27Июн

Роторный двигатель принцип: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Содержание

Устройство роторного двигателя

После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.

Роторный двигатель

Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.

Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.

В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.

У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Ротор

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Устройство двигателя

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Принцип работы

Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:

  • впуск — в цилиндр подается горючая смесь;
  • сжатие — увеличение давления в цилиндре за счет уменьшения объема;
  • рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
  • выпуск — из цилиндра выводятся отработанные газы;

Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.

Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы. В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.

Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.

Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.

Принцип работы

Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.

Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.

Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.

Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.

Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.

В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.

Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.

После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.

Такты двигателя

Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.

Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.

Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.

А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.

Достоинства и недостатки

Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.

Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.

Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.

Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.

Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.

Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.

При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.

Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.

То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.

Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.

В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.

Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.

Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.

Роторный двигатель. Устройство, принцип работы. Плюсы и минусы ротора.

Изобретение двигателя внутреннего сгорания дало толчок к производству автомобилей, передвигающихся на жидком виде топлива. Двигатели эти на протяжении всей истории автомобилестроения эволюционировали: появлялись различные конструкции моторов. Одной из прогрессивных, но так и не получивших распространение конструкций двигателей стал роторно-поршневой агрегат. Об особенностях этого типа двигателя, его достоинствах и недостатках мы поговорим в сегодняшнем материале.

История

Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU – Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде (второй участник проекта в это время работал над конструкцией иного двигателя), в автомобильной среде силовой агрегат известен как мотор Ванкеля.

Феликс Ванкель и роторный двигатель

Эта силовая установка была собрана и испытана в 1957 году. Первым автомобилем, на который установили роторно-поршневой двигатель, стал спорткар NSU Spider, который развивал скорость 150 км/час при мощности мотора 57 лошадиных сил. Производилась эта модель на протяжении трех лет (1964-1967 годы).

NSU Spider

По настоящему массовым автомобилем с роторным двигателем стало второе детище компании NSU – седан Ro-80.

NSU Ro-80

В названии автомобиля указывалось, что модель оснащается роторным агрегатом. Впоследствии роторные двигатели устанавливались на автомобили Citroen (GS Birotor), Mercedes-Benz (С111), Chevrolet (Corvette), ВАЗ (21018) и так далее. Но самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Начиная с 1964 года, компания произвела несколько автомобилей с подобным типом силовой установки, а пионером в этом деле стала модель Cosmo Sport. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX (Rotor-eXperiment). Производство последней модели из этого семейства, Mazda RX8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.

Mazda RX-8

Устройство

Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.

Роторный двигатель

В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.

Достоинства и недостатки

Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями.

Во-первых, роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям.

Во-вторых, у этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя.

роторный двигатель Мазда RX-8

В-третьих, роторный двигатель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге.

В-четвертых, в нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе.

Наконец, в-пятых, роторный двигатель обладает высокой удельной мощностью.

Недостатки

К минусам роторно-поршневого двигателя, из-за которых он так и не смог получить массового применения и не используется сегодня в автомобилях всех брендов, относится, во-первых, большой расход топлива на низких оборотах. На некоторых моделях он достигает 20 литров на 100 км пробега, что, согласитесь, совсем не экономично и бьет по карману владельца авто с роторным двигателем.

Во-вторых, недостатком этого типа двигателей является сложность изготовления его деталей: чтобы ротор правильно прошел эпитрохоидальную кривую, необходима высокая геометрическая точность при создании как самого ротора, так и цилиндра. Для этого производители роторных двигателей используют высокоточное и дорогостоящее оборудование, а стоимость производства закладывают в цену автомобиля.

В-третьих, роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания: она имеет линзовидную форму, а не сферическую, как у обычных поршневых моторов. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.

В-четвертых, высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100-150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата.

В-пятых, роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега. Если его вовремя не заменить, это чревато выходом из строя узлов и агрегатов мотора, что повлечет за собой дорогостоящий ремонт. То есть, к эксплуатации и обслуживанию роторно-поршневых двигателей следует подходить более ответственно, чем к обслуживанию обычных моторов, вовремя проводя их техническое обслуживание и капитальный ремонт.

особенности, преимущества и недостатки моторов

Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.

История создания роторного двигателя

Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

РПД в СССР

А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.

Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.

Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.

ВАЗ с роторным двигателем (ГАИ)

РПД на Западе

На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.

Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.

Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.

Особенности роторного мотора

В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.



У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.

Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.

Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.

У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.

Достоинства и недостатки роторных двигателей

Преимущества

  • Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.

  • Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами. Поршневый в два раза больше.

  • Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.

  • Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.

  • Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.

Недостатки

  • Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.

  • Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.

  • Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.

  • Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.

  • Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.

  • Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.


Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.

Рассказываем как устроен и работает роторный двигатель

Роторный двигатель: принцип работы

Как работает роторный двигатель. Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.

В этой статье мы подробно расскажем, как работает роторный двигатель. Давайте начнем с основных принципов его работы.

Принцип работы роторного двигателя.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.

Роторный двигатель

Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.

Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.

Мы заглянем внутрь роторного двигателя, чтобы познакомится с его устройством, но сначала давайте взглянем на новые модели автомобилей с роторным двигателем.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей, использующих роторные двигатели. Спорткар RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторной силовой установкой, начиная с Cosmo Sport выпуска 1967 года.

Однако RX-7 не продается с 1995 года, но идея роторного двигателя не умерла. Mazda RX-8, последний спорткар от Mazda, имеет у себя под капотом новейший роторный двигатель под названием RENESIS. Названный лучшим двигателем 2003 года, этот атмосферный двух-роторный двигатель производит около 250 лошадиных сил.

Строение роторного двигателя.

Роторный двигатель имеет систему зажигания и систему впрыска топлива, весьма похожие на те, что установлены на поршневых двигателях. Однако, если вы никогда не видели внутренности роторного двигателя, то будьте готовы удивиться, потому что вы не увидите ничего знакомого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.
Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.

На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.

В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Теперь давайте посмотрим, как эти части взаимодействуют.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Мощность роторного двигателя

Роторные двигатели используют четырехтактный цикл сгорания, как и в обычном поршневом. Но в роторном это происходит совсем по-другому.

Сердце роторного двигателя — это ротор. Он чем-то эквивалентен поршню в поршневом двигателе. Ротор установлен на большой округлом лепестке на выходном вале. Этот лепесток смещается от осевой линии вала и действует как заводная ручка на лебедку, давая ротору пространство для поворота выходного вала. Пока ротор вращается внутри корпуса, он толкает лепесток внутри жестких кругов, вращаясь 3 раза за каждый оборот ротора.

