28Июл

Чертеж сцепления: Чертеж сцепления автомобиля ВАЗ-2106 — Чертежи, 3D Модели, Проекты, Автомобили и автомобильное хозяйство (Автосервис)

Содержание

Устройство механизма сцепления автомобиля: диск сцепления, корзина сцепления

Сцепление – механическое устройство, передающее крутящий момент с двигателя на МКПП (механическую коробку переключения передач) основанное на силе трения скольжения и способное кратковременно прерывать передачу крутящего момента от двигателя к МКПП.

Основными элементами сцепления являются:

Маховик.
Корзина сцепления (ведущий диск или нажимной диск).
Диск сцепления (ведомый диск).

Детали привода сцепления:

Педаль сцепления.
Усилие от нажатия педали сцепления на корзину сцепления может передаваться различными способами:
гидравлический привод (имеется главный цилиндр сцепления, шланг или трубка сцепления, рабочий цилиндр сцепления, вилка сцепления, выжимной подшипник). На некоторых автомобилях имеется вакуумный усилитель сцепления, а иногда рабочий цилиндр сцепления совмещен с выжимным подшипником, а вилка сцепления отсутствует.
механический привод

предусматривает передачу механического усилия от педали к вилке посредством тросиков либо системы рычагов.
пневматический привод (включает в себя практически те же элементы, что и гидравлический привод, только рабочим телом в системе служит не тормозная жидкость, а сжатый воздух).
электромеханический привод (имеется датчик положения педали сцепления, электронный блок управления, актуатор (соленоид, электромагнит) привода вилки).
комбинированные системы (сочетают элементы нескольких систем).

Классификация

По числу ведомых дисков:
— однодисковые (самый распространённый тип сцепления).
— двухдисковые (используются на больших грузовиках, спецтехнике, спортивных автомобилях).
— многодисковые (мототехника, спецтехника).

По способу управления:
— механическое (используется на малолитражных автомобилях или очень старых автомобилях).
— гидравлическое (самый распространённый вариант).

— пневматическое (используется на больших грузовиках и спецтехнике).
— электрическое (часто встречается на современных автомобилях с роботизированной коробкой).
— комбинированные системы.

По виду трения:
— сухие (самый распространённый тип)
— масляные (мототехника)

Устройство.

Маховик.

Маховик представляет собой массивный металлический диск. В центре диска имеется несколько циркулярно расположенных отверстий, предназначенных для крепления маховика к коленвалу. В центре маховика имеется отверстие для подшипника или втулки маховика. В этот подшипник вставляется свободный конец первичного вала МКПП. По периметру маховика закреплено зубчатое кольцо – венец. Венец необходим для сочленения бендикса стартера с маховиком коленвала.

Корзина сцепления (ведущий диск или нажимной диск)

Выделяют два основных типа конструкций корзин сцепления:
1. Корзины сцепления с диафрагмальной пружиной
1.1. Прямого отжима.

1.2. Обратного отжима.
2. Корзины сцепления пружинно-рычажного типа

Основными элементами корзин с диафрагмальной пружиной являются:
— Нажимной диск (представляет собой массивный стальной диск одна поверхность которого гладкая и предназначена для контакта фрикционной накладкой ведомого диска сцепления, а другая поверхность неровная и имеет различные выступы и углубления и предназначена для сочленения с кожухом корзины).
— Диафрагменная пружина (представляет собой стальной диск, имеющий форму усечённого конуса.) В центре диска выполнено отверстие от которого радиально расходятся прорези, образуя, таким образом, лепестки являющиеся выжимными рычагами. При надавливании выжимного подшипника на концы лепестков диафрагменной пружины (если корзина сцепления прямого отжима) происходит перемещение наружного края диафрагменной пружины в обратном направлении в результате чего перемещается прижимной диск, давление его на ведомый диск уменьшается и сцепление выключается.

— Кожух корзины (представляет собой, диск из толстой листовой стали сложной формы). Корпус корзины скрепляет все элементы корзины воедино.
Корзины с диафрагменной пружиной устанавливаются на большинство автомобилей, так как такая конструкция является оптимальной по соотношению цена-качество, не требует дополнительных регулировок при ремонте.

Основными элементами пружинно рычажных корзин являются:
Нажимной диск (описание см. выше) Особенностью является наличие выступов в пазах которых на осях размещены рычаги выключения сцепления. Рычаги скреплены с кожухом корзины опорными вилками. На концах рычагов закреплено упорное кольцо в которое упирается выжимной подшипник. При надавливании выжимного подшипника на упорное кольцо (если корзина сцепления прямого отжима) происходит перемещение рычагов, вместе с ними перемещается нажимной диск, его давление на ведомый диск уменьшается и сцепление выключается.
Кожух корзины

(описание см. выше). Отличием кожуха пружинно рычажных корзин является наличие циркулярно расположенных проштампованных отверстий для крепежа цилиндрических пружин, опорных вилок, анкерных болтов.
Цилиндрические пружины – располагаются между нажимным диском и кожухом корзины.

Признаки неисправности сцепления, основы диагностики причин поломки, ремонт и профилактика

I. Отсутствие сцепления, либо недостаточное сцепление (двигатель работает, а машина не едет, либо не развивает достаточную тягу при ускорении либо при увеличении нагрузки).
Возможные неисправности:
А). Поломка пластинчатых пружин ведомого диска.
Причины:
— повреждение ведомого диска при монтаже МКПП.
— несоосность оси двигателя и МКПП.
— повреждение подшипника коленвала
— агрессивная езда.
Ремонт:
— замена ведомого диска.
— устранение причин его поломки.
Профилактика:
— замену сцепления проводить только в квалифицированных автосервисах.
— правильная эксплуатация автомобиля (правильный выбор передачи, правильный отжим сцепления).

Б). Поломка крышки демпфера ведомого диска.
Причины:
— установка бракованного диска.
— неправильное направление установки диска.
Ремонт:
— замена ведомого диска.
Профилактика:
— замену сцепления проводить только в квалифицированных автосервисах.
В). Повреждение фрикционных накладок.
Причины:
— превышение допустимой нагрузки.
— неисправность элементов управления сцеплением.
— агрессивная езда.
Ремонт:
— замена ведомого диска.
— устранение причин его поломки.
Профилактика:
— правильная эксплуатация автомобиля (правильный выбор передачи, правильный отжим сцепления).

II. Шум.
А). Повреждение крышки демпфера в области пружины.
Причины:
— агрессивная езда.
Ремонт:
— замена ведомого диска.
Профилактика:
— правильная эксплуатация автомобиля (правильный выбор передачи, правильный отжим сцепления).
Б). Износ выжимного подшипника или подшипника маховика.

Причины:
— превышение регламентного пробега.
— несоосность оси двигателя и МКПП.
Ремонт:
— замена выжимного подшипника или подшипника маховика.
— устранение причин несоосности.
Профилактика:
— своевременно проводить регламентную замену элементов сцепления и только в квалифицированных автосервисах.
В). Выпадение демпферной пружины.
Причины:
— использование нештатных элементов сцепления с несоответствующими размерами.
— чрезмерный ход выжимного подшипника.
— неправильное направление установки диска.
Ремонт:
— замена ведомого диска.
— настройка системы управления сцеплением.
— устранение причин его поломки.
Профилактика:
— замену сцепления проводить только в квалифицированных автосервисах с использованием подходящих деталей.
Г). Повреждение (износ) шлицов на ступице ведомого диска и (или) первичном валу МКПП.
Причины:
— использование нештатного ведомого диска с несоответствующими размерами шлицов ступицы.
— коррозия.
Ремонт:
— замена ведомого диска.
— замена первичного вала МКПП.
Профилактика:
— замену сцепления проводить только в квалифицированных автосервисах с использованием подходящих деталей.
— своевременное техобслуживание (замена пыльника вилки сцепления, смазка шлицевого соединения).

III. Пробуксовка сцепления и вибрация.
А). Подгоревшие фрикционные накладки.
Причины:
— загрязнение деталей сцепления смазкой.
Ремонт:
— замена ведомого диска.
— обнаружение и ликвидация протечек масла.
Профилактика:
— недопущение загрязнения деталей сцепления смазкой.
— своевременное техобслуживание (регламентная замена сальников).
Б). Деформация ведомого диска сцепления.
Причины:
— механические повреждения диска, возникшие при транспортировке, складировании или монтаже.
— температурная деформация (быстрое охлаждение после сильного нагрева).
Ремонт:
— замена ведомого диска.
Профилактика:

— использовать только целые детали.
— осмотр деталей при покупке.
— соблюдение правил хранения и транспортировки.
В). Полный износ фрикционных дисков.
Причины:
— превышение регламентного пробега.
— длительная пробуксовка сцепления из-за постоянной чрезмерной нагрузки, либо не отрегулированного привода сцепления.
— износ маховика, либо корзины.
Ремонт:
— замена ведомого диска.
Профилактика:
— своевременно проводить регламентную замену элементов сцепления и регулировку привода сцепления в квалифицированных автосервисах.
— эксплуатация автомобиля в штатном режиме.

IV. Неполное выключение сцепления (сцепление “ведёт”), трудности при переключении передач (передача не включается, лязг шестеренок).
Причины:
— повреждение шлицевой на ступице диска и/или первичном валу.
— деформация корпуса корзины.
— повреждение тангенциальных пластинчатых пружин (использование неподходящей корзины, неправильное переключение передач, например с 5 на 1).

— неисправность подшипника маховика.
— увеличенный свободный ход педали сцепления.
Ремонт:
— замена неисправных деталей.
— отрегулировать привод сцепления.
Профилактика:
— эксплуатация автомобиля в штатном режиме.
— своевременное техобслуживание (регламентная замена сальников).

Общие рекомендации

1. Перед установкой деталей сцепления убедитесь, что они подходящие.
2. Убедитесь, что шлицевая диска и первичного вала в исправном состоянии и достаточно смазана.
3. Не прикасайтесь к деталям сцепления грязными руками.
4. Не вставляйте первичный вал в диск сцепления с чрезмерным усилием.
5. Не допускайте попадания воды на детали сцепления.
6. При монтаже корзины сцепления болты должны затягиваться в определённом порядке и с определённым усилием.
7. Желательно менять одновременно диск и корзину.
8. Установку деталей сцепления доверять только квалифицированным специалистам.
9. Устанавливать детали сцепления согласно каталогам.

10. Штатные детали сцепления рассчитаны на штатный режим эксплуатации.

