11Апр

Увеличение степени сжатия двигателя: Как увеличить степень сжатия и что это дает

Содержание

Уменьшение и увеличение степени сжатия двигателя автомобиля

Кто-то хочет больше мощности и задумывается над увеличением степени сжатия. Другие, желают дефорсировать мотор и уменьшают её. Поговорим про уменьшение и увеличение степени сжатия, зачем это делают.

Увеличение степени сжатия

Увеличение степени сжатия является одной из основных методик поднятия мощности. Тем самым можно получить больше отдачи с того же объема двигателя. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования детонации. Если значительно повысим степень сжатия, то мощность повысится, но придется заправляться более высокооктановым топливом. С другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене будет несущественна.

2 способа увеличить степень сжатия

Установка более тонкой прокладки двигателя

При таком варианте, клапана могут столкнуться с поршнями и нужно все тщательно рассчитывать. Как вариант — установка новых поршней с более глубокими выемки под клапана. Также изменятся фазы газораспределения и нужно будет их заново настраивать.

Растачивание цилиндров

Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, т.к. камера сгорания остается прежней, но объем цилиндра увеличивается. Отношение объема возросшего цилиндра к прежнему объему камеры сгорания покажет большую величину степени сжатия. Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9, чем с 13 до 14.

Уменьшение степени сжатия

Для чего уменьшают степень сжатия мотора? Если при увеличении добивались повышения мощности, то тут ситуация противоположная. Уменьшение степени сжатия производиться с целью перевести автомобиль на более дешевый бензин.


Так, в старые времена поступали владельцы «Жигулей» и «Москвичей», когда переводили машины с дорогого 92-ого бензина на более дешевый и доступный 76-ой. Для этих целей используется аналогичный способ, только придется увеличить высоту прокладки под головку двигателя. Берем две обычные прокладки и между ними вставляем алюминиевую нужной толщины. Прокладки, если нужно, вырезались самостоятельно в гараже с помощью подручных средств. Если на современной иномарке уменьшить степень сжатия до 8, то ее динамика будет как у «копейки». Многие моторы можно заправлять 92-ым бензином вместо 95-ого и у многих даже детонации не случается. Когда машина на гарантии, то не стал бы экономить. Ведь на 95-ом бензине расход топлива меньше, чем на 92-ом и при чуть высшей цене — общая стоимость на бензин выходит равной. Что было проверено на практике. Другое дело, производитель указывает ездить на более высокооктановом бензине из-за норм экологичности. Если в новую машину заправить более дешевый бензин — может выйти из строя катализатор, т.к. 92-ый бензин имеет меньшую температуру горения. Плюс могут засориться форсунки.

По поводу детонации. Делать переделку мотора, чтобы заправлять 92 вместо 95 бензина — глупо. Чтобы сознательно уменьшать степень сжатия нужны более веские причины, например так поступают при установке турбокомпрессора на двигатель, чтобы избавиться от детонации.

После вышеописанной процедуры уменьшиться степень сжатия за счет увеличения камеры сгорания двигателя и можно заливать дешевый бензин. Не рекомендуем делать эту операцию на современном авто, оборудованным большим количеством электроники, во избежание неприятностей.

АЗЛК Team: Повышение степени сжатия


Термический КПД двигателя ηt в значительной степени зависит от величины степени сжатия ε. Чем выше степень сжатия, тем меньше топлива используется для получения той же самой мощности, поэтому повышение степени сжатия — один из основных методов увеличения мощности двигателя. Термический КПД двигателя при увеличении степени сжатия увеличивается сначала быстро, а после значений степени сжатия 12-13 — несколько медленнее.

Увеличение степени сжатия ограничивается появлением детонации вследствие роста температуры рабочей смеси в конце хода сжатия, в результате чего двигатель перегревается, наполнение цилиндров бензовоздушной смесью ухудшается, износ основных деталей двигателя повышается в 2-3 раза. Сильная детонация может привести к прогоранию днища поршня. Практически предельное значение степени сжатия ограничивается октановым числом применяемого моторного топлива. Наиболее рациональным является форсировка двигателя до степени сжатия 9,8 — 10, что подтверждается опытом участия в спортивных соревнованиях в нашей стране и за рубежом. Указанные значения также типичны для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам многих форсированных двигателей. При увеличении продолжительности такта впуска посредством установки распределительного вала с более длительным периодом впуска прирост мощности от степени сжатия становится еще более значительным.

Прирост мощности при увеличении степени сжатия можно определить по приведенной ниже таблице, показывающей приращение мощности двигателя от исходной величины при изменении степени сжатия. Для этого находят в таблице столбец с исходной степенью сжатия и колонку с новой предполагаемой степенью сжатия. Прочитанное значение в элементе таблицы покажет увеличение мощности в процентах.

исходная степень сжатия

8

9

10

11

12

13

14

новая степень сжатия

14

8.7

6.7

5.0

3.5

2.2

1.0

0

13

7.6

5.6

3.9

2.4

1.2

0

12

6.5

4.5

2.8

1.3

0

11

5.2

3.2

1.5

0

10

3.7

1.7

0

9

2

0

8

0

Данные таблицы базируются на механических степенях сжатия, определенных путем математических расчетов из фиксированного объема, а не на динамических степенях сжатия, которые будут увеличиваться при увеличении эффективности впуска. При улучшении наполнения цилиндра динамическая степень сжатия увеличивается подобно увеличению объема цилиндра, т.к. в цилиндр будет поступать больше воздуха и топлива.

Практически увеличение степени сжатия не всегда приводит к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, ее дальнейшее увеличение может ухудшить мощность и/или надежность двигателя. Это особенно справедливо, когда достигнут коэффициент наполнения цилиндра больше 1. К тому же, когда коэффициент наполнения цилиндра больше 1, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. Однако если мы увеличиваем степень сжатия путем уменьшения объема камеры сгорания или путем увеличения выпуклости поршня, то общее количество бензовоздушной смеси, которую может принять цилиндр, уменьшится на эту величину, и, как следствие, при увеличении степени сжатия ухудшается наполнение цилиндров. Чем лучше наполнение цилиндров (полученное турбиной, насосом, полировкой каналов, изменением фаз газораспределения и т.д.), тем меньше будет требуемая степень сжатия.

Замеренное компрессометром давление в цилиндре в конце такта сжатия может быть пересчитано в степень сжатия по формуле: ε= (Pc+3.9)/1.55, где Pc — давление, замеренное компрессометром, кг/с м² . Разница значения компрессии в разных цилиндрах не должна превышать 0.5 — 1 кг/с м² .

Практически степень сжатия двигателя зависит от объема камеры сгорания, размера и формы поршня и его хода. Так, для двигателей УЗАМ 3313 и 3318, имеющих одинаковый диаметр цилиндра и ход поршня и одинаковую головку блока цилиндров, за счет изменения формы поршня степень сжатия изменяется с 7.6 в двигателе УЗАМ-3313 до 9.2 в двигателе УЗАМ-3318, что приводит к увеличению максимальной мощности с 85 до 90 л.с., а максимального крутящего момента с 135 н/м до 145 н/м.

Наиболее просто увеличить степень сжатия двигателя можно фрезеровкой головки блока цилиндров, что позволяет уменьшить объем камеры сгорания. При этом необходимо следить за тем, чтобы при открывании клапана он не ударял по днищу поршня во всем диапазоне частот вращения двигателя (т.к. пружины клапанов имеют определенную инерцию), и при необходимости выполнить в поршне проточки под клапаны.В двигателях с чугунным блоком цилиндров возможна также фрезеровка поверхности блока цилиндров, сопрягаемой с головкой блока, самостоятельно или вместе с фрезеровкой поверхности головки блока цилиндров.

Ниже в таблице показана зависимость степени сжатия двигателя УЗАМ-412 от глубины фрезерования головки блока цилиндров:

Глубина фрезерования, мм

0

0,5

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Степень сжатия

8,8

9,25

9,64

9,83

10,09

10,48

10,81

11,62

12,85

Зависимость степени сжатия двигателя ВАЗ-2106 от глубины фрезерования головки блока цилиндров представлена в таблице:

Фрезерование головки, мм

0,2

0,5

0,8

1,0

1.2

1,5

1.8

2,0

0,2

0,8

1.3

1,8

Фрезерование блока, мм

0,2

0,5

0,9

1,2

1,5

1,8

1,8

1,8

1,8

Степень сжатия

8,8

8,9

9,0

9,1

9,2

9,3

9,4

9,5

9,6

9,8

9,8

10,0

10,0

10,5

11,0

11,5

12,0

При фрезеровании головки блока цилиндров происходит смещение установочного угла механизма газораспределения, что необходимо учитывать при его установке. Чем на большую величину произведена фрезеровка головки блока цилиндров, тем на большую величину распределительный вал будет отставать.

Приведем зависимость отставания положения распределительного вала от глубины фрезеровки головки блока цилиндров:

Глубина фрезерования, мм

0,5

0.8

1,0

1,2

1,4

1,6

2,0

3,0

4,0

5,0

Угол отставания распределительного вала, град

0,53

0,83

1,1

1,3

1,6

1,7

2,1

3,2

4,3

5,4

Дата публикации: 2007-09-04


Изменяется ли степень сжатия при работе двигателя?

Увеличение степени сжатия

Объем камеры сгорания влияет на конечную степень сжатия двигателя.

Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.

Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.

Объем камеры сгорания состоит из суммы 3 объемов:

1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.

Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.

Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.

То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?

Степень сжатия можно повысить двумя самыми эффективными способами:

1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.

2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.

Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.

Примеры прибавок в процентах:

с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %

Примеры перехода на более высокооктановое топливо при повышении (СС)

менее 8 — 76 бензин
от 8 до 9 — 80 бензин
от 9 до 10.5 — 92 бензин
от 10 до 12.5 — 95 бензин
от 12 до 14.5 — 98 бензин
от 13.5 до 16 — 102 бензин
от 15.5 до 18 — 109 бензин
Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.

Что такое степень сжатия двигателя

Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией.

Что такое степень сжатия и чем она отличается от компрессии

Иллюстрация степени сжатия 10:1

Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.

Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.

Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси. Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см 2 , а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.

На что влияет степень сжатия двигателя

Нормальное сгорание смеси (вверху) и детонация (внизу)

Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.

У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.

Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива.

Читайте также: Какая компрессия должна быть в двигателе.

Как рассчитывают степень сжатия двигателя

Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.

Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:

  • CR=(V+C)/C,
  • где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.

Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.

На практике значение степени сжатия двигателя обычно определяется в следующих случаях:

  • При форсировании силового агрегата;
  • При его приспособлении для функционирования с топливом другого октанового числа;
  • После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.

Как изменить степень сжатия двигателя

У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.

Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла.

Видео на тему

Зрим в корень: сказки про компрессию двигателя

Компрессия – это вульгаризм. Правильно – давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива – для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.

По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?

Компрессия и степень сжатия – одно и то же: сказка первая

Нет, не так! Компрессия – это давление в цилиндре, степень сжатия – безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия – это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия – это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии – нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

«Компрессия» – то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

1 no copyright

Поднял компрессию – увеличил мощность: сказка вторая

Не совсем так. Компрессию можно поднять двумя способами – увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.

Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором – на 9%. Здорово!

А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, – на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2-3%, причем в зоне малых и средних оборотов. А на высоких – никакого эффекта.

Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик – и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, – стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.

Способ второй – уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.

Сделали. Для нового мотора – всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами – 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.

Компрессия резко выросла, а мощность – нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.

2 no copyright

Нет компрессии – сразу на капиталку: сказка третья

Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?

Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это – тема отдельной статьи.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя – базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

3 no copyright

И совсем не сказка.

Так на что же влияет компрессия? На многое! Главное – на пусковые свойства мотора, особенно при низких температурах.

В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально – попадает туда в виде негорючих жидких капель.

Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.

Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.

Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой – наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» – дело в целом бесперспективное.

Недостатки высокой степени сжатия

Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежное 11. двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, гак как цилиндр «упаковывается» смесью так как если бы работал невидимый нагнеатель.

Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см 3 , то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличим, степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общин объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя. Пример: типичный двигатель «Шевроле» Grand National 350 может использовать степень сжатия 12,5:1. Он также может иметь VE около 115%; таким образом,

при оборотах динамическая степень сжатия будет заметно выше 12,5:1. Если увеличить статическую степень сжатия до 13,5:1 путем уменьшения объема камеры сгорания, то в объем цилиндра/камеры сгорания поступит меньше рабочей смеси, VE уменьшится и мощность, скорее всего, снизится.

Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см 3 . Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, го объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1639 см3, (т. е. 1639 см 3 «выбранного» объема плюс 1639 см 3 камеры сгорания равны 3278 см 3 общего объема цилиндра). Даже при 3278 см 3 во всем цилиндре двигатель может втянуть только 1639 см 3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненным объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см 3 будут заполнены выхлопными газами от последнего цикла сгорания.

Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3278 см 3 топливовоздушной смеси в цилиндр вместо исходных 1639 см 3 , которые двигатель мог «вдохнуть» в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3278 см 3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со 1639 см 3 до 1092 см 3 ? Когда поршень находится в конце такта впуска, общин объем цилиндра будет теперь только 2731 см 3 . Если не изменять давление наддува, то оно может «вдавить» только 2731 см 3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см 3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2731 см 3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из 17% потерь мощности.

Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы

для увеличения мощности двигателей.

Если на воображаемый двигатель объемом 1639 см 3 со степенью сжатии 2,0:1,

который втягивает 1639 см 3 топливовоздучпюй смеси (в верху) установить наддув, то он теперь будет заполняться 3278 см 3 смеси (в середине). Если степень сжатия увеличивается до 3,0:1 путем уменьшения объема камеры сгорания, то в двигатель будет поступать только 2731 см 3 топливовоздушной смеси. Результатом будет уменьшение мощности (внизу), т. к. объемная эффективность уменьшилась на 17% 1 — 1639 см 3 ; 2 — 1092 см 3 .

Степень сжатия и топливо

Хотя верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

Лучшим путем увеличения степени сжатия является увеличение диаметра отверстия цилиндра путем расточки блока цилиндров или выбором блока с отверстиями большего диаметра. Эта модернизация может увеличить степень сжатия, путем давления рабочего объема, уменьшая необходимость использования поршней с большими «куполами » или уменьшения объема камер

Более высокая степень сжатия, конечно, требует использования

Степень сжатия

04.13
09

Устройство АКПП

На сайте выложены схемы внутреннего устройства АКПП Toyota

03.12
06

Обновлен прайс-лист.

Свежий прайс можно взять здесь — price_2012_07_03

12.11
15

Появился новый раздел — «Доска объявлений».

Теперь, если у Вас есть автозапчасти, вы сможете разместить объявление о продаже на нашем сайте.

 

01.11
15

Совет № 132

Гидроусилитель будет жить дольше ,если …

12.10
02

Особенности запуска двигателя в зимний период

Добавлена новая статья в разделе «Личный опыт»

Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя.

Эффективность

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.


Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).


Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя.


Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.


Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объём цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путём уменьшения объёма камеры сгорания или путём увеличения размера выпуклости поршня (это наиболее распространённые методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объём — рабочий объём двигателя не изменялся. Но изменили общий объём цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объёмную эффективность двигателя.

 

Пример

Воспользуемся воображаемым примером для уяснения деталей.


Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.


Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце [Четырёхтактный двигатель|такта впуска]] и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

 

Обобщение

Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объёмную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объёме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.


Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования, как правило, работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1, мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

 

Для общего развития

 

===============================

===============================

 

 

 

 

===============================

 

Наши посетители:

неактивные точки — прошлые визиты.

активные точки — сейчас на сайте.

=============================

 

Наши цены

 

 

 

=============================

=============================

Как увеличить степень сжатия двигателя


Как увеличить степень сжатия и что это дает

Двигатели ВАЗ имеют различную степень сжатия. Например, на Ниве 4×4 степень сжатия мотора ВАЗ 21213 около 9,4. Большую степень сжатия (11) имеет более современный двигатель ВАЗ 21127, который ставится на Гранту, Калину и Приору. Разбираемся, что такое степень сжатия, зачем ее пытаются увеличить и стоит ли это делать.
Степень сжатия (обозначается греческой буквой ε) — это отношение полного объема цилиндра Vn к объему камеры сгорания Vc. Степень сжатия показывает, во сколько раз уменьшается объем смеси или воздуха, находящихся в цилиндре, при перемещении поршня от НМТ к ВМТ. В бензиновых двигателях степень сжатия находится в пределах 6-12, дизельных – 12-23. Чтобы рассчитать степень сжатия рекомендуется использовать специальные онлайн калькуляторы. Не стоит путать ее с компрессией. Компрессия зависит от степени сжатия (обычно она больше в 1,4 раза), а степень сжатия от компрессии — нет.  Повышение степени сжатия в общем случае увеличивает мощность двигателя, повышает его КПД и способствует снижению расхода топлива. С другой стороны, увеличение степени сжатия способствует появлению детонации. Чтобы этого избежать, необходимо использовать бензин с более высоким октановым числом. Кроме этого при поднятии степени сжатия повышается токсичность отработавших газов и нагрузка на детали кривошипно-шатунного механизма.Таблице примерного увеличения мощности двигателя при повышении степени сжатия:Увеличение степени сжатияПрибавка мощности ДВС
с 8 до 9 2,0%
с 9 до 10 1,7%
с 10 до 11 1,5%
с 11 до 12 1,3%
с 12 до 13 1,2%
с 13 до 14 1,1%
с 14 до 15 1,0%
с 15 до 16 0,9%
с 16 до 17 0,8%
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7%.Таблица: степень сжатия и октановое число бензина. Примерная зависимость.Степень сжатияБензин
от 9 до 10.5 АИ 92
от 10 до 12.5 АИ 95
от 12 до 14.5 АИ 98
Самый простой способ поднять степень сжатия — это уменьшить объем камеры сжатия. Для этого следует прошлифовать нижнюю плоскость головки цилиндров (уменьшив ее высоту).

Более эффективный способ — заменить поршни и расточить под них цилиндры. Этот метод повышает степень сжатия и увеличивает рабочий объем двигателя.

Также на степень сжатия влияет установка тюнинг распредвала, который позволяет улучшить геометрические показатели степени сжатия за счет запаздывания закрытия впускных клапанов.

Эксперты журнала ЗаРулем решили проверить, как на двигатель повлияет повышение степени сжатия. В эксперименте принимал участие двигатель ВАЗ-2111, который имеет степень сжатия — 9,8. После чего прошлифовали нижнюю плоскость головки цилиндров сначала на 2 мм, а затем на 4 мм. Установили на стендовый мотор и сняли моментные характеристики. Результаты испытаний представлены в таблице: Проводимые доработкиСтепень сжатияРасход бензинаВ теорииНа практике
Нижняя плоскость ГБЦ без изменений 9,8 (штатная)
Нижняя плоскость ГБЦ — 2 мм 11 (+1,2) +4%  2,5%
Нижняя плоскость ГБЦ — 4 мм 12,6 (+2,8) +9%  4,5%
Прибавка мощности в обоих случаях составила всего 2–3%, причем, только в зоне малых и средних оборотов. А на высоких — никакого эффекта. Дело в том, что с увеличением степени сжатия резко растет давление в цилиндре. Этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается.Но стоит учитывать, что после поднятия степени сжатия следовало бы использовать бензин с более высоким октановым числом. Тогда результаты были бы немного лучше.

Чтобы получить заметный прирост мощности рекомендуется подходить к вопросу тюнинга атмосферного двигателя комплексно. Кстати, если Вы решили установить турбину, тогда степень сжатия нужно, наоборот, уменьшить. А Вам приходилось менять степень сжатия? Какой эффект получили в итоге?

Стоит ли менять степень сжатия для тюнинга двигателя?

Приходилось ли вам менять степень сжатия двигателя?

Ключевые слова:

  • двигатель
  • тюнинг двигателя
 

Интересный сайт? Поделись с друзьями

Увеличение степени сжатия

СТЕПЕНЬ СЖАТИЯ Объем камеры сгорания влияет на конечную степень сжатия двигателя. Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра. Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров. Объем камеры сгорания состоит из суммы 3 объемов: 1 Объем камеры сгорания на головке блока 2 Объем, образуемый толщиной прокладки головки блока 3 Объем вогнутого пространства в днище поршня. Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах. Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.

Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.

То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать? Степень сжатия можно повысить двумя самыми эффективными способами: 1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки. 2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия. Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14. Примеры прибавок в процентах: с 8 до 9 = 2.0 % прибавка мощности с 9 до 10 = 1.7 % прибавка мощности с 10 до 11 = 1.5 % прибавка мощности с 11 до 12 = 1.3 % прибавка мощности с 12 до 13 = 1.2 % прибавка мощности с 13 до 14 = 1.1 % прибавка мощности с 14 до 15 = 1.0 % прибавка мощности с 15 до 16 = 0.9 % прибавка мощности с 16 до 17 = 0.8 % прибавка мощности Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 % Примеры перехода на более высокооктановое топливо при повышении (СС) менее 8 — 76 бензин от 8 до 9 — 80 бензин от 9 до 10.5 — 92 бензин от 10 до 12.5 — 95 бензин от 12 до 14.5 — 98 бензин от 13.5 до 16 — 102 бензин от 15.5 до 18 — 109 бензин Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.

  Главная

Зрим в корень: сказки про компрессию двигателя

29 мая 2013 годаЗалегшие кольца или трещина в клапане — значительно более частые причины снижения компрессии, чем износ двигателя. Компрессия — это вульгаризм. Правильно — давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива — для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт. По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?

Компрессия и степень сжатия — одно и то же: сказка первая

Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров. «Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

Поднял компрессию — увеличил мощность: сказка вторая

Не совсем так. Компрессию можно поднять двумя способами — увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд. Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором — на 9%. Здорово! А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, — на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2–3%, причем в зоне малых и средних оборотов. А на высоких — никакого эффекта… Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, — стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше. Способ второй — уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два. Сделали. Для нового мотора — всё нормально, для всех цилиндров компрессия 13,2…13,4 бар. Для испорченного кольцами с большими зазорами — 10,8…11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку. Компрессия резко выросла, а мощность — нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.

Нет компрессии — сразу на капиталку: сказка третья

Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно? Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это — тема отдельной статьи.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить. Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот. Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

И совсем не сказка…

Так на что же влияет компрессия? На многое! Главное — на пусковые свойства мотора, особенно при низких температурах. В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально — попадает туда в виде негорючих жидких капель. Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается. Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю. Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой — наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» — дело в целом бесперспективное.Зрим в корень: сказки про компрессию двигателяЗрим в корень: сказки про компрессию двигателяОшибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

Как увеличить степень сжатия двигателя?

Степень сжатия и ее вариативность — понятие, актуальное исключительно для поршневых двигателей, которые имеют камеру сгорания. Оно представляет собой отношение двух объемов надпоршневого пространства: в нижней и верхней точке движения. Собственно говоря, это разница в показателях давления, образующегося внутри камеры во время подачи и воспламенения топливной смеси.

Степень сжатия и ее вариативность — понятие, актуальное исключительно для поршневых двигателей, которые имеют камеру сгорания. Оно представляет собой отношение двух объемов надпоршневого пространства: в нижней и верхней точке движения. Собственно говоря, это разница в показателях давления, образующегося внутри камеры во время подачи и воспламенения топливной смеси. Параметр этот можно варьировать как в сторону уменьшения, так и увеличения. Давайте разберемся, как увеличить степень сжатия двигателя?

Содержание

1. Изменение степени сжатия

2. Воспламенение и детонация

3. Альтернативный вариант

4. Изменение степени сжатия

Изменение степени сжатия

Доказано, что высокая степень сжатия делает работу двигателя более эффективной. Как правило, для того, чтобы увеличить этот показатель, уменьшают первоначальные объемы камеры сгорания, хотя такие манипуляции нередко заставляют балансировать между эффективной и безопасной эксплуатацией.

Чем опасно увеличение степени сжатия? Прежде всего, ощутимым понижением существующего детонационного порога, то есть предельно увеличив степень сжатия есть риск спровоцировать детонацию. Именно поэтому модернизация старых двигателей порой бывает менее эффективна и более затратна, чем установка современных, которые уже имеют высокую степень сжатия. Именно поэтому аренда Ford Transit является оптимальным вариантом для тех, кто хочет получить в распоряжение современное авто. Кстати, практически во всех современных моделях применяется высокооктановый бензин от 95 и выше.

Еще один вариант повысить степень сжатия — это фрезеровка ГБЦ, то есть головки блока цилиндров. Процесс этот называется форсированием и заключается в укорачивании ГБЦ и, как следствие, уменьшении объема камеры. Одновременно автоматически становится меньше и объем горючего, которое сгорает в цилиндре.

