Здравствуйте дорогие форумчане! Хотелось бы задать несколько вопросов по сварке меди полуавтоматом. После покупки организацией полуавтомата Сварог MIG 3500 (J93) и его успешной работы, у начальства возник вопрос а возможно ли варить им медь( так как заказов на сварку меди много т.к. предприятие занимается изготовлением изделий из меди и по мимо пайки вот решили попробовать сварку)? Почитав интернет и литературу решили попробовать, купили медную проволоку CuSi3 диаметром 1мм, газ использовали Аргон. Начали пробовать варить, решили попробовать без прогрева ничего не вышло даже не прилипает шов( на то он и эксперимент). Начали греть до положенных 300градусов две медные шины толщиной 5мм в стык с зазором чуть больше 1мм, эффект тот же самый проплавления основного металла практически нет, шины не свариваются. Напряжение выставляли на аппарате 18,5V, а силу тока порядка 120-130А, расход газа поставили 15л/мин. Решили греть еще в итоге когда нагрели детали до примерно 900 может чуть больше во общем почти до границы плавления сварить получилось. Шов получился неплохой но чешуйки как то не симметрично ложились как при сварке полуавтоматом черных металлов и присутствовало разбрызгивание вокруг шва небольшое совсем. На длине шва 100мм если прогрели весь шов перед сваркой заварить успеваем только половину длинны, дальше металл остывает и металл в сварочной ванне не очень хорошо растекается и как будто просто направляется а не сваривается. Так что такой короткий шов приходится делить на два и греть заново. Пробовали сломать шов выдержал разрушение произошло рядом со швом. Пробовали зачищать металлической щеткой место шва и обезжиривать бензином галоша эффекта не какого не заметили. Полазив интернет не где не встречали упоминания о том что нужно греть так сильно. Где то находил упоминание что нужно использовать тефлоновый канал для проволоки ну я думаю не в нем дело. Стоит ли его менять или оставить обычный в чем разница? Нашел информацию что можно попробовать вместо аргона использовать азот так как сварочная ванна будет проплавляться лучше ну там разница в 4%. Какие еще могут быть тонкости и нюансы как то не много в интернете информации именно про сварку полуавтоматом меди. У нас такого опыта по сварке меди нет. Заказов много будет и детали разных толщин до 20мм и греть до такой температуры очень затратно по времени выходит. Греем обычным резаком пропан-кислород.Пробовали настройки полуавтомата менять, но шов получается уже не таким красивым либо слишком выпуклым или образуются подрезы. Будем рады любым толковым советам а если фото или видео будет будет отлично. Просто именно со сваркой меди не сталкивались. Есть мысль попробовать буру для пайки чтобы получше растекался металл и меньше греть но это только предположение
www.chipmaker.ru
Технология сварка меди в домашних условиях полуавтоматом
Когда разговор заходит о сварке меди, то необходимо понимать, что этот металл обладает уникальными свойствами. А именно: отличной пластичностью, высокой теплопроводностью и электропроводностью, высочайшей коррозионной стойкостью. Плюс великолепные эстетические качества. Поэтому медь сегодня используется в самых разных сферах. А так как с ней всем приходится встречаться часто, то велика вероятность, что и процессом сварки этого металла будет интересоваться большой круг людей. Поэтому вопрос, а может ли проводиться сварка меди в домашних условиях, сегодня интересует многих.
Особенности сварки меди
Необходимо отметить тот факт, что чем чище медь, тем лучше она сваривается. Но кроме этого на качество процесса влияют и ниже следующие факторы.
Как и многие цветные металлы, при соприкосновении с кислородом медь начинает окисляться. Окисел – это тонкая жаропрочная пленка, которая мешает проводить сваривание медных заготовок. Поэтому на стадии подготовки оксидную пленку обязательно удаляют разными способами.
Медь обладает очень большим коэффициентом линейного расширения. Он в полтора раза больше, чем у стали. Поэтому при охлаждении происходит сильная усадка. Именно этот фактор негативно влияет на качество шва, в котором во время усадки появляются трещины.
В нагретом состоянии медь поглощает водород и кислород. Первый внутри металла после остывания образует поры. Второй окисел на поверхности.
При резком нагреве и остывании структура металла меняется. Из мелкозернистой он превращается в крупнозернистую. А это увеличение хрупкости в зоне сварки.
Коэффициент теплопроводности у меди в семь раз больше, чем у стали. То есть, при нагреве металл быстро расплавляется, при снижении температуры быстро становится твердым. Резкий переход от одной стадии в другую становится причиной образования внутри дефектов.
Текучесть меди. Этот показатель в 2,5 раза больше, чем у стали. При высоком нагреве, а это иногда требуется для сваривания толстых заготовок, полная проплавка с одной стороны практически невозможна. Поэтому сварка меди и ее сплавов проводится по двусторонней технологии. Когда с одной стороны производится полная сварка шва, а с задней стороны окончательно формируется сварочный шов. Кстати, именно текучесть меди осложняет сварку в вертикальном и потолочном положении.
Перед тем как варить медь, необходимо понять, что прочность и пластичность материала снижается с повышением температуры. До +200С эти показатели находятся еще в норме, а вот с повышением их значение резко снижается. К примеру, при нагреве в пределах 500-550С пластичность практически падает до нуля. Поэтому высока вероятность появления внутри сварочного шва трещин. При высоком значении тока не стоит проводить двухслойное заполнение зазора между свариваемыми заготовками, даже если детали будут иметь большую толщину. Надо постараться все сделать за один проход.
Как уже было сказано выше, проще всего сваривать чистую медь без примесей или раскисленную, в которой кислорода всего 0,01%. А так как такая медь встречается редко, в основном в промышленности используются ее сплавы, то рекомендуется сварку проводить в защитных газах или флюсах с присадочными материалами, в которые входят раскислители. А именно: кремний, марганец, алюминий и прочие добавки. Кстати, сварку меди электродами (расплавляющимися) также можно проводить. Единственно – это, чтобы в стержень входили раскислители, о которых было упомянуто выше.
Ручная дуговая сварка медных сплавов
Вообще, дуговая электросварка меди используется часто, особенно в домашних условиях. Целесообразность применения зависит от скорости процесса. При этом может использоваться сварка меди полуавтоматом или автоматом.
Технология сварки меди заключается в следующем.
Производится очистка кромок соединяемых заготовок от загрязнений, для чего используется любой растворитель.
Затем счищается оксидная пленка с помощью железных щеток, наждачки или другим абразивным инструментом.
Далее производится сам процесс сваривания электродом.
Но так как толщина медных деталей может варьироваться в больших пределах, то и сам режим сварки будет отличаться. К примеру, для соединения заготовок толщиною 6-12 мм, необходимо разделать кромки так, чтобы образовался V-образный зазор. При этом угол между кромками должен быть в пределах 60-70°. Если используется двусторонняя сварка, то угол можно уменьшить до 50°. Зазор между деталями создается путем сдвига заготовок, чтобы между ними образовалась щель шириною 2,5% от длины самого сварочного шва.
Если раздвижение деталей не производится, то необходимо провести их прихватку. Прихватка проводится неполным проваром шва длиною по 30 мм через каждые 300 мм. При этом должен сохраняться зазор размером 2-4 мм. При самой сварке меди инвертором, доходя до прихватки, ее необходимо удалить, сбив любым ударным инструментом. Потому что двойной провар меди приведет к изменению ее структуры и появлению дефектов внутри сварочного шва.
Если свариваемый металл имеет толщину больше 12 мм, то лучше использовать Х-образную разделку кромок, а соответственно и двустороннюю обварку. Если по каким-то причинам использовать данную разделку невозможно, то можно использовать V-образную. Правда, придется полностью заполнять зазор, на что уйдет больше электродов и времени.
Полезные советы
Стыковые соединения варить лучше на подкладках, которые будут понижать температуру в зоне сварки и не давать металлу утекать сквозь зазор. Здесь можно использовать подкладки стальные, медные, графитовые и другие. Ширина подкладки 40-50 мм.
Перед сваркой меди электродом необходимо кромки подогреть до 300-400С.
Стержень электродов, используемых для сварки медных сплавов, должен изготавливаться из меди или бронзы с легирующими добавками (кремний, марганец и так далее).
Ручная аргонодуговая сварка
Сварка меди аргоном – это еще один вариант соединения медных заготовок. Для этого используется постоянный ток прямой полярности, вольфрамовый неплавящийся электрод и присадочный материал из меди, бронзы или медно-никелевого сплава марки МНЖКТ.
Перед началом работ кромки стыка прогревают до 800С. Сварку ведут справа налево, присадочный пруток впереди горелки. Дуга короткая.
Сваривание угольными и графитовыми электродами
Эта разновидность сварки медных сплавов применяется редко. Угольные электроды используются при соединении заготовок толщиной до 15 мм, графитовые больше данной величины. Режим сварки:
Ток постоянный.
Полярность прямая.
Присадочный стержень в сварочную ванну не погружают. Расстояние 5-6 мм.
Процесс производится в защитном флюсе. Его наносят на присадочный стержень, который предварительно обмакивается в жидкое стекло.
Зазор – 0,5 мм.
Используется подкладка асбестовая или графитовая.
Медь толщиною до 5 мм варится без предварительного подогрева.
Сваривание необходимо проводить за один проход.
Сварка меди и алюминия
Два этих металла можно сварить двумя способами: контактной сваркой и замковым соединением. В первом случае необходимо учитывать, что алюминиевый материал обладает низшей температурой плавления, чем медь. Поэтому при стыковке нужно алюминиевую заготовку брать длиною больше, на поправку плавления.
При сварке рекомендуется проводить обдув зоны сваривания, используя для этого азот. Воздух здесь не пойдет, он тут же будет образовывать оксидную пленку. Если свариваются медные и алюминиевые трубки, то их необходимо надеть на стержень, состыковав в одной точке.
Замковое соединение – это когда на пластину из алюминия накладывается плоская деталь из меди. При этом производится сварка медной заготовки по периметру. При этом ширина шва должна быть равна толщине медной накладки. Процесс проводится с использованием графитовых вставок, которые и будут формировать шов соединения.
Сварка меди со сталью
Варить медь со сталью сложно, но можно. Для этого используются все те же методы, что и при сварке двух стальных заготовок. Единственное, на что необходимо обратить внимание, это разная температура плавления металлов. Поэтому при формировании кромок нужно кромку стальную делать более длиной (в 3,5 раза) и тонкой, чтобы в процессе сварки тонкий металл начинал быстрее плавиться.
Если сварка производится угольными электродами, то процесс проводится на постоянном токе прямой полярности. Длина дуги 14-20 мм, ее напряжение 40-55 вольт, а сила тока 300-550 ампер. Сварка проводится в защитном флюсе, который имеет точно такой же состав, как и при сварке медных сплавов. Сам флюс засыпается в зазор между заготовками.
Иногда встречаются ситуации, когда надо приварить медную шпильку к стальной детали. Для этого нужно применять обратную полярность, сам процесс проводится под флюсом без предварительного прогрева кромок. Стальные шпильки к медным деталям привариваются плохо, поэтому на шпильку надевают в натяг медное кольцо, которое и приваривается к медной заготовке.
Вот такие способы сварки медных сплавов и заготовок, которые сегодня применяются в промышленности и в домашних мастерских. Обязательно посмотрите видео, размещенное на этой странице сайта.
Поделись с друзьями
0
0
0
0
svarkalegko.com
Сварка меди в домашних условиях: аргоном, полуавтоматом, электродом
Нередко при монтаже конструкций или ремонте предметов из меди требуется выполнение сварочных работ. Однако из-за неординарных характеристик сварка меди не так проста, как стали. Поэтому не каждый сможет сделать надежное соединение. После освоения технологии сварки меди и ее сплавов можно без затруднений работать с любым металлом.
Особенности сварки меди и ее сплавов
Сложность работы с этим металлом обусловлена рядом негативных свойств:
Высокая химическая активность, особенно при нагреве, приводит к быстрому появлению на поверхности оксидной жаропрочной пленки. Если ее частицы попадут в шов, то станут причиной образования трещин.
Из-за высокого коэффициента температурного расширения, сварное соединение при усадке в процессе остывания может деформироваться и растрескаться.
При нагревании медь начинает активно насыщаться водородом, от которого остаются поры, и кислородом, окисляющим поверхность.
Быстрый нагрев и охлаждение делает соединение хрупким.
Из-за высокой текучести осложняется создание надежных вертикальных и потолочных швов.
Для компенсации высокой теплопроводности работа проводится большим током. Иначе из-за быстрого рассеивания тепла появятся наплывы, подрезы и другие дефекты.
Электроды для сварки меди
Для соединения меди без присадочной проволоки используются плавящиеся электроды со специальным покрытием. При расплавлении оно создает слой шлака, который защищает место сварки от соприкосновения с воздухом. Присадки, входящие в состав обмазки, соединяясь с металлом, улучшают качество шва. Слой шлака замедляет остывание стыка, что способствует удалению большего количества газов.
Неплавящиеся угольные и графитовые электроды используются совместно с присадочной проволокой, необходимой для создания шва. При выборе следует учитывать что:
для ручной сварки меди цвет обмазки красный;
марки с серым покрытием предназначены для цветных металлов;
синими электродами варят тугоплавкие металлы;
с желтой обмазкой жаропрочную легированную сталь.
Подготовка деталей к сварке
Независимо от способа медные заготовки нужно очистить от грязи с последующим обезжириванием. Оксидную пленку удаляют металлической щеткой или мелкозернистой наждачной бумагой осторожными движениями, чтобы не было глубоких царапин. Очистку рекомендуется завершать травлением свариваемых деталей и проволоки в водном растворе азотной, соляной или серной кислоты. Затем промыть приточной водой и высушить горячим воздухом.
С кромок заготовок толщиной 0,6 — 1,2 см снимают фаски, чтобы между ними получился угол 60 — 70⁰. При сварке с обеих сторон его уменьшают до 50⁰. Если толщина деталей больше 12 мм кромки разделывают в виде буквы Х для двухстороннего соединения. Если это невозможно делают глубокую V-образную разделку. Но для заполнения стыка потребуется больше расходных материалов и времени, так как сваривать медь придется широким швом.
Для предотвращения деформаций при усадке между заготовками, в зависимости от толщины, оставляют зазор 0,5 — 2 мм. Чтобы его ширина была неизменна по длине стыка, детали прихватывают с интервалом 30 см. При доведении шва до временного соединения его сбивают молотком, иначе на этом месте стык будет с дефектами.
Чтобы медь не протекала на обратную сторону, под стык подкладывают пластины из стали или графита шириной 4 — 5 см. Для компенсации температурного расширения детали предварительно нагревают до 300 — 400⁰C. При работе на улице потребуются переносные экраны, защищающие от ветра.
Способы сварки меди
Негативные свойства меди, препятствующие сварке, обходят многими способами, применяя различные расходные материалы и оборудование. Не все можно применить в домашних условиях, но некоторые вполне доступны.
Сварка меди аргоном
Этим способом выполняют сварку меди полуавтоматом или ручным аргонодуговым методом. Работа проводится постоянным током прямой полярности. Его величина устанавливается из расчета, что на каждый миллиметр толщины нужно 100 А. Значение можно корректировать в процессе работы в зависимости от состава металла. При сварке меди аргоном расход газа не должен превышать 10 л/мин.
В качестве присадочной проволоки можно использовать медные провода или жилы кабеля, очищенные от изоляции и лака. Ее подают по краю сварочной ванны впереди электрода, чтобы при плавлении металл не прилипал к нему. Для заготовок толщиной меньше 0,5 см предварительный подогрев не нужен.
Чаще всего выполняют сварку меди угольными электродами, так как вольфрамовые приходится часто менять. Заготовки толщиной больше 1,5 см соединяют графитовыми электродами. Допустимый вылет электрода не больше 7 мм, длина дуги 3 мм. В отличие от других способов сваркой меди аргоном можно качественно соединять вертикальные стыки.
Газовая сварка
Для этой технологии не требуется сложное оборудование как для аргонодуговой. Достаточно горелки и баллона с ацетиленом. Чтобы обеспечить нормальное протекание процесса, потребуется расход газа 150 л/час для заготовок толщиной до 10 мм, свыше ― 200 л/час. Для замедления остывания заготовки с обеих сторон обкладывают листовым асбестом. Диаметр присадочной проволоки выбирается равным 0,6 толщины металла, но не более 8 мм.
Выполняя газовую сварку меди, пламя направляется перпендикулярно к стыку. При этом нужно следить, чтобы проволока плавилась раньше основного металла. Чтобы снизить вероятность появления горячих трещин, работу проводят без остановок. Завершенный стык проковывают без нагрева, если детали тоньше 5 мм, или при температуре 250⁰C, когда толще. Затем проводят отжиг при 500⁰C и быстро охлаждают водой.
Ручная дуговая сварка
Этим способом соединяют заготовки толщиной больше 2 мм, используя плавящиеся электроды и постоянный ток обратной полярности. Процесс практически не отличается от сварки стали, только электрод ведут без поперечных колебаний, поддерживая короткую дугу. Шов формируется возвратно-поступательными движениями.
Для сварки меди в домашних условиях лучшими признаны электроды АНЦ-1, которыми можно соединять металл толщиной до 15 мм без подогрева. Аналогичными характеристиками обладают марки EC и EG польского производства. При ремонте трубы с горячим носителем следует учитывать, что тепло и электропроводность швов, сделанных этим способом, в 5 раз меньше, чем у меди.
Сила тока и диаметр электрода в зависимости от толщины деталей приведены в таблице:
Толщина меди, мм
Диаметр электрода, мм
Значение тока, А
2
2 — 3
100 — 120
3
3 — 4
120 — 160
4
4 — 5
160 — 200
5
5 — 6
240 — 300
6
5 — 7
260 — 340
7 — 8
6 — 7
380 — 400
9 — 10
7 — 8
400 — 420
Автоматическая сварка под флюсом
Для работы потребуется сварочный автомат, выдающий переменный и постоянный ток. Флюс наносят на обе стороны стыкуемых заготовок. Сварку под керамическим флюсом проводят переменным током, для остальных устанавливается обратная полярность. Для соединения деталей тоньше 10 мм пользуются обычными флюсами. Более толстые заготовки варят под сухими гранулированными.
Сварку проводят одним проходом с использованием присадочной проволоки из меди. Если характеристики по тепло и электропроводности не важны, ее заменяют бронзовой для повышения прочности соединения. Чтобы швы создавались одновременно с обеих сторон, на подкладках под стыком выкладывают подушки из флюса.
При работе с медью и ее сплавами выделяются токсичные газы. Из латуни при сильном нагреве испаряется цинк, образуя ядовитую окись. Поэтому работать надо в респираторах и защитной одежде в помещениях с вытяжной вентиляцией.
svarkaprosto.ru
технологии, материалы и оборудование, этапы
Сварка меди используется в различных сферах промышленности благодаря особым свойствам металла. Однако для получения надёжных сварных швов нужно точно соблюдать все требования технологии, использовать подходящее оборудование и расходные материалы.
Сварка меди паяльником
Особенности сварки меди
Особенности сваривания медных конструкций:
нагретый металл реагирует с кислородом и образует тугоплавкую оксидную плёнку, поэтому необходимо использовать различные методы противодействия протеканию такой реакции;
медь имеет высокий коэффициент теплового расширения, превышающий величину для стальных сплавов в 1,5 раза, поэтому после остывания наплавленный металл подвержен значительной усадке;
при прямом контакте с кислородом расплавленная медь поглощает кислород и водород, что приводит к формированию неоднородной хрупкой фазы с порами и дефектами;
по причине хорошей теплопроводимости медные конструкции быстро нагреваются и охлаждаются, что негативно сказывается на механических свойствах сварного шва;
высокая текучесть усложняет процесс сваривания массивных деталей — невозможно обеспечить полную проплавку с одной стороны конструкции, а также создать вертикальный или потолочный шов;
пластические и прочностные характеристики при повышении температуры нагрева выше +2000С снижаются и к +5500С полностью теряются.
Влияние примесей на свариваемость меди
Примеси в меди негативно сказываются на её свойствах, так как могут приводить к охрупчиванию, снижению пластичности, созданию внутренних дефектов. При сварке в материале могут находиться фазы с отличной от чистого металла температурой плавления, что повышает сложность сварных работ.
Примеси в чистом металле присутствуют практически всегда, поэтому фактически выполняется сваривание сплавов обязательно в защитной атмосфере или с применением флюсов. Важно применять присадки на основе алюминия, марганца, кремния. Они позволят получить однородную структуру и добиться необходимых технических характеристик сварного шва.
Основные способы сварки меди
Чтобы сварить медные конструкции, необходимо соблюдать требования технологий сварки меди. Доступны следующие способы сваривания медных заготовок:
инвертором;
полуавтоматом;
аргоном;
газом;
угольными электродами.
Инвертором
Варить медь инвертором относительно просто, так как он обеспечивает стабильные параметры по току и напряжению, может иметь ряд предустановок. Также он компактный по размерам и имеет небольшой вес.
Шов формируют небольшими участками, длина которых составляет от 30 до 40 мм. Важно делать перерывы в работе, чтобы не допустить перегрева металла с проплавлением и деформацией. Углы наклона электрода над поверхностью должны составлять от 100 до 200.
Инверторы вырабатывают постоянное напряжение, допустимо подключение проводов по схеме прямой или обратной полярности. При сваривании требуется правильно задать параметры по току и напряжению в зависимости от параметров заготовок.
Полуавтоматом
Для создания длинных швов рекомендуется выполнять сварку меди полуавтоматом. За счёт равномерной подачи проволоки формируется надёжное однородное соединение. Для исключения образования пор нельзя допускать поперечных колебаний проволоки или заготовок.
Полуавтоматическая сварка деталей толщиной более 6 мм производится только после снятия кромки с выполнением притупления менее 4 мм. Обычно применяют проволоку диаметром 2 мм. Рекомендуемые параметры:
напряжение 30 В;
сила сварочного тока 300А;
флюс марки К-13 или АН26;
тип проволоки М1-3.
Полуавтомат для сварки
Аргоном
При сварке в аргоновой защитной среде используется проволока из вольфрама, подключение питания по схеме обратной полярности. Стыковка тонких конструкций производится без предварительного подогрева.
Шов формируют справа-налево, при этом электрод держат под прямым углом к поверхности заготовки, а прутка — 150. Средний расход газа составляет от 7 до 18 л/мин. Ток сварки подбирается самостоятельно в диапазоне 80-500А.
Сварка аргоном режим TIG
Режим TIG применяется при автоматической или полуавтоматической сварке. Преимущества:
небольшая зона прогрева;
исключение образования дефектов в структуре;
высокая скорость создания сварного шва;
простота технологии.
Газовая сварка
Газовая сварка выполняется горелкой. Технология достаточно сложная для формирования высококачественных точных швов, поэтому она в основном используется для соединения массивных деталей. Сложностью процесса является подбор оптимального расхода газа:
для заготовок с толщиной до 1 см расход составляет до 150 л/мин.;
при толщине более 1 см расход должен быть увеличен до 200 л/мин.
Для обеспечения равномерного прогрева массивных деталей допускается одновременное применение двух горелок. Чтобы повысить качество шва, нужно применять содержащие бор флюсы.
Состав присадочной проволоки должен быть идентичным составу свариваемых конструкций. При отсутствии полных аналогов, нужно выбрать максимально близкий.
Угольным электродом
Процесс сваривания угольными электродами универсален, так как допускается поджиг дуги между двумя электродами, заготовкой и электродом, электродом и массой. Технология схожа с процессом сваривания горелкой.
Используется проволока марки БрКМц3-1. Параметры по току и напряжению подбираются в зависимости от технических особенностей конструкций и их состава.
Угольные электроды для сварки
Инвертором угольным электродом
Сваривание меди угольными электродами требуют наличия навыков проведения подобных работ. Особенности процесса следующие:
наклон электрода над поверхностью заготовки не более 300;
диапазон сварочных токов от 35 до 130 А.
Материалы и оборудование
Для сваривания меди потребуется следующее оборудование и материалы:
инвертор или сварочный аппарат;
электроды;
припой или баллоны с защитным газом.
Что нужно знать об электродах для сварки меди
Сваривание меди выполняется электродами с защитными покрытиями. Применяют стержни легированные бронзой, кремнием или марганцем. Такие составы позволяют исключить раскисление меди и обеспечить однородность металла.
Защитные покрытия выбираются такие, которые обеспечивают стабильное горение дуги, предотвращают раскисление металла, образование раковин или шлаков.
Сварочный аппарат для меди
Для выполнения сварочных работ можно применять следующее оборудование:
аппараты автоматические или полуавтоматические;
инверторы;
TIG-оборудование.
Рекомендуется использовать аппараты следующих производителей:
ESAB;
Fubag;
Ресанта;
Сварог.
Виды припоев
Сварка медных заготовок на флюсах позволяет улучшить качество швов, увеличить их прочность, снизить количество дефектов. По температуре нагрева бывают такие виды припоев:
низкотемпературные;
высокотемпературные.
Флюс для сварки меди
Низкотемпературные припои
Низкотемпературные припои применяются при температурах разогрева до +4500С для сваривания легкоплавящихся сплавов меди. Изготавливаются на оловянной или свинцовой основе, с добавкой сурьмы. С целью повышения коррозионной стойкости в составе присутствует цинк.
Высокотемпературные припои
Флюсы для высокотемпературной сварки способны сохранять свои свойства до +11000С. В составе применяются следующие элементы: фосфор, цинк, медь, серебро, кремний. Большинство составов пригодны для сварки меди с другими металлами.
Подготовка материала очистка
Перед выполнением сварки нужно подготовить металл следующим образом:
растворителем очистить поверхность вдоль и вблизи шва;
удалить пыль, грязь, убрать контактирующие посторонние предметы или материалы;
при толщине 6–10 мм срезать фаски с одной стороны, а при более 10 мм – срезать фаски с двух сторон шва.
Этапы сваривания
Этапы сварки меди в домашних условиях:
Собирается электрическая цепь: к держателю подсоединяется электрод, подсоединяются провода для сварки на токе обратной полярности.
Вокруг детали прокладывается защитный экран, предотвращающий быстрый нагрев или охлаждение. Это требуется для того, чтобы шов был равномерным и на нём после остывания отсутствовали трещины.
Включается инвертор с подходящими для работы параметрами, которым предполагается сваривать две медные заготовки.
Поджигается дуга вне области с заготовкой.
Наносится на стержень флюс.
Выполняется формирование шва за один проход.
Выключается инвертор.
Проводится естественное охлаждение детали.
При сваривании медных заготовок с толщиной до 5 мм предварительный нагрев проводить не требуется. Массивные конструкции требуют обязательного прогрева перед выполнением сварочных работ.
Сварка меди аргоном востребована в различных отраслях промышленности, строительной сфере. Связано это с эксплуатационными свойствами материала, который обладает высокой коррозионной стойкостью, оптимальным соотношением прочности и пластичности. Однако процесс сварки обладает рядом сложностей, требуют наличия навыков.
Сварка меди с помощью аргона
Свойства материала
Чтобы сварить медь или сплавы на её основе, необходимо выполнять качественный прогрев конструкций. Благодаря отличной теплопроводности достаточно просто обеспечить равномерную температуру на поверхности детали и по толщине материала. Однако получение равномерного прочного шва требует использования определённых навыков.
