Топливная система инжектора. Устройство и как работает?
Топливная система автомобилей с электронным впрыском имеет ряд особенностей по сравнению с карбюраторным двигателем. Поговорим как работает топливная система инжектора, ее основная задача и устройство.
Устройство
Задачей системы подачи топлива является обеспечение подачи необходимого количества топлива в двигатель на всех рабочих режимах. Топливо подается в двигатель форсунками, установленными во впускной трубе. В систему подачи топлива инжектора входят следующие элементы:- электробензонасос 5;
- топливный фильтр 6;
- топливопроводы — подающий 8 и сливной 7;
- рампа форсунок с топливными форсунками 9;
- регулятор давления топлива 4;
- штуцер контроля давления топлива 1.
Устройство система подачи топлива инжекторного двигателя
Электробензонасос
Электробензонасос конструктивно входит в модуль электробензонасоса, устанавливаемого на инжекторных автомобилях внутри топливного бака. Модуль включает в себя сам насос, датчик указателя уровня топлива, фильтр и завихритель для отделения пузырьков пара. Электробензонасос нагнетает топливо из топливного бака в подающий топливопровод. На инжекторных автомобилях применяется модуль погружного типа, то есть располагается непосредственно в топливном баке и охлаждается за счет бензина. Создаваемое насосом давление топлива значительно больше требуемого для нормальной работы двигателя на любых режимах.
Топливный фильтр
Система топливоподачи предназначена для точной регулировки количества поступающего в двигатель топлива. Грязь в топливе может привести к неустойчивой работе форсунок и регулятора давления, быстрому их износу. Поэтому к чистоте топлива предъявляются особые требования.
В системе топливоподачи предусмотрен фильтр. Основу топливного фильтра составляет бумажный элемент с пористостью около 10 мкм. Интервал замены фильтра зависит от объема фильтра и степени загрязнения топлива.
Топливопроводы
Различают прямой и обратный топливопроводы. Прямой предназначен для топлива, поступающего из модуля электробензонасоса в топливную рампу. Обратный доставляет избыток топлива после регулятора давления обратно в бак.
Топливная рампа
Топливная рампа инжекторного двигателя
Топливо заполняет топливную рампу и равномерно распределяется на все форсунки. На топливной рампе кроме форсунок располагаются регулятор давления топлива и штуцер контроля давления в топливной системе. Размеры и конструктивное исполнение рампы устраняют локальные пульсации давления топлива вследствие резонансов при работе форсунок.
Регулятор давления топлива
Количество впрыскиваемого топлива должно зависеть только от длительности впрыска — времени открытого состояния форсунки. Поэтому разница между давлением топлива в топливной рампе и давлением во впускной трубе (перепад давления на форсунках) должна оставаться постоянной. Для этого служит регулятор давления топлива. Он пропускает обратно в бак излишки топлива.
Электромагнитная форсунка
В спокойном состоянии спиральная пружина прижимает клапанную иглу к уплотнительному седлу распылителя и закрывает выходное топливное отверстие. При прохождении электрического тока сердечник с клапанной иглой поднимается (на 60—100 мкм), и топливо впрыскивается через калиброванное отверстие. В зависимости от способа впрыска, частоты вращения и нагрузки двигателя время включения составляет 1,5—18 мс. Зависимость количества прошедшего через форсунку топлива от времени открытия при постоянной разности давлений — важнейший показатель работы форсунки.
Не стоит менять форсунки на своем автомобиле на дорогие от иномарки. Как правило, хороших результатов это не дает, более действенный метод это очистка форсунок. Из вышесказанного видим, что форсунка — очень важный компонент системы впрыска. Поэтому она требует к себе большого внимания.
Как работает?
Для нормальной работы двигателя необходимо обеспечить поступление в камеру сгорания двигателя топливовоздушной смеси оптимального состава. Смесь приготавливается во впускной трубе при смешивании воздуха и топлива. Контроллер подает на форсунку управляющий импульс, который открывает нормально закрытый клапан форсунки, и топливо под давлением распыляется во впускную трубу перед клапаном.Поскольку перепад давления топлива поддерживается постоянным, количество подаваемого топлива пропорционально времени, в течение которого форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Увеличение длительности импульса впрыска приводит к увеличению количества подаваемого топлива — обогащению смеси. Уменьшение длительности импульса впрыска приводит к уменьшению количества подаваемого топлива, то есть к обеднению.