Воспламенение и детонация

Функционирование двигателя такого типа построено на равномерном горении топливной смеси. Это обеспечивает не только более эффективный расход топлива, но и равномерный износ всех деталей, исключая их перегрев. Равномерность рассчитывается на всем промежутке движения поршня вниз, но проблема в том, что скорость этого движения ниже скорости горения, а значит, увеличив давление, можно спровоцировать самопроизвольное возгорание смеси. Такой вариант значительно снижает эффективность использования энергии сгорающего топлива. Более того, излишки энергии приводят к детонации, что может очень плачевно сказаться на работе всего двигателя. Избежать печальных последствий можно с помощью использования высокооктанового горючего.

Альтернативный вариант

Есть способ избежать уменьшения объема камеры сгорания при гарантированном увеличении степени сжатия, установив турбонагнетатель. Он увеличивает давление, нагнетая больший объем воздуха в камеру. Это позволяет изменять степень сжатия в зависимости от нагрузки на работающий двигатель. Контролирует процесс высокоточная электроника, исключающая возможность детонации

Увеличили степень сжатия на родном ДВС Нивы: как теперь едет и какой расход | У бати в гараже

Степень сжатия у двигателя Нивы 9.3 единицы. Такая степень сжатия отлично подходит для его эксплуатации на бензине АИ-92. Чтобы рассчитать степень сжатия, берется рабочий объем цилиндра (поршень в самом нижнем положении) + объём камеры сгорания (который складывается из объёма, создаваемого прокладкой, объема в днище поршня и объема камеры в ГБЦ). Поделив сумму объемов на объем камеры сгорания получаем степень сжатия. Однако это геометрическая степень сжатия, она может отличаться от реальной и связано это с наполнением.

На примере 8-ми клапанного двигателя Нивы: открывается впускной клапан, поршень уходит вниз, рабочий объём цилиндра начинает заполняться топливно-воздушной смесью, не факт, что за время открытия клапана (с родным распредвалом точно не факт) смесь успеет заполнить весь рабочий объём.

Принято считать, что КПД современных бензиновых ДВС около 30%. Однако еще в 1997 году, во время испытаний серийного электромобиля от GM EV1, было подсчитано, что на 100 км пути он потратил электроэнергии, количество которой содержится в 1 литре бензина. Такое вполне возможно, если предположить, что КПД бензинового ДВС около 7%.

Хорошая иллюстрация, которая показывает суть проблемы ДВС — воспламенение происходит еще до того, пока поршень окажется в ВМТ, понятно, что это конструктивная необходимость при низкой степени сжатия, но именно из-за этого такой низкий КПД.

Хорошая иллюстрация, которая показывает суть проблемы ДВС — воспламенение происходит еще до того, пока поршень окажется в ВМТ, понятно, что это конструктивная необходимость при низкой степени сжатия, но именно из-за этого такой низкий КПД.

В общем-то вернёмся к Ниве и её двигателю объемом 1.7 литра. В определённый момент на автомобиле товарища подошло время делать капитальный ремонт, который было решено совместить с небольшой доработкой. Собственно, доработка заключается в увеличении степени сжатия, а как следствие в увеличении КПД двигателя.

По неофициальным данным – увеличение степени сжатия в диапазоне от 8 до 10 позволяет получить прибавку КПД до 10%, а вот с 10 до 14 уже на 7%, с 14 до 17 уже +1%.

Чтобы увеличить степень сжатия, было решено пойти про протоптанной многими дороге – фрезеровать поверхность ГБЦ (сняли 1.7 мм), заменить родную прокладку на более тонкую (еще -0.7 мм), 0.5 мм сняли с блока. Чтобы выставить распредвал по меткам была куплена разрезная шестерня, а также доработан натяжитель цепи (наварен небольшой удлинитель).

По предварительным расчётам, с учётом расточки цилиндров в ремонтный размер, геометрическая степень сжатия должна выйти около 11.5 единиц.

Двигатель инжекторный с ЭБУ Январь 5.1, ранее владелец его уже настраивал онлайн, но большого эффекта это не дало. После переделки двигателя, вновь отправились на прошивку в реальном времени. Мастер перенастроил углы опережения зажигания, немного изменил настройки по смеси, так как увеличение степени сжатия позволяет ездить на более бедной смеси без потерь в тяге и с более поздними углами зажигания.

По итогу: эффект стоит потраченных копеек (доработка действительно недорогая, если совмещать с капитальным ремонтом). Больше степень сжатия, выше КПД, больше крутящего момента, что очень ощущается на низких оборотах (до 2000).
  • Степень сжатия не влияет напрямую на мощность двигателя, она лишь обеспечивает его более эффективную работу. Что и отразилось на расходе топлива, так как ранее в городе эта Нива кушала минимум 12-13 литров, сейчас 10 (владелец замороченный в этом плане постоянно по чекам считает). Для двух мостов, кпп, раздатки и отсутствия понятия – “аэродинамика” расход отличный и вопрос не просто в капитальном ремонте, компрессия и до ремонта была в норме.

Что по бензину? После сборки, на 92 была ощутимая детонация, чтобы не угробить двигатель во время поездки до электрика решили залить 98, на нем проблем не было. После прошивки под новые характеристики получилось сделать так, что можно ездить и на 92, но на 95 ощутимо экономичнее и тяга очень приятная.

Степень сжатия

Понятие «степень сжатия» относится к поршневым двигателям, у которых есть камера сгорания. Под этим термином понимают отношение объема пространства над поршнем в момент, когда он находится в нижней мертвой точке к объему надпоршневого пространства в верхней мертвой точке. Иными словами, это выраженная математически разница в давлении внутри камеры сгорания на момент подачи горючей смеси в цилиндр, и на момент ее воспламенения. Вокруг этого термина очень много недоразумений и мифов. Чтобы понять, что истина, и что ложь, стоит разобраться, почему у разных двигателей этот параметр отличается, и какие преимущества дает низкая или высокая степень сжатия.

Преимущества высокой степени сжатия

Двигатель внутреннего сгорания работает за счет воспламенения смеси воздуха и паров топлива. При воспламенении смесь расширяется и толкает поршень, который вращает коленвал. При большей степени сжатия интенсивность давления на поршень увеличивается, и зак один такт двигатель совершает больше полезной работы.

Отсутствие детонации в дизельных двигателях объясняется просто: в камере сгорания сначала сжимается чистый воздух, а топливо впрыскивается позже

При этом подразумевается, что количество бензина в топливо-воздушной смеси остается неизменным, и за счет большего количества воздуха оно сгорает с более высоким КПД.

На современном этапе конструирования легковых автомобилей применение двигателей с низкой степенью сжатия практически прекратилось. Несмотря на то, что в них допустимо использовать низкооктановый и недорогой бензин А-80, их популярность равна нулю. Дело в том, что современные потребители стремятся приобретать автомобили с большим количеством «лошадей под капотом», а с двигателей, рассчитанных на низкооктановый бензин (например, двигателя УАЗ 469, (который, правда, с измененной степенью сжатия и рядом модернизаций устанавливается в УАЗ Hunter), снять большую мощность невозможно по конструктивным причинам.

Можно ли изменить степень сжатия? 

Увеличить степень сжатия можно, уменьшив объем камеры сгорания, но при модернизации уже имеющегося двигателя инженерам приходится постоянно искать компромисс между эффективностью и безопасностью. Дело в том, что, увеличение степени сжатия ведет к понижению детонационного порога. Если увеличить степень сжатия слишком сильно, можно столкнуться с тем, что имеющимися средствами предотвратить возникновение детонации не получится. Иными словами, порой разработать (или поставить от другого, более мощного автомобиля) новый двигатель легче, чем модернизировать старый.

Для современных двигателей характерна высокая степен сжатия. В подавляющем большинстве случаев в них используется бензин с октановым числом не ниже 95 или даже 98

Один из вариантов изменения степени сжатия, доступный частным тюнерам – фрезеровка головки блока цилиндров. После «укорачивания» ГБЦ объем камеры сгорания уменьшается. Степень сжатия в этом случае увеличится. Есть и обратная сторона такой манипуляции (кстати, официально ее называют форсированием) уменьшится общий объем горючей смеси, сгорающей в цилиндре за один цикл.

Степень сжатия или компрессия?

Степень сжатия часто путают с понятием «компрессия». Это не одно и то же. Компрессией называют максимальное давление в цилиндре при движении поршня от нижней мертвой точки к верхней. Компрессия измеряется в атмосферах, а степень сжатия имеет вид математического отношения, например, 10:1 (десять к одному).

Преждевременное воспламенение и детонация

Смесь, поступающая в камеру сгорания, должна не взрываться, а гореть, причем, равномерно, и на протяжении всего отрезка времени, пока поршень движется вниз. При этом условии энергия расходуется максимально эффективно, а детали поршневой группы изнашиваются равномерно и не перегреваются. Сложность заключается в том, что скорость горения смеси обычно гораздо быстрее скорости движения поршня.

В связи с этим и возникает основная проблема, встающая на пути тех, кто задался целью увеличить степень сжатия. При увеличении давления смесь самопроизвольно возгорается. Это явление называется преждевременным воспламенением. Более того, возгорание смеси происходит, когда поршень еще только завершает фазу сжатия. В этом случае энергия сгорающего топлива создает дополнительное сопротивление и растрачивается на выполнение бесполезного действия.

Вторая проблема: выделение чрезмерного количества энергии. Проще говоря – взрыв. Явление это в теории двигателестроения называется детонацей и имеет крайне негативные последствия.

Таким образом, увеличение степени сжатия может сыграть с владельцем двигателя злую шутку. Чтобы избежать неприятных последствий, стоит ознакомиться с таким понятием, как октановое число.

Что такое октановое число и на что оно влияет?

Бензин, который используется для работы ДВС, отличается стойкостью к детонации и самовоспламенению. Для обозначения уровня этой стойкости вводится понятие «октановое число».

Детонация возникает только в камере сгорания бензинового двигателя. Сжигание дизельного топлива требует большей степени сжатия, и воспламеняется оно «само собой» разогреваясь под воздействием давления и соприкасаясь с раскаленными металлическими деталями. Казалось бы, все условия для возникновения созданы, но благодаря некоторым особенностям дизельного двигателя он полностью защищен от этого вредного явления.

Важный факт – октановое число бензина не влияет на количество энергии, которое выделяет топливо при сгорании. Иными словами, думать, что заливая в двигатель бензин с более высоким октановым числом, вы повышаете его мощность, ошибочно. Все очень просто: при высоком значении степени сжатия необходимо использовать топливо с большим октановым числом.

Последствия использования топлива с несоответствующим октановым числом 

Стоит обратить внимание, что при несоответствии используемого топлива требованиям завода-изготовителя, могут возникнуть следующие проблемы:

— При использовании топлива с большим октановым числом возможно прогорание выпускных клапанов. Происходит это потому, что бензин с большим октановым числом горит с меньшей температурой и медленнее. Соответственно, при его использовании, на фазе выпуска вместо отработанных газов через выпускные клапана вылетает горящая смесь.

— При использовании топлива с высоким октановым числом на свечах возможно образование нагара. Причины все те же: скорость горения может не совпадать с циклами хода поршня.

— При использовании топлива с низким октановым числом блок управления двигателем (или октан-корректор распределителя) не сможет установить угол опережения зажигания, исключающий детонацию. 

Альтернативный способ изменения степени сжатия

В современной практике разработки двигателей активно применяется альтернативный способ динамического изменения степени сжатия – установка турбонагнетателя. Он помогает увеличить давление в камере сгорания, не изменяя при этом ее физического объема. Принцип работы нагнетателя заключается в том, что в камеру сгорания под давлением поступает больше воздуха за единицу времени.

Турбина с изменяемой геометрией

В результате степень сжатия меняется постоянно, реагируя на увеличение и уменьшение нагрузки на двигатель. Этот процесс происходит под контролем электроники, которая оперативно изменяет условия воспламенения топливо-воздушной смеси. В результате всех перечисленных выше негативных факторов, связанных с изменением давления в камере сгорания, удается избежать.

В Объединенных Арабских Эмиратах крайней популярностью пользуются гонки на дизельных внедорожниках. Для увеличения степени сжатия и мощности используются турбины максимальной производительности

Поклонники тюнинга восприняли применение турбонагнетателей как более гибкий и управляемый способ увеличения мощности двигателя. Можно сказать, что приобретение турбо-кита (набора деталей, предназначенных для установки турбонаддува на конкретный двигатель), гораздо более распространена по сравнению с форсированием. Нагнетатели разных типов успешно используются и при необходимости увеличить эффективность работы дизельного двигателя.

