можно намного быстрее, за счет обширного ассортимента. Имеет смысл приобретать неоригинальные расходные материалы, замена которых проводится достаточно часто.

Однако при слишком низкой цене аналоговых деталей можно столкнуться с некачественной продукцией, которая слишком быстро выйдет из строя. Также встречается бракованный товар или подделки, которые в результате могут спровоцировать серьезные повреждения крупных узлов двигателя.

Чтобы не ошибиться, приобретая автомобильные запчасти, следует обратиться к надежному поставщику подобной продукции. В магазине Eshop в наличие неимоверно широкий ассортимент автотоваров. Здесь можно купить качественные оригинальные и неоригинальные детали от проверенных производителей.

Основные компоненты двигателя внутреннего сгорания и их функции


Несмотря на то, что существуют разные типы двигателей внутреннего сгорания, и каждый двигатель состоит из сотен компонентов, есть некоторые основные компоненты, которые присутствуют почти во всех двигателях. Те, кто изучает двигатели IC, должны знать этот базовый компонент и часто используемую терминологию в двигателях IC.
На рисунке показан поперечный разрез двигателя SI, различные компоненты и его функции описаны ниже.

🔗Разница между SI Engine и CI Engine
🔗Сравнение двухтактных и четырехтактных двигателей

Блок цилиндров

BMW 6-цилиндровый блок

Блок цилиндров — это основной корпус двигателя.Это основная несущая конструкция, которая удерживает вместе другие компоненты и обеспечивает точки крепления. Блок цилиндров изготавливается методом литья. Используемый материал может быть железом или алюминием. Для многоцилиндрового двигателя блок цилиндров выполнен как единое целое. Головка блока цилиндров плотно закреплена на верхней части блока цилиндров болтом и шпильками. Эти две части снабжены соответствующей системой охлаждения (водяная рубашка, охлаждающие ребра). Прокладка цилиндра используется для уплотнения всех сопрягаемых поверхностей, в том числе между головкой цилиндров и блоком цилиндров.Материал прокладки может быть резиной, бумагой, пробкой или металлом. Нижняя часть блока цилиндров называется картером.

Цилиндр
Цилиндр — это пространство или цилиндрический сосуд, поддерживаемый блоком цилиндров, в котором поршень совершает возвратно-поступательное движение. В процессе работы двигателя объем внутри цилиндра заполняется рабочей жидкостью и подвергается различным термодинамическим процессам.

Поршень


Поршень — это трубчатый элемент, который устанавливается в цилиндр двигателя.Его движение ограничено одним измерением, он совершает возвратно-поступательное движение внутри цилиндра. Поршневые кольца и смазочные материалы, обеспечивающие посадку, являются газонепроницаемыми. Он также действует как связующее звено в передаче сил газа во вращательное движение выходного вала.

Кольца поршневые


На поршне предусмотрены поршневые кольца, обеспечивающие газонепроницаемое уплотнение между поршнем и стенкой цилиндра. Он вставляется в прорези на внешнем диаметре поршня, чтобы предотвратить утечку продуктов сгорания во время работы двигателя.

Камера сгорания
Камера сгорания — это пространство, заключенное между цилиндром и верхней частью поршня во время процесса сгорания. В камере сгорания происходит сгорание топлива, выделение тепловой энергии и повышение давления.

Шатуны


Это металлический стержень, который соединяет поршень и коленчатый вал. Он передает усилие от поршня на коленчатый вал. Малый конец шатуна соединял поршень с поршневым пальцем, а большой конец — с коленчатым валом с помощью шатунной шейки.

Коленчатый вал


Коленчатый вал — это компонент, который заключен в картер и преобразует возвратно-поступательное движение поршня во вращательное движение выходного вала. Подшипники используются для поддержки вала трещины, уменьшения трения и позволяют ему свободно вращаться при различных условиях нагрузки. На них предусмотрена пара шатунов и балансировочные грузы для статической и динамической балансировки вращающейся системы.

Свеча зажигания


Это компонент двигателя с искровым зажиганием, инициирующий процесс сгорания.Обычно он находится на головке блока цилиндров.

Уплотнения
Уплотнения двигателя расположены на конце вала, который выходит за пределы блока цилиндров. Уплотнения защищают подшипник и предотвращают утечку газа и масла.

Кулачки и распредвал
Кулачки и распредвал — это части двигателя, которые контролируют открытие и закрытие впускных и выпускных клапанов. Кулачок и распределительный вал приводятся в движение коленчатым валом с помощью синхронизирующих шестерен, и они сконструированы таким образом, чтобы открывать клапаны в нужное время и держать их открытыми в течение необходимого времени.Распредвалы также используются для привода системы зажигания.

Впускные и выпускные клапаны
Клапаны, расположенные в головке блока цилиндров для регулирования потока рабочей жидкости в цилиндр и удаления продуктов сгорания в атмосферу.

Впускной коллектор и выпускной коллектор
Трубы, которые соединяют впускную систему с впускным клапаном, известны как впускной коллектор. Воздух, топливовоздушная смесь втягивается в цилиндр через впускной коллектор.

Выпускной коллектор — это патрубок, соединяющий выхлопную систему с выпускными клапанами. Продукты сгорания, такие как CO, NOx и т. Д., Попадают в атмосферу через выпускной коллектор.

Маховик

Чтение: Что такое маховик? функция, приложения и уравнение для накопленной энергии

Крутящий момент на коленчатом валу колеблется в течение одного цикла сгорания и вызывает колебания угловой скорости вала. Маховик — это инерционная масса, прикрепленная к выходному валу, чтобы минимизировать эти колебания и добиться равномерного крутящего момента.

ДВИГАТЕЛЬ

IC: КОМПОНЕНТЫ И ИХ ФУНКЦИИ, ВИДЫ И ТЕРМИНОЛОГИЯ

Это двигатель, в котором сгорание топлива происходит внутри двигателя. Когда топливо сгорает внутри цилиндра двигателя, оно создает высокую температуру и давление. Эта сила высокого давления действует на поршень (устройство, которое свободно перемещается внутри цилиндра и передает силу давления на кривошип с помощью шатуна), который используется для вращения колес транспортного средства. В этих двигателях мы можем использовать только газы и топливо с высокой летучестью, такое как бензин, дизельное топливо.Эти двигатели обычно используются в автомобильной промышленности, производстве электроэнергии и т. Д.

Преимущества I.C. двигатель

 В целом имеет высокий КПД по сравнению с двигателем E.C.
 Эти двигатели компактны и занимают меньше места.
 Начальная стоимость I.C. двигатель ниже, чем двигатель E.C.
 Этот двигатель легко запускается в холодную погоду, так как в нем используется высоколетучее топливо.

КОМПОНЕНТЫ ДВИГАТЕЛЯ IC

1. Блок цилиндров
Цилиндр является основным корпусом двигателя внутреннего сгорания.Цилиндр — это часть, в которой происходит забор топлива, сжатие топлива и сжигание топлива. Основная функция цилиндра — направлять поршень. Он находится в прямом контакте с продуктами сгорания, поэтому его необходимо охлаждать. Для охлаждения цилиндра на внешней стороне цилиндра расположена водяная рубашка (для жидкостного охлаждения, используемого в большинстве автомобилей) или ребро (для охлаждения воздуха, используемого в большинстве мотоциклов). На верхнем конце цилиндра, головка цилиндра и на нижнем конце картера закреплены болтами. Верхняя часть цилиндра представляет собой камеру сгорания, в которой горит топливо.Чтобы справиться со всем этим давлением и температурой, возникающими при сгорании топлива, материал цилиндра должен иметь высокую прочность на сжатие. Таким образом, он сделан из высококачественного чугуна. Его изготавливают методом литья и обычно отливают в виде цельного куска.

2. Головка блока цилиндров
Верхний торец цилиндра двигателя закрыт съемной головкой блока цилиндров. На головке блока цилиндров есть два отверстия, одно для впуска топлива, а другое для выпуска. Как впускной, так и выпускной порты закрыты двумя клапанами, известными как впускной и выпускной клапан.Впускной клапан, выпускной клапан, свеча зажигания, форсунка и т. Д. Прикручены к головке блока цилиндров. Основная функция головки блока цилиндров — герметизировать блок цилиндров и не допускать попадания и выхода газов на двигатель с клапаном крышки головки блока цилиндров. Головка блока цилиндров обычно изготавливается из чугуна или алюминия. Его изготавливают методом литья или ковки и, как правило, цельным.

3. Поршень
Поршень установлен на каждом цилиндре как поверхность для приема давления газа и передачи усилия на шатун. Это главный двигатель в двигателе.Основная функция поршня — плотно прилегать к цилиндру через отверстие и свободно скользить внутри цилиндра. Поршень должен быть легким и достаточно прочным, чтобы выдерживать давление газа, возникающее при сгорании топлива. Таким образом, поршень изготовлен из алюминиевого сплава, а иногда и из чугуна, потому что поршень из легкого сплава расширяется больше, чем чугун, поэтому им нужно больше зазоров к отверстию.

4. Поршневые кольца
Поршень должен свободно входить в цилиндр, чтобы он мог свободно перемещаться внутри цилиндра.Если поршень установлен слишком плотно, он будет расширяться при нагревании и может плотно прилипать к цилиндру, а если он слишком ослаблен, это приведет к утечке давления пара. Чтобы обеспечить хорошее уплотнение и меньшее сопротивление трению между поршнем и цилиндром, поршни оснащены поршневыми кольцами. Эти кольца вставляются в пазы, прорезанные в поршне. Они разделены на одном конце, поэтому они могут расширяться или скользить по концу поршня. Небольшой двухтактный двигатель имеет два поршневых кольца для обеспечения хорошего уплотнения, но четырехтактный двигатель имеет дополнительное кольцо, известное как масляное кольцо.Поршневые кольца изготовлены из мелкозернистого чугуна и высокоэластичного материала, на который не влияет рабочая температура. Иногда его изготавливают из легированной пружинной стали.

5. Шатун
Шатун соединяет поршень с коленчатым валом и передает движение и усилие поршня на коленчатый вал. Он преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Есть два конца шатуна; один известен как большой конец, а другой как малый конец. Большой конец соединен с коленчатым валом, а малый конец соединен с поршнем с помощью поршневого пальца.Шатуны изготовлены из никелевых, хромовых и хромованадиевых сталей. Для небольших двигателей материалом может быть алюминий.

6. Коленчатый вал
Коленчатый вал двигателя внутреннего сгорания воспринимает усилие или тягу, прилагаемую поршнем к шатуну, и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Коленчатый вал устанавливается в подшипник, поэтому он может свободно вращаться. Форма и размер коленчатого вала зависят от количества и расположения цилиндров.Обычно его изготавливают путем ковки стали, но некоторые производители используют специальные типы чугуна, такие как отливки из шаровидного графита или никелевых сплавов, которые дешевле в производстве и имеют хороший срок службы.

7. Подшипник двигателя
Везде, где в двигателе есть вращательное действие, нужны подшипники. Подшипники используются для поддержки движущихся частей. Коленчатый вал опирается на подшипник. Шатун шатуна прикреплен к шатуну на кривошипе коленчатого вала подшипником. Поршневой палец на малом конце используется для прикрепления штока к поршню и также находится в подшипниках.Основная функция подшипников — уменьшить трение между этими движущимися частями. В двигателе внутреннего сгорания используются подшипники скольжения и качения. Подшипник скольжения, который иногда называют втулкой, используется для крепления шатуна к поршню и коленчатому валу. Они разделены, чтобы их можно было установить в двигатель. Подшипник качения и шарикоподшипник используются для поддержки коленчатого вала, поэтому он может свободно вращаться. Типичная половина подшипника изготовлена ​​из стали или бронзы, на которую нанесена футеровка из относительно мягкого материала подшипника.

8. Картер
Главный корпус двигателя, на котором установлен цилиндр и который содержит коленчатый вал и подшипник коленчатого вала, называется картером. Он также служит системой смазки и иногда его называют масляным картером. В него помещается все масло для смазки.

9. Клапаны
Для управления впуском и выпуском двигателя внутреннего сгорания используются клапаны. Количество клапанов в двигателе зависит от количества цилиндров. Для каждого цилиндра используются два клапана: один для впуска топливовоздушной смеси внутрь цилиндра, а другой — для выпуска дымовых газов.Клапаны устанавливаются в порт на головке блока цилиндров с помощью сильной пружины. Этой весной держите их закрытыми. Оба клапана обычно открываются внутрь.