Особенности сварки:
при значительном повышении температуры в меди начинают проходить окислительные процессы, в результате которых создаются тугоплавкие фазы повышенной хрупкости, что негативно сказывается на её прочностных и пластических свойствах;
в ходе охлаждения шва происходит значительная усадка, которая может становиться причиной появления трещин;
в результате нагрева начинается поглощение газов, повышающие вероятность образования неравномерностей и раковин;
сварные швы на стыках меди с нержавейкой и другими металлами имеют высокий уровень зернистости, связанной с неоднородностью материалов, соединение становится хрупким и ненадёжным;
по причине высокой электропроводности на сварочном аппарате требуется выставлять большие токи, что делает бытовые инверторы непригодными для проведения сварных работ;
из-за высокого уровня текучести металла при нагреве создание швов в вертикальном или потолочном расположении невозможно.
Технология сваривания
Сварка медных деталей выполняется двумя способами:
газосварка;
сварка аргоном.
Для газосварки потребуется использование баллона с ацетиленом и горелки. Качество шва полностью зависит от количества пор в материале, поэтому перед проведением работ необходимо выполнить проковку поверхности вблизи линии формирования шва.
Для поддержания горения требуется обеспечить непрерывную подачу газа. Средний расход для сварки конструкций толщиной более 10 мм составляет от 200 л/ч. Массивные детали рекомендуется предварительно прогревать, чтобы шов был прочным и однородным.
Поскольку медь обладает высокой теплопроводностью, то важно обеспечить равномерное остывание конструкций. Для этого со всех сторон конструкции следует обкладывать асбестными листами, делая своеобразный защитный экран.
Чтобы в процессе сваривания не допустить образования окислов или раковин, допускается увеличение скорости перемещения горелки вдоль шва, но движение обязательно должно быть с постоянной скоростью и без разрывов. Расположение горелки относительно поверхности должно быть перпендикулярным.
При толщине материалов более 3 мм необходимо обрабатывать кромки под углом 450. Чтобы металл лучше заполнил стык, его обрабатывают водным раствором азотной кислоты.
После выполнения работ шов требуется проковать при температуре +3000С, а также выполнить его отжиг при +5000С, затем детали охладить в воде.
Аргонодуговая сварка подходит для соединения конструкций любой толщины, включая крупногабаритные. Сварные работы проводятся при подключении прямой полярности на постоянном токе вольфрамовым неплавящимся электродом. Температура в среднем должна составлять от +3000С до +4000С.
Перед проведением сварки, нужно разогреть дугу на пластинке из угля или графита. Допустима сварка в потолочном, вертикальном или нижнем расположениях.
Сварка меди газом
Выбор электродов
Для получения качественного сварного шва необходимо выбрать электрод по диаметру, составу обмазки, особенностям состава материала заготовок. Состав обмазки выполняет защитную роль, так как предотвращает попадание в расплав газов.
Если необходимо варить меди аргоном, то обмазка или защитные покрытия позволяют создавать специальные плёнки. В покрытии содержатся присадки, позволяющие улучшить шов при контакте материала стержня электрода с металлом конструкции. Шов в таком случае формируется однородным и равномерно застывает, одновременно исключается создание хрупких фаз.
Применяют два вида электродов:
неплавящиеся, на основе синтетического графита, электротехнического угля, а также других материалов с аналогичными свойствами.
плавящиеся, создаваемые на основе прутков из меди, чугуна, алюминиевой проволоки, поверх которой наносится специальная обмазка.
Чтобы понять, каким электродом сварить медь, нужно ориентироваться на цвет обмазки:
красный – для ручной сварки;
синий – для тугоплавких сплавов;
серый – для сварки деталей из цветных металлов.
Оборудование
Для аргонодуговой сварки потребуется применение следующего оборудования:
инверторного аппарата или трансформатора;
одной горелки или комплекта, в зависимости от сложности работ;
защитной аппаратуры;
баллонов с газом;
компенсационных устройств для регулирования тока.
Аргоновая сварка может выполняться вручную или полуавтоматом. Метод выбирается на основе того, какие сварочные работы планируется проводить, их сложности, технических требований к шву.
Подготовка материала, очистка
Сваривание меди аргоном может выполняться без тщательной подготовки поверхности, достаточно выполнить зачистку абразивным инструментом до блеска, а также выполнить обезжиривание. Однако очистку следует выполнять тщательно.
Для сварки конструкций толщиной 5-12 мм необходимо срезать кромки односторонние, а если более 12 мм – двухсторонние.
Зачистка перед сваркой
Работы в домашних условиях
В домашних условиях иногда требуется сварка деталей небольших размеров, поэтому для большинства случаев в качестве электродов подойдут обычные медные жилы из проводов. Все этапы работ определяет технология сварки меди:
Зачищают пруток от поверхностных слоёв лака, окисла, жира или других видов загрязнений. Рекомендуется применять проволоки с минимальным количеством примесей в составе.
В процессе сварки используют присадки, выполняющие роль защитной среды от контакта металла с воздухом.
Поджигают горелку, впереди шва ведут присадку, затем электрод, а за ними выполняется прогрев. Движения горелки должны быть по спирали в сторону формирования шва.
При сварке толстых деталей рекомендуется расплавлять основной металл конструкций, но основе которого и формировать соединение. В таком случае шов получается чистым и аккуратным. При этом присадки не используют.
В среде аргона качество шва достигается при вертикальном положении шва и горизонтальной проварке.
Сваривание тонких деталей выполняется ступенчатым образом. Способ заключается в выполнении проварок через определённые интервалы, а затем заваривают пропущенные участки до того момента, пока не получится равномерный и качественный шов.
Настройка аппарата
Чтобы добиться качества соединительного шва, нужно тщательно подбирать параметры сварочных аппаратов. Необходимо варить чистую медь на постоянном токе вольфрамовыми электродами в защитной аргоновой среде. Сплавы рекомендуется сваривать на переменном токе.
Начинающим или неопытным сварщикам рекомендуется использовать сварочные аппараты, на которых доступен выбор стандартных сварочных программ. Это позволит сократить количество бракованных деталей и повысить эффективность работ.
Настройки по току подбираются в зависимости от следующих критериев:
толщины металла;
диаметра проволоки электрода;
типа и диаметра присадочного прутка.
Кроме аргоновой среды допустимо использовать азотную, гелиевую, а также смеси защитных газов. Аргон эффективен и потому применяется чаще остальных газовых смесей.
metalloy.ru
Сварка меди полуавтоматом
Сварка меди полуавтоматом
Сварка меди полуавтоматом
Здравствуйте дорогие форумчане! Хотелось бы задать несколько вопросов по сварке меди полуавтоматом. После покупки организацией полуавтомата Сварог MIG 3500 (J93) и его успешной работы, у начальства возник вопрос а возможно ли варить им медь( так как заказов на сварку меди много т.к. предприятие занимается изготовлением изделий из меди и по мимо пайки вот решили попробовать сварку)? Почитав интернет и литературу решили попробовать, купили медную проволоку CuSi3 диаметром 1мм, газ использовали Аргон. Начали пробовать варить, решили попробовать без прогрева ничего не вышло даже не прилипает шов( на то он и эксперимент). Начали греть до положенных 300градусов две медные шины толщиной 5мм в стык с зазором чуть больше 1мм, эффект тот же самый проплавления основного металла практически нет, шины не свариваются. Напряжение выставляли на аппарате 18,5V, а силу тока порядка 120-130А, расход газа поставили 15л/мин. Решили греть еще в итоге когда нагрели детали до примерно 900 может чуть больше во общем почти до границы плавления сварить получилось. Шов получился неплохой но чешуйки как то не симметрично ложились как при сварке полуавтоматом черных металлов и присутствовало разбрызгивание вокруг шва небольшое совсем. На длине шва 100мм если прогрели весь шов перед сваркой заварить успеваем только половину длинны, дальше металл остывает и металл в сварочной ванне не очень хорошо растекается и как будто просто направляется а не сваривается. Так что такой короткий шов приходится делить на два и греть заново. Пробовали сломать шов выдержал разрушение произошло рядом со швом. Пробовали зачищать металлической щеткой место шва и обезжиривать бензином галоша эффекта не какого не заметили. Полазив интернет не где не встречали упоминания о том что нужно греть так сильно. Где то находил упоминание что нужно использовать тефлоновый канал для проволоки ну я думаю не в нем дело. Стоит ли его менять или оставить обычный в чем разница? Нашел информацию что можно попробовать вместо аргона использовать азот так как сварочная ванна будет проплавляться лучше ну там разница в 4%. Какие еще могут быть тонкости и нюансы как то не много в интернете информации именно про сварку полуавтоматом меди. У нас такого опыта по сварке меди нет. Заказов много будет и детали разных толщин до 20мм и греть до такой температуры очень затратно по времени выходит. Греем обычным резаком пропан-кислород.Пробовали настройки полуавтомата менять, но шов получается уже не таким красивым либо слишком выпуклым или образуются подрезы. Будем рады любым толковым советам а если фото или видео будет будет отлично. Просто именно со сваркой меди не сталкивались. Есть мысль попробовать буру для пайки чтобы получше растекался металл и меньше греть но это только предположение
Сварка меди полуавтоматом
А в режиме пульс не пробовали варить? В начале подогрев обязательно ток должен дать большой,для 20 Арарат у вас явно слабый.
Сварка меди полуавтоматом
bonneville (26 November 2016 — 14:22) писал:
А в режиме пульс не пробовали варить? В начале подогрев обязательно ток должен дать большой,для 20 Арарат у вас явно слабый.
Режима пульс нет. Про подогрев то я понял что обязательно, вопрос в другом что прогревать приходится почти до температуры плавления мне кажется это много, даже в литературе встречал упоминания о прогреве 250-300 градусов максимум 500 градусов. Аппарат на 350А
Не сочтите за рекламу вот характеристики аппарата https://svarog-rf.ru/…ts/mig-3500-j93
Сообщение отредактировал Drakko: 26 November 2016 — 15:49
Сварка меди полуавтоматом
плохо что пульса нет да и 350 а это маловат для замашки на медь в сварке медь и алюминий прожорлива по току как слон . Вы пробовали на токе 120-130 попробуйте у величить до 250 а может и на максимум , я посмотрю если у меня осталось где CuSi3 попробую как фрониус варит в пульсе и без и дам знать вам здесь.
Сварка меди полуавтоматом
bonneville (26 November 2016 — 15:52) писал:
плохо что пульса нет да и 350 а это маловат для замашки на медь в сварке медь и алюминий прожорлива по току как слон . Вы пробовали на токе 120-130 попробуйте у величить до 250 а может и на максимум , я посмотрю если у меня осталось где CuSi3 попробую как фрониус варит в пульсе и без и дам знать вам здесь.
Появился полуавтомат вот и захотели они попробовать, а мы расхлебывай. Пробовал увеличить но получается подрез, возможно еще не правильно настроили, если найдете проволоку попробуйте буду очень благодарен и если есть возможность сфотографировать что получается было бы отлично. Вот думаем может все таки лучше не полуавтоматом варить, а TIGом?
Сообщение отредактировал Drakko: 26 November 2016 — 16:21
Сварка меди полуавтоматом
да тигом в самый раз но аппарат нужен как минимум 500а
Сварка меди полуавтоматом
bonneville (26 November 2016 — 16:25) писал:
да тигом в самый раз но аппарат нужен как минимум 500а
Ну наверно с новым аппаратом тем более на 500А будут проблемы… Этот то с трудом купили еле уговорили что он нужен. Да еще ни я не мой напарник TIGом особо не варили, пробовать мы конечно пробовали но все интуитивно и по памяти из программы обучения. Потребности в ТИГе небыло Сварка меди полуавтоматом
Drakko (26 November 2016 — 16:16) писал:
Пробовал увеличить но получается подрез, возможно еще не правильно настроили
Если появляется подрез, значит проплавление основного металла происходит, и ток достаточный. Чтобы избавиться от подреза попробуйте увеличить подачу проволки и/или поменять положение горелки. Сварка меди полуавтоматом
premierhr (26 November 2016 — 16:42) писал:
Если появляется подрез, значит проплавление основного металла происходит, и ток достаточный. Чтобы избавиться от подреза попробуйте увеличить подачу проволки и/или поменять положение горелки.
попробуем послезавтра еще попробовать на разных настройках, по прогреву все таки до какой температуры греть?
Сообщение отредактировал Drakko: 26 November 2016 — 16:48
Сварка меди полуавтоматом согласно рекомендациям остальной нагрев должен быть от дуги Сварка меди полуавтоматом
И еще такой вопрос если сварка с разделкой кромок и необходимо два или три прохода делать, как и чем зачищать пройденный проход и зачищать ли его вообще
Сварка меди полуавтоматом
premierhr (26 November 2016 — 16:49) писал:
согласно рекомендациям остальной нагрев должен быть от дуги ну подогрев все равно должен быть иначе мне кажется ток должен быть на максимуме чтобы начало шва прогреть Сварка меди полуавтоматом
ТИГом легко идет пайка меди фосфористой медью (просто используя пруток пропоя как присадок). Конечно, глубина затекания невелика, как и глубина ванны при обычной сварке меди ТИГом. Но все же разница температур плавления (1050 меди и 660-680 для медно-фосфорного припоя) и самофлюсование последнего по меди позволяют получить глубину паяного шва несколько большую, чем сварного. Не пробовал, но подозреваю, что при последующем прогреве всей области шва до температур выше 680 градусов вся эта фосфористая медь с
samsvar.ru
Сварка чугуна полуавтоматом: способы, оборудование
Массовое производство требует быстрого изготовления большого количества деталей. Повысить производительность можно сваркой чугуна полуавтоматами в среде защитных газов. Создание швов любой длины производится за одну установку. Экономится время на смену расходных материалов. На одном оборудовании производится сварка чугуна по разным технологиям. Изменяются только приспособления, проволока и режимы сварки.
Сварка полуавтоматом (Фото: Instagram / umkural)
Почему трудно варить чугун
Чугун содержит большое количество углерода, который при нагреве начинает взаимодействовать с кислородом и переходит в газообразное состояние. Это приводит к образованию газовых раковин внутри шва.
Структура металла крупнозернистая с графитовыми включениями по границе кристаллов. В результате чугун хрупкий, в низкой теплопроводностью. При резком нагреве образуются трещины по границе температур.
Низкая температура плавления и высокая жидкотекучесть высокоуглеродистого металла приводит к тому, что при сваривании основной металл переходит в жидкое состояние раньше электрода и присадочной проволоки. При этом его трудно удержать в ванне, он вытекает через малейшие трещины и зазоры.
Способы сварки
Варить чугун полуавтоматом можно в разных температурных режимах, с соответствующей проволокой:
холодный без нагрева детали ;
теплый или полугорячий с подогревом до 300⁰;
горячий — деталь прогревают до 600⁰.
Технологический процесс полуавтоматической сварки в каждом случае свой. Шов получается с разными эксплуатационными характеристиками.
Нагрев детали перед сваркой (Фото: Instagram / svarka70)
Холодный метод
Холодные чугунные детали варят короткими швами, практически точечными. Металл не должен успеть прогреться и потрещать. Основание проволоки — сталь с покрытием из меди.
Швы получаются пластичные, мягкие, с высокой прочностью на разрыв и изгиб. Не выдерживают больших динамических нагрузок и перепада температур.
Полугорячий метод
Применяется в основном, чтобы сваривать тонкостенные детали. Проволока используется медно-никелевая, чугунная с покрытием меди и наоборот, чугунная пыль служит обмазкой для меди и флюсом.
Швы до 5 мм толщиной можно не заделывать. Чтобы металл не вытекал нужно подложить медные подкладки.
Соединения получаются прочные, иногда даже превосходят по твердости основной металл.
Горячий метод
Прогрев чугуна перед сваркой позволяет создавать прочные соединения деталей любого размера. В качестве флюса используется инертный газ, в основном аргон. Корневой шов варится прямым проходом проволоки без колебаний в стороны. От вытекания металла снизу устанавливаются медные или графитовые подкладки. Последующие проходы варятся зигзагообразно, с движением дуги от одного торца к другому.
Прочные соединения практически не отличаются от основного металла. Благодаря нагреву и изотермическому отпуску, переходная зона отсутствует.
Сварной шов (Фото: Instagram / argon4yk)
Как варить чугун полуавтоматом
Полуавтомат применяется для ремонта деталей при образовании трещин и отверстий в процессе эксплуатации и для сборки и создания изделий из чугуна. Для сварки применяются технологии:
MAG для наплавки и заделки трещин;
MIG при изготовлении чугунных деталей из нескольких элементов, наплавке поверхности.
В домашних условиях предпочтение отдается холодной точечной сварке.
Подготовительные работы
При подготовке деталей, кромки разделывают под углом 60⁰ на станке. Небольшие трещины выбираются болгаркой. Использовать зубило и другой инструмент с динамическими нагрузками не рекомендуется. Хрупкий металл разрушится.
Поверхности следует очищать от грязи и масел, используя растворители, очищенный бензин. Заготовки выставляются и прихватываются. После этого производится сварка. Положение горизонтальное, пол.
Подготовка материалов (Фото: Instagram / kievwelding)
Выбор проволоки для чугуна
Марка расходного материала выбирается в зависимости от температурного режима. На производстве в основном используется проволока:
ПП АНЧ-1 — холодная сварка;
ПП АНЧ-2 — режим с подогревом детали;
ПП АНЧ-3 — нагрев до 600⁰.
В состав стержня входят медь, никель, железо и кремний.
Процесс сварки
Оборудование настраивается на малый ток с обратной полярностью. Под шов устанавливают графитовую подкладку. Сварка чугуна производится в зависимости от технологии, короткими точечными швами или многорядными.
Защитный газ включается за 5–7 сек до разжигания дуги, и закрывается через 10 сек после завершения работы.
После наложения шва с него сразу же сбивается шлак или делается прокол.
В домашних условиях сварка чугунных деталей на полуавтомате проводится с целью ремонта. Можно заделать трещину, наплавить небольшую поверхность. Все делается по холодной технологии.
Смотрите видео об одном простом способе сварки чугуна полуавтоматом:
Согласно информации представленной на моем сайте, самый первый автомобиль в мире был с паровым двигателем. Конечно, сей агрегат может и можно назвать автомобилем, но вот что-то язык не поворачивается. Под понятием автомобиля у меня ассоциируется транспортное средство, которое достаточно компактное, удобное в обращении и в какой-то степени надежное. Все эти определения явно не подходят для машин 19 века. Помимо всего необходимо организовать серийный выпуск автомобилей, чтобы они были доступны для пользования широкому кругу людей. Что точно нельзя сказать про те штучные экземпляры, ну за исключением некоторых. Так давайте вместе попытаемся найти ответ на вопрос — кто изобрел первый автомобиль?
Даймлер и Бенц, как основатели автомобилестроения.
Время шло, а автомобили все не менялись. Можно сказать, что эволюционный процесс в этой отрасли зашел в тупик. Как вот был изобретен двигатель внутреннего сгорания и перед миром в 1885 году предстал самый первый автомобиль – трехколесник Карла Бенца. Автомобиль был достаточно незатейлив, представлял собой некое подобие изобретения Кулибина, только приводился в движение не мускульной силой, а бензиновым двигателем. Почти в то же время Готлиб Даймлер изобрел велосипед с мотором, а год спустя и «повозку» на моторной тяге.
Для заметки, первый грузовой автомобиль, оснащенный двигателем внутреннего сгорания и грузовым аккумулятором, появился в 1896 году. Аналог с дизельным двигателем увидел свет только 1923 году. По мере развития автомобильной промышленности, а также удешевления производства, грузовики и более мощные грузовые аккумуляторы также обрели популярность.
первый автомобиль Карла Бенза первый автомобиль Карла Бенза первый автомобиль Карла Бенза Превью — увеличение по клику.
Первый автомобиль в мире был изобретен Карлом Бенцем в 1886 году. Он получил общественное признание и был запущен в промышленное производство. Представлял собой трехколесное средство передвижения, с двигателем на 1.7 литра, который располагался горизонтально. С задней стороны сильно выступал большой маховик. Управлялось сие средство передвижения при помощи Т-образного руля.
На этом моменте история первого автомобиля выходит на новый уровень, поскольку Бенц был первым, кто предложил покупателям готовый и годный для пользования прообраз современного автомобиля, а Даймлер раньше всех запустил в производство функциональный автомобильный двигатель.
Особенностью данного автомобиля было то, что в нем использовался двигатель с водяным охлаждением. При том двигатель и маховик располагались горизонтально. Коленвал был открытым. Посредством простого дифференциала, с помощью ремня и цепей, двигатель приводил в движение задние колеса. Главным достижением кондукторской мысли можно было считать использование впускного клапана с механическим приводом и электрического зажигания. Изначально, рабочий объем двигателя составлял всего 985 куб. см., этого недостаточно даже для разгона машины. Поэтому, первые машины, выпущенные в продажу, были оборудованы более мощными моторами с рабочим объемом 1.7 литра и двухступенчатой коробкой передач. С годами, мощность двигателя выросла в 4 раза и составляла 2,5 л.с.. Таким образом, машина Бенза развивала максимальную скорость 19 км/час, что весьма не плохо для первого автомобиля в мире. Однако Карла Бенза это не устраивало, и он всё продолжал свои поиски. И скоро его детище успешно выступило в известных тогда гонках London-to-Brighton Run, обладая средней скоростью 13 км/час. Массовый выпуск автомобиля начался лишь в 1890 году.
Через три года «Benz» выпустил первые четырехколесные автомобили. Основанные на трехколесной конструкции, в то время они казались слишком старомодными. Но, невзирая их медлительность и примитивность, они отличались простотой, доступностью, в плане технического обслуживания и ремонта, и долговечностью. Позднее появилась двухцилиндровая модификация, но, по настоянию Бенца, первоначальные технические решения в основном оставались неизменными.
Превью — увеличение по клику.
На картинках — модель «Viktoria» 1893 года. Усовершенствования четырехколесного «Benz» (1892 г.) продолжалась до 1901 года. Несмотря на нетребовательность конструкции, таких машин выпустили более 2300 штук.
В 1909 году фирма столкнулась с затруднениями. Против воли Бенца, пришлось собрать группу французских инженеров, спроектировавших более совершенную модель автомобиля. Ее попытались внедрить в производство в 1903 году, но все кончилось неудачей, что заставило Карла Бенца забыть о своих амбициях: он предложил современный четырехцилиндровый рядный двигатель, который отвечал требованиям нового шасси. После запуска этой новой «гибридной» модели в производство дела фирмы медленно пошли в гору.
Превью — увеличение по клику.
Первая модель Готлиба Даймлера 1886 года — попытка использования конного экипажа в качестве силового агрегата. Основные механические детали еще очень примитивны, но одноцилиндровый двигатель — прообраз современных автомобильных двигателей.
Даймлер проявил себя как более сдержанный и терпеливый конструктор. В отличие от Бенца, он не рвался вперед. Сделав ставку на стационарные двигатели, он вместе со своим соратником Вильгельмом Майбахом в 1889 году создал свой первый функциональный автомобиль «Daimler» и запустил его в производство в 1895 году. Так же, одновременно с автомобилями, компания лицензировала собственные двигатели, для закладывания фундаменты под выпуск новейший, невиданных ранее моделей, такие как французские «Panhard» и «Peugeot». В 1889 появился первый в истории автомобиль способный развить скорость более 80 км/час. Его начинкой послужил четырехцилиндровый двигатель мощностью 24 л.с. и прочие технические новинки. Сей автомобиль был очень тяжелый, громоздкий, неуправляемый, а самое главное – небезопасный. В связи с чем дальнейшая политика фирмы была направлена на то, чтобы сделать автомобиль более легким по весу и более управляемым. Вскоре нашлось много людей, желающий иметь такой автомобиль.
В итоге родилась широко известная ныне модель, названная в честь его дочери, Мерседес. Она вышла в свет в самом конце 1900 года и стала, по мнению историков, прототипом современного автомобиля.
Mercedes Превью — увеличение по клику.
На картинках — первый «Mercedes» (декабрь 1890 г.) — прообраз современного автомобиля с простейшим кузовом, предназначавшимся для участия в автомобильных гонках. Вместо него мог быть установлен четырехместный «прогулочный» кузов. На снимке хорошо виден рычаг переключения передач.
Модель «Mercedes» 35 л.с. соединяла в себе: переключение передач, сотовый радиатор и зажигание от магнита низкого напряжения — от прежних моделей Даймлера — и технические новшества — низко расположенную легкую штампованную раму и механический привод впускных клапанов (хотя от этой новинки впоследствии пришлось отказаться). В купе, эти технические решения дали жизнь автомобилю, который отличался от своих предшественников более надежной эксплуатацией и был необыкновенно послушен для водителя. Тормозные системы стали гораздо надежнее, а о качестве самой машины говорили во всем мире.
На тот момент произошло самое интересное, все модели «Daimler» переименовали в «Mersedes».
Mercedes-Simplex 1904 Превью — увеличение по клику.
На картинках – одна из моделей фирмы «Daimler» – «Mercedes-Simplex» 1904 года, обладающая отличным четырехцилиндровым двигателем на 5.3 литра с боковыми клапанами. Даже сегодня модель не выглядит старомодной.
autohis.ru
Самый первый в мире автомобиль: фото, год, страна изобретения
На сегодняшний день автомобиль представляет собой популярное устройство, которым пользуется большинство населения планеты. Даже если у вас нет личного автотранспорта, то общественным вы пользуетесь – это точно. Каким был первый в мире автомобиль и какими особенностями обладал?
История создания авто
На вопрос, кто создал первый автомобиль, ответ достаточно сложный, так как было множество разработок, ученые изобретали что-то похожее на авто. При этом некоторые пытались заявить о себе, а некоторые относились к славе чрезвычайно терпимо и просто изобретали.
Первые транспортные средства подразделялись на следующие:
Работающие на паровом двигателе.
Работающие на двигателе внутреннего сгорания.
Электрические.
О каждой разновидности поговорим подробнее чуть позже. Сейчас же немного углубимся в историю создания авто и проследим, как общество пришло к использованию таких транспортных средств.
Когда-то давно Леонтий Шамшуренков создал первый самоходный аппарат, который и считается прообразом современного авто. Это устройство способно развивать скорость около 15 км/ч и было оснащено прибором, измеряющим километраж.
Самокатная повозка Ивана Кулибина
Не обошлось здесь без известного Ивана Кулибина. Он придумал трехколесную самокатку, которая ездила по городу со скоростью 16 км/ч. Здесь были даже некоторые детали, которые применяются в современном транспорте по сей день, например, тормоз или коробка передач.
Некоторые думают, что самый первый мировой авто разработал именно инженер Карл Бенц. Но стоит признать, что он действительно внес огромный вклад в продвижение этих транспортных средств.
Автомобили с паровым двигателем
Первые машины были оснащены паровым двигателем. Только через век им на смену пришли аппараты с двигателями внутреннего сгорания. В России устройства были созданы в 19 веке.
Самый первый автомобиль с паровым двигателем завоевал широчайшую популярность. Машина была разработана в 1769 году французским ученым Кюньо и имела название «Малая телега Кюньо». Такой транспорт мог набрать скорость только 4,5 км/ч, а воды и пара достаточно было всего лишь на 12 минут передвижения.
В 19 веке данный вид использовался для перевозки людей. Человек за рулем назывался водителем, а тот, кто подогревал котел – шофером.
Самыми известными моделями считались «Реверанс» и «Мансель». Скорость их была не более 35 км/ч, и в эксплуатации они очень неудобные.
Автомобили с двигателем внутреннего сгорания
Первым разработчиком аппаратов с двигателем внутреннего сгорания является Э. Ленуар. В 1860 году он придумал самый первый двигатель, в нем топливо сжигалось внутри. Эта разработка стала важным шагом в автомобилестроении. Первое авто с таким типом двигателя появилось в 1886 году, а через пару месяцев миру был представлен трехколесный автомобиль К. Бенца.
