14Окт

Что такое атермальное стекло: Что такое атермальное стекло. Преимущества перед обычным стеклом.

Содержание

Что такое атермальное стекло. Преимущества перед обычным стеклом.

Сегодня 70% автомобилей уже после схода с завода обладают атермальным лобовым стеклом. Главное отличие атермальных стекол от обычных – в свето- и теплопропускной способности. В силу своих физических характеристик, атермальное стекло намного лучше сохраняет температурный режим в салоне.

Что такое атермальное стекло

Атермальные стекла начали изготовлять в 1959 году, путем нанесения тонкого слоя ионов серебра на обычное стекло. Повторить такую процедуру в домашних условиях невозможно. Первые стекла покрывались серебрянной пленкой из соображений теплоемкости.

Благодаря физико-химическим свойствам серебра, стекло меньше пропускает ультрафиолетовые солнечные лучи, которые способствуют нагреванию. Тем не менее ветровое стекло будет пропускать весь остальной спектр лучей.

Приятным бонусом станут антибликовые свойства стекла. Напыление очень мягко рассеивает свет, не ослепляя встречных водителей. Металлическое покрытие визуально можно сравнить с тонировкой. Однако, в отличие от последней, атермальное стекло не снижает светопропускную способность и является разрешенным ПДД.

Атермальное стекло позволяет на 40% снизить нагрузку с системы климат-контроля автомобиля.

Отличия от обычного стекла

Основное отличие атермального стекла в его функциональности. Визуально понять разницу можно по цвету: если обычное – совершенно прозрачное, то атермальное имеет фиолетовый или зеленый оттенок. Сложнее же определить «на глаз» разницу между атермальным стеклом и тонированным.

Обычное стекло имеет светопропускую способность более 90%, а атермальное – 80–90%. Дополнительной особенностью становится функция «невидимки» для многих радаров, навигаторов и других девайсвов, так как передача сигнала становится хуже из-за металлического напыления.

Автомобилисты считают атермальное стекло более долговечным и ударопрочным. Однако заплатить за такое удовольствие придется в 1,5–2 раза больше.

Как производят атермальные стекла

Производство атермальных стекол – это очень трудоемкий и долгий процесс, который требует уникальных производственных условий.

  1. Для изготовления стекольной массы используют чистый песок и несколько дополнительных присадок. Массу плавят при температуре 1600°С.
  2. Чтобы получить дополнительную стойкость к ультрафиолетовым лучам, в массу добавляют несколько видов оксидов металла. Уже после первой закалки, ионы серебра дадут на стекле яркие фиолетовые, зеленые или голубые оттенки.
  3. Формовочный этап проходит на пластах из олова, так как оно не вступает в реакцию с компонентами массы. Стекло поддается повторной закалке, во время медленного снижения температуры среды до 200°С.
  4. Пласты стекла режут и придают им необходимую форму. Для этого массу снова плавят и резко остужают. Такая динамика температур придает дополнительную прочность и устойчивость к механическим повреждениям.
  5. На последнем этапе обрабатывают кромку пластов стекла.

Виды атермального стекла

Производители выпускают всего два основных вида атермального стекла, которые немного различаются по своим свойствам. Отличить их можно при помощи маркировки в углу стеклянной панели.

  • Tinted – отличается умеренным теплопоглощением. Интересный факт, что лобовое стекло пропускает 85–90% света, а боковое около 80%;
  • Overtinted – данное стекло обладает усиленным теплопоглощением и максимальным температурным комфортом. Однако способность пропускать свет немного ниже и достигает 72% для передних боковых и 78,5% для лобового стекла;
  • Иногда можно встретить пометку «Solar». Она означает, что при изготовлении стекла использовалась пленка, которая препятствует излишнему нагреву салона.

При выборе атермального стекла следует обратиться к профессионалу, который точно укажет все преимущества, и недостатки выбранного типа стекла.

Преимущества и недостатки атермальных стекол для автомобиля

Автолюбители уже давно по достоинству оценили атермальный эффект:

  1. Солнечные лучи, проникающие в салон, не нагревают руль и приборную панель;
  2. Значительно уменьшается количество бликов на стекле;
  3. Экономия энергии кондиционеров в жаркий период;
  4. Обшивка салона не портится;
  5. В салоне создаются максимально комфортные температурные условия;
  6. Стекло становится прочнее;

Увы, без недостатков тут не обойтись:

  1. Высокая ценовая политика из-за применения ионов серебра;
  2. Узкий ассортимент производителей;
  3. Нарушает работу радаров, навигаторов и дополнительных девайсов.

Как распознать подделку

К сожалению, на первый взгляд, распознать подделку практически невозможно. Первым делом, на что нужно обратить внимание – маркировка стекла. Если на стекле есть заводские надписи Tinted или Overtinted, можно на 90% быть уверенным в подлинности продукта.

Не факт, что фиолетовый или зеленый оттенки на внешней стороне стекла будут свидетельствовать о качестве. Чтобы оградить себя от подделки можно ориентироваться на тень от выбранного стекла. При применении атермальной технологии – тень будет значительно темнее, чем от тонированного или обычного стекла.

Кроме того, следует обратить внимания на края стекла. Кромка должна быть в идеальном состоянии и, главное, ровной. Повреждения или наличие пленки со 100% вероятностью указывают на подделку.

Особенности монтажа и советы

Монтаж атермального стекла ничем не отличается от установки обычного или тонированного стекла. Тем не менее, следует с особой осторожностью соблюдать все указания, так как атермальное покрытие – удовольствие не из дешевых. Именно от профессионализма мастера зависит качество проделанной работы и длительность защитного эффекта.

Чтобы немного больше понимать процесс установки атермального стекла, стоит посмотреть обучающий ролик:

Следует помнить, что цена полностью отображает качество стекла. В этом случае экономия может очень пагубно сказаться на автомобиле.

Если установка атермального стекла на автомобиль невозможна – есть альтернатива в виде атермальной пленки. Она обладает практически теми же свойствами, что и стекло. Процедура проклейки очень схожа с обычной тонировкой. Бесспорно, это намного дешевле и быстрее, чем замена стекла. Тем не менее, делая выбор в сторону пленки, придется пожертвовать желаемым качеством и прочностью.

Атермальное стекло – надежный способ снизить нагрузку с системы обогрева автомобиля и защитить себя от назойливого солнца. Оспаривать преимущества атермального эффекта глупо, поскольку большинство автомобильных производителей включили атермальное стекло в список обязательных комплектующих ТС. При замене стекла очень важно обращать внимание на производителя, так как сложно отличить подделку от оригинала.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Что такое атермальное остекление в машине

Дата публикации: .
Категория: Автотехника.

Салон автомобиля является замкнутым пространством с небольшой площадью, при этом его большая часть покрыта стеклами, поэтому в жаркое время года нахождение в машине превращается в настоящий кошмар. Помимо этого, стандартное лобовое стекло пропускает ультрафиолет, который губителен для пластиковых и кожаных поверхностей.

Чтобы избавиться от этих неприятностей многие используют тонировку. Однако такой материал (особенно если он приобретен у недобросовестного поставщика) не всегда отвечает требованиям ГОСТ по светопропускной способности (не менее 75% для лобового стекла и не меньше 70% для боковых). Также пленка, приклеенная некачественно, будет пузыриться или отрываться кусками. Поэтому намного лучше установить в авто атермальное стекло, которое способно поглощать и отражать солнечную энергию.

Атермальное стекло и атермальная тонировка одно и то же или нет

Пленочный светофильтр представляет собой несколько пластин, склеенных между собой. Такая тонировка наносится на любое прозрачное стекло и позволяет защитить салон машины от вредного влияния солнечного света, но, не скрывая, что находится в машине от любопытных глаз.

Если же речь идет об атермальном остеклении, то оно также призвано противостоять УФ-излучению. Однако в этом случае имеется ввиду стекло, которое было произведено по особой технологии. То есть на него не просто наклеили светофильтр. Хоть идея атермального остекления не нова, изготовление такого стекла требует дорогостоящего специализированного оборудования. Это связано с тем, что в процессе производства в стандартное расплавленное стекло добавляют присадки (в строгом соотношении и количестве), в качестве которых чаще всего используется оксид железа и ионы серебра.

Полезно! Атермальные лобовые стекла способны поглощать порядка 50% ИК-излучения и солнечной энергии. Пленка же отталкивает инфракрасные лучи и энергию до 93%.

Таким образом, атермальная пленка и стекло представляют собой два совершенно разных продукта. Разумеется, второй обойдется дороже, а пленку при желании можно приобрести и приклеить самостоятельно. Однако, качество первого материала значительно выше.

Преимущества атермального остекления

АС обладает массой достоинств помимо препятствия нагреванию салона машины в летний зной. Атермальное стекло также:

  • Прочнее и долговечнее стандартного стекла. Если во время движения в машину попадет небольшой камень, то с наибольшей вероятностью он не оставит трещины или другого серьезного повреждения.
  • Немного затемняет поверхность, поэтому снижается образование бликов. Поэтому даже если водитель забыл солнечные очки, преломления света не будет таким сильным, чтобы ослепить его.
  • Позволяет сэкономить топливо, так как не придется лишний раз включать систему кондиционирования.
  • В зимнее время позволит, наоборот, сохранять тепло. Это объясняется тем, что оно намного дольше промерзает.
  • Выполняет роль теплозащитного экрана. Все происходящее снаружи автовладелец видит четче, поэтому его глаза меньше устают.
  • Не требует обновления (например, как покрытия типа «антидождь»).

Таким образом салон машины не будет нагреваться и выгорать. При этом автовладелец получает более прочное лобовое стекло, которое будет сложнее повредить и злоумышленнику, решившему попасть внутрь ТС.

Полезно! В отличие от тонировки разных типов, АС разрешено для использования и никак не противоречит закону о светопропускной способности.

Атермальное остекление действительно повышает уровень комфорта водителя и пассажиров транспортного средства, поэтому некоторые крупные автопроизводители (зарубежные и отечественные) начали выпускать новые модели машин, в которых даже в базовой комплектации устанавливаются более прочные АС. Однако, даже такой весомый аргумент не означает, что конструкции этого типа лишены минусов.

Недостатки АС

Основной минус заключается в том, что производство таких изделий слишком затратное. В итоге стоит такое автомобильное стекло чуть ли не в 2 раза дороже обычно. Хотя, если учесть его долгий срок службы и то, что водителю не придется жечь больше бензина в летнее время или менять выгоревшею обивку, то такое стекло со временем удастся «отбить».

Второй минус касается только тех, кто любит использовать такие гаджеты, как антирадары и навигаторы. К сожалению, из-за компонентов, которые входят в состав такого стекла, оно в прямом смысле может глушить сигнал. Поэтому могут возникнуть проблемы.

Третий минус – такие изделия сложно найти для любого автомобиля. Конечно в интернете есть подделки на любой вкус и цвет, но покупать фальшивку нет никакого смысла. Лучше дождаться, когда в продаже появится именно заводская модель.

К слову, контрафактные модели, которые наводнили рынок в связи растущей популярностью АС, являются еще одним недостатком. Но, его можно исключить, если обратить внимание на несколько нюансов.

Как отличить подделку от оригинала

Находчивости жуликов никогда нет предела, поэтому сегодня некоторые недобросовестные продавцы умудряются продавать под видом атермальных стекол даже обычные изделия с солнцезащитной полоской. Чтобы не заплатить большие деньги за простую «стекляшку» нужно держать ухо востро и обратить внимание на следующие детали:

  • Маркировка. На стекле обязательно должно присутствовать слово «Tinted» (уровень светопропускания 81% для лобового и 80% для боковых стекол) или «Overtinted» (78,5% и 72%). Также нужно обратить внимание на то, что изделия «Tinted» будут отличаться легким зеленоватым оттенком, у «Overtinted» более насыщенный зеленый цвет.

  • Стоимость. Атермальное стекло не может стоить столько же, сколько и обычное. Учитывая сложности его производства, цена должна быть минимум на 10-15% выше.
  • Кромка стекла. Если изделие изготовлено качественно, то производитель не допустит «косяков» в виде некачественной обработки краев изделия. Поэтому нужно провести рукой по кромке. Если чувствуются шероховатости, неровности или зазубрины, то с наибольшей вероятностью такое АС было изготовлено в кустарных условиях.

Также существует еще два простых способа проверки изделия:

  • Надеваем солнцезащитные очки с эффектом поляризации и смотрим на поверхность стекла. Если на ней как будто появляются радужные переливы, как на луже пролитого бензина, то такое изделие настоящее.
  • Ставим стекло на солнце таким образом, чтобы от него образовалась тень. Если она темнее самого изделия, то АС настоящее, если светлее, то это явно подделка.

Если говорить об оттенке настоящего стекла, то он не обязательно будет чистым зеленым. Поверхность может отличать и голубоватым, фиолетовым или коричневатым оттенком.

Что такое атермальное лобовое стекло для автомобиля

C тех пор, как появились автомобили, прошло не одно десятилетие. И с каждым годом они становились всё более красивыми, удобными и функциональными. Сегодня личное авто — не только средство передвижение, но и показатель статуса, а иногда — второй дом. Многие люди в машине проводят большую часть дня.

Содержание статьи:

Поэтому вполне естественно их желание окружить себя комфортом. Таких основных составляющих уюта в авто есть несколько: удобное сиденье с продуманной посадкой и множеством регулировок, качественный руль, информативные приборы, климат-контроль.

Также большую роль играет хорошая обзорность с места водителя. С этим напрямую связано качество стекол, в первую очередь — лобового. Один из компонентов, ощутимо повышающих комфорт водителя за рулём, это атермальное лобовое стекло.

Что такое атермальное лобовое стекло?

Атермальные стёкла используются в автомобильной промышленности достаточно давно. Такие изделия изготавливают, добавляя в стеклянную массу специальные добавки, содержащие оксиды металлов, которые увеличивают свойства стекла к поглощению и отражению инфракрасных и ультрафиолетовых лучей.

Отличить атермальное лобовое стекло от обычного можно, найдя маркировку: «tinted» или «overtinted». Также такое атермальное лобовое стекло будет иметь лёгкий зеленоватый оттенок.

Атермальные стёкла хороши тем, что позволяют значительно снизить количество ультрафиолетового и теплового излучения, попадающего в салон авто. При этом большая часть видимого светового спектра попадает внутрь, и стекло сохраняет свою прозрачность, не ухудшая видимость, как это происходит с тонировочными плёнками.

