21Июл

Конструкция роторного двигателя: описание, устройство и принцип работы

Классификация роторных двигателей | Роторные двигатели

Ни в традиционной книжно – журнальной литературе, ни в обширных залежах интернет – сайтов нет серьезных и развернутых исследований в отношении такой перспективно продуктивной области технических устройств как роторные двигатели. Настоящий сайт усилиями его автора попытается заполнить этот пробел в истории техники и в сфере её нынешнего развития.


Безраздельно властвующие сегодня в мировой технике поршневые двигатели с линейным возвратно — поступательным движением поршня имеют огромные недостатки, которые невозможно преодолеть в принципе никакими конструкционными ухищрениями, никакими «электронными обвесами», никаким тюнингом. Поэтому мировая техническая мысль не менее ста лет пытается найти достойную альтернативу поршневым двигателям внутреннего сгорания. Надо сказать, что в области машин с выводом мощности на вал вращения (не реактивные двигатели) поршневой мотор уже давно вытеснен из многих сфер применения. В стационарных установках это место давно и прочно занял электрический мотор, а в авиации — газотурбинный двигатель, в энергетических установках больших мощностей – на крупных электростанциях и в быстроходных судовых силовых машинах надежно работают паровые турбины. Надо сказать, что все эти типы двигателей относятся к роторным машинам – в них главный рабочий орган совершаетпростое вращательное движение. С точки зрения кинематики механической схемы и динамики термодинамических процессов – это самый простой, эффективный тип движения. Но вот в области поршневых двигателей внутреннего сгорания, которые безраздельно господствуют в области мобильных моторов малой и средней мощности, все еще безальтернативно применяется малоэффективный метод движения главных рабочих органов – поршней в цилиндрах по типу возвратно – поступательного движения. При этом подобные моторы для преобразования возвратно – поступательного движения поршня во вращательное движение рабочего вала используют кривошипно — шатунный механизм.

Главные характеристики такого механизма- высокая динамическая нагруженность знакопеременными нагрузками от возвратно – поступательных движений, значительные размеры и сложность в изготовлении. Именно несовершенный способ организации технологических процессов в поршневом двигателе и своеобразный режим работы кривошипно-шатунного механизма, приводят к плохому (пульсирующему) режиму крутящего момента поршевых моторов. Именно обладание таким некачественным типом крутящего момента требует от поршневых ДВС обязательногоприменения на транспортных средствах коробки передач.
Массовый потребитель неудовлетворён тяговыми и стартовыми возможностями традиционных поршневых двигателей, поэтому многие из владельцев автомобилей прибегают к разным типам «тюнинга двигателя«, чтобы повысить мощность и приемистость своих моторов.

Надо сказать, что подобная организация рабочих процессов и типов движений досталась современным двигателям внутреннего сгорания от паровых машин 19-го века, которые по своей сути были крайне малоэффективными машинами, а первые двигатели внутреннего сгорания в 60-х и 70-х годах позапрошлого века были именно копиями паровых машин, которые унаследовали от паровиков очень многие их родовые недостатки…

Выражаясь современным языком — создатель первого ДВС французский техник Ленуар в 60-х годах 19-го века совершил средней сложности тюнинг парового поршневого двигателя и у него получился поршневой атмосферный ДВС, работающий без сжатия.


Постараемся ответить на трудный вопрос — почему же наиболее массовая область техники – транспортное двигателестроение до сих пор оказывается в положении заповедника устаревших инженерных решений и архаических конструкций? И возможно ли мировому техническому прогрессу выбраться из этого более чем векового застоя?

Ответ на такие сложные вопросы таков – выбраться из такого незавидного положения возможно, но сложно. Именно такая изначальная сложность инженерной задачи и объясняет причину, по которой более ста лет в этой области массовой техники применяются устаревшие и малоэффективные, но технологически легко исполнимые и конструктивно надежные технические решения.

Возможность совершить технический прорыв, и выйти на новый уровень инженерных решений, возможен в области все тех же роторных машин, то есть использовать принцип простого вращения главного рабочего органа, как это используется в электродвигателях или в силовых турбинах. Но вся сложность заключается в том, что организовать рабочий цикл из четырёх тактов полноценного двигателя внутреннего сгорания вокруг простого вращения главного рабочего органа очень сложно.

И именно вокруг этой сложной инженерной задачи вращались все усилия и творческие порывы конструкторской мысли не один десяток лет. Но сложность темы оказалась настолько велика, что до сегодняшнего дня массового вывода на рынок роторных двигателей и достойной их конкуренции с традиционными поршневыми двигателями так и не произошло. Сверх прогрессивной конструкции роторного двигателя внутреннего сгорания, которая бы по всем параметрам превосходила традиционные поршневые моторы до сих пор так и не создано.

Задачу настоящего сайта его автор видит как раз в том, чтобы исследовать саму возможность решения такой задачи, ввести читателя в круг уже имеющихся разработок и перспективных инженерных изысканий. Познакомить посетителей сайта как с мировыми новациями на эту тему, так и представить собственные разработки в этой области.

 

 

Классификация роторных двигателей весьма важна, так как она сразу очерчивает весьма обширный круг потенциально возможных конструкций, и главное — позволяет с первого шага выбрать наиболее перспективные и эффективные конструкции среди прочих мало работоспособных и не технологичных типов роторных машин.

Классификация роторных двигателей будет излагаться на основе авторского понимания этой схемы, которое опирается на систематизацию роторных машин, изложенную в разных аспектах в двух весьма обстоятельных книгах, которые, к сожалению, выходили мизерными тиражами, очень давно и не имели переизданий. Это Акатов, Бологов «Судовые роторные двигатели», Ленинград, 1967г. и Н.Ханин, С.Чистозвонов «Автомобильные роторно – поршневые двигатели», Москва, 1964г.

 

1) Роторные двигатели с неравномерным разнонаправленным (возвратно-вращательным) движением главных рабочих элементов.

Данный тип двигателя характеризуется тем, что в нем нет вращения ротора, а происходит его возвратно — дуговые качания вокруг оси. Процессы сжатия и расширения происходят между неподвижными лопатками ротора и статора, которые и не позволяют совершать ротору непрерывное вращение. По своим очертаниям этиот двигатель выглядит роторным, но по организации кинематики движения он по сути дела ближе к поршневым машинам с кривошипным механизмом, так как требует применения для преобразования колебательных движений вала во вращетельные особых сложных механизмов.

В этом заключен главный недостаток его конструкции, поэтому данная схема не получила распространения. Кроме того в этой схеме возможны ударные столкновения лопастей между собой.

 

2) Роторные двигатели с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента.