В 1894 году начали проводить первые автогонки, которые тоже сыграли немаловажную роль в развитии автомобилестроения. В первых гонках скорость машин была не больше 24 км/ч, а через пять лет она стала уже 70 км/ч, еще через пять лет – около 100 км/ч. Только с 1900 года стали специально выпускать гоночные авто.
Электрические автомобили
В 19 веке шла активная разработка электрических машин. Главным конструктором в этой области стал венгр Аньош. Он сделал компактную модель устройства, которое перемещалось с помощью электрической энергии.
Далее моделями занимался кузнец по фамилии Дэвенпорт из штата Вермонт. В дальнейшем стали использовать электричество в полноразмерных самоходных каретах на специализированных гальванических элементах.
Первый автомобиль, работающий на бензине
Самый первый мировой аппарат, работающий на бензиновом двигателе, был создан в 1883 году. Его создателем стал Готлиб Даймлер. Через несколько лет инженер Карл Бенц разработал самый первый автомобиль на трех колесах, оснащенный бензиновым двигателем, он и стал прототипом современных транспортных средств.
Только Карл Бенц выполнил все четыре условия, поэтому стал полноправным обладателем звания конструктора первого в мире автомобиля. Эти условия были следующими:
Доработанная конструкция транспорта.
Оформление необходимого патента.
Создание образца и представление его публично.
Организация производства.
Благодаря соблюдению указанных условий, конструктор стал первым изобретателем машин, однако Готлиб Даймлер первый придумал бензиновый двигатель. В результате эти два конструктора создали совместный проект и стали продавать машины, которые назвали в честь дочери Даймлера – Мерседес.
Первый Мерседес
В конце 1890 года был создан известный всему миру автомобиль, который получил название Мерседес. Эта машина, по мнению историков, стала прародителем современных авто. Мерседес имел следующие преимущества:
Мощность 35 л. с. В те времена – это истинное достижение и верх мастерства конструкторов.
Зажигание включалось благодаря встроенному магниту низкого напряжения.
Возможность переключения передач.
Высококачественные материалы корпуса.
Прочная штампованная рама, благодаря которой авто был надежным и послушным.
Тормоза новейшего поколения.
Двигатель объемом 5,3 литра с боковыми клапанами.
Известная модель Мерседес-35PS
Первый автомобиль в России
Первым автомобилем, привезенным в Россию, был «Панар-Левассор». В 1891 году его привез Василий Навроцкий. После этого интерес к транспорту в стране стал расти. В конце года были привезены еще несколько моделей. Но несмотря на это, самый первый автомобиль на улицах Москвы был замечен только в 1899 году.
Современные авто удивляют скоростными возможностями, например, спорт-кары могут разогнаться до ста километров за 2,78 секунд. Но как и многое в мире технологий, производство автомобилей начиналось лишь с энтузиазма. Кто бы не считался первым конструктором автомобиля, но Маркус, Даймлер и Бенц всегда шли в правильном направлении. Это, пожалуй, самое главное.
autolirika.ru
История создания первого автомобиля в мире
Как известно, в истории многое зачастую приходится на волю случая, замысловатая цепочка событий запросто может привести к совершенно неожиданным последствиям. История создания первого автомобиля в мире — не исключение, однако начнем по-порядку…
Предыстория
Как правило, слава создателя автомобиля приписывается одному человеку (кому именно — чуть позже), однако разработки этого изобретения велись многие десятки, а то и сотни лет.
Так, например, первые чертежи автомобиля принадлежат самому Леонардо да Винчи. В его конструкции применен пружинный привод, в эпоху Возрождения в ряде европейских стран подобные повозки участвовали в праздниках и парадах. В 2004 году группа экспертов музея науки Флоренции сумела восстановить автомобиль по чертежам Леонардо, тем самым доказав правильность его идей.
Русский механик Ползунов И.И. в 1765 году первым построил паровую автоматическую машину, а в 1769 на её основе была сконструирована повозка. Автором её стал французский изобретатель Никола Кюньо. Повозка предназначалась для перевозки артиллерии, и по размерам и весу могла запросто поспорить с современными грузовиками. Только лишь вода и топливо, необходимые для её движения, весили около тонны. Скорость движения такого экипажа не превышала 4 км/ч.
Над проектом автомобиля работал, в частности, известный русский изобретатель Иван Кулибин — в его повозке-самокатке применялись подшипники качения, маховое колесо, тормоз и даже коробка скоростей.
Создателями первого в мире бензинового двигателя являются Карл Бенц и Готлиб Даймлер. Разумеется, они придумали свой двигатель не с «чистого листа», многие узлы и агрегаты были разработаны раньше, а всего соавторов бензинового двигателя насчитывается порядка 400. Первый патент на двигатель внутреннего сгорания принадлежит инженеру по имени Николас Аугустин Отто — он зарегистрирован в 1876 году.
Первый в мире
В 1886 году произошел поистине переломный момент в истории автомобилестроения. Немецкий инженер Карл Бенц получил патент №37435 на свое изобретение — самодвижущийся экипаж с бензиновым мотором. Этот год и считается годом создания первого автомобиля в мире. Интересно, что примерно в это же время другой немецкий изобретатель Готлиб Даймлер также сконструировал экипаж с бензиновым мотором, а годом ранее запатентовал первый мотоцикл и карбюратор. Однако по воле случая (а какого — читайте чуть ниже) роль изобретателя автомобиля досталась именно Карлу Бенцу.
Творение Бенца представляло собой трехколесный самодвижущийся экипаж, рассчитанный на двух человек и оборудованный четырехтактным бензиновым мотором с водяным охлаждением.
Двигатель мощностью 0,9 л.с. располагался горизонтально над осью задних колес, которые приводились в движение посредством одной ременной и двух цепных передач. Источником питания для системы зажигания служила гальваническая батарея. Горизонтально под двигателем располагался маховик, который служил для запуска двигателя и создания равномерного вращения. Рамой автомобилю служила конструкция из спаянных между собой металлических трубок. Максимальная скорость движения первого автомобиля в мире составляла всего-навсего 16 км/ч.
О роли случая в истории, или первый автопробег
После получения патента Карл Бенц решил «вывести в свет» свое творение, прокатившись на нем по улочкам городка Мангейм. Однако новинка вызывала вокруг только раздражение, пугая всех шумом мотора. Расстроенный Карл поставил свое драгоценное изобретение под навес, намереваясь довести до совершенства.
Так прошло почти два года, а ранним летним утром 1888-го автомобиль «угнали». Вот как об этом вспоминает сам Бенц:
«У меня похитили мой автомобиль! Их было трое, действовали они согласованно и дружно. В мой автомобиль они были влюблены так же, как я сам. Но они требовали от него больше, чем я… Они хотели испытать похищенный автомобиль, проехать на нем 180 километров по неровной дороге. Компания с бродяжническими наклонностями состояла из моей жены и обоих сыновей».
Мог ли Карл Бенц в 1871 году, во время обручения с энергичной девушкой Бертой Рингент представить, что через 17 лет супруга сыграет едва ли не решающую роль в деле всей его жизни? Думаю вряд-ли…
«Похитители» решили отправиться к родственникам в небольшой городок Пфорцхейм. В дороге, разумеется, не обошлось без приключений — автомобиль не был рассчитан на такие дальние путешествия. Однако все волнения окупились с лихвой — жители Пфорцхейма толпами сбегались посмотреть на удивительную «безлошадную» повозку.
Вскоре об этом случае узнала вся Германия, причем пресса обратила внимание не столько на путешествие, сколько на сам автомобиль Бенца. С этого момента и началось восхождение повсеместное увлечение автомобилем. Так предприимчивая Берта сыграла решающую роль в успехе своего мужа. Многие историки всерьез считают, что именно она вывела автомобилестроение на широкую дорогу. Как и первый автомобиль, путешествие Берты заняло свое заслуженное место в истории — этот марафон длиной в 180 километров принято считать первым в истории автопробегом.
Что ни делается — все к лучшему
В 1893 году свет увидел новый четырехколесный автомобиль, оснащенный только что запатентованной шкворневой системой поворота управляемых колес. Двухместный экипаж с полностью закрытым моторным отсеком и двигателем мощностью около 3 л.с. — любимое творение Бенца — получил имя «Виктория», что значит «победа».
После выпуска этой модели дела фирмы пошли в гору, и Карл Бенц решил создать целую серию экипажей, добавив к мощной «Виктории» облегченную модель «Вело». Это был четырехколесный модернизированный вариант первого экипажа, ставший впоследствии прообразом первого отечественного автомобиля конструкторов Яковлева и Фрезе. Выпуск «Вело» начался в 1894 году, и за три года был изготовлен 381 автомобиль — благодаря этому историки считают «Вело» первым автомобилем серийного производства.
Такова история создания первого автомобиля в мире.
rulevoe-koleso.ru
Самые первые автомобили мира. История автомобилестроения
Автомобиль Бенца и первый угон
Автомобильная история насчитывает больше ста лет. А какой автомобиль был самым первым? Оказывается, первых автомобилей было на самом деле два! Независимо друг от друга два немецких инженера, Карл Бенц и Готлиб Даймлер, одновременно построили свои самодвижущиеся экипажи.
Два замечательных изобретателя, Карл Бенц и Готлиб Даймлер, жили в одно и то же время, в одной стране, но ни разу не встретились. Каждый из них организовал собственную фирму, выпускавшую автомобили.
В 1885 г. К. Бенц впервые выехал на своем трехколесном самодвижущемся экипаже на улицы города Мангейма. Новинка не вызвала особого интереса у жителей. Скорее испуг и раздражение. Шум мотора перепугал лошадь мясника. Лошадь вместе с телегой помчалась, не разбирая дороги. Весь товар разлетелся в разные стороны. Пришлось К. Бенцу купить 200 кг рассыпавшегося мяса и надолго закатить свою машину в гараж. Но тут в дело вмешалась жена изобретателя Берта Рингент. В соседнем городе жили ее родственники. Именно до них она и сыновья Бенца решили добраться на машине.
Трехколесный экипаж Бенца
Ранним летним утром, когда сам изобретатель еще спал, заговорщики выкатили машину из гаража. За руль сел старший сын, мать рядом с ним, а младший вместе с багажом, запасом топлива и инструментами устроился на заднем сиденье. По ровной дороге машина шла прекрасно, но в горку ее приходилось подталкивать. Спусков не выдерживали деревянные тормозные колодки, обитые кожей. Несколько раз экипаж останавливался около лавок деревенских сапожников, чтобы заново обить тормоз кожей. У сельского кузнеца пришлось починить растянувшуюся велосипедную цепь. Когда засорился бензопровод, Берта прочистила его шпилькой, а разболтавшиеся детали мотора подвязала ленточкой.
Путешествие продолжалось пять дней и стало первым в истории автопробегом. О нем вскоре узнала вся Германия.
Четырехколесный экипаж Бенца
Автомобиль Даймлера и первая автокатастрофа
Первыми, кто заинтересовался работой Готлиба Даймлера, были не восторженные почитатели, а… полицейские! В течение года они наблюдали за его домом в маленьком немецком городке Каннштадте. В небольшой мастерской происходило что-то непонятное. Там постоянно ухал молот, что-то стучало и гремело. Сам Даймлер, хозяин дома, и его напарник Вильгельм Майбах были крайне необщительными, сторонились людей и никого к себе не пускали.
Наконец, когда в мастерской что-то затарахтело и застучало так, что даже на соседней улице стало слышно, полицейские не выдержали и ворвались в мастерскую. Хозяева были слишком увлечены своим делом и не сразу заметили незваных гостей. Тогда старший полицейский громко приказал прекратить это безобразие. В наступившей тишине прозвучал вопрос: «Что это такое?» Оба конструктора восторженно начали объяснять, что это первый в мире двигатель внутреннего сгорания, работающий на бензине. И даже попытались объяснить принцип его работы. Полицейские не прониклись восторгами изобретателей, оштрафовали их и удалились.
Мощность первого двигателя составляла всего половину лошадиной силы. Для сравнения: мощность двигателя обычного современного легкового автомобиля составляет 100 л. с.
Двигатель седельной машины
Дальше Г. Даймлер стал придумывать, как бы ему лучше использовать свой двигатель. Сначала он установил его на двухколесной «седельной машине» — так стала называться конструкция.
У этого прообраза мотоцикла были деревянные колеса и деревянная рама, а разгонялся он до скорости 12 км/ч. Но это был еще не автомобиль. Его Даймлер построил немного позже, в 1886 г. Изобретатель установил двигатель на карету и приладил к ней рулевое управление. Таким образом, появился первый четырехколесный автомобиль. Он разгонялся до 18 км/ч. Для того времени — рекорд скорости! Мотор можно было запустить только с ходу. Сначала приходилось толкать экипаж, а потом на ходу запрыгивать. Один раз Даймлер не догнал свою машину, и она укатилась прямиком в канаву. Так случилась первая в мире автокатастрофа.
Первый автомобиль Даймлера
Первая гоночная машина
Самая лучшая реклама для автомобиля — это победа в гонках. А для этого нужны специальные машины. Одним из первых гоночных автомобилей был «Мерседес». Его заказал компании Даймлера австрийский предприниматель Эмиль Еллинек. Он занимался продажей автомобилей Даймлера и увлекался гонками, а первую гоночную машину, построенную специально по его заказу, назвал в честь своей дочери Мерседес. Мало того, он сам принимал участие в гонках под псевдонимом «месье Мерседес». По требованию Еллинека в машину внесли ряд технических усовершенствований. Например, он потребовал, чтобы автомобиль развивал неслыханную по тем временам скорость — 40 км/ч!
Первый гоночный «Мерседес»
В 1899 г. во французском городе Ницце состоялись очередные гонки. Господин с загадочным именем на невиданном до той поры автомобиле получил главный приз. После этого популярность марки очень возросла. За год Еллинеку удалось продать 36 автомобилей. Это практически все, что было произведено компанией «Даймлер».
В 1902 г. Еллинек зарегистрировал торговую марку «Мерседес», чтобы торговать автомобилями Даймлера. К этому моменту «Мерседесы» уже разгонялись до скорости 90 км/ч, и за ними выстроилась очередь на несколько лет вперед.
Эмблема «Мерседеса» — трех лучевая звезда. Ее впервые изобразил в 1880 г. Готлиб Даймлер. Звезда символизирует успех на с уше, воде и в воз духе. Рядом Даймлер подписал: «Звезда взойдет и благословит всех нас и детей наших».
Роллс-Ройс — «Серебряный призрак»
В 1904 г. английский инженер Г. Ройс и гонщик Ч. Роллс создали свою автомобильную фирму. Они решили строить только дорогие комфортабельные и скоростные машины. Так в 1906 г. родился знаменитый «Серебряный призрак». Максимальная скорость этого монстра составляла 105 км/ч. Эта машина выгодно отличалась от других автомобилей. Она была мягкая, комфортабельная и, самое главное, работала бесшумно! Современники сравнивали работу мотора этой машины со стрекотом швейной машинки. На испытаниях этот автомобиль прошел целых 24 тыс. км и ни разу не сломался! Это была невероятная надежность! Конечно же, этот автомобиль был победителем всех гонок, в которых он принимал участие.
Знаменитый «Серебряный призрак»
С 1911 г. на радиаторе «Серебряных призраков» устанавливали фигурку летящей леди. В течение многих лет все фигурки изготавливали и полировали вручную.
Первый российский автомобиль
В России первый автомобиль был построен Евгением Александровичем Яковлевым и Петром Александровичем Фрезе. 1 июля 1896 г. они показали его на Нижегородской промышленно-художественной выставке.
Е. Яковлев владел заводом по производству керосиновых и газовых двигателей, а П. Фрезе был управляющим фабрики конных экипажей. Они решили объединить свои возможности и стали первыми в России создателями «самобегательного экипажа» или «бензомотора». Так они называли свою машину.
Машина Яковлева и Фрезе
По внешнему виду первый русский автомобиль напоминал машину К. Бенца. В оборудование входили складной кожаный верх, гудок с резиновой грушей, фонари. Для поворота служил установленный перед сиденьем рулевой рычаг на вертикальной колонке. Тормоз тоже включался рычагом. Мощность двигателя составляла 2 л. с.
Ходовая часть автомобиля представляла собой переоборудованный конный экипаж с большими деревянными колесами. Кузов был двухместный.
Два русских предпринимателя и создателя первого русского автомобиля, Е. Яковлев и П. Фрезе, познакомились не в России, а на технической выставке в Чикаго в 1893 г.
Первый серийный отечественный автомобиль
Первым серийным русским автомобилем стал «Руссо-Балт». В 1908 г. его начали выпускать на Русско-Балтийском вагонном заводе в Риге. Ежегодно из ворот сборочного цеха выезжало больше ста «Руссо-Балтов» разных моделей.
«Руссо-Балт» отличался хорошей проходимостью
Гоночный «Руссо-Балт» в 1912 г. участвовал в соревнованиях в Монте-Карло. Там он никакого приза не получил, но для нас примечательны не гонки, а то, что из Санкт Петербурга до Монте-Карло, а это 3257 км, «Руссо-Балт» доехал своим ходом. За рулем машины сидел редактор журнала «Автомобиль» Андрей Нагель. Сорок раз он соскальзывал с обледенелой дороги в придорожную канаву, а потом ему в голову пришло замечательное решение. Он надел на покрышки кожаные ремни с гвоздями. Так появились первые в мире шипованные покрышки.
Машина «Пежо-Бебе»
Первая машина Армана Пежо появилась в 1901 г. Это была мотоколяска, которая весила всего 270 кг. Назвал он ее «Пежо-Бебе». Конструктору так понравилось это название, что в течение нескольких лет все последующие машины он тоже называл «Пежо-Бебе». В 1905 г. на очередном «Бебе» конструктор использовал собственное изобретение — амортизаторы. Они предназначались для того, чтобы машина не раскачивалась на каждой кочке.
«Пежо-Бебе»
Лучший «Пежо-Бебе» начали выпускать в 1912 г. Он был оборудован четырехцилиндровым мотором, а вот передач у коробки было всего две. Это не мешало автомобильчику разгоняться до 60 км/ч. Задняя передача включалась не так, как на современных автомобилях. Для нее существовал отдельный рычаг. Основным недостатком машины были покрышки. Они очень быстро приходили в негодность. Водителю приходилось возить с собой по два запасных колеса. Последний автомобиль «Пежо-Бебе» выехал из ворот завода в 1916 г.
Всего было выпущено 3095 машин. Несколько экземпляров дожили до наших дней, причем два из них находятся в России.
В начале ХХ в. во всех странах Европы вместе взятых выпускалось около 2 тыс. автомобилей в год. Но за то же время на одном только заводе Форда в американском городе Детройте собирали больше 10 тыс. машин!
Такси «Рено»
Первым автомобилем-такси стал «Рено-АХ». Его начали выпускать в 1906 г. Мощность его мотора превышала 100 л. с., а максимальная скорость составляла 148 км/ч. Конечно, для такси машина выпускалась попроще, но гонки сыграли свою рекламную роль. Марка стала очень популярной в Европе.
Один из первых «Рено»
Поначалу первому автотакси было нелегко конкурировать с конными экипажами, но со временем любителей таксомоторов становилось все больше и больше. В отличие от своего спортивного предшественника, «Рено-АХ» был оборудован мягкими рессорами. Максимальная скорость его была значительно ниже — лишь 65 км/ч, но для езды по городу этого вполне достаточно. Водители первых в мире такси сидели на открытом месте, а пассажиры располагались в закрытой кабине.
Первый автомобильный конвейер
Американский изобретатель и промышленник Генри Форд родился в 1863 г. в штате Мичиган, в многодетной семье фермера. Он был одним из восьмерых детей, и у его родителей не было достаточных средств на его образование. Проучившись в школе восемь лет, Генри начал работать на ферме у отца. В 16 лет он ушел из дома и начал самостоятельно зарабатывать деньги.
Свой первый автомобиль Генри Форд построил в 1893 г., для чего использовал газовые трубы, велосипедные колеса и разный хлам, подобранный на свалке. Но уже через несколько лет в городе Детройте молодой конструктор создал автомобильную компанию, которая позже станет называться «Форд моторс компании». А в 1908 г. на заводе, принадлежащем этой компании, собирали уже восемь моделей автомобилей. И в том же году Генри Форд создал автомобиль «Модель Т».
Первый автомобиль Форда
«Форд-Т» по прозвищу «Жестянка Лиззи» оказался первым массовым автомобилем, который собирался на конвейере. Считается, что Генри Форд был создателем первого в мире конвейера. Однако сам знаменитый предприниматель признавался, что подсмотрел эту идею на скотобойне. Он увидел, что туши животных, подвешенные на крюки, движутся, а рабочие, обрабатывающие их, стоят. Ему очень понравился такой способ, и в 1914 г. Генри Форд применил его на своем заводе. Только автомобили не подвешивались ни на какие крюки, а ставились на надежные платформы, которые перемещались от рабочего к рабочему. Теперь каждый из них выполнял одно простое действие, например: прикручивал колеса или устанавливал стекла и отправлял автомобиль дальше. Полусобранная машина перемещалась к следующему рабочему. Новшество позволило во много раз увеличить количество выпускаемых машин. Благодаря конвейеру за 20 лет было продано более 15 млн. «Жестянок Лиззи».
Все «Жестянки Лиззи» были выкрашены в черный цвет. Форд шутил: «Можно купить у нас автомобиль любого цвета при условии, что этот цвет — черный».
Конвейер на заводе Г. Форда
«Всемирный» автомобиль
«Жестянка Лиззи» благодаря конвейерной сборке оказалась машиной недорогой и доступной многим американцам. И не только американцам. Автомобили марки «Форд» охотно привозили и в другие страны мира. Их цена сначала составляла всего 900 долларов. Потом снизилась до 850, позже до 450 и, наконец, до 250 долларов!
Сбылась мечта Генри Форда. Теперь каждый рабочий его завода мог купить то, что выпускал. Через два года после начала выпуска модели «Т» в США был построен завод «Форд» в Англии, а еще через пять лет — в Германии. Таким образом «Форд-Т» стал первым «всемирным» автомобилем.
«Форд-Т», или «Жестянка Лиззи»
Как и у большинства современных автомобилей, у «Форда-Т» было три педали. Но выполняли они совершенно другие задачи! Не каждый современный водитель мог бы с ними разобраться. При нажатии на левую педаль включалась первая передача, а при ее отпускании — вторая. Центральная педаль включала задний ход, а правая была ножным тормозом. Вместо современной педали газа имелась специальная рукоятка под рулем.
Бензинового насоса тогда еще не придумали, топливо подавалось из бака самотеком. А сам бензобак располагался в задней части автомобиля. И чтобы топливо не прекращало поступать в мотор, при необходимости ехать в гору водителям рекомендовалось двигаться… задним ходом. Максимальная скорость машины составляла 80 км/ч. Очень неплохо по тем временам!
Девизом Генри Форда были слова: «Производите автомобили там, где их будут покупать». Сейчас по всему миру работает больше сотни заводов, которые выпускают автомобили «Форд» и детали к ним.
К концу 1920-х гг. машины «Форд-Т» составляли половину всех автомобилей на планете. Но к тому времени машина уже явно устарела.
В 1927 г. модель «Т» сменил на конвейере не менее знаменитый «Форд-А», который разгонялся до 105 км/ч и, к радости покупателей, мог быть выкрашен в любой цвет. Эти машины также выпускались на всех заводах Форда по всему миру. Выпускался он и в нашей стране под названием ГАЗ-А.
«Форд-А»
Поделиться ссылкой
sitekid.ru
Как на самом деле был устроен первый автомобиль
Первым в мире автомобилем официально признан Benz Patent-Motorwagen немецкого конструктора Карла Бенца. Несмотря на почетный титул, устройство первенца мирового автопрома лишь местами перекликается с современными авто.
Субтильного вида сооружение на трех колесах, по-немецки тяжеловесно наименованное Benz Patent-Motorwagen, появилось в далеком 1885 году. Работая над машиной, Карл Бенц целенаправленно создавал коммерческий проект — имелось в виду, что она должна стать популярным товаром. Прошедшие с той поры 130 лет подтвердили, что великий немецкий механик имел и недюжинное предпринимательское чутье. Но чтобы утлая самобеглая коляска превратилась в пригодный для всеобщего использования транспорт, конструкторам предстояло сделать еще немало — пользоваться первым автомобилем было нелегко.
Предыстория
Свой бизнес Карл Бенц начинал с небольшой велосипедной мастерской Benz & Company Rheinische Gasmotoren-Fabrik (позже переименована в Benz & Cie), которая в 1883 году принялась за серийное производство ДВС для сельского хозяйства и промышленности. А в 1885 году немецкий изобретатель получил самый важный в его жизни патент № 37435 на автомобиль, который получил имя Benz Patent-Motorwagen (чаще встречается сокращенное название — Motorwagen).
А начался первый автомобиль с мотора. По воспоминаниям самого конструктора, создание его первого автомобильного двигателя — четырехтактного одноцилиндрового агрегата — велось шесть лет. Поначалу Карл Бенц не имел право официально использовать свою разработку, так как подобная конструкция всё еще была защищена патентом Николауса Отто, изобретателя двигателя внутреннего сгорания. В 1878 году, в предновогодний день 31 декабря, по истечении срока патента Отто, Бенц сумел запатентовать бензиновый мотор с зажиганием от искры на свое имя.
От создания первого бенцевского мотора до работоспособного автомобиля прошло около семи лет. За это время конструктор запатентовал систему зажигания с батареей в качестве источника энергии и искровую свечу зажигания, также были запатентованы сцепление и коробка передач, которые нашли применение на следующих моделях Бенца.
Как оно работало
Первый Benz представлял собой трехколесное транспортное средство со стальной трубчатой рамой. На нее крепилось деревянное подобие открытого кузова, где размещался водитель и один пассажир. Общий диван, обитый натуральной кожей, имел спинку и собственную подвеску в виде цилиндрических пружин и эластичных рычагов, выполняющих роль рессор.
Как мы уже сказали, на Motorwagen устанавливался одноцилиндровый четырехтактный бензиновый двигатель мощностью 0,85 л. с. Охлаждение у мотора было водяное, но весьма специфичное. Циркуляции воды не было, она, подаваемая в рубашку цилиндра из специальной емкости, лишь орошала горячие внешние стенки цилиндра и затем испарялась. Естественно, воду приходилось доливать едва ли не чаще, чем бензин, — каждые несколько километров.
Система смазки также была до неприличия простой — масло с нескольких масленок элементарно капало на трущиеся детали силового агрегата.
Топливная система состояла из небольшого бензобака и карбюратора испарительного типа. Последний представлял собой цилиндрическую емкость с волокнами ветоши на дне. На нее самотеком подавался бензин, который тут же испарялся. Поднимающиеся вверх пары подхватывались потоком воздуха, засасываемого в цилиндр, и образовавшаяся таким образом топливная смесь уносилась в камеру сгорания. Роль дроссельной заслонки исполнял расположенный спереди под сиденьем водителя кран, регулирующий подачу воздуха во впускной трубопровод.
Воспламенялась рабочая смесь искровой свечой с платиновыми электродами, внешне, кстати, очень похожей на современные свечи. Высокое напряжение на свечу подавалось индукционной катушкой Румкорфа, которая в модернизированном виде является основной частью системы зажигания и теперешних карбюраторных ДВС. Тогдашний аналог трамблера, который определял момент зажигания, приводился в движение специальным кулачком на промежуточном валу. Генератора не было — источником тока служила только аккумуляторная батарея, которую перед поездкой нужно было зарядить.
