15Мар

Ротор двигателя: Ротор якорь двигателя купить в интернет-магазине Zipo76

Ротор двигателя насоса ОК-71 (7213.А) — 4233 ₽. Москва. Доставка

Оценка покупателей: (0.0)

Ротор двигателя насоса ОК-71 (7213.А) Подробнее

  • Наличие:

    Нет на складе

    Есть в наличии

  • Бренд: Kripsol (Испания)

Способы доставки

  • Самовывоз
  • Доставка по Москве и московской области
  • Доставка в регионы России
  • Доставка за пределы России

Способы оплаты

  • Наличными курьеру (по Москве и МО)
  • Безналичный перевод на карту
  • Безналичная оплата на расчетный счет компании

Поделиться:

Описание

Бренд: Kripsol Испания;
Применение: Ротор;
Предназначение: Для электрического двигателя насоса;
Подходящие модели: ОК-71;

Описание:
Ротор 7213. А двигателя насоса ОК-71 — предназначен для комплектации, или ремонта насосов Kripsol модели ОК-71. Представляет собой подвижную часть механизма электрического двигателя, которая вращается за счёт магнитного поля, созданного в статоре, таким образом, что вокруг оси ротора развивается крутящий момент, обеспечивающий его вращение.

Деталировка насоса ОК

Kripsol:
Ротор двигателя насоса ОК-71 (7213.А) — поз. 72


Возможно, вам подойдут эти предложения

Шпонка вала ротора эл. двигателя компрессора HPE-3009L-142F

0.0

0 ₽

446 ₽

Сальник вала ротора эл.двигателя компрессора HPE HSC0315-1MT221-6 (0507145)

0.0

0 ₽

446 ₽

Винт + прокладка-кольцо крепления крыльчатки к валу ротора насоса KAN- 1000 Kripsol RKA 367. A

0.0

0 ₽

312 ₽

Манжета вала ротора насоса KAN-750 RKA9410.A/RPUM0041.01R

0.0

0 ₽

167 ₽

Ротор двигателя насоса ОК-33 (220В) с 2-мя подшипниками 6202 Kripsol

0.0

0 ₽

3 342 ₽

Кольцо войлочное вала ротора эл.двигателя компрессора HPE HSC0315-1MT221-6

0.0

0 ₽

613 ₽

-7.27 %

Прожектор, нерж. сталь, 300 Вт 12В, под пленку (12270)

0.0

36 170 ₽

33 539 ₽


Спасибо за Ваш выбор! +7(495)133-8228

JAI-1114-23 Ротор пневматического двигателя гайковерта пневматического JAI-1114

ГАРАНТИЯ
ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Инструменты компании JONNESWAY® ENTERPRISE CO. , LTD. по уровню исполнения относятся к изделиям класса PROFESSIONAL, применяются для производства работ по сборке, ремонту и обслуживания продукции машиностроения, персоналом, имеющим соответствующую квалификацию,

знакомым с правилами техники безопасности, условиями эксплуатации и навыками работы.

На изделия JONNESWAY™ распространяется понятие «ПОЖИЗНЕННАЯ ГАРАНТИЯ», то есть, объявление неограниченного срока поддержания гарантийных обязательств весь срок эксплуатации, а именно, замены вышедшего из строя инструмента в случае использования производителем некачественных материалов или нарушения технологии в процессе его производства. Другими словами: подлежит замене инструмент, имеющий дефект, обнаруженный или возникший в результате нарушений при его производстве и делающий невозможным дальнейшее использование инструмента.

Не подлежат обслуживанию по гарантийным условиям изделия, вышедшие из строя в результате:

  • Воздействия нагрузок, превышающих расчетные.
  • Воздействий, не связанных с выполнением основных функций изделия.
  • Нарушений правил хранения и применения
  • Естественного износа.

