7Май

Инжектор как работает: Что такое инжектор, зачем он нужен и как устроен?

Что такое инжектор, зачем он нужен и как устроен?

Первые инжекторы появились в автомобильной индустрии в далеком 1951 году, благодаря компании Bosch, а затем и Mercedes. Тем не менее, широкое распространение инжекторы получили несколько десятков лет спустя, вытеснив карбюраторы. Многие автомобилисты (особенно начинающие) задавались вопросом, что такое инжектор и зачем он нужен. В данной статье подробно рассмотрен принцип работы устройства и назначение.

Инжектор: что это, как работает, для чего нужен?

Инжектор (форсунок) – часть системы подачи топлива, если говорить грубо. Основной принцип работы заключается в принудительной подаче топлива (жидкого или газообразного) в цилиндр.

 

Существует два вида в зависимости от места установки и основного принципа работы:

  • Моновпрыск (центральный впрыск) – состоит из одной форсунки, которая подает топливо во все цилиндры.
  • Распределённый впрыск – состоит из множества форсунок, каждая из которых подает топливо только в один из цилиндров. Распределенный впрыск может быть:
  1. Одновременным, при этом происходит синхронная подача топлива во все цилиндры.
  2. Прямым, то есть непосредственно в камеру. Для двигателей с таким типом подачи особо важным является качество применяемого топлива.
  3. Попарно-параллельным, при котором одна из форсунок открывается перед началом подачи топлива, а вторая после.
  4. Фазированным – каждая форсунка открывается непосредственно перед началом впрыска топлива.

Преимущества и недостатки инжектора

Множество автолюбителей задумывается, особенно при выборе автомобиля, в чем заключаются преимущества инжектора:

Первое – подача топлива в камеру сгорания, где происходит смешивание с воздухом, происходит с помощью форсунки. Это позволяет дозировать порцию бензина на одно впрыскивание. За счет этого у транспортного средства значительно увеличивается мощность (на 7–10%), а главное снижается расход топлива.

Система впрыска очень чувствительна к изменениям нагрузки, и поэтому быстро реагирует на ее изменения количеством подачи бензина. Немаловажным преимуществом является то, что в холодное время года транспортное средство практически не нужно «прогревать». Также инжектор незначительно повышает экологичность выхлопных газов.

Теперь перейдем к недостаткам. Во-первых, автоматизированость инжекторной системы не всегда является преимуществом. При внезапном выходе из строя, привести систему в работу самостоятельно без помощи специалиста невозможно.

Кроме того, инжектор очень требователен к выбору топлива, особенно если вы хотите, чтобы транспортное средство прослужило как можно дольше. При поломках большинство деталей являются неремонтопригодными и требуют полной замены.

В случае ДТП риск воспламенения более высок, из-за подачи топлива под определённым давлением (в случае повреждения контроллера впрыска).

Внутреннее устройство инжектора и принцип его работы

Чтобы разобраться в принципе работы инжекторного двигателя, сперва нужно понять его строение.

  1. ЭБУ (электронный блок питания) – управляет работой всей системы инжекторного двигателя на основании полученных данных (из внешней среды и непосредственно от параметров работы двигателя). Содержит систему диагностики неисправности инжектора, передавая сигнал датчику «Check engine» на панели приборов.
  2. Регулятор давления. В норме давление в форсунках должно быть постоянным, этот регулятор отвечает за постоянство этой величины.
  3. Форсунки – непосредственно подают топливо в цилиндры (электромагнитные, электрогидравлические и пьезоэлектрические).
  4. Бензонасос – под давлением подает топливо в форсунки, что снижает риск образования воздушных пробок.
  5. Датчики – необходимы для слаженной работы всей системы. В инжекторе установлено несколько видов:
  • Датчик детонации – расположен в самих цилиндрах, при детонации по нему проходят вибрации. В виде свободного тока передает информацию на ЭБУ.
  • ДПДЗ – реагирует увеличением датчика или его падением, при смене поворотного угла заслонки дросселя.
  • Датчик фаз сообщается с блоком управления и с цилиндром. Благодаря этому, блок управления подает необходимое напряжение в цилиндр при зажигании, и совершает управление тактами.
  • Датчик массового расхода воздуха состоит из двух платиновых нитей (первая свободно обдувается потоками воздуха, а вторая герметично изолирована). Блок управления подсчитывает температуру и массу воздуха, за счет разницы температуры и сопротивления на двух нитях.
  • ДПКВ (положения коленчатого вала), или датчик Холла, позволяет определять положение коленчатого вала. Основной принцип работы в том, что зубчатое колесо, расположенное на валу двигателя, вращается вокруг магнита. При искажении магнитного поля датчик создает импульсы внутри катушки и передает их в блок управления. В соответствии с полученными импульсами ЭБУ определяет положение коленвала.

