2Июн

2 х тактный двигатель принцип работы: Какой принцип работы 2-х тактного (двухтактного) двигателя?

Содержание

Двухтактный дизельный двигатель: устройство и принцип работы

Двухтактный дизельный двигатель представляет собой двигатель внутреннего сгорания. Топливо-воздушная смесь сгорает за 2 движения поршня. Цикл завершается всего за 1 оборот коленвала. Такие показатели кажутся впечатляющими, однако существует несколько особенностей работы агрегата, о которых стоит узнать подробнее.

Главным достоинством такого мотора можно считать меньший расход топлива в сравнении с бензиновыми агрегатами. Это происходит за счет одной из особенностей дизельного топлива. Оно плотнее бензина, поэтому при сгорании дает на 15% энергии больше. Это обеспечивается более длинной цепочкой углеродов. Кроме того, технические характеристики таких двигателей стоят наравне с показателями аналогичных двигателей.

Строение

В состав двухтактного дизеля входит картер, совмещенный с коленчатым валом поршень, форсунки, впускные и выпускные окна цилиндра, топливный и водяной насосы. Последний снабжается плунжерным переключателем и датчиком температуры, а также емкостями, которые наполняются водой. Агрегат обеспечивает повышение КПД и за счет улучшенного сгорания топливо-воздушной смеси. Токсичность отходов при этом снижается.

В двухтактном моторе расположена газовая турбина и нагнетатель. Последний отвечает за повышение давления в цилиндрах — это обеспечивает экономию топлива и повышение мощности. Газовая турбина запускает преобразователь энергии тепла в энергию движения.

Продувочный воздух поступает в двухтактный дизельный двигатель несколькими способами — с помощью:

  • насосов;
  • продувочных камер;
  • компрессоров.

Продувка может осуществляться по одной из схем — контурной или клапанно-щелевой.

Стоит отметить, что использование контурной схемы снижает как экономические, так и технические показатели агрегата. Это объясняется тем, что в цилиндрах имеются не продуваемые области.

Цилиндры монтированы вдоль. Каждый из них оснащается выпускными и вентиляционными отверстиями. Газ поступает к турбине через коллектор. Когда поршни двигаются, рабочая камера периодически открывается и закрывается. Коленчатые валы взаимодействуют друг с другом. Это обеспечивается механизмом основной передачи.Топливо при этом сгорает при достаточно высокой температуре.

Для смазки трущихся деталей и подшипников применяется смесь масла и топлива. Она подается в цилиндр и кривошипную камеру. Смазки эти узлы не имеют, поскольку она смылась бы топливом. Именно поэтому к горючему его доливают в определенном соотношении.

При этом для двухтактного дизельного двигателя используется определенное масло. Оно выдерживает продолжительное воздействие высоких температур, способно практически не оставлять после сгорания зольных отложений.

Как работает?

Принцип работы двухтактного дизеля основан на выполнении 2 тактов: сжатие и рабочий ход. Конструкция агрегата позволяет выполнять весь цикл вдвое быстрее, чем в четырехтактных моторах.

Для двухтактных дизельных двигателей принцип работы следующий:

  1. Поршень из НМТ начинает двигаться вверх. В цилиндре имеется воздух. Приходе поршня вверх он сжимается, а когда поршень подходит к ВМТ, впрыскивается порция свежего топлива. При этом горючее самовоспламеняется и осуществляется рабочий ход.
  2. Продукты сгорания толкают поршень, вследствие чего тот движется вниз. Когда поршень доходит до НМТ, осуществляется продувка —воздух замещает продукты сгорания. Это является завершением цикла.

Внизу цилиндра имеются продувочные окна. Они необходимы для процесса продувки. Когда поршень снизу, они открыты. Во время подъема поршня они закрываются. Значительное увеличение показателя мощности двухтактных моторов происходит за счет повышения числа рабочих ходов. Двухтактный дизельный двигатель, принцип работы которого достаточно прост, обладает массой преимуществ.

Мифы о двухтактных дизельных моторах

Существует несколько распространенных мифов касательно двухтактных двигателей:

  1. Слишком медленная работа. В действительности современные моторы с турбонаддувом гораздо эффективнее предыдущих моделей.
  2. Такие моторы слишком громкие. Чтобы этого избежать, необходима правильная настройка двигателя. При правильном выполнении всех настроек работа мотора происходит немногим громче бензинового аналога. Высокий уровень шума свидетельствует о неправильной настройке мотора или его неисправности. Для старых моделей высокий уровень шума — характерная черта, создание появление аккумуляторных систем с высоким давлением существенно снизило уровень шума.
  3. Покупать дизель выгоднее бензина. Это так, но лишь отчасти. Несколько лет назад дизельное топливо стоило намного дешевле бензина, однако сегодня разница составляет всего 10-20%. Основная экономичность заключается в способности теплотворной способности горючего.
  4. Такие моторы плохо заводятся зимой. Раньше проблемы с ними действительно возникали. Однако современные автомобили с дизельными двигателями оснащены быстрым запуском, что снижает время на ежедневные подготовки к поездкам.

Срок службы дизеля превышает бензиновые агрегаты. Он может достигать 400-600 тыс. км.

Каждый двухтактный дизельный двигатель имеет одну отличительную особенность — через окна цилиндров впускается воздух и устраняются отработавшие газы. Когда они выходят через клапан в цилиндре, а воздух поступает через окна, система такой очистки называется клапанно-щелевой.

Подобные системы очистки имеют одну особенность — в цилиндре остается только часть воздуха. Поднимаясь вверх, он частично выходит за пределы мотора. Такую очистку еще называют прямоточной. Она обеспечивает максимальную эффективность очистки двигателя от продуктов сгорания.

Помимо прямоточной продувки существует и петлевая, однако она отличается меньшим качеством очистки. Именно поэтому для современных автомобилей она используется нечасто. Рабочие ходы такого агрегата выполняются в два раза чаще, однако на мощности это сказывается незначительно (она увеличивается в 1,5-1,7 раза). Это объясняется наличием продувки, а также тем, что внутри цилиндра происходит более короткий ход.

Преимущества

Двухтактные дизельные двигатели стали производиться относительно недавно. Такие моторы на сегодняшний день имеют множество модификаций. К примеру, зажигание бывает 2 типов: контактным и бесконтактным.Также отличаются и схемы таких моторов. Применяется двухтактная система на танках, в самолетах, в тяжелой промышленной технике.

Другие достоинства:

  1. Небольшой размер. Для установки агрегата требуется совсем немного места. Такие моторы легко умещаются под капотом транспортных средств.
  2. Небольшая масса. Стандартный турбодизель весит почти в 2 раза больше, чем двухтактный дизельный двигатель.
  3. Значительная экономия топлива. Расход горючего снижен практически в 2 раза по сравнению с обычным дизельным агрегатом.
  4. Простая конструкция. При обслуживании таких двигателей нет необходимости применять специальные технологии.

Такие преимущества выгодно выделяют двухтактные дизельные двигатели на фоне бензиновых собратьев. Имеются у таких моторов и серьезные недостатки.

Недостатки

Небольшое распространение агрегатов объясняется рядом причин. К примеру, детали на такие моторы найти получится с трудом. Именно поэтому выполнить ремонт двухтактного дизельного двигателя становится проблематично. Кроме того, специалистов по обслуживанию таких агрегатов достаточно мало.

Другие недостатки:

  • высокая цена дизельных двигателей и малый выбор моделей;
  • увеличенный расход масла;
  • необходимость установки воздушных фильтров.

Явным недостатком дизелей является использование мощного стартера. На морозе дизельное топливо мутнеет и застывает. Ремонт топливной аппаратуры затрудняется тем, что насосы высокого давления изготавливаются с высокой точностью.

Существенным минусом двухтактных дизелей является невозможность их применения в высокотемпературных режимах.

Масло при таких условиях закоксовывается, возникает залегание поршневых колец. Кроме того, из-за недостаточной продувки топливо сгорает не полностью, что сказывается на значении КПД и уровне токсичности.

Итоги

Дизельные двигатели, имеющие два такта, изобретались с одной целью — снизить токсичность отработавших газов, а также увеличить экономичность двигателя, повысить КПД.

Стоит упомянуть о зажигании. Чтобы топливо воспламенилось, необходимо время, поэтому разряд на свече возникает заранее, перед тем, как поршень достигнет ВМТ. Чем быстрее происходит движение поршня, тем раньше должна зажигаться свеча. Существуют специальные устройства, позволяющие менять угол зажигания в зависимости от частоты вращения коленвала.

Принцип работы 2х тактного мотора

В двухтактном лодочном моторе рабочий цикл происходит за два такта (один оборот коленчатого вала). На рис. 54 показан ра­бочий цикл двухтактного бензинового двигателя с так называе­мой дефлекторной продувкой.

Вместо выпускного и впускного клапанов в этом двигателе имеются выпускные и продувочные окна, расположенные в стен­ках цилиндра. Продувочные окна сообщаются с картером дви­гателя, а выпускные с атмосферой.

В таких двигателях применяется понятие полезного объема, который определяется объемом между положением поршня в ВМТ и нижним положением, когда поршень краем своего донышка открывает выпускные окна. Полезный объем цилиндра в этом случае будет меньше рабочего объема. Дей­ствительная степень сжатия определяется у двухтактных двигателей как отношение полезного объема к объему камеры сго­рания.

 

Принцип работы 2х тактного мотора- схема:

Первый такт - расширение (рабочий ход). В камере сгорания происходит воспламенение горючей смеси от электри­ческой искры (рис.54 а). Под действием, образовавшихся газов   поршень   движется   вниз, и открывает выпускные окна - 1 (рис 54 б). Этим заканчивается собственно рабочий ход порш­ня, так как газы выходят из цилиндра через выпускные окна в атмосферу. При дальнейшем движении поршня вниз откры­ваются продувочные окна 2 (см. рис. 54, б) и  в цилиндр входит свежая   горючая   смесь,   предварительно   сжатая в картере поршнем при его движении вниз. Свежая горючая смесь, на­правляясь дефлектором, вытесняет отработавшие газы, и, та­ким образом, происходит продувка цилиндра, и заряд его новой порцией горючей смеси.

Второй такт — сжатие. Как только поршень при движе­нии вверх от НМТ закроет продувочные и выпускные окна, начнется процесс сжатия горючей смеси (рис. 54, в). На этом же ходе за счет разрежения, создаваемого нижней частью поршня, в картер засасывается из карбюратора новая порция горючей смеси.

При подходе поршня к ВМТ, горючая смесь над поршнем воспламеняется от электрической искры, поршень идет вниз, и цикл повторяется.

Описанная продувка двигателя является разновидностью, так называемой кривошипно-камерной продувки.


1 – картер

2 – противовес

3 - продувочный канал

4 – поршень

5 – дефлектор

6 – цилиндр с воздушным охлаждением

7 - свеча зажигания

8 – выпускной канал

9 – карбюратор

10 – шатун

11 – коленчатый вал

в чем разница между маслами для двигателей — TOTAL Russia

От качества моторного масла напрямую зависит работа и срок службы двигателя. Выбирать смазочную жидкость всегда следует с учётом характеристик конкретного мотора и рекомендаций мировых экспертов. Важное значение имеет отличие масла двухтактного от четырехтактного при использовании в разных типах двигателей. 

В чём разница между 4 и 2-тактным двигателем

Принципиальная разница между 4-тактным и 2-тактным мотором состоит в том, что последний работает на масле, которое предварительно смешивается с топливом и сгорает вместе с ним. В четырёхтактном двигателе используется принудительная система смазки, при которой не допускается попадания масляной жидкости в камеры сгорания.  

В двухтактных двигателях процесс впуска готовой топливной смеси и выпуска выхлопных газов происходит за один оборот коленчатого вала за два основных такта. Принцип работы четырёхтактного мотора состоит в периодически повторяющейся последовательности определённых тактов в каждом цилиндре: впуск, сжатие, расширение и выпуск. 

Двухтактные моторы устанавливают на мотоциклы, скутеры, мопеды, лодки, снегоходы, бензопилы и прочую технику. 4-тактными двигателями оснащают автомобили. 