В этой связи, производитель настоятельно рекомендует:

  1. Не использовать насадки для ручного привода с механизированным инструментом.
  2. Не использовать насадки для механизированного инструмента с ручным приводом.
  3. Не наращивать рычаг привода или ключа.
  4. Не наносить удары по телу ключа или привода другими предметами.
  5. Не допускать падения инструмента с большой высоты на твердую поверхность.
  6. Не допускать длительное хранение инструмента в условиях высокой влажности или иных агрессивных к материалам изделия средах.
  7. Не допускать самостоятельного ремонта и регулировок инструмента в период гарантийного срока.
  8. По окончании работ очищать инструмент от загрязнений.

Подбирать и использовать инструмент согласно производимой работе и строго по назначению.

Вставки-биты являются расходным материалом, гарантия на них не распространяется, равно как и на торцевые насадки (головки с вставками, составные и цельные), ударные и для ручного привода, предназначенные для обслуживания крепежа с внутренним рабочим профилем.

Гибкие удлинители и удлинители с шаром (серия S21) неспособные, в силу своих конструкционных особенностей передавать большой крутящий момент, также не подлежат обслуживанию по гарантийным условиям.

Инструменты режущего, ударно-режущего действия, отвертки и шарнирно-губцевого инструмент, в случае износа рабочих поверхностей, обмену по гарантии не подлежат.

На инструмент, имеющий в своей конструкции кинематическую схему, распространяется понятие «ограниченной гарантии», в связи с сокращенным сроком эксплуатации, связанным с повышенным износом при использовании и определен в 12 месяцев с начала использования в условиях эксплуатации средней интенсивности, за исключением динамометрических ключей, точность показаний которых зависит от интенсивности эксплуатации.

Динамометрические ключи подлежат обязательной тарировке по совершении 1000 циклов. При повышенной интенсивности или тяжелых условиях эксплуатации инструмента гарантийный срок может быть сокращен. Начало эксплуатации определяется по дате продажи, указанной в гарантийном талоне JONNESWAY™ продавцом инструмента или документе подтверждающим факт приобретения изделия. В случае отсутствия возможности определения даты начала эксплуатации изделия, начало эксплуатации определяется по серийному номеру, исходя из информации, получаемой от производителя. Обслуживание по гарантийным условиям производителя не предоставляется в случае невозможности идентификации предусмотренных серийных номеров изделий и документов, подтверждающих приобретение и начало эксплуатации изделий, относящихся по гарантийным условиям к инструментам с ограниченным гарантийным сроком. Претензии к инструменту, вышедшему из строя в течение гарантийного срока, принимается к рассмотрению в соответствии с Законом «О защите прав потребителя».

Претензии по данной гарантии также не принимаются к рассмотрению в случаях невозможности подтверждения квалификации пользователя, наличия признаков проведения ремонтных работ изделий, осуществлявшихся неуполномоченными на это лицами, изменения конструкции, или самостоятельной установки неоригинальных компонентов и деталей изделий.

Производитель оставляет за собой право определения причины выхода из строя изделия (из-за некачественного материала, человеческого фактора или по иным причинам).

Права по настоящей гарантии ограничиваются первоначальным потребителем и не распространяются на последующих.

В случае обнаружения неисправности, Вы можете обратиться в сервисный центр JONNESWAY™, позвонив по телефонам, указанным ниже:

Москва (495) 664-21-77
Санкт-Петербург (812) 3-89-4-89-5
Ростов-на-Дону (863) 220-99-64

JONNESWAY ENTERPRISE CO., LTD.
6F-9, NO.51, SEC. 2, KEELUNG RD., TAIPEI, TAIWAN

Новая технология для высокоэффективных двигателей

Применение меди в здравоохранении и окружающей среде

Дейл Т. Питерс и Джон Г. Коуи CDA Inc.