 

Все форсунки соединены в единую систему, которая называется топливной рампой. С помощью бензонасоса за счет излишнего давления внутри системы топливо подается в систему. После чего открывается клапан, и топливо из форсунки поступает в цилиндр (чем дольше открыт клапан, тем больше топлива подается и, соответственно, обороты будут выше). Количество поступающего топлива непосредственно зависит от количества воздуха, поступающего в цилиндр.

Благодаря ресурсам интернет-сети можно наглядно увидеть принцип работы инжекторного двигателя:

Режимы работы

Инжекторный двигатель способен работать в 2 режимах.

  1. Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
  2. Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.

Частые поломки и ремонт инжектора

Первой из возможных поломок могут быть проблемы с подачей топлива в инжектор. Первым делом нужно проверить датчик уровня бензина, если датчик исправен – значит проблема в бензонасосе. При засорении входного отверстия подачи топлива его необходимо просто прочистить. В случае если чистка не увенчалась успехом – поломан бензонасос, и его необходимо заменить.

Для замены лучше обратиться на СТО, так как при неправильной установке бензонасоса вместе с топливом он начнет всасывать воздух.

Увеличение расхода топлива чаще всего происходит при засорении форсунок. При этом они не смогут подавать необходимый объем топлива, и система начнет это компенсировать увеличением частоты или объема впрыска топлива. Кроме того, длительность разгона транспортного средства увеличится, а мощность значительно снизится.

Временное исчезновение холостого хода в основном происходит при нарушении герметичности внутри системы, вследствие чего в нее поступает воздух.

Двигатель начинает троить при остановке работы одного из цилиндров. С данной проблемой можно столкнуться при полном засорении форсунки, когда она не способна подавать топливо в цилиндр. Чаще всего это происходит при использовании некачественного топлива.

При поломке датчика фаз, форсунки начинают работать асинхронно, при этом топливо в цилиндры поступает абсолютно бесконтрольно. Будут наблюдаться перебои в работе двигателя и значительная утрата мощности.

Поломка датчика положения дроссельной заслонки проявляется в изменении оборотов при фиксированной педали газа, или в снижении оборотов при выжатой педали. При этом в двигатель поступает чрезмерно большое количество топлива.

Для того, чтобы избежать значительных поломок следует выбирать качественное топливо (во избежание чрезмерного загрязнения) и следить за исправностью работы инжектора.

Индикатор «Check engine» не всегда будет загораться, свидетельствуя о поломках, или вовсе может давать ложные показания. Поэтому нельзя всегда полагаться на датчик, а если вы заметили «странное поведение» транспортного средства – лучше сразу обратиться на СТО.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Как работает инжекторный двигатель, принцип работы и преимущества

Вместо недавно повсеместно распространенных карбюраторных двигателей сейчас в основном используются инжекторные или впрысковые двигатели. Принцип их работы относительно прост и чрезвычайно экономичен. Однако, чтобы оценить преимущество инжектора, нужно сначала разобраться, почему они пришли на смену карбюраторам.

Карбюратор служит для подачи топлива во впускной коллектор, где оно уже смешивается с воздухом, а оттуда распределяется в камеры сгорания поршней. На подачу и смешивание топлива с воздухом израсходуются силы двигателя – до десяти процентов. Бензин всасывается в коллектор благодаря разнице в давлении в атмосфере и коллекторе, а чтобы поддерживать нужный уровень давления, как раз и расходуются ресурсы двигателя.

Кроме этого у карбюратора есть и масса других недостатков, например, когда через карбюратор проходит слишком много топлива, он просто физически не успевает направить его через узкую горловину в коллектор, в результате чего карбюратор начинает коптить. Если же топливо ниже определенного уровня, то двигатель попросту не тянет и глохнет – знакомая многим ситуация.

Принцип работы инжектора

Инжектор, в принципе, исполняет в двигателе ту же работу, что и карбюратор – подает топливо в камеры сгорания поршней. Однако происходит это не из-за всасывания бензина в коллектор, а методом впрыска топлива через форсунки непосредственно в камеры сгорания или в коллектор, и здесь же происходит смешивание топлива с воздухом.