10. Свеча зажигания
Применяется в двигателях с искровым зажиганием. Основная функция свечи зажигания — проводить высокий потенциал от системы зажигания в камеру сгорания для воспламенения топливной смеси сжатого воздуха. Он установлен на головке блока цилиндров. Свеча зажигания состоит из металлической оболочки с двумя электродами, изолированными друг от друга воздушным зазором.При подаче высокого потенциала тока на свечу зажигания она отскакивает от питающего электрода и дает необходимую искру.

11. Форсунка
Форсунка обычно используется в двигателях с воспламенением от сжатия. Он распыляет топливо в камеру сгорания в конце такта сжатия. Он установлен на головке блока цилиндров.

12. Коллектор
Основная функция коллектора — подавать топливовоздушную смесь и собирать выхлопные газы в равной степени со всех цилиндров. В двигателе внутреннего сгорания используются два коллектора: один для впуска, а другой для выпуска.Обычно они изготавливаются из алюминиевого сплава.

13. Распределительный вал
Распределительный вал используется в двигателе внутреннего сгорания для управления открытием и закрытием клапанов в нужное время. Для обеспечения надлежащей выходной мощности двигателя впускной клапан должен открываться в конце такта выпуска и закрываться в конце такта впуска. Таким образом, для регулирования времени используется кулачок овальной формы, который оказывает давление на клапан для открытия и отпускания для закрытия. Он приводится в движение зубчатым ремнем, который приводится в движение коленчатым валом. Он размещается вверху или внизу цилиндра.

14. Поршневой палец или поршневой палец
Это параллельные шпиндели из закаленной стали, проходящие через бобышки поршня и малые концевые втулки или проушины, позволяющие шатунам поворачиваться. Он соединяет поршень с шатуном. Он сделан полым для легкости.

15. Толкатель
Толкатель используется, когда распределительный вал расположен на нижнем конце цилиндра. Он передает движение распределительного вала к клапанам, расположенным на головке блока цилиндров.

16. Маховик
Маховик закреплен на коленчатом валу.Основная функция маховика — вращать вал во время подготовительного хода. Это также делает вращение коленчатого вала более равномерным.

ВИДЫ ДВИГАТЕЛЕЙ I.C

I.C. Двигатель широко используется в автомобильной промышленности, поэтому он также известен как автомобильный двигатель. Автомобильный двигатель можно классифицировать по-разному.

По количеству ходов:

1. Двухтактный двигатель
В двухтактном двигателе поршень перемещается один раз вверх и вниз внутри цилиндра и совершает один оборот коленчатого вала за один раз впрыска топлива.Этот тип двигателя имеет более высокий крутящий момент по сравнению с четырехтактным двигателем. Обычно они используются в мотороллерах, насосных агрегатах и ​​т. Д.

2. Четырехтактный двигатель
В четырехтактном двигателе поршень перемещается два раза вверх и вниз внутри цилиндра и совершает два оборота коленчатого вала за одно время сжигания топлива. Этот тип двигателей имеет высокий средний показатель по сравнению с двухтактным двигателем. Обычно они используются в мотоциклах, автомобилях, грузовиках и т. Д.

Согласно конструкции двигателя:

1.Поршневой двигатель (поршневой двигатель)
В поршневом двигателе сила давления создается за счет сгорания топлива, действующего на поршень (устройство, которое может совершать возвратно-поступательное движение внутри цилиндра). Поршень начинает возвратно-поступательное движение (как и движение). Это возвратно-поступательное движение преобразуется во вращательное движение за счет использования коленчатого вала. Таким образом, коленчатый вал начинает вращаться и заставляет вращаться колеса автомобиля. Обычно они используются во всех автомобилях.

2. Роторный двигатель (двигатель Ванкеля)
В роторном двигателе есть ротор, который свободно вращается.Сила давления, создаваемая сгоранием топлива, действует на этот ротор, поэтому ротор вращается и начинает вращать колеса транспортного средства. Этот двигатель разработан Ванкелем в 1957 году. В настоящее время этот двигатель не используется в автомобилях.

В зависимости от используемого топлива:

1. Дизельный двигатель
В этих двигателях в качестве топлива используется дизельное топливо. Они используются в грузовиках, автобусах, легковых автомобилях и т. Д.

2. Бензиновый двигатель
В этих двигателях в качестве топлива используется бензин. Они используются в мотоциклах, спортивных автомобилях, роскошных автомобилях и т. Д.

3. Газовый двигатель
В этих двигателях в качестве топлива используется КПГ и СНГ. Они используются в некоторых легковых автомобилях.

По методу зажигания:

1. Двигатель с воспламенением от сжатия
В двигателях этого типа нет дополнительного оборудования для воспламенения топлива. В этих двигателях горение топлива начинается из-за повышения температуры при сжатии воздуха. Так он известен как двигатель с воспламенением от сжатия.

2. Двигатель с искровым зажиганием
В этих типах двигателей зажигание топлива начинается с искры, генерируемой внутри цилиндра каким-либо дополнительным оборудованием (свечой зажигания).Так он известен как двигатель с искровым зажиганием.

По количеству цилиндров:

1. Одноцилиндровый двигатель
В двигателях этого типа только один цилиндр и один поршень соединены с коленчатым валом.

2. Многоцилиндровый двигатель
В двигателях этого типа имеется более одного цилиндра и поршень, соединенный с коленчатым валом

По расположению цилиндра:

1. Рядный двигатель
В двигателях этого типа цилиндры расположены по прямой линии один за другим по длине коленчатого вала.

2. V-образный двигатель
Двигатель с двумя рядами цилиндров, наклоненными под углом друг к другу, и с одним коленчатым валом, известный как двигатель V-образного типа.

3. Двигатель с оппозитными цилиндрами
Двигатель с двумя рядами цилиндров, расположенными напротив друг друга на одном коленчатом валу (двигатель V-образного типа с углом между рядами 180 °).

4. Двигатель W-типа
Двигатель такой же, как двигатель V-типа, за исключением трех рядов цилиндров на одном коленчатом валу, известный как двигатель W-типа.

5.Противопоршневой двигатель
В этом типе двигателя в каждом цилиндре установлено по два поршня с камерой сгорания в центре между поршнями. В этом двигателе один процесс сгорания вызывает два рабочих хода одновременно.

6. Радиальный двигатель
Это двигатель с поршнями, расположенными в круговой плоскости вокруг центрального коленчатого вала. Шатуны поршней соединены с ведущим штоком, который, в свою очередь, соединен с коленчатым валом.

По процессу забора воздуха:

1.Безнаддувный
В этом типе двигателя забор воздуха в цилиндр происходит за счет атмосферного давления.

2. Двигатель с наддувом
В этом типе двигателя давление всасываемого воздуха повышается компрессором, приводимым в действие коленчатым валом двигателя.

3. Двигатель с турбонаддувом
В этом типе двигателя давление всасываемого воздуха увеличивается за счет использования турбинного компрессора, приводимого в действие выхлопными газами горящего топлива.

ТЕРМИНОЛОГИЯ ДВИГАТЕЛЯ

1. Верхняя мертвая точка (Т.D.C.)
В поршневом двигателе поршень движется вперед и назад в цилиндре. Когда поршень движется в верхнем направлении в цилиндре, точка, в которой поршень останавливается или меняет свое направление, известна как верхняя мертвая точка. Он расположен в верхнем конце цилиндра.

2. Нижняя мертвая точка (B.D.C.)
Когда поршень движется вниз, точка, в которой поршень останавливается или меняет свое направление, известная как нижняя мертвая точка. Он расположен в нижней части цилиндра.

3. Ход (L)
Максимальное расстояние, на которое перемещается поршень в одном направлении, называется ходом. Это расстояние между верхней мертвой точкой и нижней мертвой точкой.

4. Отверстие (b)
Внутренний диаметр цилиндра, известный как отверстие цилиндра.

5. Максимальный или общий объем цилиндра (Vtotal)
Это объем цилиндра, когда поршень находится в нижней мертвой точке. Как правило, он измеряется в кубических сантиметрах (куб. См).

6. Минимальный или зазорный объем цилиндра (Vclearance)
Это объем цилиндра, когда поршень находится в верхней мертвой точке.

7. Рабочий или рабочий объем (Vswept)
Это объем, который перемещается поршнем. Разница между общим объемом и зазором называется рабочим объемом.

Рабочий объем = Общий объем — Чистый объем

8. Степень сжатия
Отношение максимального объема цилиндра к минимальному называется степенью сжатия. Оно составляет от 8 до 12 для двигателя с искровым зажиганием и от 12 до 24 для двигателя с воспламенением от сжатия.

Степень сжатия = Общий объем / Свободный объем

9.Задержка зажигания
Это временной интервал между запуском зажигания (запуск свечи зажигания в двигателе S.I. и впрыск топлива в двигателе C.I.) и фактическим началом горения.

10. Передаточное число рабочего диаметра
Передаточное число рабочего диаметра — это отношение внутреннего диаметра (диаметра цилиндра) к длине хода. Обычно он равен единице для маленького двигателя и меньше единицы для большого двигателя.

Отношение рабочего диаметра = внутренний диаметр цилиндра / длина хода

11. Среднее эффективное давление
Среднее давление, действующее на поршень, называется средним эффективным давлением.Он определяется отношением работы, проделанной двигателем, к общему объему двигателя.

Среднее эффективное давление = Работа, проделанная двигателем / Общий объем цилиндра

Как работает двигатель внутреннего сгорания?

Двигатель, который использует жидкое топливо для выработки энергии, такой как двигатель внутреннего сгорания, по сути, представляет собой большой воздушный насос. Холодный воздух втягивается, смешивается с выбранным топливом для создания энергии, а затем удаляется в виде горячего выхлопного газа. Чем эффективнее дышит этот «воздушный насос» двигателя, тем эффективнее он вырабатывает мощность.

В этой статье мы сосредоточимся на том, как именно автомобильный двигатель внутреннего сгорания преобразует воздух и топливо в энергию, чтобы двигать ваш автомобиль по дороге. В этой статье мы определяем некоторую терминологию для различных частей, однако вы можете найти нашу статью по теме Глоссарий внутренних деталей двигателя полезен, если вы хотите узнать о других компонентах, не упомянутых здесь.

Имейте в виду, что это сложная тема; Хотя мы сделали все возможное, чтобы объяснить это в терминах непрофессионала, некоторые концепции может быть трудно продемонстрировать в двухмерном формате.Кроме того, некоторые описания функций двигателя были упрощены для ясности.

Каковы основные части двигателя?

Типичный блок двигателя V8.

Во-первых, давайте рассмотрим две основные части типичного двигателя внутреннего сгорания. Главный и самый крупный предмет — это блок двигателя, составляющий нижнюю часть двигателя. Это дом для поршни, шатуны, коленчатый вал, масляный насос и распределительный вал, если двигатель имеет конструкцию с верхним расположением клапана.Поскольку эта секция содержит отверстия цилиндра, по которым перемещаются поршни, ее иногда называют блоком цилиндров.

Слева показана головка блока цилиндров, прикрепленная болтами к блоку двигателя. Справа и взломанная схема ГБЦ.

К верхней части блока цилиндров привинчена головка (или головки) блока цилиндров. Они содержат выпускные и впускные клапаны, а также распределительные валы, если двигатель имеет конструкцию с верхним кулачком. Рядные двигатели (все цилиндры в один ряд) имеют только одну головку блока цилиндров.Двигатели V-образной или H-образной формы имеют две головки блока цилиндров, по одной на ряд цилиндров.

Типичная секция картера, которая крепится болтами, образуя нижнюю часть блока цилиндров.

Как воздух попадает в герметичный блок двигателя?

Прежде чем мы рассмотрим этапы процесса внутреннего сгорания в двигателе, важно понять, как воздух попадает в герметичный блок двигателя.

Это происходит благодаря так называемому впускному коллектору.An Впускной коллектор, сделанный из металла или пластика, представляет собой узел, расположенный наверху двигателя, состоящий из ряда трубок, которые распределяют воздух и топливо в каждый цилиндр. (Подробнее о впускных коллекторах мы приглашаем вас прочитать наши статья по теме.)

Впускные коллекторы на V-образных двигателях обычно устанавливаются сверху между обоими рядами цилиндров.

После того, как воздух сначала проходит через впускную трубку и очищается воздушным фильтром, он попадает во впускной коллектор.Карбюратор, дроссельная заслонка или топливные форсунки впрыскивают соответствующее количество топлива, которое смешивается с этим всасываемым воздухом. Идеальное соотношение для воздушно-топливной смеси составляет 14,7: 1, что означает 14,7 частей воздуха на 1 часть топлива. Теперь нам нужно подать эту топливно-воздушную смесь в каждый цилиндр. Это начало «4-тактного цикла» двигателя нашего автомобиля.

