23Ноя

Работа роторного двигателя: Устройство роторного двигателя

Устройство роторного двигателя

После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.

Роторный двигатель

Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.

Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.

В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.

У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Ротор

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Устройство двигателя

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Принцип работы

Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:

  • впуск — в цилиндр подается горючая смесь;
  • сжатие — увеличение давления в цилиндре за счет уменьшения объема;
  • рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
  • выпуск — из цилиндра выводятся отработанные газы;

Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.

Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы. В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.

Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.

Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.

Принцип работы

Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.

Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.

Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.

Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.

Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.

В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.

Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.

После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.

Такты двигателя

Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.

Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.

Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.

А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.

Достоинства и недостатки

Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.

Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.

Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.

Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.

Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.

Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.

При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.

Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.

То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.

Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.

В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.

Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.

Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.

Роторный двигатель — устройство и принцип действия

Роторный двигатель — устройство и принцип действия | Двигатель прогресса

June 22, 2012

Как устроен роторный двигатель

В обыкновенном поршневом четырехтактном двигателе один цилиндр применяется для осуществления разнообразных процессов таких, как сжатие, впуск, сгорание и выпуск.

Роторный двигатель дает возможность реализовывать все эти процессы в различных долях корпуса. Каждый из процессов происходит как бы в отдельных цилиндрах.

В поршневых двигателях давление расширения, которое возникает во время сгорания топливовоздушной смеси, действует на поршни и заставляет их двигаться то вверх, то вниз внутри цилиндров. Коленвал и шатуны реорганизуют эти возвратно-поступательные движения во вращательное, которое необходимо для передвижения автомобиля.

В роторном двигателе нет преобразуемого возвратно-поступательного движения. В нем давление образуется в специальных камерах, которые создаются разнообразными корпусными частями, а также рельефными поверхностями треугольного ротора. Непосредственно сгорание и приводит к вращению ротора, что в свою очередь снижает количество и интенсивность вибраций, а также увеличивает потенциальную скорость вращения. Повышение эффективности, которое обеспечивается, таким образом, также дает возможность роторному двигателю иметь намного меньшие габариты относительно традиционных поршневых двигателей эквивалентной с ним мощности.

Основным элементом роторного двигателя является треугольный ротор, вращающийся внутри статора (овального корпуса) таким образом, что три роторные вершины располагаются в стабильном контакте с внутренней корпусной стенкой и при этом образует три замкнутых объема, которые содержат газ, либо же камеры сгорания. В принципе любая из трех боковых поверхностей работает точно так, как и поршень. Во время вращения ротора в корпусе объем трёх камер, которые создаются им, постоянно изменяется и действует в качестве насоса.

Роторный двигатель: принцип работы, особенности

Двигатель – это основа любого транспортного средства. Без него невозможно движение автомобиля. На данный момент наиболее распространенными являются поршневые двигатели внутреннего сгорания. Если говорить о большинстве беговых авто, это рядные четырехцилиндровые ДВС. Однако есть автомобили с таким моторами, где классическая поршневая отсутствует в принципе. Эти моторы имеют совершенно иное устройство и принцип работы. Называются они роторными ДВС. Что это за агрегаты, в чем их особенности, плюсы и минусы? Рассмотрим в нашей сегодняшней статье.

Характеристика

Роторный двигатель – это одна из разновидностей тепловых ДВС. Впервые такой мотор был разработан еще в далеком 19-м веке. Сегодня используется роторный двигатель на Mazda РХ-8 и еще на некоторых спортивных авто. Такой мотор имеет ключевую особенность – в нем нет возвратно-поступательных движений, как в обычном ДВС.

Здесь вращение осуществляется специальным трехгранным ротором. Он заключен в специальный корпус. Подобная схема практиковалась еще в 50-х годах прошлого столетия немецкой фирмой NSU. Автором такого ДВС стал Феликс Ванкель. Именно по его схеме производятся все современные роторные двигателя («Мазда РХ» не является исключением).

Устройство

В конструкцию силового агрегата входит:

  • Корпус.
  • Выходной вал.
  • Ротор.

Сам корпус являет собой основную рабочую камеру. На роторном двигателе она имеет овальную форму. Столь необычная конструкция камеры сгорания обусловлена использованием трехгранного ротора. Так, при соприкосновении его со стенками образуются изолированные закрытые контуры. Именно в них осуществляются рабочие такты ДВС. Это:

  • Впуск.
  • Сжатие.
  • Воспламенение и рабочий ход.
  • Выпуск.

Среди особенностей роторного двигателя внутреннего сгорания стоит отметить отсутствие классических впускных и выпускных клапанов. Вместо них использованы специальные отверстия. Они находятся по бокам камеры сгорания. Данные отверстия напрямую соединяются с системой выпуска газов и системой питания.

Ротор

Основа конструкции силовой установки данного типа – это ротор. Он выполняет функцию поршней в данном двигателе. Однако ротор находится в единственном экземпляре, в то время как поршней может быть от трех до двенадцати и более. По форме данный элемент напоминает некий треугольник с закругленными краями.

Такие края нужны для более герметичного и качественного уплотнения камеры сгорания. Так достигается правильное сгорание топливной смеси. В верхней части грани и по ее бокам расположены специальные пластины. Они выполняют функцию компрессионных колец. В роторе также находятся зубцы. Они служат для вращения привода, который задействует также выходной вал. О назначении последнего поговорим ниже.