Зачем нужно атермальное лобовое стекло?

Такое атермальное лобовое стекло позволяет со значительно большим комфортом управлять автомобилем. Так как салон при этом нагревается меньше, значит, воздух внутри будет не таким горячим. Если в автомобиле установлен кондиционер, атермальное стекло упростит его работу, что приведёт к дополнительной экономии топлива. Если же в машине нет кондиционера, это тем более актуально, так как атермальное стекло не позволит сильно раскаляться воздуху в жаркую погоду.

Также при этом детали салона: обивка, пластиковые панели, будут выгорать значительно меньше. В некоторых случаях это позволит избежать даже деформации пластика, что иногда случается в особо жаркие дни, когда машина долгое время стоит на солнце.

Атермальное лобовое стекло улучшает видимость. Ведь солнечных бликов становится меньше. А значит, на ярко освещённой дороге можно увидеть больше деталей, которые иногда трудно разглядеть, если солнце светит прямо спереди, отражаясь от пластиковых элементов или стекол. А это дополнительно увеличивает безопасность.

Как установить атермальное лобовое стекло?

Атермальное лобовое стекло устанавливается в автомобиль в заводских условиях. Некоторые автомобильные компании комплектует такими стёклами большинство моделей. Другие — только машины премиум-сегмента. Если на вашей машине нет атермального ветрового стекла, а у вас есть желание его установить, значит, выход один — менять стекло.

К сожалению, сделать это не так просто, ведь далеко не для всех моделей автомобилей выпускают атермальные ветровые стёкла. Кроме того, это недёшево, цена на подобное стекло может быть на 20-30 % дороже обычного. Дополнительно нужно учесть цену на работы по демонтажу и вклейке нового стекла.

Есть и другой вариант. Если ваше стекло имеет на себе трещины, сколы, а машина застрахована, можно обратиться в страховую компанию и потребовать деньги. Если условия договора подразумевают страховую выплату в таких случаях, можно этим воспользоваться — получить деньги, немного добавить и купить атермальное стекло.

ЕЩЁ

Какие альтернативы атермальному стеклу существуют?

Но не стоит расстраиваться, если атермальное стекло слишком дорогое или его вообще нет в продаже. Аналогичные свойства имеет атермальная плёнка, которую можно наклеить на обычное стекло. Процедура аналогичная поклейке тонировочной плёнки. Это намного быстрее и дешевле, чем полная замена лобового стекла. Если плёнка качественная, а поклейка произведена хорошо, без дефектов, свойства такого стекла практически не будут отличаться от заводского.

При наличии у тонировщиков несколько видов атермальной плёнки, следует выбирать более дорогой и качественный вариант, от одной из популярных компаний. Оттенок атермальной плёнки может быть разным: слегка фиолетовый, зеленоватый или с лёгкой синевой.

Законна ли установка атермальных ветровых стёкол или поклейка атермальных плёнок на лобовое стекло?

Атермальные стёкла для автомобиля изготавливаются соответственно всем требованиям безопасности и правил дорожного движение, а также имеют допустимый процент светопропускания — больше 75%. Поэтому эксплуатировать их безопасно и законно.

Светопропускание атермальных плёнок колеблется в небольших пределах, но обычно тоже укладывается в допустимые законом нормы. Чтобы быть уверенным в этом, необходимо приобретать плёнки известных брендов, у которых есть сертификат качества и указан процент светопроницаемости.

Видео установка атермальной пленки на лобовое стекло

Сохранить

Что такое атермальное стекло и зачем оно нужно

Атермальные стекла имеют ряд достоинств перед обычными. Однако правильное их использование требует соблюдения нескольких правил. В этом материале мы расскажем об особенностях выбора и эксплуатации таких стекол.

Что такое атермальное стекло?

В процессе производства в состав добавляются оксиды металлов. В результате материал пропускает меньше ИК-излучения (теплового). Оксиды окрашивают поверхность в бронзовый, синий или фиолетовый цвет.

Важно! Тонированное, обработанное специальными напылениями или покрытое пленкой стекло не является атермальным.

Особенности и преимущества

Такие стекла часто устанавливаются в автомобилях. Это обеспечивает владельцу несколько преимуществ:

  • приборная панель (и салон в целом) меньше нагреваются;
  • при езде в солнечную погоду возникает меньше бликов;
  • прочность выше, чем у изделий без оксидов в составе;
  • минимальная теплоотдача защищает от замерзания и запотевания;
  • минимизируется расход энергии на работу системы климат-контроля в жаркую погоду.

Рекомендуем установить такое стекло, если обивка салона часто выгорает, а микроклимат не соответствует вашим представлениям о комфорте.

Недостаток только один – стоимость. Атермальное стекло обойдется дороже обычного. Однако расходы относительно быстро себя окупают, т. к. уменьшается нагрузка на кондиционер, приходится реже менять элементы салона.

Внешние отличия

Чтобы понять, что перед вами атермальное стекло, обратите внимание на следующие признаки.

  • Цвет. Нестандартный состав обеспечивает легкий цветной оттенок.
  • Посмотрите на стекло через очки с поляризациоными стеклами. Вы увидите разноцветные разводы (как у бензина, попавшего в воду).
  • Маркировка. Производители обозначают свою продукцию словами Tinted и Overtinted. Первый вариант обозначает, что показатель светопропускания составляет от 81. Обозначение Overtinted значит, что светопропускание составляет от 78,5 (этот вариант предназначен для установки в качестве лобового стекла).

При выборе следите, чтобы на поверхности не было трещин и сколов, т. к. они ухудшают износостойкие характеристики.

Атермальное стекло или атермальная пленка?

Последнее время все больше производителей включают атермальное лобовое стекло, которое до недавних пор казалось экзотикой, в базовую комплектацию своих автомобилей. Например, атермальные стекла сейчас встречаются у Audi (A4, A6, A8), BMW (3, 5, 7), Citroen, Ford (C-Max, Focus, Mondeo), Maserati, Maybach, Mercedes-Benz (E, C class),  Opel, Peugeot, Porsche (Cayenne, Panamera), Rolls-Royce, Volkswagen (Touareg, Polo), Volvo (S80, XC90), ВАЗ (2114, 2115). При желании автовладельцы многих моделей сегодня могут приобрести и поменять стекло на атермальное. Наряду с атермальным стеклом существует такой продукт продукт, как атермальная пленка, которую можно наносить на любое стекло, включая атермальное.

Давайте разберемся, в чем состоит отличие атермального стекла от атермальной пленки.

Что такое атермальное стекло?

Атермальное стекло — это обычное стекло, прошедшее специальную обработку на заводе-изготовителе с целью повышения его энергосберегающих свойств. На стадии производства на стекло наносится покрытие, содержащее в своем составе ионы серебра. Это сложный технологический процесс, который не осуществим в «кустарных» условиях. Благодаря такому напылению стекло приобретает атермальные свойства. Чаще всего производители делают атермальным лобовое стекло.

Цена атермального стекла считается одним из основных его недостатков, потому что стоит такое стекло в 1.5-2 раза дороже обычного. Кроме того, заказать атермальное стекло можно не на все модели автомобилей, хотя отметим, что ряд доступных моделей с каждым годом расширяется. Законность атермальных стекол не вызывает сомнений, так как они давно с успехом применяются европейскими и американскими производителями автомобилей.

Главный недостаток атермального стекла, о котором говорят водители  — это ухудшение приема радио-сигнала, то есть навигационных систем и мобильной связи.

Как отличить атермальное стекло от обычного?

1. Атермальное стекло имеет особую маркировку:

• TINTED — ставится на стеклах, светопропускание которых составляет 81%. Такое стекло имеет зеленоватый оттенок;
• OVERTINTED — на стеклах, светопропускание которых 78.5%. Ярко выраженный зеленый оттенок.

Благодаря такой степени светопропускания оба вида атермальных стекол полностью проходят по правилам дорожного движения Украины, которые регламентируют светопропускание лобового стекла 75%.

2. Атермальное стекло имеет зеленовато-голубой оттенок, полученный благодаря технологии производства. Иногда атермальное стекло может иметь другой оттенок, например, коричневый или фиолетовый «хамелеон».

Лучше всего разница между атермальным и стандартным стеклом видна, если надеть поляризационные очки. Тогда отчетливо станет заметен характерный радужный, «бензиновый» эффект на поверхности, который является отличительной особенностью атермального стекла. Другой способ распознать атермальное стекло — это сравнить само стекло и его тень. Если тень темнее стекла, то это говорит о том, что атермальное стекло настоящее.

Что такое атермальная пленка?

Другой способ достичь атермального эффекта для автомобильного стекла — это атермальная пленка, которая обладает высокими энергосберегающими свойствами и наносится не с целью затемнения стекла, а с целью блокирования солнечной энергии, проникающей в автомобиль. Эта пленка имеет многослойную структуру (200 слоев), каждый из которых блокирует определенный процент излучения. Таким образом, поверхности стекла достигает всего несколько процентов тепловой энергии. Атермальная пленка обладает такими свойствами, как максимальная светопроницаемость, отсутствие зеркальности и бликов, высокая степень отражения солнечной энергии и УФ-лучей.

Плюсы атермального стекла и атермальной пленки

Преимущества атермального эффекта уже давно были по достоинству оценены водителями. Итак, атермальное стекло или стекло, на которое установлена атермальная пленка:

• лучше препятствует проникновению солнечной энергии в автомобиль, соответственно, панель приборов нагревается меньше, чем при обычном стекле.
• соответственно, снижается нагрузка на кондиционер или климат-контроль, и топливо расходуется более экономно.
• уменьшается количество бликов на стекле, а, значит, глаза водителя утомляются меньше.
• более комфортные условия нахождения в автомобиле для водителя и пассажиров.
• препятствует выгоранию салона.
• стекло меньше запотевает.
• большая прочность по сравнению с обычным стеклом.

В чем же состоит разница между атермальным стеклом и атермальной пленкой? Что лучше: стекло или пленка? Разница в степени эффективности. Атермальное лобвоое стекло поглощает до 50% солнечной энергии и инфракрасного излучения. Атермальная пленка блокирует 81-93% солнечной энергии и 99% инфракрасного излучения. Мы уже проводили замеры эффективности атермальных пленок в сравнении с обычной тонировочной (для сравнения мы выбрали тонировочную пленку премиум-класса LLumar ATR с максимальной степенью затемнения 5%).

Самой популярной и эффективной серией атермальных пленок считается 3M Crystalline, у которой есть 3 вида:

  1. 3M Crystalline 90 — прозрачная пленка со светопропусканием 90%, которая подходит для установки на любое стекло, включая лобовое. Полностью проходит по ГОСТ. Имеет показатель блокирования ультрафиолета 81%.
  2. 3M Crystalline 70 — имеет небесный оттенок и светопропускание 70%. Согласно нынешних правил дорожного движения в Украине, пленка такой светопропускаемости может наноситься на передние боковые стекла и заднюю полусферу автомобиля, хотя в нашей практике не редки случаи установки атермальной пленки 3M Crystalline 70 на лобовое стекло. Данная пленка очень эффективна: показатель блокировки ультрафиолетовых лучшей 91%.
  3. 3M Crystalline 40 — угольный оттенок и максимальная степень затемнения в данной серии — 40%. Если следовать ПДД, то данная пленка подходит для нанесения на заднюю полусферу автомобиля. Для лобового стекла однозначно не подходит в силу своего затемнения, но на передние боковые стекла данная пленка устанавливается довольно часто. Crystalline 40 — самая эффективная пленка в серии с показателем блокирования солнечных лучей 93%.

Атермальная пленка: отзыв

По нашему опыту работы с атермальными пленками (с 2013 года), можем сказать, что отзывы о данном продукте в основном положительные, особенно у автовладельцев, сделавших выбор в пользу атермальной пленки 3M Crystalline 70 и 40. Водители отмечают гораздо меньший нагрев панели приборов (примерно на 25 градусов, согласно нашим замерам), отсутствие обжигающего эффекта в руку, более спокойный сон в автокресле ребенка, которого не беспокоят солнечные лучи. Также снижается нагрузка на кондиционер в жаркие дни. Разумеется, это не значит, что им вовсе не приходится пользоваться, но благодаря атермальной пленке автомобиль дольше нагревается.

Цена атермальной пленки 3M Crystalline не низкая, но плюс пленки в том, что она не утрачивает своих атермальных свойств со временем и не требует переустановки. Подбробнее об атермальной тонировке автомобиля читайте в разделе услуги. Не так давно на украинском рынке появилась еще одна действенная атермальная пленка от компании Madico (США) — Wincos. Помимо своих высоких атермальных свойств, атермальная пленка Wincos доступна в широкой линейке степеней затемнения — 20, 30, 45, 70%, что позволяет подобрать различные варианты тонировки стекол.

Повышается ли атермальный эффект, если нанести атермальную пленку на атермальное стекло? Безусловно, эффект усиливается по сравнению с тем, как если бы атермальная пленка была нанесена на обычное стекло. 

Услуга атермальной тонировки стекол автомобиля доступна в установочных центрах AvesAuto в Киеве, Днепре, Харькове, Кривом Роге, Львове. Записывайтесь на атермальную тонировку по тел.: (098) 393-88-74, (050) 682-43-45.

Атермальные стекла (Хамелеон) | Байкал Стеклосервис

Атермальное стекло или Хамелеон — это стекло с функцией “Климат-комфорт”. В своей структуре стекло имеет пленку “Solar”, которая меняет цвет под воздействием солнечного света. Функционально атермальное стекло отличается от обычного своими теплопоглощающими свойствами: через такое стекло Солнце не греет. Это позволяет увеличить уровень комфорта в жаркое время года и защитить салон от выгорания и перегрева.

Атермальное стекло отличается по цвету и имеет фиолетовый или синий оттенок, придающий автомобилю более солидный и привлекательный вид.

Атермальное лобовое стекло:

В нашем сервисе вы можете купить атермальные стекла со следующими характеристиками:

Атермальные стекла с фильтром ультрафиолетового излучения 


Стекло эффективно защищает пассажиров и материалы отделки салона от солнечного тепла и ультрафиолетовых лучей.

Атермальные стекла с солнцеотражающим покрытием 


Относятся к стеклам, которые предлагают лучший температурный комфорт. Стекла поглощают высокую температуру лучше, чем стандартное тонированное стекло, либо отражают солнечный свет.