Наряду с точной дозировкой впрыскиваемой топливной массы имеет важное значение и момент впрыскивания. Поэтому количество форсунок соответствует количеству цилиндров двигателя.
amastercar.ru
Подача топлива в инжекторных двигателях, описание отличий типов систем впрыска
Инжекторные двигатели отличаются отсутствием карбюратора, вместо которого выступают новые системы подачи топливных смесей. При надавливании на педаль газа происходит автоматическое регулирование поступления воздуха в топливные цилиндры.
Контроль бензиновых растворов производит специальное электронное устройство, внедренное в двигатель. Подача топлива в инжекторном двигателе отличается конструктивными особенностями, способствующими уменьшению количества вредных веществ, выбрасываемым в атмосферу.
Отличия работы инжекторных двигателей
Принцип подготовки воздушно-топливных смесей полностью отличается от предыдущих. Для создания высокого давления в подаваемых смесях топливный бак имеет встроенный электрический бензонасос. Бензин под давлением поступает в специальный отсек — рампу с форсунками для впрыска в цилиндры, где происходит смешивание его с воздухом.
В зависимости от количества поступившего бензина, температуры двигателя, скорости вращения коленчатого вала электронное управляющее устройство (ЭБУ) регулирует такие параметры:
- Состав топливной смеси.
- Количество впрыскиваемой жидкости и объем воздуха.
- Расчет интервала, через который происходит открытие клапана на форсунке.
Топливо подается под автоматическим контролем. Электронное управление является мозговым центром автомобиля.
Автоматизация контроля поступления топлива в систему питания инжекторного мотора позволяет улучшить основные показатели машины:
- скорость разгона;
- показатели загрязнения экологии;
- общий расход бензина.
Описание преимуществ инжекторных систем
По сравнению с карбюраторами системы питания инжекторного двигателя имеют следующие достоинства:
- Более тщательная дозировка количества топливной смеси позволяет существенно экономить общий расход.
- Использование датчиков, следящих за характеристиками топливных смесей и выхлопных газов, приводит к снижению токсичности выхлопа.
- Опережение зажигания, регулировка угла в соответствии с режимами двигателя способствует росту мощности почти на 10%.
- При изменениях нагрузки происходит мгновенная корректировка системой впрыска состава топливно-воздушной смеси.
- Наличие гарантированного облегченного запуска при любой погоде.
- Уменьшение количества углеводородов в отработанных газах
Недостатки инжекторных двигателей:
- высокие цены на ремонт и обслуживание;
- многие узлы и детали не подлежат восстановлению, возникает необходимость их полной замены;
- повышенные требования к качеству бензина;
- потребность в специализированном диагностическом, обслуживающем и ремонтном оборудовании.
Корректировка функций двигателя контроллером ЭБУ
Современные двигатели впрыскивающего типа используют обособленные форсунки, предназначенные для цилиндров. Бензонасос инжекторного двигателя создает необходимое давление, топливо через открытые клапаны форсунок поступает в специальную камеру для сжигания.
Электронный блок управления (ЭБУ) осуществляет регулирование момента открытия каждой форсунки. Встроенная система специальных приборов — датчиков служит для передачи необходимой информации управляющему устройству.
Данные, используемые ЭБУ:
- Расход воздуха.
- Расположение дроссельной заслонки.
- Контроль охлаждающей жидкости.
- Расположение коленчатого вала.
- Кислород в газах.
- Наличие детонации.
- Состояние распределительного вала.
Количество расхода воздуха влияет на автоматический перерасчет наполненности цилиндров отдельного цикла. При поломке считывающего прибора перерасчет производится по специальным таблицам аварийного состояния.
Загруженность двигателя, количество оборотов, наполненность цилиндров в одном цикле рассчитываются при помощи информации, предоставляемой датчиком расположения заслонки дросселя, отражающих угол ее открытия.
Прибор, отражающий нагрев охлаждающей жидкости, помогает откорректировать впрыск, зажигание, участвует в управлении электрической вентиляцией. При отказе датчика используются температурные данные, присущие определенному периоду действия силового агрегата, находящиеся в специальной таблице.