Каковы 4 этапа 4-тактного цикла?

Автомобильные двигатели описываются как «4-тактные», потому что в процессе сгорания участвуют 4 основных этапа.(Существуют «двухтактные» двигатели, но они не использовались в дорожных автомобилях в течение многих десятилетий, и это обсуждение выходит за рамки данной статьи.)

Итак, нам ясно: шаги, описанные ниже, должны выполняться в КАЖДОМ цилиндре двигателя. Для ясности мы опишем четыре хода, как они происходят в ОДНОМ цилиндре.

Первый этап: ход впуска

Двигателю требуется топливно-воздушная смесь, чтобы попасть в закрытую зону цилиндра.Для этого впускной клапан перемещается из закрытого положения в открытое. Смесь поступает в цилиндр. Поршень, который находится в верхней части цилиндра, начинает двигаться вниз, создавая частичный вакуум, который способствует всасыванию смеси. Выпускной клапан остается закрытым на этом этапе.

    ВПУСКНОЙ ХОД:
  • ДВИЖЕНИЕ ПОРШНЯ: ВНИЗ
  • ВПУСКНОЙ КЛАПАН: ОТКРЫТ
  • ВЫПУСКНОЙ КЛАПАН: ЗАКРЫТО
  • ДЕЙСТВИЕ: ВТЯНИЕ В СМЕСИ ВОЗДУХ / ТОПЛИВО

Второй этап: ход сжатия

После того, как поршень достигает нижней части цилиндра (известной как «нижняя мертвая точка»), впускной клапан закрывается, и поршень начинает двигаться вверх, что сжимает топливно-воздушную смесь.Под давлением смеси она воспламеняется с большей силой, чем если бы она не была сжата. Впускные и выпускные клапаны остаются закрытыми, чтобы смесь оставалась в стенках цилиндра. Полное сжатие достигается, когда поршень достигает максимальной точки своего хода (известной как «верхняя мертвая точка»).

    ХОД СЖАТИЯ:
  • ДВИЖЕНИЕ ПОРШНЯ: ВВЕРХ
  • ВПУСКНОЙ КЛАПАН: ЗАКРЫТО
  • ВЫПУСКНОЙ КЛАПАН: ЗАКРЫТО
  • ДЕЙСТВИЕ: СМЕСЬ СЖАТОГО ВОЗДУХА / ТОПЛИВА

Третий этап: рабочий ход

Этот ход начинается с поршня в верхней части цилиндра, при закрытых обоих клапанах и сжатой топливно-воздушной смеси.Это момент, когда загорается свеча зажигания, воспламеняя смесь и создавая давление (мощность), которое заставляет поршень опускаться. Оба клапана остаются закрытыми, чтобы сдерживать давление в стенках цилиндра.

    СИЛОВОЙ ХОД:
  • ДВИЖЕНИЕ ПОРШНЯ: ВНИЗ
  • ВПУСКНОЙ КЛАПАН: ЗАКРЫТО
  • ВЫПУСКНОЙ КЛАПАН: ЗАКРЫТО
  • ДЕЙСТВИЕ: ЗАЖИГАТЬ СМЕСЬ ВОЗДУХ / ТОПЛИВА

Четвертый этап: ход выхлопа

Поршень снова меняет направление и начинает двигаться вверх.Теперь двигатель должен удалить сгоревшие остатки топливно-воздушной смеси. Движение поршня вверх толкает этот выхлопной газ вверх, и выпускной клапан открывается, позволяя ему выйти из цилиндра в выпускной коллектор (и, в конечном итоге, в выхлопную трубу). Впускной клапан остается закрытым, так как двигатель хочет, чтобы все эти газы уходили через выхлопные трубы.

    ХОД ВЫПУСКА:
  • ДВИЖЕНИЕ ПОРШНЯ: ВВЕРХ
  • ВПУСКНОЙ КЛАПАН: ЗАКРЫТО
  • ВЫПУСКНОЙ КЛАПАН: ОТКРЫТЬ
  • ДЕЙСТВИЕ: СМЕСЬ ВОЗДУХА / ТОПЛИВА EXPEL

Мы можем суммировать действия четырех штрихов на этой диаграмме:

Как клапаны знают, когда открываться и закрываться?

Здесь впускные и выпускные клапаны (показаны зеленым и красным) приводятся в действие отдельными распределительными валами.Эти клапаны выполняют важную функцию, и их движение точно рассчитано по времени.

Назначение клапанов

Двигатель должен иметь как минимум один впускной клапан и один выпускной клапан для каждого цилиндра. Чтобы 4-тактный цикл был успешным, открытие и закрытие этих клапанов точно контролируется — синхронизируется с движением поршней, чтобы каждый клапан выполнял свою работу именно тогда, когда это необходимо. Этот точный контроль известен как «время».

Правильная синхронизация позволяет впускному клапану открываться и впускать топливно-воздушную смесь в цилиндр, когда поршень движется вниз во время такта впуска.А после того, как происходит сгорание, выпускной клапан открывается, поэтому сгоревшие газы могут выталкиваться из цилиндра, когда поршень движется обратно вверх.

Открытие и закрытие всех клапанов двигателя осуществляется распределительным валом. Каждый распределительный вал содержит несколько «выступов», которые представляют собой детали неправильной формы, расположенные на центральном валу. Когда распределительный вал вращается, эти выступы, которые контактируют с другими компонентами, перемещают клапаны, также вращаются. Клапаны обычно закрыты и удерживаются в закрытом состоянии с помощью клапанных пружин.Лепестки должны преодолевать давление пружины, чтобы открыть клапаны. Поскольку лепесток продолжает вращаться, пружины снова закрывают клапаны. Эти лепестки имеют точную форму и механическую обработку, поэтому они вносят свой вклад в поддержание правильной синхронизации двигателя.

Распределительные валы видны в двигателе с верхним распределительным валом (слева) и в двигателе с верхним расположением клапанов (справа).

В двигателях с верхним расположением клапанов распределительные валы расположены в блоке цилиндров и соединены с клапанами с помощью толкателей, толкателей и коромысел (в зависимости от конструкции двигателя).В двигателях с верхним расположением распредвала распредвалы находятся в головке блока цилиндров. Механическое соединение с клапанами все еще существует, но поскольку кулачок расположен ближе к клапанам, это более короткое и прямое соединение.

Клапаны и синхронизация двигателя

Без правильного выбора времени клапаны не открывались и не закрывались, когда они должны были. 4-тактный цикл не будет работать должным образом. Хорошее сгорание было бы трудным, если не невозможным, и двигатель не работал бы, потому что это, по сути, гигантский воздушный насос.

Синхронизация движения поршня и клапана достигается за счет механического соединения коленчатого и распределительного валов. Поршни соединены с коленчатым валом (более подробно описано ниже). Коленчатый вал соединяется с распределительным валом одним из трех способов: шестернями ГРМ, цепью ГРМ или ремнем ГРМ (обратите внимание на использование слова «синхронизация»).

Эти иллюстрации демонстрируют, как цепи ГРМ или ремни ГРМ синхронизируют работу коленчатого и распределительного валов.

Для наших целей важно то, что малейшее вращательное движение коленчатого вала вызывает его вращение, в результате чего клапаны открываются или закрываются, в зависимости от положения лепестка. Пока синхронизация остается правильной, двигатель будет работать. Однако, если ремень или цепь ГРМ выскакивает на шестерню или, что еще хуже, щелкает, механическое соединение не синхронизировано или полностью обрывается. Двигатель будет плохо работать или вообще не будет работать.

Количество клапанов зависит от двигателя

Общее количество клапанов в двигателе может быть разным.Старые двигатели имеют 1 впускной и 1 выпускной клапан на цилиндр. У 8-цилиндрового двигателя всего 16 клапанов (2 x 8). Некоторые двигатели имеют 2 впускных клапана и 1 выпускной клапан на цилиндр. 6-цилиндровый двигатель с такой установкой с 3 клапанами на цилиндр будет иметь 18 клапанов (3 x 6). Многие современные двигатели имеют 2 впускных и 2 выпускных клапана на каждый цилиндр. Четырехцилиндровый двигатель с 4 клапанами на цилиндр, конечно, будет иметь в общей сложности 16 клапанов (4 x 4).

Как вы можете видеть из этих примеров, общее количество клапанов НЕ говорит вам, сколько цилиндров в двигателе.

Конфигурации с одним распредвалом и двумя распредвалами

Все двигатели с верхним расположением клапанов (кулачок в блоке) имеют один распределительный вал для двигателя. Двигатели с верхним расположением кулачков с распределительными валами в головках могут иметь один цилиндр на головку или два на головку. Если их два, каждый распределительный вал предназначен для работы впускных или выпускных клапанов.

Терминология двигателя говорит нам, что двигатель с одним распредвалом НА ГОЛОВКУ является двигателем «SOHC» (с одним верхним распредвалом).Точно так же двигатель с двумя кулачками НА ГОЛОВКУ называется двигателем «DOHC» (с двумя верхними кулачками). Будьте осторожны при подсчете распредвалов! V-образный двигатель DOHC с двумя головками цилиндров имеет в общей сложности ЧЕТЫРЕ распредвала (по два на головку).

Как сила от поршней перемещает автомобиль?

Мы узнали, что на этапе 3 4-тактного цикла воспламенение топливно-воздушной смеси внутри цилиндра обеспечивает силу, толкающую поршень вниз. Теперь давайте посмотрим, как двигатель преобразует это движение вверх-вниз во вращательное движение, которое нам нужно для вращения коленчатого вала.

Здесь показан шатун с прилегающими элементами (слева) и сам по себе (справа).

Поршень прикреплен к прочной металлической детали, известной как шатун. Шатуны могут поворачиваться в этой точке соединения на поршне.

Нижний конец шатуна крепится к коленчатому валу, который служит выходным валом для всего двигателя. Эта точка крепления на коленчатом валу смещена от средней линии коленчатого вала. Когда шатун перемещается вверх и вниз вместе с поршнем, он вращает коленчатый вал.

Чтобы лучше представить себе это, представьте себе движения ног велосипедиста. Движение вверх-вниз в шарнирном колене очень похоже на то, что происходит с поршнем и верхней частью шатуна. Но голень и ступня велосипедиста вращают педаль велосипеда по кругу. Движение ноги велосипедиста вверх и вниз преобразуется во вращательное движение стопы, которое раскручивает кривошип велосипеда.

На рисунке выше показаны коленчатый вал, шатуны и поршни 4-цилиндрового двигателя.Каждый поршень совершает рабочий ход 4-тактного цикла в разное время. Это позволяет добиться нескольких целей: во-первых, он выравнивает импульсы мощности, чтобы двигатель работал более плавно. Во-вторых, поскольку все поршни соединены друг с другом через кривошип, рабочий ход одного поршня также создает такты впуска, сжатия и выпуска других поршней.

Присмотритесь к типичному коленчатому валу. Обратите внимание на отверстия, через которые проходит смазочное масло. Цапфы коренных подшипников предназначены для прилегания к изогнутым подшипникам картера.Противовесы сглаживают вращательные колебания.

Регулярное срабатывание цилиндров создает мощность, необходимую для поддержания постоянного и равномерного вращения коленчатого вала с постоянным крутящим моментом.

Коленчатый вал, если смотреть снизу двигателя, со снятой секцией картера.

Сам коленчатый вал находится в нижней части блока цилиндров. Поскольку коленчатый вал вынужден вращаться от мощности, производимой во время 4-тактного цикла, он создает крутящее движение или крутящий момент.Хвостовой конец кривошипа выходит из блока цилиндров сзади, и оттуда он соединяется с маховиком, трансмиссией, ведущим и полуосевым валами, в конечном итоге достигая ведущих колес. Это сила, которая продвигает ваш автомобиль вперед.

В задней части двигателя, где коленчатый вал выходит из блока цилиндров, прикреплен маховик.

Теперь, когда у вас есть базовое представление о том, как работает двигатель внутреннего сгорания, вы будете знать, какие виды капитального ремонта включают в себя определенные типы.И вы оцените ценность регулярного обслуживания, особенно замены масла, при котором все движущиеся части остаются должным образом смазанными.

