14Авг

Впускная система двигателя: Впускная система, система впуска – назначение, устройство, принцип работы

Впускная и выпускная системы двигателей

Категория:

   Устройство и работа двигателя

Публикация:

   Впускная и выпускная системы двигателей

Читать далее:

   Топливные системы дизелей


Впускная и выпускная системы двигателей

Системы впуска и выпуска служат для подвода свежего заряда (воздуха или горючей смеси) к цилиндрам двигателя и отвода из них выпускных газов. В двигателях с внешним смесеобразованием во впускной системе также происходит смесеобразование, так как процесс испарения жидкого топлива и смешения его паров с воздухом или смешения горючего газа с воздухом не успевает завершиться в карбюраторе или газовом смесителе.

Общим требованием, предъявляемым к системам впуска и выпуска, является по возможности их малое сопротивление и благоприятное протекание газодинамических явлений в них, что необходимо для уменьшения насосных потерь и увеличения наполнения цилиндра, а также более полного использования энергии выпускных газов в газовой турбине.

Впускная система состоит из воздухозаборников с фильтрами и глушителями шума, компрессоров для сжатия воздуха, охладителей воздуха, впускного трубопровода, или ресивера, и впускных органов.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Компоновка и размеры трубопроводов зависят от типа, назначения и мощности двигателя внутреннего сгорания. Впускной трубопровод двигателя с внешним смесеобразованием делают литым из легких сплавов (обычно алюминиевых). На рис. 85 показан впускной трубопровод автомобильного двигателя. Сечение патрубков выбирают таким, чтобы сохранялась определенная скорость потока. Для улучшения испарения жидкого топлива смесь подогревают горячей водой, циркулирующей в полости. Если впускной и выпускной трубопроводы расположены с одной стороны двигателя, то подогрев смеси осуществляется от выпускного трубопровода. Для этого трубопроводы располагают по возможности ближе один к другому. Впускные трубопроводы дизелей выполняют аналогичным образом, только в этом случае не нужно подогревать воздух.

В V-образных двигателях впускной трубопровод часто размещают в развале блока.

В двигателях большой мощности (тепловозных, стационарных, судовых) впускной трубопровод обычно представляет собой цилиндрический ресивер с приваренными к нему патрубками. Воздух поступает в него с торца из воздухоочистителя или компрессора.

Рис. 1. Впускной трубопровод карбюраторного автомобильного двигателя: 1 — воздушная полость; 2 — водяная полость

Двухтактные двигатели, как правило, не имеют впускных трубопроводов. Воздух подается компрессором непосредственно в ресивер, размещаемый в полостях блока или выполняемый в виде отдельных литых или сварных конструкций. В двухтактных дизелях с цилиндрами небольших размеров (автотракторного и тепловозного типа) ресивером являются полости блока или полость между блоками при V-образ-ном или более сложном расположении цилиндров. В двухтактных дизелях большой мощности ресиверы размещают в полостях остова и в емкостях коробчатой или цилиндрической формы, которые крепят к остову двигателя.

Рис. 2. Впускной ресивер двухтактного дизеля

Рис. 3. Выпускной трубопровод двигателя с импульсным наддувом

Выпускная система включает выпускные органы, патрубки, выпускной трубопровод, дожигатели, нейтрализаторы выпускных газов, газовые турбины или другие устройства, необходимые для использования энергии выпускных газов для сжатия воздуха (волновые обменники давления), эжекционные устройства для удаления пыли из воздухоочистителей или для просасывания охлаждающего воздуха, утилизационный котел и глушители шума.

Выпускные трубопроводы на двигателях с цилиндрами небольших размеров выполняют в виде общего трубопровода, отлитого из серого или жаростойкого чугуна. Наиболее простой конструкцией выпускного трубопровода отличаются двигатели без наддува или с наддувом при постоянном давлении перед турбиной турбокомпрессора. В последнем случае выпускной трубопровод имеет большой объем или представляет собой устройство, в котором поток с переменными параметрами преобразуется в поток с постоянными параметрами. Такое устройство называется преобразователем импульсов.