Датчик положения коленвала является прибором, без которого невозможно передвижение всей машины. При выходе из строя данного прибора автомобиль не в состоянии добраться даже до ближайшего СТО. С его помощью синхронизируется вся система, производится расчет оборотов движка, определяется расположение коленчатого вала в любой момент работы двигателя.
Кислородный прибор поставляет данные о насыщенности отработавших газов элементом О2. После получения сведений ЭБУ корректирует состав направляемого топлива, его количество. Международные нормы контроля выбросов Евро-2 и Евро-3 требуют использовать данные приборов, следящих за кислородом. Евро-3 предполагает наличие двух кислородных приборов, расположенных после каталитического катализатора и перед ним.
При сигнале специального датчика о возникновении детонации ЭБУ гасит ее путем корректировки угла опережения зажигания. Эксплуатация мотора с детонацией приводит к ускоренному сгоранию топлива. Возникают ударные нагрузки на двигатель, нагрев всех элементов, дымный выброс, прогорание поршней и клапанов, увеличение расхода топлива, снижение мощности силового агрегата. Такая работа мотора крайне нежелательна.
Датчик, контролирующий распределительный вал, подает информацию, необходимую для создания синхронности при впрыске.
В зависимости от встроенной системы впрыска силовые агрегаты комплектуются приборами, помогающими выявлять причины отсутствия поступления бензина в движок. Дополнительные приборы осуществляют контроль за выбросами.
Управляющий механизм также корректирует функционирование рабочих узлов:
- системы зажигания;
- вентилятора системы охлаждения;
- регулятора холостого хода;
- бензонасоса;
- форсунок;
- клапана адсорбера, предназначенного для улавливания паров бензина.
При запуске силового агрегата остатки паров автоматически направляются в камеру для последующего сжигания.
Благодаря четкому взаимодействию всех механизмов производится точное впрыскивание топлива. Состав и количество топливной смеси отрегулированы благодаря отлаженной работе ЭБУ.
Описание видов систем питания
Системы впрыска имеют несколько разновидностей:
- Одноточечные, при которых имеется одна форсунка и несколько цилиндров.
- Многоточечные, здесь каждый цилиндр снабжен своей форсункой.
- Непосредственные системы основаны на работе по принципу дизелей, где подача топлива производится форсунками прямо в цилиндры.
Схема системы питания одноточечного типа:
При применении одноточечных систем или моновпрыска используется минимальное количество управляющей электроники. На основании данных, полученных с датчиков, ЭБУ изменяет условия подачи топлива. При одноточечном впрыске существенно экономится бензин, улучшается состав выхлопа, повышается надежность двигателя. К недостаткам такого типа системы относится снижение приемистости двигателя, наблюдается скопление топлива на стенках коллектора в виде осадка.
Схема питания многоточечного впрыска:
Система питания многоточечного впрыска более совершенна. Здесь топливо подается на каждый цилиндр. Данный метод впрыска топлива отличается сложностью, однако мощность двигателя при этом возрастает почти на десять процентов.
При установке двигателей с многоточечным впрыском автомобиль получает ускоренный разгон благодаря настройкам и качественному наполнению цилиндров. Приближение клапанов впуска к форсункам способствует точности подачи топлива, минимизирует вероятность образования топливных осадков.
Впрыскивающие системы непосредственного типа обладают оптимальным сочетанием высокого качества сгорания воздушно-топливных смесей и повышенного КПД. В двигателях непосредственной системы питания более тщательно производится распыление и смешивание с воздушными потоками, происходит более грамотное распределение готовой смеси в зависимости от режимов работы мотора.
К преимуществам относится экономичность расхода топлива, увеличение интенсивности ускорения машины, более чистый выхлоп. К недостаткам можно отнести повышенные требования к качеству бензина. Топливная аппаратура такого двигателя очень капризна.
Проведение техобслуживания систем питания инжекторных двигателей
Мероприятия по техническому обслуживанию систем питания обладают особенностями:
- В процессе эксплуатации моторов наиболее часто подвергаются загрязнениям и выходу из строя воздушные фильтры. Каждые тридцать тысяч километров пробега необходимо менять фильтрующий элемент на новый экземпляр. Рекомендуется также регулярно очищать извлеченный узел от грязи и пыли при помощи щетки и встряхивания.
- Возникновение рывков при движении машины говорит о необходимости замены фильтра, производящего тонкую очистку топлива. Рекомендуется также производить плановые замены после очередных 30 тыс. км пробега.