 

Внутри корпуса вращаются два ротора с неравномерным вращением, которые пульсируя как бы «догоняют друг друга». Такты сжатия и расширения происходят меджу лопастями этих двух роторов во время их сближения и удаления. Главный недостаток этой роторной схемы — два вала двух роторов вращаются неравномерно — рывками, толчковыми импульсами. Поэтому требуется применение сложного, нагруженного знакопеременными нагрузками механизма для выравнивания скорости вращения валов мотора. Кроме того в этой схеме возможны ударные столкновения лопастей между собой.

 
3) Роторные двигатели с уплотнительными заслонками — лопастями, которые движутся роторе совершая возвратно-поступательные или качающиеся движения. Частный случай – с заслонками – лопастями, отклоняющимися на шарнирах на роторе;

Надо сказать, что подобная схема роторных машин давно и широко применяется в пневмомоторах, где сжатый воздух вращает лопатки таких устройств.Поэтому у многих инженеров и изобретателей при взгляде на такие роторные пневмомоторы появляется понятная мысль приспособить такую машину под двигатель внутреннего сгорания. Для этого нужно лишь встроить такт сжатия в кинематическую схему такой машины. И пытливые умы меняют форму внутренней камеры мотора — получается теоретическая схема, которая на бумаге вполне может качественно работать…. Но на практике все не так просто, реализация в жизнь этой схемы сталкивается с огромными сложностями. Первая трудность — в условиях высоких температур и давлений в ДВС очень сложно обеспечить подвижность лопаток ротора и практически невозможно обеспечить герметичность линий их контакта с корсусом…

При этом лопатки должны постоянно двигаться — под действием центробежной силы вращения и пружин или приводом от специального механизма — но оба варианта реализовать очень сложно. Поэтому в технике до сих пор нет работоспособных образцов этого типа роторных двигателей внутреннего сгорания.

 

Ниже приведены две различные теоретические схемы роторных ДВС этого типа, взятые из патентной литературы.

4) Роторные двигатели с уплотнительными заслонками, которые движутся в совершая возвратно — поступательные или качающиеся движения корпусе.

 

Данная схема по принципу работы похожа на предыдущую, только заслонки — лопасти, разделяющие камеры двигателя выдвигаются не из ротора, а из корпуса. При этом ротор должен иметь сложную форму с лопастями — лопатками, которые и будут воспринимать на себя давление газов, которые должны отсекать от других объемов рабочей камеры лопатки- заслонки в корпусе. Эта схема имеет примерно те же принципиальные недостатки, что и предыдущая схема.

 

5) Роторные двигатели с простым и равномерным вращательным движением главного рабочего и всех иных элементов.

По своей концепции такие схемы двигателей — наиболее перспективные и наиболее технически совершенные. В таких конструкциях нет ни одной детали совершающей возвратно — поступательные, качательные или планетарно- вращательные движения. Поэтому двигатели этого типпа могут без труда достигать скоростей вращения в десятки тысяч оборотов в минуту с соотвествующим набором мощности. В 19-м веке были созданы несколько типов роторных паровых двигателей этой схемы и они показывали значительно лучшие характеристики, чем поршневые паровые двигатели.

Но вот работоспособных двигателей внутреннго сгорания этой схемы построено не было, даже на уровней идей, отраженных в патентных заявках обнаружено буквально несколько единиц, да и те — малореализуемых конструкций.

 

6) Роторные двигатели с планетарным вращательным движением главного рабочего элемента. 

 

Наиболее известные широкой общественности роторные двигатели Ванкеля относятся именно к последней классификационной группе. О нем речь пойдет на отдельной страничке этого сайта.

 

 

И ещё немного

 

 

 

ТАБЛИЦА КЛАССИФИКАЦИИ

 

 


 

 

Подводя итог

 

Конечно, не все потенциально конструкции различных типов роторных двигателей из представленного перечня обладают выраженными достоинствами и обладают хорошей технической перспективой. Ибо принципиальным достоинством роторных моторов – абсолютным отсутствием возвратно поступательных движений обладают лишь роторные машины двух последних типов – классификационных групп № 5) и № 6). Но вот главным и безоговорочным преимуществом роторных механизмов – полным отсутствием знакопеременных, пульсирующих инерционным нагрузок и абсолютной уравновешенностью не обладают даже роторные двигатели типа Ванкеля. Такое идеальное положение характерно лишь для классификационной группы № 5), которую с полным правом и можно назвать совершенным роторным двигателем. Именно с позиций такого совершенного роторного двигателя будут рассматриваться все преимущества моторов роторной схемы и производится сравнения, как с традиционными поршневыми двигателями, так и с двигателями Ванкеля – роторными моторами с планетарным вращением главного рабочего органа.Тем более что автор этих строк прикладывает немалые усилия по реализации в жизнь именно такой схемы и надеется, что ему удастся создать действующий и промышленно применимый двигатель внутреннего сгорания именно такого типа.

Опубликовано в Без рубрики
2 комментария »

Устройство роторного двигателя: принцип работы

Содержание

Эпоха машин возникла благодаря созданию дизельного двигателя. Огромную популярность приобрели поршневые моторы. В тоже время, с начала разработки дизельного двигателя перед изобретателями стояла цель извлечь максимальную эффективность при минимальном расходе топлива. Эта проблема разрешалась определенными способами — от усовершенствований техники существующих двигателей до возникновения совсем иных моторов другой структуры. Один из них был роторный мотор.

Роторный двигатель

Второе название роторного РПД – ванкель — аналог дизельного. Роторное моторное устройство было изобретено в 1930-е годы, гораздо позднее поршневого. Полностью функциональный тип такого мотора появился в пятидесятые годы. После возникновения вращающегося мотора многие автопроизводители с интересом начали создавать свою модель роторного силового агрегата, от которого вскоре они отказались ради обычного мотора с поршнем. Единственной сторонницей вращающегося мотора была японская корпорация «Мазда», поэтому такой тип мотора использовала в качестве визитной карточки. Характеристикой таких двигателей является строение, не имеющее поршня. Поэтому строение его было простым. В моторе с поршнем энергия горючего топлива принимается поршнем, который посредством возвратно-поступательного движения передает ее кривошипу коленчатого вала, создавая вращение.

В моторе с ротором энергия сразу преобразуется во вращение вала, минуя возвратно-поступательное движение. Это снижает потери мощности на трение, снижает металлоемкость и упрощает строение. Это заметно повышает КПД мотора.

Конструкция

Для понимания, как работает двигатель с ротором, нужно понимать, какое представление имеет его структура. Энергия сгорания топлива в таком силовом агрегате восполняет статор, вместо поршня. Статор представляет собой равносторонний треугольник. А каждая сторона его работает как поршень.

