6Янв

Как работает роторный двигатель: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Содержание

Не завертелось Что случилось с двигателем Ванкеля и куда он исчез с авторынка: Движение: Ценности: Lenta.ru

В этом году отмечается полувековой юбилей сразу двух знаковых для истории автомобилестроения моделей. Немецкий NSU Ro 80 и «японка» Mazda Cosmo стали первыми автомобилями с роторным двигателем, подходившими под определение «массовые». Но, увы, изобретенному инженерами фирмы NSU Ванкелем и Фройде новому типу двигателя внутреннего сгорания так и не удалось завоевать мир.

После создания в конце XIX столетия поршневого двигателя внутреннего сгорания прогресс в этой области пошел по пути разработки уже имеющейся концепции. Инженеры создавали все более мощные и совершенные двигатели, но суть оставалась все той же — в цилиндрическую камеру тем или иным способом попадало топливо, образовывавшиеся после сгорания топлива газы толкали поршень. И только в конце 1950-х два немецких инженера, работавшие в известной тогда своими мотоциклами фирме NSU Феликс Ванкель и Вальтер Фройде, предложили принципиально новую конструкцию.

В их двигателе цилиндры отсутствовали как класс: установленный на валу трехгранный ротор был жестко соединен с зубчатым колесом, входившим в зацепление с неподвижной шестерней — статором. По сравнению с обычным поршневым мотором внутреннего сгорания, двигатель Ванкеля (как он стал известен по имени одного из создателей) имел меньшие в 1,5-2 раза габариты, большую удельную мощность, меньшее число деталей (два-три десятка вместо нескольких сотен), а также — за счет отсутствия коленвала и шатунов — более высокие динамические показатели. Впрочем, были и недостатки, с которыми так и не удалось справиться за все время выпуска автомобилей с роторными двигателями: довольно высокий расход топлива на низких оборотах, повышенное потребление масла и сложность в производстве (из-за необходимости точности геометрических форм деталей).

NSU Spider

Фото: Science Museum / Globallookpress.com

Любопытно, что сам Ванкель не умел водить автомобиль и не имел водительских прав — поскольку с раннего детства страдал сильной близорукостью. Это, впрочем, не помешало ему доработать первоначально мотоциклетный движок под нужды автопрома, и в 1964 году NSU выпустила первый в мире серийный роторный автомобиль — кабриолет NSU Spider на базе заднеприводной модели Sport Prinz. Машина выпускалась ограниченной серией (за три года было собрано 2375 экземпляров) и была довольно дорога, в пересчете на нынешние деньги — около 22 тысяч долларов за двухместную малолитражку длиной 3,6 метра.

В 1967 году на рынок вышли сразу две модели с роторными двигателями, ставшие действительно массовыми. NSU представила топовый седан Ro 80, а японская фирма Mazda — спортивное купе Cosmo, первое в полувековой череде машин с двигателем Ванкеля в своей линейке. Немецкая машина, увы, оказалась довольно капризной и «сырой», хотя и была признана «автомобилем года-1968» в Европе. Постоянные рекламации и необходимость дорогостоящего ремонта уже проданных авто привели компанию практически к банкротству — в 1969 году она была куплена концерном Volkswagen и слита в одно подразделение с маркой Audi. Производство Ro 80 тем не менее продолжалось до 1977 года; всего было выпущено более 37 тысяч автомобилей. Передовой для конца 1960-х дизайн кузова, сперва не оцененный потребителями, оказал впоследствии влияние, в частности, на популярную модель Audi 100.

NSU Ro 80

Фото: CPC Collection / Alamy / Diomedia

Кстати, лицензию на «ванкель» купил и СССР. 140-сильным роторным двигателем оборудовались версии вазовских «пятерок» и «семерок» для милиции и КГБ. Внешне они не отличались от серийных машин, но на дороге демонстрировали необходимую резвость. В 1990-е малой серией выпускались и «гражданские» 2108 и 21099 с роторным мотором ВАЗ-415, также абсолютно идентичные по дизайну кузова с «нормальными». Обманчивая внешность породила множество шоферских легенд: неприметная «девятка» вдруг срывалась с места и обгоняла солидный BMW (разгон до сотни у роторной версии занимал 9 секунд, а максимальная скорость достигала 190 километров в час).

Экспериментировали с двигателем Ванкеля и французы из Citroen. Однако модель GS Birotor с двухроторным двигателем вышла на рынок в октябре 1973 года — точно в месяц начала крупнейшего нефтяного кризиса. Машина стоила на 70 процентов дороже стандартной модели GS с четырехцилиндровым мотором, а топлива потребляла больше, чем представительская DS. В результате удалось с большим трудом продать 847 экземпляров, после чего производство было свернуто.

В конечном счете на рынке «ванкелей» осталась только Mazda, продолжавшая совершенствовать двигатель и выпустившая около 20 моделей с роторным двигателем. Инженерам японской компании удалось повысить экономичность и снизить объем токсичных выхлопов (еще одна «врожденная болезнь» роторных двигателей), но даже со всеми усовершенствованиями последняя выпускавшаяся роторная модель, RX-8, не соответствовала нормам Евросоюза. В 2010 году ее прекратили продавать в Европе, а в 2012-м было свернуто производство и для других рынков. Спортивные роторные модели Mazda, однако, за почти полвека производства успели завоевать поклонников во многих странах, включая нашу. Вот что рассказывает о своей RX-8 москвич Олег, автолюбитель со стажем:

«Приобрести RX-8 я решил вовсе не из-за роторного двигателя, а скорее вопреки ему. Но ничего похожего на рынке тогда не было: полноценное четырехместное купе с дверями, которые по старой памяти именуют suicide doors — разве что Rolls-Royce. А еще эти «надбровные дуги» над передними колесами… Однако все, с кем я делился идеей, крутили пальцем у виска: «больше 30 тысяч ротор не ходит», «масла жрет столько же, сколько и бензина», «а бензина — как американский грузовик», «ниже нуля не заводится» и так далее. «Зато не угонят», — решил я. Машина пришла зимой, и первые же недели показали, что перемещение по заснеженной Москве не то что бы совсем невозможно, но требует очень крепких нервов — машина норовила уйти в занос в каждом повороте или забуксовать там, где легко проезжала любая переднеприводная малолитражка. Но, как назло, даже в лютый мороз заводилась исправно. Да и сколько той зимы.