В то время как ротор вращается в корпусе, три отсека внутри изменяют свой размер. Изменение размера этих камер создает давление. Давайте пройдем по всем 4 отсекам двигателя.

Подача

Первая фаза начинается тогда, когда вершина ротора находится на уровне отсека подачи. В момент когда камера подачи открыта для основного отсека, объем этой камеры близок к минимуму. Как только ротор проходит мимо камеры подачи, объем камеры расширяется и вливает воздух/топливо в основной отсек. Как только ротор проходит камеру подачи, отсек становится полностью изолированным и начинается компрессия.

Компрессия

В то время как ротор продолжает свое движение по основному отсеку, пространство в отсеке становится меньше, смесь из воздуха/топлива сжимается. Как только ротор проходит отсек со свечами зажигания, объем камеры снова сводится к минимуму. В это время происходит возгорание смеси.

Возгорание

Большинство роторных двигателей имеет две свечи зажигания. Камера возгорания достаточно длинная, поэтому одной свечи будет недостаточно. Как только свечи воспламеняет топливно-воздушную смесь, давление в отсеке сильно увеличится, приводя ротор в движение. Давление в камере возгорания продолжает расти, заставляя ротор двигаться, а отсек расти в объеме. Газы от возгорания продолжают расширяться, перемещая ротор и создавая мощность, до того момента, пока ротор не пройдет выхлопной отсек.

Выхлоп

После того, как ротор проходит выхлопной отсек, высокое давление газа сгорания свободно выходит в выхлопную трубу. Так как ротор продолжает движение, камера начинает сжиматься, выдавливая оставшиеся выхлопные газы в свободный отсек. К тому времени объем камеры опять падает к минимуму и цикл начинается сначала.

Разница и Проблемы

У роторного двигателя достаточно много различий с обычным поршневым двигателем.

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-ех цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-ех цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Проблемы

Самые главные проблемы при производстве роторных двигателей:

Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.

Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.

Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.

Источник: Авто Релиз.ру.

Принцип работы роторного двигателя

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Почему этот вариант не прижился

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

На видео показано строение и принцип работы роторного двигателя:

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества ротора, или Как японцы взялись за дело

На видео показан принцип работы роторного двигателя Ахриевых:

Но имеются у РПД и преимущества. В частности, к ним можно отнести особую динамику агрегата. Расход у роторного двигателя очень большой, а кроме этого, у такого агрегата очень маленький ресурс — всего шестьдесят тысяч километров — что делает его непригодным для езды в условиях города. Если объём роторного двигателя будет равен 1,3 л, то он способен будет потреблять до двадцати литров топлива.

Кстати, большой расход бензина также является причиной того, что роторный двигатель не обрёл популярности. Дело в том, что в 1973 году, когда роторные двигатели только вышли, на Аравийском полуострове накалилась обстановка. Там проходили настоящие военные действия, а как известно, арабские страны до сих пор остаются основными поставщиками топлива. В связи с этим делом, цена на бензин резко поднимается. А роторный двигатель пожирал его просто как вечно голодный чревоугодник. Вот и получилось, что он стал лишним.

Зато такой агрегат при этом будет выдавать целых 250 л. с, оставаясь малогабаритным.

На видео показано строение и принцип работы роторного двигателя Ванкеля:

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л. с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

На видео рассмотрено устройство и принцип работы роторного двигателя Желтышева:

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб. Но проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Заглянем внутрь РПД

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

На видео показан принцип работы роторно-поршневого двигателя Зуева:

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом. В первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается.

После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Роторный двигатель внутреннего сгорания

Автор admin На чтение 10 мин. Просмотров 368

Словосочетание «двигатель внутреннего сгорания» у большинства людей вызывает ассоциации с цилиндрами и поршнями, системой газораспределения и кривошипно-шатунным механизмом. Все потому, что подавляющее большинство автомобилей снабжено классическим и ставшим наиболее популярным типом двигателей – поршневым.


Сегодня речь пойдет о роторно-поршневом двигателе Ванкеля, который обладает целым набором выдающихся технических характеристик, и в свое время должен был открыть новые перспективы в автомобилестроении, но не смог занять достойного места и массовым не стал.

История создания

Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.

Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.


Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.

Классификация роторных двигателей

Рабочая камера роторного ДВС может быть герметично замкнутой или иметь постоянную связь с атмосферой, когда от окружающей среды ее отделяют лопасти роторной крыльчатки. По такому принципу построены газовые турбины.

Среди роторно-поршневых двигателей с замкнутыми камерами сгорания специалисты выделяют несколько групп. Разделение может происходить по: наличию или отсутствию уплотнительных элементов, по режиму работы камеры сгорания (прерывисто-пульсирующий или непрерывный), по типу вращения рабочего органа.


Стоит отметить, что у большинства описываемых конструкций нет действующих образцов и они существуют на бумаге.
Классифицировал их русский инженер И.Ю. Исаев, который сам занят созданием совершенного роторного двигателя. Он произвел анализ патентов России, Америки и других стран, всего более 600.

Роторный ДВС с возвратно-вращательным движением

Ротор в таких двигателях не вращается, а совершает возвратно-дуговые качания. Лопатки на роторе и статоре неподвижны, и между ними происходят такты расширения и сжатия.

С пульсирующе-вращательным, однонаправленным движением

В корпусе двигателя расположены два вращающихся ротора, сжатие происходит между их лопастей в моменты сближения, а расширение в момент удаления. Из-за того что вращение лопастей происходит неравномерно, требуется разработка сложного механизма выравнивания.

С уплотнительными заслонками и возвратно-поступательными движениями

Схема с успехом применяемая в пневмомоторах, где вращение осуществляется за счет сжатого воздуха, не прижилась в двигателях внутреннего сгорания по причине высокого давления и температур.

С уплотнителями и возвратно-поступательными движениями корпуса

Схема аналогична предыдущей, только уплотнительные заслонки расположены не на роторе, а на корпусе двигателя. Недостатки те же: невозможность обеспечить достаточную герметичность лопаток корпуса с ротором сохраняя их подвижность.

Двигатели с равномерным движением рабочего и иных элементов

Наиболее перспективные и совершенные виды роторных двигателей. Теоретически могут развивать самые высокие обороты и набирать мощность, но пока не удалось создать ни одной работающей схемы для ДВС.