- Форсунки подвергаются регулярным проверкам, производится замена регулятора холостого хода.
avtodvigateli.com
Инжекторная система питания
На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.
Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.
Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).
Устройство ДВСОсновным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.
Устройство системы
Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.
К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:
- лямбда-зонд;
- положения коленвала;
- массового расхода воздуха;
- положения дроссельной заслонки;
- детонации;
- температуры ОЖ;
- давления воздуха во впускном коллекторе.
Датчики системы инжектора
На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ
Что касается механической части, то в ее состав входят такие элементы:
- бак;
- электрический топливный насос;
- топливные магистрали;
- фильтр;
- регулятор давления;
- топливная рампа;
- форсунки.
Простая инжекторная система подачи топлива
Как все работает
Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.
Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).
Первый инжекторный двигатель Toyota 1973 года
Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.
Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.
Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.
К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.
Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.
Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.
Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.
Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.
Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.
Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.
По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.
Виды и типы инжекторов
Инжекторы бывают двух видов:
- С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
- Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).
На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:
- Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
- Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
- Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.
Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.
Обратная связь с датчиками
Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.
Эволюция датчика лямбда-зонд от Bosch
Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.
Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.
На разных режимах обратная связь работает так:
- Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
- Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
- Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
- Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
- Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
- Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.
Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.
Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.
autoleek.ru
его достоинства, виды, конструктивные особенности
Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.
Немного истории
Содержание статьи
Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.
Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.
Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.
Что такое инжектор и чем он хорош
Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.
Достоинствами инжекторного двигателя, относительно карбюраторных, такие:
- Экономичность расхода;
- Лучший выход мощности;
- Меньшее количество вредных веществ в выхлопных газах;
- Легкость пуска мотора при любых условиях.
И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.
Видео: Принцип работы системы питания инжекторного двигателя
Виды инжекторов
Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.
Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.
Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:
- Центральная;
- Распределенная;
- Непосредственная.
1. Центральная
Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.
Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.
2. Распределенная
Распределенный впрыск топлива
Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.
Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.
К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.
3. Непосредственная
Система непосредственного впрыска топлива
Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.
Конструкция и принцип работы инжектора
Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.
Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.
Механическая составляющая инжектора
Система питания автомобилей ВАЗ 2108, 2109, 21099
К механической части инжектора относится:
- топливный бак;
- электрический бензонасос;
- фильтр очистки бензина;
- топливопроводы высокого давления;
- топливная рампа;
- форсунки;
- дроссельный узел;
- воздушный фильтр.
Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.
Видео: Инжектор
Принцип работы инжектора
Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.
Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.
Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.
Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.
Устройство электромагнитной форсунки
Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.
С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.
Электронная составляющая
Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.
Для своей работы ЭБУ использует показания датчиков:
- Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
- Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
- Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
- Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
- Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
- Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
- Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
- Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;
Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.
Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.
При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.
avtomotoprof.ru
Принцип работы инжектора: как работает, устройство
Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.
В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.
Инжекторный двигатель
Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.
История возникновения инжекторной системы впрыска
Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.
По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.
Установлен инжекторный двигатель
Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.
Как работает инжектор?
Обычно он имеет в своей конструкции следующие составляющие:
- ЭБУ.
- Форсунки.
- Датчики.
- Бензонасос.
- Распределитель.
- Регуляторы давления.
Если описывать коротко принцип работы инжектора заключается в следующем:
- на датчики поступают сигналы о работе системы;
- после блок сопоставляет параметры и осуществляет управление системой;
- затем идет подача электрического разряда на форсунки, под его натиском они открываются, впуская смесь из топливной магистрали во впускной коллектор.
Схема инжекторного мотора
Электронный блок управления
Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.
Различают 3 вида памяти:
- Однократное программируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
- Оперативное запоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
- Электрически программируемое запоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.
Первый тойотовский инжекторный двигатель M-E 1972 года
Расположение, классификация и маркировка форсунок
После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:
- Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
- Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.
Сравнение карбюратора и инжектора
Есть несколько классификаций распределительного впрыска:
- одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
- попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
- фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
- непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.
Инжекторные форсунки имеют разный способ подачи струи:
- Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.
Устройство инжектора
- Электромагнитный. На обмотку клапана поступает электрический разряд, контролируемый ЭБУ. В итоге возникает электромагнитное поле наравне со сдавливанием пружины. Поле притягивает иглу и освобождает сопло для подачи струи. Пружина возвращается в прежнее положение после рассеивания электромагнитного поля, отправляя иглу на свое место.