Схема сцепления и его привода

Рис. 5.1. Сцепление и его привод:

1 — картер сцепления;

2 — вилка выключения сцепления;

3 — подшипник выключения сцепления;

4 — болт крепления кожуха сцепления;

5 — кожух сцепления;

6 — ведомый диск сцепления;

7, 33 — трубопроводы;

8 — шланг;

9 — стопорная пластина;

10 — кронштейн педали выключения сцепления;

11 — болт;

12 — ось педали выключения сцепления;

13,14 — гайки;

15 — внутренняя втулка;

16 — возвратная пружина;

17 — наружная втулка педали;

18 — педаль сцепления;

19 — внутренняя втулка педали;

20 — пружинная шайба;

21 — гайка оси педали;

22 — шайба;

23 — ось толкателя;

24 — толкатель;

25 — демпфер;

26 — стопорное кольцо;

27 — поршень;

28 — корпус главного цилиндра гидропривода выключения сцепления;

29 — хомут;

30 — бачок гидропривода выключения сцепления;

31 — крышка;

32 — рабочий цилиндр гидропривода выключения сцепления;

34 — клапан для удаления воздуха;

35 – толкатель.

Примечание:

Так выглядит регулировочный узел педали сцепления: 1 — болт; 2 — упор педали; 3 — гайка

4. …ослабьте на педальном узле затяжку контргайки ключом 1 и вращением болта ключом 2 добейтесь требуемого значения полного хода педали.

Предупреждение:

При регулировке полного хода педали следите за тем, чтобы толкатель не смещался в сторону главного цилиндра привода сцепления.

5. Для того чтобы определить свободный ход педали сцепления, измерьте расстояние от начального положения педали до положения, в котором при нажатии рукой на педаль ощущается увеличение сопротивления. Номинальный свободный ход педали сцепления 6-13 мм. Если свободный ход не соответствует номинальному значению, отрегулируйте длину толкателя главного цилиндра привода выключения сцепления.

6. Удерживая ключом лыску 2 на толкателе главного цилиндра выключения сцепления, вторым ключом ослабьте затяжку контргайки 1.

Примечание:

Для наглядности регулировка длины толкателя показана на снятом главном цилиндре привода выключения сцепления. Снимать главный цилиндр не нужно.

7. Вращая толкатель за лыску (показана стрелкой), отрегулируйте свободный ход педали (для наглядности рулевой вал снят).

Примечание:

Если свободный ход педали сцепления не соответствует норме, то, возможно, в гидропривод выключения сцепления попал воздух или неисправен главный цилиндр.

8. Затяните контргайку.

Всё про рабочий цилиндр сцепления

В системе гидравлического сцепления устанавливаются 2 цилиндра, обеспечивающих эффективную передачу усилия от педали к вилке выключения сцепления. Главный цилиндр повышает давление в гидроприводе при нажатии педали, а рабочий цилиндр передает это усилие уже непосредственно на само сцепление.

 

Конструкция, принцип работы

В гидроприводе сцепления рабочий цилиндр установлен непосредственно перед вилкой выключения сцепления, и его шток приводит ее в движение.

Благодаря такой конструкции привод работает одинаково эффективно вне зависимости от конфигурации и длины гидравлических шлангов.

Рабочий цилиндр сцепления имеет достаточно простую конструкцию:

Рабочий цилиндр сцепления.
1. Корпус. 2. Штуцер. 3. Колпачок. 4. Толкатель.
5, 7. Уплотнительные кольца. 6. Поршень. 8. Тарелка.
9. Пружина. 10. Шайба. 11. Стопорное кольцо.

Рабочий цилиндр подключается к гидроприводу через штуцер, и при повышении давления жидкость толкает вперед поршень с присоединенным к нему штоком толкателя. Толкатель, в свою очередь, нажимает на вилку выключения сцепления. Когда водитель отпускает сцепление, давление в гидроприводе падает и поршни главного и рабочего цилиндров, а также педаль и вилка сцепления возвращаются в исходное положение за счет пружин.

Несмотря на простоту, рабочие цилиндры могут иметь некоторые особенности конструкции. Например, для автомобилей Ford Focus, SsangYong и некоторых других моделей рабочий цилиндр конструктивно объединен с выжимным подшипником.

Выжимной подшипник с рабочим цилиндром

Штуцер подключения к гидроприводу может располагаться прямо или под углом.

Материалы изготовления рабочих цилиндров – алюминий и различные сорта чугуна. Преимущества чугуна – большая твердость по сравнению с алюминием, а значит, большая износостойкость. Алюминий лучше отводит тепло и меньше весит.

 

Эксплуатация

Благодаря простой конструкции рабочий цилиндр сцепления достаточно долговечный и не подвержен поломкам. Основные неисправности связаны с износом резиновых уплотнителей, которые портятся от нагрузок, воздействия низких температур и тормозной жидкости. Если поврежденные уплотнители вовремя не заменить, попавшая внутрь пыль и грязь повредит зеркало цилиндра, после чего тормозная жидкость, используемая в гидроприводе, просачивается по микроцарапинам наружу, даже если установить новые хомуты. В связи с этим рабочий цилиндр желательно осматривать при каждом ТО, и при появлении потеков либо чинить, либо менять на новый.

Ремкомплект рабочего цилиндра включает необходимые сменные детали для каждой конкретной модели: пыльники, уплотнители, стопорное кольцо, а в некоторых наборах может быть запасная возвратная пружина, поршень, шток.

Вариант ремкомплекта

Нормально работающий цилиндр сцепления никак себя не проявляет и никаких особых мер предосторожности не требует. Замена его делается достаточно просто и быстро. Определенного регламента замены нет, рабочий цилиндр будет служить столько, сколько позволит его технический резерв, как правило, не менее 150 тыс. км.

 

Признаки неисправности

Когда неисправен рабочий цилиндр, начинает некорректно работать сцепление:

  • при нажатии на педаль слышен скрип;
  • неточно включаются передачи;
  • педаль сцепления слишком мягкая, слишком жесткая или проваливается;
  • верхняя точка педали сцепления постепенно снижается;
  • падает уровень жидкости в гидроприводе;
  • появляются потеки на рабочем цилиндре.

Все эти признаки (кроме последнего) могут указывать и на другие неисправности, и точно определить причину можно на СТО. Если поврежден корпус или зеркало цилиндра, придется менять его полностью.

Продлить жизнь рабочему цилиндру сцепления можно при регулярных осмотрах: некоторые неисправности поначалу никак не проявляются, и выявить порванный пыльник можно только визуально. Это особенно актуально для владельцев автомобилей с новейшим электро-гидравлическим сцеплением, в которых используются не самые дешевые детали. Проще и выгодней заменить ремкомплект и ездить без проблем.

Грязь под защитным пыльником

При замене или ремонте цилиндра делается и замена тормозной жидкости в гидроприводе: со временем она теряет свои свойства, накапливает влагу и вызывает коррозию металлических и резиновых деталей. Простейшая замена расходников позволяет намного продлить ресурс всех важных узлов автомобиля, в том числе и деталей привода сцепления.

 

О том, как выбирать рабочий цилиндр сцепления и на что обращать внимание, читайте наш «Гид покупателя».

 

 

Электромагнитное сцепление, порошковое электромагнитное сцепление автомобилей. Устройство, конструкция, схема и принцип работы. Особенности

Электромагнитным называется сцепление, в котором сжатие ведущих и ведомых деталей осуществляется электромагнитными силами. Электромагнитные сцепления являются постоянно разомкнутыми.

Схема электромагнитного фрикционного сцепления представлена на схеме 1. Нажимной диск 2 соединен пальцами с диском 4, в котором находится электромагнит 8. К электромагниту подводится ток от генератора через щетки 7 и контактные кольца 5. Якорь электромагнита закреплен на кожухе 1 сцепления, который связан с маховиком 11 двигателя.

Схема 1 – Электромагнитное фрикционное сцепление

1 – кожух; 2 – нажимной диск; 3 – якорь; 4 – диск; 5 – кольцо; 6 – муфта; 7 – щетки; 8 – электромагнит; 9 – пружина; 10 – ведомый диск; 11 – маховик

При малой частоте вращения коленчатого вала двигателя сцепление выключено пружинами 9. При увеличении частоты вращения коленчатого вала подводимый ток к электромагниту создает магнитное поле и электромагнит притягивается к якорю. Вместе с электромагнитом перемещается нажимной диск 2, который прижимает ведомый диск 10 к маховику 11 двигателя, и сцепление выключается.

При переключении передач сцепление выключается устройством, которое находится в рычаге переключения передач и прерывает поступление тока в электромагнит.

Муфта 6 предназначена для блокировки сцепления при пуске двигателя буксированием автомобиля.

Порошковое электромагнитное сцепление

Электромагнитное порошковое сцепление представлено на схеме 2. Ведущими деталями сцепления являются маховик 1 двигателя и магнитопроводы 2, прикрепленные к маховику болтами, ведомыми частями – диски 8 из немагнитного материала, приклепанные к ступице, установленной на шлицах первичного вала коробки передач.

Схема 2 – Устройство электромагнитного порошкового сцепления

1 – маховик; 2, 3, 6, 7 – магнитопроводы; 4 – обмотка; 5 – вывод; 8 – диск; 9 – картер;

К дискам прикреплены два магнитопровода 6 и 7. В картер 9 сцепления запрессован магнитопровод 3 с обмоткой возбуждения 4, один конец которой соединен с массой автомобиля, а другой – с выводом 5. Магнитопроводы 2, 6 и 7 разделены зазорами, которые заполнены ферромагнитным порошком (жидким или из коррозионностойкой стали), обладающими высокими магнитными свойствами.

Принцип работы

При отсутствии тока в обмотках возбуждения сцепление выключено, так как между его ведущими и ведомыми деталями отсутствует силовая связь.

При подведении тока к обмотке возбуждения создается магнитное поле. Под его действием частицы ферромагнитного порошка притягиваются друг к другу и одновременно к магнитопроводам 2, 6 и 7. В результате между ведущими и ведомыми деталями сцепления создается силовая связь, которая зависит от силы тока, поступающего в обмотку возбуждения.

При малой силе тока в обмотке возбуждения сцепление пробуксовывает, что необходимо при трогании автомобиля с места. При увеличении силы тока в обмотке возбуждения буксование сцепления уменьшается до полной блокировки ведущих и ведомых деталей, и сцепление включается.

Особенности

Электромагнитные сцепления относятся к сцеплениям с автоматическим управлением, у которых педаль сцепления на автомобиле обычно отсутствует. Такие автомобили называются автомобилями с двухпедальным управлением. Автоматическое управление сцеплением может быть обеспечено применением вакуумного, пневматического, гидравлического, электрического или комбинированного приводов.

Смотрите также

принцип работы КПП DAF, схема переключения

Эффективность транспортировок различных грузов зависит от множества факторов (габариты фуры, маршрут, оптимизация загрузки, опыт исполнителей), но одним из самых главных является исправность и надежность всех механических узлов, в особенности силовой установки и коробки передач.

КПП DAF, производимые ZF Friedrichshafen AG (AS Tronic) или непосредственно DAF, отличаются высоким качеством сборки, компактностью, отличной ремонтопригодностью, малым весом, а также, благодаря регулярному совершенствованию узлов, прогрессивной эффективностью. Такие сложные устройства обладают разными алгоритмами работы и определенными особенностями.