Мощность инжекторных двигателей в среднем на 10 процентов выше, чем карбюраторных.

Инжекторы делятся на два основных вида:

  • моновпрыск – топливо подается через форсунки в коллекторе, а затем распределяется непосредственно в камеры сгорания;
  • распределенный впрыск – в головке цилиндров имеется форсунка для каждого поршня и смесь топлива с воздухом происходит в камере сгорания.

Инжекторные двигатели с распределенным впрыском являются самыми экономичными и мощными. Подача бензина происходит в момент открытия впускного клапана.

Преимущества инжектора

Система впрыска незамедлительно реагирует на любые изменения нагрузки на двигатель, как только увеличиваются обороты, впрыск производится чаще.

Автомобили с впрысковой системой легче заводятся, увеличивается динамический момент двигателя. Инжектор меньше реагирует на погодные условия, ему не требуется длительное прогревание при минусовых температурах воздуха.

Инжекторы более “дружелюбны” к экологии, уровень выбросов вредных веществ на 50-70 процентов ниже, чем у карбюратора.

Также они более экономны, поскольку топлива расходуется ровно столько, сколько нужно для бесперебойной работы двигателя в данный момент.

Недостатки впрысковых систем

К недостаткам можно отнести тот факт, что для нормальной работы двигателя требуется слаженная работа нескольких электронных датчиков, которые контролируют разные параметры и передают их на главный процессор бортового компьютера.

Высокие требования к чистоте топлива – узкие горлышки форсунок очень быстро будут забиваться, если пользоваться некачественным бензином.

Ремонт обходится очень дорого, а некоторые элементы вообще не подлежат восстановлению.

Как видим, ни одна система не лишена недостатков, однако преимуществ у инжектора значительно больше и именно из-за этого инжекторные двигатели пришли на замену карбюраторным.

Очень наглядное видео, в 3D, о принципе работы инжекоторного двигателя.

В данном видео вы узнаете о принципе работы системы питания инжекторного двигателя.

Загрузка…

Поделиться в социальных сетях

описание, устройство, фото и видео

«Родившись» в 1951 году, инжектор постепенно пришел на смену карбюраторам, читаем статью — карбюратор или инжектор. А произошло это благодаря одному из его важнейших преимуществ, которое состоит в уменьшении количества используемого топлива. Помимо которого специалисты также отмечают лучшую динамику разгона инжекторных авто, стабильность функционирования таких моторов, а также снижение числа вредных выбросов от их работы в атмосферу.

Выясним, откуда берутся такие свойства, и вообще каков принцип работы инжектора, однако прежде кратко приведу основные недостатки последнего, чтоб вы не считали его идеальным:

  • дорогой ремонт узлов;
  • наличие элементов, не подлежащих ремонту;
  • необходимость использования качественного топлива;
  • необходимость применения спецоборудования для диагностики, ремонта и обслуживания.

Как работает инжектор?

Итак, как известно, в современных авто карбюраторная система уже полностью замещена инжекторными двигателями.  Последние, в отличие от карбюраторных, повышают мощность автомобиля, улучшают динамику его разгона, экологичность. При том, что расход топлива при этом уменьшается.

Кстати, высокие экологические показатели инжектор сохраняет без различных  регулировок и настроек. Ведь там имеет место самонастройка топливовоздушной смеси, которая стала возможна благодаря кислородному датчику, установленному на выпускном коллекторе (лямбда-зонд).

Устройство инжектора.

Подача топлива в инжекторный движок производится форсунками, которые могут  располагаться или на впускном коллекторе (моновпрыск), или недалеко от впускных клапанов цилиндров (распределенный впрыск), или  непосредственно в ГБЦ — головке блока цилиндров (прямой впрыск — впрыск топлива осуществляется в саму камеру сгорания), о том, как промыть форсунок своими руками смотрим вот здесь.

 

Помимо форсунок инжектор включает в себя следующие исполнительные элементы:

  • ЭБУ (контроллер) — обрабатывает данные от датчиков и управляет системами подачи топлива и зажигания;
  • бензонасос (электрический) — он подает топливо;
  • различные датчики: температуры, коленвала, распредвала, детонации;
  • регулятор давления — поддерживает разницу давления воздуха во впускном коллекторе и форсунках.