Атермальные стекла с антибликовым покрытием 


Стекло обеспечивает комфорт водителя, снижая более чем на 40% отражение в лобовом стекле. Специальное антиотражающее покрытие наносится на внутреннюю сторону лобового стекла и существенно снижает отражение приборной панели в лобовом стекле.

Мы можем подобрать атермальные автостекла для Audi, BMW, Mercedes, Land Rover, Range Rover, Porsche, Volvo, Volkswagen, Opel, Ford, Skoda и многих других марок автомобилей. Заказать стекло вы можете по телефону 8 (495) 545-66-62 или по электронной почте [email protected].

В нашем сервисном центре вы также можете установить атермальное стекло на свой автомобиль.

Для того, чтобы ваш автомобиль выглядел еще более солидно и привлекательно, в дополнение к атермальному стеклу рекомендуем тонирование боковых стекол и тонирование оптики.

Что такое атермальная тонировка Виды и преимущество применения пленки

Тонировка стекол атермальной пленкой

Атермальная тонировка стекол состоит из нескольких этапов, производимых по шагам:

  • 1.    Вначале идет выбор аксессуара. На современном рынке присутствует более десятка различных моделей, которые отличаются своей прозрачностью и цветом. Посмотреть атермальные стекла на фото можно на сайте торгующей компании. Это позволит наглядно увидеть, как они смотрятся в установленном виде и сделать осознанный выбор. При этом стоит также учитывать и цвет своего автомобиля.
  • 2.    Далее нужно подготовить поверхность к работе. Для этого стекло тщательно моют и натирают досуха. Затем используются специальный обезжиривающий состав, который позволит улучшить адгезию при нанесении пленки.
  • 3.    Когда стекло полностью высохнет, можно приступать к поклейке. Проводят эту операцию сверху вниз, постепенно снимая защитный слой и тщательно разравнивая материал, чтобы на лобовом стекле не образовывались склоченные места. Нужно заранее подготовить пластиковый шпатель, которым будет выгоняться воздух из-под пленки. Если этого не делать — могут появиться воздушные пузыри.
  • 4.    В конце работы при помощи острого канцелярского ножа обрезают все лишние участки. Машина сразу готова к использованию, но хотя бы 2-3 дня не стоит мыть стекло, чтобы материал полностью стал на место.

Атермальное лобовое стекло хамелеон с фиолетовым отливом пользуется наибольшей популярностью среди водителей. Оно великолепно смотрится после установки и придает автомобилю очень красивый внешний вид. При этом пленка будет переливаться всеми цветами радуги, за что и получила свое название.

Но при покупке нужно внимательно смотреть на параметр светопропускание, потому что многие модели не удовлетворяют ГОСТу. Соответственно их использование приведет к проблемам с прохождением технического осмотра. Лучше взять более прозрачный вариант для лобового стекла, а сильную тонировку оставить для других окон.

Цена атермальных стекол зависит от автомобиля, на который они устанавливаются. Можно сразу заказывать у дилеров заводское изделие, но обойдется оно значительно дороже, чем поклейка пленки. В Россию по непонятным причинам практически не завозятся модели с заводской комплектацией такими видами окон.

Атермальные стеклопакеты

Атермальные стекла с присадками используются преимущественно в автомобилях, а в составе стеклопакетов для остекления зданий могут применяться оклеенные атермальными пленками стекла.

Для автомобильных пленок важен коэффициент светопропускания не ниже предусмотренного ГОСТом (минимум 75 % для передних боковых и 80% для лобовых стекол). Многие атермальные пленки даже при наклеивании на белое стекло, а тем более на бутылочное, пропускают меньше света.

Для архитектурных пленок это не столь существенно, владелец помещения может сам определить, какая светопропускная способность стекол ему требуется.

Поэтому ассортимент применяемых в производстве стеклопакетов атермальных пленок значительно шире. В частности, компания Solartek выпускает как автомобильные, так и архитектурные атермальные пленки, остальные вышеперечисленные пленки относятся к архитектурным.

Стеклопакеты с атермальной пленкой относятся к энергосберегающим, как и стеклопакеты с низкоэмиссионным напылением. Атермальное стекло не только летом защищает от жары и вредного для здоровья и для обстановки ультрафиолета, но и снижает потери тепла зимой, обеспечивая экономию на отоплении и кондиционировании.

Поскольку оно поглощает тепловую энергию, то и зимой остается теплым. То есть сводится к минимуму эффект сквозняка за счет разницы температур стекла и воздуха в помещении, такое стекло практически не подвержено промерзанию и образованию конденсата.

Можно заказать оклеивание атермальной пленкой стеклопакетов перед сборкой окон либо осуществить оклейку уже установленных окон, оклеиваться могут стеклопакеты любого бренда, размера и конфигурации.

Атермальное (теплозащитное) остекление – это защита от нежелательных компонентов солнечного света – ИК и УФ излучения. Теплозащитные свойства стекла могут достигаться добавлением в него присадок в процессе производства или оклеиванием атермальной пленкой.

Для автомобилей предпочтительней первый вариант, обеспечивающий защиту от жары без значительного снижения светопропускной способности стекла (в отличие от тонирования), а также специальные автомобильные пленки с высоким коэффициентом светопропускания.

В домах обычно устанавливаются стеклопакеты, в которых на внутреннее стекло наклеена архитектурная атермальная пленка. Такие стеклопакеты обеспечивают комфортный микроклимат, энергосбережение и защиту от разрушительного действия ультрафиолета.

Что такое атермальное остекление, плюсы и минусы

В чем эффект атермального лобового стекла

Основная часть нагрева салона автомобиля приходится на солнечное излучение. Общеизвестный факт, что солнечный свет состоит из двух видов излучений:

  1. Ультрафиолетового;
  2. Инфракрасного.

Атермальное лобовое стекло задерживает инфракрасное излучение, частично отражая его в обратном  направлении, частично рассеивая. Таким образом, в салон автомобиля попадает гораздо меньше солнечного света, как ультрафиолетового, так и инфракрасного спектра излучения. Но следует понимать, что абсолютной защиты нет и быть не может.

Если провести аналогию, то атермальное стекло, это как тень от деревьев. Часть светового потока задерживается листьями, а часть все равно проникает.

В экономическом плане атермальное стекло дает следующий эффект: салон автомобиля нагревается меньше, температура внутри салона – ниже. И это дает возможность автомобильному кондиционеру работать с меньшей нагрузкой, что в конечном итоге приводит к экономии топлива.

Насколько в процентном отношении снижается нагрев салона, сказать сложно. Но солнечные лучи не настолько сильно нагревают элементы салона, как при использовании обычных или тонированных стекол. Отпадает необходимость ждать, пока остынет руль и накрывать его влажной ветошью, чтобы снизить температуру руля, если автомобиль простоял под солнцем.

Даже если в автомобиле не установлен кондиционер, атермальное стекло снижает тепловую нагрузку на салон.  Однако не имеет смысла рассматривать атермальное стекло, как альтернативу автомобильному кондиционеру. Кондиционер намного эффективнее. А вот в комплексе: атермальное стекло и кондиционер эффект получается существенным. И это несмотря на то, что атермальное лобовое стекло стоит дороже обычного лобового стекла.

Производство атермальных стекол – достаточно сложный процесс. И подобная технология имеется не у всех производителей. Однако растущая популярность атермальных лобовых стекол привела к тому, что начали появляться подделки, которые по внешнему виду напоминают атермальные стекла, но по своей сути оказываются обычными автомобильными стеклами с напылением.

И тут важно не попасться на уловки недобросовестных продавцов. На стекле должно стоять специальное клеймо, обозначающее, что стекло атермальное

И стекло должно быть только от известного производителя.  Определить на оттенок: атермальное стекло или нет, удается далеко не всегда.

Атермальные пленки

Если присадки добавляются в массу стекла в процессе его производства, то атермальные пленки наклеиваются уже на готовое стекло. Это многослойная полиэфирная пленка с диэлектрическим покрытием и металлизированным напылением (частицы золота и серебра), играющим роль селективного зеркала.

Такие пленки являются самоклеящимися и предназначены для наклеивания на стекло изнутри (со стороны помещения или автомобильного салона).

Они пропускают значительную часть излучения видимого спектра (кроме тонирующих), при этом отражают до 100% ультрафиолетового излучения и поглощают значительную часть (41-92%) инфракрасного. Такие пленки могут иметь разный оттенок.

  • AIR 75 Solartek пропускает 75% видимого света, при этом поглощает 90% тепловой энергии и отражает 99% ультрафиолетового излучения.
  • JOHNSON IR 70 – пленка с дымчатым оттенком, пропускает 73% видимого света, поглощает 47% ИК излучения, отражает 100% УФ излучения.
  • Sun Control ICE COOL 70 – пленка голубоватого и зеленоватого оттенка, пропускает 72% видимого света, поглощает 92% ИК излучения, отражает 100% УФ излучения.
  • Sun Control ICE COOL 80 — пленка голубоватого и зеленоватого оттенка, пропускает 78% видимого света, поглощает 78% ИК излучения, отражает 100% УФ излучения.
  • Armolan Spectrum 80 — пленка голубоватого оттенка, пропускает 80 % видимого света, поглощает 41% ИК излучения, отражает 97% УФ излучения.
  • USB Nano Blue 60 — пленка голубоватого оттенка, пропускает 46% видимого света, поглощает 64% ИК излучения, отражает 90% УФ излучения.
  • ULTRA VISION «Хамелеон» — пленка с базовым фиолетовым цветом и богатой гаммой оттенков на выбор, пропускает 73-83% видимого света, поглощает 69% ИК излучения, отражает 100% УФ излучения.

Что такое атермальное остекление

Атермальное остекление – это остекление теплозащитными стеклами с повышенным коэффициентом теплопоглощения.

Такое стекло поглощает не меньше половины тепловой энергии (излучения инфракрасного спектра), в результате сильно нагревается, но постепенно отдает эту энергию назад в окружающую среду, а внутрь помещения поглощенное и отраженное тепло не проникает.

Стекла с атермальной пленкой инфракрасное излучение поглощают, а ультрафиолетовое отражают, что тоже способствует теплозащите.

Теплозащитные характеристики стекла обуславливаются добавкой в расплавленную стекольную массу особых присадок – ионов серебра, оксида железа. Эти добавки практически незаметны, но дают легкий эффект окрашивания, стекло может приобретать голубоватый или зеленоватый оттенок, а различим он обычно при взгляде под определенным углом. При взгляде через очки с поляризацией такое стекло выглядит фиолетовым.

Есть ряд признаков, позволяющих отличить настоящее атермальное стекло от подкрашенного.

  • Маркировка Overtinted или Tinted.
  • Высокое качество, идеальная обработка кромок – такие стекла выпускают только солидные производители, внимательные к деталям.
  • Слабый оттенок – обязательный признак атермального стекла, но только на него полагаться не следует, он может быть результатом подкрашивания, тонирования в массе.

Разные производители выпускают 2 основных вида атермального стекла, различающихся теплопоглощающими и светопропускными характеристиками:

  • Tinted – стекло с умеренным теплопоглощением, причем лобовое стекло пропускает от 81% света, а переднее боковое не менее 80%.
  • Overtinted – усиленное теплопоглощение, максимальный температурный комфорт, но светопропускная способность немного ниже – от 72% для передних боковых и от 78,5% для лобовых стекол.

Помимо добавления присадок в стекломассу теплозащитный эффект может быть достигнут за счет наклеивания на стекла атермальных пленок, они поглощают больше тепла, но зачастую снижают светопропускную способность стекла сильнее, чем присадки.

Атермальная пленка

Аналогом покупки атермального стекла является атермальная пленка. Она состоит более, чем из 200 слоев, не содержит металла и поэтому более выгодна для тех водителей, которые часто пользуются в салоне мобильными телефонами, радио и навигаторами.

Перед нанесением плёнки стекло нужно  почистить губкой с жёсткой стороны и хорошо промыть мыльным раствором.

Пленка имеет различный окрас – от абсолютной прозрачности до хамелеона. Кроме того, удобная рулонная фасовка позволяет приобрести пленку не только для лобового стекла, но также и боковых стекол.

Видеокурс —  Тонировка Атермальной плёнки хамелеон:

Атермальная пленка является альтернативой для тех моделей машин, которые не приспособлены для установки атермального стекла. Она не требует особых навыков для нанесения и работа с ней не займет много времени.

Плюсы и минусы

Тонировка атермальной пленкой имеет ряд преимуществ, по достоинству оцененных автолюбителями:

  • присутствует хорошая прозрачность, не уменьшается видимость даже ночью;
  • помогает защитить салон от нагрева и позволяет не использовать другие защитные экраны, занимающие много места;
  • снижает расход топлива за счет сокращения времени и мощности работы кондиционера;
  • защищает обивку салона от выгорания и деформации. Идеально подходит для машин с кожаным или деревянным покрытием;
  • останавливает инфракрасные и ультрафиолетовые лучи.

Клеится атермальная пленка на лобовое стекло и боковые панели. Во время ДТП и других столкновений осколки остаются висеть на пленочной основе и не попадают в салон. Этот факт довольно существенен.

Но все же, чтобы не было пузырей и перекосов, лучше воспользоваться услугами профессионалов, которые быстро и качественно выполнят подобную работу.

https://youtube.com/watch?v=6TJSWPGgmQ8

Тонирование атермальной пленкой имеет свои минусы:

  • высокая цена. Качественный продукт обойдется владельцу транспортного средства в приличную сумму;
  • невысокий уровень затемнения. Некоторые люди предпочитают полностью скрыть свой салон от потенциальных грабителей;
  • большой процент подделки. Сегодня часто встречаются некачественные материалы, которые не блокируют ультрафиолет и инфракрасное излучение.

В среднем нанесение подобной защиты для авто среднего класса выходит около 250-300 долларов. Но эта стоимость вполне оправдана, так как тонирование атермальной пленкой в дальнейшем дает ряд преимуществ.

Технология изготовления

Как уже было сказано, атермальный тип остекления попросту невозможно изготовить самостоятельно или на предприятии, не владеющем определенными технологиями и необходимым оборудованием. Кроме того, сама технология достаточно сложна, что позволяет с уверенностью утверждать, что даже подделку изготовить будет не так-то просто.

Стоит отметить, что теплозащитное остекление соответствует всем современным требованиям к безопасности. Таким образом, оно так же, как и обычное, является многослойным и проклеено множеством пленок. Это приводит к тому, что при аварии или попытке разбить стекло, не возникнет острых и опасных для жизни осколков, а потому всем требованиям к безопасности новое стекло удовлетворяет.