Устройство и принцип работы КПП ДАФ

Современные трансмиссии, применяемые в грузовиках ДАФ:

  • механические – 16 скоростей с системой прямого привода;
  • автоматизированные – 12 или 16 передач с функцией передачи мощности на гипоидный задний мост, оснащенный механизмом блокировки дифференциала.

Некоторые модели, такие как пятипозиционная гидромеханическая МКПП, могут быть изготовлены на заказ. Хоть многие и предпочитают вручную управлять трансмиссией тягача, при нынешней плотности движения автоматические модели становятся все более выгодными. Переключение скоростей КПП ДАФ по схеме: пневматические переключающие цилиндры, управляемые соленоидами, приводят в действие вилки, при помощи которых задействуются кулисы.

АКПП DAF могут дополняться коробками отбора мощности, которые передают крутящий момент на привод дополнительного оборудования, интардерами, позволяющими замедлять автомобиль без использования тормозов, сервошифтом, синхронизированными демультипликатором и делителем для обеспечения пониженного или повышенного ряда передач, картером сцепления, а также устройствами, позволяющими использовать автомат как механику.

Коробка передач DAF AS Tronic использует комбинацию автоматического сухого сцепления и электронно-пневматической коробки с кулачковыми муфтами. Конструкция состоит из главного узла, группы исполнительных механизмов, рычага, модуля расширения, переключателя режимов движения, а также дисплея для отображения всех функций. В зависимости от количества передач блок может быть трех- или четырехступенчатым.

Основные особенности эксплуатации

Такие прогрессивные узлы включают в себя несколько датчиков для контроля над различными процессами и оптимизации работы трансмиссии:

  • датчик давления;
  • сенсор перемещения;
  • датчик оборотов коленчатого и первичного вала.

Схема переключения передач ДАФ представлена двойным H либо каскадным. Переключатель (тумблер), расположенный на рычаге, позволяет выбирать быструю или медленную группу переднего делителя. Планетарные механизмы исключают деформацию валов.

Современные роботизированные 12-ступенчатые коробки передач ДАФ 105 XF обладают специальной системой, которая облегчает начало движения в гору после остановки ТС, а некоторые модели имеют 2 промежуточных вала. Синхронизация осуществляется через трансмиссионный тормоз и управление ДВС. Оперативное и легкое переключение передач на ДАФ 95 и других моделях обусловлено наличием пневматического усилителя.

Несмотря на совершенствование конструкций, во время эксплуатации детали любых коробок передач неизбежно подвергаются износу, а самые лучшие модели помимо достоинств наделены и некоторыми недостатками.

Плюсы и минусы КПП на DAF 95 и 105

Преимущества:

  • оптимальный подбор передач и существенная экономия топлива;
  • дополнительная защита от поломок и подгорания сцепления;
  • пониженная шумность функционирования и плавность начала движения;
  • удобство и простота эксплуатации в тяжелых условиях;
  • складной селектор;
  • длительный ресурс сцепления.

Недостатки:

  • проблемы с датчиками выходного вала;
  • чувствительность к качеству воздуха;
  • сложность диагностики и ремонта.

Коробки ZF заправляются специальным маслом уникальной разработки для всесезонной эксплуатации. Оптимально подобранный состав смазывающей жидкости позволяет значительно увеличивать интервал замены при езде на дальние дистанции и/или при транспортировке грузов в тяжелых климатических условиях.

Возможные проблемы и их решение

Прогрессивная электроника способна информировать водителя о неисправностях различными диагностическими кодами. Ошибки трансмиссии ДАФ выводятся на желтом (некритичные неисправности) или красном фоне (опасные поломки).

Все неисправности узла можно разделить на 4 группы:

  • электронные;
  • механические;
  • антифрикционные;
  • пневматические.

Проблемы устраняются путем дефектовки или замены деталей, промывки и очистки элементов корпуса, а также замены масла. После внесения изменений в конструкцию АКПП важно корректировать и электронный блок управления. Использование современного оборудования позволяет оперативно осуществлять диагностику, демонтаж, разборку, сборку и установку сложного узла.

При всех нововведениях и инновационных технологиях рекомендации по обслуживанию коробок переключения передач ДАФ во многом остаются стандартными: своевременно менять масло, проверять работу радиатора, не допускать длительную буксировку, избегать агрессивной езды, прогревать трансмиссию и не включать режим парковки во время движения.

Коробка передач — устройство, назначение, виды

Коробка передач или коробка переключения передач (КПП) – это один из важнейших агрегатов трансмиссии – наряду с карданным валом, сцеплением и задним ведущим мостом. Как составляющая трансмиссии КПП характерна для всех автомобилей ДВС.


Назначение и устройство

КПП предназначена для нескольких задач:
  • изменения крутящего момента,
  • изменения скорости,
  • коррекции направления движения автомобиля,
  • разъединения ДВС и трансмиссии и, напротив, их соединения (такая потребность актуальна при переключении передач, необходимости получения малых «ползучих» скоростей, кратковременной остановки транспортного средства),
  • блокировки гидротрансформатора (функция ценна для уменьшения потери полезной энергии «автомата» при передаче крутящего момента в ситуации, когда выравниваются обороты ведомой и ведущей турбин).
При этом одни КПП способны решать все эти задачи, а другие, как например, механическая, только базовые – изменение крутящего момента и скорости. Схема устройства зависит от вида КПП.

В корпусе устройства коробки передач с “механикой” объединены валы (2, 3 или более),  синхронизатор, шестерни, рычаг для переключения скоростей, проволочные кольца, подшипники, сальники.

Устройство АКПП (КПП с “автоматикой”) представляет собой узел, в который входят гидротрансформатор, планетарный ряд, фрикционы, тормозная лента, узел управления (насос + маслосборник + клапанная коробка).

В основе роботизированных коробок могут лежать как решения механического типа с электрической либо гидравлической системой управления сцеплением и передачами, так и автоматические коробки, оборудованные электрогидравлическим приводом сцепления.

На сцеплении, шестернях, валах и синхронизаторах остановимся более подробно.

Сцепление

Предназначено для передачи крутящего момента от маховика коленвала ДВС к первичному валу коробки передач.

Именно благодаря наличию сцепления двигатель на короткий промежуток времени можно аккуратно отсоединить от трансмиссии, а трансмиссию защитить от перегрузок.

Стандартная муфта сцепления большинства транспортных средств  с механической коробкой включает маховик, нажимной диск, ведомый диск, выжимной подшипник, привод, вилку и выключатель сцепления.

Один двигатель соединен с колёсами, другой — с ДВС. В момент, когда водитель отпускает педаль, диски прижимаются друг к другу и начинают совместное вращение.

Именно о классическом сцеплении как таковом чаще говорят при использовании механической коробки передач, а при езде с ДВС на АККП говорят о совмещенном решении сцепления и гидротрансформатора. Его непосредственная функция аналогична сцеплению. Но водителю не нужно совершать никаких рутинных действий и выжимать сцепление вручную. За него все будет делать сама КПП.

Что касается роботизированных решений типа DSG (с мехатроникой), то они располагают двумя сцеплениями. Наличие двух сцеплений ценно для повышения мощности транспортного средства, и при этом минимизации пробуксовок, оптимизации расхода топлива.

Ведь физически в момент переключения обороты двигателя при использовании двух сцеплений способны остаются на прежнем уровне.

На картинке ниже вы видите “поведение” сцепления в роботизированной коробке  DSG в момент после переключения на вторую передачу.

Шестерни и валы

Шестерни и валы –  главные «управляющие» крутящим моментом. Именно шестерни и валы помогают изменять передаточное отношение. Неотъемлемые элементы устройства всех механических КПП и некоторых АКПП (например, Honda).

Устройство механической коробки передач чаще всего сконструировано так, что оси валов находятся в параллельной плоскости. Сверху монтированы шестерни. 

Первичный или ведущий вал (ведвал) посредством корзины сцепления присоединен к маховику. Выступы способствуют продвижению второго диска сцепления и направления крутящего момента на промежуточный вал посредством шестерни.

Конец вторичного вала примыкает к подшипнику на хвостовике ведущего. Так как нет фиксированной связи, валы независимы, и нет препятствий для того, чтобы они вращались в разные стороны. Нет препятствий и для варьирования скоростей.

Устройство автоматической коробки передач вместо шестерён и валов предполагает планетарный редуктор. Вращаются шестерни и валы всегда как единое целое. Но конструктивно это могут быть как разные детали, так и неразборный узел.

Синхронизаторы

Синхронизаторы – неотъемлемый элемент КПП с шестернями – кроме решений со скользящими шестернями. Физически работа синхронизаторов обязана силе трения.

Функция синхронизаторов – выравнивание частоты вращения шестерен и валов, благодаря чему создаются все условия для плавного переключения скоростей. Благодаря синхронизаторам КПП меньше изнашивается и меньше шумит.

Синхронизаторы активно присутствуют у МКП и роботизированных КПП. У автомобилей с планетарными АКП альтернатива синхронизаторам – фрикционные управляющие элементы. Синхронизаторы состоят из муфты, блокировочных колец, стопорного кольца, пружины, шестерён.


Как работает стандартный синхронизатор?

  • Муфта подается в сторону шестерни.
  • Блокировочное кольцо муфты принимает на себя усилие.
  • Поверхности зубьев начинают взаимодействовать.
  • Блокировочное приобретает положение “на упор”.
  • Зубья муфты оказываются напротив зубьев блокировочного кольца.
  • Муфта оказывается в зацеплении с венцом на шестерне.
  • Муфта и шестерня блокируется.

Казалось бы шагов достаточно много, но все это происходит за доли секунд – в момент  включения водителем передачи.

Принцип работы механических коробок переключения передач

КПП с “механикой” во время работы задействуют различные комбинации зубчатых колес.

Принцип работы МКПП базируется на создании соединений между первичным и вторичным валом. Благодаря использованию шестерен с разным количеством зубьев трансмиссия подстраивается под условия на дороге, цели водителя.

При возрастании скорости вращения выходного вала МКПП по отношению к скорости вращения входного величина крутящего момента от ДВС к колёсной базе уменьшается.

При уменьшении скорости вращения выходного вала МКПП по отношению к скорости вращения входного вала величина крутящего момента, от двигателя к ведущим колесам, наоборот увеличивается.

КПП различны по количеству ступеней. Каждая ступень имеет свое передаточное число. Оно представляет собой отношение зубьев количества зубьев ведомой шестерни по отношению к числу зубьев ведущей шестерни.

У пониженной передачи – наибольшее передаточное число, а у повышенной передачи, наоборот, наименьшее передаточное число.Чем ниже передаточные числа, тем быстрее транспортное средство способно разогнаться.

При изменении передаточных чисел и скорости транспортного средства  для кратковременного отключения коробки передач применяется сцепление.