Вал

Как такового коленчатого вала в роторно-поршневом двигателе нет. Вместо него использован выходной элемент. Относительно его центра находятся специальные выступы (кулачки). Они расположены асимметрично. Крутящий момент от ротора, что передается на кулачок, заставляет вал вращаться вокруг своей оси. Так создается энергия, необходимая для движения приводов и колес в автомобиле.

Такты

Какой имеет принцип работы роторный двигатель? Алгоритм действия, несмотря на схожие такты с поршневым мотором, отличается. Так, начало такта происходит при прохождении одного из концов ротора через впускной канал корпуса ДВС. В данный момент под действием вакуума в камеру засасывается горючая смесь. При дальнейшем вращении ротора происходит такт сжатия смеси. Это происходит, когда второй конец проходит впускное отверстие. Постепенно возрастает давление смеси. В конечном итоге она воспламеняется. Но возгорается она не от силы сжатия, а от искры свечи зажигания. После этого начинается рабочий такт хода ротора.

Поскольку камера сгорания в таком двигателе имеет овальную форму, целесообразно использовать две свечи в конструкции. Это позволяет быстро осуществить поджог смеси. Так, фронт пламени распространяется более равномерно. Кстати, по две свечи на одну камеру сгорания может приходиться и в обычном поршневом ДВС (встречается такая конструкция крайне редко). Однако для роторного двигателя это является необходимостью.

После воспламенения, в камере образуется высокое давление газов. Сила настолько велика, что позволяет прокрутить ротор на эксцентрике. Это способствует вырабатыванию крутящего момента на выходном валу. Когда вершина ротора приближается к выпускному отверстию, сила и давление энергии газов снижается. Они самопроизвольно устремляются в выпускной канал. После того как камера полностью от них освободилась, начинается новый процесс. Работа роторного двигателя снова начинается с такта впуска, сжатия, воспламенения, а затем и рабочего хода.

О системе смазки и питании

Данный агрегат не имеет отличий в системе топливоподачи. Здесь также используется погружной насос, что подает бензин под давлением из бака. А вот смазочная система имеет свои особенности. Так, масло для трущихся частей двигателя подается прямо в камеру сгорания. Для смазки предусмотрено специальное отверстие. Но возникает вопрос: куда затем девается масло, если оно проникает в камеру сгорания? Здесь принцип работы схож с двухтактным двигателем. Смазка попадает в камеру и сгорает вместе с бензином. Такая схема работы используется на каждом роторно-лопастном двигателе и поршневом в том числе. Ввиду особой конструкции смазочной системы такие моторы не могут отвечать современным экологическим нормам. Это одна из нескольких причин, почему роторные двигатели на ВАЗе и других моделях авто серийно не применяются. Впрочем, сперва отметим преимущества РПД.

Плюсы

Существует немало плюсов у такого типа двигателей. Во-первых, данный мотор обладает небольшим весом и размерами. Это позволяет сэкономить место в подкапотном пространстве и разместить ДВС в любом автомобиле. Также низкий вес способствует более правильной развесовке автомобиля. Ведь большая часть массы на авто с классическими ДВС сосредоточена именно в передней части кузова.

Во-вторых, роторно-поршневой двигатель обладает высокой удельной мощностью. По сравнению с классическими моторами, данный показатель в полтора-два раза выше. Также у роторного двигателя более широкая полка крутящего момента. Он доступен практически с холостых оборотов, в то время как обычные ДВС нужно раскручивать до четырех-пяти тысяч. Кстати, роторный мотор намного легче набирает высокие обороты. Это еще один плюс.

В-третьих, такой двигатель имеет более простую конструкцию. Здесь нет ни клапанов, ни пружин, ни кривошипно-шатунного механизма в целом. Вместе с этим отсутствует привычная система газораспределения с ремнем и распределительным валом. Именно отсутствие КШМ способствует более легкому набору оборотов роторным ДВС. Такой мотор за доли секунды крутится до восьми-десяти тысяч. Ну и еще один плюс – это меньшая склонность к детонации.

Минусы

Теперь поговорим о недостатках, из-за которых применение роторных моторов стало ограниченным. Первый минус – это высокие требования к качеству масла. Хоть мотор и работает по типу двухтактного, сюда нельзя заливать дешевую «минералку». Детали и механизмы силового агрегата подвергаются существенным нагрузкам, поэтому для сохранения ресурса нужна плотная масляная пленка между трущимися парами. Кстати, регламент замены смазки составляет шесть тысяч километров.

Следующий недостаток касается быстрого износа уплотняющих элементов ротора. Это происходит вследствие малого пятна контакта. Из-за износа уплотнительных элементов, образуется высокий перепад давлений. Это негативно сказывается на производительности роторного двигателя и расходе масла (а соответственно и экологических показателях).

Перечисляя недостатки, стоит упомянуть и о расходе топлива. По сравнению с цилиндро-поршневым двигателем, роторный не располагает топливной экономичностью, особенно на средних и низких оборотах. Ярким примером тому служит «Мазда РХ-8». При объеме в 1,3 литра этот мотор потребляет не менее 15 литров бензина на сотню. Что примечательно, на высоких оборотах ротора достигается наибольшая топливная экономичность.