Если вы хотите перейти на новый уровень, выполнив перестройку движка (или наняв кого-нибудь для этого), мы рекомендуем прочитать нашу статью по теме ЧТО ВАМ НУЖНО ПРИ ВОССТАНОВЛЕНИИ ИЛИ ЗАМЕНЫ ДВИГАТЕЛЯ, чтобы получить представление об оборудовании и части, которые понадобятся для работы. У нас также есть полностью восстановленные двигатели, готовые к установке.

Если у вас есть какие-либо вопросы о запчастях, которые вам необходимо заказать, мы будем рады вашим запросам — наши компетентные представители находятся здесь семь дней в неделю!

Список типов двигателей внутреннего сгорания [Детали, работа, применение] PDF

В этой статье вы узнаете, что такое двигатели внутреннего сгорания , его части , принцип работы , Типы двигателей внутреннего сгорания. А разница между двигателем и двигателем IC.

А также загрузите PDF-файл этой статьи в конце.

Двигатели внутреннего сгорания

Как следует из названия, двигатели внутреннего сгорания (кратко обозначаемые как I.C. Двигатель ) — это те двигатели, в которых сгорание топлива происходит внутри цилиндра двигателя.

Другими словами, двигатели внутреннего сгорания — это те двигатели, в которых сгорание топлива происходит внутри цилиндра двигателя за счет искры.Это бензиновые, дизельные и газовые двигатели.

Двигатель — это устройство, которое, используя химическую энергию топлива, преобразует ее в тепловую энергию путем сгорания, чтобы произвести механическую работу. Мы видели в паровых двигателях, что топливо подается в цилиндр. Это в виде пара. Которая уже нагрета и готова к работе в цикле сгорания двигателя.

Различия между паровыми двигателями и двигателями внутреннего сгорания.

Ниже приведены различия между паровым двигателем и двигателем внутреннего сгорания:

Типы двигателей
  1. Двигатели внешнего сгорания (ЕС)
  2. Двигатели внутреннего сгорания (IC)

Двигатели внешнего сгорания — Если сгорание топлива происходит вне цилиндра двигателя, это двигатель внешнего сгорания.Пример: паровая турбина, газовая турбина, паровая турбина и т. Д.

Двигатели внутреннего сгорания — Если топливо сгорания происходит внутри цилиндра двигателя, это двигатель внутреннего сгорания. Пример: бензиновый двигатель, дизельный двигатель.

Типы двигателей внутреннего сгорания

Ниже приводится список типов двигателей внутреннего сгорания (классифицируются по разным методам):

  1. Рабочий цикл
    1. Двухтактный двигатель
    2. Четырехтактный двигатель
  2. Используемое топливо
    1. Бензин
    2. Дизель
    3. Газовый двигатель
  3. Характер используемого термодинамического цикла
    1. Цикл Отто
    2. Дизельный цикл
    3. Двойной цикл
  4. Охлаждение 903
  5. Скорость двигателя
    1. Высокоскоростной двигатель
    2. Среднеоборотный двигатель
    3. Низкооборотный двигатель
  6. Область применения
    1. Стационарный двигатель
    2. Автомобильный двигатель
    3. Портативный двигатель
    4. Aero Engine
    5. 905 905
    6. Метод зажигания
      1. Двигатель с искровым зажиганием
      2. Двигатель с воспламенением от сжатия
    7. Расположение цилиндра двигателя
      1. Горизонтальный двигатель
      2. Вертикальный двигатель
      3. Радиальный двигатель
      4. V-образный двигатель

    Части двигателей внутреннего сгорания0 Ниже перечислены 9 904 двигателей внутреннего сгорания. Основные части двигателя внутреннего сгорания:

    1.Цилиндр
    • Цилиндр изготовлен из стали или алюминиевых сплавов.
    • В этом поршень совершает движение для развития мощности.
    • Выдерживает высокое давление и температуру.

    2. Головка цилиндра
    • Головка цилиндра установлена ​​в верхней части цилиндра.
    • Изготовлен из стали или алюминиевых сплавов.
    • Изготовлен методом литья.
    • Между цилиндром и головкой цилиндра предусмотрена медная или асбестовая прокладка, обеспечивающая герметичность.

    3. Поршень
    • Изготовлен из алюминиевых сплавов.
    • Основная функция — передача силы, возникающей при сжигании заряда, на шатун.

    4. Поршневые кольца
    • Это круглые кольца, изготовленные из специальных стальных сплавов.
    • они размещаются в кольцевых канавках поршня.
    • Предусмотрены два набора колец, с верхним кольцом для предотвращения утечки сгоревших газов в нижнюю часть и нижним кольцом для предотвращения утечки масла в цилиндр двигателя.
    • Сохраняют эластичность даже при более высоких температурах.
    • Кольца снабжены герметичным уплотнением.

    Читайте также: Поршневые кольца: Типы поршневых колец

    5. Клапаны
    • Они расположены на головке блока цилиндров,
    • Впускной клапан используется для подачи свежей смеси в цилиндр.
    • Выпускной клапан используется для вывода отработанных газов из цилиндра.

    6. Шатун
    • Это связь между поршнем и коленчатым валом.
    • Шатун предназначен для передачи усилия от поршня к коленчатому валу.

    7. Коленчатый вал
    • Изготовлен из специальных стальных сплавов.
    • Коленчатый вал предназначен для преобразования возвратно-поступательного движения поршня во вращательное с помощью шатуна.

    8. Картер двигателя
    • Картер выполнен из чугуна.
    • Он удерживает цилиндр и коленчатый вал двигателя.
    • Также служит отстойником (местом хранения) смазочного масла.

    9. Маховик
    • Это большое сплошное колесо, установленное на коленчатом валу двигателя внутреннего сгорания.
    • Основная функция маховика — поддерживать постоянную скорость.
    • Накапливает избыточную энергию во время подачи питания и отдает во время такта сжатия.

    Принцип работы двигателей внутреннего сгорания

    В двигателях внутреннего сгорания (двигателях внутреннего сгорания) сгорание происходит внутри цилиндра, поэтому тепловая энергия топлива напрямую преобразуется в механическую работу.

    Двигатель внутреннего сгорания имеет более высокий тепловой КПД, чем тепловой КПД двигателей с электронным управлением. В двигателях внутреннего сгорания, когда двигатель внутреннего сгорания работает непрерывно, мы можем рассматривать цикл, начинающийся с любых тактов.

    Мы знаем, что, когда двигатель возвращается к такту, с которого он был запущен, мы говорим, что один цикл был завершен. Двигатель внутреннего сгорания имеет четыре этапа для завершения одного цикла, а именно:

    Ход всасывания В этом такте пар топлива в правильной пропорции подается в цилиндр двигателя.

    Ход сжатия В этом такте пары топлива сжимаются в цилиндре двигателя.

    Ход расширения В этом такте горение паров топлива за счет свечи зажигания обеспечивается в верхней части цилиндра двигателя. при сгорании топлива давление резко повышается из-за расширения продуктов сгорания в цилиндре двигателя. Повышение давления толкает поршень с большим усилием и вращает коленчатый вал.Коленчатый вал, в свою очередь, приводит в движение подключенную к нему машину.

    Ход выхлопа В этом такте отработавшие газы выпускаются из цилиндра двигателя, чтобы освободить место для свежих паров топлива.

    Разница между бензиновым двигателем и дизельным двигателем

    Основное различие между бензиновым двигателем и дизельным двигателем заключается в том, что бензиновый двигатель всасывает смесь бензина и воздуха во время такта всасывания. А дизельный двигатель во время такта всасывания втягивает только воздух.

    Бензиновый двигатель работает по циклу Отто. Его легко запустить, он легче и дешевле, он отличается высокими эксплуатационными расходами и низкими затратами на обслуживание.

    Дизельный двигатель работает по дизельному циклу. Его сложно запустить, он тяжелее и дороже, имеет низкие эксплуатационные расходы и высокую стоимость обслуживания.

    Тепловой КПД бензиновых двигателей составляет около 26%. Это высокоскоростные двигатели, которые используются в легковых автомобилях. У дизельных двигателей тепловой КПД составляет около 40%. Это тихоходные двигатели, которые используются в автомобилях большой грузоподъемности.

    Применение двигателей внутреннего сгорания

    Ниже приводится применение двигателей внутреннего сгорания:

    1. Двигатели внутреннего сгорания используются в дорожных транспортных средствах, таких как скутеры, мотоциклы, автобусы и т. Д.
    2. Он также используется в самолетах.
    3. Двигатель
    4. IC обычно используется на моторных лодках.
    5. Двигатель
    6. IC находит широкое применение в небольших машинах, таких как газонокосилки, бензопилы и переносные двигатели-генераторы.

    Итак, теперь мы надеемся, что мы развеяли все ваши сомнения относительно двигателя внутреннего сгорания.Если у вас все еще есть сомнения по поводу « типов двигателей с интегральной схемой », вы можете задать вопрос в комментариях.

    Вот и все, спасибо за прочтение. Если вам понравилась наша статья, поделитесь ею с друзьями.

    Загрузите PDF-файл этой статьи:

    Подпишитесь на нашу рассылку, чтобы получать уведомления, когда мы загружаем новые статьи.

    Читать далее:

    Компоненты дизельного двигателя и их функциональное применение

    Введение

    В целом, двигатели преобразуют тепловую энергию в механическую, используя газ на поршне и коленчатом валу в сборе.Количество энергии зависит от частоты вращения коленчатых валов согласно техническим условиям. Двигатель внутреннего сгорания (ДВС) более эффективен, чем паровой двигатель, потому что ДВС легко запускать и отключать. ДВС широко используется в сфере транспорта. Важные компоненты двигателей внутреннего сгорания: 1) Топливные системы
    2) Системы смазки
    3) Системы впуска воздуха
    4) Выхлопные системы
    5) Системы охлаждения
    6) Электрические системы

    Топливная система

    В двигателе топливо попадает в отверстие цилиндра по следующему пути:

    Топливный бак → Водоотделитель → Питающий насос → Фильтр → Топливный насос → Форсунка → Цилиндр

    · Топливный бак предназначен для хранения топлива.Обычно он изготавливается из листового металла. В большинстве топливных баков есть указатель уровня топлива для проверки уровня топлива и сливная пробка для слива топлива.

    · Водоотделитель используется для отделения грязи и воды от топлива.

    · Подающий насос используется для подачи топлива к фильтру и ТНВД.

    · Топливная система должна создавать давление топлива, чтобы открыть форсунку. Давление, необходимое для впрыска топлива в камеру сгорания для компенсации давления сжатия, обычно составляет от 350 до 450 фунтов на квадратный дюйм.Эту работу в основном выполняет ТНВД.

    · Форсунка впрыскивает топливо в камеру сгорания. Сопло форсунки распыляет топливо, которое представляет собой дробление топлива на мелкие частицы. Топливо необходимо распылить, когда оно попадает в камеру сгорания. Распыление происходит при давлении от 1500 до 4000 фунтов на квадратный дюйм.

    Система смазки

    Различные цели смазки включают:

    1) Уменьшает износ и предотвращает заедание трущихся поверхностей

    2) Уменьшает мощность, необходимую для преодоления сопротивления трения

    3) Отводит тепло от поршня и др. детали

    4) Разделяет поршневые кольца и цилиндры

    5) Удаляет инородные материалы из двигателя

    В этой системе детали двигателя смазываются под давлением.Масло хранится в масляном поддоне, откуда масляный насос пропускает масло через сетчатый фильтр и доставляет его через фильтр в главный канал. Из главной галереи масло поступает к коренным подшипникам. После смазки коренных подшипников часть масла возвращается в поддон, часть разбрызгивается на стенки цилиндра, а оставшееся масло проходит через отверстие к шатунной шейке. От шатунной шейки масло поступает к поршневому пальцу через отверстие в перемычке шатуна, где оно смазывает поршневые кольца.Для смазки распределительного вала и зубчатых колес масло подается через отдельный маслопровод из масляного канала. Смазка толкателей клапанов осуществляется путем соединения основного масляного канала с направляющими поверхностями толкателей через просверленные отверстия. Наш обзорный курс по механическому экзамену FE подробно объясняет фундаментальные концепции и функциональные применения деталей машиностроительного оборудования.

    Маслоохладитель

    Маслоохладитель используется для охлаждения смазочного масла. Более высокие температуры уменьшают вязкость масла, что вызывает образование вредной масляной пленки между движущимися частями.Для устранения этого используется маслоохладитель двигателя.