В качестве основных ингредиентов для изготовления атермального стекла служит добавка с ионами серебра. Благодаря этому веществу, стекло приобретает фиолетовый оттенок, что позволяет с ходу отличить его от обычных моделей.

Особенность процедуры

Что такое тонировка атермальной пленкой? На поверхность стекла клеится специальная пленка, которая не пропускает тепло и ультрафиолетовое излучение. При этом салон автомобиля полностью просматривается, что соответствует ГОСТу. Покрытие не заметно. Отличают его по легкому отблеску синего, зеленого или бежевого оттенка. Пленке серии ATR свойственен зеленоватый цвет, а серии LA – синеватый.

Атермальная тонировка проводится двумя способами. В первом варианте на панель машины наносится тонкое металлическое напыление. Такая процедура проводится на заводе. Стекла приобретают фиолетовый оттенок. Второй вариант выполняется либо самостоятельно, либо в специализированных салонах.

Атермальная пленка. Плюс ее в том, что уровень светопропускания соответствует требованиям ГОСТа

Что такое атермальное остекление в автомобиле

Чаще всего об атермальном остеклении говорят применительно к остеклению автомобилей. Поскольку пространство автомобильного салона ограничено, под воздействием солнечных лучей температура внутри быстро повышается. Это достаточно неприятно по ряду причин:

  • жара и духота в салоне дискомфортна и даже опасна для здоровья водителя и пассажиров, возможен тепловой удар;
  • избыток солнечной энергии приводит к преждевременному износу внутренней отделки – обивка выгорает, отдельные детали при сильном нагреве могут даже расплавиться, деформироваться;
  • повышаются расходы на кондиционирование и нагрузка на кондиционер.

Такое стекло обеспечивает умеренное или высокое теплопоглощение в сочетании с достаточно высоким уровнем светопропускания. В первую очередь рекомендуется устанавливать атермальные лобовые и передние боковые стекла, поскольку большая часть тепловой энергии проникает в салон через них.

Как отличить атермальное стекло от обыкновенного

В настоящее время спрос на атермальные стёкла, содержащие ионы серебра, всё время растёт. Вследствие этого на рынке появилось большое количество поддельных товаров, которые не обладают соответствующими свойствами и полезными качествами. Нередко продавцы пытаются выдать обычные стёкла, имеющие солнцезащитную полосу вверху, за атермальные. Для того чтобы не приобрести такую продукцию по завышенной цене, необходимо понимать, как отличить разные типы друг от друга. Это можно сделать следующим образом:

Первоначально необходимо тщательно осмотреть стекло

Нужно обратить внимание на его кромку. Она должна быть хорошо отшлифованной и ровной.
Также следует найти маркировку товара

Все производители атермального стекла указывают на ней такие слова, как INTED или же OVERINTED. Разница между первым и вторым типом заключается лишь в коэффициенте светопропускания. В продукции с маркировкой INTED он составляет 81%, а с OVERINTED – 78,5%. В первом случае стекло отличается лёгким зеленоватым оттенков, а во втором – выраженным зелёным цветом.
Необходимо узнать название производителя товара. В настоящее время атермальные стёкла изготовляются лишь на высококачественном и дорогом оборудовании, которое не могут себе позволить малоизвестные компании. Именно поэтому необходимо ориентироваться на бренд.

Отличить атермальное стекло от обычного можно следующими способами:

  1. С использованием солнцезащитных очков, имеющих поляризационный эффект. Через них на поверхности остекления будут заметны радужные разводы, такие как на пятнах разлитого бензина в солнечный день. Такой эффект обусловлен преломлением солнечных лучей посредством того, что они сталкиваются с небольшими кристаллами компонентов остекления.
  2. Посредством сравнения тени и самого стекла. Первая должна быть темнее, чем непосредственно само остекление. Этот способ определения подделки сам по себе не помогает выбрать оригинал, так как обеспечить данный эффект можно и другими методиками. Именно поэтому эксперты рекомендуют, прежде всего, пользоваться поляризационными очками. Они позволяют с большей вероятностью выявить подделку.

Таким образом, если пользоваться всеми вышеперечисленными рекомендациями специалистов, можно без проблем отличить атермальное стекло от обыкновенного. Это позволяет существенно сэкономить деньги и свободное время.

Основные преимущества и недостатки

К положительным качествам относятся:

Впитывание большого количества ультрафиолетового и инфракрасного излучения. Вследствие этого около 50% всех лучей не проникают в салон и не воздействуют неблагоприятным образом как на водителя, так и на пассажиров.

Способность менять насыщенность цвета стекла в зависимости от того, какая мощность внешнего освещения дороги

Ввиду этого снижается степень усталости глаз, что крайне важно при длительных поездках на значительные расстояния между городами.
Противостояние процессам запотевания и замерзания. Из-за этого даже в холодный период времени сохраняется высокая степень обзорности

Владельцу машины не приходится дополнительно очищать стекло от образующегося конденсата вследствие перепада температур внутри салона и снаружи.
Создание комфортной атмосферы внутри машины. Атермальное стекло позволяет не пользоваться встроенными кондиционерами. Это, в свою очередь, сказывается на энергопотреблении машины, а также расходе топлива.
Снижение нагревания салона, которое происходит вследствие попадания внутрь прямых солнечных лучшей. Стекло позволяет снизить температуру приборной панели на 2 градуса.
Улучшение показателей безопасности эксплуатации автомобиля в солнечную погоду. Это обусловлено тем, что атермальное остекление препятствует образованию бликов. К тому же водителю не приходится всё время прищуриваться, из-за чего он меньше устает и больше концентрируется на процессе вождения.
Отсутствие выгорания под воздействием прямых солнечных лучей. Это свойство делает остекление более устойчивым к потере цвета, что сказывается на длительности эксплуатации.

Как и любые другие виды остекления автомобилей, атермальное имеет некоторые недостатки:

  1. Высокая стоимость. Цена данной технологии в два раза больше стандартной.
  2. Не на все модели и марки автомобилей атермальное стекло подходит. В последнее время производители включают его в базовые комплектации но далеко не всех транспортных средств.
  3. Негативное влияние на работу навигаторов. Стёкла такого типа способны воздействовать на некоторые функции отдельных устройств внутри салона автомобиля. Водитель может заметить сбои в телефонной связи, сигналах GPS и радиоволновой передаче.

Прежде чем приобрести атермальное стекло, необходимо обратить внимание на его показатели затемнения. Они не должны превышать установленные на законодательном уровне нормы, так как в таком случае водителя могут лишить прав

Если остекление полностью соответствует стандартам, можно смело его покупать. Это обусловлено тем, что оно способно создать действительно комфортные условия для пребывания в салоне в летний период времени. Зимой же такие изделия будут, наоборот, удерживать тепло внутри, снижая нагрузку на отопительные приборы, что отразится и на расходе топлива. Несмотря на то, что атермальные стёкла дорогие, их приобретение представляет собой действительно удачный способ инвестирования денег.

Потребительские свойства атермальных стёкол

Главное свойство атермальных автомобильных стёкол – это отражение инфракрасного спектра солнечного света. Поэтому в салоне автомобиля создаётся комфортная атмосфера.

Преимущества

Кроме этого, атермальное остекление обладает внушительным списком положительных качеств. Вот некоторые из них:

  1. Атермальные автостёкла прочнее и долговечнее обычных.
  2. Они снижают нагрузку на систему кондиционирования и отопления авто. В жаркую погоду салон нагревается намного меньше, а в холодное время года надёжно удерживается тепло.
  3. Остекление с атермальным эффектом экономит топливо, потому что кондиционер или печка отопления работают в щадящем режиме.
  4. Атермальное стекло меньше запотевает и практически не промерзает.
  5. Яркие солнечные лучи эффективно рассеиваются. Водителю не мешают блики. Это повышает безопасность движения в солнечную погоду.
  6. Обивка салона на сидениях надёжно защищена от выгорания. Передняя панель будет нагреваться в 2-3 раза меньше.

Недостатки

Основным недостатком атермального автостекла – это его высокая цена.

  1. Стоимость такого стекла по сравнению с обычным больше в 1,5-2 раза.
  2. Также не на все модели автомобилей можно найти такие стёкла. Но не стоит расстраиваться, в настоящее время всё больше и больше производителей автомобилей предлагают в базовой комплектации атермальное остекление. К примеру, его уже устанавливают на новые модели отечественных автомобилей, и на большинство новых автомобилей импортного производства.
  3. Ещё один немаловажный недостаток – это ухудшение работы дополнительного автомобильного оборудования: антирадаров, навигаторов. Атермальные стёкла могут блокировать некоторые функции специальных гаджетов.
Видео-тест работы радар-детектора, через обычное и атермальное стекло

https://youtube.com/watch?v=4QL4tUdZFLk

В данном видео видно, что на работу радар-детектора Supra DRS-i75VST тип лобового стекла не влияет.

ATHERMAL Welding Black Glass, Synergic Solutions


О компании

Год основания 2010

Юридический статус фирмы Партнерство Фирма

Характер бизнеса Дистрибьютор / Партнер по сбыту

Количество сотрудников До 10 человек

Годовой оборот R.1-2 крор

Участник IndiaMART с марта 2011 г.

GST33ABVFS0397Q1Z5

Код импорта и экспорта (IEC) 32140 *****

Мы «Synergic Solutions », основанная в 2010 году в Коимбаторе, Тамил Наду. Наша организация была авторизованным дистрибьютором известных организаций, таких как «MESSER CUTTING SYSTEMS» STANVAC CHEMICALS INDIA LTD и SUPERON SCHWEISSTECHNIK INDIA LTD »для продвижения продукции мирового класса, включая сварочные аксессуары , машины для плазменной резки, Oxyfuel Gas Cutting Products, Промышленные смазочные материалы, специальности ТОиР, сварочные электроды для технического обслуживания и ремонта и покрытия для промышленной защиты.
Мы верим в установление долгосрочных и взаимовыгодных отношений с нашими клиентами, предоставляя им непревзойденное качество продукции для сварки и резки, кислородно-топливной продукции, специальных смазочных материалов для ТОиР и промышленных смазочных материалов. Благодаря хорошо налаженной дистрибьюторской сети мы смогли доставлять нашу продукцию по всей Индии и за границу.
Мы также экспортируем по всему миру различный ассортимент продукции, подходящей для машиностроительной отрасли, в зависимости от потребностей и требований клиентов.Наши своевременные поставки повышают уровень удовлетворенности наших клиентов при размещении повторных заказов.

Видео компании

Атермальное флюидирование стекол | Nature Communications

Фотоманипуляция аминоазобензола SAM

Изучаемая азосистема (dMR) является производным красителя метилового красного 19 , показанного на рис. 1a, синтезированного и ковалентно связанного на стеклянных подложках с образованием плотных, фотоактивных, SAM. как показано на рис.1b. Освещение азобензолов поляризованным светом приводит к анизотропной ориентации молекул, поскольку молекулы имеют тенденцию выстраиваться в направлении, в котором фото-рандомизация их ориентации минимизирована, то есть с моментами фотовозбуждения транс-цис (приблизительно по длинной оси молекулы) по нормали к падающей поляризации 20,10,11 . Мы изучили фотоориентацию и релаксацию dMR SAM путем временного воздействия на них поляризованного света с длиной волны 514 нм и измерения динамики результирующего двулучепреломления в плоскости на длине волны 632 нм с использованием высокочувствительного поляриметра 21 .Два актиничных луча с длиной волны 514 нм, один линейно поляризованный насос (LP, плоская поляризация p ) и один циркулярно поляризованный (CP) насос освещают образец при падении, близком к нормальному, и могут включаться и выключаться с помощью 40 Время отклика -мкс с использованием сегнетоэлектрических жидкокристаллических электрооптических затворов.

Рис. 1: Самособирающийся связанный молекулярный монослой dMR.

( a ) Молекулярная структура дМР, синтезированная и связанная со стеклом, демонстрирующая поверхность VDW азохромофорного ядра, молекулярный дипольный момент d (розовый), а также длинную ось азо-ядра и переход хромофора момент т (синий).Угол между осью сердечника и плоскостью поверхности составляет ψ ≈25 °. ( b ) Эскиз структуры в плоскости с ориентацией в плоскости, возникающей в результате падающего света, поляризованного вдоль p (зеленая стрелка), показывающий VDW-проекции ядер dMR на плоскость поверхности (желто-зеленый), крепления страховок к поверхности (голубой), ориентация диполя d и его азимутальная ориентация φ . Этот рисунок хорошо отображает экспериментальную среднюю поверхностную плотность.( c – e ) Все фотоиндуцированные изменения в dMR SAM происходят из-за отдельных событий, в которых поглощение одиночного фотона указанной поляризации возбуждает молекулу (розовая), вызывая изомеризацию и переориентацию. ( d ) Из-за привязок соседние молекулы должны проходить друг над другом или протискиваться мимо соседних привязок, что приводит к локально ориентированному стекловидному состоянию, стабилизированному большим барьером U th ~ k B ( 7500 К). Изолированное поглощение фотонов производит такие события с квантовой эффективностью QELF ~ 1 (одно событие / поглощенный фотон / молекула), потому что атака фотоиндуцированного барьера происходит при T = 800 K, что превышает стеклование для такой локальной переориентации.

Ядро метилового красного дМР прикреплено к поверхности стекла короткой алкильной единицей из четырех одинарных связей C – C, что дает средний угол между длинной осью ядра и плоскостью поверхности ψ ~ 25 ° , показанный на рис. 1a 22,19 , и допускает переориентацию и трансляцию ядра на ~ 1 нм. На рисунке 1b схематически показана геометрия локально ориентированного состояния с молекулами, представленными стержнями, имеющими азимутальную ориентацию φ и отношением длины к ширине, соответствующим следу ван-дер-ваальсовой (VDW) формы ядра на рис.1а, с привязными ремнями, случайно прикрепленными к поверхности, в местах, обозначенных синими кружками. Измерения оптического поглощения (дополнительное примечание 1) дают площадь поверхности / молекулу S = 0,55 нм 2 . Сравнение с площадью отпечатка VDW S м = 0,45 нм 2 на рис. 1b показывает, что монослой плотно упакован, с моментами перехода n-π * π-π *, представленными как t , практически параллельно плоскости интерфейса (рис.1а).