- Пьезоэлектрический. Самый продвинутый тип, применяется в дизельных агрегатах. Скорость его действий превышает предыдущие типы в четыре раза, помимо этого, количество впрыскиваемого топливо максимально выверено. Действия инжектора основаны на принципе гидравлики, работа осуществляется из-за разницы давления. Сначала игла находится на седле, потом ток растягивает пьезоэлемент, который начинает воздействовать на толкатель, чем открывает клапан для движения топлива в магистраль. Затем давление спадает, и игла подымается, вверх осуществляя впрыск.
Нейтрализатор/катализатор
Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:
- два окислительных из платины и палладия;
- один восстановительный из родия.
Инжекторная топливная система
Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.
Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:
- Селективные. Не привередливы к качеству топлива.
- Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.
Основные датчики
- Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
- Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.
ЭБУ инжектора
- Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
- Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
- Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
- Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
- Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
- Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.
Система подачи топлива
Узел включает в себя:
- топливный насос;
- топливный фильтр;
- топливопроводы;
- рампу;
- форсунки;
- регулятор давления топлива.
Система подачи топлива
Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.
Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.
Интересное по теме:
загрузка…
Вконтакте
Одноклассники
Google+
ktonaavto.ru
Как работает инжекторная система подачи топлива. » Хабстаб
Subaru Justy 1990 года выпуска, был последним автомобилем, выпущенным в США, в котором использовался карбюратор, в следующей модели уже применялась инжекторная система подачи топлива. Однако инжекторная система подачи топлива известна с 50-х годов прошлого столетия, а управляемая электроникой, начиная примерно с 1980 года. На данный момент все автомобили, продаваемые в США, оснащены инжекторной системой подачи топлива.
Почему не прижился карбюратор?
Карбюратор — устройство, которое подаёт топливо в двигатель. Например, в газонокосилках и бензопилах, до сих пор используется карбюратор. Автомобиль эволюционировал и карбюратор становился всё больше и сложнее.
Ему необходимо было выполнять пять различных функций:
- Главная функция — обеспечить малое потребление топлива во время езды в “спокойном режиме”;
- Функция холостого хода — обеспечить контролируемую подачу топлива для поддержания холостого хода;
- Функция ускорительного насоса — обеспечить дополнительный впрыск топлива, когда нажата педаль газа;
- Функция обогащения питания — обеспечить дополнительное топливо, когда автомобиль едет в гору или буксирует прицеп;
- Функция подсоса — обеспечить дополнительное топливо, когда двигатель холодный;
В целях уменьшения количества вредных выбросов, были введены каталитические нейтрализаторы. Кислородный датчик определяет количество кислорода в выхлопе, а блок управления двигателем использует эту информацию, для того чтобы регулировать соотношение воздух-топливо в режиме реального времени.
Это называется замкнутый цикл управления. Этого невозможно было добиться с карбюратором. До появления инжекторной системы впрыска топлива был короткий период электрически управляемых карбюраторов, но эти карбюраторы были ещё более сложными чем чисто механические. Сначала карбюратор заменили на моноинжектор, он представлял собой дроссельную заслонку, совмещённую с форсункой. Следующим этапом после моноинжекторов стала система распределенного впрыска топлива. В отличие от моноинжектора в системе распределенного впрыска количество форсунок равно количеству цилиндров.
Что происходит когда мы жмём на газ?
Педаль газа в автомобиле подключена к дроссельной заслонке. Дроссельная заслонка — это клапан, который регулирует количество воздуха, поступающего в двигатель. Когда мы нажимаем на педаль газа, дроссельная заслонка открывается, позволяя большему количеству воздуха попадать в двигатель. Блок управления двигателем, который управляет всеми электронными компонентами двигателя, “видит”, что дроссельная заслонка открылась и увеличивает расход топлива, в ожидании того, что в двигатель поступит больше воздуха.
Важно, что бы расход топлива увеличивался как только откроется дроссельная заслонка, иначе при нажатии на педаль газа будет некоторое запаздывание.
Датчики также регистрируют массу воздуха, поступающего в двигатель, и количество кислорода в выхлопе. Опираясь на эту информацию, блок управления двигателем регулирует подачу топлива.
Форсунка.