Также роторные двигатели склонны к перегреву. Это происходит из-за особой линзовидной формы камеры сгорания. Она плохо отводит тепло по сравнению со сферической (как на обычных ДВС), поэтому при эксплуатации нужно всегда следить за температурным датчиком. В случае перегрева, деформируется ротор. При работе он будет образовать значительные задиры. В результате ресурс мотора приблизится к концу.

Несмотря на простую конструкцию и отсутствие кривошипно-шатунного механизма, этот мотор трудно отремонтировать. Такие двигателя очень редко встречаются и мало кто из мастеров имеет опыт с ними. Поэтому многие автосервисы отказываются «капиталить» такие моторы. А те, кто и занимается роторами, просят за это баснословные суммы денег. Приходится платить либо устанавливать новый двигатель. Но это не является гарантией высокого ресурса. Такие моторы выхаживают максимум 100 тысяч километров (даже при умеренной эксплуатации и своевременном обслуживании). И моторы «Мазды РХ-8» не стали тому исключением.

Роторный двигатель ВАЗ

Все знают, что такие моторы в свои годы использовал японский производитель «Мазда». Однако мало кому известен тот факт, что РПД применялся и в Советском Союзе на ВАЗовской «Классике». Разрабатывался такой мотор по приказу министерства для спецслужб. ВАЗ-21079, оснащенный таким двигателем, являлся аналогом известной черной «Волги-догонялки» с восьмицилиндровым мотором.

Разработки роторно-поршневого двигателя для ВАЗ начались еще в середине 70-х. Задача была не из легких – создать роторный мотор, который будет превосходить по всем показателями традиционный поршневой ДВС. Разработкой нового силового агрегата занимались специалисты авиационных предприятий Самары. Начальником сборочно-конструкторского бюро был Борис Сидорович Поспелов.

Разработка силовых агрегатов шла одновременно с изучением роторных моторов зарубежных образцов. Первые экземпляры не отличались высокими эксплуатационными показателями, и в серию они не пошли. Несколько лет спустя были созданы несколько вариантов РПД для классического ВАЗа. Лучшим из них был признан мотор ВАЗ-311. Этот двигатель имел такие же геометрические параметры, как и японский мотор 1ЗВ. Максимальная мощность агрегата составляла 70 лошадиных сил. Несмотря на несовершенность конструкции, руководством было принято решение о выпуске первой промышленной партии РПД, которые устанавливались на служебные автомобили ВАЗ-2101. Однако вскоре обнаружилась масса недоработок: мотор породил волну рекламаций, разразился скандал и численность работников конструкторского бюро существенно сократилась. Из-за частых поломок, первый роторный двигатель ВАЗ-311 был снят с производства.

Но на этом история советского РПД не заканчивалась. В 80-х годах инженерам все же удалось создать роторный мотор, который существенно превосходил характеристики поршневого ДВС. Так, это был роторный двигатель ВАЗ-4132. Агрегат развивал мощность в 120 лошадиных сил. Это дало автомобилю ВАЗ-2105 превосходные динамические характеристики. С этим двигателем машина разгонялась до сотни за 9 секунд. А максимальная скорость «догонялки» составляла 180 километров в час. Среди основных преимуществ стоит отметить высокий крутящий момент двигателя, доступный на всем диапазоне оборотов и высокую литровую мощность, которая была достигнута без какой-либо форсировки.

В 90-х годах на АвтоВАЗе занялись разработкой нового роторного двигателя, который должен был устанавливаться на «девятку». Так, в 1994 м году на свет вышел новый силовой агрегат ВАЗ-415. Мотор имел рабочий объем в 1300 кубических сантиметров и две камеры сгорания. степень сжатия каждой составляла 9,4. Данная силовая установка способна раскручиваться до десяти тысяч оборотов. При этом мотор отличался небольшим расходом топлива. В среднем, агрегат потреблял 13-14 литров на сотню в смешанном цикле (это неплохой показатель для старого по сегодняшним меркам роторного ДВС). При этом двигатель отличался малой снаряженной массой. Без навесного оборудования он весил всего 113 килограмм.

Расход масла у двигателя ВАЗ-415 составляет 0,6 процента от удельного расхода топлива. Ресурс ДВС до капитального ремонта – 125 тысяч километров. Мотор, установленный на «девятку», показывал неплохие динамические характеристики. Так, разгон до сотни занимал всего девять секунд. А максимальная скорость – 190 километров в час. Также были экспериментальные образцы ВАЗ-2108 с роторным мотором. Благодаря меньшему весу, роторная «восьмерка» разгонялась до сотни всего за восемь секунд. А максимальная скорость в ходе испытаний составила 200 километров в час. Однако в серию эти моторы так и не поступили. На вторичном рынке и на разборках найти их тоже нельзя.

Подводим итоги

Итак, мы выяснили, что собой представляет роторный двигатель. Как видите, это весьма интересная разработка, направленная на получение максимального КПД и мощности. Однако ввиду своей конструкции, механизмы ротора быстро изнашивались. Это сказывалось на ресурсе двигателя. Даже у японских РПД он составляет не более ста тысяч километров. Также данные моторы имеют высокие требования к смазочным материалам и не могут соответствовать современным экологическим нормам. Поэтому роторно-поршневые двигатели внутреннего сгорания так и не стали особо популярными в сфере автомобилестроения.