    Система впуска

    Воздух поступает в отверстие цилиндра по следующему пути:

    Воздухоочиститель → Турбонагнетатель → Впускной коллектор → Впускной канал → Впускной клапан → Отверстие цилиндра

    · Воздухоочиститель представляет собой фильтр, который предотвращает попадание пыли в отверстие цилиндра. Фильтры обычно имеют поры на поверхности, размер которых измеряется микронами. Самое низкое значение в микронах обычно обеспечивает лучшую фильтрацию.Набор фильтров содержит наружные и предохранительные фильтры в тяжелых дизельных двигателях для лучшей фильтрации.

    · Зарядное устройство для клубней — очень важная часть двигателя, которая сжимает воздух из воздушного фильтра. Турбонагнетатели имеют две крыльчатки, закрепленные на одном валу. Эти рабочие колеса приводятся в движение отработанным воздухом. Обычно воздух, всасываемый воздушным фильтром, сжимается перед попаданием в канал цилиндра, что обеспечивает высокую эффективность. Вал будет вращаться со скоростью примерно 100 000 об / мин, что продлит срок службы двигателя.

    · Впускной коллектор — это труба, по которой воздух от турбонагнетателя поступает к впускному отверстию.

    · Впускной клапан — это клапан, который пропускает воздух в отверстие цилиндра. Открытие и закрытие клапана контролируется распределительным валом.

    Выхлопная система

    Выхлопные газы проходят по следующему пути в двигателе:

    Отверстие цилиндра → Выпускной клапан → Выпускной канал → Выпускной коллектор → Турбокомпрессор → Глушитель

    · Для снижения шума двигателя выхлоп пропускается через глушитель.Выхлопные газы имеют более высокое давление, чем атмосферное; если бы эти газы выбрасывались прямо в атмосферу, раздался бы громкий неприятный шум, похожий на звук выстрела из ружья. Глушитель используется для охлаждения выхлопных газов.

    Система охлаждения

    Охлаждение двигателя преследует множество целей, в том числе:

    1) Поддержание оптимальной температуры для эффективной работы в любых условиях.

    2) Во избежание перегрева и для защиты компонентов двигателя, включая цилиндры, головку цилиндров, поршни и клапаны.

    3) Для сохранения смазывающих свойств масла.

    Есть два типа охлаждения:

    1) Воздушное охлаждение

    2) Водяное охлаждение

    Каждый цилиндр в двигателе окружен водяными рубашками. Вода в рубашках поглощает тепло цилиндров. Нагретая вода, проходящая через радиатор, помогает охлаждать воду.

    Существует три типа методов водяного охлаждения:

    1) Прямой или непрямой метод

    2) Термосифонный метод

    3) Метод принудительной циркуляции

    Инженерам-механикам, готовящимся к экзамену FE, настоятельно рекомендуется изучить нагрев и системы охлаждения перед сдачей экзамена по механике FE.

    Электрическая система

    Электрическая система двигателя состоит из следующих частей:

    1) Стартер
    2) Генератор
    3) Аккумулятор

    · Стартер используется для вращения маховика. Стартер получает питание от аккумулятора. Шестерня стартера входит в зацепление с зубьями кольца маховика и вращается, а затем вращает коленчатый вал. Это вращение коленчатого вала приводит к перемещению поршней в цилиндрах.Поршень всасывает воздух и топливо в камеру сгорания, что приводит к запуску двигателя. После достижения определенных оборотов стартер снимает шестерню с маховика.

    · Генератор закреплен на двигателе и имеет шкив. Ремень используется для привода вала генератора. Основная задача генератора — заряжать аккумуляторы.

    · Обычно используются две батареи, каждая на 12 Вольт.

    Исследование экспериментального метода получения независимого шума сгорания двигателя внутреннего сгорания

    Источники шума двигателя внутреннего сгорания сложны и изменчивы. Шум горения обычно заглушается механическим шумом и аэродинамическим шумом. Традиционные методы идентификации источника шума позволяют только качественно определить шум сгорания. Чтобы количественно получить независимый чистый шум сгорания двигателя внутреннего сгорания, необходимо спроектировать и построить отдельный испытательный стенд для моделирования источника шума.В данной статье разработан и реализован стенд для испытаний на разделение шума горения на основе метода передаточной функции. При испытании в камере сгорания устанавливается устройство импульса давления. Когда поршень находится в верхней мертвой точке (ВМТ), создается импульсное давление, которое возбуждает двигатель внутреннего сгорания и излучает шум. Сигнал давления и шумовой сигнал используются для получения передаточной функции давления сгорания и шума. Затем, исходя из давления в цилиндре и передаточной функции, можно непосредственно рассчитать шум сгорания.Испытания проводились на дизельном двигателе 4120СГ. Экспериментальные результаты показывают, что когда двигатель внутреннего сгорания работает ниже 1500 об / мин в режиме холостого хода и 800 об / мин в режиме холостого хода, частотные составляющие независимого чистого шума сгорания в основном сосредоточены на частотах 1100 Гц, 1400 Гц и 3000 Гц. Кроме того, как метод испытания на вибрацию двигателя внутреннего сгорания, так и метод расчета эмпирической формулы шума сгорания выполняются для демонстрации точности и эффективности полученного независимого шума сгорания посредством испытания разделения шума сгорания на основе метода передаточной функции.

    1. Введение

    Технология разделения и идентификации источников шума является важной областью исследований двигателей внутреннего сгорания. Основными источниками шума двигателей внутреннего сгорания являются шум сгорания, механический шум и аэродинамический шум [1, 2]. Когда двигатель внутреннего сгорания работает, двигатель внутреннего сгорания неизбежно будет издавать очень громкий шум, и громкий шум может причинить вред людям, например, он вызывает у людей раздражительность и беспокойство и даже вызывает у людей болезни [3, 4].В настоящее время люди все больше обращают внимание на влияние шума на окружающую среду. Более того, во многих странах приняты законы и постановления о контроле шума [5, 6]. Поэтому снижение шума двигателя внутреннего сгорания является актуальной проблемой, требующей решения.

    Прежде чем сформулировать план снижения шума для двигателя внутреннего сгорания, первым делом необходимо проанализировать информацию об акустических характеристиках независимых источников шума. Метод идентификации источника шума двигателя внутреннего сгорания можно разделить на традиционный метод идентификации источника шума, метод идентификации источника шума, основанный на технологии акустической матрицы, и метод идентификации источника шума, основанный на современной технологии обработки сигналов.Традиционные методы идентификации источника шума включают метод субъективной идентификации, метод покрытия свинца, метод спектрального анализа, метод тестирования ближнего поля и метод частичной работы. Традиционный метод идентификации источника шума прост и удобен в эксплуатации, но точность определения источника шума низкая. Методами идентификации источников шума, основанными на технологии акустических массивов, в основном являются метод интенсивности звука, метод акустической голографии и метод формирования луча [7].Метод идентификации источника шума, основанный на технологии акустических массивов, в основном используется для определения распределения радиационного шума на поверхности двигателя внутреннего сгорания, и невозможно получить независимые источники шума, такие как шум сгорания и механический шум. Методы идентификации источника шума, основанные на современной технологии обработки сигналов, в основном включают метод многоканального разделения и метод одноканального разделения. Для метода многоканального разделения он в основном включает метод анализа независимых компонентов [8, 9], метод фильтрации [10, 11], метод вейвлет-преобразования и метод частичного анализа когерентности [12], метод множественного регрессионного анализа [13–16], метод когерентности [ 17, 18], метод локализации бинаурального звука [19] и др.Многоканальный метод требует наличия нескольких каналов датчиков. Для метода одноканального разделения он в основном включает метод на основе EMD [20, 21], метод на основе VMD [22] и так далее. Для одноканального метода требуется только один канал датчика. По сравнению с традиционным методом идентификации источника шума и методом идентификации источника шума, основанным на технологии акустической матрицы, метод идентификации источника шума, основанный на современной технологии обработки сигналов, может точно разделить источники шума двигателя внутреннего сгорания.Однако источник шума двигателя внутреннего сгорания сложен, и источники шума серьезно смешаны друг с другом, поэтому невозможно получить полностью чистый независимый сигнал источника шума.

    В настоящее время методы разделения источников шума в основном основаны на методе многоканального разделения и методе одноканального разделения. Многоканальный метод требует разделения сигналов источника шума от сигналов двух или более каналов. Очевидно, что в этом случае необходимы два или более датчиков.Однако в инженерных и практических приложениях исследователи часто хотят достичь того же эффекта разделения и идентификации источников шума с наименьшим количеством датчиков. Таким образом, многие исследователи изучали использование одноканального метода разделения источников шума.

    Когда источники шума разделяются многоканальным методом или одноканальным методом, полученные источники шума могут содержать другие компоненты помех. Чтобы получить более чистый независимый источник шума, необходимо улучшить характеристики многоканального метода и одноканального метода.Учитывая эту ситуацию, в первую очередь необходимо получить каждый независимый чистый источник шума двигателя внутреннего сгорания. Таким образом, необходимо разработать отдельную экспериментальную платформу для обнаружения источника шума, чтобы получить независимый чистый сигнал источника шума. Среди источников шума двигателя внутреннего сгорания шум сгорания является основным источником шума двигателя внутреннего сгорания, поэтому в данной статье основное внимание уделяется разработке и внедрению независимого испытательного стенда шума сгорания для двигателя внутреннего сгорания.

    Насколько известно авторам, Shu et al. [23] использовали испытательный стенд одноцилиндрового двигателя внутреннего сгорания для разделения шума сгорания в 2005 году. С 2005 года существует очень мало исследований, посвященных независимому испытательному стенду чистого источника шума для двигателя внутреннего сгорания. Это связано с тем, что это обычно ограничивается экспериментальными условиями, и очень трудно получить независимые чисто независимые источники шума. В области исследования шума двигателей внутреннего сгорания важно разработать независимый испытательный стенд для источников шума для двигателей внутреннего сгорания.С одной стороны, получая независимый чистый шум сгорания и анализируя информацию о его акустических характеристиках, он может служить теоретической справкой для диагностики неисправностей двигателя внутреннего сгорания [24–26]. С другой стороны, если независимые источники чистого шума двигателя внутреннего сгорания могут быть получены и объединены в единую базу данных, такую ​​как база данных TIMIT и база данных шума [27], это может обеспечить удобство анализа акустических характеристик источников шума внутреннего сгорания. двигатель внутреннего сгорания.

    В данной статье объектом испытаний является многоцилиндровый двигатель внутреннего сгорания. По сравнению с предыдущей исследовательской работой [23], конструкция и реализация тестовой платформы исследуются более подробно. В процессе испытания, учитывая, что двигатель внутреннего сгорания работает в режиме воспламенения от сжатия без устройства зажигания, а устройство зажигания необходимо установить на месте первоначальной топливной форсунки, устройство системы зажигания собственной разработки имеет форму инжектор.Он имеет простые и практичные функции, и он может служить справочным материалом для дальнейших исследований. Перед испытанием двигатель внутреннего сгорания прорабатывается достаточно времени, чтобы убедиться, что состояние параметров двигателя внутреннего сгорания максимально приближено к нормальным условиям работы. Затем в камеру сгорания устанавливают устройство импульса давления. Когда поршень находится в верхней мертвой точке, создается импульсное давление, которое возбуждает двигатель внутреннего сгорания и излучает шум. Сигнал импульсного давления в цилиндре и его излучаемый шумовой сигнал измеряются одновременно, и они используются для расчета передаточной функции шума сгорания.Наконец, когда двигатель внутреннего сгорания работает в нормальных условиях, измеренные сигналы давления в цилиндре и вычисленная функция передачи шума сгорания непосредственно используются для расчета независимого чистого шума сгорания. Кроме того, далее выполняются метод вибрационных испытаний двигателя внутреннего сгорания и метод расчета эмпирической формулы шума сгорания, чтобы показать точность и эффективность полученного независимого чистого шума сгорания.

    Работа организована следующим образом.В разделе 2 описан механизм генерации шума горения. В разделе 3 анализируется и знакомится с испытательным стендом двигателя внутреннего сгорания. В разделе 4 объясняются результаты и обсуждение. Наконец, в разделе 5 представлены выводы.

    2. Механизм образования шума сгорания

    Шум сгорания двигателя внутреннего сгорания вызван резким повышением давления в цилиндре в камере сгорания. Из-за высокой степени сжатия и высокой скорости увеличения давления двигателя внутреннего сгорания шум сгорания, создаваемый двигателем внутреннего сгорания на той же скорости, намного больше, чем у бензинового двигателя.