В зависимости от конструкции КПП при этом могут быть двухвальные и трехвальные. И устройство, и процесс работы агрегатов несколько отличается.


2-х-вальная коробка передач: устройство и принцип работы

Двухвальные решения очень популярны на переднеприводных авто.
Конструкция включает следующие элементы:
  • картер – несущий элемент, корпус. К нему крепятся все остальные детали устройства. Он же защищает агрегат  от внешнего воздействия, а человека – от вращающихся деталей, а также выполняет функцию хранилища для масла.
  • валы – первичный и вторичный,
  • шестерни (в блоках), часть крепится к ведущему, часть к ведомому валу,
  • шлиц (соединяет ПВ и сцепление),
  • синхронизаторы.
Важно! Главная передача и дифференциал также находятся внутри картера, но механизм переключения передач вынесен за его пределы.

Рычаг переключения – в нейтральном положении: шестерни прокручиваются, крутящий момент от ДВС не передается к колёсам.

Рычаг перемещен – муфта синхронизатора также изменяет положение. Уравниваются угловые скорости соответствующего вала и шестерни. Крутящий момент передаётся с первичного вала на вторичный. От ДВС на ведущие колеса с заданным передаточным числом .передается крутящий момент.

Отдельно на картинке показан задний ход. Для него в КПП есть задняя передача. Для коррекции направления задействуется промежуточная шестерня. Она монтируется на отдельную ось.


3-вальная КПП: устройство и принцип работы

3-х вальные решения популярны у авто с задним приводом.

Устройство:

  • Картер.
  • Ведвал.
  • Ведомый вал. Находится на одной оси с ведущим.
  • Промежуточный вал. Монтирован параллельно первичному.
  • Шестерни. Блок шестерен ведомого вала свободно вращается на нем. Блоку шестерен промежуточного и ведвала обеспечена жесткая связь, а шестерни на ведомом валу свободно вращаются, четкой фиксации нет.
  • Синхронизаторы. Стоят  на всех передачах. Благодаря шлицу беспрепятственно перемещаются в продольном направлении.
  • Механизм переключения (рычаг + ползунки + блокатор). Монтирован на картере.

Система функционирует схоже с двухвальной, но за счёт наличия промежуточного вала возможностей больше. 

Первичный вал работает в тандеме со сцеплением и отвечает за передачу крутящего момента к промежуточному валу. Все детали находятся в зацеплении. Принципиальное отличие – меньше потерь на трение при первой передачи и возможность обеспечить зацепление сразу двух пар зубчатых колёс. Соответственно у решения более высокий КПД на первой передаче.

Виды коробок переключения передач

Рассматривая устройство и назначение КПП,невозможно было не упомянуть, что они бывают разных типов: механические, автоматические, роботизированные. Кроме того, существует ещё такая подгруппа устройств как вариаторы. Рассмотрим эти КПП более подробно. 

Механические КПП

“Механика” — это классика. Для работы с “механикой” нужны навыки, понимание, как выполнять выбор передаточных чисел, но при умении управлять в ручном режиме, водитель виртуозно может подстроиться под любые условия движения.

Главное при езде на механике научиться чувствовать, когда точно переключать передачи и как достигать нужную динамику.

Впрочем, умение работать с “механикой” – это не только безупречная езда, но ещё и продление службы эксплуатации самой КПП.

Один из неудобных моментов – требуется постоянно следить за тахометром. Но это важно. ДВС работает правильно, если параметры варьируются от 2,5 до 3,5 тысяч оборотов в минуту, если цифры другие, требуется переключить передачу.

Автоматические КПП


Подбор оптимального передаточного числа осуществляется не водителем, а автоматически — посредством модуля управления. Именно посредством электроники (модуля управления) легко контролировать скорость движения транспортного средства.

Наиболее популярны гидравлические “автоматы”. Крутящий момент у них передаётся с помощью турбин через рабочую жидкость.

Несмотря на то, что для машины с “автоматом” нужно больше топлива, чем с механикой и даже больше времени на разгон, всё чаще водители предпочитают именно “автоматы”. Ведь с ними гораздо удобней, чем с “механикой”.

Тем более, что современные АКПП адаптивны и могут беспрепятственно подстраиваться под абсолютно разные стили вождения. В том числе, спортивный.

Роботизированные вариаторы

Роботизированные (автоматизированные, полуавтоматические) КПП как агрегаты – это промежуточные вариант между “механикой” и “автоматом”.

Переключение может быть и ручным, и автоматическим, а вот управление устройством  осуществляется посредством переключателя, джойстика.

Полностью вручную (при любом режиме) нужно только нажимать рычаг переключателя. А вот дальше при выборе автоматического режима работа будет возложена на робота. В том числе, автоматически согласуются частота вращения звеньев и оборотов ДВС.

Вариатор

Отдельно можно выделить вариатор. Это изменяющаяся трансмиссия или бесступенчатая КПП. Изменение передаточного числа производится в заданном диапазоне.

Вариаторы позволяют достигнуть наивысшую топливную экономичность, ведь нагрузки в таких решениях идеально согласованы с оборотами коленвала.

Есть вариаторы, которые по своему устройству ближе к МКПП (с центробежным сцеплением), есть решения, которые ближе к АКПП (такое устройство включает гидротрансформатор).

Но, увы, любая конструкция не позволяет создать очень мощный вариатор. Поэтому на практике поставить вариатор получается только на легковые автомобили, всевозможную мототехнику (очень популярный вариант для скутеров), но не на большегрузный коммерческий транспорт (автобусы, грузовики), т.е. транспортные средства, которые как раз и “съедают” больше всего топлива.

 Исключение составляют только лёгкая коммунальная, сельскохозяйственная техника.

Плюсы и минусы


Тип коробки

Плюсы

Минусы
Механическая коробка
  • низкая стоимость (как устройства, так и ремонта),
  • хорошая динамика,
  • простой ремонт.
  • в «пробках» требуется регулярное переключение передач,
  • сложность в управлении.

Автоматическая коробка передач
  • не нужно думать, какую передачу выбрать,
  • простота разгона (нет крена авто назад),
  • защита ДВС от перегрева.
  • высокая стоимость агрегата,
  • высокий расход топлива,
  • высокая стоимость ремонта.

Роботизированная
  • можно выбрать ручной или автоматический режим работы,
  • топливная эффективность.
  • есть риски крена авто при разгоне,
  • возможны
  • рывки при переключении передач.
Вариатор
  • сниженная нагрузка на двигатель,
  • плавность езды.
  • высокая стоимость коробки и ее ремонта,
  • можно поставить только на маломощный двигатель.

Обратите внимание, в нашем курсе “Автомобильные основы” на базе LCMS ELECTUDE КПП уделяется огромное внимание. При этом доступны учебные материалы для обучающихся всех уровней:

  • базовый,
  • продвинутый,
  • специалист.
Огромное внимание уделяется не только теоретической части, но и оттачиванию навыков, выполнению сервисных операций.

Дополнительную информацию вы можете посмотреть непосредственно в модулях LCMS LCMS ELECTUDE — платформе для обучения автомехаников, автомехатроников, автодиагностов.

Конструкция и регулировка сцепления трактора ЮМЗ

Муфта сцепления трактора ЮМЗ предназначена для кратковременного разъединения коленчатого вала дизеля и ведущего вала коробки передач, что необходимо для:

  1. безударного переключения передач
  2. плавного трогания трактора с места и остановки
  3. защиты трансмиссии от перегрузок при резких изменениях режима работы трактора.

Кроме того, муфта сцепления предназначена для передачи вращения от коленчатого вала дизеля на привод ВОМ и разъединения их при включении и выключении ВОМ.

На тракторе ЮМЗ установлена двухдисковая двухпоточная сухая постоянно замкнутого типа фрикционная муфта сцепления.

Муфта расположена в корпусе и состоит из:

  1. ведущих деталей, соединенных с коленчатым валом дизеля
  2. ведомых, соединенных с валом коробки передач и приводом ВОМ
  3. механизма выключения и его привода.

Конструкция

Корпус муфты сцепления перегородкой в середине разделен на два отсека:

  1. Передний, в котором размещены муфта сцепления и механизм ее выключения, и
  2. Задний, сообщающийся с корпусом коробки передач и заднего моста.

В заднем отсеке расположены соединительная муфта и привод ВОМ. Ведущая часть муфты, состоящая из нажимных дисков и опорного диска, установлена на три ведущих пальца маховика дизеля и постоянно вращается вместе с маховиком.

Опорный диск, кроме того, прикреплен к маховику шестью болтами. Ведомая часть муфты, состоящая из диска главной муфты и диска муфты привода ВОМ, установлена на шлицах валов.

Вал связан с коробкой передач, а вал — с приводом ВОМ. Вал муфты привода ВОМ — полый, изготовлен как одно целое с ведущей шестерней редуктора ВОМ. Вал главной муфты расположен внутри вала на двух игольчатых подшипниках.

а — разрез по пальцу маховика; б — разрез по упорному болту; 1 — масленка; 2 — пружина; 3 — нажимная пружина. 4 и 22 — подшипники; 5 и 6 — нажимные диски; 7 — диск главной муфты; 8 — диск муфты привода ВОМ; 9 — маховик дизеля; 10 — отжимной рычаг; 11 — тяга; 12 и 24 — болты; 13 — опорный диск; 14 — гайка; 15 — упорная втулка; 16 — технологические отверстия; 17 — выжимной подшипник; 18 — упорный болт; 19 — ведущий палец; 20 — отводка; 21 и 32 — валы привода ВОМ; 23 — вал главной муфты; 25 — прижим; 26 — резиновый элемент; 27 — первичный вал коробки передач; 28 — кронштейн отводки; 29 — корпус муфты сцепления; 30 — упор; 31 — пробка; 33 — рычаг выключения; 34 — вилка; 35 — валик.

Спереди валы опираются на подшипник установленный в расточке маховика, а сзади — на подшипник, установленный на кронштейне отводки, закрепленном в перегородке корпуса муфты.

Подшипник смазывается консистентной смазкой, закладываемой в него при сборке. В связи с непродолжительностью работы (только когда муфта сцепления юмз выключена) дополнительное смазывание его при техническом обслуживании не требуется.

Подшипник и игольчатые подшипники смазываются трансмиссионным маслом, поступающим в задний отсек корпуса муфты из корпуса коробки передач и заднего моста. Для того чтобы масло из заднего отсека не попадало в передний, валы уплотнены манжетами.

Ведомые диски постоянно прижимаются к нажимным дискам и маховику нажимными пружинами расположенными между опорным и нажимным дисками. Кроме того, ведомый диск муфты привода ВОМ зажимается между нажимными дисками девятью пружинами. Пружина одним концом упирается в диск, а другим — в головку штифта, закрепленного в диске и свободного в отверстии диска.