Отличие масла для двухтактных двигателей от четырехтактных

Учитывая особенности двух типов моторов, к их смазочным жидкостям предъявляются абсолютно разные требования. 

Двухтактное и четырехтактное масло разница:

2-тактное масло

4-тактное масло

Должно максимально сгорать, оставляя минимум сажи и золы

Должно гарантировать отличное смазывание всех деталей механизма, защищая их от повреждающих факторов

Не содержит «лишних» химических веществ

В него добавляется целый комплекс различных присадок (противозадирные, противопенные, антиокислительные, моющие и т.д.)

Сгорает вместе с бензином, поэтому требуется постоянная его доливка

Рассчитано на длительную эксплуатацию

 

При подборе смазки обязательно учитываются специфические отличия двухтактного масла, так как это позволяет в несколько раз продлить срок службы агрегата и значительно улучшить его функциональность.

Что будет, если залить четырехтактное масло в двухтактный двигатель

Двухтактное масло имеет существенное отличие от четырехтактного, поэтому его ни в коем случае нельзя заливать в двигатель автомобиля. Использовать масло, предназначенное для 4-тактных моторов в двухтактниках, также недопустимо. Это приводит к тому, что зола, остающаяся при сжигании масла, оседает на поршне и стенках камер сгорания. Она смешивается с новой порцией смазки, создаёт своеобразный абразивный порошок, который словно наждачная бумага травмирует поверхности цилиндра и поршня. В итоге детали изнашиваются значительно раньше положенного срока. 

Кроме того, негативное влияние на механизм оказывает сажа. Она скапливается в канавках поршневых колец, значительно уменьшая их подвижность и откладывается в выхлопных окнах, препятствуя нормальному выпуску отработанных газов. В результате двигатель теряет свою мощность. Нагар из золы и сажи способствует развитию самопроизвольного воспламенения горючей смеси и появлению калильного зажигания. Также он загрязняет электроды свечей, что нередко приводит к замыканию и остановке двигателя. 

Различие моторных масел для двухтактных двигателей

При выборе моторного масла для двухтактного двигателя следует отличать смазки по классу:

  • API-TA – моторы с рабочим объёмом до 50 кубических см с воздушной системой охлаждения;
  • API-TB – двигатели от 50 до 200 кубических см;
  • API-TC – моторы с максимальными критериями, предъявляемыми к качеству масла;
  • API-TD – лодки с подвесными двигателями.

Смазочная жидкость Тотал для 2-тактного двигателя отличается высоким качеством, в соответствии с требованиями API-TC. Она оказывает системное защитное действие, предотвращая появление деформации поршневых колец. Механизм служит долго и исправно. 
Приобрести продукцию бренда Total можно в Москве и других городах России у официальных дилеров и партнёров компании.

Виды двигателей внутреннего сгорания

При выборе садовой техники и оборудования нужно обращать внимание на тип двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный. Для садовой техники более крупного размера, таких как газонокосилки, мотоблоки, мотокультиваторы, мини тракторы, рейдеры и т. д. в основном используют 4-х тактные двигатели, а для садовой техники малого размера - такой как бензокосы, бензопилы, и др. в основном 2-х тактные.

Рассмотрим принцип работы этих двух видов двигателей внутреннего сгорания.

Оба двигателя приводятся в действие за счет использования расширения газов при нагревании, которое происходит за счет принудительного воспламенения горючей смеси, поступаемой в воздушное пространство цилиндра. Все двигатели внутреннего сгорания, независимо от его типа, имеют основные механизмы, такие как кривошипно-шатунный механизм, газораспределительный механизм, система смазки, система охлаждения, система питания и система зажигания. Передача полезной энергии расширяющегося газа происходит через кривошипно-шатунный механизм, а за впрыск топливной смеси в цилиндр отвечает механизм газораспределения.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: ими являются сжатие и рабочий ход.

Сжатие.
Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное окно, а затем выпускное окно, после чего смесь попадает в цилиндр и начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем такте.

Рабочий ход.
После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Следующее движение поршня приводит к повторному сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания и так такт за тактом химическая энергия топлива превращается в механическую работу двигателя и его агрегатов.

Недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает сгорать и выбрасывается в атмосферу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты. Требуется смесь на основе бензина и масла для смазки механизмов двигателя, что требует дополнительных расходов на покупку масла и необходимости постоянно готовить топливную смесь. Основными преимуществами двухтактного двигателя является его маленькие по сравнению с 4-х тактным двигателем размер и вес.

Принцип работы четырехтактного двигателя

Принцип работы четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов. Когда происходит впускной этап поршень двигается вниз, открывается впускной клапан, в цилиндр поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь. При сжатии поршень движется из НМТ к ВМТ, все два клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня из ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан. Во время выпускного этапа продукты сгорания, вытесняемые давлением поршня, движущимся из НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов и фаз газораспределения четырехтактные двигатели внутреннего сгорания намного экономичнее и экологичнее - потому что исключает выброс неиспользованной топливной смеси. При работе 4-х тактные двигатели значительно тише, чем 2-х тактные и в эксплуатации намного проще. Масло в данных двигателях заливается в масляный картер, что значительно уменьшает его потребление и избавляет от заботы по приготовлению бензино-маслянной смеси. На сегодняшний день 4-х тактные двигатели становятся все компактнее, и ими оснащают такую садовую технику как бензокосы, мотобуры и т.д.

Для справки: Сравнение преимуществ и недостатков

Двигатели Преимущества
Двигатель внутреннего сгорания
  1. Высокая дальность передвижения на одной заправке;
  2. Малый вес и объем источника энергии (топливного бака).
Электродвигатель
  1. Малый вес;
  2. Максимальный момент доступный при 0 об/мин;
  3. Нет необходимости в КПП;
  4. Высокий КПД.
Паровой двигатель
  1. Работа на любом топливе.
  2. Самая высокая единичная мощность.
  3. Различные варианты теплоносителя.
  4. Широкая линейка мощностей.
  5. Значительный ресурс.
Реактивный двигатель
  1. Сверхбольшие скорости.
  2. Преодоление больших расстояний.
  3. Большая мощность.
Двигатели Недостатки
Двигатель внутреннего сгорания
  1. Низкий средний КПД во время эксплуатации;
  2. Высокое загрязнение окружающей среды;
  3. Обязательное наличие КПП;
  4. Отсутствие режима рекуперации энергии;
  5. Работа ДВС подавляющую часть времени с недогрузом.
Электродвигатель
  1. Малое плечо на одной зарядке;
  2. Долгая зарядка;
  3. Малый срок службы батареи;
  4. Большой объем и вес батареи.
Паровой двигатель
  1. Высокая инертность.
  2. Высокая стоимость.
  3. Производство тепла преобладает над электроэнергией.
  4. Сложный и дорогой капитальный ремонт.
  5. Высок нижний порог эффективного применения.
Реактивный двигатель
  1. Большой расход топлива.
  2. Дорогое обслуживание.
  3. Узкий спектр применения

Строение двигателей / Хабр

Недавно наткнулся на прекрасный сайт (англ.), который по полочкам размусоливает и показывает строение большинства типов двигателей. Попытаюсь вольно и сжато пересказать самое на мой взгляд главное, совсем по пальцам и как для самых маленьких. Конечно можно было бы позаимствовать точные определения из авторитетных источников, но такой любительский перевод обещает быть единственным в своем роде 🙂

А можете ли Вы сходу объяснить Вашей девушке, в чем отличие бензинового двигателя от дизельного? Четырёхтактного и двухтактного движков? Нет? Тогда приглашаю под кат.


Работающий четырёхтактный двигатель впервые был представлен немецким инженером Николаусом Отто в 1876, с этих пор он также известен под названием цикл Отто. Но все же корректнее называть его четырёхтактным. Четырёхтактный двигатель является, наверное, одним из самых распространенных типов двигателей в наше время. Он используется почти во всех автомобилях и грузовиках.

Под четырьма тактами подразумеваются: впуск, сжатие, рабочий ход, и выпуск. Каждый такт соответствует одному ходу поршня, вследствие этого рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала.

Впуск

Во время впуска поршень двигается вниз, втягивая свежую порцию воздушно-топливной смеси через впускной клапан. Отличительной особенностью рассматриваемого двигателя являтся то, что впускной клапан открывается за счет вакуума, образовавшегося в результате движения поршня вниз.

Сжатие

Крутящий момент подымает поршень, а тот в свою очередь сжимает воздушно-топливную смесь. Впускной клапан закрывается возрастающей силой давления, возникшей в результате поднятия поршня.

Рабочий ход

В верхней точке такта сжатия искра воспламеняет сжатое топливо. При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.

Выпуск

Когда поршень достигает свою нижнюю точку, выпускной клапан открывается и выхлопные газы выгоняются из цилиндра движущимся наверх поршнем.

В двухтактном двигателе рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата — продувочного насоса. Wiki

Так как в двухтактном двигателе на каждое движение коленчатого вала приходится один рабочий ход — двухтактные двигатели всегда мощнее четырехтактных (если брать двигатели одинакового объема). Важным фактором в пользу первых является их более простая и легкая конструкция. Эти двигатели получили распространение в бензо-пилах, лодочных моторах, снегоходах, легких мотоциклах и моделях самолетов.

Бесспорными минусами данного типа двигателей являются их неэкономичность, так как значительная доля топлива не выгорает и выбрасывается вместе с выхлопными газами.

Впуск

Воздушно-топливная смесь всасывается в кривошипную камеру благодаря ваккууму, который создается во время движения поршня вверх.

Сжатие в камере сгорания

Во время сжатия впусковой клапан закрывается давлением в кривошипной камере. Топливная смесь сжимается на последней стадии такта.

Движение топливной смеси/выпуск

Ближе к концу такта, поршень заставляет сжатую воздушно-топливную смесь двигаться по впускному каналу из кривошипной камеры в главный цилиндр. Воздушно-топливная смесь вытесняет выхлопные газы, которые покидают главный цилиндр через выпускной клапан. К сожалению, цилиндр также покидает некоторое количество невыгоревшего топлива, из-за чего конструкция двухтактного двигателя считается менее экономичной.

Сжатие

После чего поршень подымается, движимый крутящим моментом, и сжимает топливную смесь. (В этот момент под поршнем происходит следующий такт впуска).

Рабочий ход

На вершине такта свеча зажигания воспламеняет топливную смесь. Возникшая энергия заставляет поршень двигаться вниз до завершения цикла. (В этот момент внизу цилиндра топливо сжимается в кривошипной камере).

Особенностью дизельного двигателя является измененная система воспламенения топлива.

Создав свой тип двигателя в 1897 Рудольф Дизель заявил, что его двигатель является самым эффективным из когда-либо созданных. До сих пор его детище стоит в ряду самых экономичных двигателей.

Впуск

Впускной клапан открывается и свежий воздух (без топлива), засасывается в цилиндр.

Сжатие

Когда поршень подымается, воздух сжимается и температура в цилиндре возрастает. В конце такта воздух раскаляется настолько, что температуры становится достаточно дря воспламенения топлива

Впрыск

Возле вершины такта сжатия топливный инжектор впрыскивает топливо в цилиндр. При контакте с горячим воздухом топливо воспламеняется.

Рабочий ход

При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.

Выпуск

Выпускной клапан открывается, заставляя выхлопные газы покинуть цилиндр.

Роторно-поршневой двигатель Ванкеля удивительное творение, предлагающее очень замысловатую перепланировку четырех тактов Отто-цикла. Был разработан Феликсом Ванкелем в 50-х годах прошлого века.

В двигателе Ванкеля трехгранный ротор с кольцевой шестернью вращается вокруг фиксированого зубчатого вала в продолговатой камере.

В наше время наибольшие усилия по разработке и популяризации данного типа двигателя прилагает Mazda, но все же четерыхтактный двигатель остается наиболее популярным. Также АвтоВАЗ использует данный тип двигателя в автожирах.