Как увеличить компрессию двигателя на дешевом

Есть ли дешевый способ увеличить сжатие на моем маленьком блоке Chevy? У меня есть маленький блок 350 с железными головками. Я мало что знаю о двигателе, потому что он был в машине. Предыдущий владелец сказал, что он был восстановлен и у него есть кулачок, но он не мог вспомнить спецификации. Остальные части — это впуск Edelbrock Performer, карбюратор Holley 600 кубических футов в минуту и ​​чугунные выпускные коллекторы. Двигатель отлично работает на дешевой 87-октановой тряпке и совсем не гудит.Думаю, немного дополнительного сжатия не повредит, но я не могу позволить себе комплект алюминиевых головок. Что вы думаете? Спасибо

J.H.

Jeff Smith: Повышение степени сжатия — отличная идея по нескольким причинам. Если предположить, что добавленное сжатие не является чрезмерным, добавление сжатия — лучший способ повысить мощность, а также повысить эффективность. Есть причина, по которой все двигатели LS последнего поколения и особенно новый двигатель LT1 Corvette с прямым впрыском бензина (GDI) имеют более высокую степень сжатия. LT1 разработан для работы на топливе премиум-класса, но поставляется с завода с истинной статической степенью сжатия 11: 1.

Сказав это, вы не можете выполнить такое сжатие на маленьком блоке Chevy , используя старые железные головки 70-х годов. Мы не будем вдаваться во все подробности относительно того, почему, но достаточно сказать, что эти старые камеры сгорания не были предназначены для такого рода сжатия. Техника внутреннего сгорания прошла долгий путь к достижению этих более высоких степеней статического сжатия и по-прежнему работает на топливе с октановым числом 91-93.

Поскольку мы мало что знаем о вашем маленьком блоке 350, мы предположим, что он использует типичный плоский верх и четыре поршня для создания бровей. С прокладкой головки из состава , поршнем на 0,020 дюйма под палубой и камерой сгорания объемом 76 куб. См, а также с прокладкой головки из состава, это обеспечивает статическое сжатие 8,5: 1. Это действительно неплохо. Стандартный двигатель Chevy с кузовом Chevy мощностью 290 лошадиных сил и 350 л.с., который вы можете купить, даже не так хорош. В литературе Chevy говорится, что это двигатель сжатия 8: 1, и это то, что мы обнаружили, когда измеряли один из этих двигателей пару лет назад.В этом двигателе используется выпуклый поршень объемом 13 куб. См, который снижает степень сжатия.

Один из размеров, который нелегко изменить, — это расстояние от верхней части поршня до деки. В моем уравнении степени сжатия я предположил, что поршень находится на 0,020 дюйма ниже поверхности деки блока, что является чрезмерным, но мы можем использовать это в своих интересах. Если поршни расположены ближе к деке (например, на 0,005 дюйма ниже), это улучшает степень сжатия, но также ограничивает толщину прокладки головки, поскольку мы ограничены примерно до 0.040 дюймов для зазора между поршнем и головкой. При высоте отрицательной деки 0,020 дюйма это означает, что мы можем использовать более тонкую прокладку головки для улучшения сжатия.

Конечно, это означает удаление головок цилиндров , чтобы сделать это усовершенствование, и именно здесь многие ребята не хотят прилагать усилий. Вот как это работает. Предположим, что в вашем двигателе в настоящее время используется композитная прокладка головки блока цилиндров. Это качественные прокладки головки блока цилиндров, но обычно они имеют толщину 0,041 дюйма. Добавив высоту деки 0,020 дюйма к 0.041-дюймовая прокладка головки создает расстояние 0,061 дюйма между верхней частью поршня и плоской частью головки цилиндров. Это называется зоной закалки.

Интересно, что многие энтузиасты склонны игнорировать пространство сгорания как место для увеличения мощности двигателя. Зона закалки — это та плоская часть поршня, которая соответствует плоской части камеры сгорания на головке цилиндров клинового типа.

Когда поршень достигает верхней мертвой точки (ВМТ), это создает очень плотный зазор между плоской частью поршня и плоской частью головки.Эта область называется пространством гашения или иногда называется сжатием, что действительно хорошо описывает ее назначение. Зона гашения предназначена для сжатия захваченного в этой зоне воздуха и топлива и вталкивания их в камеру сгорания, создавая турбулентность. Ключом к качественному сгоранию является смешивание воздуха и топлива или его гомогенизация. Зона гашения помогает этому процессу, который имеет тенденцию стабилизировать скорость сгорания после зажигания свечи зажигания.

Чем точнее будет эта зона закалки или зазор между поршнем и головкой, тем лучше будет работать двигатель.Перемещение поршня ближе к поверхности деки также увеличивает степень статического сжатия. Также существует ограничение на зазор между поршнем и головкой. Как правило, для уличного двигателя с низкими оборотами вы можете быть уверены в размере 0,040 дюйма или чуть меньше. Гоночные двигатели с высокими оборотами и стальными стержнями будут соответствовать тому же зазору, но двигатели с алюминиевыми стержнями должны использовать больший зазор (возможно, около 0,050 дюйма), чтобы приспособиться к росту алюминиевых стержней.

На этой фотографии показана проверка зазора между поршнем и декой с помощью индикатора часового типа.Это важная информация для проектирования двигателя и точного расчета степени статического сжатия. Также важно знать зазор между поршнем и головкой.

Поскольку невозможно разобрать двигатель и убрать блок, есть альтернативная идея. Fel-Pro производит стальную прокладку для прокладочной головки из стали с очень тонким резиновым покрытием для 4,00-дюймового отверстия 350 толщиной всего 0,015 дюйма. При добавлении к высоте вашей колоды 0,020 дюйма получается 0.Зазор между поршнем и головкой составляет 035 дюймов. Это немного жестко, но должно подойти для двигателя с умеренной атмосферой, который не поддерживает скорость вращения выше 6500 об / мин.

Хорошая новость заключается в том, что эта прокладка увеличивает степень статического сжатия до 8,97: 1 или, по сути, 9: 1, что составляет примерно пол-балла при сжатии. Практическое правило для двигателя заключается в том, что полная точка сжатия составляет примерно 3-4 процента мощности двигателя. Предполагая, что ваш двигатель имеет 300 лошадиных сил, половина точки сжатия, вероятно, будет стоить почти 2 процента, что составляет всего 6 лошадиных сил.Это звучит как большая работа для минимального улучшения, но я предполагаю, что крутящий момент на низких оборотах также улучшится, по крайней мере, так, если не, возможно, немного больше.

Вот фото небольшого блока мощностью 290 лошадиных сил с выпуклыми поршнями. Если у вашего двигателя есть эти поршни, ожидайте, что сжатие будет около 8,0: 1, что как минимум в 1,5 раза ниже того, где оно должно быть. Самый простой способ улучшить компрессию — это установить 64-кубовые железные цилиндрические головки Vortec и 0.015 прокладка головки, которая доводит сжатие до 9,0: 1

Еще одна рекомендация — добавить в двигатель набор из заголовков средней длины . Это сделает больше для увеличения мощности, чем что-либо другое, что вы можете сделать. Добавление жаток на небольшой блок мощностью 290 лошадиных сил стоило 30 фунт-футов. крутящего момента и 30 лошадиных сил к этому, в остальном, стоковому двигателю. Я предлагаю сделать и прокладку головки, и коллекторы , и тогда вам определенно нужно будет немного обогатить карбюратор, если он не был чрезмерно богат с самого начала — что также возможно.

Автор: Джефф Смит Джефф Смит страстно увлекался автомобилями с тех пор, как в 10 лет начал работать на заправочной станции своего деда. После окончания Университета штата Айова со степенью журналистики в 1978 году он объединил свои две страсти: автомобили и писательство. Смит начал писать для журнала Car Craft в 1979 году и стал редактором в 1984 году. В 1987 году он принял на себя роль редактора журнала Hot Rod, прежде чем вернуться к своей первой любви к написанию технических рассказов.С 2003 года Джефф занимал различные должности в Car Craft (включая редактора), написал книги о характеристиках автомобилей Small Block Chevy и даже собрал впечатляющую коллекцию Chevelles 1965 и 1966 годов. Теперь он является постоянным автором OnAllCylinders.

Как получить более высокую степень сжатия двигателя

Как получить более высокую степень сжатия двигателя

СРЕДНЯЯ ЭКОНОМИЯ ТОПЛИВА 10%

Более высокая степень сжатия обычно достигается несколькими способами:

1.Путем замены поршней с плоским верхом на поршни с высокой степенью сжатия, которые изгибаются вверх, что приводит к более высокой степени сжатия. Однако, поскольку воздух и топливо сжаты сильнее, тепла будет больше. Топливо начнет самопроизвольно гореть (до того, как загорится свеча зажигания), и это вызовет детонацию (фронт пламени, опускающийся на поршень, пытающийся подняться вверх), и это снижает мощность двигателя. По этой причине в современных двигателях можно использовать только более высокие октаны, потому что более низкие октаны, такие как 92, более склонны к детонации.

2. Турбонаддув. Это дает максимальную мощность, когда турбонагнетатель набирает обороты выше 3000 об / мин, но ниже этой частоты вращения турбонагнетатель замедлит двигатель, поскольку он работает на выхлопе. Это называется турбо-лагом. Кроме того, чтобы быть готовым к очень высокому эффективному чистому сжатию двигателя, которое возникает при полном включении турбонаддува, двигатель должен иметь изначально низкую степень сжатия, такую ​​как 8: 1, что дополнительно снижает мощность до того, как турбонагнетатель будет включен. В целом это приводит к более высокому расходу топлива в автомобилях с турбонаддувом.

3. Наддув. Это дает увеличенный заряд, пропорциональный оборотам в минуту, но сразу нагружает двигатель, как шкив кондиционера. На низких оборотах также заметно отсутствует эффект наддува.

Можно получить более высокую компрессию двигателя раньше и при этом избежать чрезмерной компрессии

Это делается с помощью Surbo (турбо-всасывание воздуха, вихревой генератор, активируемый противодавлением двигателя). Surbo обеспечивает более высокое предварительное сжатие воздуха в воздухозаборнике, за пределами цилиндра, поэтому он не увеличивает сжатие топлива в цилиндре (как в 1.) и не вызывает стука. Фактически, владелец Chevrolet Captiva 2.4 2009 года сообщил, что стук исчез после установки Surbo. Surbo безопасно достигает желаемой более высокой степени сжатия, не вызывая чрезмерного нагрева при сжатии в двигателе. К тому времени, когда двигатель с системой Surbo достигает красной линии оборотов, акселератор нажимается только наполовину, поэтому Surbo обеспечивает хорошую мощность двигателя с безопасным умеренным сжатием. Тем не менее, вы все равно можете удалить ограничитель оборотов и увеличить обороты, опустив педаль акселератора, используя все доступное сжатие.Surbo также является наименее затратным и наиболее экономичным способом улучшения компрессии.

Surbo можно также использовать в

1. Двигатели с очень высокой степенью сжатия для уменьшения подачи топлива и предотвращения детонации или для обеспечения возможности использования топлива с более низким октановым числом (это потому, что с Surbo нажимается меньше акселератора, поэтому заправляется меньше топлива).

2. Двигатели с турбонаддувом, чтобы сократить турбо лаг. Предварительное сжатие Surbo с низких оборотов до включения турбонагнетателя увеличивает внутреннюю компрессию двигателя, а увеличенный воздушный поток быстрее проходит через выхлоп, таким образом, ускоряя вращение турбонагнетателя (на более низких оборотах), сокращая задержку и расход топлива, и улучшает общий ответ.Поскольку более эффективный двигатель теперь работает перед турбонагнетателем, он будет сталкиваться с меньшим турбонаддувом при тех же оборотах двигателя. Это факт, что наш тестовый автомобиль, Peugeot 508 1.6 с турбонаддувом, с красной полосой 1/2 дроссельной заслонки всего на 0,6 бара, по сравнению с красной линией полностью открытой дроссельной заслонки 1,2 бар у автомобиля другой марки с аналогичным двигателем. Дополнительный запас может означать, что более высокие обороты могут быть разрешены при исходной настройке давления.

Турбо-автомобили, оснащенные Surbo, включают Volvo S60 T6 (250 л.с.) и XC90, Subaru Forestor, Daihatsu Charade Turbo 1.0 и GTti, Toyota Starlet 1.3 Turbo и турбодизели, такие как VW Caddy TDi, Opel Combo и Mercedes Vito 110, автомат 112 и другие. Surbo может быть добавлен к современным бензиновым двигателям с турбонаддувом с высокой степенью сжатия и меньшей мощностью, поскольку в большинстве случаев они имеют достаточную мощность, поскольку кузова легкие, но когда они перегружены большим количеством пассажиров, мощности может быть недостаточно.

3. Двигатели с наддувом (как в Mercedes Kompressor C180) для увеличения мощности на низких оборотах и ​​облегчения перехода в верхний диапазон оборотов, в котором нагнетатель будет работать, особенно если он автоматический и обычно ограничивается коробкой передач до работают в нижнем диапазоне оборотов.