Введение | Литые медные роторы | Результаты | Резюме

Введение

Около 70% потребления меди происходит из-за ее высокой электропроводности и теплопроводности. Электрооборудование на основе меди, конечно, стало довольно продвинутым, но возможности для совершенствования все еще существуют. В этой статье рассматривается один такой пример: в нем описываются текущие исследования, направленные на использование преимущества высокой проводимости меди таким образом, чтобы сделать возможным создание электродвигателей со сверхвысоким КПД.

Ассоциация разработчиков меди (CDA) является членом отраслевого консорциума, который в настоящее время занимается разработкой усовершенствованных двигателей. В двигателях будет использоваться медь, а не алюминий в роторе двигателя, что кажется элементарным изменением, но которое может привести к снижению электрических потерь в двигателе на 20%. Двигатели указанных в программе размеров потребляют 35% всей электроэнергии, вырабатываемой в США; следовательно, значительное повышение эффективности двигателя приведет к огромной экономии энергии по всей стране.

Современные алюминиевые роторы двигателей изготавливаются путем литья под давлением или литья под давлением, как этот процесс известен во многих странах. Типичный ротор асинхронного двигателя состоит из набора продольно ориентированных токопроводящих стержней, соединенных двумя концевыми кольцами. Устройство напоминает беличью клетку, и к этому типу конструкции часто применяется термин «двигатель с беличьей клеткой». Производственный процесс включает в себя литье под давлением металла внутри и вокруг пакета стальных пластин, составляющих магнитную часть ротора.

Новые медные роторы также будут отлиты под давлением. Основным препятствием, препятствующим литью под давлением меди для конструкции токопроводящего стержня/концевого кольца ротора, было отсутствие прочного высокотемпературного материала формы для штампов или форм, используемых в процессе литья под давлением. Таким образом, основной целью программы роторов двигателей является разработка подходящих материалов для штампов. Результаты программы на сегодняшний день показывают, что сочетание высокотемпературных материалов штампов и условий обработки при повышенных температурах может значительно увеличить срок службы пресс-формы по сравнению с тем, который наблюдается при использовании обычных штамповых сталей (используемых с алюминием) для литья под давлением меди.

Литые медные роторы

Фон

Сегодня алюминий

повсеместно используется для литья под давлением роторов двигателей, потому что литье металла под давлением является хорошо зарекомендовавшим себя и экономичным методом производства. Поскольку медь труднее отлить под давлением, медные двигатели, когда они требуются, должны изготавливаться путем ручной сборки механически обработанных компонентов. Этот процесс является трудоемким и дорогостоящим, поэтому он применяется только к очень большим роторам двигателей, для которых литье под давлением нецелесообразно. В результате литье под давлением является предпочтительным методом изготовления, а алюминий — предпочтительным проводником для большей части производимых сегодня электродвигателей.

Формы из инструментальной стали, используемые для литья алюминия под давлением, не подходят для литья таких металлов, как медь, поскольку они не выдерживают высокой температуры плавления металлов. Отсутствие прочного и экономичного материала пресс-формы до сих пор было техническим барьером, препятствующим массовому производству литых под давлением медных роторов.

Исследование, спонсируемое Министерством энергетики, показало, что двигатели мощностью более 1/6 л.с. потребляют около 60% электроэнергии, вырабатываемой в США 1 Двигатели средней мощности мощностью от 1 до 125 л.с. потребляют около 60% электроэнергии, потребляемой всеми двигателями, или около 36% всей вырабатываемой электроэнергии. Прогнозируется, что повышение эффективности двигателя, которое может быть результатом использования медных роторов, приведет к общей экономии энергии в 2010 году в размере 20,2 E+12 Btu/год, если новые двигатели получат лишь 10% проникновения на рынок. Экономия вырастет до 143 E+12 Btu/год при ожидаемом проникновении на рынок от 50 до 70%. (Цифры различаются, поскольку повышение эффективности зависит от размера двигателя.) Эти цифры эквивалентны годовой выработке соответственно от 0,5 до 3,5 электростанций мощностью 600 МВт, работающих на 75% мощности.