Форсунка — это не что иное, как электромагнитный клапан, к которому подводится топливо и способный открываться множество раз в секунду. Когда на форсунку подаётся напряжение, электромагнитный клапан открывается и топливо под давлением распыляется через крошечные сопла. Сопла необходимы для того чтобы топливо превратить в мелкий туман, в таком состоянии оно лучше горит. Количество топлива, подаваемого в двигатель, определяется временем, когда топливная форсунка открыта. Это время зависит от ширины импульса, который подаёт электронный блок управления двигателем (ЭБУ). Форсунки установлены во впускном коллекторе и распыляют топливо прямо на клапана. Топливо подводится к форсункам через трубку, которая называется топливной рампой.
Датчики двигателя.
В целях обеспечения необходимого количества топлива на всех режимах работы двигателя, ЭБУ должен контролировать большое количество входных параметров, с различных датчиков.
Вот только некоторые из них:
- Датчик массового расхода воздуха — сообщает ЭБУ массу воздуха, поступающего в двигатель;
- Датчики кислорода — определяют количество кислорода в выхлопных газах, на основе этих данных ЭБУ корректирует качество смеси;
- Датчик положения дроссельной заслонки — контролирует положение дроссельной заслонки, которая определяет какое количество воздуха попадёт в двигатель, это позволяет ЭБУ быстрее реагировать, уменьшая или увеличивая расход топлива. Дело в том, что массовый расходомер воздуха (который по сути определяет массу воздуха поступающего в двигатель) инерционен, то есть при изменении потока воздуха он реагирует с некоторым опозданием.
Информация с дроссельной заслонки приходит раньше чем с массового расходомера воздуха, что позволяет нам не чувствовать его инерционности; - Датчик температуры охлаждающей жидкости — предоставляет данные ЭБУ о температуре охлаждающей жидкости;
- Датчик абсолютного давления — контролирует давление воздуха во впускном коллекторе.
По известному количеству воздуха, поступающего в двигатель, можно посчитать какая энергия образуется в двигателе. Чем больше воздуха поступает в двигатель, тем меньше разряжение во впускном коллекторе; - Вольтметр — контролирует напряжение сети, ЭБУ может поднять обороты холостого хода если напряжение сети упало, что указывает на высокую электрическую нагрузку;
Распределенный впрыск или как его ещё называют многоточечный, бывает четырёх видов:
- Одновременный впрыск — все форсунки открываются одновременно;
- Попарно-параллельный впрыск — форсунки открываются парами, только в одном цилиндре в это время впускной такт и топливо попадёт в цилиндр, а в другом выпускной. Но так как за попадание топлива в цилиндр отвечают клапана, это не мешает работе двигателя.
В современных моторах попарно-параллельный впрыск используется в аварийном режиме, когда неисправен датчик распредвала, также называемый датчиком фаз; - Фазированный впрыск — каждая форсунка открывается непосредственно перед впускным тактом;
- Прямой впрыск — тот же фазированный впрыск, только топливо впрыскивается прямо в камеру сгорания;
Микросхемы, управляющие работой двигателя.
Алгоритмы с помощью которых ЭБУ контролирует работу двигателя очень сложны.
Программное обеспечение должно позволить автомобилю удовлетворить все требования по токсичности выбросов. ЭБУ использует формулы и большое количество таблиц, чтобы определить длительность импульса, подаваемого на форсунки.
Давайте рассмотрим как это примерно происходит. Есть уравнение с помощью которого можно вычислить длительность импульса, для управления форсункой. В это формула входит множество переменных, некоторые из них берутся из таблиц. Мы пойдём по упрощённой схеме расчёта, будем считать что уравнение, которое описывает длительность импульса, состоит из двух коэффициентов и базовой длительности импульса, в реальной системе коэффициентов более сотни.
Выглядит формула следующим образом:
Длительность импульса = (базовая длительность импульса) х (коэффициент А) х (коэффициент B)
Для того чтобы вычислить длительность импульса, ЭБУ сначала смотрит базовую длительность импульса в справочной таблице. Базовая длительность импульса зависит от частоты вращения двигателя (RPM) и нагрузки (которая может быть вычислена из абсолютного давления в коллекторе). Предположим обороты двигателя 2000 оборотов в минуту и нагрузка равна 4. Находим значение на пересечении 2000 и 4, оно составляет 8 миллисекунд.