Рис. 4. Охлаждаемый выпускной трубопровод тепловозного двигателя: В – отверстие для перетекания воды; 1 и 4 — секции трубопровода; 2—пароотводящие трубки; 3— рукав; 5, 9 и 17 — пробки; 6 — фланец; 7 — компенсатор; 8 — соединительная трубка; 10 — патрубок перетекающей воды; 11 — сливная трубка; 12 — газовая труба; 13 и 14 — трубы; 15 и 20 — болты; 16 и 21 — прокладки; 18 — втулка; 19 — уплотнительное кольцо

Рис. 5. Схема поршневого компенсатора выпускного трубопровода двигателя ДН 23/30

При использовании импульсной системы наддува давление газов перед турбиной переменное. Поперечное сечение и объем выпускного трубопровода выбирают минимально допустимыми по условию обеспечения лучшего использования энергии выпускных газов в газовой турбине. Наилучшие показатели двигателя при такой системе наддува получаются в том случае, если в один трубопровод происходит выпуск не более чем из трех цилиндров.

Для предохранения обслуживающего персонала от ожогов на судовых и тепловозных двигателях выпускной трубопровод охлаждается водой или покрывается теплоизолирующим материалом. Теплоизолированные трубопроводы более предпочтительны для двигателей с газотурбинным наддувом, так как в этом случае уменьшаются потери энергии выпускных газов.

Рис. 6. Секция охлаждаемого выпускного трубопровода: Б — окно для прохода воды; 1 — крышка; 2 — болт; 3 — штуцер; 4 — штуцер под термопару; 5— крышка секции; 6 — секция; 7 — выпускная коробка

При нагревании и остывании длина выпускного трубопровода изменяется. Поэтому перед трубиной устанавливают компенсаторы. На больших двигателях компенсаторами соединяют также отдельные секции выпускных трубопроводов, которые по технологическим соображениям делают составными. Существует несколько типов компенсаторов. Схема поршневого компенсатора показана на рис. 5. Гофрированная труба компенсатора препятствует утечке выпускных газов, прорывающихся через кольца, и в то же время дает возможность перемещаться наружной и внутренней втулкам между собой в продольном направлении.

На рис. 6 показана секция охлаждаемого выпускного трубопровода двухтактного с противоположно движущимися поршнями двигателя большой мощности.

Особенностью конструкции является объединение в одной детали выпускной коробки с секцией собственно выпускного трубопровода.

ВПУСКНАЯ СИСТЕМА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С РЕГУЛИРУЕМОЙ ЭФФЕКТИВНОЙ ДЛИНОЙ. Патент № RU 151824 МПК F02B27/02 | Биржа патентов

Реферат

Впускная система двигателя внутреннего сгорания с регулируемой эффективной длиной, содержащая регулируемый участок трубопровода, отличающаяся тем, что регулируемый участок трубопровода содержит круговую полость, в которой установлен кольцевой подвижный элемент с окном для связи с атмосферой.

Формула изобретения

Впускная система двигателя внутреннего сгорания с регулируемой эффективной длиной, содержащая регулируемый участок трубопровода, отличающаяся тем, что регулируемый участок трубопровода содержит круговую полость, в которой установлен кольцевой подвижный элемент с окном для связи с атмосферой.

Описание

Полезная модель относится к двигателестроению, в частности, к впускным системам двигателей внутреннего сгорания (ДВС).

Известен составной впускной коллектор (патент США №6234130, МПК F02M 35/10, опубл. 2001), предназначенный для многоцилиндрового автомобильного двигателя и, содержащий общий воздуховод и внутренние индивидуальные патрубки к впускным коллекторам каждого цилиндра. Такие впускные коллекторы применяются на многих современных бензиновых двигателях с впрыскиванием бензина.

Однако, трубопровод определенной длины обеспечивает только резонансный наддув, при котором отраженная от ресивера волна повышенного давления подходит к впускному клапану в завершающей фазе впуска, в узком диапазоне частоты вращения коленчатого вала двигателя. Следовательно, увеличение коэффициента наполнения и, как следствие, эффективной мощности и крутящего момента двигателя, снижение эффективного удельного расхода топлива, дымности и токсичности отработавших газов будет обеспечиваться только тоже в узком диапазоне частоты вращения коленчатого вала.