Mazda RX-8

Фото: National Motor Museum / Heritage Images / Getty Images

Снег сошел, и Mazda, наконец, оказалась в своей стихии. Да, масло (каждую тысячу приходилось открывать капот и доливать до рисочки), да, расход (в особенно хорошие дни бывало и больше 20 литров на сотню), но все это компенсировалось возможностью обмануть слух окружающих и, раскрутив двигатель до 9000 оборотов, прикинуться гоночным мотоциклом. Точный руль, задний привод и 230 лошадиных сил превращали любую, еще не изобиловавшую тогда камерами дорогу, в гоночный трек практически без моего участия. Даже стоя под окном, машина, казалось, куда-то ехала. Из-под этого окна, разоблачив тем самым еще один миф, ее и угнали. К тому времени, несмотря на то, что роторного двигателя побаивались даже «официалы», машина прошла 70 тысяч километров без намеков на какие-либо неполадки.

Audi A1 E-Tron Concept

Фото: Adrian Moser / Bloomberg / Getty Images

Хотя производство серийных автомобилей с роторным двигателем прекратилось еще пять лет назад, разработчики, похоже, не собираются навсегда расставаться с «ванкелем». Перспективными в этом смысле представляются гибридные силовые установки — благодаря малому размеру роторно-поршневого двигателя. Так, Audi в 2010 году продемонстрировала в Женеве гибридный прототип A1 e-tron concept с 60-сильным электромотором и двигателем Ванкеля рабочим объемом всего 250 кубических сантиметров, развивающим мощность 20 лошадиных сил и выполняющим фактически функцию генераторной установки.

Роторный двигатель (принцип работы, достоинства, недостатки, перспективы)

 Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
 Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.

 Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень),  поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)

 В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.

Принцип работы роторно-поршневого  двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.

 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.

Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.

 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Узлы (детали) роторного двигателя

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Ротор роторного двигателя

Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем.  На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя.  Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.

Корпус роторного двигателя

 

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.

Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
 А теперь мы расскажем о рабочих камерах корпуса роторного двигателя. 

  Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
 Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Выходной вал роторного двигателя

 Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.

Достоинства роторного двигателя

Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т.д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.

 К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
 роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
 Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.

Недостатки роторных двигателей

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.

 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

Всемирно известные автомобили, выпускающиеся с роторными двигателями

(На фото Mazda Cosmo Sport и Mazda RX8)

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.  И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.

 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Устройство автомобиля. Роторно-поршневой двигатель. Конец истории?

Автомобили с роторно-поршневыми двигателями впору заносить в Красную книгу: в 2011 году закончился выпуск последней в этом ряду модели Mazda RX-8. А ведь полвека назад за подобными моторами видели будущее – большая литровая мощность, высокие обороты, компактные размеры… Что же пошло не так?

Заглянув под капот роторного автомобиля впервые, недоумеваешь: а мотор-то где? Сквозь дебри навесных агрегатов виднеется лишь непонятный цилиндр. По своей конструкции роторно-поршневой двигатель (РПД) и вправду кардинально отличается от привычных нам поршневых моторов, хотя в обоих случаях осуществляется один и тот же четырехтактный цикл – впуск, сжатие, рабочий ход и выпуск. Разница лишь в том, что у роторного двигателя нет ни поршней с шатунами, ни системы газораспределения. Вместо них – треугольный ротор, совершающий сложное планетарное движение.

Плюсы и минусы

Вращаясь одновременно вокруг собственной оси и вокруг центральной шестерни, ротор своими вершинами описывает хитрую поверхность корпуса, образуя три отдельные камеры сгорания. Объем каждой из них, ограниченный корпусом и гранью ротора, за один оборот меняется от максимального к минимальному четыре раза, позволяя реализовать четырехтактный цикл. Функции же газораспределения осуществляются путем перекрывания впускных и выпускных окон самим ротором – подобно двухтактным поршневым моторам. И никаких распредвалов, клапанов и цепей! Отсюда и поразительная компактность роторных агрегатов: при сопоставимой мощности они оказываются примерно вдвое короче и настолько же легче поршневых, упрощая задачу компоновки автомобиля.

Не доставляют проблем и вибрации – единственная центробежная сила уравновешивается двумя противовесами на валу. Вспышки, правда, происходят не часто: поскольку выходной вал вращается в три раза быстрее ротора, то одному обороту вала соответствует одна вспышка или один рабочий ход, что эквивалентно двухцилиндровому поршневому двигателю. Но двухсекционные РПД, то есть фактически сдвоенные моторы, работающие на общий вал, имеют уже две вспышки на оборот, как четырехцилиндровый двигатель. При этом пульсации крутящего момента оказываются даже меньше, поскольку рабочий ход у РПД длится в течение 270° поворота вала против 180° у поршневого. В результате по плавности работы двухсекционный мотор близок к рядной «шестерке».

А вот с мощностью все уже не так однозначно. Конструкция РПД позволяет добиться отличного наполнения камер сгорания: на торцевой или боковой поверхности можно разместить сразу несколько впускных окон, снижая общее сопротивление впускного тракта – в моторе Mazda RX-8 таких окон аж пять штук на секцию! Причем открываются они очень быстро, что способствует проявлению эффекта динамического напора, дополнительно улучшающего наполнение на определенных оборотах.

Две стороны медали

Роторные двигатели часто нахваливают за хорошую за оборотистость – та же Mazda RX-8 способна загонять стрелку тахометра к 9000 об/мин. Однако мало кто вспоминает, что с такой скоростью вращается лишь выходной вал, а сам ротор крутится в три раза медленнее – всего 3000 об/мин. В поршневом же двигателе на каждый оборот коленвала приходится движение поршней вверх-вниз, а потому даже привычные 6000–7000 об/мин оказываются гораздо большим достижением, нежели 9000 об/мин роторного мотора.