4. Дизельные двигатели. Когда Surbo устанавливается в дизельный двигатель, дизельный двигатель становится более мощным даже на холостом ходу, показывая улучшенную компрессию двигателя (поскольку дизельные двигатели имеют воспламенение от сжатия). Обороты становятся выше, а видимый черный дым уменьшается, что указывает на то, что для движения двигателя требуется меньше дизельного топлива из-за лучшего сжатия воздуха от Surbo.

Более высокая степень сжатия для дизельных двигателей (без турбонаддува) с Surbo

Анализ турбодизельных двигателей с Surbo

Наш последний тестовый автомобиль Peugeot Expert 1 2019 года.6 с турбонаддувом, оснащенным Surbo, будет красной линией при половинном давлении акселератора при показании счетчика наддува всего 1,5 бара. Сравните это со средним показателем 2,5 бара, с которым сталкиваются другие сопоставимые турбодизели при полностью открытой дроссельной заслонке. Это дает двигателю, оборудованному Surbo, возможности для дальнейшей настройки (что обычно означает более высокое турбо-давление и нагрев) третьими сторонами или позволяет более высокие обороты при том же турбо-давлении, если установлен более высокий предел оборотов. Оставленный в покое, тот же самый двигатель с Surbo прослужит дольше, так как он может избежать чрезмерного турбонаддува.Позвоните нам сегодня, чтобы поставить Surbo на свой автомобиль!

Связанные страницы:
  • Как работает Surbo
  • Энергетический анализ
  • Surbo System показывает, как Surbo увеличивает сжатие воздуха с низких оборотов.
  • Видео:

    Посмотрите видео выше, показывающее, как двигатель работает с Surbo. Или посмотрите его на странице Как это работает.

    Вверху: видео Volvo XC90 T8 с Surbo, разгоняющегося до 130 км / ч.

    Вверху: видео Volvo XC90 T8 с Surbo, разгоняющегося до 211 км / ч.

    Вверху: видео Volvo XC90 T8 с Surbo, разгоняющегося до 224 км / ч.

    Карта сайта:

    ОТЗЫВЫ:

    ПРЕИМУЩЕСТВА:

    Больше крутящего момента и мощности (динамометрический тест)

    Быстрый отклик дроссельной заслонки

    В среднем 10% экономии топлива

    Легкие обороты (1/2 дроссельной заслонки до предела об / мин)

    Мгновенное автоматическое понижение передачи

    Более быстрое ускорение

    Больше мощности на подъеме

    Более высокая максимальная скорость

    Больше обгонной силы

    Пожизненная гарантия

    Соответствие требованиям техосмотра транспортных средств

    ТРАНСПОРТНЫЕ СРЕДСТВА ОБОРУДОВАНИЯ:

    Автомат

    вариатор

    Бензин с турбонаддувом

    Дизель / турбодизель

    Гибрид

    с наддувом

    Руководство

    Природный газ

    Мотоциклы

    Как себя чувствует Surbo (по типу автомобиля)

    Фото установки

    ВЕРСИИ SURBO:

    Что такое Surbo (99 долларов)?

    Twin Surbo (160 долларов)

    Surbo5 (120 долларов) для больших автомобилей

    ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ:

    Как работает Surbo

    С Surbo и без него

    Как можно использовать Surbo

    Высшее сжатие воздуха

    Уменьшение турбо лага

    Меньше дыма от дизельного топлива

    Увеличенный срок службы двигателя (из-за меньшего давления дроссельной заслонки)

    Меньше детонация двигателя (позволяет использовать топливо с более низким октановым числом)

    FAQ

    Surbo в сравнении с другими аксессуарами

    СУРБО ДЛЯ ГОНКИ:

    Surbo выиграл гонку в Индии

    Финалист (гонка S’pore)

    Gokart Racing

    О НАС:

    История компании

    Происхождение Сурбо

    Снижение выбросов CO2

    Во время установки

    Послепродажное обслуживание / удаление

    Переустановка (подходит для большинства автомобилей)

    Политика возврата

    Другие приложения для Surbo

    Мы работаем из Vicom Bt Batok Singapore 659545.Свяжитесь с нами, чтобы получить Surbo сегодня!

    ЧАТ НА HANDPHONE

    ГЛАВНАЯ

    Не забудьте добавить эту страницу в закладки и вернуться, чтобы узнать больше!

    Как увеличить степень сжатия двигателя для увеличения мощности

    Такт впуска двигателя начинается с поршня в верхней части своего хода. Когда поршень движется вниз, он создает в цилиндре низкое давление или частичный вакуум.Наружное давление воздуха заставляет воздушно-топливную смесь и впрыск через открытый впускной клапан.

    Чтобы увеличить степень сжатия, вы должны понимать особенности автомобиля, а также то, как различные части действуют для включения двигателя. Я надеюсь, что это руководство и краткая статья помогут вам узнать, как улучшить степень сжатия и мощность автомобиля и автомобильного двигателя.

    Как начинается ход сжатия

    Такт сжатия начинается с реверсирования поршня и его движения вверх при закрытых впускных и выпускных клапанах.

    Таким образом, поршень нагнетает топливно-воздушную смесь в камеру сгорания, сжимая смесь примерно до 150 фунтов на квадратный дюйм (psi).

    Процесс рабочего хода

    Рабочий ход — это тот ход, который приводит в движение автомобиль. Когда поршень приближается к верхней точке своего хода, искра перескакивает через зазор в свече зажигания и автоматически воспламеняет сжатый заряд.

    Горящая воздушно-топливная смесь расширяется, увеличивая давление сжатия и толкая поршень вниз.Вырабатываемая мощность передается на коленчатый вал, через трансмиссию, карданный вал и дифференциал на колеса.

    Ход выпуска и принцип работы поршней

    Такт выпуска начинается, когда поршень снова движется вверх и выпускной клапан открывается. Плунжер выталкивает сгоревшие газы из цилиндра в выхлопную систему.

    Четырехтактный цикл повторяется более тысячи раз в минуту на скоростях движения по шоссе.

    Каждый цилиндр находится на разных стадиях своего четырехтактного цикла, что обеспечивает плавный поток импульсов мощности.

    Конкурс компрессии четырехтактных двигателей

    Для того, чтобы двигатель развивал полную мощность, он должен соответствовать спецификациям производителя на сжатие. Цилиндр не должен иметь протечек. Утечка может происходить через поршневые кольца, впускные или выпускные клапаны и прокладку головки блока цилиндров.

    Двигатель с утечкой в ​​одном или нескольких цилиндрах может грубо работать на холостом ходу из-за неравномерного рабочего хода. В действие вступают многие факторы, участвующие в испытании на сжатие, такие как прокладка головки и другие части машины.

    Также снизится мощность и экономия топлива (см. Раздел о впрыске топлива и влиянии сжатия). Сильная утечка через поршневые кольца может привести к попаданию масла в камеру сгорания и загрязнению свечей зажигания.

    Потеря динамической степени сжатия и мощности: когда и как

    Поддержание давления внутри цилиндра двигателю автомобиля зависит от трех факторов:

    Клапаны: Они плотно прилегают к головке блока цилиндров;

    Прокладки: Они расположены между головкой и блоком.

    Поршневые кольца: Поршневые кольца расширяются между стенкой цилиндра и поршнем.

    Если в одном из этих случаев произойдет сбой, ваш двигатель потеряет энергию или перестанет работать. Если клапан изгибается, он не может прижаться к головке.

    И, если прокладка выйдет из строя, она сбросит давление, и если кольца выйдут из строя. Кроме того, он приложит силу к нижней части двигателя и позволит автомобильному двигателю дать сбой.

    Когда более чем один цилиндр начинает терять сжатие, результатом является отказ питания, вибрация и остановка двигателя.

    Отказ любого из этих поршней, прокладок и деталей клапана также может привести к попаданию масла или охлаждающей жидкости в цилиндр, что также вызовет проблемы с двигателем.

    Профессионал может проверить двигатель автомобиля и будет иметь различные инструменты для проверки компрессии двигателя.

    Статическая / динамическая степень сжатия в цилиндрах многое говорит о том, что происходит в автомобильном двигателе / ​​двигателе, не разбирая все это в целом.

    Проверка степени сжатия и мощности

    Проверка автомобиля на предмет проверки сжатия — это первый шаг в настройке двигателя.Вам понадобится тестер компрессии — просто манометр или мощный барометр — для измерения давления в камере сгорания через отверстия для свечей зажигания.

    1
    st Шаг: достижение нормальной рабочей температуры двигателя

    Для проверки компрессии дайте двигателю поработать, пока он не достигнет нормальной рабочей температуры. Заглушите двигатель. Снимите кабели свечей зажигания со свечей.

    Сначала пронумеруйте каждый кабель небольшим количеством малярной ленты, чтобы вы могли заменить их в правильном порядке.

    Весь процесс имеет некоторое сходство с испытанием автомобильного компрессора кондиционера, потому что с системой сжатия работают две системы.

    2
    nd Шаг: Удаление проводов и кабелей

    Свечи зажигания расположены на концах сильно изолированных кабелей зажигания (четыре, шесть или восемь в зависимости от количества цилиндров).

    Источник: www.autozone.com

    Снимите их как следует, скрутив резиновые сапоги и одновременно потянув их. Если просто потянуть за провод, можно сломать хрупкий углеродный проводник внутри.Если проводник обрывается, это значительно затрудняет прохождение электричества к свече зажигания.

    3
    rd Этап: снятие вилок

    Отключив провода, наденьте на каждую свечу ключ для свечей зажигания и ослабьте его на один оборот. Принадлежности для розеток могут быть полезны, если ваши крышки труднодоступны.

    Шарнирная, со смещением рукоятка в сочетании с коротким удлинителем и свечной головкой подходит для большинства автомобилей, джипов и гоночных двигателей. Не перекручивайте розетку вбок, так как это оказывает давление на хрупкую керамическую изоляцию вилки.

    Для безопасного выполнения работы вы можете использовать инструменты Wera или Wiha, которые позволят вам делать все правильно.

    4-й этап: замена кабеля

    Замените кабели на ослабленных свечах зажигания, запустите двигатель автомобиля или гоночного двигателя и дайте ему поработать на высоких холостых оборотах, чтобы удалить отслоившийся нагар вокруг оснований свечей.

    Если позволить оставаться в цилиндрах, частицы углерода могут застрять под седлом клапана и дать ложное низкое показание сжатия.

    5
    th Шаг: переключение двигателя на статическую степень сжатия и динамическую

    Затем выключите двигатель, снова отсоедините кабели свечей зажигания и снимите все свечи.При снятии и установке свечи зажигания все свечи зажигания должны быть выключены.

    Высоковольтный провод между катушкой и распределителем следует заземлить во время испытания. Это обеспечит высокую степень сжатия. Его легко найти, даже если вы с ним не знакомы — проследите путь вдоль проводов свечи зажигания до того места, где они все сходятся у крышки распределителя.

    Высоковольтный кабель, выходящий из центра крышки распределителя, является проводом катушки. Вытащите его и прикоснитесь металлическим наконечником к чистой металлической части двигателя.

    Заземление катушки защищает вас от поражения электрическим током, если ваша рука коснется провода свечи зажигания, а также защищает изоляцию катушки от возможного повреждения из-за накопления высокого напряжения.

    Вот несколько советов по тестированию на сжатие двигателя:
    1. Осторожно отодвиньте резиновый чехол, закрывающий каждую заглушку; никогда не дергайте за кабель.
    2. Очистите выемку перед снятием свечи зажигания; это предотвращает попадание грязи в цилиндры.
    3. Чтобы ускорить извлечение свечи зажигания, соедините гнездо свечи зажигания с амортизатором (справа) с храповым механизмом (внизу).
    4. Сохраняйте снятые заглушки в правильном порядке с помощью какого-либо типа держателя.
    5. Установите свечи зажигания с помощью динамометрического ключа или ключа с храповым механизмом; не перетягивайте.
    6. Выполните испытание прокладки головки на сжатие , чтобы узнать, в каком состоянии и нет ли утечки.
    7. Завершите установку, заменив резиновый чехол. Убедитесь, что каждый ботинок полностью вставлен. Тестируешь сжатие. В противном случае показания не будут точными, если дроссельная заслонка не будет удерживаться открытой.

    7-й этап: Работа с тестером сжатия

    Некоторые тестеры сжатия удерживаются рукой в ​​отверстии для пробки. Другие ввинчиваются. Если отверстия для пробок легко доступны, почти любой тестер будет работать, если они расположены на дне трубок, как на некоторых двигателях Chrysler, вам понадобится адаптируемый тестер.