Также все инжекторные моторы оснащаются каталитическим нейтрализатором (катализатором) в виде «сот», на котором нанесен активный слой, способствующий догоранию топлива, остающемуся в выхлопных газах. Однако заправка этилированным бензином длительное время приводит к определенным поломкам, из-за которых катализатор теряет такую способность.

Датчик кислорода в инжекторе и его работа.

Наиболее известным типом является циркониевый кислородный датчик, подробнее в статье — что такое датчик кислорода. Он есть переключатель (к слову, один из самых важных), который резко изменяет свое состояние на отметке 0.5% кислорода, содержащегося в выхлопных газах.

Устройство интерфейса датчика выглядит следующим образом: прогретый датчик (300 градусов Цельсия и выше) при богатой смеси (содержание кислорода < 0.5%), как слабый источник тока, устанавливает на выходе напряжение от 0,45 до 0,8 Вольт, а при бедной смеси (содержание кислорода > 0.5%) — от 0.2 до 0.45 Вольт. И не важно, какой точно при этом уровень напряжения, учитывается лишь то, где он расположен по отношению к средней линии. То есть топливо добавляется, когда ECU определяет сигнал бедной смеси, и уменьшается, когда богатой. Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы.

Известно, что надежно данный датчик работает только в хорошо прогретом состоянии, следовательно, ECU система TCCS заметит его показания только в случае прогрева двигателя до нужного уровня. Однако не всех это устраивает. Поэтому для придания скорости этому процессу в датчик кислорода часто монтируют электрический подогреватель.

Компьютер системы TCCS. Самодиагностика инжектора.

В современном инжекторе установлено много датчиков, это разрешает оптимизировать его работу.

Принцип работы механического инжектора.

Хотя ранее использовались иные конструкции инжекторных моторов с впрыском. К примеру, известен такой двигатель, в котором управление происходит при помощи механических устройств. Управление здесь — дозировка объема топлива при помощи специального клапана. Клапан же управляется системой рычагов, которую приводит в действие воздушный поток. Сегодня механически управляемые клапаны уже полностью изжили себя.

В настоящее же время в каждой системе впрыска есть встроенная подсистема самодиагностики, которая позволяет установить неисправности узлов, датчиков и исполнительных механизмов системы. После самодиагностики компьютер вырабатывает диагностические коды. Они извлекаются из памяти компьютера и расшифровываются согласно таблицам. У каждого производителя свой вариант извлечения данных кодов. Найти практически всех их можно в свободном доступе в интернете, подробнее о диагностике инжектора своими руками, можно прочитать тут. Кроме того рекомендую ознакомиться с инструкцией, о том как почистить инжектор.

Видео

Рекомендую прочитать:

Принцип работы инжектора: как работает, устройство

Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

Инжекторный двигатель

Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

История возникновения инжекторной системы впрыска

Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

Установлен инжекторный двигатель

Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

Как работает инжектор?

Обычно он имеет в своей конструкции следующие составляющие:

  1. ЭБУ.
  2. Форсунки.
  3. Датчики.
  4. Бензонасос.
  5. Распределитель.
  6. Регуляторы давления.

Если описывать коротко принцип работы инжектора заключается в следующем:

  • на датчики поступают сигналы о работе системы;
  • после блок сопоставляет параметры и осуществляет управление системой;
  • затем идет подача электрического разряда на форсунки, под его натиском они открываются, впуская смесь из топливной магистрали во впускной коллектор.

    Схема инжекторного мотора

Электронный блок управления

Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

Различают 3 вида памяти:

  1. Однократное программируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
  2. Оперативное запоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
  3. Электрически программируемое запоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.

    Первый тойотовский инжекторный двигатель M-E 1972 года

Расположение, классификация и маркировка форсунок

После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:

  1. Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
  2. Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.

    Сравнение карбюратора и инжектора

Есть несколько классификаций распределительного впрыска:

  • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
  • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
  • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
  • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

Инжекторные форсунки имеют разный способ подачи струи:

  1. Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.