Однако сам процесс сгорания протекает крайне плохо. Сильно вытянутая серповидная камера обладает значительными потерями тепла и не обеспечивает полного сгорания топлива по краям. Частично улучшить воспламенение помогает установка двух свечей зажигания, но за это приходится расплачиваться повышенным прорывом газов в соседнюю камеру в момент пересечения торцом ротора свечных отверстий. Иными словами, роторный мотор способен втянуть большое количество топливно-воздушной смеси, но эффективно извлечь из нее полезную энергию не может.

Одни головоломки

Получается, что за счет отличного наполнения РПД оказывается все-таки сопоставим по литровой мощности с поршневым мотором, одновременно сильно уступая ему в экономичности. Тем не менее в равенство литровой мощности поначалу трудно поверить. Какой поршневой агрегат сравнится c ротором Mazda RX-8, выдающим 230 л.с. с двух секций общим объемом 1,3 л.? Это же 176 «лошадей» с литра!

Так-то оно так, но нужно помнить, что за один оборот вала роторный двигатель отрабатывает весь рабочий объем, а поршневой – только половину, причем и тот и другой способны выдать за этот оборот полную мощность. Таким образом, при сравнении удельной мощности объем поршневого двигателя справедливо делить на два. Возьмем, например, Nissan 350Z – одного из конкурентов RX-8. Его 300-сильный V6 имеет объем 3,5 л, то есть 1,75 л на одном обороте и 171 «лошадку» с литра. Практически как у RX-8! При этом, несмотря на 30-процентное преимущество в мощности и чуть более тяжелый кузов, он расходует столько же топлива в смешанном цикле, сколько и RX-8.

Пытаясь как-то снизить расход топлива в роторе, инженеры пробовали применить непосредственный впрыск, но неудачная форма камеры сгорания мешала организовать вихревое смесеобразование, лишая возможности работы на обедненной смеси. Задумывались и о дизельном топливе, но успеха это направление тоже не принесло: слишком велики нагрузки на ротор, да и уплотнение рабочих камер организовать труднее, ведь степень сжатия должна быть почти в два раза больше.

А уплотнения и без того, отдельная головная боль. Если в поршневом двигателе кольца всегда находятся под одним и тем же углом к поверхности трения, то в роторном рабочий угол радиальных пластин постоянно меняется. Меняется и усилие их прижима к поверхности корпуса – оно определяется центробежной силой, а потому сильно зависит от оборотов. А как организовать их смазку? Только впрыскиванием масла в рабочую камеру подобно двухтактным поршневым моторам. Но это влечет значительный расход масла на угар (около 1 л на 1000 км) и повышает риск закоксовывания уплотнений. Достаточно сказать, что именно из-за того, что оказалось невозможно хорошо герметизировать рабочие камеры, было отброшено множество других более замысловатых роторных конструкций, обладавших рядом преимуществ. В привычном же нам РПД задачу удалось до некоторой степени решить, хотя уплотнения все же остаются слабым местом мотора.

Автора!

Создателем известного нам РПД принято считать Феликса Ванкеля, однако сам он предлагал несколько иную конструкцию: в его двигателе ротор и корпус вращались вокруг неподвижного вала. Такая схема упрощала работу уплотнительных соединений камер сгорания и не требовала противовесов для уравновешивания, хотя при этом возникали огромные проблемы с подводом впускных и выпускных каналов, а также с передачей напряжения на вращающие свечи. Поэтому в серию пошел РПД, предложенный Вальтером Фройде, в то время как Ванкель сосредоточился на исследованиях механических уплотнений.

Проблемы доставляет и очень неравномерный нагрев корпуса. Это в поршневом двигателе вспышки чередуются по цилиндрам, а после рабочего хода камера охлаждается на такте впуска. В роторном же вспышки происходят только в одной части двигателя, причем происходят постоянно, в то время как противоположная часть непрерывно охлаждается всасываемым воздухом. Такой перепад температур деформирует картер двигателя, заставляя еще на этапе проектирования учитывать это отклонение формы в процессе прогрева. Разумеется, все это не способствует лучшей работе уплотнительных соединений и долговечности материалов. В итоге преимущества конструктивной простоты РПД нивелируются его малым ресурсом – пробег до капремонта редко превышает 100 тыс. км.

Окончательным же приговором роторным двигателям стала экология. Низкая экономичность означает большие выбросы CO2, а неоптимальный процесс сгорания повышает уровни токсичных соединений, к которым подмешиваются еще и продукты горения масла. И все это на фоне повального стремления к экологической чистоте, на что автопроизводители расходуют огромные средства. В результате даже Mazda, потратившая немало усилий на раскрутку роторной идеологии, была вынуждена от нее отказаться.

Конец истории? Видимо, да. Но окончательно прощаться с роторными моторами все же рано: пускай им уже и не занять основное место под капотом, они вполне могут быть востребованы в качестве резервного генератора для подзарядки батарей электромобиля. Впрочем, все ДВС со временем ожидает та же участь. 

Автор
Олег Карелов, эксперт по подбору автомобилей AutoTechnic.su
Издание
Автопанорама №4 2015

Принцип работы роторного двигателя авто, разновидности, плюсы и минусы

 Принцип работы «обычного» ДВС знаком, наверное, почти всем. Именно такими моторами оснащается подавляющее число автомобилей, и мало кто знает о, так сказать, «параллельных» изысканиях конструкторов, ищущих другие пути создания двигателей.
В силу ряда причин, многие «новинки» в среде ДВС так и остались неизвестными широкой публике, хотя некоторые из таких «необычных» двигателей устанавливались на серийные автомобили.
Речь пойдёт о роторно-поршневых двигателях (РПД). Наибольшее внимание мы уделим описанию принципов работы роторного двигателя Ванкеля – ведь машины с именно его роторными двигателями выпускались на некоторых автозаводах (в частности, на ВАЗе).

Содержание статьи

Устройство обычного двигателя

В обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие на коленчатый вал.

Всем известно что, в обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие через кривошипно-шатунный механизм на коленчатый вал, который под воздействием усилия, передаваемого шатунами, начинает вращаться. Для того, чтобы впуск топлива/выпуск отработанных газов и момент воспламенения топлива были согласованы, требуется достаточно сложный газораспределительный механизм.

Работа роторного двигателя

 

 

Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя.

Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя, приводимым во вращение за счёт расширяющихся газов, воздействующих на ротор. Для обеспечения сжатия-расширения топливной смеси камера («цилиндр»), в которой вращается ротор, имеет сложную форму. Такую форму поверхности называют эпитрохоидальной, и для её точного изготовления требуется высокоточное оборудование. Более того, зубцы ротора и вала расположены таким образом, чтобы поршень (имеющий вид треугольника Рело), вращался по этой сожной траектории, «углами» прижимаясь к поверхности «цилиндра» – иначе не избежать прорыва газов в процессе работы двигателя.
Рисунок наглядно демонстрирует, как работает роторный двигатель. Взрывающаяся топливная смесь, впрыснутая через специальное «окно», толкает ротор, а впускное окно автоматически перекрывается стенкой поршня.
Точно также, в нужные моменты, закрывается и открывается «выпускной клапан».

Плюсы и минусы роторного двигателя

 

 

Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты.

Как видите, вся конструкция достаточно изящна. Как подсчитали эксперты, в РПД используется примерно на 1000 деталей меньше, чем в «привычных» ДВС (например, отпадает сложная конструкция газораспределительного механизма и его привода). К тому же РПД, имеющий две рабочих камеры (и, соответственно, два ротора), может за одно и то же время совершить такое же число циклов, как и V-образная «восьмёрка».
Хоть на схематическом рисунке предоставлена работа роторного двигателя внутреннего сгорания с воспламенением от искрового разряда, в РПД можно реализовать практически любой рабочий цикл – включая дизельный.
К несомненным достоинствам, такая конструкция двигателя, все вращающиеся детали работают соосно, придаёт непревзойдённую плавность работе роторного двигателя и отсутствие разрушительных вибраций.
Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты. Правда, «на холостых» он достаточно «прожорлив». Если мотор имеет два цилиндра, один из них при необходимости отключают.
КПД роторного двигателя является рекордным – 40%, но, к сожалению, он имеет также рекордно низкий ресурс некоторых деталей (зачастую вызванных «резвостью» двигателя), но частая замена моторного масла способна значительно продлить жизнь механизмов и ресурс роторного двигателя. Пока конструкторам удаётся справиться с чрезмерным износом «граней» «треугольника» путем применения высоколегированных сталей.

Другие виды роторных двигателей

Двигатель Ванкеля не явился единственной попыткой (притом, весьма удачной!) создания роторного двигателя – существуют и другие, менее известные, их варианты.

Двигатель Зуева

 

 
По сравнению с двигателем Ванкеля, двигатель Зуева достаточно громоздкая конструкция:

Роторно-лопастной двигатель

Господинн Прохоров именно роторно-лопастными двигателями планировал оснащать «Ё-мобили».

Конструкция оригинальная, но почему-то создатели данного мотора так и не явили миру её безупречно действующий образец. Кстати, г-н Прохоров именно такими моторами планировал оснащать «Ё-мобили».

Автомобили с роторным двигателем

Среди автопроизводителей, оснастивших машины РПД, наиболее известна Mazda RX-8. Но были и другие. В частности, советскими спецслужбами всячески поощрялось создание ВАЗ именно с роторными двигателями. Видимо, оперативные службы заинтересовались «резвостью» мотора.
Впрочем, кроме вышеперечисленных, роторно-поршневые двигатели уже давно «прошли обкатку» на многих авто.
 

Проходной роторно-поршневой двигатель — Энергетика и промышленность России — № 08 (124) апрель 2009 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 08 (124) апрель 2009 года

Однако бурный рост потребления таких мощностей требует высокого качества преобразователей энергии, поскольку их работа связана с нагрузкой на окружающую среду.

Поршневые ДВС сейчас уже не справляются с требованиями, которые предъявляются к тепловым преобразователям индивидуального пользования. В поисках подходящей им замены изобретатели все чаще обращаются к роторным машинам. Но пока из всех автомобильных фирм только «Мазда» решилась поставить на поток роторный двигатель Ванкеля.

По массогабаритным показателям такой двигатель значительно превосходит поршневые двигатели, имеет меньше деталей. Однако его широкое использование сдерживается рядом существенных причин. К главным из них можно отнести малый ресурс работы двигателя, которого хватает от силы на 100 000 километров пробега.

В то же время основные технические характеристики роторного варианта теплового преобразователя близки к характеристикам газотурбинной техники и при этом обладают экономичностью поршневого двигателя.

Это заставляет изобретателей искать варианты, в которых будут совмещены преимущества различных систем.

Как известно, роторно-порш­невой двигатель Ванкеля состоит из корпуса, в котором вершины треугольного ротора совершают эпитрохоидную траекторию, обеспечивая необходимые замкнутые полости переменного объема для сжатия рабочего тела, системы подвода тепловой энергии и механизма преобразования последней в энергию вращающегося вала.

Анализируя работу двигателя Ванкеля, можно заметить, что вершины треугольного ротора совершают свою траекторию под воздействием линии эпитрохоиды корпуса – в отличие от ДВС, где смену направления движения поршня определяет коленчатый вал.

Массивный же ротор, имея большую скорость, оказывает значительное сопротивление на сложных поворотах линии эпитрохоиды и, несмотря на обильную смазку, быстро изнашивает трущиеся детали двигателя. Помимо этого, вершины ротора, имеющие малую контактную поверхность, скользят под разными углами по трущейся поверхности корпуса, что ведет к еще большей скорости разрушения уплотнений.

Однако, к сожалению, линия эпитрохоиды совместно с эксцентриковым механизмом является конструктивной особенностью роторного поршневого двигателя Ванкеля, и на сегодняшний день схема Ванкеля лучшее решение для роторно-поршневого двигателя, несмотря на невысокий ресурс. Приходится признать, что дальнейшее улучшение характеристик двигателя Ванкеля может быть осуществлено лишь с помощью применения еще более дорогостоящих материалов – при незначительной эффективности самого двигателя.

Но есть и другое решение проблемы создания замкнутых полостей переменного объема, в полной мере использующее все преимущества роторно-поршневого механизма.