    Если вы установили в свой автомобиль турбокомпрессор, вам следует составить список, чтобы проверить повышенную мощность с помощью тестера.

    Если в вашем тестере компрессии есть переходники, которые подходят к отверстиям для свечей зажигания, ввинтите соответствующий переходник в первую или переднюю свечу зажигания рядного двигателя и вернитесь обратно.

    На V-образном двигателе сначала сделайте левый передний цилиндр, а затем вернитесь назад вдоль левого ряда цилиндров. Затем проверьте баллоны и участки прокладки головки блока цилиндров с правой стороны автомобиля спереди назад.

    Убедитесь, что тормоз включен, а коробка передач находится в нейтральном или парковочном положении. Если в вашем тестере компрессии есть переключатель дистанционного управления для запуска двигателя, используйте его.

    Итак, как насчет правильного использования?

    Зажимы тестера должны быть подсоединены к плюсовому полюсу аккумуляторной батареи и малой клемме на соленоиде стартера.(Положительный полюс аккумуляторной батареи больше отрицательного, и иногда он имеет маркировку

    Подключите тестер сжатия и проверните двигатель, сделав четыре такта сжатия с более высокими степенями сжатия; показание давления должно быстро расти. Чтобы найти соленоид, следуйте за кабелем аккумулятора, идущим от положительного полюса аккумулятора; он ведет к соленоиду.

    8
    th Шаг: проверка мощности стартера

    При отсутствии пульта дистанционного управления попросите помощника поработать выключателем стартера за вас.Перед каждым запуском убедитесь, что все части вашего тела и одежды свободны от вентилятора, шкивов и ремней.

    Проверните, пока тестер не пройдет четыре полных хода сжатия. Таким образом, ваша машина увеличит мощность и крутящий момент двигателя.

    Клапан внутри тестера удерживает сжатие до тех пор, пока вы его не прочитаете и не отпустите. Повторите испытание на сжатие для всех цилиндров, записав показания.

    Понимание показаний компрессии: пример и результат

    Если показания шестого хода для всех цилиндров находятся в пределах указанного диапазона для вашего автомобиля и не отличаются более чем на указанную величину, с компрессией все в порядке.

    Предположим, что давление сжатия для вашего двигателя определено от 125 до 155 фунтов на квадратный дюйм (psi) с максимальным разбросом между цилиндрами 25 psi. 1 -135 фунтов на квадратный дюйм

  • 2–130 фунтов на квадратный дюйм
  • 3–130 фунтов на квадратный дюйм
  • 4–135 фунтов на квадратный дюйм
  • Давление всех цилиндров близко друг к другу, и ни один из них не ниже минимального указанного давления.

    2
    nd Показание компрессии

    Но вы бы знали, что у вас серьезные проблемы с дыханием в двигателе, если бы показания выглядели следующим образом: Цилиндр

    • 1-155 psi
    • 2-125 psi
    • 3–150 psi
    • 4-155 psi

    Хотя давление в цилиндре номер два не ниже указанного, оно находится ниже допустимого диапазона давлений. Что-то не так с его дыханием.

    3
    rd Показание компрессии

    Вот еще один пример двигателя, который не выдержал испытания на сжатие:

    Цилиндр

    • 1-130 фунтов на кв. Дюйм
    • 2-115 фунтов на квадратный дюйм
    • 3- 130 фунтов на квадратный дюйм
    • 4–120 фунтов на квадратный дюйм

    В этом случае различия между цилиндрами находятся в пределах допуска, но два цилиндра, номер два и четыре, падают ниже минимального заданного давления.Скорее всего, двигатель неплохо проехал по километрам и требует значительных доработок.

    Чтение мощности и сжатия автомобильных двигателей

    Чтение компрессии в процессе ее наращивания может сказать вам кое-что о том, что требуется для ремонта двигателя. Конденсация, которая снижается на первом такте и образуется при следующих тактах, но никогда не достигает нормы, как правило, указывает на негерметичность поршневого кольца.

    Для повторной проверки введите столовую ложку моторного масла в цилиндр через отверстие для свечи зажигания, несколько раз проверните двигатель, чтобы масло растеклось, и повторите попытку.Сальники поршневых колец. Значительно более высокое второе показание подтверждает неисправность поршневого кольца.

    Слабое сжатие на первом ходу, которое остается небольшим, означает утечку клапана. Показания не сильно изменятся при тестировании с маслом в цилиндре.

    Если вы получаете низкие показания на двух соседних цилиндрах, подозреваете, что между ними есть утечка через прокладку головки цилиндров, выполните проверку всех цилиндров и запишите показания. Сравните эти цифры друг с другом и со спецификациями.

    Давление намного выше указанного указывает на скопление нагара в цилиндрах.Это уменьшает полезный объем цилиндров, заставляя смесь сжиматься в меньшее пространство, чем предполагалось.

    Такое состояние вредно для двигателя, и его следует устранить, сняв головку блока цилиндров и соскребая нагар.

    Последние несколько слов

    Любые недостатки сжатия должны быть исправлены, прежде чем вы сможете выполнить успешную настройку. Это не работа для среднего самодельщика. Возьмите показания с собой в магазин, чтобы вы могли показать мастеру, что и где не так.Я надеюсь, что это руководство также поможет вам получить более высокую степень сжатия.

    Каковы преимущества / недостатки высокой степени сжатия?

    Рассказ, выделенный жирным шрифтом (Skyactiv-X):

    Преимущество более высокой степени сжатия лучше всего отражено в SKYACTIV-X Mazda Engine. Двигатель, который фактически использует детонационный механизм в целом для создания сгорания при очень бедной работе.

    Поскольку мы знаем, что и SI, и дизельный двигатель имеют ступенчатое сгорание на основе:

    A.Инициирование

    B. Развитие

    C. Распространение

    D. Прекращение

    Так же, как реакция свободных радикалов в химии, сгорание в двигателе также определяется реакцией свободных радикалов. Но проблема с поэтапным сжиганием часто связана с границей между областями несгоревшей и сгоревшей смеси, что приводит к нежелательным выбросам. Неравномерность между несгоревшим и сгоревшим топливом создает выбросы, например, горячие точки в двигателе SI создают NOx, в то время как реально более низкая температурная зона в дизельном топливе вызывает выбросы несгоревшего углерода.

    Чтобы иметь дело со ступенчатым сжиганием, был разработан усовершенствованный метод одновременного горения за счет инициирования горения в нескольких точках, а не в точке, режим HCCI (Homogenous Charge Compression Ignition), позволяющий создавать предварительное воспламенение бедной смеси с помощью более высокой коэффициент сжатия. Но HCCI никогда не мог работать во всех диапазонах нагрузок при работе двигателя.

    В настоящее время SKYACTIV-X — это наиболее инновационный метод сгорания, который использует более высокую степень сжатия для сжатия воздушно-топливной смеси (предварительно смешанной) до температуры, близкой к температуре самовоспламенения, а затем с использованием искры для инициирования сгорания.Само по себе сжатие имеет непредсказуемые характеристики сгорания, такие как CA10, CA50 и CA90. Искра используется, чтобы сделать горение предсказуемым, поскольку искра возникает, несмотря на работу по сжатию смеси. Более высокая степень сжатия приводит к состоянию, близкому к HCCI, затем с искровой сферой пламени сгорание воздуха около свечи зажигания приводит к расширению смеси (сгоревшей смеси), которая сжимает дальнейшую окружающую среду (несгоревшую смесь), поскольку мы знаем, что сгорание создает продукты большего объема, так как выше нет.количество молей продуктов создается по сравнению с молями израсходованного реагента. Расширяющаяся сгоревшая смесь заставляет остаточную смесь сгорать в режиме HCCI, следовательно, лучше выбросы и более бедная работа.

    Когда вторичная волна сгорания создается в двигателе SI из-за сжатия от сгоревшей смеси, это классифицируется как детонация в двигателе SI. Здесь мы используем детонационный эффект, чтобы сжигать бедную смесь с большей эффективностью.

    Проблема сгорания, основанная только на высоком сжатии, возникает из-за неопределенных характеристик потерь тепла стенкой цилиндра, которые влияют на давление и температуру в цилиндре (поэтому HCCI не работает).

    Здесь нам действительно нужно рассчитать давление и температуру в цилиндре для определения момента зажигания, но мы не преследуем точное условие самовоспламенения, вместо этого мы ориентируемся на термодинамическое условие перед самовоспламенением, которое фактически устраняет циклическую неточность расчета, так как Искровая сфера компенсирует это, при одновременном и объемном режимах горения (не ступенчатых). Следовательно, более высокая стабильность при большем диапазоне нагрузок.

    В простом смысле, со ссылкой на Heywood, Unburnt and Burnt Temperature,

    для двигателя с искровым зажиганием

    Tcylinder = Tu * (Xu) + (Xb) * Tb,

    где

    Tu = температура несгоревшего материала, Xu = массовая доля несгоревшего продукта

    Tb = температура сгоревшего материала, Xb = массовая доля сгоревшего вещества

    Xb + Xu = 1.

    Итак, в типичном двигателе SI сгорание осуществляется за счет сгоревшей массы и температуры, поскольку сферическое ядро ​​зажигания распространяется, оно увеличивает свою толщину, сжимая сгоревшую смесь внутри ядра, толкая ее к свече зажигания, одновременно сжимая внешнюю несгоревшую смесь, в результате высокая несгоревшая температура.

    Детонация — это случай резкого повышения температуры несгоревшей смеси, в результате чего возникает вторичная волна воспламенения и возгорание несгоревшей смеси до того, как сферическая сфера воспламенения могла ее сжечь.

    «Теперь в SKYACTIV-X у нас есть очень высокая степень сжатия и бедная смесь, что означает, что перед воспламенением у нас уже есть очень плотно упакованная смесь, которая на самой начальной стадии воспламенения с помощью сжатия Волна сферической сферы воспламенения создает очень высокую несгоревшую температуру, т.е. Tu, при очень малом распространении сферы соответствующее Tu достигает предела самовоспламенения, что приводит к HCCI, подобному горению в объемном режиме, состоящему из горячих точек в смеси.«

    « Так что да, это своего рода детонация, так как несгоревшие на самом деле ответственны за горение за счет объемного режима горения, обычно это волна горения, которая фактически зажигает весь заряд ступенчато ».

    Ссылка из Heywood: Глава 9 Горение в двигателе с искровым зажиганием

    Раздел 9.2

    #TechTip: Степени сжатия

    «Степень сжатия» — это термин, который часто используют, когда вы говорите о характеристиках двигателя, но что он означает на самом деле?

    По большей части, когда люди говорят о степени сжатия двигателя, они имеют в виду так называемую статическую степень сжатия , которую гораздо проще вычислить, чем степень динамического сжатия .

    Проще говоря, степень статического сжатия (обычно называемая степенью сжатия) составляет отношение максимального объема к минимальному объему в цилиндре при движении поршня (объем, когда поршень полностью вниз по сравнению с тем, когда он полностью вверх).

    Что означает степень сжатия?

    CR в основном сообщают вам, насколько сильно сжимается топливно-воздушная смесь в цилиндре. перед тем, как свеча зажигания воспламенит ее.Таким образом, если у вас есть 10 единиц объема, когда цилиндр находится в нижней части своего хода, и 1 единица, когда цилиндр находится в верхней части своего хода, сжатие будет обозначаться как 10: 1. Для двигателей без наддува более высокая степень сжатия, как правило, означает более высокие показатели мощности.

    Каковы последствия более высокой степени сжатия?

    Чем выше степень сжатия, тем выше вероятность предвзрывания (также известного как пинг).Предварительная детонация происходит, когда воздушно-топливная смесь воспламеняется из-за чрезмерного давления (а не из-за искры). Это имеет смысл, поскольку большее сжатие = большее давление = большая вероятность взрыва. Для борьбы со звоном часто используется топливо с более высоким октановым числом. Чем выше октановое число топлива, тем оно устойчивее к преддетонации.

    Также важно отметить, что тепло играет роль в пинге. Чем выше температура, тем больше вероятность взрыва. Поскольку алюминий лучше отводит тепло, чем чугун, двигатели с алюминиевыми головками часто могут работать с более высокими степенями сжатия, чем их чугунные аналоги, без звона.

    Зачем вам нужна более низкая степень сжатия?

    Более низкая степень сжатия полезна для двигателей, которые используют принудительную индукцию или двигателей, которые хотят использовать топливо с более низким октановым числом. Например, вы можете обнаружить, что конструкции с очень высокой мощностью, в которых используются турбокомпрессоры или нагнетатели, на самом деле имеют очень низкую степень статического сжатия.Более низкая компрессия в основном использовалась в американских автомобилях 70-х и 80-х годов в результате попыток сокращения выбросов.