    Механизм генерации шума сгорания можно описать в следующих двух аспектах [28]. С одной стороны, когда горючая смесь сжимается и сжигается в камере сгорания, давление газа будет сильно изменяться и вызовет ударную динамическую нагрузку на все контактирующие компоненты. Эти соприкасающиеся компоненты будут вызывать сложную структурную вибрацию связи при интенсивном переходном возбуждении. Затем вибрация может передаваться на структуру внешней поверхности двигателя внутреннего сгорания через крышку цилиндра, гильзу цилиндра, кривошипно-шатунный механизм и так далее.Наконец, вибрация конструкции внешней поверхности двигателя внутреннего сгорания создает радиационный шум для окружающей среды. С другой стороны, впрыск топлива имеет определенный порядок, а температура стенок цилиндра разная, поэтому камера сгорания обычно зажигается в нескольких местах. Тогда местное давление на нескольких очагах возгорания резко возрастет и распространится на окрестности. Эти генерируемые ударные волны давления будут отражаться от стенки камеры сгорания, и могут возникать колебания газа средней и высокой частоты.Наконец, он будет дополнительно стимулировать вибрацию корпуса двигателя внутреннего сгорания, и можно будет излучать средне-высокочастотный шум. Путь генерации и передачи шума сгорания показан на рисунке 1.


    Поскольку затухание средне-высокочастотной вибрации меньше, чем низкочастотная часть, частота шума сгорания в основном сосредоточена в средне-высокочастотном диапазоне. . Процесс сгорания в двигателе внутреннего сгорания можно разделить на четыре этапа: период задержки возгорания, период быстрого горения, период медленного горения и период после горения.Только в период быстрого горения и периода медленного горения газодинамическая нагрузка будет иметь достаточно энергии, чтобы заставить корпус двигателя внутреннего сгорания вибрировать и излучать шум сгорания. Газодинамическая нагрузка тесно связана со скоростью роста давления в цилиндре.

    3. Платформа для испытаний двигателей внутреннего сгорания
    3.1. Принцип расчета шума сгорания на основе метода передаточной функции

    Когда горючая смесь горит в цилиндре, давление сгорания действует на внутреннюю поверхность конструкции двигателя внутреннего сгорания и заставляет внешнюю поверхность двигателя внутреннего сгорания вибрировать и излучать шум.Это определяется как шум сгорания. Таким образом, шум сгорания можно рассматривать как функцию отклика, основанную на давлении сгорания в цилиндре и конструкции корпуса двигателя внутреннего сгорания. Шум сгорания можно рассчитать с помощью давления в цилиндре и передаточной функции шума сгорания. Конкретный принцип расчета шума сгорания показан на рисунке 2.


    Из рисунка 2 принцип расчета шума сгорания на основе метода передаточной функции можно разделить на два этапа: (1) Первый шаг заключается в следующем.Во-первых, импульсное давление в цилиндре и его импульсное звуковое давление излучения измеряются независимым испытательным стендом для моделирования шума сгорания. Затем можно вычислить передаточную функцию шума сгорания конструкции корпуса двигателя внутреннего сгорания. Он определяется следующим образом:

    На первом этапе можно точно получить передаточную функцию шума сгорания. (2) Второй этап заключается в следующем. Когда двигатель внутреннего сгорания работает в нормальных условиях, измеряется давление в цилиндре.Затем измеренное давление в цилиндре и передаточная функция шума сгорания используются для расчета шума сгорания. Формула расчета шума сгорания определяется следующим образом:

    На втором этапе можно рассчитать независимый чистый шум сгорания.

    3.2. Испытательный стенд

    Испытательный стенд в основном включает дизельный двигатель 4120SG, систему зажигания, акселерометр, микрофон, датчик давления в цилиндре, компьютер и т. Д. Основные технические параметры дизельного двигателя 4120SG приведены в таблице 1.


    Характеристики Параметры

    Количество цилиндров 4
    Последовательность зажигания 1-3-4-2
    Номинальная мощность 48,5 кВт
    Номинальная частота вращения 1500 об / мин
    Число хода 4
    Диаметр цилиндра 120 мм
    Ход поршня 140 мм
    Сжатие передаточное отношение 17: 1
    Рабочий объем одного цилиндра 1.58 л
    Давление разрыва цилиндра 75 бар
    Минимальное расстояние между верхней частью поршня и днищем головки цилиндра 1.0∼1.3 мм

    При испытании зажигание система является ключевой частью. Традиционная аккумуляторная система зажигания содержит источник питания, переключатель зажигания, катушку зажигания, распределитель и свечу зажигания. В этом испытании, поскольку двигатель внутреннего сгорания находится в выключенном состоянии, системе зажигания не требуется обеспечивать автоматическое зажигание и непрерывное зажигание.В основном это требует источника питания, катушки зажигания и свечи зажигания в форме инжектора. Устройство системы зажигания собственной разработки показано на Рисунке 3.

    На Рисунке 3 аккумулятор 12 В обеспечивает питание системы зажигания. Когда ручной переключатель замкнут, ток генерируется в первичной обмотке катушки зажигания. По мере увеличения тока катушка зажигания накапливает энергию магнитного поля. Затем, когда ручной переключатель отключен, накопленная энергия магнитного поля в первичной обмотке катушки зажигания может быстро исчезнуть, и вторичная обмотка будет производить высокое индуцированное напряжение.Создаваемое высокое напряжение подается на свечу зажигания. Он может ударить по зазору между электродами свечи зажигания и вызвать искру. Наконец, горючая смесь в цилиндре может воспламениться.

    В процессе испытания, учитывая, что двигатель внутреннего сгорания работает в режиме воспламенения от сжатия без устройства зажигания, и устройство зажигания необходимо установить на месте первоначальной топливной форсунки, устройство системы зажигания собственной разработки аналогично устройству системы зажигания. форма инжектора.Свеча зажигания в форме инжектора в основном состоит из центрального электрода, бокового электрода, герметичного изоляционного слоя, металлической оболочки и медной шайбы. Свеча зажигания в форме инжектора может подавать высокое напряжение во вторичной обмотке катушки зажигания в цилиндр. Затем между центральным электродом и боковым электродом может возникнуть искра для воспламенения горючей смеси. Свеча зажигания в форме инжектора показана на рисунке 4.

    Испытательное оборудование в основном состоит из пьезоэлектрического датчика давления 7013C / CA, усилителя заряда 5018A1000, емкостного микрофона B&K 4189, шасси PXIE-1078, сверхширокополосной карты сбора данных PXIe-4492, Labview интегрированная система сбора данных и компьютер.Диапазон действия пьезоэлектрического датчика давления 7013C / CA составляет 25 МПа. Из-за высокого сопротивления пьезоэлектрического датчика давления 7013C / CA выходной сигнал очень слабый. Поэтому усилитель заряда 5018A1000 добавлен в конец пьезоэлектрического датчика давления 7013C / CA. Чувствительность усилителя заряда 5018A1000 составляет 50 мВ / бар. Диаметр емкостного микрофона B&K 4189 составляет 1/2 дюйма, диапазон частот составляет 6,3 Гц – 20 кГц, а чувствительность составляет 50 мВ / Па. Шасси PXIe-1078 имеет пять гибридных слотов и три слота PXI Express.Сверхширокополосная карта сбора данных PXIe-4492 имеет разрешение аналого-цифрового преобразователя 24 бита, а максимальный диапазон напряжения составляет ± 10 В. В тесте частота дискретизации сигнала составляет 204800 Гц. Шасси PXIe-1078 имеет встроенный вентилятор для усиления эффекта рассеивания тепла. Уровень звукового давления (SPL) вентилятора составляет до 49,96 дБ (A). Чтобы снизить влияние шума вентилятора на результаты испытаний, система сбора данных размещена в диспетчерской ДВС.Комната управления двигателем внутреннего сгорания и лаборатория испытательного стенда двигателей внутреннего сгорания изолированы звуконепроницаемой дверью. Испытательное оборудование показано на Рисунке 5.

    В соответствии с национальным стандартом GB / T1859-2000 «Поршневой двигатель внутреннего сгорания — Измерение излучаемого воздушного шума — Инженерный метод и метод обследования», три емкостных микрофона B&K 4189 расположены на расстоянии 1 метра. удаленность от двигателя внутреннего сгорания. Находятся они на продольной стороне нет.4 цилиндр. Это можно увидеть на рисунке 6.

    От свободного конца до конца маховика двигателя внутреннего сгорания левый микрофон соответствует основной стороне двигателя внутреннего сгорания, называемой основным щелчком микрофона, и измеренному импульсу излучения. шум называется основным звуковым давлением со стороны удара. Верхний микрофон соответствует верхней части головки блока цилиндров и называется верхним микрофоном головки блока цилиндров, а измеренный импульсный шум излучения называется звуковым давлением в верхней части головки блока цилиндров.Правый микрофон соответствует стороне тисков двигателя внутреннего сгорания, называемой микрофоном стороны тисков, а измеренный импульсный шум излучения называется звуковым давлением стороны тисков.

    3.3. Горючая смесь

    Горючее, окислитель и источник воспламенения — три основных элемента горения. В тесте испарившегося нет. Бензин 97 используется в качестве горючего. Кислород с высокой концентрацией используется в качестве окислителя. Система зажигания используется для воспламенения горючей смеси.

    Требуется определить количество кислорода и бензина в горючей смеси. По параметрам дизельного двигателя 4120SG рабочий объем одноцилиндрового двигателя составляет 1,58 л. Таким образом, при условии, что объем кислорода в цилиндре составляет 1,58 л, температура равна 100 ° C, а начальное давление — стандартное атмосферное. Количество кислорода можно рассчитать по уравнению состояния идеального газа. Уравнение состояния идеального газа показано в следующем уравнении: где — давление газа, а единица измерения — Па.- объем газа, а единица — м 3 . — количество вещества идеального газа, единица — моль. — газовая постоянная, и в общем случае R = 8,31441 ± 0,00026 Дж / (моль · К). — температура системы, единица — К.

    По расчетам количество кислорода в баллоне составляет 0,052 моль.

    Основными компонентами бензина являются C 4 –C 12 алифатические углеводороды и циклические углеводороды. В этом тесте C 8 H 18 выбран в качестве молекулярной формулы бензина.В идеальном состоянии испарившийся бензин полностью сгорает, а химическое уравнение выглядит следующим образом:

    Расчетное количество бензина составляет.

    3.4. Подготовка к испытанию

    Во время испытания двигатель внутреннего сгорания находится в статическом состоянии. Чтобы получить точную функцию передачи шума сгорания, параметры системы двигателя внутреннего сгорания в статическом состоянии должны быть максимально приближены к нормальным рабочим условиям. В этом испытании система охлаждающей воды, система смазки смазочным маслом и топливная система должны работать нормально, чтобы уменьшить влияние структурной эластичности и изменений демпфирования на результаты испытания двигателя внутреннего сгорания.Следовательно, перед испытанием двигатель внутреннего сгорания должен проработать достаточно времени, чтобы убедиться, что температура охлаждающей воды, температура масла и температура других частей находятся в равновесии. Затем остановите работающий двигатель внутреннего сгорания.

    Кроме того, перед испытанием следует предварительно нагреть усилитель заряда в течение 2 часов. Измерительное оборудование необходимо откалибровать. После остановки двигателя внутреннего сгорания форсунка не работает. 4 цилиндр нужно снять. На данный момент общего объема нет.4 цилиндр напрямую связан с внешней атмосферой. По состоянию движения коромысла и фазовой диаграмме газораспределения (Рисунок 7) можно судить о положении поршня. Более того, чтобы избежать влияния многократных отражений звуковых волн в крышке ГБЦ, в крышке ГБЦ нет. 4 цилиндр нужно снять.


    Во-первых, двигатель внутреннего сгорания необходимо повернуть на цикл, чтобы удалить выхлопные газы из камеры сгорания.Тогда нет. Поршень 4 цилиндра перемещен в положение нижней мертвой точки (ВМТ). Клапанный зазор регулируется таким образом, чтобы впускной и выпускной клапаны были закрыты. В это время общий объем цилиндра составляет 1,58 л.

    Через отверстие топливной форсунки в цилиндр можно впрыснуть чистый кислород. На данный момент можно считать, что внутри баллона стандартное атмосферное давление чистого кислорода. Нет. Бензин 97 впрыскивается в камеру сгорания через форсунку с микроинжектором.Затем установите свечу зажигания в форме инжектора. После полного испарения жидкого бензина в герметичном цилиндре система зажигания используется для воспламенения горючей смеси в цилиндре. Система сбора данных позволяет одновременно измерять импульсный сигнал давления в цилиндре и его импульсный звуковой сигнал давления.

    При работе ДВС в нормальных рабочих условиях давление в цилиндре отсутствует. 4 цилиндра можно измерить.