Участие CDA в исследовательском проекте финансируется Международной ассоциацией меди, ООО. Дополнительное финансирование проекта поступает от Министерства энергетики США в рамках программы NICE 3 , Института кондиционирования и охлаждения, Trex Enterprises и ряда производители моторов. Общий план состоит в том, чтобы определить подходящие материалы для штампов, а затем спроектировать, изготовить и продемонстрировать формы, которые будут выдерживать условия литья под давлением меди в течение экономически приемлемого количества циклов литья или «выстрелов».

Очевидно, что чем дольше срок службы пресс-формы, тем большее количество двигателей можно производить с меньшими затратами. Два американских производителя двигателей недавно провели анализ, который показывает, что экономика эксплуатации и производства двигателей благоприятствует использованию меди во всех классах двигателей, если срок службы может быть увеличен до 20 000 срабатываний.

Литые под давлением медные роторы могут обеспечить преимущества в производстве двигателей и/или производительности тремя способами:

  • повышенная энергоэффективность двигателя во время работы
  • снижение общих производственных затрат
  • меньший вес мотора.

Как отмечалось ранее, основные проблемы при попытке отлить под давлением медные роторы двигателей заключаются в том, что материалы пресс-формы страдают от теплового удара и термической усталости. Обычные материалы для пресс-форм, в том числе инструментальные стали, используемые с алюминием, теряют прочность при высоких температурах, что требует проведения процесса при низких средних рабочих температурах (и температуре поверхности перед обжигом). Низкая начальная температура приводит к большому DT на поверхности штампа и, следовательно, к высокому напряжению в штампе при каждом выстреле. При литье меди под давлением высокая температура плавления металла, высокая теплота плавления, значительная скрытая теплота и высокая теплопроводность в совокупности обеспечивают максимальный тепловой удар.

Решение проблемы термического удара заключается в использовании высокотемпературных материалов, обладающих тепловыми и термоупругими свойствами, способствующими минимизации термической деформации. Исследования, проведенные Международной ассоциацией исследований меди (INCRA) в 1970-х годах, подтверждают эти ожидания.

Проблемы теплового удара и усталости не ограничиваются медью, поскольку термоциклирование поверхности формы также ограничивает срок службы формы при литье алюминия под давлением. Циклические термические напряжения гораздо более серьезны для меди по причинам, указанным выше. По крайней мере, в одном недавнем случае плита литейной формы, изготовленная из высокопрочной стали (H-13, отраслевой стандарт литья под давлением), испытываемая с медью на предприятии производителя штамповочного оборудования, разрушилась всего после пяти литьевых выстрелов. Экономичные формы должны выдерживать тысячи циклов литья.

Результаты 

Формы-кандидаты, разработанные для исследовательской программы, тестируются в исследовательском центре Formcast Corporation в Денвере, штат Колорадо. Плавильная печь Inductotherm питает 800-тонную машину для литья под давлением Buhler с компьютерным управлением в режиме реального времени, быстро расплавляя восемь фунтов меди с двухминутными интервалами, т.е. временем между последовательными штамповками. Тестовая форма, специально разработанная для проекта, имитирует условия, ожидаемые для одного литника промышленной пресс-формы с несколькими литниками. (Ворота — это точка, в которой расплавленный металл входит в полость формы.) Испытания по литью под давлением материалов-кандидатов для пресс-формы не включают пакет ламинированного железа из-за высокой стоимости ламинирующего материала, связанного с тысячами выстрелов, необходимых для программы испытаний. .

Создание базы

Рис. 1. Литье меди под давлением.

Чтобы установить базовый уровень для испытательной формы, было проведено первое испытание литья под давлением меди с использованием вставок для штампов из стали H-13 (, рис. 1, ). Как и ожидалось, штампы обычно деградировали по мере увеличения использования. Весьма неожиданно, хотя очевидна некоторая термопроверка стальных вставок формы H-13 и дробеструйной втулки, расширенный цикл обработки меди по H-13 был успешно выполнен. Этот успех объясняется системой сухого извлечения из формы, коротким временем цикла (что сводит к минимуму тепловложение в форму) и использованием передового литейного оборудования с компьютерным управлением. С использованием одного комплекта штампов изготовлено более 800 отливок, превысив ожидания на порядок ( Рисунок 2 ).