Ориентация в плоскости была индуцирована в монослоях освещением LP, так что поляризация зонда и средняя длинная ось молекулы в плоскости, директор n t ( φ ), были равны + 45 ° и -45 ° от поляризации LP соответственно. В этой геометрии индуцированное двулучепреломление в плоскости Δ n может быть получено из пропускания T через анализатор скрещенного зонда с использованием Δ n ( λ / πd ) T 1/2 , где d = 0.5 нм — это средняя толщина азосердца, принимаемая за толщину пленки SAM (Дополнительные методы, дополнительные рисунки S1 и S2). Сверхнизкая утечка поляриметра при погасании, T min = 2,4 × 10 −10 , позволяет измерять двулучепреломление SAM в плоскости всего лишь Δ n ~ 0,001.

Во время освещения dMR SAM, изначально рандомизированного по ориентации из-за тепловых флуктуаций, пучком накачки LP, начиная с t = 0, двулучепреломление в плоскости Δ n ( t ) Δ n ( t ) = n || n , где n || (┴) — это индекс поляризации, параллельной (нормальной) n , увеличивается с увеличением падающей оптической плотности энергии, F (энергия / площадь) от некоторого небольшого начального значения фона Δ n <~ 0.001, до Δ n ~ 0,14, как показано на рис. 2а и дополнительном рис. S4. Это двойное лучепреломление может быть связано с упорядочением в плоскости изомеров транс , поскольку они имеют большую анизотропию оптической поляризуемости, чем цис 23 , и, как правило, большую анизотропию их ориентационного распределения в условиях ориентационного горения дырок (Дополнительные примечания 2 и 3) 24,25,26 . Двулучепреломление Δ n , которое пропорционально параметру двумерного (2D) ориентационного порядка S = 2 φ —sin 2 φ >, указывает на развитие плоскости заказ с S ~ 0.5, основанный на сравнении измеренных нами Δ n с величиной нематиков на основе азо 27 . На вставке к рис. 2а показано, что двулучепреломление SAM зависит только от поглощенной плотности энергии (поглощенная энергия / площадь), F A , и что начальный рост Δ n ( t ) довольно быстрый, с порядком SAM в значительной степени развивается при поглощенном флюенсе F A ~ 1 фотон, поглощаемый на молекулу (1 Па / моль), как рассчитано на основе измеренного оптического поглощения света 514 нм, падающего на изотропный SAM.Обратите внимание, что F A = 1 Па / моль при F = 20 мДж см -2 (Дополнительное примечание 1) 19 .

Рисунок 2: Динамика записи и стирания двулучепреломления ЗУР в плоскости Δ n ( t ).

( a ) Δ n ( t ) индуцированный светом LP, включенным при t = 0. Вставка: Δ n ( t ) зависит только от средней поглощенной энергии / площади F A , а при F A = 1 фотон, поглощенный на молекулу (1 Па / моль), a достигается значительная часть насыщенного порядка.Сплошная желтая линия — это Δ n ( t ) от Q G ( t ) (уравнение 2). Почти линейный рост Δ n ( F ) при низком F — это постепенное накопление в Δ n из потока однофотонных событий локального выравнивания, изолированных и случайных в пространстве-времени. ( b ) Измеренное затухание Δ n ( t) / Δ n ( t = 0) (сплошные символы), первоначально записано светом LP с изменяющейся F и стерто начиная с t = 0 либо термически, либо CP-светом с интенсивностью I CP = 1 Вт · см −2 . Δ n ( т ) ≈ ( т / τ т ) η при большом т и хорошо подходят к Q G ( т ) (сплошные кривые), что дает время масштабирования τ t (ромбики, логарифмический график «угол») и η , показатель степени затухания. Для сравнения показан экспоненциальный спад (пурпурная пунктирная кривая). Степенный закон указывает на экспоненциальное распределение высот коллективных барьеров, с η = T / T м , которое уменьшается и, таким образом, T m , которое увеличивается с записью F .Для каждого F , η больше в случае CP, что дает большую эффективную температуру для стирания CP, T CP ~ 750 K. Для термического стирания время испытаний для пересечения коллективного барьера составляет τ t ~ 2 с ( τ t в этом режиме обозначается как τ th ), а для стирания CP при высокой интенсивности CP τ ph ( I CP ) происходит при F A = 1 Па / моль (вертикальные оранжевые линии) ( τ t обозначается как τ ph ( I CP ) в этом режиме).( c ) Время испытаний τ t = τ th и соответствующие барьеры T th для пересечения локального барьера (попытки коллективного барьера) во время тепловой релаксации. Значения τ t существенно не изменяются при записи F A даже при низком уровне F A , когда события записи изолированы, что указывает на то, что они определяются локальными ограничениями, присутствующими в незаписанном SAM.( d ) На большом F A , δ Δ n ( F A ) (черная линия) — рост Δ n ( F A ) выше прогноз модели релаксации (желтая кривая). δT м ( F A ) — рост на T м выше комнатной температуры (фиолетовая линия). Связанный логарифмический рост δ Δ n и δT m указывает на «истощение» или ориентационное «деформационное упрочнение» 52 .

Термическое и световое стирание: медленная динамика

На рисунках 2b и 3a показано Δ n ( t ) анизотропных dMR-SAM, первоначально записанных светом LP из F и соответствующего F A значения отображаются и стираются либо тепловыми колебаниями при T = 300 K, либо освещением именно CP-светом. Здесь t = 0 — время, в которое пучок LP выключен, а пучок CP включен в случае фото стирание.Эти данные о распаде показывают сверхмедленную, стеклообразную релаксацию без существенного уменьшения нормализованного ориентационного порядка Q ( t ) = Δ n ( t ) / Δ n (0) для t < τ t , «угол» на логарифмическом графике, полученный из масштабирования времени для последующего затухания по степенному закону и обозначенный ромбиками на рис. 2b и 3a. Для теплового случая τ t = τ th ~ 2 с и степенной закон затухает при большом времени, Δ n ( t ) / Δ n (0) ~ ( t / τ th ) η , измеряется до нескольких часов.Угол тепловой 2D XY ориентационной релаксации сравнительно анизотропных, но не связанных молекул в свободно подвешенных смектических жидкокристаллических пленках C составляет τ th ~ 10 −11 s (дополнительное примечание 4) 28,29,30,31, 32,33 , предполагая, наряду с рис. 1c – e, что два основных фактора вызывают такую ​​медленную ориентационную динамику: (i) Высокая плотность упаковки в плоскости, почти такая же, как у чистого твердого красителя, способствует тенденции к азо ядра, которые связываются посредством дипольного и VDW взаимодействия их почти плоских хромофорных ядер, что приводит к сильным структурным корреляциям в плоскости 34 , которые значительно усиливают энергетические барьеры, препятствующие движению молекул друг мимо друга.(ii) Локальная переориентация ограничивается тросами до дискретных скачков, как показано на рис. 1c – e, где молекулы должны проходить друг над другом или друг за другом, и для этого они должны либо растягивать, либо сгибать тросы.

Рис. 3. Эволюция от теплового к оптическому стиранию двулучепреломления в плоскости.

( a ) Изменение релаксации двулучепреломления SAM с увеличением интенсивности стирания. Начальная плотность энергии записи LP зафиксирована на уровне F = 25 мДж см -2 . Крайние правые данные (черные точки, I CP = 0) показывают термическое стирание.Черная сплошная линия — это уровень утечки поляриметра, вычтенный в ( b ). ( b ) Подбор выбранных данных релаксации к модели (уравнение 2; пурпурные кривые). Для термического распада (температура атаки барьера T = 300 K) измеренное значение η = 0,51 показывает, что наведенная средняя высота барьера составляет T м = 590 K. При достаточно высоком I CP фото -индуцированные попытки являются доминирующими и генерируют локальные T ~ 800 K, независимо от I CP .Подходящие времена масштабирования (атаки барьера) τ t = τ th и τ t = τ ph ( I CP ) показаны ромбами. Спады являются бимодальными в режиме «кроссовера», где термическое и фотоиндуцированное время испытаний сравнимо со сплошными голубыми линиями, рассчитанными по модели релаксации, обобщенной для бимодального поведения (дополнительное уравнение S17). Вертикальные оранжевые линии обозначают F A = 1 Па / моль.( c ) Средняя обратная скорость τ t для успешного прохождения локальных молекулярных ориентационных барьеров и, следовательно, для испытаний коллективных барьеров ориентации в зависимости от интенсивности падающего CP-света I CP . При низком уровне I CP , τ t имеет свое тепловое значение ( τ t = τ th ~ 2 с), требующее ~ 10 11 для преодоления молекулярных флуктуаций при комнатной температуре. T th ~ 7500 K локальный барьер, в то время как при высоком I CP мы находим τ t ~ τ ph ( I CP ), что почти равно to (1 Па / моль) / I ACP , где I ACP — интенсивность поглощенного CP (дополнительное примечание 1, дополнительное уравнение S2).Это указывает на то, что в среднем каждый поглощенный фотон генерирует тест на пересечение локального барьера, свидетельствующий о стекловании (псевдоожижение), которое стирает локальный барьер. Этот фотоиндуцированный обход процесса тепловых испытаний ответственен за ориентационную флюидизацию за счет CP-освещения, прямо проявляющуюся здесь как ориентационная вязкость, которая уменьшается обратно пропорционально увеличению интенсивности ( γ 1/ I CP ).

Эта медленная тепловая релаксация указывает на активированный, ограниченный барьером процесс распада, который обычно описывается законом Аррениуса, τ () = τ r exp (/ k B T ), где 1/ τ r — скорость попыток преодоления барьера во временном масштабе молекулярных ориентационных флуктуаций, не более τ r ~ 20 пс 18 — высота барьера, а τ () — характерное время экспоненциальной релаксации, как показано на рис.4а. Однако явно неэкспоненциальный характер релаксации, явно показанный на рис. 2b, предполагает, что τ () следует обобщить, чтобы включить распределение энергетических барьеров, f (), понятие, согласующееся с неоднородной природой монослой, отмеченный в пунктах (i) и (ii) выше. Минимальное затухание для τ < τ t показывает, что f () имеет «барьерную щель», то есть небольшую плотность барьеров ниже минимальной энергии U t или ее отсутствие. в тепловом случае оценивается как U th / k B T th ~ ln ( τ th / τ r ) T ~ ln (10 11 ) T ~ 25 * 300 K ~ 7500 K, большое значение, вероятно, из-за плотности монослоя и ограничений троса.Поэтому полезно записать = U t + U , определяя плотность f ( U ), нормализованную в U , и соответствующее τ ( U ) = τ r exp ( U t + U ) / k B T = τ t exp ( U / k B T ), с τ t = τ r exp ( U t / k B T ).Обратное «пробное» время 1/ τ t (~ 0,5 Гц для теплового распада), полученное от пробного барьера U t , затем служит в качестве скорости для попыток преодоления барьеров, распределенных с f ( U ). Запись Q ( t ) = ∫ g ( t / τ ) H ( τ ) , где распределение времен релаксации τ ( U ) = τ t exp ( U / k B T ) составляет H ( τ ( U )) = f ( U ) / | d τ ( U ) / d U | , дает релаксацию формы Q ( t ) = G ( t / τ t ), показывая, что это время испытания барьерной атаки τ t , которое становится масштабное время релаксации (дополнительное примечание 5).Для общности мы предположили, что релаксационная динамика параметра порядка для каждой моды или события τ растянута экспоненциально, Q τ ( t ) = exp- ( t / τ ) α . Однако обнаружено, что динамический показатель моды α существенно влияет только на динамику записи фотографий.

Рисунок 4: Краткое описание релаксационных процессов, относящихся к dMR SAM.

( a ) Дельта-функция распределения высот барьеров, f ( U ) = δ ( U U t ), приводит к термически активируемой релаксации Аррениуса, для которой функция убывания экспоненциальная во времени Q ( t ) = exp (- t / τ t ), с временем масштабирования τ t , определяемым зазором барьера, U t , а скорость молекулярных флуктуаций τ r −1 .( b ) Распад для ориентационного стекла локальных доменов, стабилизированных минимальным локальным энергетическим барьером U t , с коллективными междоменными взаимодействиями, дающими дополнительную энергию U , распределенную экспоненциально в большом диапазоне U , f ( U ) = exp (- U / U м ), как для распределения Шера / Шлезингера 43 , показанного здесь. Результатом является функция затухания с «углом» при τ t , определяемая U t , и степенным асимптотическим затуханием Q ( t ) = ( t / τ t ) η определяется показателем степени η = k B T / U m .( c ) В терморелаксирующей dMR SAM, U th и, следовательно, τ th определяются локально, в ориентированных стекловидных кластерах из нескольких молекул, первоначально созданных в результате событий изомеризации, индуцированной однофотонным излучением. U m увеличивается с усилением коллективного взаимодействия таких ориентированных кластеров, так что η = k B (300 K) / U m уменьшается с увеличением плотности записи.( d ) При фоторазрушении CP dMR SAM эффективная температура атаки барьера, также установленная в событиях индуцированной однофотонной изомеризацией, составляет T loc = 800 K, расплавляя локальное коллективное стеклообразное состояние и вызывая атаки на барьерах из-за взаимодействия с соседними молекулами с единичной квантовой эффективностью. Более быстрое затухание по степенному закону, которое приводит к η = k B (800 K) / U m , свидетельствует о том, что все барьеры в f ( U ) атакуются при T . eff = 800 K, и, таким образом, даже высокие энергетические барьеры в f ( U ) достаточно локализованы, обязательно в пространственно-временном объеме 1 нм / 10 пс для фотоориентационного события.