Известно устройство для автоматического регулирования длины впускного трубопровода двигателя внутреннего сгорания (патент РФ №83100, F02B 27/00, опубл. 20.05.2009), которое содержит воздушный ресивер, а именно впускной трубопровод каждого цилиндра выполнен составным и состоит из внутреннего и внешнего трубопроводов, причем внутренний трубопровод выполнен за одно целое с воздушным ресивером, а внешний трубопровод скользит по внешней поверхности внутреннего трубопровода, Нигрона-В, причем на внутреннем и внешнем трубопроводах закреплен с помощью хомутов гофрированный трубопровод, соединенный с рычагом, закрепленным на валу понижающего редуктора, приводимого во вращение электродвигателем постоянного тока, получающего сигналы (команды) от электронной системы управления, содержащей электронный блок управления, датчик частоты вращения коленчатого вала двигателя, колодку диагностирования, диагностическое табло, соединенные между собой с помощью электрических проводов. В зоне высоких частот вращения коленчатого вала заслонки, располагаемые в двухступенчатых впускных трубопроводах открыты, и воздух движется по короткому каналу. При переходе на средние и низкие частоты вращения коленчатого вала движение воздуха осуществляется по длинному каналу путем закрытия заслонки.

Однако, при такой конструкции впускных трубопроводов эффект резонансного наддува может быть использован только на двух режимах по частоте вращения коленчатого вала. Следовательно, при работе двигателя на других частотах вращения коленчатого вала эффективная мощность и крутящий момент двигателя, как и динамика автомобиля, будут снижаться, а удельный эффективный расход топлива будет увеличиваться.

Известно впускное устройство (патент США №4932369, F02B 27/02, опубл. 28.02.90), которое предлагает регулирования длины впускных каналов, где роль клапана выполняет золотниковое устройство, расположенное между участками первой и второй длины, ось вращения которого расположена поперечно впускному каналу. При этом в зависимости от угла поворота клапана включается длинный или короткий каналы.

Недостатками конструкции является большой угол поворота золотника для переключения длины каналов, что приводит к сложности исполнительного механизма и высокой инерционности срабатывания.

Наиболее близким по технической сущности и достигаемому результату к заявленному является устройство трубопровода с регулируемой эффективной длиной (патент РФ №2008458, F02B27/00, опубл. 28.02.1994), а именно регулирование длины трубопровода за счет открытия какого-либо из клапанов из ряда последовательно расположенных на прорези клапанов. Трубопровод состоит из регулируемого участка, имеющего на длину регулирования прорезь, и ряда клапанов, закрывающих прорезь, за счет открытия одного из клапанов, осуществляется связь трубопровода с окружающей средой.

Данное устройство имеет сложную конструкцию, что ведет к увеличению стоимости впускной системы в целом и большие габариты для изменения эффективной длины на всех различных режимах работы двигателя.

Задачей изобретения является повышение мощностных и экономических показателей двигателя внутреннего сгорания.

Технический результат — увеличение коэффициента наполнения двигателя внутреннего сгорания, повышение мощности, снижение дымности и токсичности отработавших газов.

Поставленная задача решается, а технический результат достигается тем, что во впускной системе двигателя внутреннего сгорания с регулируемой эффективной длиной, содержащей регулируемый участок трубопровода, согласно полезной модели, регулируемый участок трубопровода содержит круговую полость, в которой установлен кольцевой подвижный элемент с окном для связи с атмосферой.

Существо полезной модели поясняется чертежом. На чертеже показана впускная система ДВС с регулируемой эффективной длиной.

Впускная система содержит круговую полость 1, кольцевой подвижный элемент 2, патрубок 3, соединяющий впускную систему с двигателем внутреннего сгорания, окно 4 для связи с атмосферой, которое выполнено с изменением диаметра по закону Бернулли для снижения аэродинамического сопротивления.

Впускная система ДВС с регулируемой эффективной длиной работает следующим образом.

При работе двигателя на режиме минимальной частоты вращения коленчатого вала положение круговой полости 1 находится так, чтобы эффективная длина трубопровода была максимальной. С увеличение частоты вращения коленчатого вала положение круговой полости 1 изменяется пропорционально зависимости оборотов коленчатого вала от угла поворота круговой полости 1 в сторону уменьшения эффективной длины трубопровода. При работе двигателя на режиме максимальной частоты вращения коленчатого вала положение круговой полости 1 находится так, чтобы эффективная длина трубопровода была минимальной.

w3.org/1998/Math/MathML3″ com:pnumber=»17″>Таким образом, заявляемое устройство обеспечивает бесступенчатую регулировку длины впускных трубопроводов на всех скоростных режимах работы двигателя.

Что такое впускная система?