При включенной муфте сцепления юмз-6 под действием усилия нажимных пружин ведомые диски прижимаются к поверхностям маховика и нажимных дисков, и силы трения передают крутящий момент на первичный вал коробки передач, а также на вал привода ВОМ.

Выключение сцепления производится с помощью отводки с выжимным подшипником, перемещающейся по кронштейну и соединенной с педалью сцепления через вилку, закрепленную на валике выключения, рычаг и тягу.

Выжимной подшипник смазывается через масленку на корпусе отводки. При этом смазывается также поверхность кронштейна по которой перемещается отводка.

Для доступа к масленке на корпусе муфты сцепления, с левой стороны выполнено отверстие, закрываемое пробкой. При нажатии на педаль сцепления юмз-6 отводка, перемещаясь по кронштейну через выжимной подшипник и упорную втулку нажимает на двуплечие отжимные рычаги, качающиеся на осях, установленных в кронштейнах на опорном диске.

Отжимные рычаги через сухарики и гайки действуют на тяги, установленные шарнирно в нажимном диске. Под действием усилия, приложенного к педали, пружины сжимаются, и нажимной диск перемещается.

Так как диск через пружины и штифты связан с диском, то вместе с ним перемещается и этот диск, а также ведомый диск муфты привода ВОМ.

Ведомый диск главной муфты освобождается, и передача крутящего момента от коленчатого вала дизеля к трансмиссии прекращается. Главная муфта выключается. Передача крутящего момента на привод ВОМ продолжается, так как ведомый диск муфты привода ВОМ остается зажатым между нажимными дисками усилием пружин.

При дальнейшем перемещении педали сцепления нажимной диск главной муфты упирается в болты, завернутые в опорный диск, и останавливается, а диск муфты привода ВОМ, продолжая двигаться, освобождает ведомый диск, и муфта привода ВОМ также выключается. Положение упорных болтов регулируется.

1 — педаль; 2 и 4 — тяги; 3 — блокировочный валик; 5 — рычаг; 6 — усилитель; 7 — упорный винт. 9 — кронштейн.

Зазор между упорными болтами и упорами на диске должен обеспечивать полное выключение главной муфты.

Если этот зазор слишком мал, то главная муфта будет выключаться не полностью. При большом зазоре будет неполным выключение муфты привода ВОМ, так как не хватит хода педали муфты сцепления и диска для выключения этой муфты. Оптимальным является зазор 1,75 мм, что соответствует 1 1/6 оборота упорного болта или семи щелчкам стопорного устройства, установленного на болте.

В процессе эксплуатации этот зазор увеличивается вследствие изнашивания дисков. Поэтому при техническом обслуживании его необходимо восстанавливать.

Стопорное устройство, удерживающее болт от самовращения, представляет собой подпружиненную шайбу, которая своими усиками входит в пазы на болте, а выступами — в выемки гнезда на опорном диске. При вращении болта ключом выступы шайбы, вращающейся вместе с болтом, перемещаются из одной выемки гнезда в другую и издают характерный звук — щелчок.

В опорном диске имеются три технологических отверстия, а в нажимном диске против них — три резьбовых отверстия.

Перед снятием муфты с маховика в эти отверстия необходимо завернуть технологические болты. Для этого можно использовать три болта крепления опорного диска к маховику. Это необходимо для того, чтобы при снятии муфты с маховика и установке на него пружины оставались в сжатом состоянии, что облегчает выполнение работ.

После того как муфта установлена и закреплена на маховике, технологические болты должны быть сняты.

Для правильного взаимодействия деталей механизма выключения и обеспечения возможности восстановления регулировочных параметров его привода в период эксплуатации положение отжимных рычагов должно быть отрегулировано.

Регулируется положение рычагов вращением гаек после установки муфты на маховик.

Кулачки отжимных рычагов должны быть установлены в одной плоскости на расстоянии 73 мм от плоскости фланца ступицы ведомого диска муфты привода ВОМ.

В процессе эксплуатации фрикционные накладки ведомых дисков муфты сцепления изнашиваются. В результате этого кулачки отжимных рычагов приближаются к упорной втулке выжимного подшипника, что может привести к неполному включению и пробуксовыванию муфты.

Чтобы этого не произошло, между кулачками отжимных рычагов и упорной втулкой должен быть зазор 3—4 мм, который необходимо восстанавливать при техническом обслуживании муфты сцепления.

Механизм выключения сцепления приводится в действие педалью через тягу и рычаг, закрепленный на валике выключения.

В исходном положении педаль удерживается пружинами усилителя. При выключении сцепления точка упора усилителя переходит через нейтраль, и пружины начинают действовать в обратном направлении, помогая выключению сцепления и снижая усилие на педали.

При включении сцепления педаль возвращается в исходное положение в первоначальный момент под действием пружин муфты сцепления, а затем, когда усилитель перейдет через нейтраль — под действием пружин усилителя.

Предварительно сжатие пружин усилителя регулируется упорным винтом, а момент, когда усилитель переходит через нейтраль — изменением положения кронштейна.

Зазор между кулачками отжимных рычагов и упорной втулкой выжимного подшипника регулируется изменением длины тяги. Косвенно это зазор проверяется по свободному ходу педали муфты сцепления трактора юмз, который должен быть в пределах 30±5 мм.

Привод включения муфты сцепления сблокирован с механизмом переключения передач, что позволяет переключать передачи только при выключенной главной муфте.

Блокировочный валик коробки передач, который связан с тягой привода выключения муфты сцепления через тягу и рычаг, используется также для ограничения хода педали на выключение главной муфты.

Момент полного выключения главной муфты сцепления, при котором муфта привода ВОМ еще не выключена, фиксируется специальным фиксатором, в который упирается блокировочный валик, поворачивающийся при нажатии на педаль муфты сцепления.

Фиксатор тягой связан с рычагом. При нажатии на педаль муфты сцепления до упора в фиксатор, выключается только главная муфта.

Если предварительно освободить блокировочный валик, переместив фиксатор рычагом, а затем нажать до отказа на педаль муфты сцепления, то выключается муфта привода ВОМ, при этом также выключается главная муфта сцепления.

Ход педали до упора в фиксатор, обеспечивающий полное выключение главной муфты сцепления юмз, регулируется изменением длины блокировочной тяги.

Видео, регулировка сцепления ЮМЗ

Часть 1

Часть 2

Часть 3



Основы и принцип работы системы сцепления

Сцепление — часть механической коробки передач, о которой часто забывают. Сцепление — это механическое устройство, которое передает всю мощность от двигателя на трансмиссию транспортного средства. Без правильно работающего сцепления передача мощности и переключение передач были бы очень трудными. Муфта расположена между маховиком двигателя и трансмиссией. Его часто размещают внутри колокола, чтобы защитить его от внешних загрязнений. Более старые автомобили имели полностью открытую конструкцию.Первая часть этой системы начинается с маховика. С маховиком соединен нажимной диск с фрикционным диском сцепления между двумя деталями. С внешней стороны прижимного диска будет блок управления сцеплением или выжимной подшипник. Выжимной подшипник перемещается с помощью вилки сцепления. Вилка сцепления приводится в действие рабочим цилиндром, а рабочий цилиндр управляется главным цилиндром, в конечном итоге управляемым педалью сцепления. По умолчанию сцепление включено.

Нажимная пластина: Узел прижимной пластины прикреплен к маховику с помощью болтов, соединяющих штамповку крышки с маховиком. Во время зацепления узел нажимного диска прижимает узел диска к маховику, передавая мощность двигателя на трансмиссию. Во время отключения поток мощности прерывается, когда нажимной диск больше не прижимает диск к маховику. Вместо этого прижимная пластина поднимается от маховика, создавая зазор, достаточно большой для того, чтобы диск мог выйти из зацепления с маховиком, позволяя водителю переключать передачи.


Диск сцепления: Диск в сборе установлен на первичном валу между узлом нажимного диска и маховиком. Во время зацепления диск скользит вперед по входному валу и становится прочно зажатым или «зацепленным» между маховиком и узлом нажимного диска. Во время отключения диск больше не входит в зацепление. Хотя узел нажимного диска и маховик продолжают вращаться, входной вал и диск больше не вращаются двигателем.


Управляющие втулки: направляющие подшипники и втулки служат в качестве направляющей и седла для входного вала трансмиссии во время зацепления и расцепления, когда маховик и прижимной диск в сборе вращаются со скоростями, отличными от скорости входного вала и диска в сборе, пилотный подшипник вращается.


Выжимной подшипник: Выжимные подшипники предназначены для поворота вперед и сжатия рычагов нажимного диска, что приводит к отключению системы сцепления. Хотя все выжимные подшипники предназначены для выполнения одной и той же основной функции, они бывают разных форм и размеров, поскольку они должны работать в сочетании с различными исполнительными системами.

Рисунок + Цвет — С меткой «грифель карандаша сцепления» — Бумажная шляпа

2 результат Сортировать по: Все товары №2 карандаши.5 мм pencil1.01.0 мм pen10 цвет цвет set12 color12 watercolor12 colors24 colors2B2mm2mm lead36 colors8Bacrylicacrylic markeracrylic paintactivity bookadult раскраски bookalcohol markersarchival inkart binart setassorted цвет paperassorted бумага padblack eraserblack markersblack penblackwingblenderblending kitblending stumpsblue pencilbold markerbookboxbright markerbroad markerbrush letteringbrush markersbrush penbrush tipbullet journalcalligraphycalligraphy pencharcoalcharcoal erasercharcoal pencilcharcoal powdercharcoal setcharcoal stickchisel markerchunky pencilchunky карандаши неуклюжая точилкакарандашклатч грифель для сцепленияцветный рисунокцветная бумагацветный карандаш искусствоцветный карандаш наборцветный карандашцветный кругцветный мелцветный карандашраскраскараскраска набор для раскрашиваниякомбинация ластиккомикс комикс ручкисжатый угольсжатый цветконтактный корректирующий карандашдвухточечная сетка rkersdrafting pendrawingdrawing bookdrawing eraserdrawing fixativedrawing inkdrawing kitdrawing paperdrawing пера setdrawing pencildrawing pencilsdrawing pensdrawing ручки setdrawing powderdrawing setdual кисточки setdual eraserdual tipdual кончик markerseraserexcellent цвет pencilsextra тонкой pointfaber castellfashionfashion designfelt кончик наконечника markerfelt penfiber tipfine eraserfine линия markerfine линия penfine linerfine markersfine pointfine точка markersfine точка penfixativefude penfudenosukefun markersgel перо наборгелевые ручкиgell pengell pen setgelly rollgelly roll setподарокзолотая тетрадьграфическая бумагаграфитеграфитовый ластикграфитовая бумагаграфитовый карандашграфитовый порошокграфитовый порошок refilllearn tolearn к drawletteringlettering penlettering practiselettering setlinermaker setmanga penmarkermarker papermarker setmarkersmarsmechanical pencilmechanical карандаш setmetallicmetallic inkmetallic markersmetallic penmicronminimini окраски bookmini giftsmini markersmini setmixed СМИ papermononatural дерево pencilsneon pennewsprintno копия pencilnon-photoofficeoil pastelsopaque whitepaint markerpaint penpaint setpaintingpaperpaper padpastelpastel цвет pencilspastel colorspastel drawingpastel paperpastel pencilspastel penspastel setpastelspeel прочь pencilpen 68pen setpencilpencil setspencil точилка для карандашейдля карандашейперманентный маркерперманентная ручкапигмапилот ручкапластиковый ластикпластмассовый ящик для хранения карманов размер кармана для рисования маркер для плакатовплоские маркеры качества радуга акварельный карандаш Сортировать по: FeaturedBest SellingPrice, low to highPrice, high to lowTitle, A-ZTitle, Z-ADate, old to newDate, new to old

типов сцепления | Как это работает и это диаграмма

Что такое сцепление и типы сцеплений?