Рис. 2. Набор инструментов для тестовых полостей из стали H-133 после первых нескольких выстрелов.

Металлографическое исследование показало, что макроструктуры литниковых и литниковых областей медных отливок под давлением показывают внешнюю столбчатую зону закалки и смесь равноосных и столбчатых зерен в объеме. Микроструктуры этих областей также показали наличие междендритной фазы, скорее всего, медно-кислородной эвтектики. В секциях ворот обнаружены поверхностные трещины и надрывы; в целом их количество и глубина уменьшались с количеством выстрелов. Также были обнаружены внутренние дефекты в виде оксидных пленок, макроскопических пор и включений шлакового типа, причем их размеры и частота снова уменьшались с увеличением количества выстрелов. В отливках также присутствовала небольшая пористость, но в целом микроструктура здоровая (9).0059 Рисунок 3 ). Электропроводность отливок варьировалась от 95% до 101% IACS, в среднем 98% IACS. Химический анализ показал, что содержание железа варьировалось от 10 до 350 ppm, а кислорода от 0,06% до 0,15%.

Рис. 3. Микрофотография медного литья под давлением.

Микропористость является распространенным дефектом, связанным с процессом литья под давлением. 50X

Суперсплавы на основе никеля

Вкладыши штампов были изготовлены из сплавов Inconel® 617, 718 и 754. Было выполнено более 250 литья под давлением с использованием комплектов штампов, изготовленных из этих сплавов. Набор Inconel 754 начал трещать очень рано (50 выстрелов) на ходу. Это было несколько неожиданно, поскольку этот сплав показал самую высокую прочность при температуре из трех испытанных сплавов на основе никеля. С другой стороны, этот сплав также имеет очень низкую пластичность при повышенных температурах. Сплав Inconel� 718 с самой низкой температурной прочностью начал растрескиваться примерно после 100 выстрелов.

Лучшим сплавом стал Inconel® 617, который демонстрирует наиболее благоприятное сочетание прочности и пластичности при повышенных температурах. На комплектах штампов, изготовленных из этого сплава, после 250 выстрелов было заметно лишь незначительное растрескивание. Эти данные дают важный ключ к решению рассматриваемой металлургической проблемы, а именно, что высокая вязкость разрушения при рабочей температуре может помочь снизить склонность к растрескиванию и, в конечном счете, увеличить срок службы пресс-формы.

Три медных отливки были подвергнуты металлургическому, химическому и физическому анализу. Вновь были обнаружены следы железа, кислорода и, в данном случае, никеля. В отливках также присутствовала небольшая микропористость, но общая микроструктура была здоровой. Электропроводность отливок, составляющая почти 100 % IACS, была лучше, чем у отливок, изготовленных в стальных формах. Способность сохранять такую ​​высокую проводимость после плавки меди на открытом воздухе, а затем отливки через стальную дробь в никелевые формы является очень многообещающей, поскольку такое поведение предполагает, что медный лом из процесса литья под давлением будет полностью перерабатываться в литейном производстве. .

TZM (сплав молибдена) и Anviloy (сплав вольфрама)

Эти сплавы рассматривались в ранних исследованиях INCRA материалов для форм для литья под давлением меди, но их высокие температуры вязко-хрупкого перехода предполагают, что целостность формы будет под угрозой, особенно на первых нескольких этапах. Одним из решений этой проблемы является повышение температуры форм с помощью нагревателей электрического сопротивления.