Впускная система представляет собой набор компонентов, которые позволяют двигателю внутреннего сгорания вдыхать так же, как выхлопная система позволяет ему выдыхать. Ранние автомобильные впускные системы были просто впускными отверстиями, которые позволяли воздуху беспрепятственно проходить в карбюратор, но современные системы намного сложнее.

Современные безнаддувные воздухозаборники состоят как минимум из четырех основных элементов (впускной коллектор, воздушный фильтр, датчик массового расхода воздуха и корпус дроссельной заслонки), но они по-прежнему выполняют ту же основную функцию, что и простые воздухозаборники в начале автомобили. Другие воздухозаборники включают такие компоненты, как турбокомпрессоры и нагнетатели для увеличения мощности двигателя.

Содержание

История автомобильных впускных систем

На протяжении большей части ранней истории автомобилей впускные системы были чрезвычайно простыми . У первых автомобилей были «системы впуска», которые буквально состояли из ничего, кроме входа свежего воздуха в карбюратор. Это обеспечивало беспрепятственный приток воздуха к карбюратору (а значит и к двигателю, который по мощности хорош, но и с ним были довольно большие проблемы)9.0003

В ранних автомобилях не было ни воздушного, ни топливного фильтров.

Поскольку воздух часто содержит твердые частицы и другой мелкий мусор, особенно в песчаной и пыльной среде, нефильтрованный воздухозаборник может привести к попаданию загрязняющих веществ в карбюратор, что может вызвать целый список проблем. Это привело к разработке первых воздушных фильтров сначала в сельскохозяйственной, а затем в автомобильной промышленности. Согласно Preston Tucker & Others: Tales of Brilliant Automotive Innovators & Innovations, первым серийным автомобилем, оснащенным воздушным фильтром, был Packard 19. 15 Твин Шесть.

До введения системы впрыска топлива и компьютерного управления безнаддувные автомобильные системы впуска оставались относительно неизменными. Однако тем временем появились как нагнетатели, так и турбокомпрессоры.

Oldsmobile Jetfire 1962/63 годов был первым серийным автомобилем с турбокомпрессором.

Хотя нагнетатели уходят своими корнями в технологии, предшествовавшие появлению первых автомобилей (и некоторые ранние патенты были выданы до начала 20-го века), первый серийный автомобиль с наддувом появился только в 1921, когда Mercedes оснастил этой технологией две модели. Это добавило нагнетатели Roots к системам впуска Mercedes 6/25/40 и 10/40/65, которые тогда были известны как модели Kompressor.

Первые турбокомпрессоры появились примерно в то же время, но они использовались только в самолетах. В то время в локомотивах, кораблях и других транспортных средствах также использовались дизели с турбонаддувом. Однако первый автомобильный турбокомпрессор не появлялся еще несколько десятилетий. Oldsmobile был первой маркой, представившей нагнетатель, который был включен в 19 модельный год.62/63 Олдсмобиль F85 Джетфайр. Chevrolet также предлагал нагнетатель в 1962 году для ограниченной серии Corvair, которые продавались как «Monza Spyder», а затем как «Corsa».

Следующим крупным достижением в истории систем впуска воздуха стало внедрение других технологий, таких как впрыск топлива и компьютерное управление. Эти технологии и растущие требования к контролю за выбросами привели к разработке таких устройств, как датчики массового расхода воздуха, которые сейчас широко распространены.

Компоненты системы впуска

Простейшие системы впуска состоят не более чем из впускного отверстия для свежего воздуха, но современные (с впрыском топлива) системы обычно включают:

  • воздушный фильтр
  • расходомер воздуха или датчик
  • впускной коллектор
  • корпус дроссельной заслонки

Вверху: впускной коллектор
В середине: корпус дроссельной заслонки
Внизу: корпус воздушного фильтра (включая MAF)

Турбокомпрессоры и нагнетатели

Помимо этих основных элементов, двигатели с наддувом и турбонаддувом включают дополнительные компоненты впуска. Эти системы отличаются от двигателей без наддува тем, что в них используется либо турбина с приводом от выхлопных газов (турбокомпрессоры), либо насос с приводом от двигателя (нагнетатели) для увеличения объема воздуха, проходящего через систему впуска.

Как работает система впуска?

