29Окт

Система вентиляции двигателя: Система вентиляции картера – назначение, устройство, принцип работы

Содержание

Система вентиляции картера двигателя — конструкция и принцип работы клапана PCV

В столь сложном механизме, каковым является современный двигатель внутреннего сгорания, не может быть каких-то мелочей. Любая система, даже если она имеет простейшее устройство, выполняет строго определенную функцию, внося свой вклад в бесперебойную работу силового агрегата. О существовании многих из систем рядовой автолюбитель даже не подозревает, хотя нарушение их нормального функционирования самым серьезным образом оказывает влияние на работоспособность двигателя в целом. Важнейшая роль в ДВС отведена так называемой вентиляции картера. О том, каковы ее назначение, принцип работы и состав компонентов, поговорим в данной статье.

Не секрет, что между деталями цилиндро-поршневой группы существуют строго определенные зазоры, соответствующие установленным разработчиками допускам. Какими бы минимальными ни были эти зазоры, через них из камеры сгорания в картер проникают несгоревшие частицы, которые смешиваются с масляными парами, образуя так называемые картерные газы. Они оказывают негативное влияние на качество находящегося в картере моторного масла, которое с ростом пробега автомобиля неуклонно ухудшается, теряются смазывающие свойства. Стоит отметить, что подобный эффект проявляется как у масел бюджетного класса, так и у дорогих образцов от именитых брендов. Попадающие в картер двигателя пары топлива и воды неизбежно разжижают масло, превращая его в масляную эмульсию. Не стоит забывать и о том, что в процессе работы в цилиндрах мотора создается очень высокое давление. В связи с этим газы, вырывающиеся с огромной силой, попадают в картер, грозя выдавливанием сальников и последующим вытеканием масла.

Благодаря системе вентиляции картера выводятся прорвавшиеся отработавшие газы, а также обеспечивается и поддерживается нормальное рабочее давление, что благотворно влияет не только на состояние моторного масла, но и на надежность, продолжительность работы двигателя.

Виды систем вентиляции картера

На сегодняшний день принято выделять два типа систем вентиляции картера автомобильного двигателя: открытая, или эжекционная (отработанные газы выводятся наружу напрямую из картера при помощи специальной эжекционной трубки) и закрытая, или принудительная (PCV – positive crancase ventilation).

Система вентиляции картера открытого типа характерна для силовых агрегатов автомобилей, выпускавшихся в прошлом веке и снятых в настоящее время с производства. Особенностью такой системы является то, что прорвавшиеся из цилиндров газы выводятся за пределы двигателя, непосредственно в окружающую среду. Указанный способ вентилирования картера мотора отличает простота и дешевизна конструкции, что, впрочем, «компенсируется» загрязнением атмосферы.

Помимо указанного недостатка, открытая вентиляция картера имеет еще ряд отрицательных моментов. Подобная система малоэффективна при движении на малых скоростях и абсолютно бездейственна на неподвижном автомобиле с работающим на холостых оборотах двигателем. Кроме того, через открытую систему вентиляции картера при охлаждении сильно разогретого двигателя возможно подсасывание неотфильтрованного атмосферного воздуха. Нередки случаи, когда на автомобилях с большими пробегами система открытого типа становилась основной причиной возросшего расхода масла и, как следствие, замасливания силового агрегата.

Более современной и эффективной альтернативой открытой вентиляции картера является закрытая (принудительная) вентиляционная система. Одной из ключевых деталей такой системы является клапан, выводящий попавшие в картер двигателя газы во впускной коллектор. Разные автопроизводители по-разному реализуют идею закрытого вентилирования, но в большинстве случаев каждая из схем предусматривает наличие одних и тех же элементов: клапана вентиляции (клапан PCV), маслоотделителя (может быть несколько) и соединительных патрубков. Стоит отметить, что системы вентиляции картерных газов для бензиновых и дизельных моторов, хотя и обладают определенными особенностями, в целом имеют схожие конструкции.