  • Ротор. Чтобы создать этап сгорания, статор помещается в замкнутый участок, состоящий из 3 элементов, 2 боковых и 1 центрального корпуса, который несет название статор. Область, на которой проходит этап нагрева, создается в статоре, а корпус бокового корпуса только создает уплотнение этой площади. Внутри цилиндра выполнен рычаг, а ротор помещается в него. Он сделан овальным, с немного прижатой боковой стороной, чтобы внутри цилиндра протекали все нужные этапы. В самом статоре есть окна впуска воздушно-топливной смеси или воздуха, а также выхлопного газа. А уже они закрыты отверстиями для зажигания свечей.
  • Выходной вал. В выходном вале расположены эксцентрично закругленные кулачки. Смещение от центра. Каждая роторная труба соединена с одной из них. Выпускной вал относится к коленчатому валу мотора поршневого мотора. Ротор при вращении давит на кулак. Благодаря тому, что кулачки не симметрично установлены, сила рычага, опираясь на кулаки, делает на выходе крутящий момент, что заставляет его крутиться.
  • Устройство двигателя. Характеризуется движением ротора в статорном цилиндре то, что верхний слой цилиндра всегда прикасается к поверхности статора, а движения его осуществляются по образцу эксцентрика. Он смещается по оси и вращается по ней. Чтобы это осуществить, необходимо в роторе проделать небольшое отверстие. У одной стороны отверстия расположен зубчатый сегмент. При этом в ротор вставляется эксцентриковый вал. Для того, чтобы создать вращение, на боковом корпусе установлены неподвижные шестеренки, которые зацепляются с зубчатым сектором ротора. Это так называемая точка отсчёта. Благодаря эксцентричности он опирается на неподвижные шестеренки, а зацепление создает движение вращательного движения. Он вращается, а также создает вращение вала на эксцентрике, на котором установлен.

Принцип работы

Так как цилиндр ротора имеет впускные и выпускные порты, они устраняют необходимость механизма газораспределения, а сам этап работы делится на 4 цикла. Теперь посмотрим, как всё это протекает в статоре. Уголки статора непрерывно контактируют с статорным цилиндром, что создает герметичная область между его сторонами. Эллиптическая форма статора цилиндра позволяет изменить область между стеной статора и двумя соседними вершинами ротора. Теперь посмотрим работу цилиндрика только на одной стороне рычага. Так, когда статор вращается, одна его вершина, проходя через эллиптическое сжатие цилиндрика открывает пусковое окно, и горячая смесь либо воздух начинает приходить в полосу между треугольным краем цилиндра и стеной.

При этом движения продолжаются, и пик достигает высокого предела эллипса и затем снижается. Возможность непрерывного контакта с вершиной ротора возникает благодаря эксцентричному перемещению. Впускается воздух, пока его вторая вершина статора не закрывает окно впуска. Первый пик в этот момент уже превышает высоту цилиндрового эллипса, происходит сжатие такта, и область между цилиндром и статором начинает существенно снижаться.

В момент прохождения стороны статора сквозь максимальное сжатие между стороной рычага и стеной цилиндрика приходит искра, которая воспламеняет сжатую смесь горючего между сжатой стеной цилиндра с стороной рычага. Характеристика вращающегося мотора заключается в том, что его зажигают после того, как проходит так называемая сторона «мертвого места», а не после того, как проходит так называемая сторона «мертвого места», как поршневой мотор.

Это происходит с целью воздействия энергии, выделяющейся при нагревании, на часть ствола, уже прошедшую верхнюю мёртвую точку ВМТ. Это создает движение статора в нужную сторону. После того, как свеча проходит, газ удаляется, пока первый угол ротора не начинает открывать окно выхода, а второй угол его постепенно закрывает.

Такты двигателя

Важно отметить, что все процессы описаны и выполняются только с одной стороны ротора, каждая сторона выполняет процесс одна за другой. То есть для одного оборота ротора выполняется три такта одновременно — пока в полосе между одной и другой сторонами ротора нагнетается воздух или горячее вещество, тогда другая часть ротора проходит через ВТМ, а третья вырабатывает выхлопную смесь.

Сейчас о том, как вращать эксцентриковый вал, который прикреплен к ротору. Благодаря этому эксцентриситету одна полная оборотная передача выполняется меньше, чем одна полная оборотная передача вала. То есть в течение одного полного цикла вал вращается трижды, что придает ему ещё больше полезных действий.

В моторе поршневого типа каждые две обороты коленвала совершают один цикл, эффективен только один полуоборота. Это позволяет обеспечить высокий уровень энергоэффективности.

Сравнение роторного мотора и поршневого мотора позволяет сравнивать выходные мощности в одном цилиндре с одной роторной и статорной мощностью, равной мощности трех цилиндров. А учитывая, что у Мазды в своих автомобилях стоит его двухсекционный роторный двигатель, по мощности он не уступает шестицилиндровому поршневому двигателю.

Устройство роторного двигателя: достоинства и недостатки

Сейчас, если говорить о преимуществах двигателей ротора, их достаточно много. Увидим, что производительность одной части сравнима с трехцилиндровым мотором, однако габариты куда меньше. Это сказывается на компактности самого мотора. Это можно сказать по модели Mazda RC-8. При хорошей мощности автомобиля имеется среднеразмерная конструкция двигателя, позволяющая добиться точного развертывания двигателя по осям, что оказывает влияние на устойчивость и управляемость автомобиля. Кроме компактного размера, у этого двигателя нет ГРМ-генератора, поскольку все фазы передачи задаются самым регулятором. Это существенно снижает металлоемкость корпуса и, следовательно, уменьшает массу мотора.

Изношенная поршня и синхронное соединение уменьшают число движущих частей двигателя, что сказывается на надежности конструкции двигателя. Сам движок не имеет различных направлений, как поршневые двигатели, что дает меньшую вибрацию при работе. Но у таких моторов есть и недостатки. Сначала система смазки одинаковая с 2-тактным двигателем. То есть топливом смазывается поверхность корпуса. Организация подачи масла совсем другая.

Если в двигателе двухтактного смазочного масла непосредственно добавляется в топливо, то в двигателе ротора он подается по форсунку, уже вмешивается в топливо. Использование данного вида смазки позволило сделать двигателям подходящее только минеральное или специальное полусинтетическое масло.

Таким образом, масло выгорает при эксплуатации, что негативно влияет на состав выхлопных газов. По экологичности двигатель ротора значительно превосходит четырехтактный свой поршневой двигатель. Хотя конструкция ротора проста, двигатели ротора имеют весьма маленький ресурс. Та же Мазда, пробег до капремонта был всего 100000 км.

Прежде всего, «страдают» вершины, как компрессионные кольца в поршневой машине. Вершина находится в верхнем стволе ротора, поэтому верхний ствол плотно прилегает к стене корпуса.