Чтобы понять, как работает система впуска, полезно представить двигатель внутреннего сгорания в виде большого воздушного насоса. Он всасывает воздух с одного конца (впуск) и выбрасывает воздух с другого конца (выпуск). Для того, чтобы этот процесс происходил в современных двигателях, постоянно должно быть доступно точное количество чистого отфильтрованного воздуха. Это означает, что система впуска воздуха в основном работает следующим образом:

  • обеспечивая доступ воздуха к двигателю
  • фильтрация воздуха
  • , сообщающий объем воздуха в блок управления двигателем

Имея это в виду, типичная система впуска в современном автомобиле с впрыском топлива начинается с впускного коллектора, который крепится к головке блока цилиндров. Этот коллектор соединяется с впускными отверстиями на головке блока цилиндров, что позволяет подавать либо воздух, либо воздушно-топливную смесь во время такта впуска каждого цилиндра. Конкретная конфигурация впускного коллектора может широко варьироваться от одного приложения к другому, но обычно они прикреплены к корпусу дроссельной заслонки, который является компонентом, который непосредственно регулирует поток воздуха во впуске.

В большинстве случаев корпус дроссельной заслонки — это компонент, которым вы фактически управляете с помощью педали «газа». Когда вы нажимаете на «газ», вы фактически открываете дроссельную заслонку, что позволяет большему количеству воздуха поступать в двигатель. В то время как большинство двигателей с впрыском топлива имеют один корпус дроссельной заслонки, некоторые из них имеют более одного.

В более старых автомобилях использовались карбюраторы, которые представляли собой компоненты, которые по существу объединяли функциональность топливных форсунок и корпусов дроссельной заслонки в одном компоненте.

Отказ системы впуска

Нагар может вызвать проблемы с работой корпуса дроссельной заслонки.

Поскольку системы впуска состоят из множества различных компонентов, существует множество вещей, которые могут пойти не так. Чаще всего выходит из строя воздушный фильтр, так как он со временем засоряется и требует замены. Когда воздушный фильтр засоряется, он не позволяет двигателю «вдыхать воздух», что может привести к серьезной потере мощности. Кроме того, воздушные фильтры могут быть загрязнены газом или маслом из-за определенных проблем с двигателем. Когда это происходит, необходимо заменить воздушный фильтр, но также необходимо устранить основную проблему (например, прорыв газов и т. д.).

Другие проблемы могут возникнуть с впускным коллектором, дроссельной заслонкой и различными датчиками. Утечка во впускном коллекторе позволяет дополнительному воздуху попасть в систему, которая не контролируется, что приведет к проблемам с управляемостью. Утечки в шлангах, трубках или разъемах между корпусом дроссельной заслонки и датчиком массового расхода воздуха также могут вызывать проблемы по тем же причинам, что и неисправный датчик массового расхода воздуха. Компоненты в корпусе дроссельной заслонки, такие как датчик положения дроссельной заслонки и регулятор холостого хода, также могут вызывать проблемы, как и закоксовывание, загрязнение или внутренние механические неисправности внутри самого корпуса дроссельной заслонки.

Система впуска воздуха автомобиля

08 апреля 2011Просмотрено : 0 раз

Система впуска воздуха вашего автомобиля втягивает воздух извне в двигатель. Но знаете ли вы точно, как это работает? Вот что вам нужно знать.


Есть несколько автовладельцев, которые не совсем уверены, что делает система впуска воздуха, как она работает и насколько она важна для автомобиля. В 1980-х годах были предложены первые системы впуска воздуха, которые состояли из формованных пластиковых впускных трубок и воздушного фильтра из хлопчатобумажной марли конусообразной формы.

Десять лет спустя зарубежные производители начали импортировать популярные японские конструкции систем впуска воздуха для рынка компактных спортивных автомобилей. Теперь, благодаря технологическому прогрессу и изобретательности инженеров, впускные системы доступны в виде металлических трубок, что обеспечивает большую степень индивидуальной настройки. Трубы обычно покрыты порошковой краской или окрашены в цвет автомобиля.

Теперь, когда современные двигатели не оснащены карбюраторами, нас беспокоят двигатели с впрыском топлива. Так вот вопрос — что именно нам нужно об этом знать?

Система впуска воздуха и принцип ее работы

Функция системы впуска воздуха состоит в том, чтобы воздух поступал в двигатель автомобиля. Кислород в воздухе является одним из необходимых компонентов для процесса сгорания в двигателе. Хорошая система впуска воздуха обеспечивает чистый и непрерывный поток воздуха в двигатель, тем самым увеличивая мощность и увеличивая пробег вашего автомобиля.