  • Преимущества перед обычными бензиновыми двигателями:
  • низкий уровень вибраций. Роторно-поршневой двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного поршневого двигателя внутреннего сгорания.
  • Высокая удельная мощность(л.с./кг), причины:
  • меньшие в 1,5-2 раза габаритные размеры.
  • меньшее на 35-40 % число деталей

  • Недостатки:
  • Быстрый износ
  • Склонности к перегреву
  • Сложность в производстве
  • Меньшая экономичность при низких оборотах

Впуск

Воздушно-топливная смесь попадает через впускной клапан на этом этапе вращения.

Сжатие

Топливная смесь сжимается здесь.

Рабочий ход

Рабочий ход, топливная смесь воспламеняется здесь, вращая ротор по кругу.

Выпуск

Выхлопные газы выходят здесь

Этот типа двигателя может приводится в действие паром, но чаще его можно встретить в маленьких моделях самолетов, где он работает на сжатом воздухе или углекислом газу.

На этой анимации отображен резервуар с CO2. Сжатый CO2 — это жидкость, которая освобождаясь переходит в газообразное состояние или же другими словами — при нормальных атмосферной температуре и давлении жидкий углекислый газ кипит, следовательно мы не ошибемся если скажем, что данный тип двигателя работает на пару CO2.

Впуск

На вершине цикла поршневой палец давит на шариковый клапан впуская находящийся под большим давлением газ в цилиндр.

Рабочий ход

Газ расширяется двигая поршень вниз

Выпуск

Когда поршень открывается выпускной клапан, находящийся под давлением газ покидает цилиндр.

Окончание

Крутящий момент возвращается поршень наверх, чтобы завершить цикл.

Ракетные и турбореактивные двигатели, по словам автора, поразительны по своей конструкции, но анимация их работы по его мнению слишком скучна.

Ракетный двигатель

Ракетный двигатель — простейшие из своего семейства, поэтому начнем с него.

Для того, что функционировать в открытом космосе ракетные двигатели для своей работы требуют запас кислорода, ровно как и топлива. Кислородно-топливная смесь впрыскивается в камеру сгорания где она беспрерывно сгорает. Газ под большим давлением выходит через сопла, вызывая тягу в обратном направлении.

Чтобы опробовать этот принцип самому, надуйте игрушечный шарик и выпустите его из рук — ракетный двигатель работает почти так-же 😉

Турбореактивный двигатель

Турбореактивный двигатель работает по тому-же принципу что и ракетный, с той лишь особенностью, что необходимый для горения кислород он берет из атмосферы. По своей конструкции он наиболее эффективен на больших высотах с разряженным воздухом.

Момент схожести: топливо беспрерывно сгорает в камере сгорания как и в ракетном. Расширевшийся газ покидает камеру сгорания через сопла, образуя тягу в обратном направлении.

Отличия: На своем пути из сопла некоторое количество давления газа ипользуется, чтобы раскрутить турбину. Турбина — это серия винтов, соединенныходним валом. Между каждой парой винтов находится статор (направляющий аппарат компрессора). Этот аппарат помогает газу проходить через лопасти винтов более эффективно.

Перед двигателем турбинный вал раскручивает компрессор. Компрессор работает схоже с турбиной, только в обратную сторону. Его функцией является повышение давления воздуха, попадающего в двигатель. Турбина выталкивает воздух, а компрессор засасывает.

Турбовинтовой двигатель

Турбовинтовой двигатель схож турбореактивным, с той лишь особенностью, что газ покидающий камеру сгорания вращает в большей степени турбину, которая в свою очередь вращает винт преед двигателем. Он и создает тягу. Эффективен на малых высотах.

Турбовентиляторный двигатель

Турбовентиляторный двигатель — это что вроде компромисса между турбореактивным и турбовинтовым. Он работает как турбореактивный, но есть одна особенность: турбинный вал вращает внешний вентялятор, который имеет больше лопастей и крутится быстрее пропеллера. Это помогает данному двигателю оставаться эффективным на больших высотах, где воздух рязряжен.

Источники:
www.animatedengines.com

  • Ultimate Visual Dictionary, DK Publishing Inc., 1999
  • Building the Atkinson Cycle Engine, Vincent Gingery, David J Gingery Publishing, 1996
  • The Stirling Engine Manual, James G. Rizzo, Camden Miniature Steam Services, 1995
  • Modern Locomotive Construction, J. G. A. Meyer, 1892, reprinted by Lindsay Publications Inc., 1994
  • Five Hundred and Seven Mechanical Movements, Henry T. Brown, 1896, reprinted by The Astragal Press, 1995
  • Model Machines/Replica Steam Models, Marlyn Hadley, Model Machine Co., 1999
  • Air Board Technical Notes, RAF Air Board, 1917, reprinted by Camden Miniature Steam Services, 1997
  • Internal Fire, Lyle Cummins, Carnot Press, 1976
  • Toyota Web site Prius specifications
  • Steam and Stirling Engines you can build, book 2, various authors, Village Press, 1994
  • Knight’s New American Mechanical Dictionary, Supplement Edward H. Knight, A.M., LL. D., Houghton, Mifflin and Company, 1884
  • Thomas Newcomen, The Prehistory of the Steam Engine L. T. C. Rolt, David and Charles Limited, 1963
  • An Introduction to Low Temperature Differential Stirling Engines James R. Senft, Moriya Press, 1996
  • An Introduction to Stirling Engines James R. Senft, Moriya Press, 1993

UPD: Добавил двигатели Ванкеля и CO2, они мне показались наиболее интересными и практически полезными.
UPD2: Добавил описание целого семейства реактивных двигателей: ракетный, турбореактивный, турбовинтовой, турбовентиляторный.

Циклы 2-х тактного и 4-х тактного судового дизельного двигателя

Cycles of Diesel Engine Рабочие циклы дизельного двигателя
Any internal combustion engine, regardless of principle it operates on, is said to have a four-stroke cycle or a two-stroke cycle. The engines of either type may be single or double acting, trunk-piston type, crosshead type, opposed-piston type. Считается, что любой двигатель внутреннего сгорания, независимо от принципа его работы, имеет четырехтактный или двухтактный цикл. Двигатели любого типа могут быть простого или двойного действия, тронковыми, крейцкопфными, с противоположно- движущимися поршнями.
  • internal combustion engine – двигатель внутреннего сгорания
  • regardless of … – независимо от …
  • is said – говорят, считается
  • to operate – работать, действовать, приводить в движение, запускать, управлять
  • stroke – в двигателях внутреннего сгорания: ход (поршня), такт
  • four-stroke (two-stroke ) cycle – четырехтактный (двухтактный) цикл
  • either type – любой; любой из двух
  • single (double) acting – простого (двойного) действия
  • trunk-piston type – тронковый
  • crosshead type – крейцкопфный
  • opposed-piston type – с противоположно-движущимися (расходящимися) поршнями
The four-stroke cycle consists of: the suction stroke, compression stroke, combustion and expansion stroke and exhaust stroke. Четырехтактный цикл состоит из: такта всасывания, такта сжатия, такта горения и расширения, и такта выпуска.
  • consists of … – состоит из …
  • suction stroke – ход (такт) всасывания
  • compression stroke – ход (такт) сжатия
  • combustion and expansion stroke – ход (такт) сгорания и расширения
  • exhaust stroke – ход (такт) выпуска
The piston starts a downward, suction stroke. The air inlet valve is open and air is being drawn into the cylinder through the air inlet pipe. The exhaust valve, fuel valve are all closed. As the piston reaches the end of the suction stroke the air inlet valve closes … Поршень начинает движение вниз – ход всасывания. Впускной клапан открывается, и воздух втягивается в цилиндр через впускной патрубок. Выпускной клапан, топливный клапан – все закрыты. Когда поршень достигает конца хода всасывания, впускной клапан закрывается, …
  • piston – поршень
  • downward – вниз; upward – вверх  
  • air inlet valve – впускной клапан (воздушный) (inlet – впуск, вход, впускное отверстие; valve – клапан)
  • to draw – тянуть, втягивать, затягивать, вдыхать и т.п.; being drawn – втягивается (буквально: будучи втягиваемым – это пассивная форма глагола)
  • cylinder – цилиндр
  • through – через, сквозь (произносится: сру)
  • air inlet pipe – впускной патрубок (воздушный)
  • exhaust valve – выпускной клапан
  • fuel valve – топливный клапан
  • to reach – достигнуть
… and as the piston rises on the second, or compression stroke, the air in the cylinder is compressed. At the end of this stroke the air has been compressed to about 480 pounds and its temperature has risen to about 1,000 degrees F. The fuel injection valve now opens and the fuel is sprayed into the cylinder under a pressure of 3,550 p.s.i. The high temperature of the compressed air in the cylinder ignites the fuel, and it continues to burn as long as injection is maintained. This burning raises the temperature of the gas to approximately 3,000ºF. … и пока поршень поднимается на второй ход, или ход сжатия, воздух в цилиндре сжимается. В конце этого хода воздух сжат до, примерно, 480 фунтов, и его температура поднята до, примерно, 1000 градусов по Фаренгейту. Теперь открывается форсунка, и топливо распыляется в цилиндр под давлением 3 550 фунтов на квадратный дюйм. Высокая температура сжатого воздуха в цилиндре воспламеняет топливо, и оно продолжает гореть столько, сколько продолжается впрыскивание. Это горение поднимает температуру газа до, приблизительно, 3000 градусов по Фаренгейту.
  • has been compressed – сжат (это настоящее совершенное время в пассивной форме, т.е. начали сжимать в прошлом, и это сжато к настоящему моменту)
  • about – около, приблизительно
  • pound – фунт (1 фунт = 0,454 кг; 1 кг = 2,205 фунта)
  • 1,000.00 = 1 000,00 (в английском письме разряды в цифрах разделяются запятыми, а десятичные доли точкой!!!)
  • degrees F – градусов по Фаренгейту
  • fuel – топливо
  • injection – впрыскивание
  • fuel injection valve – форсунка (дословно: топливо-впрыскивающий клапан)
  • p.s.i. (pounds per square inch) – фунтов на квадратный дюйм (1 psi = 0,07031 кгс/кв. см)
  • to ignite – зажигать, воспламенять
  • as long as – до тех пор, пока; столько, сколько …
  • to maintain – поддерживать (сохранять в том же состоянии)
  • to burn – гореть; burning – горение
  • approximately – приблизительно
In the meantime, the piston has started down on the third, or expansion stroke, with the gas expanding behind it. The injection valve closes shortly after the piston has started down on this stroke. At the end of this stroke the exhaust valve opens and the burned gases in the cylinder, now reduced to about 40 pounds pressure, and correspondingly reduced in temperature, start to flow out through the exhaust pipe. Тем временем, поршень начал движение вниз на третий ход, или ход расширения, а газ расширяется вслед за ним. Форсунка закрывается вскоре после того, как поршень начал опускаться на этот ход. В конце этого хода выпускной клапан открывается, и сгоревшие в цилиндре газы, теперь с давлением, снизившимся до, примерно, до 40 фунтов, и с соответственно понизившейся температурой, начинают выходить через выпускной патрубок.
  • in the meantime – тем временем; между тем
  • shortly after – вскоре после того, как …
  • burned gases – отработанные газы (дословно: сгоревшие газы)
  • correspondingly – соответственно
  • flow out – вытекать (наружу)
  • exhaust pipe – выпускной патрубок
Returning on the fourth, or exhaust stroke, the piston pushes the remaining gas out of the cylinder. At the end of this stroke the exhaust valve closes, the air inlet valve opens and the cycle of operations starts again. Возвращаясь на четвертый, или выпускной ход,  поршень выталкивает оставшийся газ из цилиндра. В конце этого хода выпускной клапан закрывается, открывается впускной клапан, и цикл операций начинается опять.
It is thus seen that one complete cycle requires four strokes of the piston; the four strokes comprise two complete revolutions of the crank. Таким образом, видно, что один полный цикл  требует четыре хода поршня; четыре хода составляют два полных оборота кривошипа.
  • revolution – оборот
  • crank – кривошип, колено
In the 2-cycle, single acting Diesel engine instead of an exhaust valve there is a ring of exhaust ports around the bottom of the cylinder, communicating with the exhaust pipe. The spray valve and starting valve are the same as in the 4-cycle. In place of air inlet valves there are scavenging ports, in place of exhaust valves there are exhaust ports, in uniflow scavenging engines there are exhaust valves. The scavenging ports are in communication with a passage leading to a low pressure scavenging air compressor, operated from the engine. В двухтактном дизельном двигателе простого действия вместо выпускного клапана имеется кольцо выпускных окон вокруг днища цилиндра, сообщающихся с выпускным патрубком. Форсунка и пусковой клапан такие же, как и на четырехтактном. Вместо впускных клапанов имеются продувочные окна, вместо выпускных клапанов имеются выпускные окна, в двигателях с прямоточной продувкой имеются выпускные клапана. Продувочные окна сообщаются с каналом, ведущим к компрессору продувочного воздуха низкого давления, приводимому в движение от двигателя.
  • ring – кольцо, круг
  • port – отверстие, окно, проход, порт
  • exhaust port – выпускное окно
  • communicating; in communication with … – сообщающийся, соединяющийся
  • exhaust pipe – выхлопной патрубок
  • spray valve – форсунка
  • starting valve – пусковой клапан
  • the same as – тот же, что и …; такой же, как …
  • in place of – вместо
  • exhaust valve – выпускной клапан
  • scavenging port – продувочное окно
  • uniflow scavenging – прямоточная продувка
  • passage – проход, канал
When the piston on its downward stroke uncovers the exhaust ports and the cylinder pressure drops to atmospheric, the scavenging ports open and the air, under pressure, flows into the cylinder and pushes the exhaust gases out through these ports. As the piston on its up stroke covers the scavenging ports, the exhaust ports close, leaving the cylinder full of fresh air. The piston moving upward on its compression stroke, compresses this air and at the end of compression fuel injection occurs, just as previously described for the 4-stroke cycle. Когда поршень на его ходу вниз открывает выпускные окна, и давление в цилиндре падает до атмосферного, продувочные окна открываются, и воздух под давлением заходит в цилиндр и выталкивает отработанные газы наружу через эти окна. По мере того, как поршень на его ходу вверх закрывает продувочные окна, выпускные окна закрываются, оставляя цилиндр полным свежего  воздуха. Поршень, двигаясь вверх на его ходу сжатия, сжимает этот воздух, и в конце сжатия происходит воспламенение топлива, точно также как описано ранее для четырехтактного цикла.
  • to cover – закрывать;
  • to uncover – открывать
It is thus seen that the complete series of operations, including fuel injection and combustion, expansion, exhaust, filling cylinder with fresh air and compression, occurs in two strokes of the piston, or one revolution of the crankshaft. Таким образом, видно, что полная серия операций, включая впрыск топлива и сгорание, расширение, выпуск, заполнение цилиндра свежим воздухом и его сжатие происходят за два хода поршня или один поворот коленчатого вала.
  • crankshaft – коленчатый вал