В этой статье мы собираемся объяснить, что такое сцепление, различные типы сцепления и как они работают с диаграммами.

Во-первых, давайте разберемся, что такое сцепление?

Муфта — это механическое устройство, которое включает или отключает передачу мощности от ведущего вала к ведущему валу.

В механизме один вал соединен с двигателем или другим силовым агрегатом (ведущим элементом), а другие валы (ведомый элемент) обеспечивают выходную мощность.

Сцепления, которые используются в автомобилях, имеют аналогичную конструкцию и принцип действия. Различные типы сцепления имеют различия в узлах рычажного механизма и прижимного диска.

Некоторые типы муфт используются для тяжелых условий эксплуатации с двумя фрикционными дисками и промежуточным прижимным диском. Есть также несколько типов сцепления с гидравлическим приводом. Сухая однодисковая фрикционная муфта широко используется в легковых автомобилях США.

В автомобиле используются различные типы сцеплений, в зависимости от типа и использования трения.

В большинстве конструкций муфт используется несколько цилиндрических пружин, но в некоторых исключительных случаях используются диафрагменные или конические пружины.Также существует разновидность фрикционного материала в сцеплениях различных легковых автомобилей.

А теперь посмотрим Другое

Типы муфт

Ниже представлены различные типы сцепления, используемые в автомобильной промышленности.

1. Фрикционная муфта

  • Однодисковое сцепление
  • Многодисковое сцепление
  1. Мокрая
  2. Сухой
  1. Внешний
  2. Внутренний
  1. Центробежное сцепление
  2. Сцепление полуцентробежное
  3. Коническая пружинная муфта или диафрагменная муфта
  4. Тип конического пальца
  5. Корона Пружина Тип
  6. Сцепление принудительного действия
  7. Собачья муфта
  8. Шлицевое сцепление
  9. Гидравлическое сцепление
  10. Электромагнитная муфта
  11. Вакуумная муфта
  12. Обгонная муфта или муфта свободного хода

Однодисковое сцепление

Однодисковые муфты сцепления широко используются в большинстве современных легковых автомобилей.Сцепление передает крутящий момент от двигателя на входной вал трансмиссии. Судя по названию, у него всего один диск сцепления.

Однодисковое сцепление имеет диск сцепления, фрикционный диск, нажимной диск, маховик, подшипники, пружину сцепления и гайки-болты.

Однодисковое сцепление имеет только один диск и крепится к шлицам диска сцепления. Однодисковое сцепление является одним из основных компонентов сцепления. Этот диск сцепления представляет собой тонкий металлический диск, имеющий обе боковые поверхности трения.

ques10

Маховик соединен с коленчатым валом двигателя и вращается вместе с ним. Нажимной диск прикреплен к маховику с помощью пружины сцепления, и он обеспечивает осевое усилие, чтобы удерживать сцепление в включенном положении, и может свободно скользить по валу сцепления при нажатии на педаль сцепления.

Фрикционная пластина размещается между маховиком и прижимной пластиной. Накладки фрикционные находятся по обеим сторонам диска сцепления.

Рабочий

В автомобиле, когда сцепление нажимает на сцепление для выключения шестерен, пружины сжимаются, и нажимной диск движется назад.Диск сцепления освободился между нажимным диском и маховиком. В результате сцепление выключается, и вы можете переключать передачу.

Это заставляет маховик вращаться, и когда двигатель работает, вал сцепления снижает скорость и перестает вращаться. После нажатия педалей сцепления сцепление выключается, и, если нет, остается включаться с усилием пружины. После отпускания педали сцепления нажимной диск возвращается в исходное положение, а затем снова включается сцепление.

Многодисковое сцепление

В многодисковой муфте используется несколько муфт, обеспечивающих фрикционный контакт с маховиком двигателя. Он передает мощность между валом двигателя и трансмиссионным валом транспортного средства. Чем больше количество муфт, тем больше поверхность трения.

Увеличенное количество поверхностей трения увеличивает способность муфты передавать крутящий момент. Эти диски сцепления установлены на валу двигателя и валу коробки передач.

oyetechy

Прижимается винтовой пружиной и собран в барабане.Каждая альтернативная пластина скользит по канавкам на маховике, а другие скользят по шлицам на прижимной пластине. Итак, каждая пластина имеет внутренний и внешний шлицы.

Принцип работы многодисковой муфты такой же, как и у однодисковой муфты. Сцепление работает от нажатия педали сцепления. В тяжелых коммерческих транспортных средствах, гоночных автомобилях и мотоциклах используются несколько сцеплений для передачи высокого крутящего момента.

Есть два типа многократных сцеплений — сухое и мокрое.Теперь, если сцепление работает в масляной ванне, это называется мокрым сцеплением. Теперь, если сцепление работает без масла, оно известно как сухое сцепление. Мокрое сцепление в основном используется с автоматической коробкой передач.

Конус сцепления

Ниже представлена ​​схема конической муфты. Имеет поверхности трения в виде конусов. Есть две конические поверхности для передачи крутящего момента за счет трения. Вал двигателя имеет внутренний конус и охватываемый конус. Шлицевой конус установлен на шлицевом валу муфты для скольжения по нему и имеет поверхность трения на конической части.

Поскольку сила пружины воздействует на поверхность трения охватываемого конуса, они контактируют с охватывающим конусом. Когда педаль сцепления нажата, охватываемый конус скользит навстречу силе пружины, и сцепление выключается.

Преимущество использования конусной муфты заключается в том, что нормальная сила, действующая на поверхность трения, больше, чем осевая сила по сравнению с однодисковой муфтой. Вот почему нормальная сила, действующая на поверхность трения, равна осевой силе.

Конусные муфты не так часто используются из-за перечисленных ниже недостатков.

  • Если угол конуса меньше, чем 20 o , охватываемый конус имеет тенденцию связываться с охватывающим конусом, и становится трудно расцепить сцепление.
  • Небольшая степень износа поверхностей конусов связана с большим осевым перемещением охватываемых конусов, которое трудно допустить.

Центробежное сцепление

Для удержания муфты в зацепленном положении центробежная муфта использует центробежную силу, а не силу пружины.Эти типы сцепления работают автоматически в зависимости от оборотов двигателя. Следовательно, для работы сцепления педаль сцепления не требуется.

oyetechy

С этим водитель может легко пристегнуть автомобиль, не переключая передачи. Кроме того, вы можете завести автомобиль, нажав педаль акселератора на любой передаче.

Рабочий
  • Центробежные грузы сцепления A повернуты на B.
  • Когда скорость двигателя увеличивается, грузы отлетают из-за центробежной силы, срабатывают уровни коленчатого рычага и нажимают на пластину C.
  • Движение диска C прижимает пружину E и прижимает диск сцепления D к маховику, чем пружина G.
  • В этом процессе сцепление включено.
  • Пружина G удерживает выключение сцепления на низкой скорости примерно при 500 об / мин.
  • H ограничивает движение грузов за счет центробежной силы.

Полуцентробежная муфта

В полуцентробежной муфте используется центробежная сила и сила пружины, чтобы удерживать ее в положении зацепления. Полуцентробежное сцепление состоит из рычагов, пружин сцепления, нажимного диска, фрикционной накладки, маховика и диска сцепления.

Конструкция полуцентробежного сцепления

Полуцентробежное сцепление состоит из рычагов и пружин сцепления и равномерно размещено на нажимном диске. Пружины сцепления предназначены для передачи крутящего момента при нормальной частоте вращения двигателя, а центробежная сила помогает передавать крутящий момент на более высокой скорости.

При нормальной частоте вращения двигателя передача мощности низкая, пружины входят в зацепление, а рычаги противовеса не оказывают никакого давления на нажимной диск.

При высоких оборотах двигателя трансмиссия высока и вес отлетает, а рычаги также оказывают давление на диск и удерживают сцепление в надежном зацеплении.

Полуцентробежные муфты имеют менее жесткие пружины, поэтому водитель может не напрягаться при нажатии на муфту. С уменьшением скорости вес падает, и рычаг не оказывает никакого давления на прижимную пластину.

На нажимной диск действует только давление пружины, и этого достаточно, чтобы сцепление оставалось включенным.Регулировочный винт установлен на конце рычага, и с его помощью можно регулировать центробежную силу на прижимной пластине.

Мембранная муфта

Мембранная муфта имеет диафрагму на конической пружине, которая создает давление на нажимной диск для включения муфты. На прижимной пластине крепится пружина в виде пальца или коронки.

Пружина с коническим пальцем показана на рисунке ниже. В муфтах этого типа мощность двигателя передается от коленчатого вала к маховику.Маховик имеет фрикционную накладку, соединение показано на рисунке ниже. Прижимной диск расположен за диском сцепления, поскольку прижимной диск оказывает давление на диск сцепления.

oyetechy

Мембранная муфта представляет собой пружину конической формы. После нажатия педали сцепления внешний подшипник движется к маховику, нажимая на диафрагменную пружину, которая толкает нажимной диск назад.

При этом давление на диск снимает сцепление и отключается.Когда давление на педаль сцепления, нажимной диск и диафрагменная пружина возвращаются в свое нормальное положение, и сцепление включается.

Преимущества

Этот тип сцепления не имеет рычагов, так как пружина работает как ряд рычагов.

Кроме того, водителю не нужно прикладывать сильное давление на педаль для удержания сцепления в выключенном состоянии с помощью винтовой пружины, при этом давление пружины увеличивается больше с педалью, когда она нажимается, чтобы выключить сцепление.

Собачья и шлицевая муфта

Собачка — это муфта, используемая для блокировки двух валов вместе или соединения шестерни и вала. Две части муфты: одна — кулачковая муфта с внешними зубьями, а другая — скользящая муфта с внутренними зубьями.