Как работает роторный двигатель Ванкеля

Ну, вначале первый инженерный подход заключался в создании двигателя, отличающегося от архитектуры поршневого двигателя внутреннего сгорания. И первым, кто построил и запатентовал такой двигатель, был Felix Millet в 1888 году. Милле создал 5-цилиндровый роторный двигатель, встроенный в спицы заднего колеса велосипеда. Его конструкция силового агрегата была позже запущена в производство компанией Darracq в 1900 году.

Ранние типы роторных двигателей имели нечетное количество цилиндров, смещенных по радиусу (обычно 7 или 9 цилиндров, поскольку эта нечетная конфигурация приводила к более плавной работе благодаря поршню). последовательность стрельбы).Начиная с этой конструкции, сначала двигатель имел неподвижный блок цилиндров, который непосредственно вращал коленчатый вал, расположенный в центре, и назывался радиальным двигателем. Радиальный двигатель теперь с винтом, прикрепленным к вращающемуся коленчатому валу, получил широкое распространение в авиастроении.

Однако конструкция этого радиального двигателя вызвала проблему охлаждения, особенно при работе в неподвижном состоянии, поскольку блок цилиндров не получал достаточного воздушного потока. Решение этой проблемы с охлаждением пришло в виде реверсирования роли вращающейся части из ансамбля, то есть теперь коленчатый вал был прикреплен болтами к шасси, а пропеллер вращался вместе со всем блоком цилиндров.Так родился роторный двигатель . Положительным моментом было то, что охлаждение двигателя было улучшено, но недостатком было то, что самолет стал нестабильным и им было труднее управлять.

К началу 1920-х годов роторные двигатели (которые находили применение в основном в авиастроении) устарели, и интерес к дальнейшим разработкам двигателей этого типа резко упал. Но для роторного двигателя не все было потеряно, поскольку немецкий инженер Феликс Ванкель в 1957 году изобрел вращающуюся конструкцию, в которой использовался ротор треугольной формы, вращающийся внутри овального корпуса.Поскольку в конструкции не используются поршни, как в поршневом двигателе, роторный двигатель внутреннего сгорания Ванкеля считается разновидностью роторного двигателя без поршня. Исследования роторных двигателей действительно начались в 1960-х годах, но только японскому автопроизводителю Mazda удалось успешно модифицировать его и интегрировать в фирменный стиль бренда, став единственным автопроизводителем, способным выйти на массовое производство. Итак, как это работает

Роторный двигатель Ванкеля — это двигатель внутреннего сгорания, в котором используется тот же принцип преобразования давления во вращательное движение, но без вибраций и механических нагрузок при высоких скоростях вращения поршневого двигателя.Доктор Феликс Ванкель и его коллеги получили конструкцию корпуса двигателя, выполнив следующие этапы: сначала они закрепили шестерню с внешними зубьями на белом листе и сцепили ее с более крупной шестерней с внутренними зубьями; с соотношением между двумя передачами 2: 3. Затем они прикрепили руку с ручкой к внешней стороне большей шестерни с внутренними зубьями. При повороте шестерни с внутренним зубцом на малой шестерне ручка образовывала трохоидную кривую в форме кокона.

Двигатель Ванкеля работает в том же 4-тактном цикле, что и поршневой двигатель с возвратно-поступательным движением, с центральным ротором, последовательно выполняющим четыре процесса впуска, сжатия, зажигания (сгорания) и выпуска внутри трохоидной камеры.Таким образом, хотя оба типа двигателей полагаются на давление расширения, создаваемое сгоранием топливно-воздушной смеси, разница между ними возникает из-за того, как они используют его для преобразования

в механическую силу. В роторном двигателе внутреннего сгорания это давление расширения прилагается к боковой поверхности ротора. Из-за треугольной формы ротора внутреннее пространство корпуса всегда будет разделено на три рабочие камеры. Это принципиально отличается от поршневого двигателя, где в каждом цилиндре происходят четыре процесса.Первоначальная конструкция

Ванкеля имела внешнее зубчатое колесо с 20 зубьями, в то время как более крупное внутреннее зубчатое колесо имело 30 зубцов. Из-за этого передаточного числа частота вращения между ротором и валом определяется как 1: 3 . Это означает, что в то время как меньшая шестерня совершает один оборот, большая шестерня с внутренними зубьями вращается три раза. Поскольку эксцентриковый вал , который аналогичен коленчатому валу в поршневом двигателе, соединен с меньшей зубчатой ​​передачей, это означает, что с двигателем, работающим на 3000 об / мин, ротор будет вращаться только при 1000 об / мин.Это не только означает, что роторный двигатель внутреннего сгорания работает более плавно, но также позволяет достичь более высокой красной черты.

Рабочий объем роторного двигателя обычно выражается единичным объемом камеры и количеством роторов (например, 654 куб.см x 2). Единичный объем камеры представляет собой разницу между максимальным объемом и минимальным объемом рабочей камеры, в то время как степень сжатия определяется как отношение между максимальным объемом и минимальным объемом.