Далее, рассмотрим параметры А и B, которые приходят с датчиков. Давайте предположим, что параметр А это температура охлаждающей жидкости, а параметр В это показания датчика кислорода. Если температура охлаждающей жидкости равна 100 и уровень кислорода равен 3, из справочных таблиц находим что коэффициент А равен 0,8 а коэффициент В равен 1.
Теперь по известным данным рассчитаем длительность импульса:
Длительность импульса = 8 х 0,8 х 1,0 = 6,4 мс
Из этого примера, видно, как ЭБУ регулирует длительность импульса.
Системы реального контроля может иметь более 100 параметров, каждому параметру соответствует собственная таблица. И в зависимости от оборотов двигателя, ЭБУ, приходится производить расчёты более ста раз в минуту.
Производительность чипов.
Теперь когда мы понимаем как работает ЭБУ, можем поговорить о том как увеличить мощность двигателя. В ЭБУ есть чип в котором располагаются все справочные таблицы. Этот чип можно заменить на аналогичный, с другими таблицами. Эти таблицы будут содержать в себе значения, которые будут увеличивать подачу топлива на определённых этапах езды.
Например, можно увеличить количество топлива поступающего в двигатель как на полном газу, так и на любых оборотах. Поскольку производители таких прошивок для чипов, не озабочены количеством вредных выбросов, они используют более агрессивные настройки подачи топлива, при написании прошивки.
hubstub.ru
Принцип работы инжекторного двигателя, что такое инжекторный двигатель
Что такое инжекторный двигатель? Это разновидность двигателя с инжекторной системой подачи топлива. Данный вид двигателя обеспечивает экономичный расход топлива и уменьшение выбросов продуктов его сгорания в атмосферный воздух.
Основное его отличие от других типов состоит в особенностях работы системы подачи топлива. А именно, впрыскивание топлива осуществляется принудительно при помощи специального элемента для его дозирования (форсунки) в цилиндр или систему трубок и заслонок (впускной коллектор).
Инжекторные двигатели начали устанавливать с 1930х годов, но популярность они смогли завоевать только в конце 90хх годов.
Рис.№ 1. Современный инжекторный двигатель.
Типы инжекторных систем
Различают несколько типов данных систем в зависимости от способа подачи топлива, а именно:
- Инжекторная система с центральной подачей топлива. Одна форсунка поставляет смесь топлива и воздуха в коллектор¸ после чего происходит её распределение по всем цилиндрам;
- С многоточечной подачей. В этом варианте на каждый цилиндр имеется своя форсунка. Этот тип наиболее распространен. Чаще подача смеси осуществляется напрямую по цилиндру с последовательным топливовспрыском.
Выделяют также двух- и четырехтактные системы.
Такт – это все процессы, которые происходят в цилиндре за время одного ходя поршня.
Принцип работы инжекторного двигателя основан на сборе и оценке информации о состоянии двигателя и его работы с помощью специальных датчиков:
- Датчик оборотов. Производит передачу сигнала о скорости, на основании этих данных блок управления рассчитывает необходимый расход топлива;
- Датчик массового расхода воздуха. Измеряет силу воздушного потока;
- Температуры антифриза. Проводит замеры температурного режима системы охлаждения и активирует работу вентилятора при необходимости;
- Дроссельной заслонки. Осуществляет контроль положения заслонки дросселя и регулирует распределение топлива, которое попадает в камеру сгорания;
- Кислорода в выхлопных газах. Фиксирует концентрацию кислорода в выхлопных газах. А также обеспечивает необходимую концентрацию газов и топлива в камере сгорания;
- Детонации. Определяет силу взрыва в камере сгорания;
- Положения распределительного вала. Участвует в согласовании подачи топлива и работы двигателя;
- Температуры воздуха. Определяет температуру, которая поступает в двигатель. Контролёр инжектора (его «мозги») в результате обработки полученной информации, собранной от всех перечисленных приборов и устройств, регулирует работу следующих систем:
- Форсунок. Это электромагнитный клапан, который осуществляет распыление топлива за счёт давления;
- Электронасоса подачи топлива. Он контролирует давление в системе;
- Модуля зажигания. Соответствует количеству свечей зажигания. Управляет их работой;
- Регулятор холостого хода. Корректирует подачу воздуха в обход дроссельной заслонки на нейтральной передаче;
- Вентилятор, охлаждающий мотор.