Работа системы PCV

Принцип работы системы принудительной вентиляции довольно прост. При возникновении разрежения во впускном коллекторе под его воздействием открывается клапан PCV и картерные газы подаются на впуск, а затем, смешиваясь с воздухом, в цилиндры двигателя. Для препятствования проникновения паров масла в камеру сгорания система предусматривает установку маслоотделителя. Современные моторы оборудуются сложной системой маслоотделителей. Так, маслоотделитель лабиринтного типа способствует замедлению движения газов из картера. Это обеспечивает оседание маслянистых капелек на стенки и последующее их стекание в картер.

Дальнейшая очистка масла от картерных газов происходит при помощи центробежного маслоотделителя, который придает отработавшим газам вращение. Под влиянием центробежной силы частицы масла задерживаются на стенках и затем стекают в картер. Окончательная очистка масла от выхлопных газов производится в выходном лабиринтном успокоителе.

Клапан PCV – особенности конструкции

Ключевая роль клапана PCV в системе закрытой вентиляции картера заключается в функции регулировки давления газов в картере путем их перепуска во впускной коллектор. В режиме ХХ и при торможении двигателем разрежение в коллекторе максимально (дроссель лишь чуть приоткрыт), однако количество картерных газов не так велико, поэтому для полноценной вентиляции достаточно канала с небольшим проходным сечением. В таком режиме под действием большого разрежения золотник клапана полностью втягивается, но при этом канал перепуска картерных газов в значительной степени перекрывается, пропуская лишь небольшое их количество.

При нажатии на педаль акселератора и при высоких нагрузках количество отработавших газов в картере существенно возрастает. Золотник клапана занимает такое положение, чтобы обеспечить максимальную пропускную способность канала. Существует еще и так называемый режим обратной вспышки, при котором горящие газы из цилиндра прорываются во впускной коллектор. В этом случае клапан PCV находится под действием давления, а не разрежения, поэтому полностью закрывается, исключая возможность поджога находящихся в картере паров топлива.

Признаки неисправности системы вентиляции картерных газов

Неудовлетворительная работа системы PCV может являться одной из причин течи масла. Забившиеся патрубки системы вентиляции создают избыточное давление в картере двигателя, в результате чего отработавшие газы вместе с маслом будут искать альтернативные пути выхода. На начальных стадиях масло начнет гнать через отверстие для щупа, также возможно образование масляных пятен в местах уплотнений и соединений (прокладки, хомуты). Совсем неприятный вариант – выдавливание сальников.

Если перестанет нормально функционировать маслоотделитель системы вентиляции картера, то масляные отложения появятся на дроссельной заслонке и даже на воздушном фильтре. Некорректная работа самого клапана PCV может привести к неправильному учету поступающего воздуха, и, как следствие, приготовлению переобогащенной смеси.

Система вентиляции картера двигателя с карбюратором 2105, 2107 Озон

Карбюратор Озон является частью системы вентиляции картера двигателя автомобиля.

Система вентиляции картера двигателя с карбюраторм 2105, 2107 Озон

1. Назначение системы вентиляции картера двигателя автомобилей ВАЗ 2105, 2107.

Система вентиляции картера двигателя предназначена для принудительного удаления оттуда картерных газов, образующихся в результате работы двигателя.
Многие автовладельцы зачастую не обращают особое внимание на систему вентиляции картера двигателя автомобиля. А зря. Для нормального, бесперебойного его функционирования она очень необходима.

2. Устройство системы вентиляции картера.

Система вентиляции картерных газов двигателей с карбюраторами 2105, 2107 «Озон» и их модификациями состоит из большой и малой ветвей. Через большую и малую ветвь газы удаляются при повышенных нагрузках, через корпус воздушного фильтра и карбюратор, при невысоких нагрузках удаление происходит через малую ветвь, в карбюратор, и далее в задроссельное пространство.

3. Схема системы вентиляции картера двигателя автомобиля.
Система вентиляции картера двигателя автомобилей ВАЗ 2105, 2107
4. Принцип действия системы вентиляции картера.

Под воздействием разрежения, возникающего в корпусе воздушного фильтра при открытых дроссельных заслонках и высоких оборотах коленчатого вала двигателя, картерные газы высасываются из картера двигателя и принудительно подаются через сапун и шланг вентиляции в полость воздушного фильтра после фильтрующего элемента.  Это работает большая ветвь системы вентиляции. Через малую ветвь, в этом случае, происходит дополнительное удаление. Золотник, входящий в малую ветвь вентиляции, находящийся на оси дроссельной заслонки первой камеры, внутри корпуса карбюратора,  увеличивает проходное отверстие для прохождения картерных газов по мере открытия дроссельной заслонки и вращения ее оси.