Оно осуществляется путем установки плотной разделительной стенки в радиальной плоскости цилиндрического корпуса. Стенка откроется в нужный момент и пропустит рабочую часть ротора в точку начала оборота.

В этом случае ротор жестко связан с выходным валом, определяющим траекторию движения ротора без возвратно поступательной составляющей. Трение вращающегося ротора по цилиндрическому корпусу позволит создать большую площадь контакта трущихся поверхностей с неизменным углом касания. В итоге трущиеся поверхности не испытывают паразитного давления; параллельно с этим значительно улучшается уплотнение за счет увеличения поверхности контакта и снижается вибрация двигателя.

Здесь единственным относительно сложным узлом двигателя, который требует технической проработки и испытания, является уплотнительная стенка, пропускающая зуб ротора после завершения цикла.

Реализовать ее можно, установив на пути ротора дополнительный синхронно вращающийся цилиндр, охваченный корпусом. Он работает как вращающаяся часть подшипника скольжения, имеющего паз, который, развернувшись, пропускает зуб ротора словно через турникет.

Работа пропускного цилиндра при совершении рабочего хода заключается только в создании надежных уплотнений между камерами – в двух направлениях цилиндра. Одно проходит по линии скольжения цилиндра в корпусе с характеристиками подшипника скольжения – и здесь уплотнительная способность цилиндра сомнений не вызывает.

На втором направлении уплотнения цилиндр катится по поверхности малого радиуса ротора. Это наиболее сложный участок уплотнения с характеристиками, подобными роликовому или игольчатому подшипнику, который и является основой работы над пропускным РПД.

Автору представляется, что, с технической точки зрения, на пути к созданию перспективного роторного двигателя, свободного от недостатков РПД Ванкеля, стоит лишь вопрос уплотнения между катящимися цилиндрами. Переход же зуба через паз цилиндра происходит в технологическое время при отсутствии давления между камерами. Схема боковых уплотнений успешно решается в РПД Ванкеля, и ее можно позаимствовать.

Вторым отличием проходного РПД является компоновка функциональных узлов по схеме газотурбинного двигателя.

Выделение компрессора камеры сгорания и преобразователя в отдельные конструктивные узлы может значительно улучшить экологические показатели выхлопных газов, поскольку топливо будет сгорать в специально приспособленной камере, где легко можно поддерживать расход температуры и давление рабочего тела. Учитывая разные условия работы компрессора и преобразователя, появится возможность оптимизации узлов под конкретную задачу сжатия воздуха или преобразования энергии полученного горячего газа.

Принцип работы автомобиля: как работает роторный двигатель?

14.12.2013, 16:03 67 3 prokazan.ru

Владельцам автомобилей необходимо иметь знания о том, как работают те или иные детали, чтобы суметь справиться с опасной ситуацией на дороге. В этой статье мы расскажем о том, как работает роторный двигатель

Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор, совершает вращательное движение. Двигатели должны давать на выходе вращательное движение главного вала. И именно этим роторные ДВС выгодно отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент — поршень, совершает возвратно-поступательные движения.

В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме (камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.

Преимущества:

отсутствие передающих звеньев, а именно шатунов
не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т.д.
хорошая сбалансированность деталей
крутящий момент на выходной вал выдает более длительное время

Недостатки:

низкая экологичность
потребление большого количества топлива
мало распространен, что может стать проблемой при их ремонте и эксплуатации
в двигателе фактически нет системы смазки
очень сильный нагрев
 

подписывайся на наши соц.сети

Роторный двигатель, принцип работы и техника применения | Халва

Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
 Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.

 Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень),  поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
 В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.

Принцип работы роторно-поршневого  двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Узлы (детали) роторного двигателя

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Ротор роторного двигателя

Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем.  На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя.  Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.

Корпус роторного двигателя

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
 А теперь мы расскажем о рабочих камерах корпуса роторного двигателя. 

  Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
 Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Выходной вал роторного двигателя

 Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.

Достоинства роторного двигателя

Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т.д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
 К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
 роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
 Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.

Недостатки роторных двигателей

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

Всемирно известные автомобили, выпускающиеся с роторными двигателями

(На фото Mazda Cosmo Sport и Mazda RX8)

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.  И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Tech Tidbit: 3 стороны гладкой работы роторного двигателя

Mazda была единственным автопроизводителем, который произвел в больших объемах роторный двигатель конструкции Феликса Ванкеля, и эта конструкция была снята с производства, когда RX-8 покинул рынок в 2012 году.

В гибридной электромобиле Mazda MX-30 2022 года в качестве источника энергии сгорания бортового генератора будет использоваться роторный двигатель. Это обеспечит более плавную работу по сравнению с обычными поршневыми двигателями с возвратно-поступательным движением, используемыми в других гибридах, чья вибрация оказывает резкое влияние на качество вождения на электротяге.

Связано: В Mazda3 2020 года «Ангел в деталях»

Mazda подчеркнула эту плавность, продвигая роторный двигатель в США в рекламных роликах, в которых звучало «Поршневой двигатель гудит [звуковой эффект« Боинг, Боинг, Боинг »] , но Mazda идет «ММММММ» ».

Роторы двигателя представляют собой отливки треугольной формы, которые вращаются на эксцентриковом валу, который аналогичен роторному коленчатому валу поршневого двигателя.В то время как поршни качаются вверх и вниз, меняя направление дважды за каждый оборот коленчатого вала, роторные двигатели вращаются плавно, их легкое колебание отслеживает путь через корпус ротора, имеющий нечеткую форму «восьмерки».

Связано: Новая стратегия испытаний Mazda может сэкономить «сотни миллионов иен» в год

Ротор выполняет тройную работу, запуская три цикла сгорания каждый раз, когда он вращается на 360 градусов, причем одно событие сгорания происходит на каждой стороне треугольника проходит свечи зажигания в корпусе ротора.Ротор предназначен для однократного вращения за три оборота эксцентрикового вала, поэтому каждый ротор выполняет одно событие сгорания за один оборот вала.

В каждом цилиндре поршневого двигателя происходит одно событие сгорания при каждом втором обороте коленчатого вала, если это четырехтактный двигатель. Компактные электроинструменты, такие как цепные пилы, используют двухтактные двигатели, вырабатывающие мощность при каждом обороте коленчатого вала.