Хорошая система впуска воздуха обеспечивает чистый и непрерывный поток воздуха в двигатель

Современная система впуска воздуха автомобиля состоит из трех основных частей — воздушного фильтра, датчика массового расхода воздуха и корпуса дроссельной заслонки. Расположенная непосредственно за передней решеткой система впуска воздуха всасывает воздух через длинную пластиковую трубку, идущую в корпус воздушного фильтра, который будет смешиваться с автомобильным топливом. Только после этого воздух будет поступать во впускной коллектор, который подает топливно-воздушную смесь в цилиндры двигателя.

Воздушный фильтр

Воздушный фильтр является важной частью впускной системы автомобиля, поскольку именно через воздушный фильтр двигатель «дышит». Обычно это пластиковая или металлическая коробка, в которой находится воздушный фильтр.

Для работы двигателя требуется точная смесь топлива и воздуха, и весь воздух сначала поступает в систему через воздушный фильтр. Работа воздушного фильтра состоит в том, чтобы отфильтровывать грязь и другие посторонние частицы в воздухе, предотвращая их попадание в систему и возможное повреждение двигателя.

Воздушный фильтр предотвращает попадание грязи и других инородных частиц из воздуха в систему.

Воздушный фильтр обычно располагается в потоке воздуха, поступающем к блоку дроссельной заслонки и впускному коллектору. Он находится в отсеке в воздуховоде к узлу дроссельной заслонки под капотом вашего автомобиля.

Подробнее о воздушных фильтрах.

Датчик массового расхода воздуха

Датчик массового расхода воздуха используется для определения массы воздуха, поступающего в двигатель внутреннего сгорания с впрыском топлива. Значит, от датчика массового расхода он идет к дроссельной заслонке.

В автомобильных двигателях используются датчики массового расхода воздуха двух распространенных типов. Это крыльчатка и горячая проволока.

Лопастной тип имеет заслонку, толкаемую поступающим воздухом. Чем больше воздуха поступает, тем сильнее отодвигается заслонка. Также есть вторая лопасть позади основной, которая входит в закрытый изгиб, который амортизирует движение лопасти, обеспечивая более точное измерение.

Горячая проволока использует серию проволок, натянутых в воздушном потоке. Электрическое сопротивление провода увеличивается по мере увеличения температуры провода, что ограничивает электрический ток, протекающий через цепь. Когда воздух проходит мимо провода, он охлаждается, уменьшая свое сопротивление, что, в свою очередь, позволяет большему току течь по цепи.

Однако по мере протекания большего тока температура провода увеличивается до тех пор, пока сопротивление снова не достигнет равновесия.

Двумя наиболее распространенными типами датчиков массового расхода воздуха являются крыльчатка и термометр

Забор холодного воздуха и принцип его работы мощность и эффективность. В наиболее эффективных системах впуска используется воздушная камера, размер которой соответствует двигателю и расширяет диапазон мощности двигателя. Впускная трубка или отверстие для впуска воздуха в систему должно быть достаточно большим, чтобы обеспечить поступление достаточного количества воздуха в двигатель при любых условиях от холостого хода до полного открытия дроссельной заслонки.

Забор холодного воздуха работает по принципу увеличения количества кислорода, доступного для сгорания с топливом. Поскольку более холодный воздух имеет более высокую плотность (большую массу на единицу объема), воздухозаборники обычно работают за счет подачи более холодного воздуха из-за пределов горячего моторного отсека.

Самый простой воздухозаборник холодного воздуха заменяет стандартную воздушную камеру короткой металлической или пластиковой трубкой, ведущей к коническому воздушному фильтру, называемому коротким напорным воздухозаборником. Мощность, полученная этим методом, может варьироваться в зависимости от того, насколько ограничена заводская воздушная камера.

Хорошо спроектированные воздухозаборники используют теплозащитные экраны для изоляции воздушного фильтра от остальной части моторного отсека, обеспечивая более прохладный воздух спереди или сбоку моторного отсека. Некоторые системы, называемые «креплением на крыло», перемещают фильтр в стенку крыла, эта система втягивает воздух через стенку крыла, что обеспечивает еще большую изоляцию и еще более прохладный воздух.

Корпус дроссельной заслонки

Корпус дроссельной заслонки — это часть системы впуска воздуха, которая регулирует количество воздуха, поступающего в камеру сгорания двигателя. Он состоит из просверленного корпуса, в котором находится дроссельная заслонка, вращающаяся на валу.