Заготовки из сплавов TZM и Anviloy соответственно были обработаны в наборы штампов. Их нагревали примерно до 500°С (932 F) до и во время испытаний на литье под давлением. С этими наборами штампов было успешно произведено более 500 выстрелов. Ограниченная степень окисления развивалась как на штампах TZM, так и на штампах Anviloy; тем не менее, никакого растрескивания из-за теплового контроля не наблюдалось. Фактически, характеристики этих двух материалов для штампов были беспрецедентными (рис. 4). Опыт работы с этими штампами показал, что повышение рабочей температуры штампа снижает тепловое расширение и сжатие, тем самым снижая склонность к растрескиванию под воздействием термической усталости, более известному как «термическая проверка». Ожидается, что дальнейшее повышение рабочей температуры штампов значительно продлит срок их службы за счет ограничения количества циклических деформаций, связанных с нагревом и охлаждением. В частности, прогнозируется, что работа штампов при повышенных температурах (чуть ниже точки замерзания меди, 1085°С (1985 F) продлит срок службы штампов до тысяч циклов.

Подвижная половина набора штампов, содержащего материалы TZM и Anviloy. Крупный план смерти Анвилоя после 500 выстрелов.

Растрескивания от термической усталости (термическая проверка) не наблюдалось.

Вольфрам CVD

Вольфрамовые вставки

были изготовлены по технологии высокоскоростного химического осаждения из паровой фазы (CVD), разработанной компанией Trex Enterprises, Сан-Диего, Калифорния. Процесс CVD, который проводится на графитовой оправке, давал преимущество изготовления сетчатой ​​формы или формы, близкой к сетчатой. Одним недостатком является то, что процесс приводит к относительно тонким структурам. Соответствующая основа для тонких вольфрамовых и вольфрам-рениевых изделий, изготовленных с использованием этой технологии, еще предстоит разработать. Однако для проверки этой концепции на обработанную молибденовую заготовку TZM нанесли вольфрамовые покрытия CVD. Медные отливки формы, показанной на рисунке 2, были изготовлены в Formcast с использованием этих композитных структур. Стойкость вольфрамовых форм CVD, которая на сегодняшний день была разочаровывающе короткой, по-видимому, ограничена столбчатой ​​структурой зерна вольфрама. Последующие модификации были внесены в пресс-форму, установленную в Formcast, для повышения температуры инструмента. Ожидается, что эти модификации, а также усилия предприятий Trex по улучшению структуры зерна увеличат срок службы инструментов, изготовленных по этой технологии.

Резюме 

Литые под давлением медные роторы двигателя

приведут к привлекательным улучшениям энергоэффективности электродвигателя. Делаются успехи в разработке прочных и экономичных материалов для пресс-форм, что сегодня является основным препятствием, препятствующим литью под давлением медных роторов. Продолжительный пробег меди по TZM и вольфрамовому сплаву Anviloy был выполнен без термоконтроля. Повышение рабочей температуры штампов продлило срок их службы за счет ограничения количества циклических деформаций, связанных с нагревом и охлаждением. Использование высокотемпературных материалов для штампов значительно увеличило срок службы формы, что сделало возможным литье под давлением меди и других материалов с высокой температурой плавления. Ожидается, что комплект пресс-форм, включающий комбинацию сплавов на основе никеля и тугоплавких сплавов (последние используются в самых горячих частях матрицы), позволит экономично производить отлитые под давлением медные роторы.

Текущие планы предусматривают завершение Фазы II исследовательской программы, а именно производство нескольких литых под давлением медных роторов для тестирования и оценки производителями электродвигателей. После завершения Фазы II акцент проекта сместится на передачу новой технологии литья под давлением производителям двигателей по всему миру.

Также в этом выпуске:

  • Судьба меди, выпущенная из музея кораблей Васа
  • Шведская программа долгосрочной изоляции высокоактивных ядерных отходов в медных контейнерах
  • Медный ротор двигателя: новая технология для высокоэффективных двигателей
  • Память формы и сверхэластичные сплавы
  • Роль меди в захоронении радиоактивных отходов III – опыт США
2007 г.