    Как изменить степень сжатия:

    Степень сжатия можно изменить, заменив такие компоненты двигателя, как поршни и головки.Когда поршни имеют больший рельеф (или тарелку), они приводят к более низким степеням сжатия, чем поршни, которые являются плоскими или куполообразными, которые обычно имеют повышенные степени сжатия.

    Головки

    — еще один популярный вариант для изменения степени сжатия. Головки с меньшими камерами сгорания увеличивают степень сжатия, а головки с большими камерами приводят к более низкому сжатию.

    ДВИГАТЕЛЬ

    101 ЧАСТЬ 2: Основы двигателя для чайников

    Массажный ход

    Это не настоящий шаг в 4-тактном цикле; Это та часть, где у вас есть полное представление о том, что происходит в вашем двигателе, и теперь у вас есть желание сделать так, чтобы удар взрыва производил больше мощности в вашем двигателе.Пытаясь изменить свой двигатель или заменить существующие детали в поисках большей мощности, вы должны помнить одно правило: вы никогда не можете получить что-то просто так. Команда заводских инженеров OE обычно проделывает замечательную работу по разработке двигателя, который может удовлетворить множество требований, предъявляемых к современной силовой установке. Имейте в виду, что большинство инженеров, работающих на производителей, не чайники; им просто нужно играть в игру с множеством правил, связанных с выбросами, стоимостью и другими вещами, которые они не могут контролировать.Цели разработки серийного двигателя не только в том, чтобы обеспечить максимально возможную мощность. Стоковые двигатели должны; работать плавно и тихо, производить мощность в широком диапазоне оборотов, работать долго, получать максимальную экономию топлива, работать на топливе с октановым числом от 85 до 94 без взрыва, минимизировать загрязнение окружающей среды и, самое главное, быть дешевым для массового производства. Это очень важно, и заводскому инженеру приходится идти на множество компромиссов.

    Поскольку вы, энтузиаст-водитель, готовы изменить некоторые из этих компромиссов, чтобы получить скорость, чтобы утолить свою зависимость, у вас есть варианты, которые уменьшают или устраняют эти ограничения.Но поскольку вы не можете получить что-то даром, вы должны помнить, что увеличение мощности произойдет за счет снижения расхода топлива, увеличения выбросов, более узкого диапазона мощности и, возможно, сокращения ожидаемого срока службы вашего двигателя.

    Ratio Hand, если вы уверены

    Степень сжатия — очень важный термин, который часто используют, когда говорят о двигателях. Степень сжатия — это отношение объема цилиндра, когда поршень находится в нижней части своего хода (НМТ), к объему цилиндра, когда поршень находится в верхней части своего хода (ВМТ).Степень сжатия описывается как числовое значение, и на нее влияет ряд факторов: объем камеры сгорания головки блока цилиндров, конструкция верхней части поршня (куполообразная, выпуклая, плоская), толщина прокладки головки и высота деки блока. . Более высокая степень сжатия увеличивает степень расширения сгоревших газов, что означает, что больше энергии воздействует на верхнюю часть поршня, толкая ее сильнее и создавая большую мощность. Увеличение степени сжатия улучшает тепловой КПД двигателя; это основная причина, по которой более высокое сжатие увеличивает мощность.Повышенная тепловая эффективность приводит к улучшенной экономии топлива за счет получения большей мощности при том же количестве топлива. Экономия топлива также увеличивается за счет уменьшения площади поверхности камеры сгорания и объема, необходимого для заполнения камеры сгорания, что приводит к меньшим потерям тепла сгорания и большему расширению, используемому для опускания поршня.

    Такой куполообразный поршень увеличивает степень сжатия двигателя.

    Объемный КПД

    Короче говоря,

    Объемный КПД (VE) — это измерение того, насколько хорошо двигатель может перемещать топливно-воздушную смесь в цилиндры двигателя и из них.VE — это процентная доля смеси заряда, которая динамически поступает в цилиндр во время такта впуска по сравнению с фактическим рабочим объемом цилиндра. Чем выше этот процент, тем выше VE, а это означает, что в двигатель будет всасываться больше воздуха и топлива для увеличения мощности.

    Вы можете часто слышать термин «динамическая степень сжатия». Этот термин неправильно употреблен, поскольку нет такой вещи, как степень динамического сжатия, кроме как в старых Saab или в исследовательских двигателях, где степень сжатия можно изменить на лету.На динамическое давление в цилиндре двигателя может влиять множество факторов, но это не степень сжатия, как мы ее знаем, а фиксированная механическая степень, которая не меняется.

    Повышение компрессии двигателя имеет некоторые недостатки. Во избежание детонации может потребоваться газ с более высоким октановым числом. Увеличение компрессии также означает, что необходимо отвести больше тепла, чтобы избежать повреждения двигателя и детонации. Двигатели с турбонаддувом и турбонаддувом обычно имеют более низкую степень сжатия, в пределах 7.0-9,5: 1. Степень сжатия этих двигателей ниже, потому что турбонагнетатель или нагнетатель загружает в цилиндры намного больше топливовоздушной смеси. Это значительно увеличивает давление в цилиндре, поэтому степень сжатия должна быть ниже, чтобы избежать чрезмерного давления в цилиндре и детонации.

    Системы настройки на основе
    VE, такие как Infinity от AEM, позволяют тюнерам заменять такие детали, как распределительные валы, выхлопные трубы и турбины, без необходимости перенастраивать двигатель.

    A / F Единицы

    Соотношение воздух / топливо — это соотношение воздуха и топлива, выраженное как отношение.Одно только топливо не сгорит. Он должен соединяться с кислородом воздуха, чтобы образовалась горючая смесь. Идеальный химический баланс соотношения воздух-топливо по массе составляет 14,7: 1 (это 14,7 частей воздуха на одну часть топлива). При таком соотношении и в идеальных условиях все топливо и кислород будут израсходованы на сгорание. Химики и инженеры называют это стехиометрическим соотношением.

    Электронный блок управления современного автомобиля запрограммирован на работу с соотношением 14,7: 1 во время крейсерского полета и при небольшом ускорении для снижения выбросов, сохраняя каталитические нейтрализаторы в этих обычных режимах работы (каталитический нейтрализатор хорошо работает только при таком соотношении воздуха и топлива).Хотя стехиометрическое соотношение A / F оптимально для низких выбросов, двигатели вырабатывают больше мощности при более высоких соотношениях A / F. Таким образом, ЭБУ двигателя также запрограммирован на переход на более богатую смесь (менее 14,7: 1 A / F) при полностью открытой дроссельной заслонке для большей мощности. Поскольку большинство уличных автомобилей проводят очень мало времени с полностью открытой дроссельной заслонкой, их можно настроить на максимальную мощность, не нанося вреда окружающей среде, как утверждают «зеленые».

    Безнаддувные двигатели обычно обеспечивают лучшую мощность с соотношением A / F около 13.0: 1 при полностью открытой дроссельной заслонке, хотя 12,5: 1 немного безопаснее, потому что при обедненном соотношении воздух / топливо (где больше частей воздуха на часть топлива) горят сильнее. Если смесь слишком бедная и температура сгорания увеличивается, двигатель может начать перегреваться и взорваться. Так как стандартные двигатели спроектированы для работы в широком диапазоне топливных качеств, они, как правило, работают очень богато при полностью открытой дроссельной заслонке. Мы видели, как соотношение A / F достигает 10,5: 1 на полностью штатных безнаддувных двигателях. Это очень богато!

    Автомобили с наддувом или с турбонаддувом могут работать до 10 единиц.0: 1. Более богатые смеси A / F сжигают меньше и могут помочь предотвратить детонацию в этих двигателях с более высоким давлением. Однако соотношение компонентов смеси более 10,0: 1 может фактически способствовать разрушающей детонации двигателя в двигателях с принудительной индукцией. Это происходит из-за накопления избыточного топлива в камере сгорания и повышенного давления в цилиндрах до точки, при которой оно может взорваться или самовоспламениться. Вы можете узнать больше о детонации и самовоспламенении в разделе ТОПЛИВНАЯ СИСТЕМА.

    Широкополосные измерители соотношения воздух / топливо, подобные этому, позволяют точно настроить топливные таблицы для достижения максимальной мощности.

    Время — это все

    Время зажигания выражается числом градусов поворота коленчатого вала до ВМТ, когда зажигается свеча зажигания. Это запускает сгорание воздуха и бензина, которое толкает поршень вниз и приводит в движение кривошип. Поскольку для развития сгорания требуется несколько миллисекунд, ЭБУ двигателя обычно выдает команду свече зажигания на несколько градусов поворота кривошипа до ВМТ. Таким образом, к тому времени, когда поршень достигнет ВМТ, сгорание будет полностью начато и сможет толкнуть поршень вниз с наибольшим эффектом.Если свеча зажигания сработает после ВМТ, поршень уже будет возвращаться в отверстие, и сгорание не сможет дать поршню наибольший толчок, что снизит выходную мощность. Воспламенение искры с запаздыванием по времени или после ВМТ также может вызвать перегрев двигателя из-за увеличения времени, в течение которого горящая смесь может воздействовать на внутренние части двигателя при движении поршня вниз. Он также может отводить много тепла из выпускного клапана, что может привести к его повреждению и другим компонентам выхлопной системы.

    Число градусов, на которые свеча срабатывает до ВМТ, называется опережением. Как правило, чем более развита искра, тем более развитым будет событие сгорания до того, как поршень достигнет ВМТ. Это позволяет создать большее давление и приложить более мощный толчок к поршню на его обратном пути вниз по отверстию, но можно слишком сильно сместить синхронизацию. Когда синхронизация двигателя слишком велика, искра возникает, когда поршень все еще находится на подъеме в ВМТ. Это может привести к взрыву или детонации вместо возгорания.Этого нужно избегать.

    Продолжайте и умножайте

    Теперь вы должны лучше понимать реальный процесс сгорания и некоторые термины, которые вы услышите при обсуждении производства энергии и строительства двигателя. Вы можете с уверенностью и уверенностью сказать этому умному специалисту в местном магазине, что вам не нужна синтетическая смазка для фар, но вы хотели бы обсудить различные варианты поршней для увеличения выходной мощности вашей полнодвигательной сборки Honda. Продолжайте читать оставшуюся часть этих разделов, чтобы получить больше знаний о том, как собрать идеальный пакет для вождения.


    Доступно 15.06.15

    Топливные системы 101: Обеспечение достаточного количества топлива для развлечений

    Проблемы со степенью сжатия

    15 июня 2020

    В последние годы много говорилось о замене обычных транспортных средств электромобилями и гибридными автомобилями, чтобы уменьшить воздействие ископаемого топлива на окружающую среду. Однако, хотя оборот этого аргумента может заключаться в том, что двигатели внутреннего сгорания сейчас чище и эффективнее, чем когда-либо, на самом деле, за исключением одной возможной технологии, двигатели внутреннего сгорания, по сути, достигли предела своего потенциала для разработки. дальше.

    Возможно, в последние годы были достигнуты гигантские успехи в том, чтобы сделать двигатели внутреннего сгорания более чистыми и эффективными, но большая часть этих достижений полагается на чрезвычайно сложные, замысловатые и дорогие электронные системы управления, чтобы быть эффективными. Мы все это знаем, но, возможно, не так широко известно, что мы вот-вот столкнемся с еще одной технологией, известной как переменное сжатие, работа которой зависит от чрезвычайно сложных электронных систем управления. В этой статье мы более подробно рассмотрим эту технологию, а также проблемы с ней, которые мы можем ожидать в ближайшее время.Начнем с констатации —

    Проблема дальнейшего развития технологий внутреннего сгорания

    Остается еще несколько проблем с развитием базовых технологий, лежащих в основе внутреннего сгорания. Главным из них является тот факт, что современное топливо имеет относительно низкую теплотворную способность и что большая часть теплотворной способности современного топлива теряется в виде тепла, которое выделяется в атмосферу.

    Таким образом, с точки зрения проектирования и инженерии, очевидным ответом будет: а) извлекать максимальное количество энергии из доступного в настоящее время низкоэнергетического топлива и б) минимизировать или уменьшить количество тепла, которое выделяется во время извлечения энергии. процесс.Однако проблема этого подхода заключается в том, что новые конструкции двигателей должны включать меры по снижению потерь на трение, насосных потерь и серьезных паразитных потерь мощности, вызванных возвратно-поступательным движением тяжелых компонентов. Требования к смазке, а также потери, вызванные выработкой достаточного электрического тока для питания критически важных систем, также составляют значительный процент «потраченной впустую» энергии, и все это оставляет разработчикам двигателей очень мало вариантов.