Оба вала сконструированы таким образом, что один будет вращать другой с одинаковой скоростью, поэтому они никогда не будут проскальзывать. Когда два вала соединены, сцепление включено. Для выключения сцепления скользящая муфта перемещается назад по шлицевому валу, не контактируя с ведущим валом.

Зубчатое и шлицевое сцепление широко используются в автомобилях с механическими коробками передач для блокировки различных передач.

Электромагнитная муфта

Электромагнитная муфта управляется электрически, но крутящий момент передается механически. Из-за этого муфту также называют электромеханической муфтой. Со временем это становится электромагнитной муфтой.

Эти электромагнитные муфты не имеют механической связи для управления их включением для быстрой и плавной работы.Эти электромагнитные муфты подходят для дистанционного управления, что означает, что вы можете использовать их на расстоянии.

В сцеплении есть маховик, который вращается на нем, а электричество подается от аккумулятора. Когда электричество проходит через обмотку, оно создает электромагнитное поле и притягивает нажимную пластину, чтобы войти в зацепление. При отключении электричества выключается сцепление.

Эта система сцепления имеет рычаг переключения передач с выключателем выключения сцепления, при этом водитель управляет рычагом переключения передач для переключения передач переключателем, а также отключает подачу тока на обмотку, что отключает сцепление.

Вакуумная муфта

Этот тип сцепления использует существующее разрежение в коллекторе двигателя для приведения в действие сцепления. Эта вакуумная муфта имеет резервуар, обратный клапан, вакуумный цилиндр с поршнем и электромагнитный клапан.

Работа и строительство

Как показано на рисунке ниже, резервуар соединен с впускным коллектором через обратный клапан. Вакуумный цилиндр соединен с резервуаром через электромагнитный клапан.Соленоид работает от аккумулятора, в аккумуляторе есть переключатель, соединенный с рычагом переключения передач. Переключатель начинает работать, когда водитель переключает передачу.

Теперь посмотрим, как это работает. После открытия дроссельной заслонки давление во впускном коллекторе увеличивается и из-за этого клапан обратного клапана закрывается. И это разделяет резервуар и коллектор, поэтому вакуум может существовать в резервуаре все время.

При нормальной работе электромагнитный клапан находится в нижнем положении клапана, как показано на изображении.И рычаг переключения передач остается открытым. Кроме того, на этом этапе атмосферное давление действует на обе стороны поршня вакуумного цилиндра, и благодаря этому вакуумный цилиндр открывается в атмосферу через вентиляционное отверстие.

При переключении передач переключатель замыкается. Электромагнит находится под напряжением и тянет клапан с соединением на одной стороне вакуумного цилиндра с резервуаром. Благодаря этому открывается проход между вакуумным цилиндром и резервуаром. При такой разнице давлений поршень вакуумного цилиндра перемещается вперед и назад.

Движение поршня передается сцеплением, вызывая расцепление. Когда в передаче нет движения, переключатель разомкнут, а сцепление остается включенным из-за силы пружин.

Гидравлическое сцепление

Гидравлическая муфта работает так же, как и вакуумная муфта. Основное отличие заключается в том, что гидравлическая муфта работает от давления масла, а вакуумная муфта работает от вакуума.

Ниже изображение гидравлической муфты.В нем меньше деталей, чем в других типах сцепления. Эта муфта имеет гидроаккумулятор, регулирующий клапан, цилиндр с поршнем, насос и резервуар.

oyetechy.com

Этот масляный резервуар перекачивает масло в аккумулятор через насос. Насос приводится в действие двигателем. Аккумулятор подключен к баллону через регулирующий клапан. Переключатель управляет клапаном и прикреплен к рычагу переключения передач, а поршень соединен с муфтой посредством соединительного механизма.

Когда водитель переключает передачу, переключатель открывает регулирующий клапан, и это позволяет маслу под давлением поступать в цилиндр.Из-за этого давления масла поршень движется вперед и назад, что приводит к расцеплению сцепления.

Когда водитель оставляет рычаг переключения передач, переключатель разомкнут, он замыкается на регулирующий клапан, и сцепление включается.

Механизм свободного хода

Эта муфта свободного хода известна как пружинная муфта, муфта свободного хода или односторонняя муфта. Это самая важная часть любого овердрайва. Передача мощности осуществляется в одном направлении, как у велосипеда.Узел обгонной муфты установлен за коробкой передач.

Мощность передается от главного вала к выходному валу через приводной вал, когда планетарные шестерни находятся в режиме повышающей передачи. Узел маховика имеет ступицу и внешнее кольцо. Эта ступица имеет внутренние шлицы, соединенные с трансмиссией главного вала.

Наружная поверхность ступицы имеет 12 кулачков и предназначена для удержания 12 роликов в обойме между внешним кольцом и ступицей. Это внешнее кольцо является шлицем на повышающей передаче внешнего вала.

Работа Freewheel

Когда ступица приводится в движение по часовой стрелке, ролик движется вверх по кулачкам и, заклинивая, заставляет внешнее кольцо следовать за ступицей. Таким образом, внешнее кольцо движется в том же направлении и с той же скоростью, что и ступица.

При снижении скорости ступицы внешнее кольцо постоянно ускоряется. Ролики опускают кулачки и снимают внешнее кольцо со ступицы. Таким образом, внешнее кольцо движется независимо от ступицы, а ступица работает как роликовый подшипник.

Главный вал трансмиссии соединен со ступицей, а выходной вал соединен с наружным кольцом. Таким образом, муфта свободного хода может передавать мощность от главного вала к выходному валу.

Это информация о различных типах сцепления. Мы объяснили это схемой и работой различных типов сцепления.

🔔 Надеемся, эта информация вам поможет. Для получения дополнительной информации нажмите кнопку уведомления и получайте регулярные обновления от Unbox Factory .

Теперь, если вы найдете эту информацию полезной, поделитесь ею со своими друзьями, семьей и коллегами.

Если вам нравится этот пост, дайте нам знать в комментариях ниже, если вы хотите добавить дополнительную информацию по этой теме, прокомментируйте информацию. Рассмотрим информацию, если она актуальна.

Спасибо за внимание.

Кулачок и кольцо в сборе — узел муфты роликовой рампы

Также известный как узел муфты роликовой рампы, узел кулачка и кольца обеспечивает исключительную надежность оборудования при невысокой стоимости.

Узлы кулачка и кольца представляют собой систему из двух частей, состоящую из пружины и ролика с дополнительной толстой крышкой, которую можно прикрепить к одной или обеим сторонам обода. Простая конструкция этой муфты позволяет использовать ее в ряде приложений:

  • Индексирующий элемент в швейных машинах, печатных машинах и сельскохозяйственных машинах
  • Обгонная муфта стартеров, вентиляторов и турбин
  • Блокиратор обратного хода для буровых установок, конвейеров и электродвигателей
  • Устройство переключения или отключения для аттракционов

Роликовые рампы в сборе

Наведите указатель мыши на нашу, чтобы показать более подробную информацию о нашем узле муфты роликовой рампы.

Кулачок и кольцо в сборе

Кулачок и кольцо в сборе — вид сбоку

Узлы сцепления с роликовой рампой

просты в производстве, что делает их доступным вариантом для любого типа оборудования, требующего одностороннего сцепления. Прочность и надежность продукта могут снизить потребность в простоях и ремонте, повышая, таким образом, рентабельность.

Размер отверстия узла кулачка и кольца Dayton Superior Products колеблется от до 2¾ дюйма, а крутящий момент на фут составляет от 5 до 500 фунтов.

Dayton Superior Products работает над созданием решений для передачи энергии, адаптированных к индивидуальным потребностям каждого клиента. Свяжитесь с нами сегодня, чтобы узнать больше о нашем ассортименте муфт, муфт и хомутов или получить ценовое предложение на один из наших продуктов с самым высоким рейтингом.

Кулачок и
Кольцо
Сборка
No.
Кулачок
Сборка
No.
A B C D E F G G K L Стандартные отверстия Крутящий момент, фунт./ Ft. Скорость об / мин
CR 5 C5 1,500 .647 . 630 9/64 . 832 1,020 6-32 7/32 1,280 8-32 1/4, 3/8, 1/2 5 1800
CR 14 C14 1.876 .647 . 630 9/64 1,125 1,375 6-32 9/32 1,687 8-32 3/8, 1/2, 5/8 14 1800
CR 28 C28 2,625 ,772 .755 13/64 1,424 1,905 8-32 3/8 2.275 10-32 5/8, 3/4, 7/8 28 1500
CR 100 C100 3,501 1.032 1,015 17/64 1,875 2,640 10-32 3/8 3.000 10-32 3/4, 7/8, 1, 1-1 / 8, 1-1 / 4 100 1000
CR 200 C200 4.376 1,622 1,605 17/64 2,650 3,280 1 / 4-20 7/16 3,812 1 / 4-20 1-1 / 2, 1-3 / 4, 2 200 800
CR 500 C500 5,876 1,785 1,770 4.550 5 / 16-18 1/2 5.250 5 / 16-18 2-1 / 4, 2-1 / 2, 2-3 / 4 500 600
Кулачок и кольцо

Сборка
No.
Кулачок
Сборка
No.
A B C D E F G G K L Стандартные отверстия Крутящий момент, фунт./ Ft. Скорость об / мин

Обгонная муфта | Подшипник GMN USA

Как работает односторонняя муфта в режиме обгонной муфты?

Обгонная муфта свободного хода является важным компонентом во многих различных механических устройствах и машинах. В этой статье мы обсудим, как обгонная муфта работает в трех разных режимах обгонной муфты.

Прочтите статью « Как работает обжимная муфта », если вы хотите погрузиться в технические детали обгонной муфты с обратным ходом.

Освежитель муфты сцепления

Обгонная муфта свободного хода предотвращает свободное вращение в обоих направлениях вращения. Три основных способа, которыми приложение использует зажимную муфту для предотвращения этого вращения:

  • Опора
  • Индексирование
  • Переполнение

Сегодня мы поговорим о перебеге. Но чтобы получить обзор трех типов остановок, прочтите нашу статью Sprag Clutch: Applications for Use.

Что делает обгонная муфта?

Обгонная муфта обгонной муфты

Обгонная муфта позволяет вращающемуся компоненту вращаться быстрее, чем фактический движущий элемент, создающий движущую силу.

Обычно муфта свободного хода включается и выключается, когда ведомая частота вращения превышает частоту вращения ведущего компонента.

Ниже мы подробно описываем несколько распространенных применений, предназначенных для обгонной муфты с обгонной муфтой.

Обгонная муфта

Применение первое: Автоматические трансмиссии

Автомобильным трансмиссиям требуется сцепление для включения и выключения передач.Использование пружинной муфты идеально, поскольку она позволяет шестерням плавно переключаться при средних и тяжелых нагрузках.

Автоматическая коробка передач требует, чтобы при переключении было синхронизировано включение одного сцепления при выключении другого. Автоматизация этого согласованного события зацепления обычно возможна за счет обгонной муфты. Обгонная муфта «срабатывает», когда сила реакции больше не требуется.