При работе двигателя на холостом ходу или с небольшими нагрузками дроссельные заслонки либо закрыты, либо слегка приоткрыты, разрежение в корпусе воздушного фильтра слишком мало и вентиляция через большую ветвь происходит вяло, а под закрытыми дроссельными заслонками разрежение довольно велико. Поэтому вентиляция происходит через малую ветвь вентиляции картера. Золотник перекрывает отверстие отвода газов и они проходят лишь через малое калиброванное отверстие, таким образом предотвращается неустойчивая работа двигателя на холостом ходу из-за черезмерного «подсоса» постороннего воздуха в карбюратор. См. фото в начале статьи.

5. Проверка системы вентиляции картера.

Проверить действием большую ветвь системы вентиляции невозможно. Необходимо визуально оценить замасленность двигателя — подтекание масла из-под крышки маслозаливной горловины, прокладки клапанной крышки, шлангов вентиляции картера, сальников коленчатого вала, состояние свечей. Помимо этого снимаем крышку корпуса воздушного фильтра и осматриваем полость корпуса и фильтрующий элемент на предмет замасливания.

Конечно все вышеперечисленное может быть проявлением иных неисправностей (износ поршневых колец, неплотно затянуты соединения, износ сальников, отказ свечей), но для начала, перед поиском других неисправностей, стоит провести ревизию системы вентиляции картера, так как ни чего особо сложного в этом нет, а начинать ремонт лучше с самого простого.

Проверяем малую ветвь системы вентиляции. Надеваем трубку на штуцер шланга малой ветви вентиляции и через нее дуем туда ртом. Воздух должен проходить довольно свободно, если не проходит, значит каналы системы засорены и их необходимо чистить.

Пробуем подуть еще раз и одновременно вращаем ось дроссельной заслонки первой камеры за рычаг. По мере поворачивания оси воздух должен проходить все легче и легче, так как пластмассовый золотник, расположенный на оси, все больше приоткрывает отверстие для прохождения воздуха.

Опять же, если такая продувка затруднена, то необходимо прочистка каналов или золотника на оси в карбюраторе.

Штуцер малой ветви вентиляции картера на карбюраторе 2105, 2107 Озон
6. Ремонт.

Ремонт системы вентиляции заключается в прочистке, промывке и продувании ее составных частей. Если этого не сделать вовремя (а по мере износа двигателя система все более и более засоряется), то ждите масло в полости воздушного фильтра и замасленные свечи. Как следствие двигатель начинает работать с перебоями, троить , плохо пускаться ,  карбюратор перестает поддаваться регулировке , его жиклеры и каналы загрязняются отложениями. Повышается давление в картере и масло начинает сочиться из-под сальников, прокладок, крышки маслозаливной горловины. Вот такая неприглядная картина получается из-за системы, которой мало кто уделяет внимание.

Некоторые кидаются «капиталить» двигатель, обвиняя во всем изношенные кольца, а причина ухудшения  его работы всего лишь в каком-нибудь куске отложений, застрявшем в одной из трубок вентиляции.

1. Снимаем шланги большой и малой ветвей вентиляции картера. Промываем их ацетоном или бензином, затем продуваем сжатым воздухом. Если отложений много и они затвердели проделываем промывку и продувку несколько раз.

2. Разбираем сапун двигателя. Вынимаем трубку, по которой газы отсасываются из картера, снимаем маслоотделитель. Все промываем, протираем и ставим обратно в той последовательности в которой снимали. Если сразу все отложения удалить не удается, то замачиваем снятые детали в ацетоне или бензине на часок.

3. Снимаем корпус воздушного фильтра. Прочищаем в нем каналы системы вентиляции через штуцера, на которые надеваются большой и малый шланги. Продуваем сжатым воздухом.