Рис. №2. Форсунки — основной элемент инжекторного двигателя, отвечающий за распыление топлива (жидкости или газа).
Как работает инжектор
Каждый двигатель оснащен поршнями и цилиндрами. В них происходит преобразование тепловой энергии в механическую.
Рис. №3. Схема работы инжекторного двигателя и его устройство.
Для осуществления этого процесса в инжекторном двигателе существует несколько этапов:
1 этап – такт впуска. Поршень в начале этого этапа находится в верхней мертвой точке. С началом работы двигателя стартер проворачивает посредством маховиков коленчатый вал. Датчик коленвала посылает блоку управления инжектора информацию о положении конкретного цилиндра. Датчик фаз анализирует такты. Блок управления получив данную информацию, открывает в нужном цилиндре форсунку на строго определенное время.
А вы знаете, что у некоторых двигателей имеется несколько клапанов впуска? Они увеличивают мощность двигателя, а соответственно и скоростные характеристики автомобиля;
2 этап – сжатие топливовоздушной смеси. Когда поршень достигает нижней мертвой точки, он начинает снова подниматься. Что приводит к сжатию смеси топлива и газов до размеров камеры сгорания. Клапаны в этот момент закрыты;
3 — этап рабочего хода. На этом этапе происходит поджигание свечой зажигания сжатой смеси воздуха и топлива. Что провоцирует взрыв, посредством увеличения давления на дне поршня. Это приводит к тому, что поршень опускается вниз до уровня нижней мертвой точки.
Клапаны впуска и выпуска закрыты для того, чтобы сила давления на поршень была достаточной для проворачивания коленчатого вала.
После взрыва блок управления регулирует момент зажигания для последующего цилиндра. А так же нормирует газовый состав топливовоздушной смеси. Это позволяет предельно эффективно использовать топливо и его сгорание;
4 этап – такт выпуска. Предыдущий этап приводит к открытию выпускного клапана. Поршень начинает двигаться вверх, выбрасывая газы, образовавшиеся в результате взрыва и сгорания.
Важно! Прогрев двигателя не оказывает влияния на показания датчика массового расхода воздуха и датчика взрыва, так как блок управления работает по специальным запрограммированным таблицам.
Чем отличается инжекторный двигатель от карбюраторного
Рис. №4. Инжекторный и карбюраторный двигателя.
В работе и устройстве инжектора и карбюратора можно выделить следующие отличия:
- В инжекторном двигателе подача смеси газов и топлива осуществляется в специальную камеру, в карбюраторном двигателе образование топливовоздушной смеси происходит в самом карбюраторе;
- Смесь в инжекторном двигателе подается форсунками в цилиндры и в впускной коллектор принудительно. В карбюраторе этот процесс происходит само по себе;
- В инжекторном двигателе форсунки подают строго дозированное количество топлива;
- Инжекторная система обеспечивает мощность двигателя на 15% больше, чем карбюратор;
- Инжектор более экономичен и экологически безопасен, чем карбюратор.
Применение инжекторных двигателей
Изначально инжекторные двигатели устанавливали в авиации. Особую популярность получили во времена Второй Мировой войны. Авиамоторы тогда создавали именно с этой системой.
Затем инжекторы стали устанавливать в автомобили. В процессе ввода в широкие круги, инжекторы стали вытеснять карбюраторные варианты двигателей. И с 2005 года автомобильные двигателя оснащены именно инжекторной системой подачи топлива.
Достоинства и недостатки инжекторного двигателя
К его плюсам можно отнести:
- Экономичное потребление топлива;
- Большая динамика двигателя;
- Отсутствуют проблемы с запуском двигателя в холодное время года;
- Более надежный в эксплуатации, чем карбюраторный вариант;
- Нет необходимости ручного регулирования режимов его работы.
К недостаткам относят:
- Дороговизна запчастей;
- Сложная диагностика неисправностей;
- Некоторые детали не подлежат ремонту;
- Дорогие обслуживание и регулировка работы инжектора, ремонт требуется проводить в автомастерских;
- Чувствительны к топливу плохого качества.
Заключение
Не смотря на перечисленные недостатки, инжекторные двигатели представляют собой современный вариант топливной системы, обеспечивающий большую мощность и экономичное расходование топлива. А также более безопасную комплектацию двигателей в плане влияния на экологию.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:
Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.
principraboty.ru