Крутящий момент от двигателя передавался на ведущие задние колеса через ременную и шестеренчатые передачи. Сначала с вертикального коленвала поток мощности через открытый конический редуктор направлялся на горизонтальный промежуточный вал, несший на себе шкив ременной главной передачи (и попутно — кулачки привода клапанов ГРМ и трамблера). На расположенный под полом кузова ведомый шкив ременной передачи (он же корпус дифференциала и тормозной барабан) момент передавался кожаным ремнем, закрученным по принципу ленты Мебиуса — работали одновременно две его поверхности. От спрятанного в шкиве дифференциала момент уходил на две колесные полуоси, с которых к колесам мощность передавалась парой «индивидуальных» цепей. Бенц отмечал, что ресурса тогдашних цепей ему хватало немногим больше чем на 100 км пробега.
Коробки передач у Motorwagen, как видите, еще не было. За размыкание колес и двигателя отвечало нехитрое устройство, управляемое рычагом, можно сказать, «предок» сцепления.
Руль в современном понимании слова у Motorwagen отсутствовал. Его роль выполнял рычаг с деревянной рукояткой на конце. Рулевой механизм, действующий по схеме шестерня-зубчатая рейка (практически так же, как сегодня!), управлял единственным передним колесом. Подвеска была только на задней оси в виде двух эллиптических рессор, установленных продольно по отношению к кузову. Спицованные колеса оборачивались в резиновые обода из цельнолитого каучука.
Долго заправляли и медленно ехали
Как же выглядел процесс управления этим конструктивно простым аппаратом? Перед поездкой шофер наливал воду в бачок для охлаждения, бензин в емкость возле карбюратора, масло в масленки. Чтобы завести авто, нужно было раскрутить рукой горизонтальный маховик, предварительно уменьшив вышеупомянутым краником под сиденьем водителя подачу воздуха в карбюратор (аналог педали акселератора). Когда двигатель завелся, шофер усаживался на диван и возвращал краник подачи воздуха в нормальное положение. Длинным рычагом возле сидения драйвер снимался с тормоза, освобождая заторможенный специальной лентой ведомый барабан. Подвинув дальше тот же рычаг, водитель переходил с «нейтрали» на единственную переднюю передачу, смещая приводной кожаный ремень со свободно вращающейся части ведомого шкива на часть, связанную с корпусом дифференциала. Автомобиль приходил в движение.
Когда водитель самодвижущегося экипажа хотел притормозить, он тянул за тот же рычаг, смещая приводной ремень назад на свободно вращающуюся часть шкива, переводя трансмиссию в «нейтраль». Если шофер желал полной остановки, то он тянул рычаг еще дальше и приводил в действие ленточный тормоз, который замедлял барабан, а с ним и всю машину.
Наследники
Вторым автомобилем конструктора стал Benz Patent Motor-Wagen Nummer 2, отличавшийся от первенца доработанным силовым агрегатом. Объем двигателя вырос с 0,95 до 1,5 литра, а мощность увеличилась с 0,85 до 1,5 л.с. Третий экземпляр получил складную крышу, полноценный отдельный бензобак, эжекционный карбюратор привычного для нас типа (с диффузором и поплавковой камерой), двухступенчатую коробку передач, увеличенную на 12 см колесную базу.
В 1893 году появился первый четырехколесный Benz, а еще через год продукция немецкой фабрики впервые приняла участие в гонках. В 1895 году появились первые грузовик и автобус.
Развитие марки в неспокойном ХХ веке — это уже совсем другая история, а с третьим по счету Motorwagen связывают историю, ставшую хрестоматийной. О ней Карл Бенц поведал в своих мемуарах.
Как пишет автор, в 1888 году жена конструктора Берта Бенц, прихватив с собой сыновей, отважилась на самостоятельный пробег, да еще и втайне от мужа. Первая женщина-водитель запланировала и совершила поездку от города Мангейм в Пфорцхайм, расстояние между которыми составляло 106 км. Первый в автомобильной истории пробег не обошелся без неприятностей. Так, около городка Брухзаль на машине истерся и лопнул кожаный приводной ремень. Берта не растерялась и обратилась к местному сапожнику, который наложил латку и установил на место вышедшую из строя деталь (тогда ремни еще не перешли в разряд одноразовых «расходников», это случилось два десятилетия спустя). По пути путешественникам попался подъем, который автомобиль с тремя пассажирами на борту преодолеть не мог. Тогда за руль посадили младшего Бенца, а старший сын с мамой вытолкали повозку на холм. Надо сказать, что Берта Бенц отличилась недюжинной технической смекалкой. В дороге пробило изоляцию электрического провода зажигания. Для ее замены послужила обычная женская подвязка. Из-за низкого качества топлива на маршруте забивалась топливная магистраль, ее женщина якобы прочищала булавкой со шляпы. В качестве топливных заправок супруга изобретателя использовала аптеки, в которых лигроин продавался как лекарство от кожных хворей.
Как видите, привычный на сегодняшний день 100-километровый автопробег оборачивался для шофера целым приключением. На протяжении последующего столетия инженеры неустанно работали над упрощением обслуживания машины. О том, как эволюционировало ТО в течение ХХ века, читайте в нашей недавней публикации.
<a href=»http://polldaddy.com/poll/8627116/»>Приходилось ли вам из подручных средств ремонтировать машину в пути?</a>
Читайте также:
www.kolesa.ru
Первый в мире паровой автомобиль (15 фото)
Итак, 211 лет назад, 24 декабря 1801 года, английский изобретатель Ричард Тревитик совершил поездку на своем паровом дилижансе – первом наземном самодвижущемся транспортном средстве в истории.
Эскиз парового омнибуса конструкции Тревитика образца 1803 года. Паровик возвышался на огромных колесах диаметром 8 футов (2438 мм). Сам изобретатель, тоже немаленького (6 футов 2 дюйма) росту, не мог достать рукой до верхней части колеса. В те годы колесами большого диаметра никого нельзя было удивить – это был способ уменьшить сопротивление качению и нагрузку на дороги с отнюдь не идеальным покрытием. К тому же за спицы удобно было выталкивать карету или дилижанс из грязи, что делали сами пассажиры
Дело происходило в Корнуэлле, на самой южной оконечности Англии, в краю древних кельтов. На рубеже XVIII и XIX веков с расширением промышленной революции в кельтскую землю вгрызлись десятки шахт. Приметой промышленной революции стала паровая машина. При помощи пара главным образом откачивали воду из шахт. Однако и задумывались, куда бы еще приладить двигатель. «Вскоре корзина с углем заменит торбу с овсом», – еще в 1740 году предрекал ирландский епископ Беркли.
Паровыми машинами Ричард Тревитик начал заниматься, помогая отцу, горному инженеру, обслуживать шахтные механизмы. По многочисленным свидетельствам современников, Ричард отнюдь не проявлял особой тяги к наукам и усидчивости, необходимой для выполнения расчетов. В школе городка Кэмбурн его больше влекли игры с мячом, нежели математика. Ричарда звали «кэмбургским громилой», поскольку роста он был немалого и силой обладал недюжинной. Физическая сила высоко ценилась и в шахте, в особенности, когда механизмы ломались и их требовалось чинить.
Инженер Ричард Тревитик (13.04.1771 – 22.04.1833 гг.). С портрета работы Джона Линнелла
Ричард научился разбираться в устройстве паровых машин. И вот в канун Рождества он собрал своих дружков – та еще была компания – и предложил самым отчаянным из них прокатиться на самоходной повозке, которую втайне ото всех весь год сооружал в сарае. Рулил повозкой кузен – Эндрю Вивьен. Всем понравилось, нашлась выпивка, и сарай вместе с паровиком спалили. Рождество отметили весело. Не случаен год, когда Тревитик явил миру свое самоходное детище по прозвищу «Пышущий дьявол». Патентное право, введенное в Великобритании и весьма ревностно охраняемое британскими законами, до 1800 года не позволяло никому строить самодвижущиеся экипажи с паровой силовой установкой. Патентом владел небезызвестный Джеймс Уатт, изобретатель одной из наиболее производительных паровых машин. Уатт запатентовал паровую повозку в 1768 году, но при этом не стал ее строить, опасаясь высокого давления пара примерно так же, как сегодня боятся водорода в баках автомобилей с топливными элементами.
Из-за неудачных пропорций (длина – 4905 мм, ширина – 2184 мм, высота – 3454 мм) паровик Тревитика обладал низкой устойчивостью. Спереди сначала устанавливали спаренные колеса. Однако из-за сложности с поворачиванием 1,9-тонной махины при помощи поводка-румпеля их заменили единственным колесом. Устойчивость еще ухудшилась. Ввиду полной неясности коммерческих перспектив самодвижущихся паровых экипажей перекупать права у Уатта никто не стал. Но вот срок действия привилегии Уатта истек, и Тревитик оказался первым, кто не только построил работоспособную повозку, но и перехватил патентую эстафету.
К сожалению, изображения первой самодвижущейся повозки Тревитика не сохранилось. Однако со второй машиной историкам повезло больше, поскольку остались ее чертежи, позволившие в наши дни даже построить работоспособную реплику на радость всем поклонникам стим-панка.
Реплика повозки Тревитика, построенная англичанином Томасом Брогденом. Оснащена двухцилиндровой горизонтальной паровой машиной рабочим объемом 11,7 л, развивающей мощность 3 л.с. при 50 оборотах в минуту. Экипаж оснащен гарантированной защитой от «зайцев», поскольку доступ в салон возможен только через дверь за спиной водителя. Фото Александра Страхова-Баранова
Особенностью самохода Тревитика было не только его пассажирское назначение (известная телега Кюньо предназначалась для перевозки артиллерийских орудий), а в первую очередь паровая машина высокого (по меркам тех лет) давления. Поршень диаметром 140 мм проделывал ход в 762 мм под воздействием пара, сжатого – страшно подумать – до двух атмосфер (нормальное давление в шинах современного автомобиля гольф-класса). Но в те годы развить такое давление считалось настоящим достижением.
Привод от паровой машины осуществлялся при помощи зубчатого зацепления на каждое из колес, причем можно было задействовать оба привода или каждый в отдельности
Уже в июле 1803 года Тревитик выводит свою машину на регулярный маршрут из Лондона, с Грэйз-инн лэйн, в Пэддингтон и обратно, через Лордс крикет Грауд и Айлингтон. Запаса угля и воды хватало на 15 км хода, причем повозка могла разогнаться до 13 км/ч – гораздо быстрее любого конного омнибуса. Обслуживали машину двое, водитель и кочегар, по-французски chauffeur. Теперь водителя зовут шофером, что в начале XIX века прозвучало бы оскорбительно – у водителя была чистая и ответственная работа, за которую больше платили.
Паровоз Тревитика на польской почтовой марке
Впрочем, однажды, развив полную скорость, паровик Тревитика завалился набок со всеми девятью пассажирами – сказался высокий центр тяжести. На этом с перевозками было покончено. Впрочем, Тревитик переключился на паровозы (для показа одного из них, по прозвищу «Догони меня, если сможешь», он даже возвел нечто наподобие манежа с кольцевой трассой).
Тревитик стал отцом паровоза. Как и это его начинание, идею перевозки пассажиров паровыми дилижансами быстро подхватили другие. Так что Шерлок Холмс и доктор Ватсон, прогуливаясь по Лондону, запросто могли лицезреть какое-нибудь самодвижущееся паровое чудо.
Кстати.
Почему мы предпочитаем двигатели на углеводородах, а не на воде? Причина скорей историческая, чем преимущество технологии. Брайян Артур , экономист из Стенфорда разработал математические инструменты для исследования «Эффекта толпы», писал в 1984 году как мы застряли с двигателем на бензине и на керосине:
«В 1890 было три способа двигать автомобили —с помощью пара, бензина и электричества — и один из них самый плохой — бензин. Поворотным моментом в использовании бензина был заезд в Чикаго. « Таймс-Геральд» финансировала первую американскую гонку карет без лошадей в Чикаго в 1895.
Гонки в Чикаго 28 ноября 1895 года выиграла вторая машина Дюруа. Говорят, что эта машина вдохновила Рэнсомa Олдсa на изобретение Oldsmobile. Он произвел в 1886 бензиновый ДВС и запустил его в массовое производство для Oldsmobile с изогнутой рамой. Так бензиновый ДВС преодолел начальный порог предвзятого к себе отношения. Паровой двигатель сохранился на автомобиле до 1914 год, в который была вспышка эпидемии ящура-заболевание домашнего скота. Из-за эпидемии исчезли все корыта для лошадей, из которых водители машин имели привычку набирать воду для котлов.Только через три года братья Стенли смогли разработать систему конденсации и кипения, в которой не нужно наполнять котел каждые 50-60 километров. Но было уже слишком поздно. Паровой двигатель никогда так и не восстановился. «
Почти нет сомнения что сегодняшняя технология на основе бензина лучше, чем на основе пара, но так сравнивать не правильно. Не известно насколько паровой двигатель смог бы продвинуться за 75 лет прогресса. Этого мы никогда не узнаем, но есть инженеры, верящие, что паровой двигатель мог быть лучшей альтернативой.
Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Другим преимуществом является низкое загрязнении окружающей среды.
Источник: p-i-f.livejournal.com
fishki.net
9 серийных автомобилей, на которых впервые появились технологии, навсегда изменившие автомобильный мир
Мир автомобильных технологий не стоит на месте, и с каждым годом появляется все больше и больше новых фишек. Технологии, которые сегодня кажутся нам обыденными, когда-то считались просто чудом. Предлагаю вашему вниманию 9 серийных автомобилей, на которых впервые появились технологии, навсегда изменившие автомобильный мир.
Первый автомобиль с двигателем внутреннего сгорания
Mercedes всё-таки та самая компания, с которой всё и началось. В 1886 году немец Карл Бенц запатентовал первый автомобиль с двигателем внутреннего сгорания, который он назвал Motorwagen. Учитывая то, сколько инноваций представляет Mercedes, можно сказать, что желание быть первыми живёт в компании до сих пор. Mercedes постоянно первыми представляют какие-либо новинки в индустрии, которыми позже пользуются все. Benz Patent-Motorwagen или трицикл Бенца №1 является первым в мире автомобилем с двигателем внутреннего сгорания. Построен он был в 1885 году , а 29 января 1886 года на него официально был получен патент. Позже из фирмы немецкого инженера Карла Фридриха Михаэля Бенца образовалась Daimler-Benz AG.
Первый легковой автомобиль с дизельным двигателем
И тут все началось с компании Mercedes Benz, выпустившей на рынок в 1935 году первый серийный легковой автомобиль сдизельным двигателем. Первый публичный дебют автомобиля состоялся в 1936 году на выставке в Берлине. Дизельный двигатель объемом 2,6 литра (заводской код ОМ 138) с предкамерой и топливным насосом высокого давления BOSCH, развивающий 45 л.с при 3200 оборотах в минуту был установлен в шасси легкового автомобиля Mercedes-Benz 200 с длинной колесной базой. Модель получила название Mercedes-Benz 260D (кузов W138). Силовой агрегат потреблял менее 10 литров топлива на 100 км пробега, без глобальных изменений дожил до 80-х годов XX века. Автомобиль, оснащенный дизельным двигателем, мог пройти на одной заправке около 400 км, а в последствии и более 500км. Первыми, кто по достоинству оценил модель 260D, оказались немецкие таксисты, используя Mercedes-Benz 260D в качестве такси вплоть до 50х годов. Модификации этого двигателя устанавливались на Mercedes-Benz W123, которые до сих пор можно встретить на наших дорогах.
Первый легковой автомобиль с турбонаддувом
Первым пассажирским автомобилем, оснащенным турбонаддувом, стал Oldsmobile Jetfire от Cutlas, выпущенный в 1962 году. Благодаря двигателю V8 объемом в 3.5 литра и турбине Garrett, Jetfire выжимал 215 л.с. и имел крутящий момент в 411 Н/м. Разгон до сотни занимал меньше 9 секунд. Хоть Jetfire и был невероятно крутым автомобилем с самым первым серийным турбонаддувом с жидким охлаждением (Turbo Rocket Fluid) и самым первым мотором V8 с турбонаддувом, автомобиль продержался на рынке всего 2 года. В 1962 году было продано 3,765 автомобилей, а в 1963 году 5,842 единицы. Но проблемы (в первую очередь возникающие из-за владельцев) погубили автомобиль.
Первый автомат для легкового автомобиля
Первой массовой коробкой передач считаетс GM Hydra-Matic. Она использовалась многими автомобильными компаниями по всему миру. Первая полностью автоматизированная коробка передач – очередная гордость концерна GM. В 1940-м GM Hydra-Matic была доступна в качестве опции для автомобилей Cadillac, Oldsmobile и Pontiac. Именно GM Hydra-Matic вошла в историю как первая массовая автоматическая коробка передач. Помимо автомобилей концерна GM этот 4-ступенчатый гидромеханический автомат устанавливали на Bentley и Rolls-Royce.
Первый автомобиль с системой впрыска топлива
Система впрыска топлива широко использовалась в авиационной технике Второй Мировой войны, а также в дизельным автомобилях, начиная с 1930х годов. Первым автомобилем, оснащенным бензиновым двигателем и системой впрыска топлива, стал Goliath GP700. Оригинальная карбюраторная модель имела мощность в 25 л.с, однако, с приходом системы впрыска, движок разогнался до 29 л.с.!
Первый автомобиль с кондиционером
Первый серийный легковой автомобиль с кондиционером был представлен широкой публике в 1939 году на автосалоне в Чикаго. Им стал Packard 12 Sedan. Фурор эта модель не вызвала и массовое распространение кондиционеров на машинах не спровоцировала. Причины были следующие: кондиционер на Паккарде предлагался исключительно в качестве опции по цене 274 доллара, что было очень дорого, эта система была весьма громоздкой, и наконец для охлаждения салона требовалось остановить Packard, открыть капот и вручную установить ремень на шкив системы кондиционирования. И лишь в середине 50-х в этой области произошел прорыв. Однако настоящий бум автомобильных кондиционеров пришелся на 1970-е и 1980-е годы.
Первый автомобиль с подушкой безопасности
Подушки безопасности появились не в 90-х, и даже не в 80-х годах. Первым экспериментальным автомобилем с подушками безопасности был Ford Taunus и это было в 1971 году. Вот только дальше дело не пошло. В 1972 году Oldsmobile выпустили первый серийный автомобиль, оснащенный подушками безопасности. Это был Oldsmobile Toronado 1973 модельного года. Это была совсем другая система: она не работала вместе с ремнями безопасности, как работает сейчас, она была призвана их заменить. Уже в 1973 году GM предлагал подушки безопасности в качестве опции на целом ряде своих моделей.
Первый автомобиль с боковыми подушками безопасности
Volvo Cars первой среди производителей автомобильной отрасли предложила боковые подушки безопасности, устанавливаемые в сиденьях. В 1995-м шведы начали оснащать боковыми подушками безопасности серийные седаны и универсалы Volvo 850. С тех пор Volvo Cars не прекращала работ по усовершенствованию подушек безопасности. В 2012 году Volvo V40 стал первым серийным автомобилем с подушкой безопасности для пешехода.
Первый автомобиль с коленной подушкой безопасности
В безопасности нет мелочей. Коленная подушка безопасности не только защищает область таза и колен, но также предотвращает смещение водителя за пределы зоны действия подушек безопасности. Первым серийным автомобилем, на котором дебютировала коленная подушка безопасности, стал Kia Sportage. Речь идет о кроссовере самого первого поколения, выпускаемого с 1993 года. На сегодняшний день это единственный в мире автомобиль, оснащенный тремя подушками безопасности.
Для эффективной диагностики причин неустойчивого холостого хода необходимо иметь представление как двигатель автомобиля работает на этом режиме. Инжекторный двигатель не имеет системы холостого хода как карбюраторный.
За поддержание оборотов холостого хода на необходимом уровне отвечает ЭСУД (электронная система управления двигателем). Блок управления (ЭБУ) ЭСУД на основе данных полученных от различных датчиков определяет величину и продолжительность впрыска топлива форсунками на режиме холостого хода, управляет регулятором ХХ, а так же выставляет нужный угол опережения зажигания, необходимый для поддержания определенной частоты вращения коленчатого вала.
Порядок работы инжекторного двигателя в режиме холостого хода на примере двигателя 2111 автомобилей ВАЗ 21083, 21093, 21099
— До включения зажигания шток регулятора холостого хода (РХХ) максимально выдвинут и полностью перекрывает сечение байпасного (воздушного) канала в дроссельном узле.
— После поворота ключа в замке зажигания ЭБУ определяет температуру охлаждающей жидкости (сигнал с датчика температуры — ДТ), определяет, что дроссельная заслонка полностью закрыта (сигнал с датчика положения дроссельной заслонки ДПДЗ), стоит автомобиль или едет (сигнал с датчика скорости — ДС).
На основе полученных данных вычисляется такое положение штока регулятора холостого хода, при котором он приоткрывает байпасный канал на определенный просвет, чем обеспечивается приток воздуха необходимого для работы двигателя на холостом ходу.
— После пуска двигателя блок управления получает информацию от датчика положения коленчатого вала (ДПКВ) о его вращении, с датчика температуры о температуре ОЖ, датчика положения дроссельной заслонки о том, что заслонка закрыта, с датчика массового расхода воздуха (ДМРВ) о объеме воздуха поступающего в двигатель, с датчика скорости о том стоит автомобиль или двигается.
На основе полученных данных блок управления устанавливает шток РХХ в положение, обеспечивающее оптимальный просвет воздушного канала под дроссельную заслонку. Тем самым обеспечивается приток в цилиндры двигателя воздуха необходимого для поддержания минимальных устойчивых оборотов. Помимо этого определяет продолжительность и величину впрыска топлива через форсунки, определяет угол опережения зажигания.
По мере прогрева, температура двигателя растет, датчик температуры сигнализирует об этом блоку управления и тот перемещает шток регулятора холостого хода, уменьшая просвет воздушного канала. Величина и продолжительность впрыска уменьшаются, угол опережения зажигания изменяется. Обороты коленчатого вала постепенно падают до 650-750 об/мин.
Если запускается и работает на холостых прогретый двигатель, то аналогичным образом на основе данных полученных от датчиков блок управления выставляет шток регулятора в нужное положение.
В системах с обратной связью величина и продолжительность впрыска, и угол опережения зажигания рассчитываются с учетом показаний датчика кислорода (бедная-богатая смесь). На холодном двигателе датчик кислорода не работает, показания с него начинают сниматься по мере прогрева двигателя.
При нажатии на педаль «газа» дроссельная заслонка приоткрывается, сигнал об этом ДПДЗ поступает на блок управления. Режим холостого хода двигателя прекращается. Шток регулятора выставляется в такое положение, чтобы при внезапном закрытии дроссельной заслонки быстро обеспечить приток дополнительного воздуха в двигатель через воздушный канал и предотвратить «провал» в его работе.
Если автомобиль движется с включенной передачей и полностью закрытой дроссельной заслонкой (под горку, на ровном участке, при торможении двигателем, во время переключения передач) ЭБУ переводит систему в режим принудительного холостого хода (ПХХ) (топливо в двигатель не поступает, он работает по инерции).
Примечания и дополнения
— Холостой ход двигателя автомобиля – это работа на низких оборотах (650-750 для инжекторных ВАЗ 21083, 21093, 21099) с полностью закрытой дроссельной заслонкой.
— В случае неисправности РХХ стоит провести проверку его электрической части.
Еще статьи по инжектору ВАЗ
— Порядок работы системы впрыска инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099
— Схема ЭСУД ВАЗ 2108, 2109, 21099, нормы Евро-2
— Модуль зажигания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099
— Топливный фильтр системы питания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099
— Применяемость контроллеров (ЭБУ) на инжекторных двигателях автомобилей ВАЗ 2108, 2109, 21099
устройство, неисправности и выбор нового
Клапан холостого хода, который многие автолюбители называют датчиком холостого хода, является одним из важных компонентов современных двигателей. Принцип его работы на словах очень прост: пропускать воздух во впускной коллектор (по сути, в обход дроссельной заслонки) и удерживать холостые обороты силового агрегата авто в заданных конструктивно пределах. Если рассмотреть особенность его работы, а также изучить основные неисправности, станет ясно, что это небольшое устройство хитрее, чем могло казаться на первых порах. Давайте разберемся.
Подробнее о конструкции и работе
Итак, регулятор холостого датчика (РХХ), он же датчик и клапан холостого хода. Работает в тандеме с электронным блоком управления авто. На вопрос о том, где находится датчик холостого хода, ответить очень просто — рядом с дроссельной заслонкой. В современных авто он зачастую размещается внутри дроссельного узла, защищенного кожухом. Само устройство состоит из таких элементов:
Игла;
Шаговый электромотор со штоком;
Пружина.
Суть работы регулятора в изменении сечения канала, по которому воздух поступает к двигателю в том случае, когда дроссельная заслонка закрыта. Как только зажигание включается, РХХ выдвигает шток и игла попадает в специальное калибровочное отверстие. Уже при запуске мотора регулятор приоткрывает проход, через который воздух может пройти дальше. В случае если охлаждающая жидкость недостаточно прогрета, регулятор подает еще больше воздуха — это позволяет двигателю работать на более высоких оборотах и, соответственно, быстрее прогреваться. Кстати, именно благодаря работе регулятора автомобиль может стартовать с места практически сразу — риска заглохнуть минимален. На сегодняшний момент регуляторы холостого хода подразделены на три типа. А именно:
Соленоидный. Работает с использованием электромагнитной силы. При подаче напряжения на катушку, находящийся внутри нее сердечник втягивается, уводя за собой механически связанную заслонку и открывая канал. Работа устройства регулируется изменением частоты подачи т.н. командных сигналов. В исправно работающем регуляторе частота сигналов очень велика, а воздух подается двигателю мелкими порциями;
Шаговый. В конструкции такого регулятора имеется четыре электромагнитные обмотки и кольцевой магнит. На обмотки поочередно подается напряжение, и они создают вокруг себя магнитное поле. За счет очередности поле в устройстве вращается, а вместе с ним вращается и ротор. Последний соединен с механизмом, отвечающим за отпирание и запирание воздушного канала;
Роторный. По сути, это видоизмененный регулятор соленоидного типа. Управления осуществляется частотными импульсами, однако ключевым исполнительным элементом является именно ротор.
Как показала практика, регуляторы всех трех типов имеют неплохой эксплуатационный ресурс и выходят из строя по одним и тем же причинам. Схемы подключения регуляторов одинаковы для всех трех типов.
Неисправности датчика холостого хода
К несчастью, даже современные датчики холостого хода не имеют системы самодиагностики, так что владельцу авто придется выявлять поломку по косвенным признакам. Заметим, что при поломке даже не загорится индикатор “Check Engine”. Проблема будет крыться в недостатке или, напротив, избытке кислорода, поступающего к двигателю на холостых. Это и нужно учитывать. Признаки поломки РХХ будут следующими:
Двигатель глохнет на холостых;
Обороты «плавают» на холостом ходу;
Двигатель глохнет сразу после того, как водитель переводит РКПП в нейтральное положение;
Силовой агрегат требует долгого прогрева для нормальной работы.
Как видите, симптомы практически те ж, что и при поломке датчика положения дроссельной заслонки, однако есть одно важное отличие — при его поломке загорается “Check Engine”. Как и в случае проблем с ДПДЗ игнорирование проблемы чреваты ускоренным износом двигателя, а также практически всех элементов топливной системы. К слову, сам регулятор изнашивается быстрее, если в дроссельный узел попадают сторонние жидкости, а также редко меняется воздушный фильтр.