Недостатком является и невозможность ремонта. Если места посадки ротора износятся, то эти места восстановить невозможно, так что ротор полностью заменяется. Так же и с цилиндром цилиндра. При повреждениях его практически нельзя расточить, поскольку сложность выполнения такой работы чрезвычайно велика. Вкладыши выносятся гораздо быстрее, поскольку высокое вращающееся эксцентриковое колесо вращается гораздо быстрее.

В общем, при куда более простых конструкциях ротор оказывается намного надежнее поршневого двигателя, в силу сложности процесса его работы. Но, в целом, ротор не тупик в развитии внутренних двигателей. Та же Мазда постоянно совершенствует этот тип двигателя. Например, конструкция двигателя РХ-8 уже почти не отличается от поршневого по токсичности, что является большим достижением. Сейчас они пытаются увеличить свои ресурсы.

Однако это скорее всего достигается, если использовать специальные материалы для производства деталей мотора и улучшенной обработки поверхностей, что существенно упрощает ремонт и повышает расходы. Однако, несмотря на существенные неисправности, двигатель по-прежнему считается важным альтернативой внутреннему сгоранию поршневых двигателей, поскольку имеет несомненные плюсы.

РПД интересное и полезное предложение, но подобные моторы, хотя и имеют высокую мощность и КПД, не подошли. Благодаря конструктивным особенностям механизм быстро износится.

Кроме того, для «движка» требуются особые условия эксплуатации, сервиса. РПД является отличным вариантом для гонок и спортивного автомобиля. Для этого не требуется большой ресурс. Высокая техническая характеристика дает покупателям надежду, что роторный двигатель когда-то выпускается серийно, а недостатки можно будет устранить заранее.

Не за горами двигатели, но после перехода к водородному топливу производство РД начнется. Именно такой мотор не реагирует на взрывы. Одна из последних его разработок — Premacy Hidrogen Re Hybrid. Его характеристики не отличаются от других новинок автомобильного дизайна.

РПД на Западе

На западном рынке роторные двигатели не произвели бума, и конец их разработкам в странах Америки и Европы стал топливным кризисом 1973 года, в котором цены на нефть резко выросли, а покупатели автомобилей начали оценивать модели с экономными расходами.

Возрождение роторных двигателей

Благодаря усовершенствованию типов топлива и конструкции двигателей роторные двигатели могут вернуться. Глобальное потепление, ограниченное количество ископаемого топлива и автомобильное загрязнение — актуальные проблемы, требующие современных решений. Роторные двигатели, оснащенные усовершенствованиями, могут быть частью решения этих проблем. Новым приоритетом для многих автомобильных компаний является разработка автомобилей с уменьшенным расходом топлива и минимальными выбросами. Роторные двигатели могут предложить улучшенные характеристики в этих областях по сравнению с традиционными поршневыми двигателями. В этой статье обсуждаются роторные двигатели, их преимущества и недостатки, а также описывается технология двигателей, которая потенциально может позволить роторным двигателям сыграть решающую роль в автомобилестроении будущего.

Что такое роторный двигатель?

Роторный двигатель, также известный как двигатель Ванкеля, представляет собой тип двигателя внутреннего сгорания, в котором используется ротор треугольной формы в овальной камере, как показано на рис. 1. Треугольный ротор имеет три выпуклые поверхности, каждая из которых действует как поршень. Вершина каждой грани имеет металлическую пластину, которая образует уплотнение с внутренней стенкой камеры сгорания, как показано на рисунке 2. Внешний корпус ротора имеет форму овала, а именно эпитрохоида. Эта эпитрохоидальная форма позволяет трем концам или вершинам ротора всегда находиться в контакте с камерой. Эти уплотнения создают внутри камеры три герметичных объема газа.

Каждая секция корпуса предназначена для одной из четырех стадий процесса сгорания: впуск, сжатие, сгорание и выпуск (см. рис. 1). В корпусе расположены впускные и выпускные отверстия. Впускной порт соединяется с дроссельной заслонкой, а выпускной порт соединяется непосредственно с выхлопом. Нет шатунов и впускных/выпускных клапанов. Выходной вал роторного двигателя имеет круглые выступы эксцентричной формы. Ротор давит на эти лепестки, когда ротор движется по своему пути внутри корпуса. Из-за эксцентричного расположения кулачков по отношению к выходному валу сила, прикладываемая ротором к кулачкам, создает крутящий момент. Это заставляет выходной вал вращаться и генерировать мощность.

Преимущества роторных двигателей

Одним из основных преимуществ роторных двигателей по сравнению с обычными поршневыми двигателями с возвратно-поступательным движением является то, что роторные двигатели имеют более простую общую конструкцию. Роторный двигатель имеет гораздо меньше движущихся частей по сравнению с четырехтактным поршневым двигателем, который включает в себя клапаны, клапанные пружины, шатуны, поршни, зубчатые колеса, зубчатый ремень, распределительный вал и коленчатый вал. С другой стороны, роторный двигатель с двумя роторами будет иметь только три движущихся части — выходной вал и два ротора. Меньшее количество движущихся частей в двигателе означает более высокий потенциал надежности.

Еще одним преимуществом роторных двигателей перед поршневыми является более плавный рабочий цикл. Все движущиеся части роторного двигателя постоянно вращаются в одном направлении. Роторные двигатели также содержат противовесы, которые вращаются с определенной скоростью, подавляющей вибрацию. Поршни в обычном поршневом двигателе энергично движутся в разные стороны. Следовательно, роторные двигатели демонстрируют меньшую вибрацию и более плавную работу в целом. Плавность движения роторного двигателя желательна для автомобилей и пассажиров.

Дополнительным преимуществом роторных двигателей является более высокая эффективность двигателя по сравнению с поршневыми двигателями. Например, однороторный роторный двигатель обеспечивает мощность 75% каждого оборота выходного вала. Одноцилиндровый поршневой двигатель выдает мощность только за 25% каждого оборота коленчатого вала. Следовательно, роторные двигатели имеют более высокую выходную мощность за цикл сгорания. Роторные двигатели также имеют больший массовый коэффициент, более сильный поток топливно-воздушной смеси и требуют меньшего обслуживания, чем поршневые двигатели. Роторные двигатели имеют более высокое отношение мощности к весу, чем поршневые двигатели, поэтому роторные двигатели обычно легче и мощнее.

Недостатки роторных двигателей

Хотя роторные двигатели имеют много преимуществ по сравнению с обычными поршневыми двигателями, недостатки традиционных роторных двигателей препятствуют их широкому использованию. Хотя роторный двигатель был впервые изобретен в 1929 году немецким инженером Феликсом Ванкелем, он не смог стать широко используемым типом двигателя из-за плохой экономии топлива и высокого уровня загрязнения. В результате роторные двигатели не получили большой популярности в современных транспортных средствах, а поршневой двигатель стал основным типом используемого двигателя.