    Устройство инжектора

  2. Электромагнитный. На обмотку клапана поступает электрический разряд, контролируемый ЭБУ. В итоге возникает электромагнитное поле наравне со сдавливанием пружины. Поле притягивает иглу и освобождает сопло для подачи струи. Пружина возвращается в прежнее положение после рассеивания электромагнитного поля, отправляя иглу на свое место.
  3. Пьезоэлектрический. Самый продвинутый тип, применяется в дизельных агрегатах. Скорость его действий превышает предыдущие типы в четыре раза, помимо этого, количество впрыскиваемого топливо максимально выверено. Действия инжектора основаны на принципе гидравлики, работа осуществляется из-за разницы давления. Сначала игла находится на седле, потом ток растягивает пьезоэлемент, который начинает воздействовать на толкатель, чем открывает клапан для движения топлива в магистраль. Затем давление спадает, и игла подымается, вверх осуществляя впрыск.

Нейтрализатор/катализатор

Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

  • два окислительных из платины и палладия;
  • один восстановительный из родия.

    Инжекторная топливная система

Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

  1. Селективные. Не привередливы к качеству топлива.
  2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

Основные датчики

  1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
  2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    ЭБУ инжектора

  3. Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
  4. Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
  5. Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
  6. Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
  7. Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
  8. Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.

Система подачи топлива

Узел включает в себя:

  • топливный насос;
  • топливный фильтр;
  • топливопроводы;
  • рампу;
  • форсунки;
  • регулятор давления топлива.

    Система подачи топлива

Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Как работает инжектор? — Автокадабра

Статья с Хабрахабра.

В заметке пойдет речь о работе «мозгов», управляющих двигателем вашего автомобиля или мотоцикла. Попытаюсь на пальцах и в общем объяснить что же и как происходит.

Чем занимаются те самые «мозги» и для чего они нужны? Электроника — альтернатива другим системам, выполняющим те же функции. Дозированием топлива занимался карбюратор, зажиганием управлял механический или вакуумный корректор угла опережения зажигания. В общем не электроникой единой возможно реализовать все это и достаточно продолжительное время именно так и было. На автомобилях, мотоциклах, бензопилах, бензогенераторах и во многих многих других местах работали и продолжают работать те самые системы, которые призван заменить инжектор.

Зачем же понадобилось что-то менять? Зачем сносить существующие проверенные и весьма надежные системы? Все просто — гонка за экономичностью, экологичностью и мощностью. Точность работы описанных выше систем недостаточна для обеспечения желаемого уровня экологичности и мощности, а сами по себе электронные системы управления двигателем начали появляться достаточно давно.

Я опущу принцип работы поршневых ДВС, многие знакомы с тем как работает двигатель, а те кто не знакомы — не слишком пострадают. В разрезе работы системы питания и системы зажигания двигатель это просто преобразователь воздушно-топливной смеси в механическую энергию. Можно рассматривать его как черный ящик, с некоторыми особенностями.

Итак, у нас есть топливо (бензин, этанол, пропан или метан), есть воздух и желание получить из этого механическую энергию. Сложность состоит в том, что для получения интересующих нас характеристик надо смешивать топливо и воздух в точно определенных пропорциях и поджигать их в достаточно точно определенный момент времени. Более того — при недостаточной точности мы получим ухудшение характеристик.

Вся суть работы «мозгов» сводится к дозированию топлива и поджигом смеси в цилиндрах двигателя. Это основные функции. Кроме них есть еще и дополнительные — управление турбиной, управление трансмиссией.

Подсистема, занимающаяся дозированием топлива называется инжектор, поджигом топлива занимается зажигание. Воздух в двигатель поступает «естественным» порядком. Двигатель сам всасывает воздух, его количество только может ограничиваться, для снижения мощности двигателя. Нам не нужна максимальная мощность все время, бОльшую часть времени мощность как раз ограничивается. В случае с турбиной воздух попадает в двигатель принудительно, но это не меняет сути. Воздуха столько сколько есть и мы управляем его количеством при помощи педали.

Сколько топлива нам надо подать в двигатель и как его дозировать? Есть так называемое стехиометрическое отношение, показывающее, что для полного сжигания килограмма топлива нам нужно вполне определенное количество воздуха. Для бензина это соотношение равно 14,7:1. также его называют AFR (Air Fuel Rate по английски) Это не аксиома, это некий оптимум. Смесь может быть «беднее», в ней может быть меньше топлива. Такая смесь хуже горит, двигатель сильнее греется, но сгорает все полностью. Это значения в большую сторону — AFR 15 и более. Может быть и «богаче», когда топлива больше — AFR 14 или меньше. При таком соотношении смесь сгорает не полностью, но мощность двигателя максимальна. И в ту и в другую сторону есть ограничения — если слишком увлечься, работать двигатель не будет. Нельзя просто налить 20 частей топлива и ожидать пропорционального прироста мощности.