Двигатель 4-MIX® — лёгкий и мощный

Лёгкий и мощный

Получивший приз четырёхтактный двигатель STIHL работает на маслобензиновой смеси. Двигатель STIHL 4-MIX® объединяет в себе преимущества 2- и 4-тактного двигателя. Помимо огромной силы тяги и заметно более высокого крутящего момента двигатель 4-MIX® поражает также уменьшенным объёмом отработанных газов, низкими расходами на техническое обслуживание и мягким звуком.

Явные преимущества

  • Снижение объема выхлопа: Благодаря почти полному сгоранию топлива обеспечивается соблюдение жестких европейских норм токсичности выхлопных газов, ступень II.
  • Без обслуживания смазочной системы: Простое обслуживание, так как используется обычная топливная смесь.
  • Небольшой вес: Благодаря системе смазывания рабочей смесью стало возможным отказаться от таких традиционных компонентов четырехтактных двигателей, как масляный насос, масляный бачок и масляный поддон.
  • Более низкий уровень шума: Приятное звучание даже при максимальной мощности.
  • Хорошее тяговое усилие и высокий крутящий момент: Хорошее ускорение обеспечивает высокую мощность.
  • Вот как это работает

    В отличие от других четырёхтактных двигателей 4-MIX® работает на привычной маслобензиновой смеси (1:50). Благодаря абсолютно новому принципу, маслобензиновая смесь распределяется по всему двигателю через обводной канал в головке цилиндров и обеспечивает полное смазывание.

  • Простой запуск
    Для обеспечения простого запуска двигателя STIHL 4-MIX® в него встроена система декомпрессии, которая при запуске увеличивает время открытия клапана. Благодаря этому значительно снижаются прилагаемые усилия для запуска агрегата
  • Чемпион по удобству обслуживания в легком весе

    Двигатель STIHL 4-MIX® с системой смазывания рабочей смесью - настоящий чемпион по удобству обслуживания в легком весе: У двигателя 4-MIX® отсутствуют все традиционные для 4-тактных двигателей компоненты, такие как масляный насос, масляный бачок и масляный поддон. Таким образом, многие дорогостоящие операции по сервисному обслуживанию, например, регулярная регулировка зазора клапанов, проверка уровня масла, замена масла и утилизация отработанного масла уходят в далекое прошлое.

Как работает двухтактный двигатель? - MechStuff

В моей предыдущей статье мы узнали, как работают четырехтактные двигатели! На этот раз мы узнаем о втором типе двигателя, а именно о 2-тактном двигателе . Двухтактный двигатель - это тип двигателя внутреннего сгорания, в котором один энергетический цикл завершается двумя ходами поршня во время только одного оборота коленчатого вала . Первый коммерческий двухтактный двигатель с внутрицилиндровым сжатием приписывается шотландскому инженеру Дугальду Клерку .

Двухтактный двигатель выполняет все те же действия, что и четырехтактный двигатель - всасывание, сжатие, расширение и выпуск; но 2-тактный двигатель выполняет все эти шаги только за 2-тактный двигатель, в отличие от 4-тактного двигателя, который завершает один цикл мощности за 4 такта.

Возможно, вы хотите знать, как работают четырехтактные двигатели?



Детали, которые имеет двухтактный двигатель -

Поршень - В двигателе поршень используется для передачи расширяющей силы газов на механическое вращение коленчатого вала через шатун.Поршень способен на это, потому что он плотно закреплен внутри цилиндра с помощью поршневых колец, чтобы минимизировать зазор между цилиндром и поршнем!
Коленчатый вал - Коленчатый вал - это деталь, которая может преобразовывать возвратно-поступательное движение во вращательное движение.
Шатун - Шатун передает движение от поршня к коленчатому валу, который действует как плечо рычага.
Противовес - Противовес на коленчатом валу используется для уменьшения вибраций из-за дисбаланса вращающегося узла.
Маховик - Маховик - это вращающееся механическое устройство, которое используется для хранения энергии.
Порты входа и выхода - Позволяет подавать свежий воздух с топливом и выводить отработанную топливно-воздушную смесь из цилиндра.
Свеча зажигания - Свеча зажигания подает электрический ток в камеру сгорания, которая воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.

источник: - wikipedia.org

Работа двухтактного двигателя: -

Ход вниз: -

Сначала поршень перемещается вниз от ВМТ до НМТ, чтобы свежий воздух попал в камеру сгорания.Свежая топливовоздушная смесь попадает в камеру сгорания через картер двигателя. Вращение коленчатого вала - 180 °

Ход вверх: -

Здесь происходит все волшебство. Поршень выдвигается вверх от НМТ до ВМТ . Топливно-воздушная смесь сжимается, и свеча зажигания воспламеняет смесь. По мере расширения смеси поршень опускается. Во время хода вверх впускное отверстие открывается. Когда это впускное отверстие открыто, смесь всасывается внутрь картера. Когда смесь выталкивается в камеру сгорания во время предыдущего хода вверх, создается частичный вакуум, поскольку в картере не остается никакой смеси.Эта смесь готова попасть в камеру сгорания во время хода вниз, но остается в картере, пока поршень не поднимется до ВМТ. Вращение коленчатого вала - 360 °

Два хода выполняются за один цикл включения.

Начиная со 2-го хода вниз и далее выхлопные газы вытесняются с одной стороны, в то время как свежая смесь попадает в камеру сгорания одновременно из-за частичного вакуума, создаваемого в камере сгорания после удаления выхлопных газов.В этом вся прелесть двигателя. Обе вещи происходят одновременно, что делает его двухтактным двигателем.

Знайте, в чем отличия, преимущества и недостатки 4-тактных и 2-тактных двигателей!



2-тактный двигатель с вариантом конструкции Источник: - Mechanics.stackexchange.com

На рисунке выше показан другой вариант 2-тактного двигателя, в котором впускные и выпускные отверстия находятся на одной стороне. Здесь нет необходимости промежуточно открывать входные порты. Головка блока цилиндров сконструирована таким образом, что выхлопное отверстие закрывается во время сгорания и открывается после сгорания.Сам поршень соответственно закрывает и открывает порт. Процесс остается прежним, разница только в дизайне.

Вы могли заметить выступ на поверхности поршня. Такая конструкция помогает выхлопным газам проходить через выхлопное отверстие, легко определяя его направление.

Поскольку картер постоянно всасывает топливовоздушную смесь, смазывать поршень и шатун практически невозможно. Поэтому топливо необходимо смешивать с маслом или смазкой (2% -5%) в 2-тактном двигателе .

Предлагаемая статья: - Как работают двигатели Ванкеля?

Связанные

Как работает двухтактный цикл искрового зажигания (двухтактный бензиновый двигатель)?

Что такое цикл двухтактного искрового зажигания?

Хотя двухтактные двигатели с искровым зажиганием (двухтактные бензиновые) мало используются в большинстве стран, они все еще являются частью наследия типов двигателей во всем мире. 2-тактный цикл искрового зажигания или 2-тактный бензиновый двигатель отличается от 4-тактного бензинового двигателя тем, что он генерирует мощность в виде числа оборотов коленчатого вала.В отличие от 4-тактного бензинового двигателя, 2-тактный цикл искрового зажигания вырабатывает мощность на каждом его обороте. Двухтактное искровое зажигание сменяется традиционным четырехтактным для выполнения полного цикла. Вместо этого он объединяет два штриха в один; тем самым совершая один ход вверх и один ход вниз за каждый оборот коленчатого вала.

Следовательно, двухтактный двигатель с искровым зажиганием вырабатывает мощность во время каждого хода поршня вниз. Таким образом, он производит вдвое большую выходную мощность по сравнению с четырехтактным двигателем того же размера.Однако эффективность двухтактного бензинового двигателя ниже по сравнению с четырехтактным бензиновым двигателем того же размера. Двухтактный цикл искрового зажигания исключает такты всасывания и выпуска. Он использует только два оставшихся хода: такт сжатия и рабочий ход. Они известны как ход вверх и ход вниз соответственно.

Ход вверх в двухтактном цикле искрового зажигания:

Во время движения вверх в двухтактном цикле искрового зажигания поршень движется вверх i.е. от нижней мертвой точки до верхней мертвой точки. Поднимаясь вверх, он сжимает топливовоздушную смесь в камере сгорания. Движение поршня вверх создает частичное разрежение в картере. Это приводит к тому, что свежий заряд (воздушно-топливная смесь) попадает в картер через открытое впускное отверстие.

Ход вверх в двухтактном цикле искрового зажигания

Когда поршень находится в верхней мертвой точке, он закрывает / закрывает выпускное и передаточное отверстия. Свеча зажигания воспламеняет сжатый заряд в камере сгорания и производит рабочий такт.Рабочий ход толкает поршень вниз и вращает коленчатый вал.

Ход вниз в двухтактном цикле искрового зажигания:

Как только свеча зажигания зажигает заряд в двухтактном цикле, горячие газы расширяются и толкают поршень вниз; вращая коленчатый вал. Во время этого хода поршень закрывает впускное отверстие и сжимает новый заряд (воздушно-топливную смесь) в картере двигателя. Дальнейшее движение поршня вниз сначала открывает выпускное отверстие, а затем переходное отверстие. Это позволяет выхлопным газам выходить через открытое выхлопное отверстие.