С планетарным, вращательным движением рабочего элемента

К последним относится наиболее известная широкой общественности схема роторно-поршневого двигателя инженера Феликса Ванкеля.

Хотя существует огромное количество других конструкций планетарного типа:

  • Умплеби (Umpleby)
  • Грея и Друммонда (Gray & Dremmond)
  • Маршалла (Marshall)
  • Спанда (Spand)
  • Рено (Renault)
  • Томаса (Tomas)
  • Веллиндера и Скуга (Wallinder & Skoog)
  • Сенсо (Sensand)
  • Майлара (Maillard)
  • Ферро (Ferro)

История Ванкеля

Жизнь Феликса Генриха Ванкеля не была простой, рано оставшись сиротой (отец будущего изобретателя погиб в первой мировой войне), Феликс не мог собрать средства для обучения в университете, а рабочую специальность не позволяла получить сильная близорукость.

Это побудило Ванкеля на самостоятельное изучение технических дисциплин, благодаря чему в 1924 году ему пришла в голову идея создать роторный двигатель с вращающейся камерой внутреннего сгорания.


В 1929 году он получает патент на изобретение, которое и стало первым шагом к созданию знаменитого РПД Ванкеля. В 1933 году изобретатель, оказавшись в рядах противников Гитлера, проводит полгода в тюрьме. После освобождения разработками роторного двигателя заинтересовались в компании BMW и стали финансировать дальнейшие исследования, выделив для работы мастерскую в Ландау.

После войны она достается в качестве репарации французам, а сам изобретатель попадает в тюрьму, как пособник гитлеровского режима. Лишь в 1951 году, Феликс Генрих Ванкель устраивается на работу в компанию по производству мотоциклов «NSU» и продолжает исследования.


В том же году он начинает совместную работу с главным конструктором «NSU» Вальтером Фройде, который и сам давно занимается изысканиями в области создания роторно-поршневого двигателя для гоночных мотоциклов. В 1958 году первый образец двигателя занимает место на испытательном стенде.

Как работает роторный двигатель

Сконструированный Фройде и Ванкелем силовой агрегат, представляет собой ротор, выполненный в форме треугольника Рело. Ротор планетарно вращается вокруг шестерни, закрепленной в центре статора — неподвижной камеры сгорания. Сама камера выполнена в форме эпитрохоиды, которая отдаленно напоминает восьмерку с вытянутым наружу центром, она выполняет роль цилиндра.

Совершая движение внутри камеры сгорания, ротор образует полости переменного объема, в которых происходят такты двигателя: впуск, сжатие, воспламенение и выпуск. Камеры герметично отделены друг от друга уплотнителями – апексами, износ которых является слабым место роторно-поршневых двигателей.

Воспламенение топливо-воздушной смеси осуществляется сразу двумя свечами зажигания, поскольку камера сгорания имеет вытянутую форму и большой объем, что замедляет скорость горения рабочей смеси.

На роторном двигателе используется угол запоздания а не опережения, как на поршневом. Это необходимо чтобы воспламенение происходило чуть позже, и сила взрыва толкала ротор в нужном направлении.

Конструкция Ванкеля позволила значительно упростить двигатель, отказаться от множества деталей. Отпала необходимость в отдельном газораспределительном механизме, существенно уменьшились вес и размеры мотора.

Преимущества

Как говорилось ранее, роторный двигатель Ванкеля не требует такого большого количества деталей как поршневой, поэтому имеет меньшие размеры, вес и удельную мощность (количество «лошадей» на килограмм веса).

Нет кривошипно-шатунного механизма (в классическом варианте), что позволило снизить вес и вибронагруженность. Из-за отсутствия возвратно-поступательных движений поршней и малой массы подвижных частей, двигатель может развивать и выдерживать очень высокие обороты, практически мгновенно реагируя на нажатие педали газа.

Роторный ДВС выдает мощность в трех четвертях каждого оборота выходного вала, тогда как поршневой лишь на одной четверти.

Недостатки

Именно по причине того, что двигатель Ванкеля, при всех своих плюсах, имеет большое количество минусов, сегодня только Mazda продолжает развивать и совершенствовать его. Хотя патент на него купили сотни компаний, среди которых Toyota, Alfa Romeo, General Motors, Daimler-Benz, Nissan и другие.

Малый ресурс

Главный, и самый существенный недостаток – малый моторесурс двигателя. В среднем он равен 100 тысячам километров для России. В Европе, США и Японии этот показатель вдвое больше, благодаря качеству горючего и грамотному техническому обслуживанию.


Самую высокую нагрузку испытывают металлические пластины, апексы – радиальные торцевые уплотнители между камерами. Им приходится выдерживать высокую температуру, давление и радиальные нагрузки. На RX-7 высота апекса составляет 8.1 миллиметра, замена рекомендована при износе до 6.5, на RX-8 ее сократили до 5.3 заводских, а допустимый износ не более 4.5 миллиметров.

Важно контролировать компрессию, состояние масла и масляных форсунок, которые подают смазку в камеру двигателя. Основные признаки износа двигателя и приближающегося капитального ремонта – низкая компрессия, расход масла и затрудненный запуск «на горячую».

Низкая экологичность

Поскольку система смазки роторно-поршневого двигателя подразумевает прямой впрыск масла в камеру сгорания, а еще из-за неполного сгорания топлива, выхлопные газы имеют повышенную токсичность. Это затрудняло прохождение экологической проверки, нормам которой необходимо было соответствовать, чтобы продавать автомобили на американском рынке.

Для решения проблемы инженеры Mazda создали термальный реактор, который дожигал углеводороды перед выбросом в атмосферу. Впервые его установили на автомобиль Mazda R100.


Вместо того чтобы свернуть производство как другие, Mazda в 1972 году начала продажу автомобилей с системой снижения вредных выбросов для роторных двигателей REAPS (Rotary Engine Anti-Pollution System).

Высокий расход

Все авто с роторными двигателями отличает высокий расход горючего.

Кроме Mazda были еще Mercedes C-111, Corvette XP-882 Four Rotor (четырехсекционный, объем 4 литра), Citroen M35, но это в основном экспериментальные модели, да и из-за разгоревшегося в 80-х годах нефтяного кризиса их производство было приостановлено.

Малая длина рабочего хода ротора и серповидная форма камеры сгорания, не позволяют рабочей смеси прогореть полностью. Выпускное отверстие открывается еще до момента полного сгорания, газы не успевают передать всю силу давления на ротор. Поэтому и температура выхлопных газов этих двигателей такая высокая.