Итак, чтобы определить сколько же топлива нам надо подать в двигатель нам надо знать сколько воздуха в него поступает. Дальше все просто — из количества воздуха по соотношению определяем количество бензина и дело сделано!

Погодите-ка, а как же нам определить сколько воздуха поступает в двигатель? Для этого есть несколько путей. Обычно используют один из следующих датчиков:

ДМРВ или MAFдатчик массового расхода воздуха. Датчик этот измеряет количество проходящего через него воздуха. Как подсказывает википедия — «Датчик состоит из двух платиновых нитей, нагреваемых электрическим током. Через одну нить, охлаждая её, проходит воздух, вторая является контрольной. По изменению тока проходящего через охлаждаемую воздушным потоком платиновую нить вычисляется количество воздуха, поступающего в двигатель.». Датчики такого типа зачастую устанавливаются в гражданские автомобили. В общем то все достаточно просто. Похоже, это именно то, что нужно! Примерно так и есть.

Другой тип датчиков — ДАД или MAPдатчик абсолютного давления. Этот датчик подключен к впускному коллектору и измеряет разряжение (или же избыточное давление, в случае с наддувом) в коллекторе. На основании показаний этого датчика и датчиков температуры, частоты вращения коленвала тоже можно вычислить объем поступающего воздуха, что нам и требуется. Для корректировки его показаний надо еще знать давление окружающего воздуха. Для измерения атмосферного давления либо ставят еще один такой же датчик, который непрерывно его измеряет, либо просто до запуска двигателя измеряют давление. Во втором случае может выйти неприятность, если вы с берега моря рванули прямиком на Эверест. MAP часто ставят на спортивные автомобили.

Устанавливается один из этих датчиков, наличие одного из них — обязательно. Ну что же, сколько воздуха поступает в двигатель мы примерно можем вычислить.

Другой обязательный датчик — ДПКВ или датчик положения коленвала. Этот датчик позволяет мозгам точно знать, в каком положении находится коленвал. Зачем нам это нужно? Мало знать сколько топлива надо подать в двигатель, надо подавать его в определенный момент времени. Да и зажигать смесь в цилиндрах тоже надо строго вовремя. Так что без этого датчика — никак. Есть несколько типов таких датчиков, но большинство из них — либо индукционные, либо датчики Холла, либо подобные им. В общем — бесконтактные датчики, подобные тем, которые трудятся, например, в двигателе вашего винчестера. Или в кулерах.

Следующий датчик, который вместе с ДПКВ дает еще больше информации о том, что же происходит в двигателе в данный конкретный момент — ДПРВдатчик положения распредвала. Также его называют датчиком фаз. При помощи этого датчика можно понять в каком из цилиндров в данный момент такт впуска, куда же нам надо подавать топливо, в каком цилиндре у нас такт сжатия и время поджигать смесь. По принципу работы он подобен ДПКВ, но зачастую несколько проще. В общем то тоже самое, но на распредвале.

Этого набора датчиков нам должно хватить для запуска двигателя. Худо бедно, но этого достаточно, чтобы примерно понять сколько надо подавать топлива, когда это делать и когда поджигать полученный коктейль. Так давайте же тогда подавать и поджигать!

Исполнительные механизмы

Топливо дозируется форсунками или другими словами «инжекторами». Да да, именно по названию этого узла все это безобразие нами так и называется. Форсунка из себя ничего особо интересного не представляет. Просто электромеханический клапан. Два провода и трубопровод с топливом под давлением. Подали напряжение на выводы — форсунка открылась, прекратили пропускание тока — форсунка закрылась. Для простоты давайте сначала примем, что форсунка открывается и закрывается моментально. Тогда для оценки объема проходящего через нее топлива нам достаточно знать ее статическую производительность. Это просто объем топлива, который пройдет через форсунку за минуту. Открыли форсунку, измерили объем бензина, который через нее за минуту вытек — получили основной параметр. Теперь нам для точного дозирования надо просто открывать и закрывать форсунку на определенное время. Получается что дозирование производится «выдержкой», если говорить терминами фотографов. Чем длиннее время на которое мы открываем форсунку, тем больше топлива мы нальем в двигатель.