4. Снимаем карбюратор с двигателя. Отсоединяем его нижнюю часть. Вынимаем ось дроссельной заслонки первой камеры. Промываем каналы и отверстия системы вентиляции, золотник. Продуваем сжатым воздухом. Собираем все назад. Если забыли как, смотрите по изображениям.

Снятие золотника
Еще статьи на сайте по двигателям автомобилей ВАЗ

— Двигатели автомобилей ВАЗ

— Запуск карбюраторного двигателя автомобиля в мороз

— Первичная диагностика неисправностей карбюраторного двигателя легкового автомобиля

— Устранение провалов, рывков, подергиваний в работе карбюраторного двигателя

— Применяемость свечей зажигания для двигателей автомобилей ВАЗ

Подписывайтесь на нас!

Управление прорывами газов в двигателе с помощью систем вентиляции картера

Содержание:

  1. Введение
  2. Что такое прорыв?
  3. Как создается прорыв?
  4. Как чрезмерная продувка повреждает двигатель?
  5. Что такое вентиляция картера?
  6. Какие существуют типы систем вентиляции картера?
  7. Каковы преимущества системы вентиляции картера?
    • Регулятор давления в картере
    • Снижение расхода масла
    • Повышение эффективности двигателя
    • Защита окружающей среды
    • Соответствие экологическим нормам
  8. Полная система. Помимо «Картерного фильтра»
  9. Заключение

 

Введение

 

В этой статье обсуждается прорыв газов в двигателе, причины прорыва газов и использование систем вентиляции картера для борьбы с прорывом газов в двигателе. Мы объясняем различные типы систем вентиляции картера, представленные на рынке, и преимущества каждого типа. Обсуждаемые здесь двигатели относятся к категории поршневых двигателей внутреннего сгорания (RICE) и включают конфигурации с искровым зажиганием (двигатель SI) или с воспламенением от сжатия (двигатель CI). Стационарные двигатели используются для выработки электроэнергии (например, в режиме ожидания, пикового/сглаживания, основной мощности) и механического привода. (например, газовые компрессоры и насосы). Двигатели также используются в морских силовых установках, бортовых силовых установках и локомотивах.

 

Что такое Blow-by?

 

Прорыв газов образуется, когда топливовоздушная смесь и продукты сгорания просачиваются через поршневые кольца двигателя. Топливовоздушная смесь под давлением и продукты сгорания просачиваются в картер двигателя через небольшие зазоры между кольцами и стенками цилиндров. Образовавшаяся смесь тумана смазочного масла и газов называется прорывом картерных газов.

 

Как создается прорыв?

 

В большинстве двигателей внутреннего сгорания используются поршни, клапаны и валы для преобразования энергии контролируемых взрывов в механическую энергию. Поршни — это сердце и душа двигателя. Они перемещают газы через двигатель и используют энергию, создаваемую во время рабочего такта. В двигателе поршни соединены с вращающимся коленчатым валом и движутся в прямолинейном направлении внутри неподвижного полого цилиндра. Коленчатый вал воспринимает линейное движение поршней и преобразует его во вращательное движение, которое можно использовать для привода электродвигателей генераторных установок, компрессоров и другого вращательного оборудования. Область двигателя, в которой находится коленчатый вал, называется картером.



Когда поршень завершает свое движение от нижней части цилиндра к верхней или от верхней части цилиндра к нижней части, это движение называется тактом. Когда двигатель называют двухтактным или четырехтактным, это указывает на количество тактов, необходимых для завершения цикла сгорания. В этой статье мы сосредоточимся на четырехтактном типе и четырех тактах, которые происходят в следующем порядке: впуск, сжатие, мощность и выпуск. Прорыв картера происходит во время такта сжатия и рабочего такта.

 

 

 

Как правило, новые двигатели имеют более низкий уровень прорыва газов по сравнению со старыми изношенными двигателями. По мере работы двигателя внутренние компоненты камеры сгорания начинают изнашиваться, что приводит к увеличению зазоров между стенками цилиндров и поршневыми кольцами. Этот износ позволяет большему количеству картерных газов просачиваться через поршневые кольца в картер двигателя. Хорошее эмпирическое правило состоит в том, что от «изношенного» двигателя следует ожидать в два раза больше прорыва газов, чем от «нового».