Одним из основных недостатков обычных роторных двигателей является высокий удельный расход топлива. Хотя теоретически они более эффективны, на практике роторные двигатели имеют более высокий удельный расход топлива, чем традиционные двигатели. Частично это происходит из-за износа верхних уплотнений, которые препятствуют надлежащей герметизации полостей двигателя, что приводит к утечке топлива и воздуха из одной полости в другую. Негерметичность верхних уплотнений является распространенной проблемой для обычных роторных двигателей. Это минимизирует максимальное давление и увеличивает расход топлива.

Еще одним фактором, вызывающим высокий расход топлива роторными двигателями, являются длинные и узкие камеры сгорания. Длинная камера сгорания снижает термодинамический КПД двигателя. Это приводит к тому, что роторным двигателям требуется больше топлива, чем поршневым двигателям.

Вторым основным недостатком является то, что роторные двигатели сильно загрязняют окружающую среду по сравнению с поршневыми двигателями. Роторные двигатели могут иметь низкокачественное сгорание, что приводит к проблемам с выбросами, особенно с высоким уровнем выбросов окиси углерода и углеводородов. Высокий уровень образования парниковых газов и токсичных выбросов роторных двигателей обусловлен несколькими аспектами.

Одна из причин заключается в том, что не полностью сгоревший газ может выделяться из камеры сгорания в виде выбросов углеводородов и угарного газа. Другая причина заключается в том, что эффект гашения из-за большого отношения поверхности к объему камеры сгорания приводит к выбросу большого количества углеводородов. Третья причина заключается в том, что несгоревший газ, просачивающийся из верхних уплотнений в выхлопную систему, является источником выбросов углеводородов и угарного газа.

Хотя механическая конструкция роторных двигателей позволяет получить более высокую удельную мощность и производительность на высоких скоростях, форма камеры сгорания и проблемы с уплотнением роторного двигателя могут выделять больше углеводородов и угарного газа, чем поршневые двигатели.

Снижение уровня выбросов и улучшение топливной экономичности являются основными изменениями, которые необходимо внести в роторные двигатели, чтобы облегчить их широкое практическое применение. Как правило, производительность роторных двигателей ухудшается, когда в них используется жидкое топливо, такое как бензин. Относительно низкая скорость пламени бензина и других обычных жидких топлив может вызвать неполное сгорание из-за большого расстояния, которое пламя должно пройти в роторных двигателях. Большое расстояние гашения бензина в роторных двигателях также препятствует способности пламени достигать более узких участков на концах ротора и стенке камеры сгорания. Выбросы несгоревших углеводородов образуются в стенке камеры сгорания и других холодных поверхностях из-за гасящего действия высокого отношения поверхности к объему на задней поверхности двигателя.

В результате роторный двигатель должен потреблять большое количество топлива. Это создает чрезмерные выбросы загрязняющих веществ при работе на бензине, особенно при высокой скорости и нагрузке. Многообещающим решением этих проблем экономии топлива и токсичных выбросов является улучшение процесса сгорания. Длинная камера сгорания и высокая рабочая скорость роторных двигателей требуют топлива с высокой скоростью пламени, которое легко испаряется. Улучшение свойств топлива является возможным подходом к повышению производительности роторных двигателей.

Возможные усовершенствования роторных двигателей

Одним из способов превратить недостатки роторных двигателей в преимущества является использование водорода в качестве топлива. Водород имеет низкую минимальную энергию воспламенения (MIE), что означает, что для воспламенения водорода в воздухе требуется очень небольшое количество энергии. MIE газообразного водорода в воздухе составляет всего 0,019 мДж, в то время как MIE других горючих газов, таких как бензин, пропан и этан, составляет 0,1 мДж. Энергия воспламенения водорода еще ниже в чистом кислороде со средним MIE ниже 0,004 мДж. Водород также имеет относительно высокую скорость пламени, что означает, что водород обладает характеристиками, необходимыми для хорошей работы роторных двигателей. Многие из этих преимуществ могут быть реализованы за счет использования бензина с водородной примесью.

В исследовании, проведенном для изучения сгорания и выбросов водородных бензиновых роторных двигателей, было установлено, что роторные двигатели, работающие на водородном топливе, работают более эффективно, чем роторные двигатели, работающие только на бензине. Среднее эффективное давление тормоза, тепловой КПД, температура цилиндра и давление сгорания роторного двигателя были одновременно увеличены после того, как объемная доля водорода во впуске была увеличена с 0% до 5,2%. Использование топлива с водородной примесью также привело к сокращению периодов развития и распространения пламени. Выбросы углеводородов, окиси углерода и двуокиси углерода были снижены при увеличении объемной доли водорода во впуске. При увеличении объемной доли водорода во впуске с 0% до 5,2% выбросы углеводородов снизились на 44,8%. Это показывает, что включение водорода в топливо, используемое для роторных двигателей, может уменьшить количество производимых выбросов и повысить эффективность роторных двигателей.

Чтобы максимизировать производительность водородных роторных двигателей, следует рассмотреть конструкцию треугольных роторных двигателей и эллиптических роторных двигателей. Треугольные роторные двигатели представляют собой традиционные роторные двигатели Ванкеля с ротором треугольной формы. Эллиптические роторные двигатели содержат ротор цилиндрической формы, который вращается внутри цилиндрической камеры корпуса. В одном исследовании было проведено количественное исследование для сравнения свойств поля внутреннего потока треугольных роторных двигателей и эллиптических роторных двигателей. Для каждого из двух типов двигателей были созданы трехмерные модели анализа жидкости на основе геометрической формы их роторов. Эти модели были разработаны с использованием вычислительной гидродинамики, в которой предполагалось, что жидкости — это воздух и водород, и пренебрегали тепловыми эффектами и горением для более простого моделирования. Модель анализа жидкости, которая имитировала поток водорода через треугольные и эллиптические роторные двигатели, показала, что коэффициент флуктуации газового момента и коэффициент флуктуации скорости потока были выше для эллиптических роторных двигателей, чем для треугольных роторных двигателей. Это показывает, что треугольные роторные двигатели имеют меньше колебаний и поэтому более стабильны, чем эллиптические роторные двигатели.

Другим преимуществом, которое продемонстрировали треугольные роторные двигатели в этом исследовании, было то, что они были менее подвержены утечкам, имели меньшее рассеивание энергии и меньшую эффективность выхлопа и всасывания по сравнению с эллиптическими роторными двигателями. Треугольные роторные двигатели также имеют более простой путь потока топлива и более стабильный поток, чем эллиптические двигатели. Хотя было показано, что треугольный роторный двигатель имеет эти преимущества перед эллиптическими роторными двигателями, эллиптический двигатель действительно превосходил треугольный роторный двигатель в некоторых категориях. Например, было обнаружено, что вихревое число выше в эллиптических роторных двигателях, чем в треугольных роторных двигателях, что указывает на то, что эллиптические двигатели имеют более высокую эффективность сгорания. Эллиптические двигатели также производили меньше выхлопных газов, чем треугольные роторные двигатели. Преимущества и недостатки каждой конструкции роторного двигателя следует учитывать при реализации этих двигателей в реальных приложениях.