Корпус дроссельной заслонки количество воздуха, поступающего в камеру сгорания двигателя

При нажатии педали акселератора дроссельная заслонка открывается и пропускает воздух в двигатель. При отпускании акселератора дроссельная заслонка закрывается и эффективно перекрывает поток воздуха в камеру сгорания. Этот процесс эффективно контролирует скорость сгорания и, в конечном счете, скорость автомобиля. Корпус дроссельной заслонки обычно расположен между коробкой воздушного фильтра и впускным коллектором, и он обычно расположен рядом с датчиком массового расхода воздуха.

Как это улучшает вашу систему впуска воздуха

Некоторые из преимуществ системы впуска холодного воздуха включают увеличение мощности и крутящего момента. Поскольку холодный воздухозаборник всасывает больший объем воздуха, который может быть намного холоднее, ваш двигатель может дышать легче, чем с ограничительной стандартной системой. Когда ваша камера сгорания заполнена более холодным, богатым кислородом воздухом, топливо сгорает на более эффективной смеси. Вы получаете больше мощности и крутящего момента от каждой капли топлива, когда она сочетается с правильным количеством воздуха.

Другим преимуществом холодного воздухозаборника является улучшенная реакция дроссельной заслонки и экономия топлива в большинстве случаев. Штатные воздухозаборники часто подают более теплые, богатые топливом смеси сгорания, из-за чего ваш двигатель теряет мощность и приемистость, работая при более высоких температурах и медленнее. Холодные воздухозаборники могут помочь вам сэкономить топливо, улучшив соотношение воздуха и топлива.

Ищете запчасти для улучшения характеристик вашего автомобиля? Посетите нашу торговую площадку!

*Эта статья была обновлена ​​17 th  April 2018.


Есть несколько автовладельцев, которые не совсем уверены в том, что делает система впуска воздуха, как она работает и насколько она важна для автомобиля. В 1980-х годах были предложены первые системы впуска воздуха, которые состояли из формованных пластиковых впускных трубок и воздушного фильтра из хлопчатобумажной марли конусообразной формы.

Десять лет спустя зарубежные производители начали импортировать популярные японские системы впуска воздуха для рынка компактных спортивных автомобилей. Теперь, благодаря технологическому прогрессу и изобретательности инженеров, впускные системы доступны в виде металлических трубок, что обеспечивает большую степень индивидуальной настройки. Трубы обычно покрыты порошковой краской или окрашены в цвет автомобиля.

Теперь, когда современные двигатели не оснащены карбюраторами, нас интересуют двигатели с впрыском топлива. Так вот вопрос — что именно нам нужно об этом знать?

Система впуска воздуха и принцип ее работы

Функция системы впуска воздуха заключается в обеспечении поступления воздуха в двигатель автомобиля. Кислород в воздухе является одним из необходимых компонентов для процесса сгорания в двигателе. Хорошая система впуска воздуха обеспечивает чистый и непрерывный поток воздуха в двигатель, тем самым увеличивая мощность и увеличивая пробег вашего автомобиля.

Хорошая система впуска воздуха обеспечивает чистый и непрерывный поток воздуха в двигатель

Современная система впуска воздуха автомобиля состоит из трех основных частей: воздушного фильтра, датчика массового расхода воздуха и корпуса дроссельной заслонки. Расположенная непосредственно за передней решеткой система впуска воздуха всасывает воздух через длинную пластиковую трубку, идущую в корпус воздушного фильтра, который будет смешиваться с автомобильным топливом. Только после этого воздух будет поступать во впускной коллектор, который подает топливно-воздушную смесь в цилиндры двигателя.

Воздушный фильтр

Воздушный фильтр является важной частью впускной системы автомобиля, поскольку именно через воздушный фильтр двигатель «дышит». Обычно это пластиковая или металлическая коробка, в которой находится воздушный фильтр.

Для работы двигателя требуется точная смесь топлива и воздуха, и весь воздух сначала поступает в систему через воздушный фильтр. Работа воздушного фильтра состоит в том, чтобы отфильтровывать грязь и другие посторонние частицы в воздухе, предотвращая их попадание в систему и возможное повреждение двигателя.

Воздушный фильтр предотвращает попадание грязи и других инородных частиц из воздуха в систему.

Воздушный фильтр обычно располагается в потоке воздуха, поступающем к блоку дроссельной заслонки и впускному коллектору. Он находится в отсеке в воздуховоде к узлу дроссельной заслонки под капотом вашего автомобиля.