История отечественного РПД

В начале 80-х технологией заинтересовались и в СССР. Правда патент не был куплен, и до всего решили доходить своим умом, проще говоря – скопировать принцип работы и устройство роторного двигателя Mazda.

Для этих целей было создано конструкторское бюро, а в Тольятти цех для серийного производства. В 1976 году первый опытный образец односекционного двигателя ВАЗ-311, мощностью 70 л. с. установлен на 50 автомобилей. За очень короткий срок они выработали ресурс. Дала о себе знать плохая сбалансированность РЭМ (роторно-эксцентрикового механизма) и быстрый износ апексов.


Однако разработкой заинтересовались спецслужбы, для которых динамические характеристики мотора были куда важней ресурса. В 1982 году свет увидел двухсекционный роторный двигатель ВАЗ-411, с шириной ротора 70 см и мощностью 120 л. с., и ВАЗ-413 с ротором 80 см и 140 л. с. Позже моторами ВАЗ-414 оснащают машины КГБ, ГАИ и МВД.

Начиная с 1997 года на авто общего пользования ставят силовой агрегат ВАЗ-415, появляется Волга с трехсекционным РПД ВАЗ-425. Сегодня в России машины подобными моторами не комплектуются.

Список автомобилей с роторно-поршневым двигателем

МаркаМодель
NSUSpider
Ro80
MazdaCosmo Sport (110S)
Familia Rotary Coupe
Parkway Rotary 26
Capella (RX-2)
Savanna (RX-3)
RX-4
RX-7
RX-8
Eunos Cosmo
Rotary Pickup
Luce R-130
MercedesC-111
CorvetteXP-882 Four Rotor
CitroenM35
GS Birotor (GZ)
ВАЗ21019 (Аркан)
2105-09
ГАЗ21
24
3102

Список роторных двигателей Mazda

ТипОписание
40AПервый стендовый экземпляр, радиус ротора 90 мм
L8AСистема смазки с сухим картером, радиус ротора 98 мм, объем 792 куб. см
10A (0810)Двухсекционный, 982 куб. см, мощность 110 л. с., смешение масла с топливом для смазки, вес 102 кг
10A (0813)100 л. с., увеличение веса до 122 кг
10A (0866)105 л. с., технология снижения выбросов REAPS
13AДля переднеприводной R-130, объем 1310 куб. см, 126 л. с., радиус ротора 120 мм
12AОбъем 1146 куб. см, упрочнен материал ротора, увеличен ресурс статора, уплотнения из чугуна
12A TurboПолупрямой впрыск, 160 л. с.
12BЕдиный распределитель зажигания
13BСамый массовый двигатель, объем 1308 куб. см, низкий уровень выбросов
13B-RESI135 л. с., RESI (Rotary Engine Super Injection) и впрыск Bosch L-Jetronic
13B-DEI146 л. с., переменный впуск, системы 6PI и DEI, впрыск с 4 инжекторами
13B-RE235 л. с., большая HT-15 и малая HT-10 турбины
13B-REW280 л. с., 2 последовательные турбины Hitachi HT-12
13B-MSP RenesisЭкологичный и экономичный, может работать на водороде
13G/20BТрехроторные двигатели для автогонок, объем 1962 куб. см, мощность 300 л. с.
13J/R26BЧетырехроторные, для автогонок, объем 2622 куб. см, мощность 700 л. с.
16X (Renesis 2)300 л. с., концепт-кар Taiki

Правила эксплуатации роторного двигателя

Эксперты рекомендуют в обслуживании придерживаться следующих правил:

  1. замену масла производить каждые 3-5 тысяч километров пробега. Нормальным считается расход 1.5 литра на 1000 км.
  2. следить за состоянием масляных форсунок, средний срок их жизни составляет 50 тысяч.
  3. менять воздушный фильтр каждые 20 тысяч.
  4. использовать только специальные свечи, ресурс 30-40 тысяч километров.
  5. заливать в бак бензин не ниже АИ-95, а лучше АИ-98.
  6. замерять компрессию при замене масла. Для этого используется специальный прибор, компрессия должна быть в пределах 6.5-8 атмосфер.

При эксплуатации с компрессией ниже этих показателей, стандартного ремкомплекта может оказаться недостаточно – придется менять целую секцию, а возможно и весь движок.

День сегодняшний

На сегодняшний день производится серийный выпуск модели Mazda RX-8, оснащенной двигателем Renesis (сокращение Rotary Engine + Genesis).


Конструкторам удалось вдвое сократить потребление масла и на 40% расход топлива, а экологический класс довести до уровня Euro-4. Двигатель с рабочим объемом 1.3 литра выдает мощность в 250 л. с.

Несмотря на все достижения японцы не останавливаются на достигнутом. Вопреки утверждениям большинства специалистов о том, что РПД не имеет будущего, они не прекращают совершенствовать технологию, и не так давно представили концепт спортивного купе RX-Vision, с роторным двигателем SkyActive-R.

Мне нравится3Не нравится
Что еще стоит почитать

Принцип работы роторного двигателя — особенности работы

Роторный двигатель довольно редкая вещь, о которой некоторые люди даже не подозревают. Кто-то что-то слышал, но никто толком не может объяснить хотя бы то, как он выглядит. По мощности роторный двигатель не уступает двигателю с поршнями.

Где можно встретить

Двигатель Мазда

Для начала немного истории. Роторный двигатель был изобретен уже давно, аж в 1957 году. И с тех пор его активно начали устанавливать на автомобили, но на рынке автомобилей их доля ничтожно мала. Через семь лет после выпуска первого роторного двигателя его начали устанавливать на такие автомобили, как Мерседес-Бенц, Ситроен и другие известные марки. Но эти самые фирмы вскоре начали отказываться от роторных двигателей. Такие двигатели, а называются они, кстати, двигатели Ванкеля, устанавливали долгие годы даже на ВАЗ небольшими партиями. Но со временем его заменили и сейчас даже старожилы волжского автозавода не могут вспомнить то время. Единственная марка, которая с 1967 года и до сих пор выпускает двигатели с роторным двигателем в немалых партиях, – это Мазда. До сих пор роторный двигатель устанавливают на Мазду RX-8 – это двигатель модели 13B-MSP. Про этот автомобиль можно не стесняясь сказать, что он легенда. И стал он легендой именно благодаря своему роторному двигателю.