 

 

Как чрезмерный прорыв газов вредит двигателю?

 

Выхлопные газы двигателя необходимо выпускать из картера, чтобы предотвратить некоторые проблемы. Общие проблемы включают:

 

●    Избыточное давление в картере двигателя  — Повышенное давление в картере двигателя может привести к утечке масла через уплотнения двигателя, что способствует потере масла.

 

●     Повышенный расход масла  — Когда прорыв газов содержит большое количество масляного тумана, который выбрасывается в атмосферу и не регенерируется, эффективность системы смазки двигателя может снизиться из-за чрезмерного расхода масла.

 

●     Снижение мощности двигателя — Когда картерные газы направляются обратно через впускной патрубок двигателя (закрытый картер). Масло и другие загрязняющие вещества могут покрывать внутренние компоненты двигателя, такие как турбокомпрессоры и промежуточные охладители, что может значительно снизить эффективность и производительность.

 

Что такое вентиляция картера?

 

Вентиляция картера — это процесс вентиляции или удаления картерных газов из картера двигателя для предотвращения чрезмерного повышения давления внутри двигателя. Картерные газы смешиваются с масляным туманом и другими загрязнителями, которые могут повредить внутренние компоненты двигателя и загрязнить окружающую среду. Высокоэффективный фильтр вентиляции картера необходим для очистки выпускаемых газов перед возвратом на впуск двигателя или выпуском в окружающую среду.

 

Какие существуют типы систем вентиляции картера?

 

В зависимости от установки и требований к выбросам картерные газы удаляются с помощью двух типов систем: открытой вентиляции картера (OCV) и закрытой вентиляции картера (CCV).

 

Системы OCV применяются при выбросе картерных газов в атмосферу. Система OCV может представлять собой простую низкоэффективную систему с низким противодавлением, сапун из проволочной сетки или включать высокоэффективный коалесцирующий элемент, предназначенный для улавливания большого количества масляного тумана. Наиболее эффективные системы OCV объединяют высокоэффективный коалесцирующий фильтр с источником вакуума и механизмом регулирования давления в картере. Преимущество использования открытых систем вентиляции картера заключается в том, что возможность загрязнения и скопления масла внутри турбокомпрессора и промежуточных охладителей сводится к минимуму. Это особенно важно для свалочного газа, биогаза, синтез-газа и других объектов, где качество газа может быть проблемой (Solberg SME и ACVB).

 

Системы CCV применяются, когда картерные газы направляются обратно на впуск двигателя. В большинстве случаев он будет проходить перед турбиной (крыльчаткой компрессора) и после воздухоочистителя двигателя. Некоторые из них будут направляться в выхлоп двигателя. Поскольку экологические нормы становятся все более строгими, использование систем закрытой вентиляции картера (CCV) растет. Отвод картерных газов обратно через впускной тракт двигателя позволяет операторам контролировать общие выбросы через выхлопные газы двигателя и устранять источник выбросов. Закрытые системы вентиляции картера подходят для многих типов установок, особенно если в CCV встроена технология регулирования давления (Solberg ACV).

 

Оба типа систем могут эффективно регулировать давление в картере и соответствовать экологическим нормам. Дополнительную информацию см. в таблице 1.1 ниже.

Каковы преимущества системы вентиляции картера?

Хорошо спроектированная и правильно подобранная система вентиляции картера значительно помогает поддерживать надежность двигателя и со временем снижает затраты на техническое обслуживание. Это снизит расход моторного масла и повысит эффективность и производительность двигателя. Он делает это, регулируя давление в картере в заданном диапазоне и улавливая масло, уносимое картерными газами.