Проверка и ремонт
Как уже было сказано выше, в случае если дроссельный узел вашего автомобиля защищен кожухом, добраться до регулятора может быть не просто. Перед началом проверки советуем изучить этой узел, а также проверить целостность проводки. Важный момент: дальнейшая проверка регулятора не может быть произведена корректно при разряженном аккумуляторе. Если со всем этим проблем нет, то можно приступить к проверке. Существует несколько методов:
Проверить сопротивление между обмотками. Между С и B, а также A и D должен быть обрыв (бесконечное сопротивление). А вот между A и B, C и D сопротивление должно составлять от 30 до 100 Ом;
Проверка самодельным тестером. Сделать его можно из трансформатора переменного тока на 6V. Вооружившись таким тестером необходимо будет проверить, нормально ли ходит шток регулятора. Некоторые автолюбители просто слегка упирают палец в конец штока и пытаются понять, приходит ли шток в движении.
Сразу отметим, что в случае выхода из строя элементов «начинки» датчика менять придется все устройство — оно не является ремонтопригодным. Однако некоторые манипуляции могут решить проблему хотя бы на время. Так, например, если вы проверили регулятор вторым методом и убедились в том, что шток перестал двигаться, проделайте следующее:
Расклиньте регулятор силиконовой смазкой. Если она попадет внутрь устройства, последствий не будет;
Если смазывание не помогло, замочите шток в спирте и протрите ватной палочкой. Спирт может заменить и средство для чистки карбюраторов;
В случае неэффективности вышеперечисленных чистящих средств воспользуйтесь WD-40. Это крайне агрессивное средство, которым стоит пользоваться в последнюю очередь.
Если чистка регулятора не дала результатов, придется покупать новое устройство. Автолюбитель может его разобрать и попытаться выявить причину поломки. В большинстве случаев регулятор перестает исправно работать в случае негодности направляющей конусной иглы (клин, истирание, деформация).
Подбор нового датчика холостого хода
С выбором нового устройства нет особых сложностей. Особых нюансов в подборе датчика в зависимости от страны сборки автомобиля тоже нет. Обращать внимание при выборе устройства стоит скорее на фирму-производителя, о чем чуть позже. Чтобы быть уверенным в том, что регулятор подойдет к вашему двигателю, при выборе необходимо руководствоваться чем-то из следующего:
Данными автомобиля: маркой, моделью, а также параметрами ДВС, годом выпуска;
Кодом имеющегося регулятора холостого хода;
VIN-кодом автомобиля.
Сегодня все больше автолюбителей ищут запчасти по данным своего транспортного средства. Такой метод поиска стал невероятно удобным благодаря развитию интернет-магазинов. Впрочем, в них также реализован поиск по кодам. Как и было указано выше, отдавать предпочтение стоит регуляторам от известных производителей. Например: Bosch, Valeo, Continental, VDO/Siemens. Более дешевые устройства от ERA, LCC и других фирм нижнего звена имеют значительно меньший эксплуатационный ресурс, так что особого смысла в экономии нет. Стоит опасаться лишь подделок.
Как распознать поддельный регулятор холостого хода
К несчастью, современный рынок контрафактной продукции предлагает практически все, что автолюбителю может понадобиться для ремонта. В большинстве случаев распознать подделку несложно, особенно если производитель оригинальный запчастей защищает свои товары QR-кодом, голограммой или индивидуальными проверочными кодами. Вот только серьезных и хорошо заметных защитных признаков у регуляторов холостого хода большинства производителей попросту нет. Вполне надежная проверка подлинности требует наличия оригинального регулятора, с которым и будет сравниваться купленный/запланированный к покупке. Вот что нужно сделать:
Проверить QR-код, защитный кода и убедиться в подлинности голограммы. Так защищают свою продукцию далеко не все фирмы;
Проверить упаковку. Дизайн должен быть оригинальным, полиграфия четкой, все надписи должны хорошо читаться. Обязателен логотип производителя;
Изучить пружину штока. В большинстве подделок пружина имеет частую навивку;
Изучить заклепки. Как показала практика, на поддельных регуляторах заклепки имеют крайне неряшливый вид;
Проверить корпус регулятора. Он должен быть выполнен качественно, без единых сколов и следов оплывшего пластика. Особое внимание уделите крепежным отверстиям;
Убедитесь в том, что регулятор имеет полную комплектацию. Подделки часто поставляются без резиновых и металлических колец.
К несчастью, сегодня распознать поддельный регулятор становится все сложнее. Если в прошлом подделку можно было распознать по наклейке, то теперь наклейки имеют правильную форму и даже содержать информация для проверки подлинности продукта (на неофициальных ресурсах, разумеется). Что производителе подделок действительно делают плохо, так это упаковку. Если элементы оригинальной картонной упаковки склеиваются по точкам, то упаковки с подделкой в 90% случаев имеют линии из клея (часто его количество избыточно). Правда, для такой проверки упаковку придется разорвать. Мы советуем вам быть предельно внимательными при покупке автозапчастей. Так, например, поддельная голографическая наклейка может содержать надпись… с грамматической ошибкой. Также не советуем руководствоваться одной лишь ценой. Подделка всегда стоит дешевле фирменного продукта и поначалу вызывает больший интерес у потенциального покупателя, на чем играют недобросовестные продавцы.
Вывод
Регулятор холостого хода — небольшой компонент дроссельного узла, который выполняет очень серьезную работу. Благодаря регулятору двигатель автомобиля не требуют долгого прогрева и хорошо работает на холостых оборотах. Подход к регулировке холостого хода за последние 10-15 лет серьезно изменился. Все более востребованными становятся электронные дроссельные заслонки, которые не нуждаются в регуляторе, так как с его задачами справляется сама заслонка. Такие дроссели не боятся низких температур и поломки «механики», так как ее практически нет. Что касается автомобилей с классическими дроссельными заслонками двигателей, то подобрать соответствующие им регуляторы сегодня довольно просто. Выпускать их будут еще очень долгое время.
Датчик холостого хода на ВАЗ 2109 (инжектор, карбюратор): замена своими руками, диагностика неисправности, чистка
Содержание:
Принцип работы
Функции
Признаки неисправности
Замена или чистка
При наличии проблем в работе датчика холостого хода, с управлением вашим ВАЗ 2109 могут возникнуть сложности. Чтобы определить поломку и научиться грамотно менять датчик, ознакомим вас с основными положениями.
Внешний вид устройства
Принцип работы
Не совсем правильно называть датчик холостого хода именно датчиком. Ведь они являются измерительными приборами, которые обрабатывают и преобразуют информацию, выводят ее на механические или электронные указатели на приборной панели.
Правильно называть датчик холостого хода регулятором, либо просто РХХ. РХХ играет важную роль в работе двигателя, поскольку обеспечивает слаженное и правильное поведение силового агрегата.
Увы, системы самодиагностики на ВАЗ 2109 не совершенны, потому при выходе из строя регулятора холостого хода автомобиль вас об этом не уведомляет даже элементарным включением сигнальной лампы Check Engine. Потому ориентироваться приходится по признакам поломки.
Работает РХХ следующим образом. При включении замка зажигания шток на датчике выдвигается до упора, упирается при этом в специальное отверстие дроссельного патрубка. РХХ начинает считывать шаги и клапан возвращается в изначальное положение. При работающем моторе при повышении или уменьшении количества шагов происходит изменение объема воздуха, поступающего через отверстие. Следовательно, в двигатель идет необходимое количество воздуха, обеспечивающее стабильную работу мотора на холостых.
Функции
РХХ регулирует количество поступающего в двигатель воздуха при закрытой дроссельной заслонке. Это говорит о том, что РХХ выполняет функции автоматической регулировки заданных оборотов мотора при холостом ходу.
Также регулятор принимает участие в процессе прогрева мотора до оптимальных рабочих температур зимой. Диапазон рабочих температур у РХХ достаточно широкий — от -40 до +130 градусов по Цельсию.
РХХ, при столь важных функциях, имеет небольшие размеры и состоит из трех основных элементов:
Шаговый электромотор;
Пружина;
Шток с конусообразной иглой на конце.
Регулятор холостого хода установлен на корпусе дроссельного узла парой винтов.
Расположение РХХ
Признаки неисправности
Игнорировать признаки выхода из строя датчика холостого хода на вашем инжекторном или карбюраторном ВАЗ 2109 ни в коем случае нельзя. Сначала это будет доставлять дискомфорт в вождении, но вскоре может стать причиной серьезной аварии.
Существует несколько основных симптомов, которые могут указывать на проблемы с РХХ:
Обороты самопроизвольно начинают то увеличиваться, то уменьшаться;
При включении холодного силового агрегата не повышаются обороты;
При использовании дополнительных электрозависимых устройств, таких как фары или отопитель, на холостом ходу сразу начинают падать обороты;
При выключении передачи или на холостом ходу двигатель может заглохнуть.
Это не полный перечень возможных симптомов, но все они косвенные. Потому чтобы убедиться, что проблема кроется именно в РХХ, а не других узлах двигателя, необходимо проверить текущее состояние датчика.
Проверка состояния
Чтобы проверить текущее состояние вашего РХХ на автомобиле ВАЗ 2109, выполните несколько последовательных действий.
Шаг проверки
Ваши действия
Шаг первый
Включите ручной тормоз на автомобиле, установите противокаты под колеса. Безопасность всегда должна стоять на первом месте во время ремонта машины своими руками
Шаг второй
Необходимо добраться до искомого датчика, отключить его от питательной колодки с проводами, а затем с помощью вольтметра проверить наличие напряжения. Минус ставится на двигатель, а плюс устанавливается на выводы колодки проводов А и D
Шаг третий
Включите зажигание, проверьте показатели напряжения. В норме они составляют около 12Вольт. Если вольтметр показывает меньшие значения, возможна проблема с уровнем заряда аккумуляторной батареи. Если напряжения совсем нет, придется проверить весь ЭБУ и электрическую цепь. Не исключены обрывы.
Шаг четвертый
Проведите еще одну проверку при включенном зажигании. Проверьте поочередно выводы AB и CD. В нормальном состоянии сопротивление на них должно составлять примерно 53 Ом. Если РХХ работает нормально, измерительный прибор покажет бесконечное сопротивление
Шаг пятый
При снятом регуляторе холостого хода и включенном зажигании подключите к нему колодку с питание. Если при этом конусная игла выдвинулась, все с устройством хорошо. Если же не выдвигается конусообразная игла, тогда РХХ вышел из строя и требует замены
Определив, что старый датчик холостого хода уже отработал свое на ВАЗ 2109, ему требуется замена. Процедура вполне выполнима без посторонней помощи.
Снятие РХХ
Замена или чистка
Практика показывает, что в достаточно большом количестве случаев простая чистка регулятора холостого хода позволяет восстановить его работоспособность. Потому советуем первым делом опробовать этот метод. А если он результата не даст, тогда не составит никакого труда заменить устройство.
Купите емкость с очистителем для карбюратора. При этом ваш двигатель вполне может быть инжекторным. Просто данный состав отлично подходит для чистки РХХ и не только.
Отключите от датчика колодку с проводами, открутите два крепежа и извлеките непосредственно сам пострадавший регулятор.
Зачистите регулятор от накопившегося мусора, загрязнений, очистите обязательно саму иглу и пружину. Делать это нужно средством для чистки карбюратора. Используйте подручные средства, дабы привести в порядок достаточно компактное устройство.
Обязательно очистите посадочное гнездо регулятора холостого хода на дроссельном узле. Именно туда входит конусообразная игла датчика ХХ.
Завершив мероприятия по очистке устройства, верните его на место и проверьте в работе.
Если чистка не принесла желаемого результата, двигатель продолжает вести себя неадекватно, придется приобрести новый регулятор и установить его на место старого датчика.
Обязательно перед заменой обесточьте автомобиль, отключив минусовую клемму с аккумуляторной батареи, затем отключите колодку с питающими проводами, открутите крепежные винты и снимите устройство.
Выполните сборку, действуя в обратной последовательности.
Разборка узла для чистки или замены
Здесь главное действовать аккуратно и не переусердствовать с карбюраторным очистителем, если сначала решили попробовать зачистить устройство. В остальном замена РХХ не вызывает проблем даже у новичков.
Загрузка …
Как проверить регулятор холостого хода, основные неисправности
Стабильную и ровную работу двигателя автомобиля поддерживает большое количество разнообразных датчиков и систем. Например, когда полноценная нагрузка отсутствует, клапан дросселя находится в закрытом положении, но, тем не менее, силовой узел продолжает работать. Поддержание оборотов, без постоянной необходимости заводить ДВС после каждой остановки, возможно за счет регулятора холостого хода (РХХ). Даже небольшая поломка этого элемента может доставить большой дискомфорт водителю.
Датчик холостого хода: устройство, назначение, принцип работы
Датчик холостого хода визуально выглядит как электродвигатель, который имеет конусообразную иглу. Необходим регулятор для стабилизации и контроля над холостыми оборотами.
Главная задача РХХ – обеспечивать подачу необходимого количества воздуха в обход дроссельной заслонки на холостом ходу. Поток воздуха должен поступать в двигатель по периферийному каналу. Контролировать обороты возможно благодаря сечению канала, который управляется конусообразной игрой датчика.
Принцип работы основывается на анализе датчиком массового расхода воздуха (ДМРВ) количества поступающего потока и передаче данных ЭБУ. Далее в ход вступают форсунки инжектора, которые подают определенное количество топлива, которое необходимо для поддержания хода автомобиля.
Отдельно блок управления принимает показатели датчика положения коленвала, чтобы определить количество оборотов мотора в разных ситуациях. Одновременно с этим, ЭБУ контролирует работу РХХ, чтобы в нужный момент открыть периферийный канал для подачи воздуха, с целью поддержания определенного количества оборотов ДВС.
Регулятор холостого хода может изменить размер сечения дополнительного канала. После момента включения зажигания, шток датчика выдвинут до тех пор, конусообразная игла не займет калибровочное отверстие. РХХ самостоятельно открывает канал для подачи воздуха. Кроме того, если охлаждающая жидкость слишком холодная, датчик холостого хода может обеспечить более сильный поток воздуха для быстрого прогрева. За счет этого, автомобиль может стартовать без предварительного прогревания двигателя.
Располагается РХХ около ДПДЗ; отличается пластиковой накладкой электродвигателя, которая выступает над всем узлом. Питает датчик провод от общего жгута, который подключен к общему контроллеру.
Виды датчиков холостого хода
На сегодняшний день автомобильные производители представляют несколько типов РХХ:
Соленоидный датчик. Работает, основываясь на электромагнитной силе. После того как на катушку попадает напряжение, сердечник прячется. Клапанная заслонка открывает возможность потоку воздуха беспрепятственно поступать внутрь. После отключения соленоида периферийный канал блокируется.
Контроль работы датчика происходит за счет динамики частоты командных сигналов. Определенное количество воздуха имеет свой частотный эквивалент, что позволяет четко регулировать работу РХХ.
Шаговый. В технической структуре такого датчика предусмотрен кольцевой магнит и обмотки. Из-за шаговой подачи напряжения на каждый элемент, под воздействием магнитного поля, вращается главный ротор. Исполняющий механизм в зависимости от положения ротора контролирует открытие воздушного протока.
Роторный датчик. Контроль происходит за счет поочередных частотных импульсов. Очень схож по структуре с соленоидным РХХ, но главное место в конструкции занимает непосредственно ротор.
Возможные проблемы в работе датчика холостого хода, признаки неисправности
Как и любой механизм, регулятор холостого хода не застрахован от неисправностей или поломок. «Симптомы болезни» будут очень схожи с поломками десятков датчиков, и датчиком положения дроссельной заслонки в частности. Однако если проблема в датчике дросселя – водитель увидит индикатор «check engine», если же проблема в РХХ бортовой компьютер может не показывать ошибку.
Понять, что регулятор работает неисправно можно по нескольким признакам:
На холостом ходу мотор может произвольно глохнуть, обороты крайне неустойчивы без поддержки педали акселератора.
Самопроизвольная динамика оборотов двигателя.
Двигатель глохнет при переключении передачи или при старте с места.
При запуске мотора на холоде обороты не повышаются.
Обороты резко падают при работе фар или печки.
Причин неисправностей еще меньше, чем «симптомов»:
Естественный износ конусовидной иголки датчика.
Нарушение целостности контактов внутри тела электродвигателя регулятора.
Методика проверки датчика при помощи мультиметра
Самый надежный и распространенный способ проверить работоспособность датчика – воспользоваться мультиметром. Но для этого регулятор предварительно нужно снять. Обычно, он крепится несколькими винтами около датчика дросселя, но на некоторых автомобилях может быть закреплен специальным раствором или лаком.
Демонтировать РХХ с применением силы нельзя, поскольку существует большой риск повредить впускную систему. В подобном случае придется снимать весь дроссельный узел.
Для проверки электромотора необходимо замерять сопротивление обмоток. Контакты мультиметра нужно поочередно подключать на каждую из обмоток A и B, C и D. Если все работает исправно, то полученные данные попадут в диапазон 40–80 Ом.
В качестве дополнительной проверки мультиметром контакты можно поменять местами. Датчик, в таком случае, должен показать обрыв электрических цепочек.
Самодельный тестер РХХ
В некоторых случаях проверять регулятор холостого хода мультиметром на грани бесполезности. К примеру, на впрысковых ВАЗ. В таком случае данные мультиметра не будут информативными, поскольку главной проблемой является закоксовывание винтовой пары. Такая проблема ведет к заеданию датчику, из-за чего он просто не может обеспечивать постоянный поток воздуха.
Некоторые умельцы самостоятельно изготовляют устройства для проверки РХХ в такой ситуации. Для самодельного тестера необходимо иметь под рукой трансформатор зарядного устройства телефона на 6В переменного тока. Если использовать контроллеры поочередно, можно проверить прямой и обратный ход регулятора. Рабочее устройство засветит лампочку индикатора тусклым светом, а обратный эффект подскажет о заедании и необходимости ремонта.
Что делать, когда обнаружилась поломка?
Чаще всего главным истоком всех поломок регулятора холостого хода является налипание пыли и грязи. В таком случае можно самостоятельно попробовать зачистить датчик.
После того как датчик отсоединен, все контакты необходимо протереть спиртом или специальной жидкостью. В случае если игла или шток сильно покрыты грязью – можно воспользоваться WD-40. В качестве дополнительной страховки, лучше проверить состояние дроссельного клапана и, при необходимости, провести зачистку. Если же очистка не помогла, будет лучше полностью заменить неработающее устройство и не ставить под вопрос безопасность участников дорожного движения.
Детально ознакомиться с технологией проверки датчика холостого хода можно на видео:
Вконтакте
Facebook
Twitter
Google+
Одноклассники
Мой мир
неисправности и ремонт датчика холостого хода
Датчик холостого хода ВАЗ 2109, 21099 – это специальное устройство, которое служит для регулировки количества воздуха, и его подачи в камеру сгорания, в момент работы двигателя на холостых оборотах. Он устанавливается на системах питания: карбюратор и инжектор. Но, поскольку ВАЗ 2109 и 21099, в основном инжекторные, мы рассмотрим в данной статье именно установку датчика на данном типе системы питания.
Принцип работы
Датчик холостого хода, состоит из нескольких деталей, а именно: электродвигатель, клапан, шток, запорная игла и пружина. В процессе движения автомобиля, клапан устройства находится в неподвижном состоянии. А в момент, как только инжектор переходит на холостые обороты, и дроссельная заслонка закрывается, клапан начинает работать, и качать воздух, в обход закрытой заслонки.
Электродвигатель, принудительно приводит в движение клапан, во время холостого хода. Шток, служит для соединения электромотора с клапанном, и передачи на него поступательно-возвратных движений. Запорная игла, в свою очередь, перекрывает поток воздуха в тот момент, когда инжектор ВАЗ 2109, 21099 получает обороты на включенной передаче.
Основные неисправности
Так как датчик холостого хода, имеет в своем устройстве множество подвижных механизмов, он склонен к поломкам. Но, поскольку он относится к системе питания двигателя, симптомы его неисправности будут очень схожими с остальными устройствами данного узла. Как же определить, что неисправен именно датчик холостого хода?
Если во время того, когда инжектор ВАЗ 2109 и 21099 работает вхолостую, обороты плавают, и двигатель работает не стабильно, или вовсе глохнет, то это, первый признак неисправности данного устройства.
Второй признак – когда двигатель ВАЗ 2109, 21099 заводится «на холодную», холостые обороты держатся в пределах 600 – 800 об/мин, и не поднимаются выше, а при нажатии на педаль газа, мотор вовсе глохнет.
Последний симптом того, что датчик холостого хода неисправен, является то, что инжектор глохнет во время работы, при выключении передачи. Если же обороты плавают, или двигатель полностью глохнет во время работы, на включенной передаче, то причина явно в другом.
Снятие устройства
Если Вы, все-таки, определили, что сломан именно датчик холостого хода, то Вам необходимо будет провести его замену на новый. Для работы по демонтажу данной детали, особых навыков не требуется.
Вышеупомянутый датчик ВАЗ 2109 и 21099, устанавливается на корпусе дроссельного узла, и крепится к нему двумя болтиками, например, как топливный насос. Для того, чтоб снять данное устройство, достаточно открутить два болта крепления, и вынуть жмут проводов, подсоединенных к устройству. Перед выполнением этой работы, рекомендуется отключить аккумуляторную батарею, сняв с нее обе клеммы.
Перед установкой новой детали, обязательно зачистите наждачной бумагой место соединения. Также, при необходимости, нужно заменить прокладку.
Установка нового РХХ
Установка нового устройства на ВАЗ 2109 и 21099, проводится в обратной последовательности: подсоединяем провода, ставим на место крепления, и фиксируем двумя болтами. Но, иногда случаются ситуации, когда после замены, обороты двигателя по-прежнему плавают, и не происходит никаких изменений. Так вот, для того, чтоб избежать такой неприятности, перед установкой, обязательно следует проверить новую деталь.
Для этого, отсоединенный датчик подключаем к мультиметру. Плюсовой провод – к катушке, а минус – на двигатель. Далее, включаем зажигание, и проверяем показания прибора. Если они плавают в районе 12 V, то устройство исправно, и готово к эксплуатации. А вот если показания шкалы прибора показывают 0 V, то однозначно, деталь неисправна.
Если, при такой-же самой проверке, старый, сломанный датчик, будет показывать также 12 V, но при этом, обороты двигателя плавают во время его работы, то старое устройство исправно, и ему нужна прочистка.
Процесс прочистки данной детали, включает в себя полную разборку. Поэтому, это дело лучше доверить специалисту, так как самостоятельное проведение процедуры очистки, может окончательно сломать устройство.
Вывод
Если обороты двигателя, на ВАЗ 2109, 21099, с системой питания инжектор, плавают во время холостого хода, не спешите менять РХХ. Причиной, также, может быть и неисправный ДПДЗ. На более новых моделях – 2110, 2115, и т.д., при неисправности ДПДЗ, загорается лампочка «CHECK ENGINE», которая помогает определить его поломку, так как симптомы у него, с РХХ, абсолютно одинаковые. Ну а на моделях 2109 и 21099, поломка ДПДЗ, определяется при самостоятельной, отдельной проверке.
Причины сильной вибрации двигателя на холостом ходу
Итак, какие проблемы встречаются наиболее часто при работе двигателя на холостом ходу? Эксперты выделяют две наиболее распространенных неисправности. Первую из них зарубежные специалисты называют авиационным термином – «помпаж». Под этим термином имеются в виду любые резкие перепады оборотов вверх или вниз. Иногда эта проблема возникает после резкого торможения, но не менее редко резкое снижение оборотов происходит во время обычной стоянки, вплоть до полной остановки двигателя. Другими словами – это целая группа проблем, которая может быть вызвана самыми разными причинами.
Вторая проблема – нестабильность холостого хода, при которой обороты двигателя медленно изменяются в сторону увеличения и снижения.
Перечень возможных причин, которые вызывают данные проблемы, может быть очень широким.
Вот только наиболее распространенные из них:
• Замок трансмиссии не фиксирует рычаг АКПП
• Подсос воздуха
• Клапан EGR заклинил в открытом положении
• Загрязнение и залипание клапана IAC, который отвечает за регулирование рабочей смеси (P0505)
• Неправильная работа или поломка датчика температуры двигателя
• Проблема с датчиком детонации
• Загрязнение каналов EGR
• Засорение системы перемены фаз газораспределения
• Воздух в системе охлаждения
• Разъем MAF имеет нестабильное соединение, либо некорректно работает сам датчик MAF
• Проблемы с давлением в топливной системе
• Засорение топливного фильтра
• Забитая либо засоренная система выхлопа отработавших газов
• Неработающий датчик положения коленчатого вала (P0336)
• Обрыв в цепи датчика усилителя руля
• Постоянное включение/выключение кондиционера из-за низкого уровня хладагента
• Неисправность датчика положения дроссельной заслонки (TPS)
• Засорение каталитического нейтрализатора
• Пропуски зажигания
• Некорректная работа клапана PCV (вентиляция выхлопных газов
• Высокое давление масла в системе (в дизельных двигателях).
Итак, причин очень много, и не мешало бы нам систематизировать информацию и выделить наиболее вероятные источники неисправности. Именно на них следует обратить внимание в первую очередь при диагностике двигателя.
Проблема:
Резкое колебание оборотов коленвала на холостом ходу.
Что проверяем?
1. Цепь управления топливным насосом.
2. Свечи зажигания.
3. Стабильность зажигания.
4. Состояние инжекторов.
5. Блокировку замка АКПП.
Проблема:
Высокие обороты холостого хода.
Что проверяем?
1. IAC.
2. Силовую цепь блока управления двигателем (ECM).
3. Цепь управления кондиционера.
4. Клапан PCV
Проблема:
Низкие обороты холостого хода.
Что проверяем:
1. IAC.
2. Силовую цепь блока управления двигателем (ECM).
3. Цепь управления кондиционера.
4. Клапан PCV.
5. Состояние инжекторов.
Проблема:
Плавающие обороты холостого хода.
Что проверяем?
1. IAC.
2. Блок управления двигателем (ECM).
3. Клапан PCV.
4. Цепь управления топливным насосом.
5. Свечи зажигания.
6. Стабильность системы зажигания.
7. Состояние инжекторов.
Теперь рассмотрим подробно каждый из этих пунктов.
Неисправный датчик положения коленвала
Как правило, неисправность датчика положения коленвала сопровождается кодом ошибки P0336 код. На многих двигателях в качестве датчика положения коленвала используется двухпроводной сенсор с сигнальным проводом и «землей». В датчике установлен постоянный магнит либо трехпроводной датчик Холла, который устанавливается в блок двигателя соосно зубчатому колесу, установленному на коленвале. В процессе вращения колеса магнит формирует сигнал переменного тока, передает его в блок управления, который и определяет по данному сигналу частоту вращения двигателя.
В зависимости от конструкции двигателя и модели, число зубьев звездочки коленвала может отличаться. Имейте в виду, что даже в пределах одного семейства двигателей (GM LS, например) количество зубьев может быть разным. Соответственно, установка звездочек с другим количеством зубцов – не допустима.
Показатели датчика положения коленчатого вала, как и сигналы датчика положения распредвалов, используются блоком управления двигателем для регулировки впрыска топлива и подачи искры. Естественно, любая ошибка в показателях датчика легко может стать причиной пропуска зажигания, который приводит к резким и кратковременным провалам оборотов холостого хода (которые многие автовладельцы описывают как тряску двигателя). Кроме того, неправильные показатели датчика положения коленвала могут стать причиной неудавшегося запуска двигателя или периодической остановки двигателя на холостом ходу. Искажение показателей датчика положения коленвала довольно часто связаны с неисправностью звездочки: износ или поломка зубцов, налет металлических частиц на зубцах и так далее. Кроме того, довольно распространенной причиной неправильной работы датчика является нарушение электропроводки. На большинстве двигателей звездочка запрессована на коленвале, но в процессе эксплуатации она может расшататься и выйти с посадочного места. Происходит это не часто, однако если возникло такое подозрение, его надо немедленно проверить и в случае обнаружения устранить, поскольку свободное вращение звездочки на коленчатом валу может вызвать уже не только пропуски зажигания, но и механические повреждения внутри двигателя – повреждение блока цилиндров или юбки поршня. Если данная проблема выявлена – не пытайтесь самостоятельно заменить звездочку коленвала. Чаще всего для этого требуется специальный дилерский инструмент и диагностическое оборудование. Лучше всего направить такой автомобиль в дилерский центр либо заменить коленчатый вал целиком, вместе с установленной звездочкой.