Мазда RX-8

Принципы работы ДВС и роторного двигателя

Принцип работы двигателя внутреннего сгорания (ДВС) с поршнями, который еще называют поршневым, сильно отличается от роторного и не только по принципу работы, но и по принципу передачи момента и потерям энергии. Энергия, выделяемая при сгорании топлива в поршневом двигателе, сначала приводит в движение поршневую группу, которая, в свою очередь, приводит в движение коленчатый вал. То есть передача момента энергии происходит в два этапа.

Принцип работы ДВС

Принцип работы роторного двигателя намного проще, он выполняет всю работу в один этап. Если объяснять простым языком, то в таком двигателей в центре находится эксцентриковый вал, который вращает сам ротор. Вращается ротор внутри двигателя и выполняет те же функции, что и четырехтактный поршневой агрегат: впуск, сжатие, рабочий такт, выпуск. Но при этом нет сложных механизмов, таких как газораспределительный механизм (ГРМ), распределительные валы, клапаны, поршни. Здесь все эти функции выполняет сам ротор. Полость внутри двигателя, в которой вращается ротор, сама в себе несет все эти функции, но работают они как бы по очереди. Электронные «мозги» управляют «окнами» – это прорези в стенках двигателя – и открывают их по очереди так, что ротор, прокатываясь по шестерне вала, выполняет сразу четыре функции. Легендарный двигатель Мазды RX-8 13B-MPS представлял собой бутерброд из пяти таких двигателей, соединенных двумя герметичными камерами.

Фазы работы роторного двигателя

Достоинства и недостатки

Главное отличие роторного двигателя от поршневого – это то, что вал всегда движется в одну сторону, вращающихся масс в несколько раз меньше и, в отличие от поршневого, роторный двигатель не тратит мощность на газораспределительный механизм. Именно поэтому с атмосферного двигателя 13B-MPS, объемом 1300 кубических сантиметров сняли 192 лошадиные силы. А с форсированного 231 лошадиную силу. Для сравнения, такую мощность у поршневого двигателя снимают с объема 2600 кубических сантиметров.

Мощность двигателя больше

К сожалению, у такого уникального мотора есть свои минусы, и они перевешивают большинство плюсов данной модели двигателя. Первый минус – это небольшой ресурс двигателя всего 100 тысяч километров. По современным меркам это совсем мало, особенно это заметно на фоне самого народного двигателя Тойоты Короллы, ресурс двигателя которого 1 миллион километров. Второй и самый основной минус – это то, что двигатель не поддается капитальному ремонту. Не существует запчастей на замену увеличенных размеров, и расточить детали двигателя тоже не получится, так как очень сложно найти такое оборудование в нашей стране. К тому же в нашей стране сложно найти настоящий 98-й бензин, а использование некачественного топлива приближает кончину роторного мотора. Стоимость нового двигателя на Мазду RX-8 настолько огромна, что ставит под сомнение практичность покупки.

Малый ресурс

Вот в основном и все, что нужно знать о роторном двигателе. Он необычен по конструкции и интересен в работе, но обладает двумя большими минусами, из-за которых использовать данный автомобиль с практической точки зрения невыгодно.

Видео

Устройство роторного двигателя в следующем видео рассмотрено на примере движка Mazda RX-8:

Читайте также:

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе.Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа лебедки, давая ротору рычаг, необходимый для поворота выходного вала. Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза по за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие.Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие. В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается. К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка.Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры. Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа.По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один ход сгорания.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе.Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа лебедки, давая ротору рычаг, необходимый для поворота выходного вала. Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза по за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие.Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие. В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается. К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка.Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры. Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа.По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один ход сгорания.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе.Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа лебедки, давая ротору рычаг, необходимый для поворота выходного вала. Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза по за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие.Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие. В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается. К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка.Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры. Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа.По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один ход сгорания.

Как работает роторный двигатель Ванкеля

Ну, вначале первый инженерный подход заключался в создании двигателя, отличающегося от архитектуры поршневого двигателя внутреннего сгорания. И первым, кто построил и запатентовал такой двигатель, был Felix Millet в 1888 году. Милле создал 5-цилиндровый роторный двигатель, встроенный в спицы заднего колеса велосипеда. Его конструкция силового агрегата была позже запущена в производство компанией Darracq в 1900 году.

Ранние типы роторных двигателей имели нечетное количество цилиндров, смещенных по радиусу (обычно 7 или 9 цилиндров, поскольку эта нечетная конфигурация приводила к более плавной работе благодаря поршню). последовательность стрельбы).Начиная с этой конструкции, сначала двигатель имел неподвижный блок цилиндров, который непосредственно вращал коленчатый вал, расположенный в центре, и назывался радиальным двигателем. Теперь с винтом, прикрепленным к вращающемуся коленчатому валу, радиальный двигатель получил широкое применение в авиастроении.

Однако конструкция этого радиального двигателя вызвала проблему с охлаждением, особенно при работе в неподвижном состоянии, поскольку блок цилиндров не получал достаточного воздушного потока. Решение этой проблемы с охлаждением пришло в виде реверсирования роли вращающейся детали из ансамбля, то есть теперь коленчатый вал был прикреплен болтами к шасси, а пропеллер вращался вместе со всем блоком цилиндров.Так родился роторный двигатель . Положительным моментом в этом было то, что охлаждение двигателя было улучшено, но недостатком было то, что самолет стал нестабильным и им было труднее управлять.

К началу 1920-х роторные двигатели (которые находили применение в основном в авиастроении) устарели, и интерес к дальнейшим разработкам двигателей этого типа резко упал. Но не все было потеряно для роторного двигателя, поскольку немецкий инженер Феликс Ванкель изобрел вращающуюся конструкцию в 1957 году, в которой использовался ротор треугольной формы, вращающийся внутри овального корпуса.Поскольку в конструкции не используются поршни, как в поршневом двигателе, роторный двигатель внутреннего сгорания Ванкеля считается одним из типов роторных двигателей без поршней. Исследования роторных двигателей действительно начались в 1960-х годах, но только японскому автомобилестроителю Mazda удалось успешно модифицировать его и интегрировать в фирменный стиль бренда, став единственным производителем автомобилей, способным выйти на массовое производство. Итак, как это работает

Роторный двигатель Ванкеля — это двигатель внутреннего сгорания, в котором используется тот же принцип преобразования давления во вращательное движение, но без вибраций и механических нагрузок при высоких скоростях вращения поршневого двигателя.Доктор Феликс Ванкель и его коллеги получили конструкцию корпуса двигателя, выполнив следующие шаги: сначала они закрепили внешнее зубчатое колесо на белом листе и сцепили его с более крупным внутренним зубчатым колесом; с соотношением между двумя передачами 2: 3. Затем они прикрепили руку с ручкой к внешней стороне большего зубчатого колеса с внутренними зубьями. При повороте внутреннего зубчатого колеса на малой шестерне ручка образовывала трохоидную кривую в форме кокона.