Двигатели

Mazda имели внутри два ротора, причем роторы располагались под углом 180 градусов друг к другу, так что они работали по очереди.Роторы и вал представляют собой три движущихся части роторного двигателя, что резко отличается от функции Руба Голдберга, заключающейся в перемещении и возвратно-поступательном движении частей внутри поршневого двигателя. Сюда входят не только поршни, шатуны и коленчатый вал, но также цепь и шестерни ГРМ (или ремень и шкивы), распределительный вал, толкатели клапанов, толкатели, коромысла и клапаны.

Роторный двигатель прост, легкий, компактный, плавный и вырабатывает большую мощность для своего размера.Эти атрибуты когда-то побудили мировых автопроизводителей предсказать его как двигатель будущего. В середине 1970-х годов на Chevrolet Corvette и AMC Pacer планировалось внедрить новые роторные двигатели этих компаний.

Увы, техническая проблема создания таких двигателей с удовлетворительной долговечностью была решена всеми автомобильными компаниями, не названными Mazda, и некоторые недовольные владельцы могли даже включить эту компанию в список.

Основной технической задачей является создание прочных уплотнений на трех концах треугольника ротора.Известно, что эти верхние уплотнения изнашиваются при меньшем пробеге, чем внутренние детали поршневого двигателя.

У роторных двигателей

есть и другие проблемы, даже если они находятся в идеальном рабочем состоянии. Они потребляют масло в процессе сгорания, потому что они используют впрыск масла для смазывания внутренних поверхностей. У них огромный аппетит к топливу из-за почти непрерывного процесса сгорания. Они также производят большое количество тепла и шума выхлопных газов по той же причине, что кажется непрерывным сгоранием.

Mazda

Это роторы четырехроторного гоночного автомобиля Mazda 787B 1991 года, победившего в гонке «24 часа Ле-Мана».

Mazda, по-видимому, разработала эффективные глушители для сдерживания этого звука, чтобы водители MX-30, ожидающие опыта электромобилей, не слышали громкого шума при запуске роторного генератора. «Роторный генератор ознаменует возвращение нашей уникальной роторной трансмиссии, — сказал Джефф Гайтон, президент Mazda North American Operations. «Эта технология разработана для почти бесшумной работы и будет заряжать аккумулятор, а не приводить в движение колеса.В результате MX-30 всегда будет ездить как привлекательный электромобиль, но с возможностью заряжаться от стены или на ходу ».

В качестве генератора роторный двигатель сможет работать на более стабильных оборотах двигателя, чем двигатель, который обеспечивает единственное средство движения автомобиля, поэтому это, вероятно, является источником адекватной топливной эффективности, шума двигателя и долговечности двигателя. Двигатель внутреннего сгорания MX-30.

По словам Mazda, технические подробности, объясняющие все это, будут доступны ближе к запуску автомобиля на рынок Калифорнии осенью 2021 года.

Mazda

Роторные двигатели допускают использование самых разных видов топлива. На этой схеме изображена роторная Mazda, работающая на водороде.

Что такое роторный двигатель или двигатель Ванкеля и как он работает?

Роторный двигатель или двигатель Ванкеля:

Роторный двигатель или двигатель Ванкеля — это двигатель внутреннего сгорания. В этой конструкции коленчатый вал остается неподвижным, в то время как треугольный ротор вращается.В отличие от обычных двигателей, роторные двигатели имеют расположение цилиндра, вращающегося вокруг неподвижного коленчатого вала.

Роторный двигатель

Роторный двигатель использует сгорание топлива для вращения треугольного ротора вокруг центрального приводного вала. Этот двигатель удачно отказался от поршневого типа и стал коленчатым валом. Эти двигатели идеально сбалансированы и очень усовершенствованы. Феликс Ванкель изобрел один из самых популярных типов роторных двигателей. Он использовался в мощных и известных спортивных автомобилях Mazda.Это самый талантливо спроектированный двигатель внутреннего сгорания современности.

Роторный двигатель не так эффективен, как поршневые. Он подвергался исследованиям и разработке на протяжении столетия во всем мире. Основными факторами успеха роторных двигателей являются плавность хода, меньшее количество деталей и небольшой вес. Роторный двигатель обеспечивает очень плавную мощность благодаря меньшему количеству частей, совершающих возвратно-поступательное движение, при этом он обеспечивает большое вращательное движение.

Он также имеет преимущество в небольшом весе.Это очень обычный двигатель с тяжелым маховиком, который накапливает энергию в импульсах, а также снижает вибрации. Роторные двигатели имеют значительное отношение мощности к массе, так что нет необходимости добавлять маховик. Этот двигатель вращает блок цилиндров и создает свой собственный быстро движущийся охлаждающий воздушный поток во время работы.

Двигатель Ванкеля:

Доктор Феликс Ванкель изобрел роторный двигатель. Итак, он широко известен как двигатель Ванкеля. Эта конструкция имеет эксцентрично изогнутый корпус.Однако внутри него движется ротор треугольной формы.

Кроме того, двигатель Ванкеля представляет собой двигатель внутреннего сгорания, в котором используется эксцентриковая поворотная конструкция. Он преобразует давление во вращательное движение. Среди всей конструкции и классификации двигателей двигатель Ванкеля имеет максимум преимуществ. Он предлагает такие преимущества, как компактность, гладкость и простота. Этот тип двигателя предлагает больше оборотов в минуту или высокую скорость, что обеспечивает большую производительность. Двигатель Ванкеля также отличается высокой удельной мощностью.

Кроме того, все компоненты двигателя Ванкеля вращаются в одном направлении. Основное преимущество этого двигателя в том, что он имеет компактную конструкцию. Эти двигатели имеют множество применений. Роторный двигатель используется в различных транспортных средствах и машинах. К ним относятся гоночные автомобили, автомобили, самолеты, мотоциклы, картинги, снегоходы, водные мотоциклы и вспомогательные силовые агрегаты.