Неисправный датчик давления в гидросистеме ГУР
Один из автомобилей, в котором данная проблема встречается наиболее часто, – Honda Odissey. Провод датчика подвержен коррозии. Итогом этого является нестабильный сигнал, который ECU двигателя воспринимает как активную работу гидроусилителя в ситуации, когда он неподвижен. Блок управления начинает регулировать обороты двигателя, и сетка тахометра начинает рыскать. Проблема решается путем замены проводки.
Воздух в системе охлаждения
Для того, чтобы датчик температуры ОЖ показывал правильную температуру, он должен быть постоянно погружен в жидкость. В том случае, если в системе возникли воздушные пробки, возникает вероятность того, что горячий воздух может попасть на чувствительный элемент датчика и привести к колебанию температуры. В свою очередь блок управления двигателем (ECU) начнет менять состав топливо-воздушной смеси, дабы приспособиться к «изменению» работы мотора. Убедитесь в том, что система охлаждения заполнена и удалите воздушную пробку.
Проблемы с датчиком положения дроссельной заслонки
Если изношен вал привода дроссельной заслонки, необходимо проверить расположение датчика дроссельной заслонки TPS. Он должен находиться на самом конце вала. Любое отклонение положения вала привода дросселя, вызванное износом, повлияет на сигнал, генерируемый датчиком положения дроссельной заслонки. ECU может расценить это как реальное изменение положения дроссельной заслонки. В соответствии с этим блок управления подаст сигнал на увеличение подачи топлива, что приведет к переобогащению топливной смеси. Аналогичная проблема возникает в случае поломки датчика или нарушения в цепи питания, плохого контакта. Проверить работоспособность датчика можно следующим образом. Заглушите двигатель (ключ в положение – OFF), подключите мультиметр к датчику и измерьте напряжение при отпущенной педали акселератора. Затем несколько раз нажмите на акселератор и проверьте изменение напряжения. Если после этого показатели напряжения изменятся, то следует проверить состояние вала дроссельной заслонки и проводку датчика TPS.
Для обогащения смеси при запуске инжекторных двигателей используется, так называемый, контрольный воздушный клапан (IAC — Idle Air Control Valve или, как он еще называется, By-Pass Air Control Valve/Solenoid, AIS (Automatic Idle Speed), ISC (Idle Speed Control). Суть его работы — формирование воздушного потока при закрытой дроссельной заслонке. В обычном положении этот клапан закрыт и открывается только при прогреве двигателя для увеличения расхода воздуха (воздушная магистраль этого клапана идет во впускной коллектор в обход дроссельной заслонки). Как правило, при возникновении проблем с клапаном IAC блок двигателя выдает ошибку P0505. При этом двигатель может вести себя по-разному: глохнет на холостых оборотах, либо, наоборот, поднимает обороты. Для срабатывания клапана используется плунжерный механизм, который в случае засорения имеет склонность к заклиниванию или залипанию в открытом положении. Это не такая уж редкость, поскольку клапан имеет тенденцию к накоплению углеродистых отложений. Кроме того клапан IAC оборудован вакуумным шлангом. Если этот шланг имеет микротрещины и другие повреждения, двигатель будет реагировать так, будто IAC неисправен. На некоторых двигателях Toyota и Lexus устанавливаются электромагнитные клапаны IAC, которые нуждаются в периодической очистке.
Чтобы проверить IAC, сотрите все ошибки в блоке управления, отключите клапан и запустите двигатель. Если код ошибки P0505 больше не появляется, значит, клапан IAC не исправен. Если же код ошибки снова появился, это означает вероятность короткого замыкания или других проблем с проводкой. Проверьте жгут проводов на всем пути к ECU.
Вот один из примеров диагностики системы управления контрольным воздушным клапаном на ToyotaYaris2008 года выпуска с двигателем 1NZ-FE. Блок управления выдает код P0505.
Описание системы управления
Число оборотов холостого хода на данном автомобиле контролируется ETCS (электронная система управления дроссельной заслонкой). Система составит из:
• дроссельной заслонки,
• привода дросселя, который отвечает за открывание и закрывание заслонки,
• датчика положения дроссельной заслонки (TPS), который определяет угол открывания дроссельной заслонки,
• датчика положения педали акселератора (APP),
• блока управления двигателем, который контролирует работу всех компонентов.
Блок управления двигателем контролирует обороты холостого хода и объем поступающего воздуха на холостом ходу по показателям ISC (Iddle Speed Control). Система выдает ошибку в том случае если:
• объем воздуха на холостом ходу фиксируется на максимальном либо минимальном уровне не менее 5 раз за поездку,
• после поездки со скоростью от 10 километров в час и более фактические обороты холостого хода отклоняются от штатных на 100 и более оборотов в минуту не менее 5 раз за поездку,
В описанных выше случаях на панели приборов, загорается сигнальная лампа, а в блоке управления записывается ошибка P0505. Есть ещё несколько причин, вызывающих данную ошибку:
• коврик салона создает небольшое давление на педаль газа, в результате которого дроссельная заслонка находится всегда в немного приоткрытом положении,
• педаль акселератора не может быть до конца отпущена.
Веселый MAF
Неисправность датчика MAF становится причиной резких скачков оборотов двигателя – от 0 до 2 000 об/мин. Чаще всего проблема возникает из-за обрыва и замыкания в пучке проводов либо из-за повреждения (засорения) чувствительного элемента MAF.
Датчик MAF измеряет количество воздуха, проходящего через дроссельную заслонку. ECU использует эту информацию для определения времени впрыска топлива и создания оптимальной топливо-воздушной смеси. Внутри датчика стоит подогреваемый чувствительный элемент из платиновой проволоки, через который проходит поток воздуха. Проволока нагревается до определенной температуры при помощи тока определенной силы. Поступающий воздух охлаждает проволоку, меняя её сопротивление. Чтобы сохранить показатели тока на постоянном уровне, ECU двигателя меняет напряжение на проводе MAF. Это напряжение пропорционально объему воздуха, проходящему через датчик. Именно таким образом блок управления двигателем и рассчитывает объем поступающего воздуха.
Соответственно, если есть дефект в датчике (обрыв или короткое замыкание в цепи MAF), уровень напряжения отклоняется от нормального рабочего диапазона. ECU интерпретирует это как неисправность в приборе MAF и устанавливает диагностический код неисправности (DTC).
Коды неисправности MAF:
P0101: Указывает на высокое напряжение (обороты двигателя ниже 2000 оборотов в минуту, температура теплоносителя 158 градусов F или выше, а выходное напряжение MAF более 2,2 В), или низкое напряжение (оборотов двигателя более 3000 в минуту и выходное напряжение MAF меньше, чем 0,93 В).
P0102: Цепь MAF имеет низкое входящее напряжение (менее 0,2 В). Ошибка появляется в случае обрыва в электрической цепи в течение более 3 секунд. Ошибка также может свидетельствовать о неисправности MAF либо сильном загрязнении датчика. Если вы используете в автомобиле так называемые пропитанные воздушные фильтры, то они могут стать причиной появления данной неисправности.
P0103: Высокое входящее напряжение MAF (более 4,9 В). Обычно это означает короткое замыкание в цепи датчика. MAF может быть поврежден.
P0104: Цепь MAF разомкнута (плохое качество контакта, изношены разъемы, контакты или провода). Этот код может также указывать на утечку воздуха.
Дизельные колебания
Дизельные двигатели (возьмем в качестве примера моторы Ford 7.3L и 6.0L), как правило, имеют масляную систему высокого давления, которая управляет топливными форсунками. Показатели высокого давления на холостом ходу, как правило, составляют 500 psi. При 3300 об/мин давление составляет 120 psi, а при полной нагрузке – 3600 psi.
Система состоит из насоса высокого давления масла и регулятора давления впрыска. Колебание оборотов холостого хода может появляться в случае износа или подклинивания регулятора холостого хода. В некоторых случаях отмечается также полная остановка двигателя при движении на малых оборотах. Многим владельцам дизельных автомобилей известна проблема, когда дизельный двигатель в момент остановки на светофоре глохнет, после перевода ручки АКПП в положение N или P он запускается снова, но опять на следующем светофоре глохнет. Это один из признаков изношенного регулятора холостого хода. Другие симптомы:
• затрудненный пуск,
• небольшие провалы при резком нажатии на педаль акселератора.
Конечно, подобные симптомы могут свидетельствовать о самых разных неисправностях, но в первую очередь следует проверять систему высокого давления масла. Первая реакция владельца, столкнувшегося с этой проблемой – в топливный фильтр попала влага и его надо заменить. Безусловно, для дизельного двигателя, который работает в условиях холодного климата, эта процедура лишней не будет. Начинать надо всегда с малого. Но если смена фильтров не решила проблему, то следует проверить клапан системы высокого давления масла и регулятор оборотов холостого хода. Система работает при очень высоком давлении, и любое отклонение показателей приведет к тому, что блок управления двигателем начнет менять свои настройки формирования топливо-воздушной смеси, что скорее всего приведет к её переобогащению.
Примечание: Не спешите выбрасывать залипающий клапан высокого давления и покупать новый. Большинство из них вполне ремонтопригодны. Весь ремонт сводится к тому, чтобы разобрать клапан, почистить его и собрать заново. Также не забудьте измерить давление масла в рейке высокого давления и проверить её на отсутствие масляных пятен, которые не только приводят к быстрому загрязнению двигателя в задней части впускного коллектора, но и могут стать причиной падения давления в системе. Важно также напомнить клиентам, что только определенные марки моторного масла следует использовать в дизельных двигателях. Так, для поддержания правильного и постоянного давления к топливным форсункам в современных двигателях необходимо использовать масла со специальными антипенными присадками, которые не допускают аэрации масла.По API такие масла имеют класс CF-4/SH или CG-4/SH или выше. Эти присадки вырабатывают свой ресурс примерно за 5-8 тыс. километров пробега, поэтому масло необходимо менять своевременно.
Датчик холостого хода ВАЗ инжектор – где находится, номер по каталогу
Датчик (регулятор) холостого хода на автомобилях ВАЗ, как и на других автомобилях, служит для обеспечения стабильных оборотов двигателя на холостом ходу. Если инжекторный ВАЗ начинает «троить» на холостых или глохнуть при выключении передачи, значит, нужно проверить работу РХХ и при необходимости починить или заменить его на новый.
Найти датчик холостого года под капотом ВАЗ легко: он находится на дроссельной заслонке с противоположной стороны от тросика газа. Датчик холостого хода внешне напоминает небольшой бочонок с идущим к нему разъемом. РХХ крепится к корпусу дроссельной заслонки двумя винтами.
Добраться до датчика холостого хода несложно: он находится в зоне свободного доступа, винты имеют головки под крестовую отвертку. Чтобы демонтировать датчик холостого хода на инжекторных моторах ВАЗ, необходимо:
поставить автомобиль на ручник,
скинуть минусовую клемму с аккумулятора,
отсоединить от РХХ жгут проводов,
очистить место крепления датчика к корпусу дроссельного патрубка,
выкрутить винты крепления отверткой или «трещоткой»,
чуть покачать датчик, чтобы было проще его вытащить.
Номер датчика холостого хода для ВАЗ по каталогу – 2112-1148300-ХХ, где ХХ – это индекс, указывающий на производителя. Так, например, на автомобили ВАЗ 2110, 2111 и 2112 (инжектор) устанавливались два вида РХХ:
2112-1148300-01 – производства ОАО Пегас (Кострома),
2112-1148300-02 – производства КЗТА (Калуга).
Кроме того, на автомобилях LADA встречаются следующие виды датчиков холостого хода:
2112-1148300 – производства ЗАО Омега,
2112-1148300-03 – производства ОАО Пегас (Кострома), со шляпкой,
2112-1148300-04 – производства КЗТА (Калуга), со шляпкой.
Автомобилисты говорят, что абсолютно все РХХ, каталожные номера которых начинаются с 2112-1148300, взаимозаменяемы, однако окончательного мнения на этот счет не существует, так что лучше заменять датчик холостого хода на ВАЗ по такому принципу:
2112-1148300-01 – замена на аналогичный или на 2112-1148300-03,
2112-1148300-02 – замена на аналогичный или на 2112-1148300-04.
Как работает регулирующий клапан холостого хода Ricks Free Auto Repair Advice
Что такое регулирующий воздушный клапан холостого хода
Многие люди не понимают, как работают регулирующие клапаны холостого хода. Регулирующий клапан холостого хода буквально обходит воздух вокруг закрытой дроссельной заслонки, чтобы двигатель мог получать воздух на холостом ходу. Поскольку он перепускает воздух, его также называют перепускным клапаном.
Еще во времена карбюраторов скорость холостого хода регулировалась винтом холостого хода. Фактически, на многих карбюраторах было два винта регулировки холостого хода; один для холостого хода и другой для холода.При повороте винта внутрь дроссельная заслонка не закрывалась полностью, а количество оставшейся открытой дроссельной заслонки определяло, сколько воздуха может поступать в двигатель. Имейте в виду, что для того, чтобы карбюратор работал, воздух должен проходить мимо дроссельной заслонки в трубку Вентури, чтобы создать вакуум для всасывания газа из чаши карбюратора.
Когда двигатель был холодным, вы нажимали педаль наполовину, и воздушная заслонка переводила кулачок в «холодное» положение, а винт холостого хода в холодном состоянии удерживал дроссельную заслонку открытой намного больше, чем при горячем холостом ходу. Это позволяло проходить большему количеству воздуха, создавать большее всасывание и подавать больше газа в холодный двигатель. При горячем перезапуске воздушная заслонка не активирует кулачок холостого хода на холоде, и дроссельная заслонка открывается только для того, чтобы впустить небольшое количество воздуха. Так что бензина будет ровно столько, чтобы двигатель работал в теплом состоянии.
Автомобили с впрыском топлива так не работают. Во-первых, корпус дроссельной заслонки не имеет трубки Вентури. Его работа — просто регулировать количество воздуха, поступающего в двигатель — и точка. При запуске модуль управления двигателем (ECM) или модуль управления трансмиссией (PCM) проверяет температуру охлаждающей жидкости двигателя, температуру окружающего воздуха, барометрическое давление (на некоторых двигателях), а затем определяет, сколько воздуха и газа требуется для запуска двигателя.Производители автомобилей советуют запускать двигатель с впрыском топлива, НЕ нажимая на педаль. Это означает, что дроссельная заслонка полностью закрыта. Как в двигатель попадает воздух? От воздушного клапана холостого хода. Правильным термином для этой детали является перепускной клапан холостого хода, потому что его работа заключается в ОБХОДЕ воздуха вокруг дроссельной заслонки, чтобы обеспечить воздух для горения на холостом ходу.
Автопроизводители используют пять различных типов перепускных клапанов холостого хода.
Шаговый двигатель. В этой системе шаговый двигатель регулирует перепускной воздушный поток на холостом ходу, открывая и закрывая клапан на основе цифровых команд от EDM / PCM.Эти клапаны обычно имеют сужающуюся «шпильку», которая устанавливается в соответствующее сужающееся седло. Шаговый двигатель может позиционировать игольчатый клапан на одну из 125 возможных «ступеней». Чем выше количество ступеней, тем больше отверстие для воздушного потока. Если шаговый двигатель выйдет из строя, он по умолчанию вернется в положение последнего заданного шага. Поскольку все регулирующие клапаны холостого хода склонны к накоплению нагара, ECM / PCM может выполнять последовательность калибровки регулирования подачи воздуха на холостом ходу, когда он подает команду на полное закрытие и полностью открытое положение во время работы двигателя.Если PCM обнаруживает больший поток воздуха при полностью закрытом состоянии, чем он ожидал, он может включить контрольную лампу двигателя. Это указывает на необходимость очистки или замены клапана.
Роторный соленоид дежурного контроля. Поворотный клапан, как следует из названия, использует подвижный поворотный клапан, который блокирует или открывает байпасный порт на основе командных сигналов от PCM. Однако вместо того, чтобы работать «ступенчато», клапан по умолчанию имеет подпружиненное закрытое положение. Питание от батареи подается на клапан, и PCM включает и выключает землю частыми импульсами, чтобы подать питание на соленоид.Этот метод пульсации соленоида называется рабочим циклом и обычно калибруется с точностью до 1/10 секунды. Если путь заземления завершается в течение 5/10 секунды, это называется рабочим циклом 50%.
Поступающий воздух останавливается на дроссельной заслонке. Вращающийся регулирующий клапан холостого хода позволяет воздуху обходить дроссельную заслонку на основе команд от PCM
Регулирующий воздушный клапан (ACV). Этот стиль используется во многих автомобилях Ford. Клапан имеет внутренний конический стержень и соленоид.Он использует ту же схему рабочего цикла, что и описанный выше поворотный клапан рабочего цикла.
PCM подает импульс заземления на соленоид, заставляя стержень втягиваться со своего гнезда. Это позволяет поступающему воздуху обходить закрытую дроссельную заслонку.
Двухпозиционный вакуумный переключающий клапан (VSV) В этом типе клапана электромагнитный клапан переключается на открытие или закрытие с помощью PCM.
В некоторых приложениях используется термостатический клапан. В этом клапане пеллетный термостат находится в контакте с охлаждающей жидкостью двигателя. При холодном запуске термостат не закрывает отверстие для перепуска воздуха. Однако по мере того, как охлаждающая жидкость двигателя нагревается и воск начинает таять, расширение парафина толкает иглу, постепенно уменьшая количество обходного воздушного потока.
Как упоминалось ранее, в регулирующих клапанах холостого хода может накапливаться нагар, который может мешать их работе. Симптомы могут включать резкий холодный запуск, высокие обороты холостого хода, грубый холостой ход или даже «резкий» или пульсирующий холостой ход. Многие домашние мастера сразу же заменяют регулирующий клапан холостого хода.Это понятно, но обычно это не решает проблемы. Вместо этого ваш первый шаг должен заключаться в очистке конического седла клапана вместе с перепускными каналами холостого хода. Распылите на них спрей для очистки корпуса дроссельной заслонки. Затем проверьте отсутствие утечек вакуума. Треснувший вакуумный шланг может сбить с толку PCM, вынуждая его выдавать противоречивые команды на клапан управления воздухом холостого хода и вызывать резкий холостой ход.
РАЗРУШЕНИЕ МИФА В Yahoo есть парень, который настаивает на том, что за большинство проблем с двигателем и отказов каталитического нейтрализатора отвечает клапан регулировки холостого хода.Он не предлагает никаких доказательств этого, а только свое самопровозглашенное мнение. Вы не найдете документации, подтверждающей его теорию, ни в одном руководстве по эксплуатации. Вот итог: регулирующий воздушный клапан холостого хода работает на холостом ходу и во время замедления. Другими словами, каждый раз, когда вы убираете ногу с педали. Во время замедления компьютеры на большинстве автомобилей с впрыском топлива выполняют процедуру «прекращения подачи топлива», когда они прекращают работу топливных форсунок, чтобы заставить двигатель терять обороты. Однако, поскольку поршни продолжают двигаться вверх и вниз, двигатель все еще нуждается в подаче воздуха.Регулирующий клапан холостого хода открывается во время замедления, чтобы подавать этот воздух. Некоторые люди думают, что клапан регулировки холостого хода точно регулирует топливно-воздушную смесь во время движения. Это не так. Фактически, если вы посмотрите на диагностический прибор во время вождения, вы увидите, что PCM не подает НИКАКИХ команд на клапан управления воздухом холостого хода. Уберите ногу с педали, и вы увидите, как команды снова запускаются в режиме замедления и прекращения подачи топлива. PCM точно регулирует воздушно-топливную смесь во время движения, регулируя работу топливной форсунки, а НЕ с помощью клапана управления воздухом холостого хода.
И, если в вашем автомобиле есть дроссельная заслонка с электронным управлением, скорее всего, у него даже нет клапана регулировки холостого хода. В этих системах с электронным управлением «привод по проводам» используется дроссельная заслонка с приводом от двигателя, а не трос. Таким образом, дроссельный двигатель открывает дроссельную заслонку во время замедления и холостого хода == не при регулировании подачи воздуха на холостом ходу.
Если у вашего автомобиля частый или слишком большой холостой ход, щелкните здесь , чтобы узнать, как это исправить
Чтобы увидеть анимацию перепускного клапана холостого хода, щелкните здесь.
Секция учета топлива прикреплена к датчику воздуха секции и содержит впускной топливный фильтр, клапан ручного управления смесью, клапан холостого хода и главный дозирующий жиклер. [Рисунок 2-34] Клапан холостого хода соединен с дроссельной заслонкой посредством внешнего регулируемого звена.В некоторых моделях форсунок в этом отсеке также находится форсунка обогащения энергии. Блок учета топлива предназначен для измерения и регулирования расхода топлива на делитель потока. [Рисунок 2-35] Клапан ручного управления смесью создает состояние полного обогащения, когда рычаг находится напротив упора богатой смеси, и постепенно обедненную смесь, когда рычаг перемещается в сторону отключения холостого хода. Как частота вращения холостого хода, так и смесь холостого хода могут регулироваться извне в соответствии с индивидуальными требованиями двигателя.
Рисунок 2-34. Секция дозирования топлива форсунки.Рисунок 2-35. Впуск и учет топлива.
Делитель потока
Дозированное топливо подается из блока управления подачей топлива в делитель потока под давлением. Этот блок поддерживает дозируемое топливо под давлением, распределяет топливо по различным цилиндрам на всех оборотах двигателя и отключает отдельные форсунки, когда регулятор переводится в режим отключения холостого хода.
Как показано на диаграмме на рис. 2-36, измеренное давление топлива поступает в делитель потока через канал, который позволяет топливу проходить через внутренний диаметр иглы делителя потока.На холостом ходу давление топлива из регулятора должно возрасти, чтобы преодолеть силу пружины, приложенную к диафрагме и клапану в сборе. Это перемещает клапан вверх до тех пор, пока топливо не сможет пройти через кольцевое пространство клапана к топливному соплу. [Рисунок 2-37] Поскольку регулятор дозирует и подает фиксированное количество топлива к делителю потока, клапан открывается только настолько, насколько это необходимо для подачи этого количества к форсункам. На холостом ходу требуется очень небольшое отверстие; Топливо для отдельных цилиндров разделяется на холостом ходу делителем потока.
Рисунок 2-36. Делитель потока.
По мере того, как поток топлива через регулятор увеличивается сверх требований холостого хода, в трубопроводах форсунок повышается давление топлива. Это давление полностью открывает клапан делителя потока, и распределение топлива в двигатель становится функцией выпускных форсунок.
Рисунок 2-37. В разрезе делитель потока.
Манометр топлива, откалиброванный в фунтах в час, может использоваться в качестве расходомера топлива с системой впрыска Bendix RSA. Этот датчик соединен с делителем потока и воспринимает давление прикладывают к выпускному соплу.Это давление прямо пропорционально расходу топлива и указывает на выходную мощность двигателя и расход топлива.
Форсунки для выпуска топлива
Форсунки для выпуска топлива имеют конфигурацию для отбора воздуха. На каждый цилиндр, расположенный в головке блока цилиндров, приходится по одной форсунке. [Рисунок 2-38] Выходное отверстие сопла направлено во впускной канал. Каждая форсунка включает калиброванный жиклер. Размер жиклера определяется доступным давлением топлива на входе и максимальным расходом топлива, требуемым двигателем.Топливо выпускается через эту форсунку в камеру давления окружающего воздуха внутри соплового узла. Перед тем, как попасть в отдельные камеры впускных клапанов, топливо смешивается с воздухом для облегчения распыления топлива. Давление топлива перед отдельными форсунками прямо пропорционально расходу топлива; следовательно, простой манометр можно откалибровать по расходу топлива в галлонах в час и использовать в качестве расходомера. В двигателях, модифицированных турбокомпрессорами, необходимо использовать сопла с кожухом. С помощью воздушного коллектора эти форсунки сбрасываются до давления воздуха на входе в инжектор.
Рисунок 2-38. Топливная форсунка в сборе.
Система впрыска топлива Continental / TCM
Система впрыска топлива Continental впрыскивает топливо во впускной клапан в каждой головке блока цилиндров. [Рисунок 2-39] Система состоит из топливного насоса форсунки, блока управления, топливного коллектора и форсунки для выпуска топлива. Это непрерывный поток, который регулирует поток топлива в соответствии с потоком воздуха в двигателе. Система с непрерывным потоком позволяет использовать пластинчато-роторный насос, для которого не требуется синхронизация с двигателем.
Рисунок 2-39. Система впрыска топлива Continental / TCM.
Летный механик рекомендует
КАК РАБОТАЕТ ЭЛЕКТРОННЫЙ ВПРЫСК ТОПЛИВА
Электронный впрыск топлива (EFI) пришел на смену карбюраторам еще в середине 1980-х годов как предпочтительный метод подачи воздуха и топлива в двигатели. Основное отличие состоит в том, что карбюратор использует всасывающий вакуум и перепад давления в трубке Вентури (узкая часть горловины карбюратора) для перекачки топлива из топливного бака карбюратора в двигатель, тогда как впрыск топлива использует давление для распыления топлива непосредственно в двигатель.
В карбюраторе воздух и топливо смешиваются вместе, поскольку воздух протягивается двигателем через карбюратор. Затем воздушно-топливная смесь проходит через впускной коллектор к цилиндрам. Одним из недостатков этого подхода является то, что впускной коллектор является влажным (содержит капли жидкого топлива), поэтому топливо может образовывать лужу в зоне нагнетания коллектора при первом запуске холодного двигателя. Изгибы и повороты впускных колен также могут вызвать разделение смеси воздуха и топлива, как если бы она поступала в цилиндры, что приводит к неравномерному распределению топливной смеси между цилиндрами.Центральные цилиндры обычно работают немного богаче, чем концевые цилиндры, что затрудняет настройку для максимальной экономии топлива, производительности и выбросов с карбюратором.
ВПРЫСК ДРОССЕЛЬНОЙ ЗАСЛОНКИ
При системе впрыска в корпус дроссельной заслонки (TBI) одна или две форсунки, установленные в корпусе дроссельной заслонки, распыляют топливо во впускной коллектор. Давление топлива создается электрическим топливным насосом (обычно установленным в топливном баке или рядом с ним), а давление регулируется регулятором, установленным на корпусе дроссельной заслонки. Топливо впрыскивается в двигатель, когда компьютер двигателя подает питание на форсунку (форсунки), что происходит скорее в виде быстрой серии коротких импульсов, чем непрерывного потока. Это вызывает жужжание форсунок при работающем двигателе.
Из-за этой настройки те же проблемы с распределением топлива, которые влияют на карбюраторы, также влияют на системы TBI. Однако системы TBI имеют лучшие характеристики холодного запуска, чем карбюратор, потому что они обеспечивают лучшее распыление и не имеют проблемного механизма дросселирования.Система TBI также упрощает регулирование топливной смеси электронной системе управления двигателем, чем карбюратор с электронной обратной связью. Системы впрыска дроссельной заслонки использовались недолго в течение 1980-х, когда производители автомобилей в США перешли с карбюраторов на впрыск топлива, чтобы соответствовать нормам выбросов. К концу 1980-х годов большинство систем TBI были заменены системами впрыска топлива с многоточечным впрыском (MPI).