Мы рекомендуем вам внимательнее ознакомиться с диаграммами и трехмерным анимационным видео Мэтта Риттмана в конце руководства, чтобы лучше визуализировать и понять рабочий режим двигателя Ванкеля. Плюсы и минусы двигателя Ванкеля
Первое, что в пользу двигателя Ванкеля — его малый размер и легкая конструкция . Это может оказаться решающим при разработке легкого автомобиля с высокой выходной мощностью и небольшим объемом двигателя. Кроме того, обеспечивает улучшенные конструкции защиты от столкновений, больше рабочего пространства для аэродинамики или отсеков для хранения вещей и лучшее распределение веса .

Второй благоприятной чертой роторного двигателя внутреннего сгорания является его плоская кривая крутящего момента во всем диапазоне скоростей. Результаты исследований показали, что при использовании конфигурации с двумя роторами колебания крутящего момента во время работы были на одном уровне с рядным 6-цилиндровым поршневым двигателем, в то время как трехроторная схема оказалась более плавной, чем поршневой двигатель V8.

Другими преимуществами роторного двигателя внутреннего сгорания являются простая конструкция, надежность и долговечность .Из-за отсутствия поршней, штоков, механизма приведения в действие клапана, ремня газораспределительного механизма и коромысла двигатель легче построить и требует гораздо меньше деталей. Кроме того, из-за отсутствия этих компонентов двигатель Ванкеля более надежен и долговечен при работе с высокими нагрузками. И помните, когда роторный двигатель работает со скоростью 8000 об / мин, ротор (который составляет большую часть всей совокупности) вращается только на одну треть этой скорости. Недостатки
двигателя Ванкеля включают несовершенное уплотнение на концах камеры, что учитывается на утечку между соседними камерами, и несгоревшую топливную смесь.Роторный двигатель внутреннего сгорания также имеет на продолжительность хода на 50% больше, чем у поршневого двигателя. Работа двигателя также допускает увеличение количества окиси углерода и несгоревших углеводородов в потоке выхлопных газов, что делает его очевидным изгоем среди любителей деревьев.

Но самым большим недостатком является значительный расход топлива . Сравнительные тесты показали, что Mazda RX8 потребляет больше топлива, чем более тяжелый двигатель V8 с рабочим объемом двигателя более чем в четыре раза, но с сопоставимыми характеристиками.Еще одним недостатком является то, что небольшое количество масла попадает в рабочую камеру, и в результате владельцы должны периодически добавлять масло, что увеличивает эксплуатационные расходы. Вклад Mazda в двигатель Ванкеля

Mazda представила первый в мире автомобиль с двухроторным роторным двигателем в мае 1967 года — модель Cosmo Sport / Mazda 110S . Он был оснащен двигателем Ванкеля объемом 491 куб.см, который развивал 110 л.с. при 7000 об / мин. В 1970 году Mazda представила первую автоматическую трансмиссию с двигателем Ванкеля, а три года спустя — первый в мире пикап с роторным двигателем.

После внедрения шестипортовой впускной системы для большей экономии топлива и мощности Mazda продолжила разработку роторного двигателя внутреннего сгорания с целью достижения низких выбросов. Индукционная система с шестью портами имела по три впускных отверстия на камеру ротора и могла обеспечить снижение расхода топлива за счет трехступенчатого управления. Еще одним заслуживающим внимания событием стало внедрение двухступенчатого монолитного катализатора .

Следующая эра в эволюции двигателя Ванкеля Mazda ознаменовалась введением турбонагнетателей.В 1982 году Cosmo RE Turbo поступил в продажу как первый в мире автомобиль с роторным двигателем, оснащенный турбонагнетателем. Основываясь на этом достижении, Mazda позже применила турбонаддув с двойной прокруткой, чтобы минимизировать турбо-лаг двигателя.

Однако ключевым нововведением Mazda стала презентация двигателя RENESIS, что означает ГЕНЕЗИС RE (роторный двигатель). RENESIS — это двигатель объемом 654 куб. См x 2, который развивает мощность 250 л.с. при 8500 об / мин и 216 Нм крутящего момента при 5500 об / мин. Помимо плавной работы двигателя и четкого отклика, двигатель RENESIS значительно улучшает топливную экономичность и уровень выбросов выхлопных газов.RENESIS от Mazda получил награды «Международный двигатель года» и «Лучший новый двигатель» в 2003 году. Вдохновленная международным успехом RENESIS, Mazda представила новый двигатель Ванкеля, способный работать как на водороде, так и на бензине. Однако этот водородный двигатель RE не смог вызвать такой же интерес, как бензиновый, возможно, из-за отсутствия водородной инфраструктуры в то время. В мае 2007 года японский производитель автомобилей Mazda отметил 40-летие разработок двигателя Ванкеля.

Роторный двигатель внутреннего сгорания RENESIS следующего поколения уже находится в стадии разработки и появился в концептуальном автомобиле Mazda Taiki. Двигатель следующего поколения обещает больший рабочий объем 1600 куб. См (800 куб. См x 2), что, как ожидается, увеличит крутящий момент на всех оборотах двигателя и увеличит тепловую эффективность. Но, несмотря на прогресс, достигнутый в отношении выбросов выхлопных газов, выходной мощности и уплотнения рабочей камеры, двигатель Ванкеля по-прежнему будет бороться с расходом масла и топлива из-за его особой конструкции функционирования.