Двигатель Ванкеля работает в том же 4-тактном цикле, что и поршневой двигатель с возвратно-поступательным движением, при этом центральный ротор последовательно выполняет четыре процесса впуска, сжатия, зажигания (сгорания) и выпуска внутри трохоидной камеры.Таким образом, хотя оба типа двигателей полагаются на давление расширения, создаваемое сгоранием топливно-воздушной смеси, разница между ними возникает из-за того, как они используют его для преобразования

в механическую силу. В роторном двигателе внутреннего сгорания это давление расширения прилагается к боковой поверхности ротора. Из-за треугольной формы ротора внутреннее пространство корпуса всегда будет разделено на три рабочие камеры. Это принципиально отличается от поршневого двигателя, где в каждом цилиндре происходят четыре процесса.Первоначальная конструкция

Ванкеля имела внешнее зубчатое колесо с 20 зубьями, в то время как более крупное внутреннее зубчатое колесо имело 30 зубцов. Из-за этого передаточного числа частота вращения между ротором и валом определяется как 1: 3 . Это означает, что в то время как меньшая шестерня совершает один оборот, большая шестерня с внутренними зубьями вращается три раза. Поскольку эксцентриковый вал , который аналогичен коленчатому валу в поршневом двигателе, соединен с меньшей зубчатой ​​передачей, это означает, что с двигателем, работающим на 3000 об / мин, ротор будет вращаться только при 1000 об / мин.Это не только означает, что роторный двигатель внутреннего сгорания работает более плавно, но также позволяет достичь более высокой красной черты.

Рабочий объем роторного двигателя обычно выражается единичным объемом камеры и количеством роторов (например, 654 см3 x 2). Единичный объем камеры представляет собой разницу между максимальным объемом и минимальным объемом рабочей камеры, в то время как степень сжатия определяется как соотношение между максимальным объемом и минимальным объемом.

Мы рекомендуем вам внимательнее изучить схемы и трехмерное анимационное видео Мэтта Риттмана в конце руководства, чтобы лучше визуализировать и понять режим работы двигателя Ванкеля. Плюсы и минусы двигателя Ванкеля
Первое, что в пользу двигателя Ванкеля — его малый размер и легкая конструкция . Это может оказаться решающим при разработке легкого автомобиля с высокой выходной мощностью и небольшим объемом двигателя. Он также обеспечивает улучшенную конструкцию защиты от столкновений , больше рабочего пространства для аэродинамики или отсеков для хранения вещей и лучшее распределение веса .

Второй благоприятной чертой роторного двигателя внутреннего сгорания является его плоская кривая крутящего момента во всем диапазоне скоростей. Результаты исследований показали, что при использовании конфигурации с двумя роторами колебания крутящего момента во время работы были на одном уровне с рядным 6-цилиндровым поршневым двигателем, в то время как схема с тремя роторами оказалась более плавной, чем поршневой двигатель V8.

Другими преимуществами роторного двигателя внутреннего сгорания являются простая конструкция, надежность и долговечность .Из-за отсутствия поршней, штоков, исполнительного механизма клапана, ремня газораспределительного механизма и коромысла двигатель легче построить, и для него требуется гораздо меньше деталей. Кроме того, из-за отсутствия этих компонентов двигатель Ванкеля более надежен и долговечен при работе с высокими нагрузками. И помните, когда роторный двигатель работает со скоростью 8000 об / мин, ротор (который составляет большую часть всей совокупности) вращается только на одну треть от этой скорости. Недостатки
двигателя Ванкеля включают несовершенное уплотнение на концах камеры, которое учитывается на утечку между соседними камерами, и несгоревшую топливную смесь.Роторный двигатель внутреннего сгорания также имеет на продолжительность хода на 50% больше, чем у поршневого двигателя. Работа двигателя также допускает увеличение количества окиси углерода и несгоревших углеводородов в потоке выхлопных газов, что делает его очевидным изгоем среди любителей деревьев.

Самым большим недостатком, однако, является его значительный расход топлива . Сравнительные тесты показали, что Mazda RX8 потребляет больше топлива, чем более тяжелый двигатель V8 с рабочим объемом двигателя более чем в четыре раза, но с сопоставимыми характеристиками.Еще одним недостатком является то, что небольшое количество масла попадает в рабочую камеру, и в результате владельцы должны периодически добавлять масло, что увеличивает эксплуатационные расходы. Вклад Mazda в двигатель Ванкеля

Mazda представила первый в мире автомобиль с двухроторным роторным двигателем в мае 1967 года — модель Cosmo Sport / Mazda 110S . Он был оснащен двигателем Ванкеля объемом 491 куб.см, который развивал 110 л.с. при 7000 об / мин. В 1970 году Mazda представила первую автоматическую коробку передач с двигателем Ванкеля, а три года спустя — первый в мире пикап с роторным двигателем.

После внедрения шестипортовой впускной системы для большей экономии топлива и мощности Mazda продолжила разработку роторного двигателя внутреннего сгорания для достижения низких выбросов. Индукционная система с шестью портами имела по три впускных отверстия на камеру ротора и могла достигать улучшенного расхода топлива, регулируя их в три этапа. Еще одним заслуживающим внимания событием стало внедрение двухступенчатого монолитного катализатора .

Следующая эра в эволюции двигателей Ванкеля Mazda ознаменовалась введением турбонагнетателей.В 1982 году Cosmo RE Turbo поступил в продажу как первый в мире автомобиль с роторным двигателем, оснащенный турбонагнетателем. Основываясь на этом достижении, Mazda позже применила турбонаддув с двойной прокруткой, чтобы минимизировать турбо-лаг двигателя.