Обгонная муфта

Применение 2: гидротрансформатор Гидротрансформатор (гидрокинетический) в поперечном сечении.

Преобразователь крутящего момента эффективно передает вращение двигателя на трансмиссию через трансмиссионную жидкость (также известную как гидравлический маховик или гидравлическая муфта).

Конструкция гидротрансформатора состоит из размещения реактора между насосом и турбиной. Внутри реактора находится односторонняя муфта, соединенная с осевым валом.

Обгонная муфта очень важна в гидротрансформаторе, потому что движение от насоса двигателя вращается быстрее, чем турбина (что обеспечивает более низкие скорости), жидкость, покидающая турбину, движется в осевом направлении к реактору и пытается повернуть его в противоположную сторону от силового привода. движение (насос двигателя).Односторонняя обжимная муфта предотвращает это движение и вместо этого отклоняет жидкость в том же направлении, что и вращение насоса двигателя.

Обгонная муфта

Третье применение: роторы вертолетов

Ротор вертолета — одна из его самых важных частей, потому что он позволяет вертолету взлетать и двигаться в разных направлениях с помощью профилей. В случае отказа двигателя критически важно, чтобы эти аэродинамические поверхности могли вращаться. Это становится возможным благодаря блоку свободного хода.

Блок свободного хода отключает двигатель от несущего винта, когда частота вращения двигателя меньше, чем частота вращения несущего винта. Этот механизм свободного хода позволяет несущему винту продолжать вращаться с нормальной скоростью полета.

The Freewheeling Unit

Узел обгонной муфты обычно состоит из обгонной муфты свободного хода, расположенной между двигателем и трансмиссией несущего винта. Обычно вы найдете эту обжимную муфту либо на верхнем шкиве (поршневой вертолет), либо на коробке передач двигателя (турбинный вертолет).

Когда двигатель приводит в движение ротор, он прижимает пружинную муфту к внешнему вальцу. Это предотвращает превышение двигателем оборотов трансмиссии. Если двигатель выходит из строя, обгонная муфта позволит внешнему барабану превышать скорость внутреннего, что означает, что трансмиссия может превысить скорость двигателя.

В этом состоянии частота вращения двигателя меньше, чем частота вращения системы привода, и вертолет находится в режиме авторотации, что означает, что лопасти поворачиваются под действием воздуха, движущегося вверх через ротор.Это очень важная функция, которая помогает посадить вертолет в случае отказа двигателя.

Критический компонент

Обгонная муфта свободного хода работает во многих механических приложениях, здесь мы выделили некоторые наиболее распространенные из них. Как видите, обгонная муфта может быть очень важным элементом безопасности.

Если вам нужна обжимная муфта, мы знаем, что качество имеет значение.

GMN производит прецизионные компоненты, такие как односторонние муфты, с 1908 года.Мы предлагаем производимые прецизионные компоненты высочайшего качества, а наши обжимные муфты представлены тремя различными линейками продуктов, полными разнообразия для удовлетворения ваших потребностей. Процитируем ваш следующий проект.

типов сцеплений | Анимации и диаграммы — MechStuff

Сегодня больше никаких скучных представлений; Я просто дам вам представление о сцеплениях, а затем сразу перейду к теме — Типы сцеплений!

Что такое сцепления?

Специально для тех, кто не разбирается в идеях, Clutch — это механическое устройство включения и выключения, которое помогает передавать крутящий момент / мощность, создаваемую двигателем .
Они используются во всех чертовых автомобилях, мотоциклах, грузовиках, двигателях локомотивов и во множестве других транспортных средств и машин!

Каждый тип имеет свои преимущества и область применения, основанную на их способности передавать крутящий момент / мощность, компактности и других конструктивных ограничениях!

Типы муфт: —

1. Однодисковое сцепление

Включение и выключение однодискового сцепления!

Однодисковые муфты имеют сравнительно меньшее количество деталей и очень просты для понимания.В устройстве всего 2 фрикционных диска.
Передача крутящего момента происходит, когда они оба входят в контакт друг с другом. Один прикручен к маховику (коробка передач, входной вал), а другой прикручен к прижимной пластине и может скользить по шлицевому валу. Прижимная пластина соединена с предварительно сжатой пружиной (здесь диафрагменная пружина), которая прикладывает осевое усилие к другому диску.
Чем больше сила, тем больше трение, больше способность муфты передавать крутящий момент.
У этих муфт было много ограничений, и поэтому маловероятно, что они встретятся в каком-либо из современных приложений.
Таким образом, возникла немедленная потребность в разработке новых типов муфт, поскольку они не могли обеспечить достаточный крутящий момент. Вот полная подробная статья о деталях сцепления, работе и зачем они нам?

Применение — Машины и ранние автомобили, требующие умеренного крутящего момента.

2. Многодисковое сцепление

Конструкция многодискового сцепления

Многодисковые муфты, как следует из названия, состоят из нескольких пластин или фрикционных дисков и работают аналогично, как указано выше.Несколько дисков предлагают больше места для контакта друг с другом. Чем больше количество пластин, тем выше передаточная способность. Таким образом, при том же радиусе фрикционного диска, что и в однодисковых, многодисковые муфты передают значительно большую мощность.
Они быстро нагреваются, и это один из их самых больших недостатков. Следовательно, весь узел сцепления, содержащий диски, заполнен маслом, чтобы быстрее рассеивать тепло.

Применения — Они находят широкий спектр применений в легковых и грузовых автомобилях, двигателях локомотивов и машинах.

3. Муфта коническая

Детали конической муфты; Sweber.de [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

Конусная муфта состоит из двух барабанов — мужского и женского. Наружный барабан прикреплен к коленчатому валу двигателя и имеет внутреннюю фрикционную накладку, в то время как охватывающий барабан установлен на шлицевом валу и имеет внешнюю фрикционную накладку.
Когда сцепление включено, охватывающий конус попадает внутрь охватываемого, и они оба начинают вращаться вместе. Внутренний конус прикреплен к предварительно сжатой пружине и имеет такое же устройство, как и однодисковые муфты.
Конусная муфта может передавать на более высокий крутящий момент, чем однодисковые муфты того же размера, из-за относительно большей площади трения и заклинивания .
Угол конуса / угол полуконуса также играет важную роль в обеспечении осевого усилия. Как правило, угол полуконуса составляет от 12º до 15º .

Области применения — Конические муфты используются только в гоночных автомобилях и внедорожниках, но чаще встречаются на моторных лодках. Малые конические муфты используются в качестве синхронизаторов в системе трансмиссии и в дифференциалах повышенного трения (LSD).

4. Центробежное сцепление

3D Анимация центробежного сцепления

Центробежные сцепления также называются автоматическими сцеплениями , поскольку вам не нужна педаль сцепления, и они включаются автоматически.
Само название говорит о том, что работа этого сцепления основана на центробежной силе. Конструкция и работа просты.
В центре находится ступица, которая соединяется с коленчатым валом двигателя. Несколько башмаков соединены с этой ступицей через пружины, и каждая обувь имеет внешнюю поверхность, покрытую фрикционным материалом.
Когда ступица начинает вращаться, башмаки вместе с ней также начинают вращаться. Любое тело, совершающее вращательное движение, создает центробежную силу. Из-за этой силы обувь выбрасывается наружу. Как только башмаки касаются фрикционной накладки барабана, двигатель начинает передавать мощность на барабан, то есть на колеса.
Зацепление башмаков с барабаном происходит с определенной скоростью, которая зависит от жесткости пружины «k».

Приложение — Мопеды и скутеры, такие как Honda Activa, Vespa и т. Д.

5. Гидравлическая муфта

Гидравлическая муфта

Гидравлические муфты или гидравлические муфты являются частью сложной детали, называемой преобразователями крутящего момента, которые используются в автомобилях с автоматической коробкой передач . Эти муфты состоят из двух разных частей — насоса и турбины , и обе лопатки
установлены под определенным углом. Насос прикреплен к ведущему валу (маховику), а турбина — к выходному валу. Когда насос начинает вращаться, масло начинает вытекать наружу из центра за счет центробежной силы.
Изогнутые лопатки поглощают центробежную энергию и направляют ее в сторону лопаток турбины. Конструкция обоих лопастей такова, что поток жидкости приводит в движение обе части.

Приложение — Автоматические трансмиссии

6. Электромагнитная муфта

Детали электромагнитной муфты

Что происходит, если поднести магнит к ферромагнитному материалу? Я слышу, как ты говоришь: «Джей, они привлекают друг друга, просто!» Точно .. Вот и все!

Якорь на ведомом валу и электромагнит на приводном валу.Ток подается соответственно на электромагнит, когда педаль сцепления нажата или нажата. При подаче тока электромагнит создает магнитное поле, притягивающее якорь . Это создает силу трения между обеими фрикционными пластинами, когда они соединяются. За короткий промежуток времени нагрузка ускоряется, чтобы соответствовать скорости ведущего вала (электромагнита).
Каждый раз, когда необходимо выключить сцепление, подача электроэнергии прекращается, и пружина отводит назад положение якоря.
Одним из самых больших недостатков электромагнитных муфт является их первоначальная дороговизна и быстрый нагрев.

Приложения — Копировальные машины, автоматизация производства, упаковочное оборудование и некоторые роботы.

Итак, здесь мы рассмотрим все основные типы сцеплений, и я надеюсь, что вам понравилась статья, и я считаю, что она была полезной! Если вам это понравилось, я уверен, вы хотели бы изучить различные типы тормозов в автомобилях (все анимации)! Если у вас есть какие-либо вопросы или что-то еще, я хотел бы вернуться к вам в разделе комментариев ниже! 😀

Сопутствующие товары

Сцепление и тормоз с постоянными магнитами — автоматизированная сборка

Особенности продукта

  • Номинальный крутящий момент от 1 до 13 унций.дюймов до 15-300 фунтов на дюйм
  • Конфигурации с полым отверстием и сплошным валом
  • Дихроматное покрытие для повышения коррозионной стойкости
  • Крутящий момент устанавливается с помощью большого регулировочного кольца с накаткой
  • Бесконечная регулировка между минимальными и максимальными настройками. Позволяет настроить устройства в соответствии с вашими уникальными требованиями.
  • Легко читаемые градуировки
  • Минимально возможный переход от статического к динамическому крутящему моменту. Практически устраняет явление «прерывистого скольжения», связанное с фрикционными устройствами.
  • Долгая жизнь. Единственные быстроизнашивающиеся детали — это шарикоподшипник
  • .
  • Чрезвычайно точный. Прецизионные агрегаты Tork превосходят все другие устройства на низких оборотах
Нажмите на изображение ниже, чтобы загрузить pdf.Чтобы заказать печатные экземпляры литературы, нажмите здесь.

Каталог продукции

Связанная литература

.