Следуя идее распределения высоты барьера, мы обнаружили, что f ( U ) предсказано на основе моделей статистики экстремальных значений, описывающих плотность энергий самых глубоких минимумов в ландшафтах с грубой энергией 35,36, 37,38,39,40,41 , в частности, университетского класса Гамбель 35 , дают прекрасное описание нашего отдыха. В частности, как впервые отметили Пфистер и Шер, 42 и Шлезингер 43 , наблюдаемая кинетика степенного закона при больших t возникает естественным образом, если высокоэнергетический хвост f ( U ) является экспоненциальной в пределе больших U , что также предсказывается на основе статистики экстремальных значений и моделей Гамбеля 44,35,39 .Экспоненциальное распределение хвоста и его релаксационная динамика показаны на рис. 4б. Нормализованное распределение Гумбеля (дополнительное примечание 5)

, где β — параметр, а Γ (1/ β ) — гамма-функция, отсекается как двойная экспонента для U <0, чтобы создать зазор в барьере, и является экспоненциальной при большом U , f G ( U ) ~ exp- ( U / U м ), с константой затухания U м средняя высота барьера экспоненты хвост.Для β = α / η , f G ( U ) дает эффективное распределение времен релаксации H G ( τ ) = [ α / Γ ( η / α ) τ t ] [exp- ( τ t / τ ) α ] [ τ / τ t ] — ( η +1) , который затем можно проинтегрировать, как написано выше, чтобы получить релаксацию параметра порядка:

Таким образом, Gumbel H G ( τ ) дает функцию релаксации, которая проста, но обеспечивает высококачественные соответствия наших данных релаксации Δ n ( t ) (пурпурные кривые на рис. 2b и 3b), где мы берем Q G ( t ) = Δ n ( t ) / Δ n (0). Q G ( t ) масштабируется на τ t и при длительном времени, где Q G ( t ) <1, мы имеем Δ n ( t ) Q G ( т ) ( т / τ т ) η = ( т / τ т ) k T B / U m = ( t / τ t ) T / Tm , степенной закон спада во времени зависит только от: (i) параметра η , который является экспонентой затухания η = T / T m , регулируется соотношением энергии термической активации k B T to U m = k B T m , характеристическая энергия масштабирования экспоненциального хвоста записанного barr распределение по высоте; и (ii) частота попыток преодоления барьера 1/ τ t , которая устанавливает шкалу времени.Затухание при длительном времени является степенным, потому что в ходе релаксации, как только барьеры ниже определенной энергии U ( t ) были пересечены, средняя высота оставшихся барьеров всегда была U ( t ) + U м . В Q G ( t ) время «угла» на графиках log – log в значительной степени определяет τ t , значения аппроксимации показаны ромбиками на рис. 2, 3, 4. а по данным рис.3c. Большой уклон т во многом определяет η . Обнаружено, что динамический показатель моды составляет α ~ 0,8, контролируя в первую очередь начальную запись, описываемую как Δ n ( t ) 1– Q G ( t ) (рис. 2a и дополнительные Рис. S5). Наши основные результаты вытекают из аппроксимации распада следующим образом.

SAM стеклянная релаксация: два различных процесса преодоления барьеров

Мы идентифицируем локальный процесс, который определяет τ t , и коллективный процесс, который увеличивает η с увеличением плотности записи.Мы начнем с обсуждения τ t , отметив, что запись и стирание фотографий происходит посредством серии дискретных случайных событий поглощения фотонов, которые при используемых здесь интенсивностях (<1 кВт / см -2 ) широко распространены. разделены в пространстве-времени в результате их короткой продолжительности (~ 10 пс) и небольшого пространственного измерения (~ 1 нм, дополнительное примечание 5), как подробно описано в обсуждении событий изомеризации ниже. Это можно увидеть из рис. 3c, где доля времени, затрачиваемого освещенной молекулой на фото-события, показана в зависимости от интенсивности, в данном случае для стирания CP.Таким образом, при записи изначально случайного состояния при низкой плотности энергии, F A <1 Па / моль, двулучепреломление, которое растет почти линейно со временем, или F A (рис. 2a), является средняя мера локальной ориентации изолированных групп из нескольких молекул, каждое событие ориентации вызвано одним фотоном. Термический распад Q G ( t ) соответствует рис. 2b, где τ t = τ th оказывается независимым от плотности записи до F A <1 Па / моль (рис.2c) в сочетании с данными вставки на рис. 2a, которые показывают, что индуцированная Δ n ( t ) зависит только от плотности энергии даже для самой медленной (низкой интенсивности) записи, указывают на то, что тепловое время жизни изолированных ориентированных кластеров из нескольких молекул в монослое, в противном случае случайном, составляет τ th ~ 2 с в режиме F A <1 Па / моль. Это ясно показывает, что ограничения, определяющие τ th и, следовательно, U th , являются локальными.Оценка локальной ориентационной вязкости γ может быть получена путем предположения, что ориентационная диффузия определяется константой D = k B T /8 πγa 3 . Принимая 1 / D ~ τ th ~ 2 с и радиус a ~ 0,5 нм, получаем равновесие γ ~ 10 8 , количественно определяя стеклообразную природу ориентации dMR.

Переходя к η , Q G ( t ) подходит, как показано на рис.2b показывают, что для F A > 1 Па / моль, где локальные области испытывают множественные события поглощения во время записи, показатель затухания η увеличивается с увеличением F A . Поскольку термическое стирание происходит при T ≈ 300 K, поведение η = T / T m для термических распадов показывает, что T m ( F A ) увеличивается с 500 K до 1200 K при увеличении F A с 0.5–250 Па / моль, что свидетельствует о расширении экспоненциального хвоста f ( U ) до более высоких энергий и, следовательно, об углублении барьеров, определяющих f ( U ). Рис. 2d показывает, что при большом F A , как T m ( F A ), так и записанное двулучепреломление Δ n ( F A ) из Рис. 2a увеличиваются как журнал ( F A ), указывая на то, что постепенно улучшенный порядок записи создает все более глубокие препятствия.Усиление очень глубоких барьеров, ответственных за хвосты степенного закона в течение длительного времени, предполагает коллективный процесс, происходящий из взаимной стабилизации локально-ориентированных доменов нескольких молекул, который усиливается, когда каждая местность испытывает множественные ориентирующие события в расширенном во времени процесс написания. Молекула должна преодолеть свой локальный ориентационный барьер U th , который существенно не меняется с F A , чтобы протестировать барьеры, задаваемые f ( U ), которые становятся глубже с увеличение F A .

Переход фотоэразирования к независимому от интенсивности приподнятому локальному T

Если известен T m ( F A ), рис. 2b позволяет сравнить тепловое затухание и затухание CP для записи с F A = 0,5, 12 и 60 Па / моль, и тем самым определение из η = T CP ( F A ) / T m ( F A ) эффективной температуры T CP для кругового поляризованного стирания, в данном случае при интенсивности стирания I CP = 1000 мВт см −2 .Большие наклоны для случая CP показывают, что эффективная температура для атаки барьеров f ( U ) во время стирания CP больше, чем T = 300 K. Расчет T CP из T CP ( F A ) = ηT м ( F A ) дает аналогичные эффективные температуры стирания, T CP = 760 K, 710 K и 770 K для трех значений из письменного F A , общий для термической и CP-стертой релаксации, соответственно.Это постоянство является доказательством ключевого результата: значения T m и, следовательно, распределения высоты барьера одинаковы для термического стирания и стирания CP. Взяв T CP = 750 K, мы можем затем определить барьер T м ( F A ) для различных значений F A , вплоть до T м ( F A = 675 Па / моль) = 1670 K, что недоступно термически, потому что термический распад становится чрезвычайно медленным для таких больших F A .

На рис. 3a и b показаны серии релаксационных кривых dMR SAM, ориентированно записанные с фиксированной поляризованной плотностью записи F A = 1,25 Па / моль и стертые либо термически, либо с возрастающей интенсивностью I CP CP свет. Для термического стирания ( I CP = 0, T = 300 K) мы измеряем η = T / T м = 0,51, что соответствует средней высоте ориентационного барьера T м = 590 К, индуцированное F A = 1.25 па / моль при письме. Подгонка этих данных к уравнению 2 дает время испытания τ t , показанное ромбами для каждой кривой на фиг. 2b и 3a. Также показано время, в течение которого поглощенная плотность энергии во время стирания составляет один фотон на молекулу ( F A = 1 Па / моль). Для термического стирания τ th τ t ( I CP = 0) порядка нескольких секунд. τ t ( I CP ), показанные на рис.3c, начинает уменьшаться с увеличением I CP в режиме кроссовера, где скорость испытаний с фотоусилителем становится сопоставимой с термической: τ t ( I CP ) ~ τ th . Для I CP > ~ 100 мВт см −2 , где τ t ( I CP ) << τ th , мы маркируем управляемую фотонами асимптотическую вариацию τ t ( I CP ) как τ ph ( I CP ) на рисунках 3a – c и 4d.В переходном режиме τ t ( I CP ) ~ τ th ( I CP ~ 10 мВт / см −2 ) распады соответствуют бимодальному модели (сплошные голубые кривые на рис. 3b), с температурным наклоном на короткое время и наклоном фото-события на долгом времени (дополнительное примечание 6). При высоком I CP , где τ t ( I CP ) < τ th , η насыщается при I CP — независимое асимптотическое значение, η CP = 1.50. Это соответствует эффективной температуре T CP = η CP T m = 890 K, которая, согласно нашей модели энергетического ландшафта, является температурой локальной структуры, как она делает пробные попытки преодолеть свои ориентационные барьеры. Это несколько больше, чем T CP = 740 K для SAM на рис. 2a, что типично для варианта SAM-to-SAM T CP , который в наших данных в среднем составляет T CP. = 800 ± 100 К.Тот факт, что температура T CP становится независимой от I CP , как только она становится достаточно большой, чтобы испытания производились преимущественно фотонами, показывает, что T CP не связано со средним потоком энергии. Скорее T CP можно понимать как эффективную локальную температуру, особенность локальных переходных процессов, которые являются полностью изолированными пространственно-временными событиями даже при самых высоких интенсивностях, используемых здесь. На рисунке 3c показано изменение τ t с I CP , и мы видим, что в режиме высокого I CP τ ph ( I CP ) изменяется как 1/ I CP (черная пунктирная линия) и очень близко к τ t = (1 Па / моль) / I ACP (сплошная оранжевая линия), время, необходимое для F A , чтобы вырасти до F A = 1 Па / моль (дополнительное уравнение S2).Это почти равенство указывает на то, что процесс стирания CP имеет квантовую эффективность, QELF ~ 1: для каждого поглощенного фотона генерируется одна попытка преодоления барьера на молекулу.

Возвращаясь к нашей модели релаксации как локальной ориентационной диффузии, ограниченной вязкостью γ и отмечая также, что γ τ t , мы сразу видим, что гораздо более быстрые распады, вызванные CP-светом (рис. 2b и 3а) за счет уменьшения τ ph ( I CP ) с увеличением I CP , является проявлением ориентационной флюидизации.Поэтому на рис. 3c мы также изображаем это поведение как фотоиндуцированное снижение относительной вязкости γ ( I CP ) / γ (0) с уменьшением вязкости в ~ 10 −5 раз. , найденный уже при относительно небольшой интенсивности лазера 1 кВт / см −2 . На рисунке 3c затем прямо показано, что ключевым признаком этого флюидизации является переход с увеличением I CP до вязкости, которая обратно пропорциональна интенсивности света.Из-за низкой плотности событий в пространстве-времени (верхняя ось) освещение не производит заметного среднего нагрева, то есть псевдоожижение является «атермальным».

События фотоабсорбции / изомеризации

Поглощение фотона на длине волны 514 нм выделяет энергию = 2,4 эВ в азоядро dMR, достаточную для возбуждения одной гармонической степени свободы до = 29000 К. Появляется некоторая часть этой энергии в форме, которая локально проверяет распределение молекулярного ориентационного барьера при эффективной температуре T CP ~ 800 K.Быстрая спектроскопия 45,46,47 , квантовое / молекулярно-динамическое моделирование 18,48 и молекулярно-динамическое моделирование 17 дают полуколичественную картину этого процесса, указывая на то, что он в основном механический, с энергией фотонов, имеющей вид когерентная сила, временно действующая на окружающую среду поглощающей молекулы 49,50 , следующим образом. После поглощения фотонов и электронного возбуждения азо-ядро возвращается в основной электронный коллектор в конфигурации переходного состояния, из которой происходит когерентное изменение внутримолекулярной конфигурации по одному из нескольких возможных путей, например, от транс до цис или от транс до транс , все из которых уменьшают внутреннюю потенциальную энергию на ~ 2 эВ (45 ккал на моль), что составляет почти всю поглощенную энергию фотонов 18,48 .Например, преобразование ядра из транс в цис осуществляется за счет изменения двугранного угла CNNC на 180 °. В вакууме это преобразование представляет собой плавное скольжение по поверхности потенциальной энергии основного состояния в виде квазиэкспоненциальной затухающей релаксации (характерное время = 0,4 пс) 18 . В этом процессе колебательные моды молекулы термализуются, при этом энергия сводится в основном к полностью возбужденным низкочастотным колебаниям, и молекула достигает внутренней температуры ~ 1100 К 45 .Однако в растворе почти вся энергия такого когерентного изменения формы молекулы высвобождается в виде ориентационной и трансляционной работы, совершаемой над соседними молекулами 18,47,48 . В частности, детальное моделирование Tiberio et al. 18 показывают, что для азобензола в растворителе изменениям молекулярной формы преимущественно противодействуют межмолекулярные вязкие силы, а не внутримолекулярная диссипация, что приводит к затухающей релаксации в гораздо более длительном масштабе времени (~> 10 пс), чем в вакууме, a ожидаемая динамика (дополнительное примечание 7) и подтвержденная экспериментом 46 .В этом случае распад становится слишком медленным для возбуждения молекулярных колебаний, и потенциальная энергия азо идет главным образом на создание когерентного движения растворителя, а также на вращение и поступательное движение азо-ядра. Выделенная энергия 2 эВ соответствует ~ 30 гармоническим степеням свободы при 800 К, с помощью которых можно атаковать ориентационные барьеры молекулы. Тот факт, что квантовая эффективность для барьерных испытаний, QE ~ 1, больше, чем для транс цис изомеризации (0.3 < QE транс-цис <0,7) 9 является показателем того, что энергия поглощенного фотона передается соседям возбужденной молекулы, независимо от того, дойдет ли она до цис или вернется к транс 18 . МД моделирования Teboul et al. 17,51 также показывают локализованное временное усиление среднеквадратичного молекулярного смещения и динамическую неоднородность в кластерах, окружающих изомеризующиеся молекулы.Однако это моделирование трудно использовать напрямую, потому что суммарная вложенная энергия не указывается.