Ход вниз в двухтактном цикле искрового зажигания

Как только открывается передаточный порт; он выталкивает свежий заряд в цилиндр. Заряд сначала ударяется о дефлектор на головке поршня, поднимается к верху цилиндра и выталкивает оставшиеся выхлопные газы. Некоторая часть свежего заряда также выходит через выхлоп во время этого процесса. По этой причине двухтактный цикл искрового зажигания не соответствует строгим нормам выбросов.Следовательно, позже он был снят с производства и / или заменен на 4-тактный цикл.

Теперь поршень находится в нижней мертвой точке. Цилиндр полностью заполнен свежим зарядом и несколько разбавлен оставшимися выхлопными газами. Двигатель сжигает этот заряд во время следующего хода вверх. Этот цикл повторяется, и поршень совершает два хода на каждый оборот коленчатого вала.

В большинстве мотоциклов, байков, скутеров и небольших генераторных установок предыдущего поколения использовался двухтактный двигатель с искровым зажиганием.

Посмотрите, как работает двухтактный двигатель с искровым зажиганием:

Читать далее: Как работает четырехтактный бензиновый двигатель. >>

О компании CarBikeTech

CarBikeTech - технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

2-тактный / 4-тактный - мотоцикл

В чем разница между 2-тактными и 4-тактными двигателями?

Топливо для двухтактного двигателя содержит небольшое количество масла.Это называется «2-тактным», потому что всего одно движение поршня вверх и вниз - 2 хода - выполняет полный цикл впуска, сжатия, сгорания и выпуска. Впускные или выпускные клапаны не используются, а вместо этого используются небольшие отверстия, называемые продувочными портами в стенке цилиндра, для втягивания воздуха и удаления выхлопных газов. Поскольку сгорание происходит при каждом обороте коленчатого вала в 2-тактном двигателе, этот формат обеспечивает большую мощность, чем 4-тактный двигатель, и мощность имеет более мгновенную подачу.Это некоторые причины, по которым двухтактные двигатели давно используются на многих различных типах мотоциклов.
Однако озабоченность по поводу более экологичных характеристик возросла, и теперь 4-тактные двигатели стали нормой, потому что они по своей природе имеют лучшую экономию топлива и меньше дыма выхлопных газов. По состоянию на 2019 год только двухтактные мотоциклы Yamaha выпускаются для соревнований по закрытому маршруту, а некоторые модели предназначены для экспорта. Тем не менее, двухтактные продукты Yamaha имеют простую, легкую конструкцию и сравнительно легкие в обслуживании, а их высокая надежность делает их популярными во многих регионах.Сегодня двухтактные снегоходы Yamaha используются для передвижения по ледяной и холодной окружающей среде России, а наши двухтактные подвесные моторы широко используются в Африке для рыбной ловли. И многие энтузиасты мотоциклов продолжают любить двухтактные двигатели за их резкое, захватывающее чувство ускорения.
Что касается 4-тактных двигателей, они работают на бензине без подмешивания масла, а поршень поднимается и опускается два раза за каждый цикл сгорания, поэтому он называется «4-тактным». Однако для 4-тактных двигателей требуются клапаны для впуска и выпуска, которые должны работать с высокой точностью, что делает этот тип двигателя более сложным, тяжелым и имеет другие недостатки.Но они обеспечивают стабильную подачу мощности, хорошую топливную эффективность, более чистые выбросы и многое другое. Вот почему почти все двухколесные автомобили, от больших мотоциклов до маленьких скутеров, используют четырехтактные двигатели.

Оптимизация двухтактного термодинамического цикла одноцилиндрового генератора с свободнопоршневым двигателем

Генератор со свободнопоршневым двигателем (FPEG) - это новый тип преобразователя энергии, в котором отсутствует коленчатый вал и шатунный механизм. Для достижения эффективного преобразования энергии в данной статье исследуется оптимизация термодинамических характеристик двухтактного генератора с одноцилиндровым двигателем со свободным поршнем.Во-первых, подробно представлены компоненты, четырехтактный термодинамический цикл, двухтактный термодинамический цикл и прототип системы FPEG. Одномерная имитационная модель потока FPEG создается на основе уравнения газовой динамики, функции горения Вебера и функции теплопередачи, а затем модель подтверждается данными, протестированными на прототипе системы. Согласно результатам экспериментов с четырехтактным двигателем FPEG, эффективная мощность 4,75 кВт и пиковое давление 21.Получено 02 бар. Затем двухтактный термодинамический цикл моделируется и сравнивается при различных управляющих параметрах давления всасываемого воздуха, времени впрыска, момента зажигания и фаз газораспределения посредством имитационной модели. Оптимизированные результаты показывают, что указанный тепловой КПД 27,6%, указанная мощность 6,7 кВт и максимальная рабочая частота 25 Гц могут быть достигнуты системой-прототипом при использовании двухтактного термодинамического цикла.

1. Введение

Забота об энергосбережении и сокращении выбросов привела к изменениям в конструкции двигателя внутреннего сгорания (ДВС), одним из способов решения этой проблемы является использование двигателя со свободным поршнем [1–3].Генератор со свободнопоршневым двигателем (FPEG) - это силовая установка нового типа, которая привлекла исследовательский интерес ученых всего мира благодаря своим особым преимуществам с точки зрения высокой эффективности и низкого уровня выбросов.

По сравнению с традиционной системой генератора, это новое устройство преобразования энергии демонстрирует такие преимущества, как структурная простота, низкая стоимость производства и высокая мощность. Самая большая разница в конструкции - отсутствие коленчатого вала и маховика двигателя, а поршень и движитель линейного генератора соединены напрямую. Таким образом, свободный поршень может колебаться между двумя своими конечными точками и подвергаться влиянию всех сил, действующих на него. Без ограничения механизма шатуна трение движения поршня значительно снизилось, и конструкция FPEG стала более компактной [4, 5]. Генератор со свободнопоршневым двигателем может работать с несколькими видами топлива за счет легкого управления степенью сжатия, а указанная мощность и эффективность системы могут быть улучшены за счет оптимизации термодинамического цикла.

Исследования показали, что большинство двухтактных свободнопоршневых двигателей имеют схожий принцип работы.На основе теоретического анализа двухтактный двигатель достиг высокой удельной мощности и теплового КПД. В последние десятилетия Кларк и другие исследователи из Университета Западной Вирджинии провели большую исследовательскую работу по генератору двигателя со свободным поршнем. Они разработали первый прототип системы генератора со свободнопоршневым двигателем в 1998 году, который представляет собой двухпоршневую конструкцию с искровым зажиганием с внутренним диаметром цилиндра 36,5 мм и максимальным ходом поршня 50 мм [6, 7]. Напомним, что опытный образец работал на частоте 23.1 Гц, максимальная выходная электрическая мощность составляет 316 Вт, а эффективность преобразования энергии составляет 11%. Однако выходная мощность и эффективность преобразования энергии значительно ниже, чем результаты моделирования 50%.

Суат Саридемир и Фуат Кара из Университета Дюздже разработали модель искусственной нейронной сети (ИНС) для прогнозирования крутящего момента и мощности бета-версии. типа двигатель Стирлинга. После сравнения предсказанных клапанов модели с экспериментальными результатами, валидность созданной модели ИНС проверяется.Они также использовали метод множественной регрессии для оценки предсказательной способности модели, и результаты показали, что ИНС является надежной моделью для предсказания крутящего момента и мощности двигателя Стирлинга бета-типа [8, 9].

Исследователи из Toyota Central R&D Labs Inc также разработали линейный генератор с однопоршневым двигателем со свободным поршнем (FPEG), который состоял из интегрированной камеры сгорания, камеры с газовой пружиной и линейного генератора. FPEG принял двухтактный рабочий режим, и он мог работать непрерывно в течение многих часов.После проведения эксперимента по выработке электроэнергии на прототипе системы FPEG результаты показали, что она может обеспечивать надежную и стабильную работу во всех режимах пуска, движения и стрельбы [10].

В [11, 12] Xu et al. в Нанкинском университете науки и технологий в 2010 году разработали новый одноцилиндровый четырехтактный прототип FPEG. В качестве линейного генератора внутреннего сгорания прототип системы обеспечивает непрерывную и стабильную работу четырехтактного рабочего цикла. Он оснащен электромагнитным клапаном для завершения процесса продувки. Кроме того, был достигнут максимальный крутящий момент 58 Нм при максимальной выходной мощности 10 кВт.На основе этого Сюй предложил улучшенный метод, который оптимизировал двухтактный термодинамический цикл FPEG для достижения термодинамических характеристик высокой эффективности и экономии энергии.

В этой статье для достижения характеристики более высокой мощности и оптимизации термодинамических характеристик двухтактного двигателя создана экспериментальная система FPEG и внесены соответствующие изменения. В следующих разделах представлены компоненты и принцип работы FPEG с возвратной средней пружиной.В разделе 3 построена одномерная модель потока FPEG, которая проверена с помощью четырехтактного эксперимента. Затем моделируется двухтактный термодинамический цикл FPEG при различных влияющих факторах, а результаты моделирования сравниваются и детально анализируются. Оптимизированные результаты помогут нам понять, как двухтактный термодинамический цикл FPEG влияет на указанную мощность и эффективность системы.

2. Структура и принцип работы FPEG
2.
1. Базовая структура FPEG

Элементарная структура генератора со свободнопоршневым двигателем показана на рисунке 1. Основными частями FPEG являются бензиновый двигатель, обратная пружина и линейный электрогенератор. Система имеет только одну камеру сгорания, отбойное устройство и возвратно-поступательный движущийся компонент. Камера сгорания представляет собой одноцилиндровый свободнопоршневой двигатель, оборудованный электромагнитными клапанами, форсункой и свечой зажигания. Между камерой сгорания и линейным электрогенератором установлена ​​обратная пружина.Одиночный поршень и подвижная катушка линейного генератора соединены в один компактный компонент, как единый движитель FPEG. Свободный поршень будет свободно перемещаться между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ), а его возвратно-поступательное движение определяется дисбалансом всех сил, действующих на движитель [11, 13].


Двигатель со свободным поршнем будет работать с захваченной топливной смесью и зажиганием свечи зажигания. Поскольку эффективность генерации линейного электрического генератора значительно снижается в условиях низкой скорости, задняя пружина толкает поршень вверх для обеспечения непрерывной работы.Суперконденсатор используется для включения выработки электроэнергии генератором. Преобразователь мощности используется для согласования линейного генератора и накопления электроэнергии [14, 15]. Электронный блок управления (ЭБУ) может управлять системой для регулировки характеристик двигателя после получения сигналов давления в цилиндре, смещения поршня, тока якоря и других. Кроме того, продувка осуществляется электромагнитными клапанами, которые закреплены на головке блока цилиндров. В полном рабочем цикле линейный генератор работает в моторном режиме только на такте впуска, тогда как остальные такты работают в генераторном режиме.

В системе FPEG существует большая свобода в определении движения поршня. Рабочий цикл FPEG можно переключать, изменяя закон движения поршня. Таким образом, четырехтактный термодинамический цикл и двухтактный термодинамический цикл можно использовать для разных рабочих циклов ГПЭГ.

2.2. Термодинамический цикл FPEG

Четырехтактные двигатели со свободным поршнем имеют относительно большую экономию энергии и более высокий КПД, чем двухтактные двигатели со свободным поршнем, но двухтактные имеют преимущества удельной мощности.При той же рабочей частоте число двухтактных рабочих циклов в два раза больше, чем у четырехтактных, а время газообмена короче, чем у четырехтактных [16]. Четырехтактные и двухтактные термодинамические циклы FPEG представлены для оптимизации термодинамических характеристик.