МНОГОПОРТНЫЙ ВПРЫСК ТОПЛИВА
В системах многопортового впрыска для каждого цилиндра имеется отдельный топливный инжектор.Преимущество этого подхода заключается в том, что топливо впрыскивается непосредственно во впускной канал головки блока цилиндров. Поскольку через впускной коллектор проходит только воздух, впускной коллектор остается сухим, и не возникает проблем с лужами топлива при холодном двигателе или разделением топлива, вызывающим неравномерность топливных смесей в центральном и крайнем цилиндрах. Это позволяет более равномерно распределить топливную смесь во всех цилиндрах для лучшей экономии топлива, выбросов и производительности.
Некоторые системы многоточечного впрыска топлива ранних серий были чисто механическими и датировались 1950-ми годами (например, Corvette 1957 года с системой впрыска топлива Rochester, а также системы Bosch D-Jetronic и K-Jetronic с их механическими распределителями топлива и инжекторами).Более поздние системы впрыска топлива, такие как системы Bosch L-Jetronic конца 1970-х годов, заменили механические форсунки электронными. Сегодня все производственные системы EFI полностью электронные с компьютерным управлением и электронными инжекторами.
Большинство систем EFI, которые предлагались в конце 1980-х и начале 1990-х годов, запускают все форсунки одновременно, обычно один раз за каждый оборот коленчатого вала. Более сложные системы последовательного впрыска топлива (SFI), появившиеся позже, запускают каждую форсунку отдельно, как правило, при открытии впускного клапана.Это позволяет более точно регулировать расход топлива, улучшая экономию топлива, производительность и уровень выбросов.
ВПРЫСК ПРЯМОГО ТОПЛИВА БЕНЗИНА
В 2000-х годах некоторые производители автомобилей начали предлагать новый тип системы впрыска топлива под названием Gasoline Direct Injection (GDI). При такой настройке для каждого цилиндра по-прежнему используется отдельный инжектор, но инжекторы перемещаются на двигателе для впрыскивания топлива непосредственно в камеру сгорания, а не во впускной канал. Это похоже на дизельный двигатель, который впрыскивает топливо прямо в цилиндр. Преимущество такого подхода — значительное улучшение (на 15-25 процентов!) Экономии топлива и мощности. Однако для этого требуются специальные топливные форсунки высокого давления и гораздо более высокое рабочее давление. Некоторые современные примеры прямого впрыска топлива включают двигатели VW TDI, двигатели Mazda с прямым впрыском, двигатели General Motors EcoTech и двигатели Ford EcoBoost.
ТОПЛИВНЫЙ ИНЖЕКТОР ИМПУЛЬС
Относительное богатство или обедненность топливной смеси в двигателе с впрыском топлива определяется путем изменения длительности импульсов форсунки (называемой шириной импульса).Чем длиннее ширина импульса, тем больше объем подаваемого топлива и тем богаче смесь.
Время и продолжительность работы форсунки контролируются компьютером двигателя. Компьютер использует данные различных датчиков двигателя, чтобы регулировать дозирование топлива и изменять соотношение воздух / топливо в ответ на изменение условий эксплуатации.
Первичным датчиком контроля топливной смеси является кислородный датчик. Датчик O2 генерирует сигнал RICH или LEAN, который компьютер двигателя использует для регулировки топливной смеси.Для получения дополнительной информации об управлении подачей топлива с обратной связью и корректировках корректировки расхода топлива см. Что такое корректировка расхода топлива?
Компьютер откалиброван с помощью программы подачи топлива, которую лучше всего описать как трехмерную карту. Программа указывает компьютеру, как долго форсунка будет пульсировать при изменении частоты вращения двигателя и нагрузки. Во время запуска, прогрева, ускорения и увеличения нагрузки двигателя карта обычно требует более богатой топливной смеси. Когда двигатель движется при небольшой нагрузке, карта позволяет использовать более бедную топливную смесь для повышения экономии топлива.А когда автомобиль замедляется и двигатель не нагружен, карта может позволить компьютеру на мгновение полностью выключить форсунки.
Программирование, управляющее системой EFI, содержится в микросхеме PROM (Program Read Only Memory) внутри компьютера двигателя. Замена микросхемы PROM может изменить калибровку системы EFI. Иногда это необходимо для обновления заводского программирования или для устранения проблемы с управляемостью или выбросами. Микросхему ППЗУ на некоторых автомобилях также можно заменить на микросхемы для повышения производительности двигателя.
На многих автомобилях 1996 года и новее программирование осуществляется на микросхеме EEPROM (запоминающее устройство только для чтения с электронным удалением программ) в компьютере. Это позволяет обновлять или изменять программу путем перепрошивки компьютера. Новое программирование загружается в компьютер через диагностический разъем OBD II с помощью диагностического прибора или инструмента перепрограммирования J2534.
ВХОДЫ ДАТЧИКА ТОПЛИВНОГО ВПРЫСКА
Электронный впрыск топлива требует ввода данных от различных датчиков двигателя, чтобы компьютер мог определять частоту вращения двигателя, нагрузку и рабочие условия.Это позволяет компьютеру регулировать топливную смесь по мере необходимости для оптимальной работы двигателя.
Существует два основных типа систем EFI: системы скорости-плотности и системы массового расхода воздуха. Системы плотности скорости, такие как те, что используются во многих двигателях Chrysler и некоторых двигателях GM, на самом деле не измеряют поток воздуха в двигатель, а оценивают поток воздуха на основе входных сигналов от датчика положения дроссельной заслонки (TPS), датчика абсолютного давления в коллекторе (MAP) и оборотов двигателя. Преимущество этого подхода состоит в том, что для двигателя не требуется дорогостоящий датчик расхода воздуха, и на смесь воздуха и топлива меньше влияют небольшие утечки воздуха во впускном коллекторе, вакуумной системе или корпусе дроссельной заслонки.
Датчик массового расхода воздуха Ford также включает датчик температуры воздуха на впуске (IAT) внутри.
В системах массового расхода воздуха некоторые типы датчиков расхода воздуха используются для прямого измерения расхода воздуха, поступающего в двигатель. Это может быть датчик воздушного потока с механической заслонкой, датчик воздушного потока с нагревательной проволокой или вихревой датчик воздушного потока. Компьютер также использует входные данные от всех других своих датчиков, но полагается в первую очередь на датчик воздушного потока для управления топливными форсунками.
Система EFI обычно работает без сигнала от датчика MAP, но она будет работать плохо, потому что компьютер должен полагаться на входы других датчиков для оценки воздушного потока.Распространенная проблема с датчиками массового расхода воздуха
скопление грязи или лака на нагретом проводе внутри датчика. Очистка провода массового расхода воздуха внутри датчика с помощью очистителя для электроники часто восстанавливает нормальную работу и устраняет обедненную смесь, вызванную загрязнением датчика воздушного потока.
В системах обоих типов (скорость-плотность и массовый расход воздуха) вход от подогреваемого кислородного датчика (HO2) также является ключевым для поддержания оптимального соотношения воздух / топливо. Датчик кислорода (или датчик воздуха / топлива на многих более новых автомобилях) установлен в выпускном коллекторе и контролирует уровень несгоревшего кислорода в выхлопных газах как индикатор относительного богатства или бедности топливной смеси.На двигателях V6 и V8 будет отдельный датчик кислорода для каждого ряда цилиндров, а на некоторых рядных шестицилиндровых двигателях (например, BMW) могут быть отдельные датчики кислорода для первых трех цилиндров и последних трех цилиндров. Сигнал обратной связи от кислородного датчика или датчика воздуха / топлива используется компьютером двигателя для постоянной точной настройки топливной смеси для достижения оптимальной экономии топлива и выбросов.
Когда датчик кислорода сообщает компьютеру, что двигатель работает на обедненной смеси (повышенный уровень несгоревшего кислорода в выхлопных газах), компьютер компенсирует это за счет обогащения топливной смеси (увеличения длительности импульса форсунок).Если двигатель работает на богатой смеси (меньше кислорода в выхлопе), компьютер сокращает ширину импульса форсунок для обеднения топливной смеси.
Данные о положении дроссельной заслонки поступают от датчика положения дроссельной заслонки (TPS). Он расположен сбоку на корпусе дроссельной заслонки и использует переменный резистор, который изменяет сопротивление при открытии и закрытии дроссельной заслонки.
Нагрузка двигателя измеряется датчиком абсолютного давления в коллекторе (МАР). Он может быть установлен на впускном коллекторе или прикреплен к впускному коллектору с помощью вакуумного шланга.
Также необходимо контролировать температуру воздуха, поступающего в двигатель, чтобы компенсировать происходящие изменения плотности воздуха (более холодный воздух более плотный, чем горячий). Это контролируется датчиком температуры воздуха на входе (IAT) или датчиком температуры воздуха в коллекторе (MAT), который может быть встроен в датчик воздушного потока или установлен отдельно на впускном коллекторе.
Температура охлаждающей жидкости контролируется датчиком температуры охлаждающей жидкости (CTS). Это сообщает компьютеру, когда двигатель холодный, а когда он имеет нормальную рабочую температуру.Компьютер должен знать температуру, потому что холодный двигатель требует более богатой топливной смеси при первом запуске. Когда охлаждающая жидкость достигает определенной температуры, двигатель переходит в режим замкнутого цикла, что означает, что он начинает использовать входные данные от кислородных датчиков для точной настройки топливной смеси. Когда он работает в разомкнутом контуре (в холодном состоянии или когда нет сигнала от датчика охлаждающей жидкости), топливная смесь фиксирована и не изменяется.
Неправильные входные данные от любого из датчиков двигателя могут вызвать проблемы с управляемостью, выбросами или производительностью.Многие проблемы с датчиками приводят к установке диагностического кода неисправности (DTC) и включению контрольной лампы двигателя. Считывание кода (ов) с помощью диагностического прибора поможет вам диагностировать проблему.
Корпус дроссельной заслонки EFI.
СИСТЕМА УПРАВЛЕНИЯ СКОРОСТЬЮ ХОЛОСТОГО ХОДА ТОПЛИВНОГО ВПРЫСКА
Обороты холостого хода двигателей с впрыском топлива контролируются компьютером через контур перепускания воздуха на холостом ходу на корпусе дроссельной заслонки. Небольшой электродвигатель или соленоид используется для открытия и закрытия байпасного отверстия. Чем больше отверстие, тем больший объем воздуха может пройти в обход дроссельных заслонок и тем выше скорость холостого хода.
На новых автомобилях с электронным управлением дроссельной заслонкой компьютер также управляет открытием дроссельной заслонки, когда водитель нажимает на педаль газа. Датчики положения в педали газа сигнализируют компьютеру, насколько далеко открыть дроссельную заслонку.
Проблемы на холостом ходу в системах EFI могут быть вызваны отложениями лака и грязи в цепи управления холостым ходом корпуса дроссельной заслонки. Очистка корпуса дроссельной заслонки с помощью
Очиститель корпуса дроссельной заслонки часто может решить проблемы на холостом ходу (следуйте инструкциям на изделии). Проблемы на холостом ходу также могут быть вызваны утечками воздуха между
датчик воздушного потока и дроссельная заслонка, корпус дроссельной заслонки и впускной коллектор, а также впускной коллектор и головка (и) цилиндров, или в системах PCV или EGR, или в вакуумных шлангах.
В большинстве систем EFI напряжение подается непосредственно на форсунки, и PCM подает питание на форсунку, заземляя цепь.
ИНЖЕКТОРЫ
Топливная форсунка — это не что иное, как подпружиненный электромагнитный игольчатый клапан.При подаче питания от компьютера соленоид открывает клапан. Это позволяет топливу распыляться из сопла в двигатель. Когда компьютер отключает цепь питания форсунки, клапан внутри форсунки закрывается и подача топлива прекращается.
Общее количество поданного топлива контролируется путем очень быстрого включения и выключения напряжения форсунки. Чем длиннее ширина импульса, тем больше объем подаваемого топлива и тем богаче топливная смесь. Уменьшение длительности импульса сигнала форсунки приводит к уменьшению количества подаваемого топлива и вымыванию смеси.
Грязные топливные форсунки — частая проблема. Накопление отложений топливного лака внутри наконечника форсунки форсунки может ограничить подачу топлива и помешать созданию хорошей формы распыления. Это может привести к обеднению топлива и пропускам зажигания. Очистка форсунок очистителем для впрыска топлива или снятие форсунок и их очистка на машине для очистки топливных форсунок обычно может восстановить нормальную работу. Использование бензина высшего уровня, содержащего достаточное количество очистителя форсунок, также может предотвратить образование отложений лака.
Регулятор давления топлива обычно устанавливается на топливной рампе, которая питает форсунки.
КОНТРОЛЬ ДАВЛЕНИЯ ТОПЛИВА
Еще один важный фактор, который помогает определить, сколько топлива подается через форсунку, когда она работает в импульсном режиме, и это давление топлива за ней. Чем выше давление за форсункой, тем больший объем топлива будет разбрызгиваться из форсунки при ее открытии.
Давление топлива создается электрическим топливным насосом высокого давления, который обычно устанавливается внутри или рядом с топливным баком.Давление на выходе насоса может находиться в диапазоне от 8 до 80 фунтов. в зависимости от приложения. Насос обычно имеет напорный клапан для сброса избыточного давления и обратный клапан для поддержания давления в системе при выключенном зажигании.
В многопортовой системе EFI перепад давления между топливом за форсунками и разрежением или давлением во впускном коллекторе является постоянно изменяющейся переменной. При небольшой нагрузке или на холостом ходу во впускном коллекторе существует относительно высокий вакуум.Это означает, что для распыления определенного объема топлива через форсунку требуется меньшее давление топлива. При большой нагрузке вакуум в двигателе падает почти до нуля. В этих условиях требуется большее давление для подачи того же количества топлива через форсунку. А в двигателях с турбонаддувом разрежение в коллекторе может составлять от 8 до 14 фунтов. положительного давления, когда в игру вступает турбо наддув. Требуется еще большее давление топлива, чтобы пропустить такое же количество топлива через форсунку.
В многопортовой системе EFI должны быть предусмотрены средства регулирования давления топлива в соответствии с вакуумом двигателя, чтобы поддерживать одинаковый относительный перепад давления между топливной системой и впускным коллектором.Это делает регулятор давления топлива. Регулятор установлен на топливной рампе, питающей форсунки. В безвозвратных системах EFI регулятор является частью топливного насоса в топливном баке.
Регулятор давления топлива имеет простую подпружиненную вакуумную диафрагму с вакуумным подключением к впускному коллектору. Регулятор снижает давление топлива при небольшой нагрузке и увеличивает его при большой нагрузке или режиме наддува. Избыточное давление топлива отводится через перепускной канал обратно в топливный бак для поддержания требуемого перепада давления. Большинство систем откалиброваны для поддержания перепада давления от 40 до 55 фунтов на квадратный дюйм.
В более старых системах TBI регулятор выполняет более простую работу, поскольку форсунки установлены над дроссельными заслонками. Поскольку вакуум / наддув двигателя не влияет на подачу топлива из форсунки в системе TBI, регулятор должен только поддерживать равномерное давление. В системах TBI General Motors регулятор давления откалиброван для поддержания примерно 10 фунтов на квадратный дюйм в топливной системе, но большинство других работают около 40 фунтов на квадратный дюйм.
Низкое давление топлива приведет к ухудшению характеристик двигателя, возможным пропускам зажигания и может помешать запуску двигателя. Низкое давление топлива может быть вызвано слабым топливным насосом (изношенный насос или низкое напряжение на насосе, из-за которого он работал медленно), ограничениями в топливной магистрали, засорением топливного фильтра или негерметичным регулятором давления топлива. Давление топлива ДОЛЖНО быть в пределах технических характеристик для нормальной работы двигателя. Давление топлива можно проверить с помощью манометра, подключенного к рабочему клапану на топливной рампе или в топливопроводе.
Щелкните здесь, чтобы загрузить или распечатать эту статью.
Другие статьи о впрыске топлива:
Викторина самопроверки системы впрыска топлива (Загрузите или распечатайте файл PDF)
Соотношение воздух / топливо
Диагностика впрыска топлива
Проблемы с впрыском топлива
Как впрыск топлива влияет на выбросы
Впрыск топлива: диагностика системы EFI без возврата топлива
Что такое корректировка топливоподачи?
Что такое прямой впрыск бензина (GDI)?
Отложения на впускных клапанах в двигателях с прямым впрыском бензина
Топливные форсунки (очистка)
Топливные форсунки (поиск неисправностей)
Диагностика топливного насоса
Советы по диагностике топливного насоса от Carter
Топливный насос (как заменить насос в баке)
Топливный насос (электрический)
Топливные фильтры
Система впрыска топлива Toyota
Системы впуска холодного воздуха
Датчик EFI Статьи по теме: Определение датчиков двигателя
Датчики температуры воздуха
Датчики охлаждающей жидкости
Кривошипный вал Датчики CKP
Датчики кислорода (O2)
Расположение датчиков кислорода
Датчики воздуха и топлива (WRAF) с широким соотношением сторон
Датчики MAP
Датчики массового расхода воздуха MAF
Датчики воздушного потока лопастей
Датчики положения
Дроссельная заслонка Системы управления
Клапан регулирования холостого хода или клапан IAC ve Симптомы (6 Дурных Признаков)
Клапан регулировки холостого хода (IAC) обычно используется в автомобильных двигателях с впрыском топлива для управления частотой вращения двигателя на холостом ходу. Обороты также известны как скорость вращения. В автомобилях, в которых используется карбюратор, также используется аналогичное устройство. Это привод ISC или регулятор холостого хода. Оба устройства поддерживают вращение двигателя на постоянной скорости и предотвращают его остановку.
Что делает воздушный регулирующий клапан?
IAC в основном регулирует количество воздуха, поступающего в двигатель для сгорания, когда двигатель работает. Компьютерная система автомобиля отслеживает входные данные от различных датчиков, которые предоставляют информацию о частоте вращения двигателя, расходе воздуха, сгорании топлива и многом другом.Компьютер двигателя включает управляющий двигатель на IAC, который пропускает больше или меньше воздуха в двигатель, который, в свою очередь, регулирует скорость двигателя.
Компьютер двигателя поддерживает установленную минимальную частоту вращения двигателя. Если бы он не был предварительно настроен и не обслуживался, автомобиль заглох бы в тот момент, когда водитель убрал ногу с педали газа.
Где находится регулятор холостого хода?
Фактическое расположение клапана регулировки холостого хода будет зависеть от модели, года выпуска и марки вашего автомобиля.Обратитесь к руководству по эксплуатации вашего автомобиля, чтобы узнать о фактическом местонахождении. Обычно клапан располагается на впускном коллекторе или корпусе дроссельной заслонки.
Топ-6 симптомов неисправности клапана управления подачей воздуха на холостом ходу
Клапан регулировки холостого хода рассчитан на продление срока службы автомобиля; однако время от времени он может давать сбой по разным причинам. Обычно IAC выходит из строя, потому что грязь попадает в систему через неисправный или грязный воздушный фильтр, и привод не может управляться компьютерной системой автомобиля.Иногда IAC полностью выходит из строя и требует замены. В этой ситуации двигатель будет примерно работать на холостом ходу.
Клапан полностью поврежден
Если IAC продолжает работать некорректно после тщательной очистки, вероятно, вышел из строя серводвигатель. IAC необходимо заменить, если серводвигатель не работает. Если вы почувствуете, что двигатель плохо работает на холостом ходу, глохнет или двигатель полностью выключается, попросите механика диагностировать проблему.
Неисправный IAC может также вызвать срабатывание контрольной лампы двигателя и предоставить механику код для проверки.Конечно, водители должны помнить, что индикатор проверки двигателя может включаться по разным причинам, когда двигатель работает.
Остановка двигателя автомобиля
Полностью вышедший из строя IAC не допускает попадания воздуха в двигатель, и он глохнет, как только он запустится. Водители могут заметить постепенный выход из строя клапана управления холостым ходом автомобиля. Скорость холостого хода, которая не является постоянной и постоянной, — это один из показателей. Также может загореться индикатор проверки двигателя.
Клапан привода может заклинивать и не регулируется в ответ на сигналы от компьютера двигателя.Хотя двигатель может не заглохнуть, он не будет работать плавно и при необходимости не сможет обеспечить необходимый уровень мощности. Проверяли ли IAC до того, как двигатель автомобиля заглохнет?
Нерегулярная частота вращения двигателя
IAC управляется компьютером двигателя автомобиля для обеспечения плавной работы двигателя на холостом ходу. Если клапан привода начинает выходить из строя или если грязь или масло каким-то образом попадают в регулирующий клапан холостого хода, компьютер попытается исправить ситуацию, увеличив или уменьшив приток воздуха по мере необходимости.
Компьютер в большинстве случаев включает контрольную лампу проверки двигателя, и двигатель не будет работать плавно. Владельцы автомобилей будут слышать, как обороты двигателя (обороты в минуту) замедляются и увеличиваются по мере того, как система пытается компенсировать это. Ваш двигатель может даже заглохнуть из-за отказа IAC или скопления грязи в системе.
Контрольная лампа проверки двигателя
Индикатор проверки двигателя может включаться по нескольким причинам. Постоянный свет означает, что водитель должен в ближайшее время вызвать механика для осмотра автомобиля. Мигающий свет указывает на то, что происходит что-то более серьезное, и водитель должен съехать с дороги и выключить двигатель, чтобы избежать возможного повреждения двигателя.
Модуль управления двигателем или компьютер включает контрольную лампу проверки двигателя, когда получает сообщение о том, что IAC не работает должным образом. Код ошибки генерируется и сохраняется в ECM для последующего извлечения механиком.
Машины на холостом ходу не гладко
IAC контролирует подачу воздуха в двигатель автомобиля.Неравномерное поступление воздуха может привести к тому, что двигатель будет вращаться на слишком высокой скорости, а иногда и на слишком низкой. Двигатель может даже заглохнуть, когда автомобиль останавливается на светофоре или знаке остановки. В некоторых ситуациях, например, при интенсивном движении, водитель может оказаться в опасном положении.
Двигатель на холостом ходу из-за утечки вакуума
Ваш двигатель может не работать на холостом ходу должным образом из-за утечки вакуума. IAC работает правильно, но не может компенсировать утечку. Привод может быть полностью выдвинут (закрыт), потому что ECM пытается снизить скорость холостого хода двигателя.Ваш механик проверит коды и положение привода, чтобы подтвердить эту проблему.
Код P0505 генерируется и сохраняется ECM или модулем управления двигателем, когда модуль управления воздушным потоком холостого хода не работает или двигатель грубо работает на холостом ходу.ECM сохраняет код для последующего просмотра механиком. Свет двигателя может гореть; двигатель работает на холостом ходу на более высоких или более низких оборотах, чем предусмотрено, двигатель может работать на холостом ходу грубо или даже глохнуть.
Как диагностировать код P0505?
Начните со сканирования кода, хранящегося в ECM. Проверьте обороты холостого хода двигателя, чтобы проверить, работает ли автомобиль на холостом ходу в соответствии со спецификациями. Проверьте отсутствие утечек вакуума. Проверьте, нет ли нагара и грязи вокруг впускного отверстия клапана IAC. Снимите IAC и при необходимости очистите. Найдите засоры в любом из каналов и проверьте, работает ли привод.
Можно ли управлять автомобилем с неисправным клапаном регулировки холостого хода?
В большинстве случаев вы можете управлять автомобилем с плохим клапаном регулировки холостого хода. Двигатель может работать на холостом ходу грубо или на слишком высоких оборотах. Однако по мере развития проблемы автомобиль может заглохнуть в самый неподходящий момент.
Остановка у знака «Стоп» или светофора в условиях интенсивного движения создает потенциально опасную и стрессовую ситуацию. Торможение на шоссе в условиях движения «стоп и вперед» может быть намного хуже.Ваша машина заглохла, застряла в средней полосе, без возможности завести машину и съехать на обочину дороги, что может быть довольно опасно. Автомобиль также теряет тормозное усилие, так как главный цилиндр потерял функцию усилителя мощности. Даже системы рулевого управления с усилителем также теряют мощность, что затрудняет управление автомобилем.
Как узнать, неисправен ли клапан IAC?
Есть несколько индикаторов для диагностики неисправного клапана IAC. Двигатель вашего автомобиля имеет нерегулярные обороты холостого хода, что является наиболее частым признаком.Индикатор проверки двигателя может загореться, и двигатель может заглохнуть. Заглох двигателя — более серьезный показатель. Двигатель вашего автомобиля может вообще не работать на холостом ходу. Также может быть сложно начать работу и сразу же заглохнет.
Проверка кодов ошибок блока управления двигателем покажет соответствующий код, P0505 активирован и был сохранен модулем управления двигателем. Ваш местный механик будет использовать считыватель кодов для доступа к кодам, хранящимся в ECM.
Стоимость замены регулирующих клапанов IAC на холостом ходу?
Стоимость замены модуля IAC включает диагностику и замену модуля.В зависимости от марки и модели вашего автомобиля и используемой ремонтной мастерской средняя стоимость составляет около 350 долларов. Однако общая стоимость некоторых ремонтов может достигать 500 долларов.
Может ли неисправный клапан регулировки холостого хода повлиять на расход газа?
Это может повлиять на экономию топлива. При высоких оборотах холостого хода автомобиль потребляет больше бензина, особенно когда вы находитесь в пробке. Клапан будет полностью закрыт на скоростях по шоссе и не должен влиять на расход топлива. Остановка и резкий холостой ход также могут потреблять больше бензина, а также производить больше несгоревшего топлива, которое рециркулирует клапаном рециркуляции отработавших газов. Вы можете преждевременно получить пустые топливные баки или бензобаки.
Как сбросить мой регулирующий клапан холостого хода?
Потребители не могут сбросить клапан физически. Процесс сброса клапана происходит следующим образом:
Слегка выжмите педаль газа
Запустите двигатель и дайте ему поработать 5 секунд
Убедитесь, что вы выключили зажигание на 10 секунд
Запустите двигатель и проверьте обороты холостого хода в пределах, установленных производителем.
Может ли неисправный клапан IAC вызвать перегрев?
В большинстве случаев неисправный клапан IAC не вызывает перегрева. Многие новые модели автомобилей оснащены электрическими вентиляторами охлаждения, которые работают при включении зажигания. Это маловероятно даже в автомобилях с ремнями вентилятора старого образца, которые снимаются с двигателя. Датчики температуры вызовут загорание контрольной лампы двигателя.
Что такое датчик холостого хода?
Устройство управления датчиком воздуха на холостом ходу регулирует количество воздуха, поступающего в двигатель, когда двигатель работает на холостом ходу. Модуль управления двигателем определяет частоту вращения холостого хода и либо открывает привод, либо закрывает его, чтобы больше или меньше воздуха попало в двигатель.
Как очистить датчик холостого хода?
Вы можете выполнить следующий список шагов, чтобы очистить датчик холостого хода:
Отсоединить кабель автомобильного аккумулятора
Найдите IAC и удалите винты, которые удерживают его на месте. Нарисуйте схему соединений для дальнейшего использования. (Используйте контрольную лампу, чтобы найти IAC)
Отсоедините электрические соединения
Снимите все шланги и заглушки
Снимите прокладку, убедитесь, что у вас есть правильная сменная прокладка
Используйте угольный очиститель и ткань, чтобы удалить всю грязь с IAC
.
Подсоедините шланги и прикрепите IAC
Подсоедините кабель аккумуляторной батареи и приступайте к запуску двигателя.