Эксплуатация судового двигателя — запуск, работа, останов

Для различных типов главных двигателей судов важно проводить надлежащие проверки, принимать необходимые меры предосторожности и поддерживать параметры для безотказной работы. Хорошее несение вахты и техническое обслуживание приводят к более высокой эффективности, меньшему количеству поломок и бесперебойной работе. В этой статье мы рассмотрим некоторые общие и наиболее важные моменты для всех типов главных двигателей.

Подготовка к запуску главного двигателя судна

Перед запуском главного двигателя необходимо выполнить следующие проверки и процедуры.

Все компоненты, которые были отремонтированы, подлежат проверке и, по возможности, «функциональному тестированию». Все оборудование, инструменты и ветошь, использованные при капитальном ремонте, необходимо снять с двигателя.

1. Воздушные системы

a) Слейте всю воду, присутствующую в системе пускового воздуха
b) Слейте всю воду, имеющуюся из системы управляющего воздуха на ресиверах
c) ​​Поднимите давление в пневматических системах и убедитесь, что давление правильное. выпускной клапан закрывающий цилиндры «пневматическая пружина»

Прочтите по теме: 8 вещей, которые морские инженеры должны знать о запуске воздушной системы на корабле

2.Системы смазочные

a) Проверьте уровень масла в картере главного двигателя и при необходимости долейте
b) Запустите насос LO главного двигателя и насос LO турбокомпрессора
c) ​​Убедитесь, что все давления масла в норме.
d) Убедитесь, что поток масла достаточен для Охлаждение поршней и турбокомпрессоры
e) Проверьте уровень масла в баке LO цилиндра и что подача к лубрикатору открыта. Проверьте работу расходомера масла в цилиндре и обратите внимание на счетчик расходомера

.

Связанное чтение: Объяснение системы смазки главного двигателя судна

3.Системы водяного охлаждения

a) Убедитесь, что рубашки главного двигателя находятся в нормальных условиях, вода рубашки главного двигателя непрерывно циркулирует через подогреватель во время пребывания в порту и никогда не остывает.
b) Убедитесь, что давление в системе охлаждающей воды правильное и что системы не протекают. Проверку необходимо повторить, когда двигатель прогрет до нормальной рабочей температуры.
c) ​​Проверьте уровень в расширительном бачке. Явное снижение уровня воды в расширительном бачке свидетельствует о протечке.

Расширительный бак низкотемпературного контура

Связанное чтение: Общий обзор центральной системы охлаждения на судах

4. Медленно проворачивая двигатель с поворотным механизмом

Медленно проворачивайте двигатель, чтобы предотвратить повреждение, вызванное утечкой жидкости в любой из цилиндров. Прежде чем включать двигатель, необходимо получить разрешение с моста. Предварительная смазка должна быть проведена. Всегда выполняйте медленное вращение в самый последний момент перед запуском.

a) Убедитесь, что ручки регулировки находятся в положении «ЗАВЕРШЕНО С ДВИГАТЕЛЯМИ».
b) Убедитесь, что все краны индикатора цилиндра открыты.
c) ​​Проверните двигатель на один оборот с помощью поворотного механизма. Проверьте, не вытекает ли жидкость из любого из индикаторных клапанов
d) Отключите поворотный механизм и убедитесь, что он заблокирован в ВЫКЛЮЧЕННОМ положении
e) Убедитесь, что контрольная лампа TURNING GEAR ENGAGED гаснет

Прочтите по теме: Как защищен морской силовой двигатель корабля?

5.Медленное включение двигателя пусковым воздухом (продувка)

Перед включением двигателя необходимо получить разрешение на мосту. У моста нужно спросить зазор пропеллера. Всегда выполняйте медленный поворот в самый последний момент перед запуском и в течение последних 30 минут. Переведите главный двигатель в режим ожидания.

a) Выберите МЕДЛЕННЫЙ ПОВОРОТ на панели управления главным двигателем, если он есть, или дайте толчок из поста управления двигателем, на мгновение переместив регулирующую рукоятку в полностью медленное положение.Управляя телеграфом от управления двигателем, связывайтесь с мостиком, они должны следовать вашей команде по телеграфу. При вращении двигателя проверьте, не вытекает ли жидкость из кранов индикатора

.

b) Когда двигатель сделает один оборот, верните регулирующую рукоятку в положение СТОП.

c) Закройте все краны индикаторов. Также закройте сливы турбокомпрессора

6. Топливная система

a) Проверьте насос подачи жидкого топлива и циркуляционный насос жидкого топлива.Если двигатель при остановке работал на мазуте, циркуляционный насос и подогреватели топлива должны продолжать работать.
b) Проверьте давление и температуру жидкого топлива. Проверьте работу расходомеров мазута и отметьте счетчик расходомера

.