Как видно из рисунка 2, замечательными характеристиками четырехтактного термодинамического цикла являются короткие такты впуска и сжатия, которые дополняются сжатым всасываемым воздухом [17].Во время такта впуска линейный генератор работает как электрическая машина, заставляя поршневой узел двигаться вниз от точки к точке для поглощения топливной смеси. Он может регулировать давление на входе или температуру воздуха, чтобы увеличить поток смеси и улучшить процесс сгорания. Когда поршень движется в ВМТ и приближается к этой точке, топливная смесь сжимается в такте сжатия. Во время такта расширения зажигание свечи зажигания является начальной точкой процесса сгорания, и в этой точке он заканчивается.После этого поршень движется снизу вверх и достигает точки, в которой вытесняется сгоревший газ. Таким образом, такты расширения и выпуска длиннее, чем такты впуска и сжатия, и можно достичь полного сгорания для увеличения удельной мощности.


Как показано на рисунке 3, двухтактный термодинамический цикл характеризуется коротким ходом сжатия и расширения, который дополняется регулировкой угла опережения искры для реализации более полного сгорания. Более длинное перекрытие клапанов может увеличить продолжительность открытия клапана на тактах впуска и выпуска.Прежде чем поршень достигнет точки, свеча зажигания воспламеняет топливную смесь, и поршень движется вверх, чтобы совершить такт сжатия. Во время такта выпуска поршень перемещается от точки к точке. Затем поршень перемещается от точки к точке на такте впуска. Когда поршень перемещается из точки в точку, перекрытие клапанов обеспечивает одновременное открытие впускного и выпускного клапанов для поглощения топливной смеси и удаления остаточного газа. Это может увеличить объемный КПД и улучшить процесс газообмена.Кроме того, опережающее зажигание может обеспечить достаточное сгорание для высвобождения большего количества энергии.


2.3. Прототип и экспериментальная система

Структура прототипа FPEG показана на рисунке 4. Прототип представляет собой однопоршневой четырехтактный бензиновый двигатель, который оснащен четырьмя электромагнитными клапанами. В нем используется метод охлаждения с водяным охлаждением, управление впрыском топлива с обратной связью и система искрового зажигания с электронным управлением. По сравнению с конструктивными требованиями FPEG характеристики прототипа очень согласованы и облегчают переоборудование.В таблице 1 перечислены основные параметры конструкции прототипа.


электромагнитная конструкция клапана показана на рисунке 4. Трубчатая конструкция состоит из железного сердечника, каркаса катушки, катушки, слоя постоянного магнита и внешней стенки привода. В системе электромагнитных клапанов катушка и клапан жестко соединены, а задняя пружина собрана между каркасом катушки и головкой блока цилиндров.Электромагнитный клапан используется для подачи продувочного воздуха и осуществления эффективного управления процессом газообмена. Под управлением электронного блока управления (ЭБУ) он может изменять высоту подъема клапана, время открытия клапана и продолжительность открытия клапана, чтобы обеспечить гибкое управление механизмом клапана.

На рис. 5 показаны трехмерные структуры линейного генератора с трубчатой ​​подвижной катушкой (MCLG). MCLG - это однофазный генератор постоянного магнита с подвижной катушкой, также называемый двигателем звуковой катушки (VCM).Линейный генератор состоит из постоянного магнита (ПМ), сердечника, подвижной катушки и торцевой крышки. Воздушный зазор между внешним и внутренним сердечниками. Чтобы получить высокую плотность потока в воздушном зазоре, PM принимает радиальное намагничивание, а направление намагничивания PM-A и PM-B противоположно. Каркас немагнитной катушки намотан двумя катушками, которые и являются движителем MCLG. Кроме того, ток катушки не является коммутируемым, что может повысить эффективность системы MCLG. Структура имеет преимущества меньшей подвижной массы, быстрого отклика и низкой индуктивности катушки [18, 19].


На основе компонентов прототипа, электромагнитного клапана, линейного генератора с подвижной катушкой и датчиков создана экспериментальная система FPEG. Как показано на рисунке 6, экспериментальная система используется для тестирования и подтверждения термодинамических характеристик FPEG. Система также включает в себя контроллер двигателя и преобразователь мощности, который оснащен датчиком давления в цилиндре, датчиком перемещения и датчиком тока. Датчики могут собирать информацию о системе в рабочем состоянии и передавать информацию контроллеру, который рассчитывает результаты тестирования.


3. Моделирование FPEG

Термодинамический цикл FPEG зависит от различных факторов, таких как газовая динамика, процесс выделения тепла и потери при теплопередаче. В этом разделе имитационная модель FPEG создается на основе одномерного уравнения газовой динамики, функции горения Вебера и функции теплопередачи.

3.1. Одномерная газовая динамика

Для описания одномерной газовой динамики в трубе свободнопоршневого двигателя предполагаются следующие моменты: (1) состояние рабочего тела в камере сгорания - идеальный однородный газ.(2) Температура, давление и объем соответствуют уравнению состояния идеального газа. (3) Масса газа в баллоне постоянна, и утечка потока в процессе газообмена не учитывается. Таким образом, одномерная модель динамики в трубе описывается тремя уравнениями.

Уравнение энергии:

Уравнение сохранения количества движения:

Уравнение неразрывности рабочего тела: где представляет собой содержание энергии идеального газа, представляет скорость потока, представляет статическое давление, представляет собой крест площадь сечения трубы, представляет тепловой поток стенки, представляет единицу объема, представляет плотность рабочей среды, представляет удельную теплоемкость в объеме содержимого и представляет силу трения между жидкостью и стенкой трубы.

3.2. Давление газа в цилиндре

В соответствии с вышеизложенными предположениями, мы также предположили, что давление газа в цилиндре равно давлению на впуске, равно как и такт выпуска. Когда объем камеры сгорания равен нулю, положение поршня устанавливается как источник смещения. Используя первый закон термодинамики и уравнение состояния идеального газа, давление газа в цилиндре можно записать в виде следующего уравнения: где представляет давление газа в цилиндре, представляет объем цилиндра, представляет отношение удельной теплоемкости рабочее тело, и представляет собой скорость тепловыделения топлива.

3.3. Горение в цилиндре

Экзотермическая характеристика свободнопоршневого двигателя определяется скоростью распространения пламени и формой камеры сгорания. В этой статье имитационная модель использует модель сгорания с одной зоной с нулевой размерностью, которая определяет всю камеру сгорания как замкнутое пространство и игнорирует утечку потока. Функцию Вебера можно использовать для представления фактического процесса горения и выражения тепловыделения. Тепло, выделяемое в процессе сгорания, выглядит следующим образом: где Q представляет скорость тепловыделения топлива, представляет более низкую теплотворную способность топлива, представляет массу впрыскиваемого топлива за цикл, представляет эффективность сгорания, представляет качество сгорания. индекс, представляет продолжительность горения и представляет переменную времени, представляет время начала горения.

3.4. Теплопередача от цилиндра

При расчете потерь тепла необратимость теплопередачи при возвратно-поступательном тепловом цикле не имеет значения. Предполагается, что потери произошли только в тактах сгорания и расширения, а передача тепла из камеры сгорания наружу незначительна. От газов в цилиндре до стенок цилиндра расчетное уравнение теплопередачи: где представляет скорость тепловыделения топлива, представляет коэффициент теплопередачи, представляет диаметр цилиндра, представляет положение поршня, представляет температуру стенок цилиндра, и представляет собой температуру газа в баллоне.

Здесь расчетное уравнение принимает функцию теплопередачи Woschni 1978. Эта функция подходит для цикла высокого давления, а коэффициент теплопередачи is где представляет диаметр цилиндра, представляет давление газа в цилиндре, представляет собой входной температура газа в цилиндре, представляет собой круговую скорость и представляет собой среднюю скорость поршня.

3.5. Имитационная модель

В процессе создания модели FPEG одномерная имитационная модель в основном делится на две части.Первая часть включала размерные параметры двигателя, такие как диаметр цилиндра, длину впускного и выпускного патрубков. Другая часть содержала термодинамическую модель, модель горения и модель теплопередачи.

Шаги моделирования FPEG следующие области [20]: (1) изучение основных параметров измерения двигателя и сбор данных и информации о конструкции. (2) Разделить фактический двигатель со свободным поршнем на несколько простых в эксплуатации подсистем и использовать субмодули AVL BOOST для создания соответствующих физических субмоделей.(3) В соответствии с теоретическими знаниями динамики, теплопередачи, термодинамики, горения была построена простая физическая модель, которая содержит собранные данные и входную информацию для субмодуля двигателя. (4) Используйте установленную модель, чтобы выполнить элементарное моделирование и найти физические параметры имитационной модели, чтобы изменить ошибку.

На основе теоретического анализа и математической модели, приведенной выше, в программном обеспечении AVL BOOST создается одномерная имитационная модель FPEG для моделирования четырехтактного термодинамического цикла и двухтактного термодинамического цикла.Как мы все знаем, полная имитационная модель системы FPEG должна включать систему впуска, систему сгорания и систему выпуска. В соответствии с параметрами конструкции, указанными выше, и системой экспериментов в предыдущем разделе, имитационная модель одномерного потока создается, как показано на рисунке 7.


3.6. Параметры моделирования

Перед запуском модели моделирования ключевым этапом является выбор параметров управления. Начальное значение граничных условий включает давление, температуру и соотношение воздух-топливо.При этом параметры цилиндра содержат диаметр цилиндра, ход поршня, длину шатуна и степень сжатия. Также необходимо определить параметры управления теплопередачей и спецификацию клапана. В таблице 2 перечислены конкретные параметры каждого компонента.


Параметры Ед.
Объем см³ 695
Диаметр седла клапана мм 36
Минимальная верхняя мертвая точка мм 18
максимальная 9019
Максимальный рабочий объем двигателя куб.см / об 182
Степень сжатия - 9.3
Эффективность генерации MCLG % 95,2
Максимальная сила тяги генератора Н 3200


Компоненты Параметры Значение

Воздухоочиститель Общий объем 1 л
Дроссельная заслонка Угол дроссельной заслонки 18,5 °
Цилиндр Диаметр цилиндра 102 мм
Ход поршня 126 мм Длина шатуна
Степень сжатия 9,3
Впускной клапан Открытие клапана 48,5 мс
Закрытие клапана 50,2 мс
19 Выпускной клапан Открытие клапана. 1 мс
Клапан закрыт 23,4 мс
Катализатор Объем монолита 0,3 л
Граница системы 1 Давление 1,1 бар
Граница системы 2 Давление 1,0 бар
Температура газа 126,85 ° C

4.Проверка модели

Моделируется траектория свободного поршня FPEG во время четырехтактного рабочего цикла. Как показано на рисунке 8, рабочий период четырехтактного двигателя со свободным поршнем составляет около 100 мс. Понятно, что перемещение поршня асимметрично, такты впуска и сжатия короче тактов расширения и выпуска. Степень расширения больше, чем степень сжатия, и более длительное расширение и выхлоп полезны для достижения полного расширения и уменьшения остаточного газа.Следовательно, характеристики FPEG отличаются от характеристик обычного двигателя, и он имеет большое преимущество с точки зрения топливной экономичности и образования выбросов.


В системе FPEG завершен четырехтактный эксперимент для проверки имитационной модели. Как видно из рисунка 9, он сравнивает давление в цилиндре по данным испытаний с результатами моделирования во время четырехтактного рабочего цикла, которые получают датчиком давления в цилиндре. По сравнению с экспериментальными результатами, кривые давления в цилиндре испытания и моделирования совпадают; максимальное отклонение изменения давления в цилиндре - 5.2%, а среднее отклонение составляет 1,5%. В таблице 3 приведены результаты сравнения производительности FPEG. Таким образом, результаты моделирования соответствуют требованиям точности, и мы полагаем, что имитационная модель является точной моделью FPEG. Более того, в системе FPEG время начала сгорания составляет -3,1 мс, а продолжительность сгорания составляет 6,4 мс, что определяется результатами экспериментов с четырехтактным двигателем.