Регулирование давления в картере 

Давлением в картере можно управлять с помощью впуска двигателя в качестве источника вакуума (CCV) или внешнего источника вакуума, например, рекуперативного нагнетателя (OCV). В любом случае уровень вакуума необходимо регулировать, чтобы обеспечить поддержание давления в картере в заданном диапазоне. Обычно это достигается с помощью ручных клапанов, автоматических клапанов или приводов с регулируемой скоростью. Для систем CCV прогресс заключается в использовании автоматических клапанов регулирования вакуума, таких как те, что используются в линейках продуктов Solberg серий ACV и ACVB. Для систем OCV наиболее распространено ручное управление клапаном, однако другие технологии, такие как системы рециркуляции (SME-R) и автоматическое механическое управление (Solberg ACVB), набирают обороты в широком спектре двигателей. Спецификации всасывания или давления в картере двигателя обычно находятся в диапазоне от (-3) до (+2) дюймов водяного столба, от (-7,5) до (+5) мбар или от (-0,75) до (0,5) кПа. Спецификации двигателей OEM различаются в зависимости от марки и модели двигателя, и лучше всего проконсультироваться с руководством по эксплуатации OEM для идеального диапазона рабочего давления в картере для конкретного двигателя.

Снижение расхода масла

Картерный фильтр очищает выбрасываемые картерные газы, чтобы убедиться, что они не содержат загрязнений, прежде чем они будут выпущены в окружающую среду или возвращены на впуск двигателя. Масляный туман является основной проблемой при удалении картерных газов. Функция фильтра заключается в улавливании и объединении масляного тумана, захваченного картерными газами, и возвращении его в двигатель или в поддон для отработанного масла. При возврате масла в картер двигателя можно значительно снизить расход масла за счет вентиляции картера.

Повышение эффективности двигателя 

Как закрытая вентиляция картера (CCV), так и открытая вентиляция картера (OCV) удаляют загрязняющие вещества и загрязнения из картерных газов. Эффективность фильтра особенно важна для любого применения системы CCV. Высокоэффективные коалесцирующие фильтры очень эффективно уменьшают отложения на турбинах, промежуточных охладителях и других внутренних компонентах. Некоторые частицы и масляный туман все же проходят через фильтры. В конце концов, загрязняющие вещества будут накапливаться, что потенциально может повлиять на поверхности турбокомпрессора и снизить эффективность его работы. Следовательно, лучше всего выбирать фильтры с максимально возможной эффективностью при отводе картерных газов обратно через впуск двигателя.

(высокоэффективная фильтрация обычно составляет от 99% до 99,97% эффективности при 0,3 мкм)

Защита окружающей среды

Системы вентиляции картера с высокоэффективными фильтрами защищают от масляного тумана, дыма, запахов и других твердых частиц попадание в окружающую среду. Когда открытые системы вентиляции картера (OCV) выпускают неочищенные картерные газы в атмосферу, масляный туман скапливается в зданиях и на окружающем оборудовании, включая двигатель. По мере того, как масло скапливается на поверхностях, возникает опасность поскользнуться, а также возможна опасность возгорания. Скопление масляного тумана в плохо проветриваемых помещениях может вызвать проблемы с дыханием и раздражение глаз у персонала завода. Кроме того, утечки через уплотнения двигателя, вызванные избыточным давлением в картере, могут создать опасность поскользнуться для операторов установки.

Соответствие нормам по охране окружающей среды 

Национальные или региональные агентства (EPA, IMO и т. д.) могут потребовать уменьшения или устранения картерных выбросов. Конкретные требования обычно зависят от типа топлива, стационарной или морской установки и режима работы (постоянный или резервный). Даже если ваш двигатель не подпадает под действие конкретных правил, лучше всего способствовать экологической ответственности и безопасности путем улавливания выбрасываемых масляных картерных газов.

Полная система. BeyondJust A «Картерный фильтр»

Требования к вентиляции картера уникальны для каждой модели двигателя и места установки. Двигатели с каждым годом становятся все более эффективными и сложными. В результате продукты «один размер подходит всем» могут быть не лучшим решением для контроля выбросов и обеспечения оптимальной работы двигателя. Большинство современных высокоэффективных двигателей с низким уровнем выбросов требуют высокоэффективной фильтрации с минимальным противодавлением в картере двигателя. Специальная открытая или закрытая система вентиляции картера необходима для достижения целей по выбросам и выполнения конкретных требований. Полная система картера может включать определенную конфигурацию трубопровода, место установки, тип и расположение дренажной линии, консоли отработанного масла, место выхлопа, а также изоляционные кожухи для фильтров и трубопроводов.