    4. Результаты и обсуждение
    4.1. Функция передачи шума сгорания

    В ходе испытания двигателя внутреннего сгорания измеренный сигнал импульсного давления в цилиндре и сигнал звукового давления импульса излучения каждой стороны показаны на рисунках 8 и 9.

    Из рисунка 8 (a) в сигнале временной области, скорость нарастания импульсного давления до dp / dt = 5 МПа / с. Это вызвано быстрым сгоранием горючей смеси. На рисунке 8 (b) полоса низких частот (ниже 600 Гц) соответствует высокому уровню звукового давления (SPL), а этот сегмент относительно плоский, что связано с самым высоким импульсным давлением.Уровень звукового давления в диапазоне средних частот (600–2000 Гц) снижается быстрее, чем в диапазоне низких частот. Этот сегмент тесно связан с максимальной скоростью роста пульсового давления. Уровень звукового давления в высокочастотном диапазоне (выше 2000 Гц) быстро снижается. Этот сегмент тесно связан с высокочастотными импульсными колебаниями давления.

    Из рисунка 9 (а), спектральная плотность мощности (PSD) звукового давления со стороны основного удара в основном сконцентрирована на частотах 3238 Гц, 4513 Гц, 5150 Гц и 6519 Гц.На Рисунке 9 (b) спектральная плотность мощности звукового давления в верхней части головки блока цилиндров в основном сосредоточена на частотах 1538 Гц, 2463 Гц, 3306 Гц, 4144 Гц и 5969 Гц. На Рисунке 9 (c) спектральная плотность мощности звукового давления со стороны тисков в основном сосредоточена на частотах 1519 Гц, 3000 Гц и 4163 Гц. Из рисунка 9 видно, что спектральная плотность мощности звукового давления в верхней части головки блока цилиндров разнообразна и сложна. Это связано с тем, что верхний микрофон головки блока цилиндров не только принимает импульсное давление от верхней части головки блока цилиндров, но также принимает часть импульсного давления излучения со стороны основного удара и стороны тисков.

    Для оценки степени достоверности между давлением импульса и звуковым давлением импульса излучения каждой стороны рассчитывается коэффициент корреляции. Чем выше коэффициент корреляции, тем надежнее измеренный сигнал. Более высокий коэффициент корреляции означает, что результат расчета передаточной функции шума сгорания более точен.

    Предполагая, что входная функция равна, а функция отклика равна, коэффициент корреляции определяется следующим образом: где и — спектральная плотность собственной мощности входной функции и выходной функции, соответственно, а — кросс-спектральная плотность мощности входной и функции вывода.

    Рассчитывается коэффициент корреляции между импульсным давлением и звуковым давлением импульса излучения каждой стороны. Это показано на рисунке 10.

    Из рисунка 10 ясно видно, что коэффициент корреляции стороны тисков пощечины больше 0,5, и он, очевидно, больше, чем две другие стороны. Что касается основной стороны шлепка, то она близка к стене, и есть определенная степень отражения и реверберации. Таким образом, при использовании основного микрофона на боковой стороне для измерения звукового давления импульса излучения возникает много помех, что приводит к низкому коэффициенту корреляции.Что касается верхней части головки блока цилиндров, поскольку верхний микрофон головки блока цилиндров может воспринимать шум со стороны основного удара и со стороны обратного удара, коэффициент корреляции низкий. Следовательно, звуковое давление со стороны тисков и импульсное давление используются для расчета передаточной функции шума сгорания. Результаты расчетов показаны на рисунке 11.


    Из рисунка 11 рассчитанная функция передачи шума сгорания отражает характеристики передачи шума сгорания от сигнала давления в цилиндре к сигналу шума сгорания через конструкцию корпуса двигателя внутреннего сгорания.Величина отклика передаточной функции шума горения относительно высока в частотном диапазоне от 2000 Гц до 5000 Гц и от 7000 Гц до 10000 Гц. Ниже 2000 Гц и 5000–7000 Гц значение отклика передаточной функции шума сгорания относительно низкое.

    4.2. 1500 об / мин и режим холостого хода (нормальный случай)

    Когда двигатель внутреннего сгорания работает на 1500 об / мин и в состоянии холостого хода, измеренное давление в цилиндре показано на рисунке 12.

    На рисунке 12 показан диапазон низких частот (ниже 600 Гц) соответствует высокому уровню звукового давления (SPL).Уровень звукового давления 600 Гц достигает 186,5 дБ. Изменение диапазона низких частот относительно ровное. Полоса низких частот занимает большую часть всей энергии давления в цилиндре, но затухание низких частот через конструкцию корпуса двигателя внутреннего сгорания велико, поэтому шум излучения невелик. Уровень звукового давления в средней полосе частот (600–2000 Гц) относительно низкий. Полоса высоких частот (выше 2000 Гц) явно колеблется по сравнению с полосой низких и средних частот.

    На основе измеренного сигнала давления в цилиндре и рассчитанной передаточной функции шума сгорания вычисляется независимый чистый шум сгорания.Это показано на Рисунке 13.

    Из Рисунка 13, частотные составляющие независимого чистого шума горения в основном сосредоточены в районе 1100 Гц и 1400 Гц (средняя полоса частот) и 3000 Гц (полоса высоких частот). Амплитуда 1400 Гц примерно в четыре раза больше амплитуды 1100 Гц и 3000 Гц. Кроме того, независимый чистый шум сгорания почти не имеет других частотных составляющих.

    4.3. 800 об / мин и состояние холостого хода

    Когда двигатель внутреннего сгорания работает со скоростью 800 об / мин на холостом ходу, можно измерить давление в цилиндре.Комбинируя вычисленную передаточную функцию шума сгорания, вычисляется независимый чистый шум сгорания. Это показано на Рисунке 14.

    Из Рисунка 14, частотные составляющие независимого чистого шума горения по-прежнему в основном сосредоточены в районе 1100 Гц и 1400 Гц (средняя полоса частот) и 3000 Гц (полоса высоких частот). Амплитуда на 1400 Гц самая большая. По сравнению с рис. 13 в целом амплитуда частоты на рис. 14 меньше, чем на рис. 13.Показано, что независимый чистый шум сгорания двигателя внутреннего сгорания на малых оборотах ниже, чем на высоких.

    4.4. Механический шум

    Основными источниками шума двигателя внутреннего сгорания являются шум сгорания, механический шум и аэродинамический шум. Шум сгорания и механический шум составляют большую долю от общего шума двигателя внутреннего сгорания. Аэродинамический шум относительно невелик. Когда рассчитывается шум сгорания, механический шум может быть получен путем вычитания шума сгорания из общего шума двигателя внутреннего сгорания.Когда двигатель внутреннего сгорания работает при 1500 об / мин в режиме холостого хода и 800 об / мин в режиме холостого хода, расчетный механический шум показан на рисунке 15.

    Из рисунка 15 видно, что механический шум имеет много частотных составляющих. . Когда дизельный двигатель работает при 1500 об / мин и в состоянии холостого хода, частотные компоненты механического шума в основном сосредоточены на 711 Гц, 1244 Гц, 1600 Гц, 2222 Гц и 2933 Гц. Когда дизельный двигатель работает на 800 об / мин и в состоянии холостого хода, частотные компоненты механического шума в основном сосредоточены на 355 Гц, 1156 Гц, 1956 Гц, 3022 Гц и 3644 Гц.Механический шум включает в себя шум от удара поршня, шум от стука воздушного клапана, шум зацепления шестерен, шум топливного насоса и т. Д. Шум от удара поршня в основном вызван ударами между поршнем и гильзой цилиндра. Детонационный шум воздушного клапана в основном вызван воздействием открывания и закрывания клапана. Шум зацепления шестерен возникает из-за столкновения и трения между зубьями и зубьями во время процесса зацепления шестерен. Шум топливного насоса высокого давления связан с давлением впрыска масла и временем горения двигателя внутреннего сгорания.Когда дизель находится в разных условиях, частотная составляющая механического шума будет иметь определенную разницу. Это требует дальнейшего изучения.

    4.5. Контрольный анализ

    Далее используются метод вибрационных испытаний двигателя внутреннего сгорания и метод расчета эмпирической формулы шума сгорания для проверки результатов расчета независимого чистого шума сгорания.

    4.5.1. Метод испытания на вибрацию двигателя внутреннего сгорания

    В процессе сгорания давление в цилиндре заставляет гильзу цилиндра вибрировать, и эта вибрация передается на сторону тисков корпуса двигателя внутреннего сгорания.Тогда вибрация внешней поверхности со стороны тисков может вызвать шум горения со стороны тисков в окружающую среду. Следовательно, вибрация со стороны тисков связана с шумом сгорания со стороны тисков. Спектральная плотность мощности вибрации стороны тисков может использоваться для оценки точности вычисленного независимого чистого шума сгорания.

    Датчик ускорения копья LC0158T используется для измерения сигнала вибрации со стороны тисков. Чувствительность датчика ускорения копья LC0158T составляет 30 мВ / г, максимальный диапазон — 166 г, разрешение — 0.0007 г, а диапазон частотной характеристики 0–10000 Гц. Точка испытания вибрации со стороны тисков показана на рисунке 16.


    В ходе испытания, чтобы сохранить полезные компоненты и устранить высокочастотные компоненты, фильтр нижних частот используется для удаления высокочастотных компонентов выше 10. кГц в вибросигналах.

    Сигналы вибрации со стороны тисков измеряются соответственно при 1500 об / мин и без нагрузки и при 800 об / мин и без нагрузки, соответственно.Поскольку единицей измерения вибрационного сигнала является g, а единицей измерения шума сгорания — Па, необходимо провести нормализацию. Спектр измеренного вибрационного сигнала и независимого чистого шума сгорания показан на Рисунке 17.

    Из Рисунка 17, когда двигатель внутреннего сгорания работает, соответственно, при 1500 об / мин и холостом ходу и 800 об / мин без нагрузки. При условии, что частота независимого чистого шума сгорания в основном соответствует частоте измеренного сигнала вибрации.Особенно заметны частотная амплитуда независимого чистого шума сгорания и измеренный сигнал вибрации, особенно вблизи 1400 Гц и 3000 Гц. Однако на рисунке 17 (а) сигнал вибрации в районе 2000–2600 Гц, 6000 Гц, 7000 Гц и 9000 Гц имеет частотные составляющие. На рисунке 17 (b) сигнал вибрации в районе 2000–2600 Гц, 4000 Гц и 8500–9500 Гц имеет частотные составляющие. Эти частотные составляющие в основном вызваны механическим возбуждением от других частей.Независимый чистый шум сгорания не имеет этих частотных составляющих. Таким образом, с помощью метода испытания на вибрацию двигателя внутреннего сгорания измеренный сигнал вибрации стороны тисков показал точность и эффективность вычисленного независимого чистого шума сгорания.

    4.5.2. Метод расчета по эмпирической формуле шума сгорания

    Метод расчета по эмпирической формуле шума сгорания в основном относится к принципу измерения шума сгорания измерителем шума сгорания.Формула расчета выглядит следующим образом: где представляет собой сигнал шума горения, а единица измерения — дБ. представляет собой среднеквадратичное значение отфильтрованного давления в баллоне, единица измерения — бар. представляет собой эталонное звуковое давление, единица измерения — бар, и. представляет собой параметры частотной характеристики взвешенной сети. представляет собой эмпирические параметры затухания конструкции корпуса двигателя.

    Параметры частотной характеристики взвешенной сети приведены в таблице 2.


    Центральная частота (Гц) взвешенное значение (дБ) Центральная частота (Гц) взвешенное значение (дБ)

    100 −19,1 1000 0
    125 −16,1 1250 0,6
    160 −13,4 1600 1,0
    200 −10.9 2000 1,2
    250 −8,6 2500 1,3
    315 −6,6 3150 1,2
    400 −4,8 4000 1,0
    500 −3,2 5000 0,5
    630 −1,9 6300 −0,1
    800 −0.8 8000 −1,1

    Эмпирические параметры затухания конструкции корпуса двигателя показаны в таблице 3.


    Центральная частота (Гц ) Значение передаточной функции (дБ) Центральная частота (Гц) Значение передаточной функции (дБ)

    100 −143.0 1000 −96,5
    125 −137,5 1250 −93,3
    160 −132,4 1600 −90,8
    200 −127,8 2000 −89,7
    250 −122,3 2500 −89,5
    315 −117,2 3150 −90,6
    400 −112.3 4000 −94,2
    500 −108,2 5000 −99,2
    630 −103,8 6300 −105,6
    800 −100,0 8000 −116,0

    Сигнал давления в баллоне измеряется тестом. Затем метод расчета эмпирической формулы шума сгорания используется для расчета экспериментального значения шума сгорания.Результаты расчетов показаны на рисунке 18.