Название Агрегат Тест Моделирование

Эффективная мощность кВт75 4,82
Пиковое давление бар 21,02 21,40
Содержание остаточного газа - 0,0809 0,0769 −3,1
Продолжительность горения мс 6,4 6,4

5.Оптимизация двухтактного термодинамического цикла

Смоделированная кривая движения свободного поршня во время двухтактного рабочего цикла показана на рисунке 10. Как видно, рабочий период двухтактного двигателя со свободным поршнем составляет около 43 мс. . На основе перекрытия клапанов и опережающего зажигания получается длинный такт впуска и выпуска при коротком такте сжатия и расширения. Эта характеристика показывает, что двухтактный термодинамический цикл ГПЭГ может быть оптимизирован путем изменения параметров управления газообменом и горением.


В этом разделе проверенный режим используется для моделирования двухтактного термодинамического цикла FPEG. При неизменных других параметрах управления модель моделируется при различном давлении всасываемого воздуха, времени впрыска, времени зажигания, времени впускного клапана и времени выпускного клапана. Затем анализируется влияние термодинамического цикла и оптимизируются термодинамические характеристики FPEG.

5.1. Влияние повышения давления на впуске

Исследования показывают, что улучшение давления всасываемого воздуха может обеспечить хорошее состояние сгорания.Модель FPEG моделируется при разном давлении всасываемого воздуха, а кривые изменения выглядят следующим образом. Указанная мощность, коэффициент остаточного газа, указанный удельный расход топлива (ISFC) и расход на всасывании являются основными оценочными показателями, и их можно найти в результатах моделирования. В соответствии с диапазоном давления реального турбонагнетателя диапазон давления на впуске составляет от 1,0 до 1,4 бара.

На рис. 11 показано, что указанная мощность и расход на впуске постепенно увеличиваются, коэффициент остаточного газа постепенно снижается в диапазоне давления на впуске, а четыре оценочных индекса изменяются более явно в диапазоне 1.0 бар ~ 1,1 бар. Результаты показывают, что двухтактный двигатель со свободным поршнем не может обеспечить достаточный поток всасываемого воздуха для завершения рабочего цикла при нормальном давлении всасываемого воздуха. Это связано с тем, что при повышении давления всасываемого воздуха в цилиндр может поступать больше топливной смеси. Кроме того, более высокое давление всасываемого воздуха обеспечивало большое давление сжатия. Следовательно, увеличение давления всасываемого воздуха приводит к улучшению указанной мощности и экономии топлива.

5.2. Влияние времени впрыска

В системе сгорания одномерной имитационной модели параметры времени впрыска могут быть изменены, чтобы имитировать его влияние на производительность FPEG.Как видно, на рисунке 12 показано влияние разного времени впрыска. Среднее эффективное давление (MEP) - это эффективная мощность, генерируемая рабочим объемом на единицу цилиндра, и это важный показатель для оценки энергетических характеристик.

Диапазон времени впрыска разделен на три части: 0 мс ~ 7,2 мс, 7,2 мс ~ 14,4 мс и 14,4 ~ 21,6 мс. Во-первых, указанная мощность и MEP поддерживаются на низком уровне колебаний, а коэффициент остаточного газа остается неизменным на более высоком уровне.Поскольку процесс впрыска топлива завершился до открытия впускного клапана, большая часть топливной смеси не попала в камеру сгорания. Во-вторых, время впрыска и процесс всасывания согласованы, а термодинамические характеристики FPEG значительно улучшились, что позволило улучшить указанную мощность и эффективность вентиляции. Наконец, по сравнению с первой частью, все значения производительности аналогичны в диапазоне от 14,4 мс до 21,6 мс. Это связано с тем, что время впрыска оставляет позади процесс впуска, и часть топливной смеси не может быть использована в процессе сгорания.Как видно, оптимальные характеристики двигателя достигаются в момент 14,4 мс.

5.3. Влияние момента зажигания

Эффект опережающего зажигания заключается в том, чтобы начать горение перед тем, как поршень переместится в ВМТ. Когда поршень движется в ВМТ и входит в такт расширения, смесь рабочего тела полностью сгорает и выделяет больше энергии. Следовательно, диапазон времени зажигания составляет от -5,4 мс до 0 мс, а результаты моделирования показаны на рисунке 13.

В диапазоне от -3 мс до -5.4 мс, указанная мощность и MEP постепенно уменьшаются, а ISCF постепенно увеличивается. Это происходит из-за преждевременного воспламенения смеси и расширения горящего газа. Часть энергии мешает поршню двигаться вверх до ВМТ. Затем указанная мощность и MEP постепенно уменьшались с разным временем зажигания, а ISFC постепенно увеличивалась в диапазоне от -3 мс до 0 мс. Из-за задержки времени воспламенения поршень движется вниз до того, как смесь начнет гореть. Это приводит к увеличению объема цилиндра и снижению давления сгорания, а термодинамические характеристики FPEG находятся в состоянии высокого расхода топлива и низкой выходной мощности.Кроме того, оптимальные характеристики двигателя достигаются при −3 мс.

5.4. Влияние времени впускного клапана

При условии сохранения неизменными высоты подъема клапана и продолжительности открытия клапана, модель FPEG моделируется при разном времени открытия впускного клапана. Как показано на рисунке 14, при времени открытия впуска от 4,8 мс до 16,8 мс, указанная мощность и расход на всасывании показывают общую тенденцию сначала к увеличению, затем к падению и получают максимальное значение на уровне 10,8 мс. Между тем характеристики коэффициента остаточного газа и ISFC противоречат закону изменения всасываемого потока.

Когда время открытия впуска находится в диапазоне от 4,8 до 10,8 мс, впускной и выпускной клапаны открываются одновременно. Он создает продувочный поток в цилиндре, что делает процесс газообмена более полным и снижает количество остаточного газа. После этого время открытия впускного клапана опаздывает, и часть топливной смеси не попадает в цилиндр, поэтому процесс сгорания оказывается недостаточным и термодинамические характеристики значительно ухудшаются. Из-за фиксированного времени работы клапана оптимальный период открытия впускного клапана от 10.От 8 мс до 24,5 мс.

5.5. Влияние времени работы выпускного клапана

Как показано на Рисунке 15, при изменении времени открытия выпускного клапана с 1,2 мс на 10,8 мс указанная мощность и поток выхлопных газов показывают общую тенденцию сначала к увеличению, а затем к снижению. Поток выхлопных газов увеличивался в диапазоне от 1,2 мс до 3,6 мс, а затем постепенно уменьшался, достигая максимального значения на 3,6 мс. Указанная мощность, коэффициент остаточного газа и ISCF улучшились с увеличением потока выхлопных газов.

Результаты показывают, что преждевременное открытие выпускного клапана приводит к недостаточному процессу сгорания и снижению мощности и экономии топлива FPEG.При задержке открытия выпускного клапана остаточный газ в цилиндре не может быть удален полностью, и это повлияет на следующий цикл сгорания. Следовательно, правильное время открытия выпускного клапана значительно улучшает характеристики FPEG, а оптимальный период открытия выпускного клапана составляет от 3,6 мс до 23,1 мс.

5.6. Оптимизированная производительность FPEG

В соответствии с приведенными выше результатами моделирования мы внесли корректировки в управляющие параметры модели FPEG.Настраиваемые параметры включают время зажигания, время впрыска и время открытия клапана. Уточненная модель моделировалась на рабочей частоте 25 Гц, а именно, 25 возвратно-поступательных циклов в секунду. Оптимизированные результаты показывают, что указанный тепловой КПД составляет около 27,6%, указанная мощность составляет 6,7 кВт, а ISFC составляет 481,6 г / кВтч. Конкретные результаты термодинамических характеристик FPEG для двухтактного термодинамического цикла показаны в Таблице 4.

Мощность

Элементы Единица Значение

кВт 6.7
Расчетный тепловой КПД % 27,6
Указанный удельный расход топлива (ISCF) г / кВт · ч 481,6
0,25 Остаточное содержание газа Среднее эффективное давление бар 2,6
Масса на всасывании за цикл г 0,671

6.Выводы

В работе представлена ​​оптимизация термодинамических характеристик двухтактного одноцилиндрового FPEG. Создана комплексная одномерная модель потока FPEG, и точность модели подтверждена экспериментальными результатами, протестированными на прототипе FPEG. Результаты экспериментов с четырехтактным двигателем показали эффективную мощность 4,75 кВт и максимальное давление 21,02 бар. На этой основе был смоделирован и оптимизирован двухтактный термодинамический цикл.Результаты моделирования показывают, что указанный тепловой КПД ППЭГ составляет около 27,6%, а указанная мощность 6,7 кВт может быть достигнута на рабочей частоте 25 Гц. Из этих результатов мы заключаем, что термодинамические характеристики высокого КПД и энергосбережения для системы FPEG могут быть значительно улучшены за счет оптимизации двухтактного термодинамического цикла.

В будущем будет проведено экспериментальное испытание для проверки результатов моделирования двухтактной термодинамической оптимизации цикла в этой статье.Кроме того, двухтактный генератор с свободнопоршневым двигателем будет исследован с помощью многоцелевой интеллектуальной оптимизации для получения более высокой выходной мощности и эффективного КПД.

Доступность данных

Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Благодарности

Авторы выражают признательность Национальному фонду естественных наук Китая (грант №51875290).

WÄRTSILÄ Энциклопедия морских технологий

Дизельный двигатель

Тип двигателя внутреннего сгорания, который воспламеняет топливо путем впрыска его в горячий воздух под высоким давлением в камере сгорания. У него нет ни карбюратора, ни системы зажигания. Топливо впрыскивается в камеру сгорания в виде очень тонкой струи через форсунку. Там он воспламеняется от тепла сжатого воздуха, которым была заполнена камера. Дизельный двигатель работает в фиксированной последовательности событий, которая может быть достигнута за четыре или два такта.Двухтактный низкооборотный (то есть от 70 до 120 об / мин) дизель используется в главных силовых установках, так как он может напрямую соединяться с гребным винтом и валом. Среднеоборотный четырехтактный двигатель (250 - 1200 об / мин) используется для вспомогательного оборудования, такого как генераторы переменного тока, а также для главной силовой установки с коробкой передач.

Четырехтактный дизельный двигатель напоминает бензиновый двигатель, поскольку он работает по четырехтактному циклу, а именно: впуск, сжатие, мощность и выхлоп. Когда поршень опускается на такте впуска воздуха, более низкое давление в цилиндре позволяет воздуху попасть в цилиндр через впускной клапан, который открывается непосредственно перед верхней мертвой точкой.

Когда поршень прошел нижнюю мертвую точку и начал подниматься, впускной клапан закрывается, и движение поршня вверх сжимает заряд воздуха в цилиндре, вызывая быстрое повышение температуры. До завершения второго такта заправка мазута постепенно впрыскивается в цилиндр форсункой.

При сгорании топливовоздушного заряда газы расширяются. Они толкают поршень вниз и создают рабочий ход. Прежде чем поршень достиг нижней мертвой точки, выпускной клапан открывается, и когда поршень снова поднимается вверх, сгоревшие газы вытесняются через выпускной клапан.Непосредственно перед верхней мертвой точкой впускной клапан открывается, и цикл начинается снова.

- Высокоскоростной Дизельный двигатель - Двигатель поршневого типа со стволом, имеющий номинальную скорость 1400 об / мин или выше.

- Среднеоборотный дизельный двигатель - Двигатель поршневого типа с диапазоном частот вращения от 400 до 1200 об / мин.

- Низкооборотный дизельный двигатель - Двигатель крейцкопфного типа с номинальной частотой вращения менее 400 об / мин.

Из руководства по проекту Wärtsilä 46:

При диаметре цилиндра 46 см и ходу 58 см номинальная мощность двигателя Wärtsilä 46F составляет 1250 кВт / цилиндр при 600 об / мин.Вспомогательное оборудование, такое как насосы, термостаты и модуль смазочного масла, может быть встроено в двигатель или отдельно. Al-соединения сконцентрированы в нескольких точках, чтобы сократить монтажные работы.

Основные компоненты

1. Блок двигателя

Блок цилиндров изготовлен из чугуна с шаровидным графитом в виде единой детали для всех номеров цилиндров. Крышки коренных подшипников фиксируются снизу двумя винтами с гидравлическим натяжением. Блок двигателя направляет их вбок как вверху, так и внизу.Горизонтальные боковые винты с гидравлическим натяжением поддерживают крышки коренных подшипников.