Rotary Engine operation

Кроме того, он также может использоваться в гидроциклах для самолетов. Он не страдает от эффектов масштабирования, которые делают другие движки из-за ограничения их размера.Двигатель Ванкеля может использовать топливо с более широким октановым числом. Он более эффективен, чем поршневой двигатель, поскольку достигает большего числа оборотов (скорости) в минуту. В двигателе меньше деталей. В нем нет возвратно-поступательной части, что снижает стоимость серийного производства.

Преимущества роторного двигателя

:

  1. Меньше по размеру, легче по весу и компактнее по сравнению с поршневыми двигателями.
  2. Более дешевая и простая конструкция для массового производства
  3. Отсутствие многих деталей, таких как шатуны, распределительный вал, клапанный механизм и т. Д.
  4. Легче балансировать благодаря меньшему количеству деталей
  5. Высокий объемный КПД (обычно более 100%)
  6. Высокое отношение мощности к весу
  7. Низкие эксплуатационные расходы
  8. Не требует повышающей передачи в качестве скорости сам двигатель очень высокий

Недостатки:

  1. Высокий расход топлива на низких оборотах
  2. Меньшие значения крутящего момента
  3. Повышенный расход моторного масла
  4. Тормозной эффект двигателя очень слабый
  5. Из-за высоких оборотов двигателя необходимо снижение скорости в коробке передач
  6. Требуются свечи зажигания частая замена в старых / обычных системах зажигания
  7. Плохие проблемы с уплотнением в старых моделях

Mazda использовала роторный двигатель в своих автомобилях серии Mazda RX.

Смотреть Роторный двигатель / двигатель Ванкеля в действии здесь:

[Youtube vid = 6BCgl2uumlI]

Подробнее:> (открывается в новой вкладке) «> Что такое V-образный двигатель и как он работает? >>

О CarBikeTech

CarBikeTech — это технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Преимущества и недостатки роторного двигателя

Gear and Tech: 29 января 2009 г.

Что, черт возьми, такое роторный двигатель? Что это за роторы и NO PISTONS !? Богохульство! На самом деле все очень просто.В отличие от поршневого двигателя, который имеет фазы сжатия и зажигания для каждого цилиндра, Rotary делает все это за один оборот ротора треугольной формы.

Преимущества

Роторный двигатель очень прост. В конструкции двигателя используется гораздо меньше движущихся частей, чем в его поршневом аналоге. 13B-MSP Renesis (от RX8) имеет самую высокую мощность на рабочий объем среди всех безнаддувных двигателей, произведенных на заводе в Америке.Для своего размера поворотный механизм обладает огромной мощностью. Для справки: 13B от RX8 имеет объем 1,3 литра и выдает 232 лошадиных сил. Это равняется смехотворным 178 лошадиным силам на литр . Теоретически это было бы эквивалентно 6,0-литровому LS2 (от Corvette) , производящему 1068 лошадиных сил на заводе.

В отличие от поршневых двигателей, роторные двигатели почти не подвержены катастрофическим отказам. В поршневом двигателе поршень может заклинивать и вызывать всевозможные повреждения, но в роторном двигателе, когда двигатель теряет мощность, он будет продолжать вырабатывать ограниченное количество мощности до тех пор, пока, наконец, не умрет.

Роторные двигатели также полетят на Луну и по-прежнему будут производить энергию. Например, RX8 имеет красную отметку 9k , и именно здесь он также обеспечивает пиковую мощность. Излишне говорить, что Rotary любит оставаться на высоких оборотах.

Недостатки

Некоторые основные жалобы на Rotary — расход топлива и сжигание масла. Одним из наиболее распространенных заблуждений является то, что роторный двигатель сжигает масло из-за неисправности, это не всегда так. В Rotary используются масляные распылители, которые собирают небольшое количество масла и смешивают его с топливом для смазки уплотнений.Расход бензина очень Меххххх в середине 20-х годов (предположительно … намного меньше в реальности.)

Роторы также имеют тенденцию производить примерно такой же крутящий момент, как отвертка , и уплотнения через некоторое время становятся большой проблемой, если вы живете в более холодном климате. Детали, как правило, дорогие, и, поскольку это роторный двигатель, вы должны отнести его к механику или в дилерский центр, чтобы он отремонтировал, если что-то пойдет не так.

У роторных машин

также иногда возникают проблемы с заливкой топливом при холодном пуске.Обычно это происходит только со старыми моделями 13B, поэтому необходимо , чтобы дать двигателю прогреться до рабочей температуры, прежде чем вы решите взлететь.

В целом у ротора есть свои взлеты и падения, как и у всего остального. Ничто не может сравниться со звуком 26B, который звучит как огромный V8 с кулачковым механизмом на холостом ходу, а затем набирает обороты, как стритбайк. Надеюсь, эта статья была информативной и прояснила некоторые заблуждения. Ротари могут быть разными, но они всегда будут в моем сердце.

Роторный двигатель Mazda

, напечатанный на 3D-принтере, заставил наши сердца обратить внимание на 9000

В этом выпуске Engineering Explained Джейсон Фенске объясняет, как работает роторный двигатель Ванкеля. Используя напечатанную на 3D-принтере модель двигателя 13B-REW в масштабе 1/3 от FD Mazda RX-7, мы более подробно рассмотрим, как работают роторы. Роторный двигатель Ванкеля впервые был использован Mazda, когда компания представила Cosmo еще в 1967 году. Позже он использовался в пикапах, но не стал популярным, пока не нашел свое место в первом поколении RX-7 в 1978 году.С тех пор роторные двигатели и название RX-7 стали синонимами вплоть до финального производства RX-8 в 2012 году.

В отличие от обычных поршневых двигателей внутреннего сгорания, двигатель Ванкеля вместо этого содержит внутри ротор. Взглянув на модель 13B-REW, вы можете увидеть внутри корпуса ротора, где происходит все самое интересное. Ротор в форме Дорито внутри является ключом к созданию мощности и вращается с помощью эксцентрикового вала. Вал и роторы вращаются вместе, в отличие от четырехтактного двигателя, в котором используется возвратно-поступательное движение.

7 Фото

Во время вращения ротора активны все три камеры процесса сгорания: такт впуска, рабочий ход и такт выпуска. С двигателем 13B, имеющим два ротора, это означает, что шесть циклов выполняются одновременно. Этот процесс сгорания позволяет роторному двигателю создавать большую мощность по сравнению с аналогичным четырехтактным двигателем. Не имея дела с возвратно-поступательным движением массы, роторные двигатели могут без проблем развивать скорость до 9000 об / мин из-за инерции вращения.