Фотофлюидизация: стеклование локальных барьеров

Этот анализ показывает, что в плотной среде фотонно-индуцированное изменение формы молекулы азоядра происходит в масштабе времени 10 пс, достаточно медленно, чтобы вызвать когерентный переходный процесс силы на соседние молекулы (в отличие от молекулярных колебаний 49,50 ), вкладывая ~ 2 эВ механической энергии, достаточной для создания ориентационного события с эффективной локальной температурой T = 800 K.Если бы только вращение вокруг коротких молекулярных осей было таким возбужденным (что маловероятно), то верхняя оценка ~ 30 молекул могла бы быть непосредственно задействована. Поскольку, как правило, существуют поступательные, другие вращательные и низколежащие колебательные моды, которые также будут возбуждены, фактическое количество участвующих молекул должно быть меньше, вероятно, ограничено группами ближайших соседей (~ 7 молекул). Как отмечалось выше, начальная запись оставляет такую ​​группу с барьером U th ~ k B (7500 K) для переориентации.С этим барьером и температурой фотоиндуцированной атаки T = 800 K, количество событий поглощения фотонов для генерации испытания будет exp [7,500K / 800K], то есть QELF <10 −4 , что на порядки меньше наблюдаемого QELF ~ 1. Это сравнение подразумевает, что в процессе локального пересечения барьера должен происходить переход стекла в псевдоожиженное состояние при температурах между 300 и 800 К, что дает гораздо меньший эффективный барьер при температуре атаки T = 800 K, чем при T = 300 К.Эксперименты не дают прямой информации о природе этого перехода, но его существование неудивительно, так как T = 800 K превышает температуру стеклования ( T g ) большинства органических сред, и данные моделирования свидетельствуют о том, что Об индуцированной динамической неоднородности в системе азо-легированного полимера сообщалось 51 . T loc = 800 K, локальная, управляемая светом температура испытания, таким образом, расплавляет коллективные локальные структуры, возможно, несколько молекул H- или J-агрегатов, которые сдерживают переориентацию, чтобы дать возможность группе молекул выполнить «испытание». испытать при T loc = 800 K барьеров, возникающих при взаимодействии с соседними ориентированными молекулами.Небольшая часть времени, в течение которого молекула принимает участие в событии, показанном на рис. 3c для интенсивностей, используемых здесь, гарантирует, что флюидизация производится потоком случайно происходящих, изолированных, дискретных событий фотоориентации. В каждом из этих событий T loc = 800 K конкурирует с барьером переориентации U , распределенным от объекта к объекту с f ( U ). Эта конкуренция представляет собой процесс, включающий коллективное поведение молекулы и только ее ближайших соседей, поскольку, как обсуждалось в предыдущем разделе, только несколько молекул могут быть временно нагреты до этой температуры.Такой поток случайных фотоориентационных событий, встречающих экспоненциальное распределение высот барьеров, приводит к наблюдаемым затуханиям степенного закона. В этом случае локальный стеклование, при котором группа из нескольких молекул «плавится», переориентируется и «повторно замерзает», явно является механизмом постоянного макроскопического изменения (формы), обнаруживаемого в азо-системах. .

Запись в большом количестве F: сопряженное старение порядка и средней высоты барьера

Медленное старение, показанное на рис.2d, с Δ n ( F A ) и T m ( F A ), увеличиваясь как ln F A с F A в диапазоне 10 < F A <10 4 Па / моль, указывает на ограниченный барьером процесс записи. Барьеры, встречающиеся при письме, — это как раз те, которые устанавливаются и должны быть преодолены в обратном порядке во время стирания, то есть характерный масштаб энергии для записи составляет T m .Затем, принимая пробную частоту, сгенерированную фотографией, ν w , для записи (для преодоления препятствий для достижения ориентированного состояния), шкала энергии, записанная в момент времени t , задается просто как условие «исчерпания», определение δU м ( t ) как энергетическую границу между низкими барьерами, которые в среднем уже были пересечены в момент времени t ( P ( t )> 1) и высокими еще пересечь 52 : 1≈ P ( t ) = w exp (- δU м ( t ) / k B T ).Решение для δT m ( t ) дает δT m ( t ) ≈ T ln ( w ) или δT m ( t ) ≈ T ln ( F A / F A w ), где F Aw — плотность потока, необходимая для пробного письма. Из рис. 2г при F A = 10 3 Па / моль имеем δT м / T ≈4.3, что дает F / F w = 74 и, следовательно, F w = 14 Па / моль в качестве пробной скорости записи, выраженной как плотность энергии, поглощенная изотропным образцом (фактическая поглощательная способность будет примерно половину этого значения из-за индуцированного ориентационного упорядочения). Таким образом, в этом асимптотическом режиме каждая молекула должна пройти цикл транс цис транс ~ 10 раз, чтобы провести испытание, при котором дальнейшее поляризованное освещение может усилить связь между локальными стеклообразными доменами и увеличить T m .В то время как одиночные записывающие фотоны эффективно создают локальные стеклообразно ориентированные домены, требуется много записывающих фотонов, чтобы связать их вместе, чтобы установить как лучший порядок, так и барьерное распределение, имеющее хвост, простирающийся в сторону более высоких энергий. Эта связь порядка и высоты барьера также может быть понята как пример ориентационного деформационного упрочнения (дополнительное примечание 8) 52 .

Aschua — Rudolf Uhlen GmbH — Arbeitsschutz — Интернет-магазин

Продукты
  • Держатели для козырька
  • СИЗ для пожарной части
  • Лицевой щиток электрика
  • Головной редуктор
  • 23 Козырьки
    • 40
    • Сварочная защита
    • Neue Bochumer Brillen
    • Защитные очки
    • Тепловые экраны окна
        Alup для защитной одежды 92 -14
        • Шлемы
Услуга
  • О компании Rudolf Uhlen GmbH
  • Контакт
  • Каталог
  • Положения и условия
  • Выходные данные
Информация
  • Карта сайта
  • Новости
  • Безопасность и экология
  • Заявление о конфиденциальности данных
Добро пожаловать назад !
Адрес электронной почты:
Пароль:
Забыли пароль?
Главная / Каталог / Защитные очки / Очки прямоугольные 60х120 мм

Очки прямоугольные 60×120 мм

Распечатать технический паспорт продукта

Арт.ZFKGL030-47

  • Очки прямоугольной формы размером 60×120 мм
  • Они подходят для моделей Bochumer Brillen BFKBB001 и BFKBB004
  • Кроме того, они подходят к теплозащитному экрану BFKHI008

Очки доступны в различных материалах и защитных оттенках.

  • Очки NEOTHERM синие, используются как смотровые стекла
  • Они имеют защиту от ИК-излучения 4-7 и НЕ МОГУТ использоваться для сварки
  • Очки ATHERMAL зеленые, используются как очки для сварки
  • В зависимости от вида сварки используются защитные оттенки от УФ-лучей от DIN 3 A до DIN 11 A
  • Кроме того, прямоугольные очки также доступны в виде прозрачных очков и козырьков из поликарбоната
  • Все очки доступны в небьющихся версиях
    Арт. Измерение Защитный фильтр
    ZFKGL030-47 60×120 мм синий NEOTHERM оттенок 4-7
    ZFKGL030-47 SPFR 60×120 мм синий NEOTHERM оттенок 4-7 небьющееся
    ZFKGL040-47 60×60 мм синий NEOTHERM оттенок 4-7
    ZFKGL050-5 60×120 мм зеленый ATHERMAL оттенок 5
    ZFKGL050-6 60×120 мм зеленый ATHERMAL оттенок 6
    ZFKGL050-7 60×120 мм зеленый ATHERMAL оттенок 7
    ZFKGL050-8 60×120 мм зеленый ATHERMAL оттенок 8
    ZFKGL050-9 60×120 мм зеленый ATHERMAL оттенок 9
    ZFKGL050-10 60×120 мм зеленый ATHERMAL оттенок 10
    ZFKGL050-11 60×120 мм зеленый ATHERMAL оттенок 11
    ZFKGL050-8 SPFR 60×120 мм зеленый ATHERMAL оттенок 8 небьющийся
    ZFKGL050-9 SPFR 60×120 мм зеленый ATHERMAL оттенок 9 противоударный
    ZFKGL050-10 SPFR 60×120 мм зеленый ATHERMAL оттенок 10 небьющийся
    ZFKGL056 60×120 мм стекло прозрачное SG-DIN
    ZFKGL56 SPFR 60×120 мм стекло прозрачное SG-DIN ударопрочное
    GFKVI034 60×120 мм поликарбонат прозрачный
    GFKVI034-1 60×120 мм зеленый поликарбонат


Этот товар был добавлен в наш каталог 15.Январь 2008г.

Технические характеристики
Сертификат CE Атермальные очки
Размер файла: 297,08 КБ
Очки с сертификатом CE прозрачные
Размер файла: 81.95 КБ
Сертификат CE Очки Neotherm
Размер файла: 50,89 КБ

Купить атермально-черное сварочное стекло (2 шт. В упаковке) в Интернете по лучшим ценам в Индии

Предпочтительный партнер Индии по закупкам промышленных товаров и Поставки ТОиР.

Shakedeal — надежный партнер по закупкам для многих организации в сфере банковского дела, финансов, информационных технологий, производства и консалтинга. В онлайн-торговая площадка предлагает широкий выбор подлинных и высококачественных промышленные и ТОиР поставки. Выбирайте из обширной коллекции электроинструментов, оборудование для обеспечения безопасности, предметы первой необходимости для офиса и упаковочные материалы по доступной цене. цены онлайн.

Выбирайте из обширного ассортимента электроинструментов онлайн.

Мы предлагаем электроинструменты всех ведущих производителей (Aegon, Bosch, Black & Decker, Makita, Dewalt, Foster и т. Д.) На свою платформу. Вы можете выбирать из обширная коллекция электроинструментов, как аккумуляторных, так и проводных. От дрели, от шлифовальных машин, пил и шлифовальных машин до резчиков по мрамору, в интернет-магазине есть все инструменты, необходимые для ваших проектов. Приобретите угловые шлифовальные машины Bosch, перфораторы, Колочные пилы и фрезы для мрамора Aegon по бесконкурентным ценам.

Популярные электроинструменты, такие как мойки высокого давления, фрезерные станки, рубанки, плитки резаки и отвертки были лидерами продаж на онлайн-рынках.Популярный электроинструменты, такие как мойки высокого давления, фрезерные станки, строгальные станки, плиткорезы и отвертки были лидерами продаж. Эйгон, Эндико, Йош, Тапария, Юрий и Ruhi занимает центральное место в области электроинструментов.

Высококачественная промышленная защитная обувь по привлекательным ценам.

Магазин промышленной защитной обуви по выгодным ценам в Интернете. На своей платформе онлайн-магазины продают все виды защитной обуви. Вы можете получить обувь из ПВХ, защитную обувь со стальным носком, резиновые сапоги, обувь из полиуретана на подошве, плюсневую кость обувь, нескользящая и электрическая защитная обувь по бесконкурентным ценам в Интернете.Получать Allen Cooper, защитная обувь со стальным носком Tiger Lorex, JCB, Bata, Karam, Stanley, Acme Шторм и защитная обувь Hillson по конкурентоспособным ценам при покупке в Интернете. Выбирать из обширного ассортимента защитной обуви для ваших сотрудников в Интернете.

Делайте покупки в Интернете для самых разных Контрольно-измерительное оборудование.

Наша торговая площадка предлагает высококачественный воздух — приборы для измерения качества скорости, автомобильные испытания, испытания материалов, электронные и стендовые испытания, испытания электроэнергии, давление-вакуум измерительные приборы, приборы для измерения температуры-влажности и компоновка измерительные инструменты на своей торговой онлайн-платформе по доступным ценам.Купить Мультиметры Fluke, инфракрасные термометры, светодиодные светомеры Fluke, Mitutoyo штангенциркуль с нониусом, цифровые штангенциркули Mitutoyo, тестеры изоляции Waco, Waco цифровые токоизмерительные клещи и цифровые термометры Mextech по лучшим ценам в Интернете.

Купить сельское хозяйство, сад и Инструменты для ландшафтного дизайна онлайн по лучшим ценам.

С широким ассортиментом воздуходувок, щеток и соломы резаки, газонокосилки и т. д. и другое оборудование, мы предлагаем все подлинное качество Сельскохозяйственный, садовый и ландшафтный инвентарь вам по лучшим ценам.онлайн платформы предлагают все ведущие бренды, такие как Makita, Bosch, Dongcheng, Ferm, Lu Shyong, Josch, Kisankraft, Keyul и т. Д., Чтобы помочь вам выбрать лучшие инструменты для твои нужды. Приобретите ручные лопаты, кусторезы, опрыскиватели и множество щеток. аксессуары для резаков по конкурентоспособным ценам в Интернете.

Предлагает широкий спектр индивидуальных решений для корпоративных подарков онлайн.

Мы делаем корпоративные подарки легкими для вас. Получить эстетично разработанные и индивидуальные решения для подарков в Интернете.Делайте покупки в Интернете для персонализированных корпоративные подарки, подарки премиум-класса и рекламные товары. Предлагаем привлекательные скидки на оптовые заказы и годовые контракты. Воспользуйтесь потрясающими скидками на дарить решения покупками в Интернете.

Приобретайте светодиодные фонари и лампы по привлекательным ценам в Интернете.

Выберите из широкого спектра вариантов светодиодного освещения от такие бренды, как Bajaj, Wipro, Syska, Havells и многие другие на нашем сайте рынок. Сэкономьте на счетах за электроэнергию, переключившись на светодиодное освещение.Получать лучшее освещение для ваших домов, офисов и рабочих зон, сделав выбор в пользу качества Светодиодные фонари и лампы. Приобретайте светодиодные лампы по самым выгодным ценам в Интернете.

Покупайте самые качественные офисные принадлежности в Интернете.

Предлагаем качественные канцелярские товары по оптовым ценам. Добраться до выберите из широкого ассортимента канцелярских товаров от Linc, Canon, Pearl, Casio, HP, Reynolds Epson, Kores, JK, Natraj, Luxor по привлекательным ценам только на Шакедил. Файлы, папки, держатели документов, блокноты, ручки и множество других предметы первой необходимости доступны по бесконкурентным ценам.Выберите предпочтительный для Индии Партнер по закупкам для ваших нужд канцелярских товаров.

Купите в Интернете оригинальные подшипники по экономичным ценам

Предлагаем вам широкий ассортимент подшипников по оптимальным ценам. Выбирайте из превосходного ассортимента радиально-упорных подшипников, шариковых подшипников, игольчатые роликоподшипники, сферические роликоподшипники, упорные роликовые подшипники, конические роликоподшипники и роликоподшипники drac онлайн. Получите интересные предложения на подшипники таких марок, как NBC, SKF и FAG.Самыми продаваемыми подшипниками являются шарики NBC. подшипник 6203zzm, FAG 509043 и SKF 30205 J2 / Q.