Подробнее о воздушных фильтрах.

Датчик массового расхода воздуха

Датчик массового расхода воздуха используется для определения массы воздуха, поступающего в двигатель внутреннего сгорания с впрыском топлива. Значит, от датчика массового расхода он идет к дроссельной заслонке.

В автомобильных двигателях используются датчики массового расхода воздуха двух распространенных типов. Это крыльчатка и горячая проволока.

Лопастной тип имеет заслонку, толкаемую поступающим воздухом. Чем больше воздуха поступает, тем сильнее отодвигается заслонка. Также есть вторая лопасть позади основной, которая входит в закрытый изгиб, который амортизирует движение лопасти, обеспечивая более точное измерение.

Горячая проволока использует серию проволок, натянутых в воздушном потоке. Электрическое сопротивление провода увеличивается по мере увеличения температуры провода, что ограничивает электрический ток, протекающий через цепь. Когда воздух проходит мимо провода, он охлаждается, уменьшая свое сопротивление, что, в свою очередь, позволяет большему току течь по цепи.


Однако по мере увеличения тока температура провода увеличивается до тех пор, пока сопротивление снова не достигнет равновесия.

Двумя наиболее распространенными типами датчиков массового расхода воздуха являются крыльчатка и термометр

Забор холодного воздуха и принцип его работы мощность и эффективность. В наиболее эффективных системах впуска используется воздушная камера, размер которой соответствует двигателю и расширяет диапазон мощности двигателя. Впускная трубка или отверстие для впуска воздуха в систему должно быть достаточно большим, чтобы обеспечить поступление достаточного количества воздуха в двигатель при любых условиях от холостого хода до полного открытия дроссельной заслонки.

Забор холодного воздуха работает по принципу увеличения количества кислорода, доступного для сгорания с топливом. Поскольку более холодный воздух имеет более высокую плотность (большую массу на единицу объема), воздухозаборники обычно работают за счет подачи более холодного воздуха из-за пределов горячего моторного отсека.

Самый простой воздухозаборник холодного воздуха заменяет стандартную воздушную камеру короткой металлической или пластиковой трубкой, ведущей к коническому воздушному фильтру, называемому коротким напорным воздухозаборником. Мощность, полученная этим методом, может варьироваться в зависимости от того, насколько ограничена заводская воздушная камера.

Хорошо спроектированные воздухозаборники используют теплозащитные экраны для изоляции воздушного фильтра от остальной части моторного отсека, обеспечивая более прохладный воздух спереди или сбоку моторного отсека. Некоторые системы, называемые «креплением на крыло», перемещают фильтр в стенку крыла, эта система втягивает воздух через стенку крыла, что обеспечивает еще большую изоляцию и еще более прохладный воздух.

Корпус дроссельной заслонки

Корпус дроссельной заслонки — это часть системы впуска воздуха, которая регулирует количество воздуха, поступающего в камеру сгорания двигателя. Он состоит из просверленного корпуса, в котором находится дроссельная заслонка, вращающаяся на валу.

Корпус дроссельной заслонки количество воздуха, поступающего в камеру сгорания двигателя

При нажатии педали акселератора дроссельная заслонка открывается и пропускает воздух в двигатель. При отпускании акселератора дроссельная заслонка закрывается и эффективно перекрывает поток воздуха в камеру сгорания. Этот процесс эффективно контролирует скорость сгорания и, в конечном счете, скорость автомобиля. Корпус дроссельной заслонки обычно расположен между коробкой воздушного фильтра и впускным коллектором, и он обычно расположен рядом с датчиком массового расхода воздуха.

Как это улучшает вашу систему впуска воздуха

Некоторые из преимуществ системы впуска холодного воздуха включают увеличение мощности и крутящего момента. Поскольку холодный воздухозаборник всасывает больший объем воздуха, который может быть намного холоднее, ваш двигатель может дышать легче, чем с ограничительной стандартной системой. Когда ваша камера сгорания заполнена более холодным, богатым кислородом воздухом, топливо сгорает на более эффективной смеси. Вы получаете больше мощности и крутящего момента от каждой капли топлива, когда она сочетается с правильным количеством воздуха.

Другим преимуществом холодного воздухозаборника является улучшенная реакция дроссельной заслонки и экономия топлива в большинстве случаев.