Одним из факторов, который можно изменить для улучшения характеристик роторных двигателей, является положение свечи зажигания. Оптимальное положение свечи зажигания может способствовать максимально эффективному сгоранию роторных двигателей с минимальными выбросами. Одно исследование было проведено для изучения влияния положения свечи зажигания на выбросы и сгорание водородного роторного двигателя Ванкеля. Были протестированы два положения свечи зажигания: ведущая свеча зажигания и задняя свеча зажигания. Из-за сложности сжигания длинной камеры в роторном двигателе используются две свечи зажигания в каждом корпусе. Нижняя свеча зажигания называется «ведущей» свечой зажигания, а верхняя — «замыкающей» свечой зажигания (см. рис. 6). Было обнаружено, что ведущая свеча зажигания лучше подходит для роторных двигателей Ванкеля, работающих на водороде, чем задняя свеча зажигания. Ведущая свеча зажигания позволила роторному двигателю иметь более высокий максимальный тормозной момент, лучший выброс оксида азота, более широкий диапазон воспламенения и более низкие циклические колебания.

Например, максимальный тормозной момент задней свечи зажигания оказался равным 31,2 Нм. Это всего 87% от максимального тормозного момента ведущей свечи зажигания, который составлял 36,0 Нм. Это показывает, что ведущая свеча зажигания приводит к большей мощности тормозной системы. Это исследование также показало, что использование переднего положения свечи зажигания привело к более высокой тепловой нагрузке и меньшим циклическим колебаниям, чем при использовании заднего положения свечи зажигания. Таким образом, установка ведущей свечи зажигания в водородных роторных двигателях, скорее всего, улучшит функциональные характеристики двигателя.

Другим фактором, который можно использовать для улучшения текущей конструкции роторных двигателей, является синхронизация зажигания. Исследование, посвященное времени зажигания, позволило сравнить влияние опережающего и замедленного момента зажигания на работу водородно-бензинового двухтопливного роторного двигателя. Это исследование показало, что усовершенствованная синхронизация зажигания имеет множество преимуществ. Экспериментальные результаты показали, что для определенного объемного процента водорода опережающее время зажигания приводило к увеличению пикового давления сгорания и температуры в камере сгорания, а тепловой КПД тормозов сначала увеличивался, а затем уменьшался. Увеличение момента зажигания также увеличило период развития пламени и уменьшило период распространения пламени и температуру выхлопных газов. Кроме того, увеличение опережения зажигания также уменьшило циклическую изменчивость двигателя. Это означает, что улучшенная синхронизация зажигания привела к меньшим случайным колебаниям в поле потока двигателя.

Однако одним из основных преимуществ искрового зажигания с отсроченным зажиганием было то, что выбросы углеводородов и оксидов азота были снижены по сравнению с усовершенствованным искровым зажиганием. Следовательно, эти эффекты должны быть сопоставлены с общей конструкцией двигателя при разработке усовершенствованного роторного двигателя.

Обогащение кислородом — еще один способ улучшить роторный двигатель. Было показано, что увеличение количества кислорода, подаваемого в цилиндры двигателя, повышает эффективность сгорания и снижает выбросы твердых частиц. Добавление избыточного кислорода к топливно-воздушной смеси, используемой для сгорания в роторном двигателе, также приводит к более широкому диапазону воспламеняемости, более высокой скорости пламени и увеличению мощности двигателя. Эти результаты были получены в ходе исследования, направленного на изучение потенциальных улучшений сгорания в роторном двигателе уменьшенного размера за счет обогащения всасываемого кислорода. Исследование также показало, что присутствие кислорода во впускном воздухе двигателя оказывает сильное влияние на увеличение объема сгорания и развитие пламени.

Кроме того, увеличение содержания кислорода во впускном воздухе двигателя привело к повышению пикового давления. Это привело к быстрому периоду сгорания двигателя, что повысило эффективность сгорания и эффективность тепловыделения. Эти улучшения также привели к снижению токсичных выбросов. Также наблюдалось существенное снижение образования окиси углерода, сажи, несгоревших углеводородов и окиси азота при наличии смеси с более высоким содержанием кислорода. Это конкретное исследование показало, что объем всасываемого кислорода 30% и избыток воздуха в соотношении 1: 1 позволили роторному двигателю уменьшенного размера работать с максимальной производительностью при минимальных выбросах. При реализации роторного двигателя важно учитывать оптимальный объем кислорода и коэффициент избытка воздуха. Чтобы определить, какими должны быть объем кислорода и коэффициент избытка воздуха для определенного роторного двигателя, следует учитывать свойства сгорания и уровни выбросов.

Одной из успешных новых конструкций роторных двигателей, которая была разработана и испытана в 2019 году, был небольшой роторно-поршневой двигатель с оппозитными поршнями или двигатель ORP. Этот двигатель ORP использовал типичный четырехтактный принцип. Этот тип двигателя обещает обеспечить меньший углеродный след, снижение шума, более плавную подачу мощности и возможность использовать несколько видов топлива. Было обнаружено, что он имеет более низкий уровень выбросов выхлопных газов и более высокий тепловой КПД, чем обычные роторные двигатели Ванкеля, потому что конструкция двигателя ORP не имеет узкой камеры сгорания, как типичные двигатели Ванкеля. Двигатель ORP имеет неэксцентрическую конструкцию, которая снижает скорость холостого хода, а также расход топлива по сравнению с типичными роторными двигателями и поршневыми двигателями с возвратно-поступательным движением. Двигатель ORP также имеет цилиндрическую камеру сгорания, что привело к повышению тепловой эффективности тормозов и снижению выбросов по сравнению с роторным двигателем Ванкеля и традиционными поршневыми двигателями. Кроме того, этот новый двигатель ORP достиг более высокой выходной мощности за цикл сгорания, чем роторные двигатели Ванкеля и обычные поршневые двигатели. Конструкция этого малогабаритного двигателя ОВП показана на рис. 7.9.0003

Внедрение роторных двигателей

Чтобы внедрить конструкцию двигателя ORP в реальное приложение, необходимо провести дополнительные исследования, чтобы успешно увеличить размер малогабаритной конструкции двигателя и определить, какие факторы могут повысить эффективность двигателя. Двигатель ORP является возможной альтернативой нынешним поршневым двигателям с возвратно-поступательным движением и расширителям диапазона, используемым в гибридных транспортных средствах, поскольку двигатель ORP обладает всеми преимуществами, которые роторный двигатель Ванкеля имеет по сравнению с поршневыми двигателями с возвратно-поступательным движением, а также имеет более высокий тепловой КПД и более низкий уровень выбросов, чем традиционные. Роторные двигатели Ванкеля. Двигатель ORP также может использоваться в гибридных транспортных средствах, использующих водород в качестве топлива. Использование водорода в качестве топлива в двигателях ORP позволит гибридным автомобилям иметь повышенную выходную мощность, высокую эффективность сгорания и тепловую эффективность, а также высокую удельную мощность.