Видео о том, как проверить воздушный клапан холостого хода
Другие вещи, на которые следует обратить внимание при плохой работе автомобиля на холостом ходу
Помимо неисправности IAC, следующие факторы могут также привести к плохой работе двигателя на холостом ходу:
Блок управления двигателем
Блок управления двигателем или модуль управления двигателем получает информацию от нескольких датчиков на двигателе. Эта информация используется для управления впуском воздуха и впуском бензина, чтобы обеспечить оптимальную работу двигателя на холостом ходу и во время движения.
Датчики кислорода
Датчики кислорода измеряют количество кислорода в выхлопной трубе, передавая эту информацию в модуль управления двигателем. Контроллер ЭСУД корректирует воздухозаборник и рециркуляцию выхлопных газов, чтобы двигатель работал в соответствии со спецификациями производителя на холостом ходу и на оборотах.
Датчик положения коленвала
Датчик положения коленчатого вала контролирует положение коленчатого вала и частоту вращения вала.ЕСМ использует всю эту информацию для управления системой впрыска топлива и моментом зажигания. Каждый раз, когда датчик неисправен, это приводит к тому, что ECM пытается выполнить компенсацию. Однако это часто вызывает потерю мощности или плохие характеристики холостого хода.
Датчик MAP
Датчик абсолютного давления в коллекторе передает мгновенные показания давления на контроллер ЭСУД. Эта информация используется для расчета плотности воздуха, воздушного потока и оптимального количества топлива, которое необходимо подать в двигатель для максимальной производительности на всех скоростях и оборотах.
Коллектор впускной
Впускной коллектор объединяет воздушно-топливную смесь и подает газы в двигатель для сгорания. Очень важно, чтобы воздушно-топливная смесь равномерно распределялась по каждому цилиндру для обеспечения оптимальной производительности. Датчики передают информацию в ECM, который, в свою очередь, контролирует топливовоздушную смесь в топливной системе.
Свечи зажигания
Свечи зажигания создают искру для воспламенения топливовоздушной смеси в цилиндре. Плохая свеча зажигания может вызвать плохое ускорение, перебои в работе двигателя, плохую экономию топлива или даже затруднения при запуске двигателя.Индикатор проверки двигателя также может загореться, если свеча зажигания неисправна из-за датчиков, улавливающих нарушения в выбросах выхлопных газов.
Датчик положения дроссельной заслонки
Датчик положения дроссельной заслонки контролирует дроссельную заслонку и воздухозаборник. Он прикреплен к корпусу дроссельной заслонки. Неисправный датчик может вызвать грубые условия холостого хода, остановку двигателя, плохое ускорение, низкую мощность на высоких скоростях, повышенный расход топлива и даже пропуски зажигания. Попросите механика проверить коды ошибок в ECM, а также датчик.
Какой инструмент сканирования или сканеры кода лучше всего подходят для проверки воздушного клапана холостого хода?
Инструменты сканирования или сканеры кода могут использоваться для проверки кодов ошибок, сохраненных контроллером ЭСУД. Обычно индикатор проверки двигателя включается в результате такого события, как неисправный датчик или показания, выходящие за рамки технических характеристик производителя. Используйте сканер, чтобы прочитать код, который будет указывать на устройство или датчик, сообщающий о неисправности.
Перед покупкой сканера кода потребители должны убедиться, что он подключается к блоку ECM вашего автомобиля и считывает коды ошибок.Большинство из них очень просты в использовании. Правильные инструменты сканирования могут предупредить вас, если у вас неисправный выпускной коллектор, неисправный датчик O2, и вы выключите индикатор проверки двигателя.
Условия для оценки
Клапан IAC или Idle Air Control регулирует количество воздуха, поступающего в двигатель, когда автомобиль находится на холостом ходу. Модуль управления двигателем приводит в действие серводвигатель на IAC для регулирования подачи воздуха, необходимого для поддержания надлежащих оборотов холостого хода. Неисправный блок IAC может привести к работе двигателя на холостом ходу на более высоких или низких оборотах холостого хода или даже к остановке двигателя.В некоторых случаях двигатель может даже не запуститься.
Подобные симптомы могут вызывать и другие состояния. Неисправные датчики, передающие плохие показания на ECM, утечки вакуума в одном из шлангов, подключенных к IAC, неисправные свечи зажигания или провода свечей накаливания могут привести к ухудшению характеристик холостого хода и условиям низкой мощности.
Что происходит, когда клапан регулирования холостого хода выходит из строя?
Клапан управления воздухом холостого хода IAC или код P0505 включает контрольную лампу проверки двигателя в качестве предупреждения.Другими симптомами могут быть неисправная прокладка выпускного коллектора и корпуса дроссельной заслонки. Попросите механика проверить коды ошибок контроллера ЭСУД и предпринять соответствующие действия для ремонта.
Если у вас плохой расход топлива на бензине, ваш механик должен также проверить топливные форсунки, впускной коллектор, топливный насос и головку блока цилиндров. Автомобильный аккумулятор, щетки стеклоочистителя и масляный фильтр должны быть чем-то, что вы можете заменить самостоятельно. Но когда дело доходит до более сложной проблемы, такой как отказ клапана IAC, вам следует полагаться на профессионала, чтобы все сделать правильно.
Другими признаками неисправности клапана IAC являются проблемы с запуском автомобиля, засорение головки блока цилиндров отложениями углерода, грязный или забитый воздушный фильтр и заедание педали газа. Эти проблемы вызовут высокие обороты холостого хода, что сделает ваш автомобиль менее экономичным за счет забора большего количества газа из топливных баков.
Заключение
Замена клапана IAC или исполнительного механизма регулировки подачи воздуха на холостом ходу может повысить производительность на холостом ходу, когда вы запустите двигатель автомобиля. Регулирующий воздушный клапан позволяет обойти дроссельную заслонку, пропуская воздух в двигатель.Вам следует проверить клапан IAC, когда вы заметите, что RMP вашего автомобиля слишком высоки при запуске двигателя. Неисправный клапан холостого хода может привести к более серьезным проблемам и иногда считается одной из частых причин, по которым ваш автомобиль не заводится.
Чтобы улучшить характеристики автомобиля, вы можете также очистить моторный отсек, рулевые колеса, топливные баки и прокладку выпускного коллектора. Кроме того, попросите своего механика проверить воздушный фильтр и топливные форсунки. Внесение всех этих улучшений может привести к увеличению оборотов двигателя и увеличению расхода топлива.
Совет. Посетите нашу домашнюю страницу для получения дополнительных статей по теме.
Признаки неисправности или отказа клапана регулирования холостого хода
Клапан управления холостым ходом, также обычно называемый клапаном управления воздухом холостого хода, представляет собой компонент управления двигателем, который в той или иной форме встречается на большинстве дорожных транспортных средств. Его цель — контролировать и регулировать частоту вращения двигателя на холостом ходу, увеличивая и уменьшая ее по мере необходимости для соответствия условиям эксплуатации.
Большинство регулирующих клапанов холостого хода имеют форму клапана или мотора с электроприводом, которые устанавливаются где-то на впускном коллекторе автомобиля.Клапан или двигатель управляется модулем управления двигателем, который регулирует обороты холостого хода в соответствии с такими параметрами, как температура двигателя и нагрузка на электрическую систему.
Выход из строя клапана управления холостым ходом может вызвать всевозможные проблемы с автомобилем, а в некоторых случаях даже сделать его непригодным для движения. Обычно неисправный или неисправный регулирующий клапан холостого хода вызывает несколько симптомов, которые могут предупредить водителя о потенциальной проблеме.
1. Нерегулярные холостые обороты
Один из наиболее распространенных симптомов, связанных с проблемным клапаном регулировки холостого хода, — это нерегулярные обороты холостого хода.Клапан регулировки холостого хода запрограммирован на регулирование и поддержание постоянной скорости холостого хода двигателя. Если клапан выходит из строя или имеет какие-либо проблемы, это может привести к снижению холостого хода. Это может привести к необычно высокой или низкой скорости холостого хода или, в некоторых случаях, к резкому скачку скорости холостого хода, которая постоянно увеличивается и уменьшается.
2. Загорается лампа проверки двигателя.
Еще одним признаком потенциальной проблемы с клапаном управления холостым ходом является горящий индикатор Check Engine. Если модуль управления двигателем обнаруживает проблему с цепью или сигналом клапана управления подачей воздуха на холостом ходу, он включает индикатор проверки двигателя, чтобы уведомить водителя о наличии проблемы.Индикатор Check Engine также может быть вызван широким спектром проблем, поэтому настоятельно рекомендуется сканировать компьютер на наличие кодов неисправностей.
3. Глохнет двигатель
Еще одним более серьезным признаком неисправности клапана регулирования холостого хода является остановка двигателя. Если клапан управления холостым ходом полностью выходит из строя, он может оставить автомобиль без источника воздуха для поддержания надлежащего холостого хода. Это может привести к остановке двигателя во время работы, а в некоторых случаях может привести к тому, что двигатель вообще не будет работать на холостом ходу и заглохнет при запуске.
Обычно неисправный регулирующий клапан холостого хода вызывает симптомы, достаточно заметные, чтобы водитель быстро узнал о проблеме. Если ваш автомобиль испытывает какие-либо из вышеперечисленных симптомов или вы подозреваете, что у вашего клапана управления холостым ходом может быть проблема, обратитесь к профессиональному технику для диагностики автомобиля, чтобы определить, нуждается ли клапан управления холостым ходом в замене.
Ищете считыватель кода OBD2 для диагностики контрольной лампы двигателя?
Посмотрите десятки отличных сканеров OBD2 здесь
купить сейчас
Autoblog может получать долю от покупок, сделанных по ссылкам на этой странице.Цена и доступность могут быть изменены.
Неровный холостой ход двигателя — общие причины и возможные решения
Резкий холостой ход двигателя — частые причины с возможными решениями
Если двигатель вашего автомобиля плохо работает на холостом ходу, возможно, он поднимается и опускается, или у вас возникают проблемы с поддержанием постоянной скорости вращения, у вас есть проблема.
Следовательно, резкий холостой ход двигателя не является нормальным рабочим состоянием.
В результате, резкая работа двигателя на холостом ходу может быть по разным причинам.
Лучше всего попытаться диагностировать и устранить грубую работу двигателя на холостом ходу, прежде чем она станет хуже и до того, как она станет дорогостоящей!
Кроме того, оборотной стороной грубого холостого хода может быть снижение расхода топлива, низкая производительность, проблемы с запуском или потенциальные серьезные проблемы с двигателем в ближайшем будущем.
Неровная работа двигателя на холостом ходу — распространенная проблема, точную причину которой бывает трудно диагностировать, так как в игру могут входить несколько факторов.
Кроме того, количество оборотов двигателя на холостом ходу является хорошим показателем его общего состояния.
Причины грубого холостого хода могут быть разными: некоторые из них связаны с дешевыми и легкими ремонтами, а некоторые требуют более сложных процедур ремонта.
Начните с проверки кодов неисправностей, которые могут относиться к резкому холостому ходу двигателя
Современные автомобили оснащены сложными компьютерами двигателя, которые контролируют работу датчиков, исполнительных механизмов, топливной системы, систем сгорания и выхлопа. Компьютер двигателя автомобиля может обнаруживать небольшие отклонения рабочих параметров и при необходимости сохранять соответствующие коды неисправностей.
Проверьте индикатор двигателя
Затем вы можете использовать считыватель кода, чтобы определить конкретную проблему, а затем определить, является ли эта неисправность причиной грубого холостого хода. Код может указывать на компонент, цепь или систему, в которых произошла неисправность. В результате это дает вам дополнительное преимущество.
Каковы условия при резком холостом ходе двигателя
Происходит ли это при холодном пуске, после того, как автомобиль был припаркован в течение нескольких часов?
Бывает ли при перезапуске прогретого автомобиля?
Когда это произойдет? Это происходит постоянно?
Есть ли странные шумы?
Вы видите, что идет дым?
При поиске решений для тяжелой работы двигателя на холостом ходу воспользуйтесь контрольным списком , чтобы сузить возможностей .
Хотя грубая работа двигателя на холостом ходу может показаться простым неудобством, она часто указывает на более глубокую проблему внутри двигателя. Автомобиль следует как можно скорее осмотреть и отремонтировать, потому что небольшие проблемы могут обернуться дорогостоящим ремонтом.
Длинный список систем, компонентов и электроники может вызвать резкий холостой ход. Это затрудняет диагностику основной причины, особенно если вы не знаете, где искать.
В конечном итоге все, от систем зажигания и впрыска топлива до клапанов и поршней, может вызвать резкую работу двигателя на холостом ходу.
Список общих областей, на которые следует обратить внимание при серьезных проблемах двигателя на холостом ходу:
Причина # 1 резкого холостого хода двигателя — утечка вакуума
Утечки вакуума
Утечки вакуума, вызывающие резкую работу двигателя на холостом ходу
Все, что нарушает баланс воздуха и топлива, вызывает резкую работу двигателя на холостом ходу. Обычно самая частая причина.
Также прочтите — Обнаружение утечек в вакууме — безопасный способ поиска утечек
Накопление углерода на корпусе электронной дроссельной заслонки или регулирующем клапане воздуха холостого хода
Корпус дроссельной заслонки с электронным управлением — грубый двигатель на холостом ходу
Двигатели с впрыском топлива последних моделей имеют корпуса дроссельной заслонки с электронным управлением, в которых больше не используется регулирующий воздушный клапан холостого хода.Накопление углерода в корпусе дроссельной заслонки может уменьшить воздушный поток. Компьютер не знает о скоплении углерода … все, что он знает, — это то, что двигатель работает неправильно, исходя из расчетного открытия. Итак, если у вас старый автомобиль, у вас может быть грязный клапан регулировки холостого хода. Кроме того, можно очистить некоторые перепускные клапаны холостого хода или регулирующие клапаны холостого хода.
Датчик массового расхода воздуха (MAF)
Датчик массового расхода воздуха — Неровный холостой ход двигателя
Датчик массового расхода воздуха (MAF) расположен сразу после воздушного фильтра и отвечает за определение точного количества воздуха, поступающего в двигатель.Со временем бумажные волокна из воздушного фильтра и паров картера могут накапливаться на горячей проволоке или пластине и пригорать. Эта запеченная грязь действует как изолятор, заставляя компьютер получать неверные показания. Вы можете очистить датчик (MAF) самостоятельно с помощью аэрозольного баллончика со средством для очистки датчика (MAF).
Также читайте — Датчик массового расхода воздуха (MAF) — Измерение, объем, плотность, температура
Топливные форсунки
Топливные форсунки
Иногда грязные топливные форсунки могут быть основной причиной резкого холостого хода двигателя.Топливные форсунки распределяют топливо в двигатель вашего автомобиля под определенным углом и в определенном количестве, чтобы обеспечить оптимальную производительность. При этом грязные топливные форсунки также являются основной причиной плохого расхода топлива. Использование присадки для очистки форсунок — простой способ предотвратить эту проблему и обеспечить бесперебойную и эффективную работу двигателя.
Также прочтите — Топливная форсунка — Отложения могут накапливаться и забивать топливную форсунку
Накопление углерода на двигателях с прямым впрыском
Прямой впрыск
В двигателях с прямым впрыском топливная форсунка подает газ прямо в цилиндр, поэтому на клапаны никогда не попадает брызги топлива.После выключения пары картера поднимаются к верхней части двигателя и оседают на впускных клапанах, где они конденсируются и затвердевают. В результате происходит накопление углерода, которое может вызвать резкую работу двигателя на холостом ходу. Очиститель топливных форсунок НЕ удалит эти отложения, потому что очиститель никогда не видит заднюю часть клапанов. Вы должны ввести очиститель через воздухозаборник, используя процедуру, известную как очистка воздухозаборником.
Клапаны двигателя
Накопление большого количества углерода на задней части клапанов Выпускной и впускной клапаны
могут стать большой проблемой, если они нагреваются.Это может привести к более низкому сжатию, поскольку клапан может прилипнуть.
Также прочтите — Заедание клапанов из углеродных отложений — Что делать
Свечи зажигания и провода
Сравнение свечей зажигания
Неровная работа двигателя на холостом ходу может быть вызвана свечами зажигания или проводами. Свечи зажигания используют электрический ток, полученный от катушек зажигания, для воспламенения топливно-воздушной смеси в камере сгорания. Поврежденная или неправильно установленная свеча может привести к непостоянному сжиганию топлива.Если повреждение достаточно серьезное, вы также можете заметить, что ваш двигатель работает с перебоями. В результате своевременная замена свечей зажигания и использование правильных свечей и методов установки имеют решающее значение для бесперебойной работы вашего двигателя. Проверьте свои вилки и провода, чтобы узнать, в каком они состоянии.
Также прочтите — Цвет свечей зажигания — свидетельства того, что происходит внутри двигателя
Клапаны системы рециркуляции ОГ
Клапан с нагаром (EGR) вызывает резкий холостой ход двигателя
Клапан (EGR) — это механическое устройство, и, как и клапаны и корпус дроссельной заслонки, он может накапливать нагар, который не позволяет ему полностью закрыться.Когда это происходит, клапан (EGR) пропускает поток выхлопных газов на холостом ходу, что вызывает грубые условия холостого хода двигателя. Чаще всего для удаления нагара можно использовать очиститель корпуса дроссельной заслонки.
Также прочтите — Клапан рециркуляции выхлопных газов (EGR) — что вам нужно знать
Давление топлива
Датчик давления топлива
Если топливный насос выходит из строя и не обеспечивает необходимое количество давления или объема, он просто не подаст то количество топлива, которое компьютер ожидает увидеть. Вы должны прикрепить манометр для измерения давления топлива. Итак, если ваша помпа не обеспечивает нужное давление или объем, замените ее.
Также прочтите — Регуляторы давления топлива — Признаки работы и неисправности
Также прочтите — Электрические топливные насосы — Как они работают — Как они могут выйти из строя
Датчик температуры охлаждающей жидкости двигателя (ECT)
Датчик температуры охлаждающей жидкости двигателя- (ECT)
ЭБУ должен знать температуру двигателя и воздуха, чтобы рассчитать правильную воздушно-топливную смесь.Итак, если он получает неправильные показания, он подаст неправильное количество топлива для данного количества воздуха. Датчики охлаждающей жидкости двигателя и температуры воздуха обычно не выходят из строя полностью. Вместо этого они дают ложные показания. Если ваш двигатель с трудом запускается холодным утром, и вам приходится нажимать педаль газа, это признак неисправности датчика температуры охлаждающей жидкости двигателя.
Также прочтите — (ECT) — Датчик температуры охлаждающей жидкости двигателя — функция, отказ и проверка
Датчики кислорода (O2)
Установлен новый датчик кислорода (O2)
Датчик кислорода является частью выхлопной системы вашего автомобиля.Он выступает в выхлопную систему, постоянно контролируя содержание кислорода в выхлопе. Он отправляет эту информацию в компьютер двигателя, который использует ее для поддержания правильного баланса воздуха и топлива для эффективного и чистого сгорания.
На датчик кислорода может отрицательно повлиять высокая температура окружающей среды, в которой он работает. В результате он может покрыться нагаром или просто изнашиваться. Когда это происходит, он отправляет неверную информацию на компьютер двигателя. Двигатель может работать на слишком богатой или обедненной смеси.Слишком богатая смесь приведет к плохой экономии топлива. Слишком бедная смесь вызовет резкую работу двигателя на холостом ходу.
Также прочтите — Датчик кислорода (O2) — Что они делают — Как они выходят из строя — Тестирование на обедненную смесь
Клапаны PCV
Сравнение старого клапана с новым (PCV)
Клапан (PCV) отвечает за измерение заданного количества воздушного потока из картера во впускное отверстие, где он сгорает. Клапан (PCV) содержит предохранительный плунжер, предотвращающий попадание обратной пламени в картер.Таким образом, поршень является препятствием для воздушного потока. Со временем масляные пары и нагар могут накапливаться на поршне, уменьшая поток воздуха. Это уменьшение воздушного потока может вызвать резкую работу двигателя на холостом ходу. Кроме того, треснувший (PCV) шланг также может вызвать резкую работу двигателя на холостом ходу.
Также прочтите — Клапан PCV — что он делает? — Признаки неисправности клапана PCV
Воздушные фильтры
Бумажный воздушный фильтр, крупный план
В большинстве воздушных фильтров двигателя используется сложенный бумажный элемент, который может забиться, если не заменять его с надлежащей периодичностью. Итак, для вашего двигателя так же важно получать достаточно воздуха, как и для него достаточно топлива. Наконец, забитый фильтр уменьшит поток воздуха в двигатель, вызывая резкую работу двигателя на холостом ходу.
Протекающие прокладки головки блока цилиндров
Прокладка перегоревшей головки вызывает резкий холостой ход двигателя
Охлаждающая жидкость в масле, масло в охлаждающей жидкости, отсутствие охлаждающей жидкости, выход охлаждающей жидкости из резервуара, перегрев — все это признаки утечки из прокладки головки, и они могут легко вызвать резкую работу двигателя на холостом ходу.
Также прочтите — Утечки из прокладки головки цилиндров — знайте признаки и симптомы
Неровный холостой ход двигателя с карбюратором
Карбюратор
В старых автомобилях используется карбюратор, а не топливная форсунка.Черный дым выхлопных газов — частый показатель неисправности карбюратора. Хорошо работающая карбюраторная система не должна выделять чрезмерное количество черного дыма, поэтому обратите внимание на это как на признак того, что что-то не так. Использование очистителя карбюратора — простой шаг, который поможет растворить эти углеродистые отложения и сохранить их чистыми, чтобы предотвратить или уменьшить текущую резкую работу двигателя на холостом ходу.
Резкий холостой ход двигателя — Заключение
Итак, исправный двигатель должен работать ровно, без лишнего шума.Когда он начинает работать «грубо», существует ряд возможных причин. Следовательно, то, как ваш двигатель работает на холостом ходу, является хорошим индикатором его общего состояния.
И, как мы всегда говорим, не болтается ли провод? Отвалилась вакуумная линия? Не ищите сложного решения простой проблемы. Наконец, часто проблема в одной области затрагивает три или четыре других.
дипломатическая служба | Устранение неисправности термоклапана быстрого холостого хода Honda
Хонда покупателя отлично работает при холодном двигателе, но после прогрева у него возникает странный помпаж. По непонятной причине обороты холостого хода постоянно колеблются вверх и вниз.
Если предположить, что система охлаждения готова к отказу, это классический симптом неисправности клапана быстрого холостого хода на Honda с впрыском топлива. Пора заменить клапан и, что более важно, пора научиться его диагностировать. В конце концов, большинство автомобилей Honda, которые сейчас въезжают в ваши отсеки, оснащены этим клапаном с подогревом охлаждающей жидкости.
Многие техники автоматически предполагают, что проблема с электроникой является причиной помпажа.Позже они ошеломлены, когда узнают, что механический сбой заставил PCM создать его. Остановитесь, и вы увидите, как легко проверить клапан холостого хода Honda. Кроме того, если весь этот сценарий звучит знакомо, так и должно быть! Мы затронули аналогичную проблему о Toyota в январской колонке дипломатической службы.
Honda Fast Idle Thermo Valve Использование, работа и диагностика
Обратите внимание, что компания Honda в конечном итоге отказалась от своего механического клапана быстрого холостого хода и возложила все функции управления воздухом на холостом ходу на EACV (электронный воздушный клапан). На жаргоне OBD II EACV — это клапан IAC. Но среди множества автомобилей Honda, у которых действительно есть клапан быстрого холостого хода, наиболее распространенным местом его расположения является передняя часть впускного коллектора (фото 1 ниже). У некоторых Honda клапан также установлен на корпусе дроссельной заслонки.
Фотография 2 на странице 15 показывает внутренности клапана быстрого холостого хода, включая гранулу из термовоска бронзового цвета, подпружиненный перепускной клапан воздуха и белую пластиковую вставку. Весь воздух, поступающий в клапан, проходит через отверстие в центре белой вставки.На фото 1 показано, как конусообразный латунный наконечник перепускного воздушного клапана проходит через отверстие в белой вставке.
На большинстве автомобилей Honda дополнительный воздух, необходимый для быстрого холостого хода, обходит дроссельную заслонку, затем проходит через отдельный канал внутри камеры статического давления, через клапан быстрого холостого хода во впускной коллектор. Обратите внимание, что клапан быстрого холостого хода обычно открыт и должен постепенно закрываться по мере прогрева двигателя.
Гранула термовоска, как и та, которая используется в термостатах или других клапанах быстрого холостого хода, расположена под перепускным клапаном воздуха.По мере прогрева двигателя охлаждающая жидкость нагревает гранулу, заставляя ее расширяться. Затем расширяющаяся гранула толкает воздушный перепускной клапан вверх, закрывая отверстие в центре белой пластиковой вставки. Поскольку это перекрывает дополнительный поток воздуха, двигатель переходит на нормальную скорость холостого хода.
Хотя это маловероятно, клапан быстрого холостого хода может не открыться. Если бы это было так, холодный двигатель запустился бы и сразу заглохнет. Вы можете быстро проверить работу клапана, открутив два винта и сняв крышку с верхней части клапана.Когда работает холодный двигатель, вы должны почувствовать всасывание на конце перепускного клапана воздуха. Если вы этого не сделаете, замените клапан, потому что он не открывается.
Самая распространенная проблема — это клапан, который не закрывается после прогрева двигателя. На ранних стадиях этой неисправности вялый клапан быстрого холостого хода может вызвать симптом помпажа только тогда, когда двигатель частично прогрет. По мере того, как охлаждающая жидкость нагревается, гранула термовоска должна постепенно и равномерно расширяться, толкая перепускной клапан воздуха вверх, пока он не сядет внутри пластиковой вставки.После установки байпасный клапан блокирует поток воздуха, эффективно закрывая клапан быстрого холостого хода.
Однако уставшие гранулы термовоска не успевают за повышением температуры охлаждающей жидкости. Двигатель может достичь точки, когда ему больше не нужен дополнительный воздух для быстрого холостого хода, но вялый клапан быстрого холостого хода все еще пропускает воздух в коллектор, увеличивая скорость холостого хода. Когда автомобиль останавливается на перекрестке, PCM видит явные признаки замедления — сигнал TPS при закрытой дроссельной заслонке (около. 5 В или меньше) в сочетании с относительно высокими оборотами (около 1100 об / мин). Затем компьютер начинает отключать форсунки для прекращения подачи топлива при торможении, вызывая помпаж двигателя.
В конце концов, уставшая гранула термовоска вообще не может закрыть перепускной клапан воздуха, поэтому двигатель продолжает работать после полного прогрева. Как и следовало ожидать, вы обнаружите, что на кончике перепускного клапана есть всасывание, и при удерживании полотенца над клапаном останавливается помпаж.
Каждый раз, когда клапан холостого хода Honda не закрывается, убедитесь, что система охлаждения чистая, полная и без воздуха.Когда двигатель прогрет до рабочей температуры, оба шланга в нижней части клапана быстрого холостого хода должны быть одинаковыми — горячими. В случае сомнений безопасно слейте воду из системы и визуально осмотрите эти шланги на предмет засорения или разрушения. Слой шлама на грануле термовоска также может препятствовать его реакции на изменения температуры охлаждающей жидкости.
Наконец, не верьте техническим специалистам, которые говорят, что могут устранить помпаж, отрегулировав положение белой пластиковой вставки внутри клапана быстрого холостого хода (фото 3).Обычно они используют плоскогубцы для стопорных колец, чтобы продеть белую вставку дальше вниз до тех пор, пока не прекратится колебание. Тогда они думают, что машину починили. Однако поворот вставки вниз уменьшает поток воздуха через клапан и снижает скорость холостого хода. Когда возвращается холодная погода, возвращается и покупатель — кричит, что теперь его двигатель глохнет, когда холодно!