2. Коленчатый вал

Коленчатый вал выкован цельно. Противовесы установлены на каждой перемычке. Высокая степень балансировки обеспечивает равномерную и толстую масляную пленку для всех подшипников.

3. Шатун

Шатун из легированной стали кован и обработан с круглым сечением. Нижний конец разделен по горизонтали, чтобы можно было снимать поршень и шатун через гильзу цилиндра.Все болты шатуна затянуты гидравлически. Подшипник поршневого пальца - трехметаллический. Масло подается к подшипнику поршневого пальца и к поршню через отверстие в шатуне.

4. Коренные подшипники и подшипники шатуна

Подшипники шатуна трехметаллического типа со стальной задней частью, футеровкой из свинцовой бронзы и мягким и толстым рабочим слоем. В качестве основных подшипников используются как трехметаллические, так и биметаллические подшипники.

5. Гильза цилиндра

Гильза цилиндра центробежного литья имеет высокий и жесткий буртик для минимизации деформаций.Материал футеровки - это специальный сплав серого чугуна, разработанный для обеспечения превосходной износостойкости и высокой прочности. Точный контроль температуры достигается за счет точно расположенных продольных отверстий для охлаждающей воды. Чтобы исключить риск полировки отверстия, гильза оснащена кольцом, препятствующим полировке. Пространство для охлаждающей воды между блоком и футеровкой закрыто двойными уплотнительными кольцами. Вверху гильза оснащена кольцом, препятствующим полировке, чтобы исключить полировку отверстия и снизить расход смазочного масла.

6. Поршневые и поршневые кольца

Поршень составной конструкции с юбкой из чугуна с шаровидным графитом и стальной головкой. Юбка поршня смазывается под давлением, что обеспечивает контролируемое распределение масла по гильзе цилиндра при любых условиях эксплуатации. Масло через шатун подается в охлаждающий канал в верхней части поршня. Канавки поршневых колец закалены для обеспечения хорошей износостойкости. Комплект поршневых колец состоит из двух направленных компрессионных колец и одного подпружиненного маслосъемного кольца.Все поршневые кольца имеют износостойкое хромирование.

7. Головка блока цилиндров

Головка блока цилиндров сконструирована так, что ее обслуживают всего четыре шпильки с гидравлической затяжкой. Клапанные клетки не используются, что обеспечивает очень хорошую динамику потока в канале выхлопных газов. Седла выпускных клапанов имеют водяное охлаждение, и все клапаны оснащены ротаторами клапанов. Поверхности седел впускных клапанов покрыты стеллитом. Если двигатель предназначен только для работы с ДВП, выпускные клапаны также имеют стеллитовое покрытие.Двигатели, предназначенные для работы на HFO, имеют выпускные клапаны Nimonic.

Дополнительная информация: Руководство по проекту Wärtsilä 46

Двухтактная силовая установка - FLEX LNG

Парк танкеров-газовозов и внедрение двухтактной силовой установки для газовозов-газовозов

С 1964 года было построено

танкеров для перевозки СПГ. До 2010 года танкеры для перевозки СПГ в основном строились с паровыми турбинами для приведения в движение. Хотя эти суда по-прежнему составляют значительную часть флота, они имеют недостаток стоимости по сравнению с современными судами из-за более высокого расхода топлива.Примерно с 2002 года владельцы начали строить танкеры для перевозки сжиженного природного газа с двухтопливными дизельными двигателями или трехтопливными дизельными двигателями, составляя основную часть современного тоннажа. Примерно с 2012 года производители двигателей начали предлагать двигатели с тихоходными двухтактными двигателями, известными как MEGI (высокое давление) или X-DF (низкое давление), специально предназначенные для судов, работающих на газе.

В настоящее время у владельцев есть выбор из двух различных решений двигателей для двухтактных низкоскоростных двигателей судов, работающих на СПГ: MEGI от MAN Diesel и Turbo и X-DF от WinGD (ранее Wärtsilä).

Двигатель MEGI - впрыск газа под высоким давлением

В дизельном двигателе MEGI, разработанном и продаваемом компанией MAN Marine Engines and Systems, применяется принцип сгорания без предварительного смешения (принцип дизельного топлива). Первое судно СПГ MEGI было сдано в 2016 году.

Двухтопливный двухтактный двигатель основан на принципе сгорания при работе на мазуте (HFO) или судовом дизельном топливе (MDO) вместе с природным газом высокого давления, где топливо впрыскивается и сжигается напрямую, а не предварительное смешение или сгорание по циклу Отто.Короче говоря, два или три газовых топливных клапана впрыскивают природный газ под высоким давлением в камеру сгорания, и для обеспечения оптимально контролируемого сгорания небольшое количество пилотного масла впрыскивается одновременно с природным газом через два или три обычных инжектора жидкого топлива.

Двигатель MEGI оснащен дополнительными системами безопасности, которые обеспечивают безопасную работу на газе, не требуя разрывных мембран в ресивере продувочного воздуха, ресивере выхлопных газов и в трубопроводе выхлопных газов.

Владельцам и операторам предоставляется максимальная гибкость в отношении топлива и, в зависимости от относительной цены и доступности газа и мазута, они могут свободно выбирать наиболее конкурентоспособное топливо, поскольку двигатель работает с одинаковой эффективностью как на газе, так и на топливе.Дизельный цикл обеспечивает стабильное сгорание газа при любых погодных условиях, таких как тяжелая погода и высокие температуры окружающей среды, без какого-либо риска пропусков зажигания или детонации.

СПГ любого качества можно сжигать с такой же высокой эффективностью, и двигатель не имеет особых требований к метановому числу. Двухтопливный двигатель может работать на природном газе в диапазоне нагрузок от 10% до 100%. Кроме того, в зависимости от наличия топлива на борту, двигатель может сжигать природный газ и дизельное топливо / дизельное топливо в любом соотношении.Двигатель MEGI зажигается на дизельном топливе, и переключение на работу на газе может происходить при 10% нагрузке на двигатель. В качестве пилотного топлива можно использовать как HFO, так и MDO.

Еще одним преимуществом тоннажа, работающего на газовом топливе, является способность регулировать работу в соответствии с изменяющимися ценами на топливо и предельными уровнями выбросов выхлопных газов. Опыт эксплуатации показывает, что двигатель MEGI обеспечивает значительное сокращение выбросов CO 2 , NO x и SO x .

Сосуды

MEGI генерируют незначительный проскок метана во время работы на газе, что делает их наиболее экологически чистой технологией.Сокращение выбросов парниковых газов, включая выброс метана, оказалось на 22% ниже по сравнению с мазутом.

Технология X-DF: закачка газа под низким давлением

Принимая во внимание растущий спрос на низкооборотные двухтопливные двигатели, WinGD разработала процесс сжигания обедненной смеси Отто с впуском газа под низким давлением и зажиганием с микропилотом для своего портфеля двухтактных двигателей. Первое судно LNG X-DF было сдано в 2017 году.

Двухтопливная технология низкого давления, известная как серия двигателей X, является дальнейшим развитием хорошо зарекомендовавших себя среднеоборотных двухтопливных двигателей Wärtsilä.В отличие от двигателей высокого давления с впрыском газа, которые работают по дизельному циклу, двигатели WinGD низкого давления X-DF работают по циклу Отто при работе в газовом режиме, т.е. небольшое количество жидкого пилотного топлива.

Система газораспределения и впуска была специально разработана с учетом требований двухтактного двигателя. Газ подается и распределяется в газовых коллекторах по обеим сторонам двигателя для подачи газа в каждый цилиндр.Два клапана впуска газа с гидравлическим приводом (GAV) впрыскивают газ непосредственно в каждый цилиндр через стенку гильзы цилиндра. Поскольку газ впрыскивается в начале сжатия, в зависимости от выбранного номинального значения, подачи газа под низким давлением 10-13 бар изб. Достаточно для достижения однородной воздушно-газовой смеси даже при полной нагрузке двигателя.

В двигателях X-DF последнего поколения подача газа регулируется встроенным в двигатель встроенным блоком регулирования давления газа (iGPR), который дает большую свободу для оптимизации конструкции машинного отделения, обеспечивая значительную экономию места, стальной конструкции и т. Д. вентиляция, кабельная разводка - еще больше существенно снизят стоимость судна.Это стало возможным благодаря внедрению iGPR, который заменяет необходимость в выделенном отсеке для газового клапана открытого типа (GVU) или закрытого типа GVU.

Двигатели WinGD X-DF со значительным запасом соответствуют нормативам ограничения выбросов NOx Tier III IMO в газовом режиме в ECA без каких-либо дополнительных мер по снижению выхлопных газов, таких как EGR или SCR.

При расходе жидкого топлива для пилотного розжига ниже 1% от общего тепловыделения и практически без содержания серы в СПГ технология X-DF считается надежным решением для достижения нулевой отметки.5% -ый глобальный предел содержания серы в судовом топливе предлагается вступить в силу с января 2020 года.

Выбросы твердых частиц на двигателях X-DF снижены почти до нуля, а выбросы CO 2 , связанные с сжиганием природного газа, дополнительно сокращены. Общее содержание углеводородов в X-DF значительно ниже по сравнению с четырехтактными двигателями DF низкого давления, которые используют ту же технологию и используются в качестве вспомогательного оборудования на каждом судне.

Двухтактные и четырехтактные дизельные двигатели

Для изучения двухтактных и четырехтактных дизельных двигателей.

AIM: Изучить двухтактные и четырехтактные дизельные двигатели.

АППАРАТ: Модель двухтактного и четырехтактного дизельного двигателя.

ТЕОРИЯ: Двигатель, преобразующий тепловую энергию в механическую, известен как тепловой двигатель.

Принцип работы четырехтактного дизельного двигателя.

Есть четыре штриха как:

1. Ход всасывания

2. Ход сжатия

3. Ход расширения

4.Ход выпуска

1. Ход всасывания: Этот ход начинается с положения поршня в верхней мертвой точке. Входное значение открыто, а выходное значение закрыто. Движение поршня вниз создает в цилиндре вакуум, за счет которого воздух втягивается в цилиндр. Движение поршня обеспечивается либо стартером, либо движением маховика.

2. Ход сжатия: Этот ход начинается с поршня в точке B.Положение постоянного тока. Впускные и выпускные клапаны закрыты.

Воздух, всасываемый во время такта всасывания, сжимается, когда поршень движется вверх. За несколько градусов до завершения такта сжатия в сжатый воздух впрыскивается очень мелкая струя дизельного топлива. Топливо самовозгорается.

Рисунок цикла двигателя CI

3. Ход расширения: Впускной и выпускной клапаны остаются закрытыми. Тепловая энергия, выделяемая при сгорании топлива, приводит к повышению давления газов.Этот высокий рост давления приводит в движение поршень вниз, тем самым производя некоторую полезную работу. Этот ход называется силовым.

4. Такт выпуска: Этот ход начинается с поршня на B.D.C. позиция. Входное значение остается закрытым, а выходное значение - открытым. Движение поршня вверх выталкивает сгоревшие газы из цилиндра через выпускной клапан. В конце такта выпуска выпускной клапан также закрывается.

Четыре такта завершают один цикл, который может повторяться снова для выработки мощности.

ПРИНЦИП РАБОТЫ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ 2-ТАКТНОГО ДВИГАТЕЛЯ

1. 1 st Ход - Когда поршень начинает подниматься из своего B.D.C. положение, он закрывает передаточное и выпускное отверстие. Воздух, который уже находится в цилиндре, сжимается. Одновременно с движением поршня вверх в картере двигателя создается разрежение. Как только впускное отверстие открывается, свежий воздух всасывается в картер двигателя. Зарядка продолжается до тех пор, пока картер и пространство в цилиндре под поршнем не заполнятся воздухом.

2. 2 nd Stroke - Незадолго до завершения такта сжатия в сжатый воздух (который имеет очень высокую температуру) впрыскивается очень мелкая струя дизельного топлива.