Роторные двигатели можно легко внедрить в гибридную архитектуру, где энергия двигателя идет на поддержание заряда аккумуляторной батареи. Например, гибридные транспортные средства, работающие на сжатом воздухе и электричестве, в которых используется система накопления энергии на сжатом воздухе (CAES), являются многообещающим применением роторных двигателей. Эти гибридные пневматическо-электрические транспортные средства способны преобразовывать кинетическую энергию транспортного средства посредством торможения в сжатый воздух. Затем этот сжатый воздух может храниться в резервуаре для хранения в транспортном средстве для повторного использования во время транспортных операций, таких как запуск двигателя, ускорение и движение. Детандеры и компрессоры Ванкеля также могут быть внедрены в такие автомобили.

Роторные детандеры и компрессоры Ванкеля играют важную роль в выработке электроэнергии гибридными транспортными средствами, работающими на сжатом воздухе и электричестве, и, как было показано, приводят к значительному сокращению выбросов парниковых газов. Детандеры и компрессоры Ванкеля имеют много преимуществ по сравнению с обычными расширителями и компрессорами. Детандеры Ванкеля имеют повышенную компактность, меньшую вибрацию, пониженный уровень шума и меньшую стоимость по сравнению с традиционными расширителями и компрессорами. В одном исследовании уже были созданы эффективные детандер и компрессор для гибридного автомобиля, работающего на сжатом воздухе и электричестве, в котором использовался роторный двигатель Ванкеля. В этом исследовании были проведены испытания, в ходе которых изменялись значения таких параметров, как начальная скорость транспортного средства, вес транспортного средства, время торможения и размер бака, чтобы проверить эффективность гибридной системы Ванкеля. Максимальная эффективность энергосбережения, достигнутая этой системой Ванкеля, составила около 77%, а мгновенная эффективность системы была достигнута на уровне 85%.

В гибридных конфигурациях, таких как системы CAES, в ближайшем будущем могут быть реализованы роторные двигатели. В настоящее время эти гибридные конфигурации хоть и перспективны, но не используются из-за расхода, связанного с двигателем и необходимой доочисткой. Однако, учитывая простоту роторных двигателей и возможную оптимизацию выбросов, гибридный вариант с использованием роторного двигателя может быть финансово осуществимым. В этой конфигурации двигатель должен работать в ограниченных условиях, избегая переходных процессов, вызывающих проблемы в гибридных двигателях. Между тем, он предлагает легкую, компактную и надежную альтернативу обычным двигателям.

Внедрение улучшенных роторных двигателей в передовые технологии будет иметь безграничные возможности. Из-за своих преимуществ роторные двигатели рассматривались для использования в различных приложениях. Роторные двигатели могут быть использованы для улучшения крейсерской способности электромобилей с батарейным питанием из-за их легкого веса и низкой вибрации. Роторные двигатели использовались в других приложениях, таких как электрические пилы, расширители сжатого воздуха и моторные сани, а также снегоходы из-за их небольшого размера и легкого запуска при низких температурах.

Роторные двигатели использовались в серийных транспортных средствах, и они могут получить более широкое распространение по мере разработки и выпуска новых транспортных средств. Например, Mazda успешно внедряет роторные двигатели в свои автомобили с 1960-х годов. Mazda впервые разработала автомобиль с роторным двигателем Ванкеля в 1967 году, когда компания выпустила Cosmic Sport. В 1970-х годах почти половина автомобилей компании производилась с роторными двигателями Ванкеля, а в серийных спортивных автомобилях, таких как RX-7 и RX-8, использовался известный роторный двигатель Mazda. Хотя производство RX-8 было прекращено в 2012 году, Mazda работает над тем, чтобы вернуть в свои автомобили роторные двигатели. Концептуальный спортивный автомобиль Mazda RX-Vision был представлен компанией в 2015 году и может быть запущен в производство в будущем. Кроме того, компания недавно выпустила свой MX-30 EV 2022 года и гибридный автомобиль с подключаемым модулем. Этот автомобиль с роторным двигателем в настоящее время находится на рынке и доступен для покупки в Европе и Калифорнии прямо сейчас.

MX-30 2022 года — это полностью электрический автомобиль с вращающимся расширителем диапазона. Несмотря на то, что этот автомобиль имеет расчетный диапазон EPA только в 100 миль при полной зарядке, производство этого электрического роторного двигателя является важным шагом на пути к разработке передовых транспортных средств, работающих на возобновляемых источниках энергии и роторных двигателях. Это знаменует собой важную веху в возрождении роторного двигателя Ванкеля и новом применении роторных двигателей в гибридных транспортных средствах. В будущем роторные двигатели могут быть использованы в большем количестве электрических и гибридных транспортных средств.

Заключение

Усовершенствованный современный роторный двигатель произведет революцию в автомобильной промышленности. Этот тип двигателя позволит разработать автомобили с уменьшенным расходом топлива и минимизированными выбросами. Двигатели будут иметь более простую и легкую конструкцию, но при этом будут более мощными. Усовершенствования, такие как водородное топливо, обогащение кислородом, расположение свечей зажигания и синхронизация свечей зажигания, позволят роторным двигателям стать более эффективными и безопасными для окружающей среды. В то время как поршневые двигатели производят меньше загрязнения с помощью современных технологий по сравнению с роторными двигателями, эти достижения могут дать роторным двигателям преимущество. Роторные двигатели не следует отбрасывать как технологию прошлого. Скорее, их следует улучшать и использовать в более широком масштабе для обеспечения более эффективных и экологически чистых транспортных средств.

Авторы

Доктор Радж Шах — директор компании Koehler Instrument Company в Нью-Йорке, где он проработал последние 27 лет. Он является избранным членом своих коллег в IChemE, CMI, STLE, AIC, NLGI, INSTMC, Институте физики, Энергетическом институте и Королевском химическом обществе.

Доктор Викрам Миттал, доцент Военной академии США на кафедре системной инженерии. Он получил докторскую степень в области машиностроения в Массачусетском технологическом институте, где исследовал значение октанового числа в современных двигателях. Его текущие исследовательские интересы включают проектирование систем, проектирование систем на основе моделей и современные технологии двигателей.