    При первом чтении может показаться, что все вышеперечисленное не имеет отношения к нашей работе в качестве технических специалистов.Однако из немногих вариантов, которые разработчики двигателей оставили для повышения эффективности двигателей внутреннего сгорания, наиболее важным является степень сжатия, которая лежит в основе проблемы улучшения сгорания.

    Вышесказанное говорит о многом, но чтобы понять, как степени сжатия повлияют на новые конструкции двигателей, а вместе с тем и на нашу способность диагностировать и ремонтировать двигатели с высокой степенью сжатия, нам необходимо понять, что такое сжатие в цилиндрах и как оно влияет на работу двигателя.Давайте исследуем концепцию сжатия цилиндра, задав этот вопрос —

    Что такое степень сжатия?

    Источник изображения: https://www.searchautoparts.com/sites/www.searchautoparts.com/files/images/Figure-1_2.png

    Рассмотрим изображение выше, на котором показана осциллограмма серии пикового давления в цилиндре, полученная для одного цилиндра с помощью датчика давления. Первые три пика показывают постоянное значение давления при работе двигателя на холостом ходу, в то время как резко возрастающие значения, которые следуют ниже, показывают быстрое увеличение пикового давления в цилиндрах по мере увеличения частоты вращения двигателя.Так как же это возможно на двигателе с фиксированной степенью сжатия?

    Ответ прост, но чтобы понять, что мы видим на этой осциллограмме, нам нужно обсудить распространенное заблуждение о степенях сжатия —

    Многие люди, в том числе некоторые механики и техники, знакомые с этим писателем, понимают термин «степень сжатия» как означающий, что соотношение, скажем, 10: 1 означает, что одно атмосферное давление сжимается, чтобы получить значение давления, равное 10 атмосферным давлениям. во время такта сжатия.Хотя в этом есть некоторый интуитивный смысл, такая интерпретация неверна, и, на самом деле, есть два типа коэффициентов сжатия, которые нам нужно обсудить, поэтому давайте начнем с —

    Статическая степень сжатия

    Принятое определение этого термина гласит, что степень сжатия определяется общим рабочим объемом цилиндра, когда поршень находится в НМТ, это значение делится на объем в цилиндре, когда поршень находится в ВМТ. Например, если общий объем цилиндра составляет 100 см3, когда поршень находится в НМТ, а объем цилиндра над поршнем составляет 10 см3, когда поршень находится в ВМТ, степень сжатия этого двигателя составляет 10: 1, что означает основывается исключительно на технических характеристиках двигателя и конструктивных особенностях поршня / камеры сгорания.

    Тем не менее, степень статического сжатия в значительной степени определяет тепловой КПД любого двигателя, поскольку это значение в значительной степени определяет, сколько энергии может быть извлечено из известного количества топлива в зависимости от адиабатического * нагрева воздушно-топливной смеси.

    * «Адиабатический» нагрев относится к повышению температуры сжимаемого газа, например, во время такта сжатия в работающем двигателе. Однако это значение очень трудно определить количественно, потому что воздушно-топливные смеси либо поглощают некоторое количество тепла от горячих поверхностей двигателя, либо отдают его на холодные поверхности двигателя в разное время во время нормальной работы двигателя.Следовательно, это значение рассчитывается с использованием закона идеального газа (и других законов), в отличие от его прямого измерения или вывода из статической степени сжатия.

    Степень динамического сжатия

    С нашей точки зрения, знание статической степени сжатия двигателя имеет ограниченное значение. Более важно знать, какова степень динамического сжатия двигателя, потому что, в отличие от степеней статического сжатия, динамические степени сжатия учитывают объем газов, который иногда составляет

    .
    • остаются в цилиндрах во время такта сжатия из-за плохой продувки выхлопных газов
    • покидает цилиндры во время такта сжатия из-за неисправных или негерметичных клапанов или чрезмерной / агрессивной продувки выхлопных газов
    • входят в цилиндры во время такта сжатия в результате агрессивной синхронизации клапанов, которая закрывает впускные клапаны в конце такта сжатия

    Хотя знание степени динамического сжатия двигателя является полезной информацией для диагностических целей, следует отметить, что степени динамического сжатия всегда значительно ниже, чем степени статического сжатия.Основная причина этого заключается в том, что отношение удельной теплоты *, определяющее эффективность сгорания, (почти) никогда не бывает постоянным в любом двигателе во время нормальной работы двигателя.

    * В своей простейшей форме это соотношение определяется как отношение между тем, сколько тепла может поглотить газ, если этот газ находится под постоянным давлением, и сколько тепла тот же газ может поглотить, если объем газа остается постоянным.

    На практике, однако, отношение удельной теплоты в работающем двигателе постоянно изменяется из-за того, что смесь сжатого воздуха и топлива выделяет некоторое количество тепла в двигатель, и изменения давления сжатия, вызванные такими факторами, как изменение фаз газораспределения, которые могут: например, увеличить / уменьшить эффективность процессов очистки выхлопных газов в различных точках рабочего диапазона двигателя.

    Итак, какое отношение все это имеет к диагностике проблем с компрессией двигателя? Это просто означает, что если (и когда) нам потребуется диагностировать проблемы сжатия / сгорания в различных конструкциях двигателей с переменным сжатием, с которыми мы вскоре столкнемся, нам нужно будет знать еще одно значение давления, это —

    Пиковое давление в цилиндре

    Давайте проиллюстрируем это значение на практическом примере. Если, например, двигатель имеет степень статического сжатия 10: 1 и степень динамического сжатия 7.5: 1, мы можем рассчитать фактическое пиковое давление сжатия в цилиндре, умножив 7,5 1,3 (динамическое давление сжатия) на атмосферное давление.

    ПРИМЕЧАНИЕ: Хотя отношение удельной теплоты атмосферного воздуха составляет 1,4, этот расчет обычно основан на значении 1,3, поскольку эта поправка учитывает переменные, которые основаны на различных конструкциях двигателя и различных материалах, используемых в конструкции двигателя различными производители. На практике меньшее значение обеспечивает единообразную основу для расчета значений давления в цилиндрах независимо от конструкции двигателя и / или конфигурации цилиндра.

    С диагностической точки зрения знание разницы между фактическим и желаемым пиковым давлением в цилиндре будет иметь гораздо большее значение, чем знание одного (или обоих) статической и динамической степеней сжатия просто потому, что эффективность сгорания зависит от фактического пикового давления сжатия в цилиндре, и не от степени сжатия. Конечно, это утверждение вызывает этот вопрос —

    Почему бы просто не увеличить давление в цилиндрах для повышения эффективности двигателя?

    Хотя верно, что более высокая степень сжатия и, как следствие, более высокое пиковое давление в цилиндрах приводит к улучшенному сгоранию (и, как следствие, к лучшей экономии топлива), это верно только до определенного момента, поскольку законы физики накладывают несколько ограничивающих факторов на то, как может идти высокое давление в цилиндре.Рассмотрим график ниже —

    Источник изображения: https://www.searchautoparts.com/sites/www.searchautoparts.com/files/images/Figure-2_3.png

    Горизонтальная ось этого графика показывает статические степени сжатия в зависимости от увеличения теплового КПД двигателя по вертикальной оси. Хотя мы знаем, что большинство современных автомобилей имеют статическую степень сжатия от примерно 10: 1 до примерно 14: 1, верхний предел этого диапазона обычно применяется к двигателям в высококлассных суперкарах и передовых конструкциях двигателей, таких как Mazda Homogenous Charge. Двигатель с воспламенением от сжатия.

    Другие двигатели с высокой степенью сжатия, предназначенные для массового потребления, в настоящее время находятся в стадии разработки, но важным моментом в этом графике является резкое падение КПД двигателя при степенях сжатия выше примерно 15: 1. Это падение связано с тем, что воздух может поглощать только ограниченное количество тепловой энергии, что в конечном итоге определяет, как детонационное пламя распространяется через топливно-воздушную смесь.

    Нам не нужно здесь углубляться в сложность процессов горения, но достаточно сказать, что кислород в смеси служит только окислителем в процессе горения, а в стехиометрической смеси весь кислород используется для сжигания всего топлива. .С риском наложения на него слишком тонкой точки, тепло, выделяющееся во время процесса окисления, вызывает расширение азотного компонента топливно-воздушной смеси во время процесса сгорания, что является механизмом, который перемещает поршень вниз во время рабочего такта.

    Таким образом, даже если бы конструкторы двигателей были готовы принять штрафы в стоимости и весе, которые связаны с увеличением мощности двигателя для обеспечения более высоких степеней сжатия, тот факт, что нынешнее топливо самовоспламеняется при высоких температурах, чрезвычайно затруднит реализацию стратегий контроля детонации в двигателе. применять при степенях сжатия, намного превышающих текущие.С точки зрения проектирования и инженерии стоимость контроля детонации двигателя и сопутствующего повреждения двигателя намного перевешивает небольшое повышение эффективности двигателя, которое можно получить, нагревая воздух на несколько градусов больше, хотя и увеличивая пиковое значение сжатия, что вызывает этот вопрос —

    Что это оставляет нам, как техническим специалистам?

    Источник изображения: https://www.searchautoparts.com/sites/www.searchautoparts.com/files/images/Figure-4_3.png

    На изображении выше показан 2.0L, четырехцилиндровый двигатель с наддувом, который в настоящее время используется в Nissan Infiniti QX50. Этот двигатель был впервые представлен в 2018 году производства, что не делает его достаточно старым, чтобы появиться во многих независимых мастерских.

    Проще говоря, коленчатый вал в этом двигателе не связан напрямую с поршнями. Компонент, обведенный красным, представляет собой привод с электронным управлением, который действует на рычажный механизм, который имеет функцию эффективного втягивания коленчатого вала в картер, тем самым втягивая поршни в отверстия цилиндра на целых 6 мм.Практический эффект этого заключается в том, что, хотя ход двигателя остается неизменным, ход происходит ниже в цилиндрах, что снижает пиковое давление в цилиндре, поскольку теперь между верхней частью поршней и головкой цилиндра имеется больший объем.

    Поднятие коленчатого вала уменьшает этот объем, что увеличивает пиковое давление в цилиндре, и хотя в принципе все это звучит хорошо, фактическое положение коленчатого вала в любой момент рабочего диапазона двигателя зависит от многих параметров.К ним относятся, среди прочего, частота вращения двигателя, нагрузка на двигатель, положение дроссельной заслонки, скорость движения дроссельной заслонки и, конечно же, температура охлаждающей жидкости двигателя.

    Когда эта система управления работает по назначению, можно точно контролировать пиковое давление в цилиндре, чтобы повысить пиковое давление в цилиндре при низких и средних оборотах двигателя и снизить пиковое давление в цилиндре на высоких оборотах двигателя, чтобы воспользоваться преимуществами повышенной скорости адиабатического нагрева и уменьшить последствия преждевременного или неконтролируемого возгорания топлива одновременно.На практике эта система обеспечивает повышение эффективности двигателя и экономии топлива до 27% без каких-либо потерь веса, и, хотя это хорошо для потребителей, для нас, как технических специалистов, есть серьезные недостатки.

    Например, если система каким-то образом выходит из строя, и двигатель начинает пропускать зажигание или терять мощность, где вы начинаете искать неисправность? Без сомнения, будет присутствовать один или несколько кодов неисправностей, характерных для Nissan, но поскольку почти наверняка независимые мастерские не будут иметь доступа к информации об услугах OEM и заводскому программному обеспечению диагностического прибора в ближайшее время, похоже, что мы не сможем для диагностики некоторых неисправностей этих двигателей.Или, если на то пошло, конструкции других производителей, которые достигают того же результата, вращая коленчатый вал в плавающих эксцентричных корпусах коренных подшипников, или с помощью приводов и моторного масла под давлением для вращения поршневых пальцев в эксцентриковых подшипниках на малых концах шатунов. , что оставляет нам это —

    Заключение

    Кажется, что механизмы для управления степенями сжатия и пиковыми давлениями в цилиндрах могут быть последним рубежом в развитии технологии внутреннего сгорания, но несомненно то, что все эти системы потребуют очень сложных алгоритмов и стратегий мониторинга / управления, чтобы заставить их работать. надежно в реальном мире.

    Также несомненно то, что эти стратегии управления будут реализованы на более высоких уровнях интеграции с более сложными микроконтроллерами через более высокоскоростные системы связи, чем мы когда-либо видели раньше. Также кажется вероятным, что эти типы систем будут с нами во все большем количестве, по крайней мере, в ближайшем будущем.