 

 

 

Заключение

Установка идеальной системы для конкретного двигателя, установки или морского судна поможет повысить производительность двигателя, безопасность и соответствие экологическим требованиям, а также повысить надежность и снизить общую стоимость владения. Если у вас есть какие-либо вопросы относительно систем вентиляции картера, пожалуйста, свяжитесь с Solberg Manufacturing.

 

Таблица 1. 1

 

Объяснение вентиляции машинного отделения — Heinen & Hopman

Если пропульсивный и вспомогательный двигатели являются сердцем корабля, то вентиляция машинного отделения является его легкими. Надлежащая система вентиляции машинного отделения служит двум целям: обеспечивает достаточное количество кислорода для сгорания топлива и охлаждает помещение за счет рассеивания тепла, излучаемого маршевыми и вспомогательными двигателями.

В этом блоге мы углубимся в тему вентиляции машинного отделения, основываясь на следующих моментах.

  1. Двигатели нуждаются в воздухе для потребления
  2. Машинным отделениям нужен воздух для охлаждения
  3. Регулировка избыточного и пониженного давления

Двигателям нужен воздух для потребления

Сколько воздуха нужно двигателю? Производители двигателей обычно уже рассчитали количество необходимого воздуха и указали это где-то в своей документации. Если это не так, вы также можете рассчитать его самостоятельно, если знаете мощность и мощность двигателя.

Эту и другую информацию можно найти в стандарте ISO 8861, касающемся вентиляции машинного отделения на судах с дизельными двигателями. В нем говорится, что общий расход воздуха для горения представляет собой сумму всех устройств в машинном отделении (таких как двигательные установки, генераторы и котлы), которым требуется свежий воздух.

Расход воздуха рассчитывается по следующему уравнению.

P dg = Максимальная выходная мощность [кВт]
M ad = воздух, требуемый производителем
ρ = плотность воздуха (1,13 кг/м³)

Если M ad отсутствует, следующее можно использовать значения:

  • 0,0023 кг/кВт.с для 2-тактных двигателей
  • 0,0020 кг/кВт.с для 4-тактных двигателей

Приточные вентиляторы обеспечивают забор воздуха.

Машинные отделения нуждаются в воздухе для охлаждения

Помимо пропульсивных двигателей, машинные отделения содержат другие компоненты, излучающие тепло, такие как котлы, дизельные генераторы и основное электрооборудование. Таким образом, второй ключевой задачей вентиляции машинного отделения является охлаждение помещения и отвод избыточного тепла.

В соответствии с ISO 8861 базовая температура наружного воздуха установлена ​​на уровне 35°C с повышением температуры проходящего воздуха не более чем на 12,5K.

Помимо самих двигателей, тепло излучают и выхлопные трубы воздуха для горения.

Приточные вентиляторы обеспечивают подачу воздуха для горения, а также обеспечивают достаточное количество свежего наружного воздуха для рассеивания. Вместе с вытяжными вентиляторами они создают сбалансированный поток воздуха через машинное отделение.

Регулирование избыточного и пониженного давления

Двигатели не работают постоянно на полных оборотах, и температура в машинном отделении также колеблется. Для обеспечения контроля баланса подачи и вытяжки воздуха для обеих целей требуется простая и надежная система управления.

В сущности, так это и работает. Системы вентиляции машинного отделения регулируют поток воздуха как по перепаду давления, так и по температуре. Каждое машинное отделение работает под небольшим избыточным давлением. Скажем, например, что разница давлений снаружи и внутри установлена ​​на 50 паскалей. Включение двигателей приведет к падению давления, а это означает, что приточный вентилятор должен довести разницу давлений до заданного значения.

Система машинного отделения также оснащена датчиком температуры. При повышении температуры включается вытяжной вентилятор для отвода тепла. Затем давление падает, и включается приточный вентилятор. Вот как хорошая система вентиляции машинного отделения поддерживает правильный баланс.

Заключение

Целью системы вентиляции машинного отделения является подача достаточного количества свежего наружного воздуха для сгорания и отвода тепла. Это может включать в себя большое количество воздуха с огромными вентиляторами и системами воздуховодов, разделяющими воздух по комнате.

Вентиляция машинного отделения использует наружный воздух для охлаждения. Согласно ISO 8861 температура окружающего воздуха не должна превышать 35°C.