Г-жа Алия Каушал — студентка инженера-химика из SUNY, Университет Стони Брук, где докторская степень. Шах и Миттал входят во внешний консультативный совет директоров.

Конструкция роторного двигателя Сореньи | Новый дизайн роторного двигателя

Представьте себе треугольники, вращающиеся вокруг карниза занавески для душа внутри пивного бочонка — это элементарное описание кричащего роторного двигателя Ванкеля. Эта силовая установка любима редукторами во всем мире из-за ее простой конструкции с минимумом движущихся частей, плавности хода от низких до высоких оборотов и огромного количества мощности, которое исходит от ее крошечного рабочего объема.

Тем не менее, культовый треугольный ротор Ванкеля ограничен по частоте вращения из-за того, что его треугольные роторы установлены эксцентрично на коленчатом валу, что означает, что скорость двигателя ограничена примерно 9000 об / мин, потому что коленчатый вал согнется, если он будет вращаться быстрее. Конечно, красная черта в 9000 об/мин — это высокий показатель для уличного автомобиля, но возможность развивать более высокие обороты может обеспечить большую мощность в других приложениях.

Может быть, они могли бы, если бы мы вышли за пределы вращающихся треугольников.

Двигатель Сореньи в разобранном виде.

REDA

В течение более чем десяти лет австралийские инженеры, работающие под названием Rotary Engine Development Agency (REDA), разрабатывали новую конструкцию роторного двигателя, основанную на деформирующемся ромбе, а не на обычных треугольных роторах. Основным преимуществом двигателя является более высокая удельная мощность, чем у Ванкеля, потому что более сбалансированная конструкция позволяет двигателю работать на более высоких оборотах — так говорит Питер Кинг, один из двух партнеров REDA.

Другим важным преимуществом, по утверждению Кинга, является то, что предел оборотов Szorenyi не ограничивается изгибом коленчатого вала, возникающим из-за эксцентричного ротора Ванкеля. Сбалансированные роторы Сорени (в которых вращающий их коленчатый вал находится в центре ротора) позволяют ему вращаться выше, чем у Ванкеля, чьи роторы имеют центр тяжести, эксцентричный по отношению к его коленчатому валу.

Этот новый роторный двигатель называется роторным двигателем Сореньи в честь изобретателя двигателя и партнера REDA Питера Сореньи. После того, как он скончался в 2012 году, его сын Адам занял его место в REDA вместе с Кингом.

Знаменитый роторный двигатель Mazda Wankel.

Getty Images

Wankel никогда не был единственной роторной конструкцией, но он стал фирменным типом. Задуманный в 1920-х годах в Германии, Ванкель, наконец, был запущен в производство в 1950-х годах на немецком автопроизводителе NSU. Mazda вместе с огромным списком производителей автомобилей и самолетов, а также несколькими производителями мотоциклов получила лицензию на Ванкеля от NSU и разработала свои собственные версии. Только Мазда действительно заменил его , используя роторные двигатели, наиболее известные в спортивных автомобилях, таких как RX-7, и в гранд-туристах, таких как Cosmo.

NSU обанкротилась в 1970-х, потому что ее ранние Ванкели продолжали саморазрушаться, и хотя компания в конце концов устранила недостатки, ее репутация была уничтожена к чертям. Mazda была в разгаре перевода почти всей своей производственной линии на Ванкельса, когда разразился нефтяной кризис 1973 года. С тех пор роторные двигатели были зарезервированы в основном для нишевых легких спортивных автомобилей и роскошных гранд-туристов, пока Mazda не разочаровала любителей Ванкеля во всем мире, остановив производство после 2012 года. 0003

Похожие статьи
  • Официально: роторный двигатель Mazda вернется
  • Роторный двигатель Mazda: объяснение

Сореньи пережил свою собственную сагу. REDA много лет разрабатывала четырехкамерный Szorenyi и построила действующий прототип в 2008 году. Но когда в 2017 году группа опубликовала свой официальный документ с Обществом автомобильных инженеров, все натолкнулось на препятствие. Инженеры известной британской автомобильной инженерной фирмы проверили двигатель и сказали Кингу, что угловые шарниры будут испытывать экстремальные нагрузки от давления, и их будет трудно адекватно смазать.

«В результате этого [разговора] у меня появилось вдохновение снять петли и просто смириться с потерей одной [камеры сгорания]», — говорит Кинг. Это упростило двигатель и устранило проблемы со смазкой и высокими нагрузками, но также вернуло Сореньи к трехкамерному роторному двигателю, более близкому по концепции к Ванкелю.

Прототип РЕДА

РЕДА

Ротор Сореньи сохраняет основные черты Ванкеля для неподвижных частей двигателя, однако имеет ключевое преимущество — у Сореньи используется более круглая форма статора (стационарная часть в форме пивной бочки). двигателя). Его роторы испытывают центробежные силы, которые деформируют их относительно верхних уплотнений, выстилающих камеры сгорания, что улучшает уплотнение этих камер. Напротив, утверждает Кинг, эксцентриковые роторы Ванкеля испытывают силу, действующую по направлению к центру двигателя, и это может привести к подъему верхнего уплотнения, что приведет к утечке газов между камерами.

Потеря четвертой камеры уменьшает рабочий объем двигателя — если все остальное остается прежним — но трехкамерный Сореньи сохраняет сбалансированные роторы, которые позволяют ему вращаться выше, чем у эквивалентного Ванкеля. «Сейчас мой подход заключается в том, чтобы оставить четырехкамерный двигатель и сосредоточиться на трехкамерном», — говорит Кинг. Это будет первая версия Szorenyi, которую мы увидим, хотя Кинг не говорит, для какого приложения она дебютирует.

Торец трехкамерного роторного Сореньи.

РЕДА

Предполагая, что его окончательный проект будет реализован, Сореньи сталкивается с экзистенциальным вопросом: каково место роторного двигателя в мире?

Как и двигатель с воздушным охлаждением, роторный двигатель вызвал интерес и производство среди крупных производителей на рубеже веков. Ванкель просуществовал до 2012 года, когда Mazda отказалась от RX-8 с роторным двигателем. Ужесточение стандартов выбросов и экономии топлива подписало Ванкелю смертный приговор.

За исключением небольшого возрождения. Примерно в то же время, когда REDA решила сосредоточиться на трехкамерном Szorenyi, Mazda объявила, что возродит Wankel в качестве расширителя диапазона для автомобилей с электрическим приводом. Таким образом, Mazda Wankel не будет вращать колеса напрямую, а будет действовать как бортовой генератор, который в крайнем случае вырабатывает дополнительное электричество для электродвигателей, приводящих в движение колеса автомобиля.