Из-за длинной формы камеры сгорания из выхлопной трубы часто выходит несгоревшее топливо, что не очень эффективно. По своей конструкции роторные двигатели сжигают масло для герметизации камеры сгорания. Вот почему большинство владельцев RX-7 носят в багажнике литры масла. Слухи о возвращении Mazda RX-7 появляются каждый год, но произойдет ли это на самом деле? Время покажет.

Источник: Инженерное дело Разъяснение на YouTube

БЕСПЛАТНО Как работает роторный двигатель Эссе

Вы когда-нибудь задумывались, почему используется только четырехтактный двигатель внутреннего сгорания, если ему есть другие альтернативы? Существует малоизвестный двигатель, называемый роторным двигателем Ванкеля.Этот двигатель очень отличается от обычного 4-тактного двигателя внутреннего сгорания, используемого в большинстве автомобилей; в нем не используются поршни.
«Феликс Ванкель придумал роторный двигатель в 1924 году» (Марр), на который в 1936 году был повторно выдан патент. С тех пор роторный двигатель был разработан такими компаниями, как Mercedes-Benz, Chevrolet, Yamaha, Suzuki, Cessna, Artic. Cat, Nissan и Mazda в 1970-х и 80-х годах для мотоциклов, автомобилей, снегоходов, самолетов, бензопил, лодок и даже компрессоров и кондиционеров.Но только Mazda продолжила разработку двигателя и включит его в свой будущий спортивный автомобиль RX-8.
Поскольку в роторном двигателе не используются поршни, один и тот же объем пространства (цилиндр) поочередно выполняет четыре разные задачи: впуск, сжатие, сгорание и выпуск. Давление сгорания содержится в «цилиндре», образованном вершиной треугольного ротора (вместо поршней) и частью корпуса. Ротор движется в частично овальной форме, удерживая вершины в контакте с корпусом, это образует три различных объема газа, которые попеременно расширяются и сжимаются, вызывая всасывание, необходимое для подачи воздуха и топлива в камеру.
Системы зажигания и подачи топлива роторного двигателя аналогичны поршневому двигателю, но другие части роторного двигателя сильно отличаются. Ротор [Рисунок A Ротор].
.
Рисунок A Ротор Рисунок B Корпус.
(поршень) имеет три выпуклые поверхности с карманами в нем, которые обеспечивают больший рабочий объем и, следовательно, больше воздушно-топливной смеси. Верхние уплотнения — это то, что разделяет камеры сгорания, они похожи на поршневые кольца в поршневом двигателе.
Корпус [Рисунок B Корпус] для ротора имеет примерно овальную форму и спроектирован таким образом, что все вершины ротора находятся в контакте со стенкой корпуса.

Видео: Как работает роторный двигатель Mazda Wankel

Нам нравятся отличные технические видео. Вот ясное, простое и забавное объяснение роторного двигателя Mazda прямо из источника: Toyo Kogyo Ltd., 1970 год. Смотрите, вы будете рады, что сделали.

В коридорах и кабинах Мотор-сити есть древняя поговорка среди инженеров-автомобилестроителей: если вы не можете объяснить это в терминах, понятных даже вашему начальнику, возможно, вы не понимаете этого сами.В этой пословице заключена великая мудрость. Самые ясные и простые объяснения — лучшие объяснения. Здесь, в Mac’s Motor City Garage, мы обнаруживаем хорошее, надежное техническое видео, свободное от ненужной чепухи, и с нетерпением ждем возможности поделиться им с вами.

Это видео было снято Toyo Kogyo, автомобильной компанией, которую мы сегодня знаем как Mazda, в первые годы разработки автопроизводителем роторного двигателя Ванкеля. Это к счастью, потому что фильм не делает никаких предположений о знаниях зрителей и начинает нас с самого начала.Упрощенная анимация используется для объяснения основной работы двигателя примерно до середины, когда вводятся реальные физические части. Между тем, предлагаются частые сравнения с обычными поршневыми двигателями, что является полезным критерием.

Это отличный метод обучения, объясняющий роторный двигатель в терминах, которым может следовать каждый, и это тоже очень весело. Мы не могли не заметить, что ранняя безлошадная повозка, открывающая фильм, является точным звеном для квадрицикла Генри Форда 1896 года.По мере того, как фильм заканчивается, мы можем увидеть купе Mazda Cosmo и концепт-кар RX500 1970 года в действии. Шутки, вот 13 самых интересных и познавательных минут, которые вы проведете сегодня. Пожалуйста, наслаждайтесь.

Связанные

Преимущества роторного двигателя Ванкеля

Роторный двигатель или двигатель Ванкеля — это двигатель внутреннего сгорания. Имеет эксцентрично-поворотную конструкцию.Он был разработан немецким инженером Феликсом Ванкелем и очень легкий двигатель Ванкеля. В нем гораздо меньше движущихся частей, чем в поршневом двигателе того же калибра, и он намного проще, чем поршневой двигатель. Ниже приведены основные преимущества двигателя Ванкеля:

  • По сравнению с поршневым двигателем, двигатель Ванкеля имеет гораздо более высокое отношение мощности к массе и составляет примерно 1/3 его размера.
  • Двигатель Ванкеля не имеет возвратно-поступательных компонентов.
  • Соотношение оборотов в минуту (оборотов в минуту) значительно выше, чем у поршневого двигателя.
  • Двигатель при работе не вибрирует.
  • Двигатель Ванкеля не подвержен детонации или детонации. (Детонация происходит, когда сгорание топливно-воздушной смеси в цилиндре не начинается правильно после зажигания).
  • Поскольку двигатель состоит всего из нескольких частей, двигатель Ванкеля дешевле в производстве и серийном производстве.
  • Дыхание двигателя намного лучше, чем у поршневого, поскольку главный вал вращается на 270 градусов, а не на 180 градусов.
  • Двигатель Ванкеля способен обеспечивать крутящий момент примерно на 2/3 цикла сгорания.