    Из рисунка 18 видно, что результаты расчета шума сгорания с помощью метода расчета эмпирической формулы и метода моделирования на стенде хорошо согласуются на частотах ниже 2000 Гц. В сочетании с рисунками 13 и 14 частота шума сгорания, рассчитанная на испытательном стенде с моделированием, в основном сконцентрирована на 1100 Гц, 1400 Гц и 3000 Гц. 1100 Гц и 1400 Гц ниже 2000 Гц. Таким образом, результаты расчета шума сгорания на частотах 1100 Гц и 1400 Гц очень хороши.Однако из рисунка 18 видно, что есть некоторые различия в результатах расчета шума сгорания выше 2000 Гц. Шум горения на частоте 3000 Гц имеет определенную погрешность. Причина ошибки заключается в том, что параметры затухания конструкции корпуса двигателя в методе расчета по эмпирической формуле имеют определенную степень отличия от параметров затухания конструкции корпуса двигателя дизельного двигателя 4120SG в высокочастотной части (выше 2000 Гц). Параметры затухания конструкции корпуса двигателя в методе расчета по эмпирической формуле являются значениями эмпирических параметров и имеют некоторые отличия от конкретного типа дизельного двигателя 4120SG.Результаты расчета шума сгорания имеют некоторую разницу в частотной составляющей 3000 Гц. Но общая тенденция результатов расчетов не вызывает сомнений. Следовательно, полученный независимый чистый шум сгорания является точным.

    5. Выводы

    Для воспламенения горючей смеси (чистый кислород и бензин № 97), учитывая, что двигатель внутреннего сгорания работает в режиме воспламенения от сжатия без устройства зажигания, и устройство зажигания необходимо установить в положение оригинальная топливная форсунка, устройство зажигания которой по форме похоже на форсунку, разработано и реализовано в деталях самостоятельно.Он имеет простые и практичные функции, и он очень полезен и надежен в тестах.

    Перед испытанием двигатель внутреннего сгорания должен проработать достаточно времени, чтобы параметры двигателя внутреннего сгорания в статическом состоянии были максимально близки к нормальным рабочим условиям. Затем при испытании одновременно измеряются импульсный сигнал давления в цилиндре и излучаемый им импульсный сигнал звукового давления. Они используются для расчета передаточной функции шума сгорания.Таким образом, можно точно рассчитать передаточную функцию шума сгорания.

    Когда двигатель внутреннего сгорания работает при 1500 об / мин в режиме холостого хода и 800 об / мин в режиме холостого хода, независимый чистый шум сгорания рассчитывается на основе измеренного давления в цилиндре и расчетной передаточной функции. Экспериментальные результаты показывают, что частотные компоненты независимого чистого шума сгорания сосредоточены на 1100 Гц, 1400 Гц и 3000 Гц. Кроме того, дополнительно выполняются два метода проверки, чтобы показать точность и эффективность полученного независимого чистого шума сгорания.

    Независимая экспериментальная платформа для регистрации чистого шума сгорания может служить справочным материалом для регистрации других независимых источников шума. Кроме того, полученный независимый чистый шум сгорания может служить теоретической справкой для диагностики неисправностей и плана снижения шума двигателей внутреннего сгорания.

    Доступность данных

    Данные MAT-файла, используемые для подтверждения результатов этого исследования, доступны у соответствующего автора по запросу.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Благодарности

    Эта работа была поддержана Национальным фондом естественных наук Китая (гранты № 51079118 и 51279148) и Китайским стипендиальным фондом (201806950033).

    Основные части двигателя внутреннего сгорания

    Сегодня мы узнаем об основных частях двигателя или, точнее, двигателя внутреннего сгорания. Двигатель внутреннего сгорания — это тепловой двигатель, в котором сгорание (сжигание топлива) происходит внутри цилиндра двигателя. После сжигания топлива возникает высокая температура и сила давления.Эта сила давления используется для перемещения транспортного средства или вращения колес с помощью какого-либо механизма. В двигателе многие части работают вместе для достижения цели преобразования химической энергии топлива в механическую. Эти части скреплены болтами, и комбинация всех этих частей известна как двигатель. Сегодня я собираюсь рассказать вам об этих частях и о том, как они работают, чтобы вы могли узнать основы автомобильного двигателя.

    1. Блок цилиндров

    Цилиндр является основным корпусом двигателя внутреннего сгорания.Цилиндр — это часть, в которой происходит забор топлива, сжатие топлива и сжигание топлива. Основная функция цилиндра — направлять поршень. Он находится в прямом контакте с продуктами сгорания, поэтому его необходимо охлаждать. Для охлаждения цилиндра на внешней стороне цилиндра расположена водяная рубашка (для жидкостного охлаждения, используемого в большинстве автомобилей) или ребро (для охлаждения воздуха, используемого в большинстве мотоциклов). На верхнем конце цилиндра, головка цилиндра и на нижнем конце картера закреплены болтами. В верхней части цилиндра находится камера сгорания, в которой горит топливо.Чтобы справиться со всем этим давлением и температурой, возникающими при сгорании топлива, материал цилиндра должен иметь высокую прочность на сжатие. Таким образом, он сделан из высококачественного чугуна. Его изготавливают методом литья и обычно отливают в виде цельного куска.

    2. Головка блока цилиндров

    Верхний торец цилиндра двигателя закрыт съемной головкой блока цилиндров. На головке блока цилиндров есть два отверстия, одно для впуска топлива, а другое для выпуска. Как впускной, так и выпускной порты закрыты двумя клапанами, известными как впускной и выпускной клапан.Впускной клапан, выпускной клапан, свеча зажигания, форсунка и т. Д. Прикручены к головке блока цилиндров. Основная функция головки блока цилиндров — герметизировать блок цилиндров и не допускать попадания и выхода газов на двигатель с клапаном крышки головки блока цилиндров. Головка блока цилиндров обычно изготавливается из чугуна или алюминия. Его изготавливают методом литья или ковки и, как правило, цельным.

    3. Поршень

    Поршень установлен на каждом цилиндре как поверхность для приема давления газа и передачи усилия на шатун.Это главный двигатель в двигателе. Основная функция поршня — плотно прилегать к цилиндру через отверстие и свободно скользить внутри цилиндра. Поршень должен быть легким и достаточно прочным, чтобы выдерживать давление газа, возникающее при сгорании топлива. Таким образом, поршень изготовлен из алюминиевого сплава, а иногда и из чугуна, потому что поршень из легкого сплава расширяется больше, чем чугун, поэтому им нужно больше зазоров к отверстию.



    4. Поршневые кольца

    Поршень должен достаточно свободно входить в цилиндр, чтобы он мог свободно перемещаться внутри цилиндра.Если поршень установлен слишком плотно, он будет расширяться при нагревании и может плотно прилипать к цилиндру, а если он слишком ослаблен, это приведет к утечке давления пара. Чтобы обеспечить хорошее уплотнение и меньшее сопротивление трению между поршнем и цилиндром, поршни оснащены поршневыми кольцами. Эти кольца вставляются в пазы, прорезанные в поршне. Они разделены на одном конце, поэтому они могут расширяться или скользить по концу поршня. Небольшой двухтактный двигатель имеет два поршневых кольца для обеспечения хорошего уплотнения, но четырехтактный двигатель имеет дополнительное кольцо, известное как масляное кольцо.Поршневые кольца изготовлены из мелкозернистого чугуна и высокоэластичного материала, на который не влияет рабочая температура. Иногда его изготавливают из легированной пружинной стали.

    5. Шатун

    Шатун соединяет поршень с коленчатым валом и передает движение и усилие поршня на коленчатый вал. Он преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Есть два конца шатуна; один известен как большой конец, а другой как малый конец.Большой конец соединен с коленчатым валом, а малый конец соединен с поршнем с помощью поршневого пальца. Шатуны изготовлены из никелевых, хромовых и хромованадиевых сталей. Для небольших двигателей материалом может быть алюминий.

    6. Коленчатый вал

    Коленчатый вал двигателя внутреннего сгорания воспринимает усилие или тягу, прилагаемую поршнем к шатуну, и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала.Коленчатый вал устанавливается в подшипник, поэтому он может свободно вращаться. Форма и размер коленчатого вала зависят от количества и расположения цилиндров. Обычно его изготавливают путем ковки стали, но некоторые производители используют специальные типы чугуна, такие как отливки из шаровидного графита или никелевых сплавов, которые дешевле в производстве и имеют хороший срок службы.

    7. Подшипник двигателя

    Везде, где в двигателе есть вращательное действие, нужны подшипники. Подшипники используются для поддержки движущихся частей.Коленчатый вал опирается на подшипник. Шатун шатуна прикреплен к шатуну на кривошипе коленчатого вала подшипником. Поршневой палец на малом конце используется для прикрепления штока к поршню и также находится в подшипниках. Основная функция подшипников — уменьшить трение между этими движущимися частями. В двигателе внутреннего сгорания используются подшипники скольжения и качения. Подшипник скольжения, который иногда называют втулкой, используется для крепления шатуна к поршню и коленчатому валу. Они разделены, чтобы их можно было установить в двигатель.Подшипник качения и шарикоподшипник
    используется для поддержки коленчатого вала, чтобы он мог свободно вращаться. Типичная половина подшипника
    изготовлена ​​из стали или бронзы, на которую нанесена футеровка из относительно мягкого материала подшипника
    .

    8. Картер двигателя

    Главный корпус двигателя, к которому прикреплен цилиндр и который содержит коленчатый вал и подшипник коленчатого вала, называется картером. Он также служит системой смазки и иногда его называют масляным картером.В него помещается все масло для смазки.

    9. Клапаны

    Для управления впуском и выпуском двигателя внутреннего сгорания используются клапаны. Количество клапанов в двигателе зависит от количества цилиндров. Для каждого цилиндра используются два клапана: один для впуска топливовоздушной смеси внутрь цилиндра, а другой — для выпуска дымовых газов. Клапаны устанавливаются в порт на головке блока цилиндров с помощью сильной пружины. Этой весной держите их закрытыми.Оба клапана обычно открываются внутрь.

    10. Свеча зажигания

    Используется в двигателях с искровым зажиганием. Основная функция свечи зажигания — проводить высокий потенциал от системы зажигания в камеру сгорания для воспламенения топливной смеси сжатого воздуха. Он установлен на головке блока цилиндров. Свеча зажигания состоит из металлической оболочки с двумя электродами, изолированными друг от друга воздушным зазором. При подаче высокого потенциала тока на свечу зажигания она отскакивает от питающего электрода и дает необходимую искру.

    11. Форсунка

    Форсунка обычно используется в двигателях с воспламенением от сжатия. Он распыляет топливо в камеру сгорания в конце такта сжатия. Он установлен на головке блока цилиндров.

    12. Коллектор

    Основная функция коллектора — подавать воздушно-топливную смесь и собирать выхлопные газы в равной степени со всех цилиндров. В двигателе внутреннего сгорания используются два коллектора: один для впуска, а другой для выпуска.Обычно они изготавливаются из алюминиевого сплава.

    13. Распределительный вал

    Распределительный вал используется в двигателе внутреннего сгорания для управления открытием и закрытием клапанов в нужное время. Для обеспечения надлежащей выходной мощности двигателя впускной клапан должен открываться в конце такта выпуска и закрываться в конце такта впуска. Таким образом, для регулирования времени используется кулачок овальной формы, который оказывает давление на клапан для открытия и отпускания для закрытия. Он приводится в движение зубчатым ремнем, который приводится в движение коленчатым валом.Он размещается вверху или внизу цилиндра.

    14. Поршневой палец или поршневой палец

    Это параллельные шпиндели из закаленной стали, проходящие через бобышки поршня и малые концевые втулки или проушины для обеспечения возможности поворота шатунов. Он соединяет поршень с шатуном. Он сделан полым для легкости.

    15. Толкатель

    Толкатель используется, когда распределительный вал расположен на нижнем конце цилиндра.
    Он передает движение распределительного вала к клапанам, расположенным на головке блока цилиндров.

    16. Маховик

    Маховик закреплен на коленчатом валу. Основная функция маховика — вращать вал во время подготовительного хода. Это также делает вращение коленчатого вала более равномерным.

    Это все об основных частях двигателя. Если у вас есть какие-либо вопросы относительно этой статьи, задавайте их в комментариях.