Связанное чтение: Расчеты расхода мазута для судов

7. Разное

а) Проверьте правильность показаний всех приборов двигателя.Если нет, проверьте приборы и при необходимости замените
b) Убедитесь, что все сливы в ресивере продувочного воздуха и дренаже коробки открыты, а контрольные краны закрыты.
c) ​​Убедитесь, что система верхнего крепления двигателя находится в рабочем состоянии
d) Проверьте усилие. температура подшипника и давление смазочного масла в пределах допустимого. Убедитесь, что гаситель осевых колебаний и гаситель крутильных колебаний давление смазочного масла находится в диапазоне
д) Убедитесь, что сигнализация утечки топлива работает. Проверьте уровень утечки топлива из бака, чтобы заметить любое повышение уровня позже из-за утечки
f) Проверьте уровень сливного сливного бака, бак не должен быть полным, иначе это приведет к переполнению продувочных пространств главного двигателя
g) Проверить исправность регулятора

Проверки нормальной работы

  • Во время нормальной работы необходимо проводить регулярные проверки и принимать меры предосторожности
  • Регулярные проверки давления и температуры в системе и двигателе
  • Значения, считываемые приборами, в сравнении с данными, приведенными в протоколах ввода в эксплуатацию, с учетом частоты вращения и / или мощности двигателя, обеспечивают отличные данные для оценки характеристик двигателя.Сравните температуру, прощупывая трубы. Важными показателями являются положение индикатора нагрузки, частота вращения турбокомпрессора, давление наддувочного воздуха и температура выхлопных газов перед турбиной. Ценным критерием также является суточный расход топлива с учетом более низкой теплотворной способности
  • Проверить и сравнить в цилиндрах среднее указанное давление, давление сжатия и максимальное давление сгорания

Связанное чтение: Понимание индикаторной диаграммы и различных типов недостатков индикаторной диаграммы

  • Проверить работу детектора масляного тумана
  • Проверьте правильность положения всех запорных клапанов в системах охлаждения и смазки.Клапаны впускных и выпускных отверстий для охлаждения на каждом двигателе всегда должны быть полностью открыты во время работы. Они служат только для отключения отдельных цилиндров от контура охлаждающей воды при капитальном ремонте
  • При обнаружении аномально высоких или низких температур на выходе воды, температуру необходимо очень постепенно доводить до предписанного нормального значения. Резкие перепады температуры могут вызвать повреждение
  • Максимально допустимая температура выхлопных газов на входе в турбокомпрессор не должна быть превышена
  • Проверьте горение по цвету выхлопных газов

Связанное чтение: Что делать, когда черный дым выходит из воронки судна в порту?

  • Поддерживайте правильную температуру наддувочного воздуха после воздухоохладителя при нормальном потоке воды.Как правило, более высокая температура наддувочного воздуха приводит к уменьшению количества кислорода в цилиндре, что, в свою очередь, приводит к более высокому расходу топлива и более высокой температуре выхлопных газов
  • Проверьте падение давления наддувочного воздуха в воздушных фильтрах и воздухоохладителях. Чрезмерное сопротивление приведет к нехватке воздуха в двигателях

Прочтите по теме: Как судовая система наддува воздуха для двигателей изменилась со временем

  • Топливное топливо перед использованием необходимо тщательно профильтровать.Регулярно открывайте сливные краны всех топливных баков и масляных фильтров на короткое время, чтобы слить всю воду или шлам, которые могли там скопиться. Поддерживайте правильное давление жидкого топлива на входе в топливные насосы. Отрегулируйте давление в подающем коллекторе топливного насоса с помощью клапана регулирования давления в возвратном трубопроводе жидкого топлива, чтобы жидкое топливо циркулировало в системе с нормальной производительностью циркуляционного насоса жидкого топлива
  • Тяжелое жидкое топливо должно быть достаточно нагрето, чтобы гарантировать, что его вязкость перед входом в топливные насосы высокого давления находится в указанных пределах
  • Определите расход смазочного масла в цилиндре.Оптимальный расход смазочного масла для цилиндров определяется благодаря многолетнему опыту обслуживания

  • Насосы охлаждающей пресной воды должны работать в обычном режиме, т. Е. Фактический напор соответствует расчетному значению. Если разница давлений между входом и выходом превышает желаемое значение, следует рассмотреть вопрос о капитальном ремонте насоса
  • Вентиляционные отверстия в самых верхних точках отсеков охлаждающей воды должны быть закрыты
  • Проверьте уровень во всех резервуарах для воды и масла, а также во всех дренажных резервуарах трубопровода утечки.Изучите любые аномальные изменения
  • Следите за состоянием охлаждающей пресной воды. Проверить на загрязнение масла
  • Проверьте смотровое стекло сливного коллектора ресивера наддувочного воздуха, чтобы увидеть, не стекает ли вода, и если да, то сколько.
  • Проверьте испытательные краны продувочного пространства, чтобы увидеть, не вытекает ли жидкость вместе с наддувочным воздухом
  • Проверьте падение давления на масляных фильтрах. При необходимости очистите их
  • По возможности следует проверять температуру ходовой части, прислушиваясь и наблюдая за картером снаружи и наблюдая за показаниями детектора масляного тумана.Подшипники, которые подвергались капитальному ремонту или замене, требуют особого внимания в течение некоторого времени после ввода в нормальную эксплуатацию
  • Прислушиваясь к шуму двигателя, можно обнаружить неровности
  • Мощность, развиваемая цилиндрами, должна регулярно проверяться и корректироваться через систему управления для сохранения баланса мощности цилиндров
  • Центрифугируйте смазочное масло. Пробы смазочного масла следует брать через частые промежутки времени и отправлять на берег для анализа
  • Check th