Выбирайте из обширной коллекции недорогих клеи, герметики и ленты онлайн.

Наша онлайн-торговая площадка предлагает клеи, герметики и ленты по экономичным ценам. Вы можете выбрать из огромной коллекции февикола, аралдита. и клеи Camlin по доступным ценам на нашей торговой площадке. Покупка клея, связующие вещества, стандартные эпоксидные клеи, клеи на основе синтетических смол, стены штукатурки и шпаклевки по выгодным ценам.Некоторые самые продаваемые клеи: Camlin -150 мл Kokuyo, Pidilite -0,5 г Fevikwik Instant Adhesive, Pidilite — 100 г февикола, пидилита -22 г Fevi Bond, Camlin -25 г клея Krafty с Трубка аппликатора, Kores-Glue Stick, Faber Castell — 15 грамм Коробка по 20 штук Клей-карандаш.

Эксклюзивная коллекция уборочного оборудования, доступная онлайн.

Лучшая коллекция промышленного клинингового оборудования на захватывающей цены на нашей платформе растут. На онлайн-платформах размещены все ведущие такие бренды уборочного оборудования, как 3M, Karcher, Bosch и Hitachi на своем Платформа.Выбирайте из ассортимента аппаратов для мытья под давлением, швабр, пылесосов и промышленный скруббер. Некоторые из самых продаваемых чистящих средств: Cumi CCW 90 — 90. Барная машина для мойки автомобилей, Karcher WD 1 — Пылесос для влажной и сухой уборки 15 л, Schevaran — 5 Дезинфицирующее средство для мытья полов без зародышей, Fem — Ручная стирка 5 литров, Venus Безопасность — Универсальная Vsorb Pad серого цвета и т. Д.

Делайте покупки в Интернете для всех ваших погрузочно-разгрузочных работ и упаковки потребности.

Положите все свои заботы о транспортировке материалов и упаковке.Купить качественные упаковочные материалы по сниженным ценам на нашей платформе. Выберите из широкий ассортимент подъемников, тележек, тележек, штабелеукладчиков, стеллажей, ящиков, лестницы, гофрированная бумага, стрейч-пленка, стропы, храповые ремни, термоколь, пузырчатая пленка и гофроящики по экономичным ценам. Некоторые популярные модели ящиков: Aristoplast 5436295 CL — 48 литров General Crate и Supreme. SCL 302010 — Полностью закрытый ящик объемом 4 литра 300×200.

Выбирайте онлайн-покупку оригинальных ручных инструментов

Заходите на нашу онлайн-торговую площадку для покупки качественных ручных инструментов. и аксессуары по привлекательным ценам.Гаечные ключи, гаечные ключи, отвертки и молотки доступны в Интернете. Выберите в Интернете свои любимые бренды ручного инструмента. Некоторые популярными моделями ручных инструментов являются Taparia toolbox ptb 16, Taparia 1005 universal. набор инструментов, набор инструментов Taparia 1021-home, Kisankraft kk atp 9210 — 2,4 метра телескопический секатор для деревьев, Taparia t-8 — отвертка torx 75 мм, Stanley 70-964e — Набор комбинированных ключей на 12 шт. И насос для консистентной смазки ведра Venus.

Магазин всех видов сварочного инструмента по доступным ценам. онлайн.

Выбирайте из широкого ассортимента сварочных аппаратов, сварочной проволоки, сварочные электроды, флюсы, паяльные инструменты, сварочные завесы, экраны, газовые аксессуары для резки и сварки на нашей платформе. Купить качественную дуговую сварку аппараты, аппараты для сварки MIG, аппараты для точечной сварки и аппараты для сварки TIG по сниженным ценам онлайн. Интернет-магазины содержат все виды углеродистой стали. электроды, чугунные электроды, режущие электроды из легированных сплавов, низколегированные электроды, электроды из низкоуглеродистой стали и электроды из нержавеющей стали по оптовым ценам.Приобретайте сварочные электроды ведущих производителей, таких как Sun weld, Superon и Адор.

Купите двигатель и силовое оборудование в лучшем случае онлайн Цены

Вы можете выбирать из широкого диапазона двигателей и мощности варианты трансмиссии по разумным ценам на нашем онлайн-рынке. Существование Ведущая в Индии онлайн-площадка B2B, на которой размещены все типы ремней, звездочек, цепи и моторы по сниженным ценам. Однофазные и трехфазные двигатели от Sona доступны по оптовым ценам.Приобретите стандартные роликовые цепи от Renold по адресу лучшие цены. Renold DR 1278 — 12,70×7,85 мм, дуплексная цепь длиной 1 метр и

Renold TR 1911 — 19,05×11,70 мм, триплексная цепь длиной 1 метр популярные модели роликовых цепей. Купить целый ассортимент классических ремней, ремней FHP, Ремни с подшивкой, шестиугольные ремни, узкие ремни и ремни для ткацких станков по лучшим ценам на интернет-площадках.

Получите отличные предложения по оптовым закупкам и контрактам с годовой процентной ставкой (ARC)

Получите гарантированные поставки промышленных товаров и товаров ТОиР по конкурентоспособным ценам. цены, выбирая наши предложения оптовых закупок и годовых контрактов.Положить ваши Управление запасами заботится о том, чтобы успокоиться и довериться ведущей B2B-площадке Индии для предоставление вам материалов самого высокого качества по доступным ценам. Бизнесы могут оптимизировать свою рентабельность, закупая расходные материалы по доступным ценам с помощь в контрактах на годовую ставку. ARC могут помочь предприятиям снизить цену проблемы с колебаниями.

Наиболее предпочтительный в Индии партнер по закупкам товаров для бизнеса и ТОиР через Интернет.

Shakedeal верит в предоставление лучших услуг и покупок. опыт для своих клиентов.Получите эксклюзивные цены на все ведущие бренды онлайн. Воспользуйтесь лучшими услугами нашей дилерской и дистрибьюторской сети в Пан Индии. города, включая Национальный столичный регион Дели, Ахмадабад, Бангалор, Калькутту, Ченнаи, Мумбаи и Хайдарабад.

Определение показателей преломления и линейных коэффициентов теплового расширения для разработки атермального стекла

[1] Дж.С. Сангера и И. Д. Аггарвал: Инфракрасная волоконная оптика, CRC Press, (1998), 40.

[2] Р. Д. Шеннон, Acta Cryst. А32, (1976), 751.

[3] Кешишян Т.Н., Питерских С.Е., Файнберг Э.А.: Неорг. Матер., 10 (1974), 2205-2209.

[4] Т.Яги: докторская диссертация, Токийский технологический институт, (2002), 66.

[5] Л. Полинг: Учеб. Рой. Soc. А, 114 (1927), 181.

[6] П. К. Шульц: J. Am. Ceram. Soc., 59 (1976), 214-219.

поставщиков тонированной пленки для окон Лучшее руководство по атермальной и тонированной пленке

2020-12-23

Athermal vs обычная умная пленка: в чем разница?

Несмотря на то, что большинство автомобилей имеют заводскую тонировку, многие автовладельцы отдают предпочтение старой доброй тонировочной пленке.Это связано с тем, чтобы персонализировать автомобиль и минимизировать возможность осмотра салона автомобиля изнутри. Как выбрать поставщиков тонировочной пленки для окон ? Давайте разберемся.

На что следует обратить внимание при выборе поставщиков тонировочной пленки для окон?
1. Производитель.
Сегодня очень легко потеряться в море производителей и брендов, но еще можно разобраться. Одним из критериев, влияющих на решение, по-прежнему остается цена и страна производства.

Тонировка снимается по ряду причин:

Плохая видимость в темноте, замена тонировки на самую обычную, процент светопропускания не проходит по ГОСТу.

Как правило, самый простой способ удалить тонировку с автомобиля — это специализированная услуга. К тому же процесс быстрый и совсем не дорогой. Если вы заменяете тонировочную пленку, велики шансы, что старая пленка будет снята для вас бесплатно.
Если вы хотите сделать это самостоятельно, то вот пошаговая инструкция, как это сделать:

Вам понадобится:
— строительный фен (можно использовать дома)
— лезвие
— чистая тряпка
— моющее средство
Как удалить тонировочную пленку с окон?

Приступим!

1.Удалите оттенок.
В основном вам понадобится острое лезвие. Точно так же нужно аккуратно поддеть край пленки, чтобы вам было удобно за нее ухватиться. Далее пленку держим плотно и ровными движениями натягиваем сверху вниз, стараясь снять сплошным листом. Лучше спросить у ближайшего поставщика тонировочной пленки для окон , прежде чем снимать ее.

Здесь есть 2 подводных камня.

1) Тонировка очень старая.
2) Тонировка дешевая и не качественная.
В этих случаях он может порваться, стать очень хрупким и т. Д. В такой ситуации вам не обойтись без фена. Стеклянную поверхность нагреваем примерно до 40 градусов (на строительном фене выставляем минимальную температуру, дома максимальную) на расстоянии 10 см от поверхности. Как и в предыдущем варианте, нам понадобится клинок. Подденьте край уже нагретой пленки, медленно потяните по диагонали вниз и вверх (чтобы не порвалась).

Почему медленно?

а) Чтобы пленку не порвать.
б) Чтобы минимизировать остатки клея на стекле.
Есть другой способ. Берем моющее средство и делаем мыльный раствор (30 мл моющего средства на литр воды). Полученный раствор перелить в пульверизатор, затем обычные манипуляции с лезвием. Поддев край пленки, налейте мыльный раствор между тонировкой и стеклом и аккуратно потяните пленку.

  1. Удалить остатки клеящейся оконной пленки.
    Даже если вы все сделали правильно, и пленка быстро сдалась до вашего давления, все равно останутся остатки клея.Очистка, клей — довольно долгий и кропотливый процесс, но это очень сильно влияет на конечный результат. Поэтому первое, что нужно попробовать, это смыть клей. Было бы лучше, если бы вы обратились за помощью к профессиональным поставщикам тонировочной пленки .

Обычно берем влажную тряпку и прикладываем к местам скопления клея, пропитываем. Затем со средним давлением стираем. Использовать для этих целей скребок не рекомендуется, высока вероятность повредить (поцарапать) стекло.

Поставщики атермального стекла или тонировочной пленки для окон?

Все больше и больше поставщиков тонировочной пленки начали включать в свои автомобильные линейки атермальные лобовые стекла. Чаще всего такие очки можно встретить у Audi, BMW, Mercedes-Benz, Porsche, Rolls-Royce, Volkswagen, Volvo.

Впоследствии на многие марки автомобилей можно заказать атермальное стекло и заменить обычное. Но, увы, такое стекло выпускается не для всех моделей и марок автомобилей. .

Давайте посмотрим на различия и сходства.
Что такое атермальное стекло?
Атермальное стекло — это стекло, прошедшее специальную обработку на заводе. На него приходит покрытие, содержащее ионы серебра. Это сделано для улучшения энергосберегающих свойств. Процесс довольно кропотливый, но именно так стекло приобретает атермические свойства. Отсюда и цена, в среднем атермальное лобовое стекло стоит в 1,5 — 3 раза дороже обычного.

Как отличить атермальное стекло от обычной оконной тонировочной пленки?
1. Атермальное стекло имеет специальное

Маркировка: — ТОНИРОВАННАЯ — поставщики тонировочной пленки для окон стекло имеет зеленоватый оттенок.Этот штамп наносится на стекло, светопропускание которого составляет 81%.
— ПЕРЕКРЫТИЕ — Здесь ярко выраженный зеленый оттенок, в отличие от предыдущего. Коэффициент пропускания света 78,5%

  1. Атермальное стекло имеет другой оттенок.

    В зависимости от технологии производства оттенки могут быть следующих цветов: зелено-синий, коричневый, фиолетовый.
    Самый надежный способ распознать подделку — сравнить стекло и его тень.Если тень темнее самого стекла, то оно действительно атермальное.

Атермальная пленка
Такая пленка предназначена не для затемнения стекла, а для защиты от солнечной энергии и ультрафиолетового излучения. Более того, он поставляется с инновационным материалом, состоящим из более чем 200 слоев, каждый из которых отвечает за определенный процент блокировки УФ и солнечной энергии.

Плюсы и минусы атермальной пленки и стекла

Чем полезны эти материалы на практике?
  • Предотвратить проникновение солнечной энергии в салон автомобиля
  • Уменьшена нагрузка на кондиционер (климат-контроль) и более экономичен расход топлива.
  • Я минимизирую количество бликов на стекле, тем самым уменьшая нагрузку на глаза водителя
  • Предотвратить выцветание салона автомобиля
  • Повышенная прочность по сравнению с обычным стеклом.

Так в чем же разница между атермальным стеклом и атермальной тонировочной пленкой?

Основное различие заключается в степени эффективности оконных тонировочных пленок и поставщиков . Атермальное стекло поглощает до 50% солнечной энергии и инфракрасного излучения. Точно так же атермальная пленка блокирует до 93% солнечной энергии и 99% инфракрасного излучения.

Можно сделать вывод, что атермальное стекло выглядит лучше эстетически, но по защитным качествам уступает материалу нового поколения. Если он у вас установлен производителем априори, ничего страшного! Если нет, то с установкой атермальной тонировочной пленки проблем нет.

Зачем покрывать машину виниловой пленкой?

Во-первых, это дает вам безграничные возможности для экспериментов с цветом вашего железного друга. Есть возможность разработать собственный уникальный дизайн и выделиться из серой массы.Также никто не отменял рекламные цели, брендирование автомобилей или создание собственных стикеров. Кроме всего прочего, обертывание винилом намного дешевле, чем покраска автомобиля.

Поставщики оконных тонировочных пленок Заключение
Срок службы пленок на основе ПВХ напрямую зависит от качества самой пленки, но не рекомендуется держать их на теле более 3-х лет, так как клей становится стойким.

У вас просто не получится удалить остатки пленки в местах, где она «запеклась» на кузове + не исключено повреждение лакокрасочного покрытия.
Поскольку винил устойчив к ультрафиолетовому излучению, некоторые поставщики тонировочной пленки для окон экспериментируют с дизайном, что может иметь последствия.

Предыдущая: Как поставщики оконной пленки устанавливают Blasted Privacy Glass?

Далее: поставщики оконных тонировщиков: 6 лучших оконных пленок для оконных оттенков, которые можно купить в 2021 году

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.