Однако ключевым нововведением Mazda стала презентация двигателя RENESIS, который означает ГЕНЕЗИС RE (роторный двигатель). RENESIS — это двигатель объемом 654 куб. См x 2, который развивает мощность 250 л.с. при 8500 об / мин и 216 Нм крутящего момента при 5500 об / мин. Помимо плавной работы двигателя и четкого отклика, двигатель RENESIS обеспечивает значительные улучшения с точки зрения топливной экономичности и выбросов выхлопных газов.RENESIS от Mazda получил награды «Международный двигатель года» и «Лучший новый двигатель» в 2003 году. Вдохновленная международным успехом RENESIS, Mazda представила новый двигатель Ванкеля, способный работать как на водороде, так и на бензине. Однако этот водородный двигатель RE не смог вызвать такой же интерес, как бензиновый, возможно, из-за отсутствия водородной инфраструктуры в то время. В мае 2007 года японский производитель автомобилей Mazda отметил 40-летие разработок двигателя Ванкеля.

Роторный двигатель внутреннего сгорания RENESIS следующего поколения уже находится в разработке и появился в концептуальном автомобиле Mazda Taiki. Двигатель следующего поколения обещает больший рабочий объем 1600 куб. См (800 куб. См x 2), что, как ожидается, увеличит крутящий момент на всех оборотах двигателя и увеличит тепловую эффективность. Но, несмотря на прогресс, достигнутый в отношении выбросов выхлопных газов, выходной мощности и уплотнения рабочей камеры, двигатель Ванкеля по-прежнему будет бороться с расходом масла и топлива из-за его особой конструкции функционирования.

Общая информация о роторных двигателях

Роторный двигатель (также известный как двигатель Ванкеля или роторный двигатель Ванкеля) — это двигатель внутреннего сгорания, изобретенный в 1954 году немецким инженером-механиком Феликсом Генрихом Ванкелем в качестве альтернативы классическому поршневому двигателю.

После некоторых технических усовершенствований, внесенных инженером Хансом Дитером Пашке, роторный двигатель Ванкеля был впервые представлен специалистам и прессе на собрании Союза инженеров Германии в Мюнхене в 1960 году.

Благодаря своей простоте, превосходному соотношению мощности и веса, а также плавности хода и хорошей работы моторы Ванкеля были у всех на слуху в автомобильной и мотоциклетной промышленности в 1960-х годах. В августе 1967 года NSU Motorenwerke AG привлекло большое внимание к очень современному NSU Ro 80, который имел 115-сильный двигатель Ванкеля с двумя роторами. Это был первый немецкий автомобиль, признанный «Автомобилем года» в 1968 году.

В течение следующих десятилетий ряд крупных производителей автомобилей подписали лицензионные соглашения на разработку роторных двигателей Ванкеля, включая Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda.

После дальнейших усовершенствований двигателя, в том числе решения проблемы уплотнения верхушки, Mazda успешно использовала двигатели Ванкеля в своих спортивных автомобилях серии RX до 2012 года. Технологическое преимущество роторных двигателей в автомобильной промышленности было подчеркнуто в 1991 году на выставке 24 Hours of Le Мужская гонка, так как автомобиль с 4-роторным двигателем Mazda 26B выиграл престижное соревнование.

В наши дни роторные двигатели Ванкеля, которые постоянно совершенствуются такими компаниями, как Wankel Supertec GmbH, можно найти в мотоциклах, гоночных автомобилях, самолетах, небольших судах и генераторах энергии.Следующий этап развития относится к использованию роторных двигателей внутреннего сгорания в наступающей эре низкоуглеродистого, экологически безопасного, надежного и доступного энергоснабжения. Таким образом, успешное испытание роторного двигателя Hydrogen 20 сентября 2019 года позволяет Wankel Supertec с уверенностью смотреть в будущее.

Роторный двигатель — это двигатель внутреннего сгорания, в котором используется один или несколько треугольных роторов для преобразования давления, создаваемого при сгорании топливовоздушной смеси, в кинетическую энергию.Объемы газа, транспортируемые в пространствах между торцами ротора и корпусом, поочередно выполняют четыре разные работы: а) всасывание; б) Компрессия; в) горение и г) выхлоп. Эти стадии известны как такты, что делает двигатель Ванкеля 4-тактным двигателем, похожим на поршневой двигатель Отто.

ВПУСКНОЙ

Во время этой фазы падение давления, вызванное движением ротора, втягивает воздушно-топливную смесь. Эта смесь втягивается вокруг ротора и нагнетается во второй такт цикла.

СЖАТИЕ

По мере того как ротор продолжает вращаться, захваченный (заштрихованный) объем, заключенный между ротором и корпусом, уменьшается, сжимая топливно-воздушную смесь.

ГОРЕНИЕ

Когда активный объем смеси минимален, одна или несколько свечей зажигания инициируют горение, вызывая быстрое повышение давления и температуры.Внезапное расширение газообразной топливной смеси передает усилие на эксцентрик через ротор.

ВЫХЛОПНОЙ

По мере вращения расширяющиеся газы приводят в движение ротор до тех пор, пока выхлопное отверстие не откроется, выпуская их. Процесс выпуска продолжается, когда впускное отверстие открывается, чтобы начать новый цикл.

Благодаря своей конструкции двигатель Ванкеля намного легче, компактнее и проще классического поршневого двигателя.Нет ни возвратно-поступательного движения, ни кривошипов, клапанов, штоков или других сложных деталей, подверженных отказам. Двигатели Ванкеля содержат всего три движущихся части, что делает их более надежными, долговечными и удобными в обслуживании, чем их соперники с возвратно-поступательным движением. Кроме того, эти движущиеся части непрерывно вращаются в одном направлении, что обеспечивает более высокие рабочие скорости, простоту балансировки и низкий уровень вибрации. Благодаря беспрецедентному соотношению мощности к габаритам и мощности к массе, двигатели Ванкеля незаменимы в различных областях применения, начиная от сектора легких самолетов и комбинированных теплоэнергетических установок и заканчивая морской промышленностью.

Одним из основных недостатков двигателя Ванкеля является его низкий тепловой КПД. Длинная, тонкая и подвижная камера сгорания приводит к медленному и неполному сгоранию топливной смеси. Это приводит к более высоким выбросам углерода и более низкой топливной экономичности по сравнению с поршневыми двигателями. Однако этот недостаток превращается в преимущество при переходе на водородное топливо.

Еще одна слабость двигателей Ванкеля заключается в уплотнении ротора и вершины.Неидеальное уплотнение между краями ротора и корпуса — например, из-за износа или недостаточной центробежной силы в нижних диапазонах частоты вращения — может привести к утечке продуктов сгорания в следующую камеру.