Роторный двигатель | Britannica

Роторный двигатель , двигатель внутреннего сгорания, в котором камеры сгорания и цилиндры вращаются вместе с ведомым валом вокруг неподвижного управляющего вала, к которому прикреплены поршни; давление газа сгорания используется для вращения вала.Некоторые из этих двигателей имеют поршни, которые скользят в тороидальных цилиндрах (в форме пончика); другие имеют одно- и многолепестковые роторы. Ранние роторные двигатели использовались в самолетах Первой мировой войны. Они имели воздушное охлаждение, а цилиндры располагались по кругу вокруг коленчатого вала, жестко прикрепленного к фюзеляжу. Винт крепился непосредственно к круглой раме, на которой устанавливались вращающиеся цилиндры. Различные недостатки этих двигателей привели к тому, что после войны от них отказались.

Подробнее по этой теме

Бензиновый двигатель

: Роторные двигатели (Ванкеля)

Роторно-поршневой двигатель внутреннего сгорания, разработанный в Германии, радикально отличается по конструкции от обычного поршневого поршневого двигателя…

После Второй мировой войны интерес к разработке нового типа роторного двигателя пробудился. Ванкель является наиболее развитым и широко используемым роторным двигателем. В двигателе Ванкеля ротор в форме равностороннего треугольника вращается с орбитальным движением в корпусе особой формы и образует вращающиеся камеры сгорания в форме полумесяца между его сторонами и изогнутой стенкой корпуса. Три вершины ротора снабжены подпружиненными уплотнительными пластинами, которые поддерживают непрерывный скользящий контакт с вогнутой внутренней поверхностью корпуса, а камеры сгорания последовательно увеличиваются и уменьшаются в размере по мере вращения ротора.Топливный заряд из карбюратора поступает в камеру через впускной канал, сжимается, поскольку размер камеры уменьшается из-за вращения ротора, и в соответствующее время воспламеняется свечой зажигания.

Двигатель Ванкеля был впервые испытан для использования в автомобилях в 1956 году. С тех пор он стал использоваться в таких промышленных приложениях, как приводные воздушные компрессоры, где необходимы небольшие, легкие, высокоскоростные двигатели с простотой механики. См. Также бензиновый двигатель .

Бензиновый двигатель | Британника

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные агрегаты среднего размера, осветительные установки и т. Д. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.

V-образный двигатель

Поперечный разрез V-образного двигателя.

Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели

можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое при сгорании бензина, создает силу на головке поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.

бензиновые двигатели

Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8.

Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.

Типовая схема поршневой цилиндр бензинового двигателя.

Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов восстановления мощности процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания: четырехтактный цикл

Двигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал.

Encyclopædia Britannica, Inc. Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Недостатком четырехтактного цикла является то, что выполняется только половина тактов мощности по сравнению с двухтактным циклом ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и перезагрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

Роторные двигатели? :: Автоматизация — The Car Company Tycoon Game Форум игроков общей автоматизации

Гадости не полны и спорить не буду, их заменяли, так что Мазда отказывалась их продавать. Просто они намного сложнее, когда дело доходит до их герметизации, и они все время теряют сжатие.В дилерском центре, в котором я живу, есть ребята, которые устали ремонтировать моторы почти для всех RX-7 и RX-8, которые они продавали каждые несколько лет. Кроме того, некоторым парням не нравится заливать масло каждый раз, когда вы заправляете его, я думаю, что выбросы — одна из причин, по которой Mazda отказалась от Wankels, но стоимость гарантии, вероятно, является основной мотивацией. Я слышал, что нужно постоянно поддерживать эти двигатели на высоких оборотах, чтобы поддерживать их работоспособность, что-то насчет форсунок. Все еще нереально для нормального вождения, если вам нужно ехать определенным образом, чтобы предотвратить преждевременный отказ двигателя, это ошибочная конструкция или, по крайней мере, нестабильная.И снова не спорю. Но сейчас, раз уж об этом не стоит говорить, люди, которые помешаны на роторных двигателях, довольны ими, и это меня нисколько не беспокоит. Я просто излагаю свой опыт и опыт тех, кого я знаю.

Ты полный дерьма. Большинство отказов в двигателе связано с некачественным техническим обслуживанием владельца. Единственным автомобилем, у которого были проблемы с завода, был FD-3S RX7, у которого были проблемы с перегревом из-за ограниченной системы охлаждения.

Основная причина, по которой Mazda отказалась от роторных двигателей, связана с выбросами. Трудно построить роторный двигатель, который отвечал бы строгим требованиям к экономичности и качеству воздуха. Моторы очень прочные и крепкие, если о них позаботиться.

Не мотор виноват в том, что идиоты заливают его, заливают неправильное масло, вообще не заливают масло или не выполняют техобслуживание, которое требуется мотору. Они теряют компрессию в результате пренебрежения. Не из-за какого-то «внутреннего недостатка», как вы полагаете.

Ваш дилерский центр полон тупиц, которых обманывают, думая, что это двигатель, хотя на самом деле конечный пользователь был слишком глуп, чтобы поддерживать эту чертову штуку в рабочем состоянии.