Поскольку сгорание происходит только в одной секции роторного двигателя, существует большая разница температур в двух отдельных камерах. Как следствие, разные коэффициенты расширения материалов приводят к неоптимальному уплотнению ротора. Потребление масла также является проблемой, поскольку масло необходимо впрыскивать в камеры, чтобы добавить смазки и помочь сохранить герметичность ротора.

Как работает двигатель Ванкеля? — MechStuff

Больше никаких скучных представлений, давайте начнем и разберемся, как работает двигатель Ванкеля и что это такое!

История: —
Первый двигатель Ванкеля был разработан немецким инженером — Феликсом Ванкелем . Ванкель получил свой первый патент на двигатель в 1929 году.
Однако конструкция двигателя Ванкеля, используемая сегодня, была разработана Ханнсом Дитером Пашке , который он принял, образуя современный двигатель!

Двигатель Ванкеля: —

Двигатель Ванкеля — это двигатель внутреннего сгорания, в отличие от поршневого цилиндра.В этом двигателе используется эксцентриковая конструкция ротора, которая напрямую преобразует энергию давления газов во вращательное движение. В устройстве поршень-цилиндр поступательное движение поршня используется для преобразования во вращательное движение коленчатого вала.
По сути, ротор просто вращается в корпусах, имеющих форму толстой восьмерки .

Части механизма Ванкеля: —

Для этого слайд-шоу требуется JavaScript.

Ротор: — Ротор имеет три выпуклые поверхности, которые действуют как поршень.3 угла ротора образуют уплотнение снаружи камеры сгорания. Он также имеет внутренние зубья шестерни в центре с одной стороны. Это позволяет ротору вращаться вокруг фиксированного вала.
Корпус: — Корпус эпитрохоидальной формы (примерно овал). Корпус имеет продуманную конструкцию, так как 3 вершины или угла ротора всегда находятся в контакте с корпусом. Впускной и выпускной патрубки расположены в корпусе.
Впускные и выпускные отверстия: — Впускное отверстие позволяет свежей смеси поступать в камеру сгорания, а отработавшие газы выходят через выпускное / выпускное отверстие.
Свеча зажигания: — Свеча зажигания подает электрический ток в камеру сгорания, которая воспламеняет топливовоздушную смесь, что приводит к резкому расширению газа.
Выходной вал: — Выходной вал имеет эксцентриковых кулачков , установленных на нем, что означает, что они смещены на относительно оси
оси вала . Ротор не вращается в чистом виде, но нам нужны эти эксцентрические выступы для чистого вращения вала.

Примечание: — Выходной вал — вещь, которую нельзя полностью объяснить словами.Довольно сложно представить его вклад в работу. эта ссылка на видео может помочь вам понять это.

Рабочий: — Анимация двигателя Ванкеля.

Впуск: —
Когда кончик ротора проходит через впускное отверстие, свежая смесь начинает поступать в первую камеру. Камера всасывает свежий воздух, пока вторая вершина не достигнет впускного отверстия и не закроет его. В настоящий момент свежая топливовоздушная смесь запаяна в первую камеру и отводится на сжигание.

Компрессия: —
Камера 1 (между углом 1 и углом 2), содержащая свежий заряд, сжимается из-за формы двигателя к тому времени, когда она достигает свечи зажигания.
При этом новая смесь начинает поступать во вторую камеру (между углом 2 и углом 3).

Четыре такта двигателя с пронумерованными углами.

Сгорание: —
При воспламенении свечи зажигания сильно сжатая смесь взрывно расширяется. Давление расширения толкает ротор вперед.Это происходит до тех пор, пока первый угол не пройдет через выхлопное отверстие.

Выхлоп: —
Когда пиковый угол ИЛИ 1 проходит через выхлопное отверстие, горячие газы сгорания под высоким давлением могут свободно выходить из порта.
По мере того, как ротор продолжает двигаться, объем камеры продолжает уменьшаться, вытесняя оставшиеся газы из порта. К тому времени, когда угол 2 закрывает выпускное отверстие, угол 1 проходит мимо впускного отверстия, повторяя цикл.

Пока первая камера выпускает газы, вторая камера (между углом 2 и углом 3) находится под давлением .Одновременно камера 3 (между углом 3 и углом 1) всасывает свежую смесь .
В этом прелесть двигателя — четыре последовательности четырехтактного цикла, которые происходят последовательно в поршневом двигателе, происходят одновременно в двигателе Ванкеля, вырабатывая мощность в непрерывном потоке.

Преимущества: —

  1. Двигатель Ванкеля имеет очень мало подвижных частей; намного меньше, чем 4-тактный поршневой двигатель. Это делает конструкцию двигателя более простой, а двигатель надежным.
  2. Это примерно 1/3 размера поршневых двигателей , обеспечивающих такую ​​же выходную мощность.
  3. Может развивать более высокие обороты в минуту, чем поршневой двигатель.
  4. Двигатель Ванкеля весит почти 1/3 веса поршневых двигателей , обеспечивая такую ​​же выходную мощность. Это приводит к более высокому соотношению мощности к весу.

Недостатки: —

  1. Поскольку каждая секция имеет разницу температур, расширение материала корпуса в разных регионах разное.Поэтому ротор иногда не может полностью герметизировать камеру в области высоких температур.
  2. Горение происходит медленно, поскольку камера сгорания длинная, тонкая и подвижная. Следовательно, может существовать вероятность того, что свежий заряд разрядится, даже не сгорая.
  3. Поскольку несгоревшее топливо находится в потоке выхлопных газов, требования по выбросам трудно выполнить.

Связанные

Руководство для начинающих: что такое роторный двигатель (и как он работает)?

Поворотный против поршневого

PROS
• Природа двигателя означает, что гораздо меньший рабочий объем может производить значительно большую мощность, чем поршневой двигатель сопоставимого размера — Mazda RX-8 технически имеет 1 балл.3 литра, но мощность около 230 л.с.

• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.

• Из-за характера двигателя они внутренне сбалансированы — роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга. Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет раскручиваться до более высоких оборотов (10000 об / мин отнюдь не является чем-то неслыханным) без повреждений.

МИНУСЫ
• Роторные двигатели менее экономичны, чем их аналоги с поршневыми двигателями, поскольку они менее эффективны с точки зрения теплового воздействия.

• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.

• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя — это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.

• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.

• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.

Mazda была крупнейшим производителем роторных двигателей и единственным производителем, который использовал их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства. NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, который выпускался до тех пор, пока 2012 г.

Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида, благодаря их компактным размерам и плавности хода. Считается, что, работая с постоянной скоростью для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.

.