А поджиг смеси осуществляет все та же бессменная свеча зажигания, которая верой и правдой служила для этой цели. И катушка зажигания тоже на месте. Вот только управляется она уже «мозгами». Зажигание не изменилось, но для его работы важен ДПКВ и ДПРВ, так что без этих датчиков дела не будет.

В общем то это, можно считать, и есть в общих чертах как работает инжектор. Смотрим на показания датчиков, отмеряем нужное количество топлива и открываем форсунку на вычисленное время. И так каждый такт. Т.е. в зависимости от частоты — 100 раз в секунду на частоте в 6000об/мин коленвала. Часто? Да не так чтобы и очень.

Идем дальше?

В реальных двигателях все несколько сложнее. Точно вычислить сколько же воздуха попадает в двигатель не так просто. Для корректировки значений нужны датчики температуры охлаждающей жидкости — просто термодатчик, аналогичный тому, что показывает температуру на приборной панели. И датчик температуры поступающего воздуха. В целом незначительно отличающийся от первого, а функционально и вовсе его брат близнец — тоже просто меряет температуру, но уже не двигателя, а воздуха, поступающего в двигатель. Зачем нам что-то корректировать? Дело в том, что пока двигатель холодный, пока он не нагреется до определенной температуры — топливо испаряется не так хорошо, а горят именно пары. Соответственно нам нужно топлива подавать больше, чтобы двигатель работал. Значит берем наше значение для оптимального соотношения, меряем двигателю температуру и корректируем это наше значение. Также нужно откорректировать момент зажигания смеси в цилиндрах — по тем же причинам. И тут тоже корректируем.

Другой не совсем приятный момент — форсунка, которую мы приняли идеальной — на самом деле таковой не является. Во первых нужно время, чтобы она открылась, а потом закрылась. Соответственно в этом время она тоже подает топливо, но в меньшем количестве. На это тоже делается поправка. Само время открытия и закрытия зависит от напряжения бортовой сети. Одно дело когда генератор шпарит на всю и в сети 14В, а другое дело, когда генератор умер, а аккумулятор разряжен до неприличных 10В. Время открытия форсунки меняется и его надо корректировать. Мало умершего генератора, ехать то надо и двигатель не должен перестать работать в таких условиях.

Мало нам было исполнительных механизмов, для работы на холостом ходу, когда педаль мы совсем не трогаем — двигатель не должен глохнуть, его работу надо поддерживать. Для этого есть специальное исполнительное устройство — РХХрегулятор холостого хода. Это такой шаговый двигатель (реже просто электромагнит), который через специальный канал дает двигателю «вздохнуть» мимо перекрывающей воздух дроссельной заслонки. Умный мозг не дает двигателю зачахнуть и приоткрывает этот клапан, когда обороты снижаются. Но и разойтись не дает — прикрывает его, когда обороты возрастают уж слишком сильно.

Хорошо бы нам также знать на сколько сильно водитель давит на педаль акселератора. Для этих целей смотрят не на положение педали, а на положение заслонки, которой эта педаль управляет. Датчик так и называется — ДПДЗдатчик положения дроссельной заслонки. Технически это просто потенциометр, который измеряет на какой угол повернута ось дроссельной заслонки. Это зачем это нам надо знать, как сильно водитель давит в пол, спросите вы? Все просто, нам надо знать когда включать режим холостого хода (помним про РХХ), когда водитель жаждет острых ощущений и энергично давит на педаль — не время экономить, льем от души!

Экологические нормы достаточно строго контролируют что же «выдыхает» (пускай уж выдыхает) наш двигатель. Так что при всем желании лить «на глазок» — нельзя. нужно контролировать состав выхлопных газов. Как это сделать? Для этой цели есть так называемый лямбда зонд или датчик кислорода — датчик, показывающий сгорела ли смесь целиком, есть ли в выхлопных газах топливо либо же свободный кислород. По показаниям этого датчика инжектор может корректировать свое поведение, либо увеличивая либо уменьшая количество подаваемого топлива. Нужно это достаточно часто — бензин везде разный и даже просто хранясь в канистре или баке — стареет. А уж о заправках наших можно легенды слагать. Соответственно и режимы его горения совсем не постоянны. Ко всему прочему и производительность форсунок может «плавать». Ведь как вы поняли — расчет ведется исходя из их постоянной производительности, а форсунка со временем может забиться, производительность ее может снизиться.

А нормы строгие, а бензин дорогой, да и ехать же надо. Внимательный читатель заметил, что одного этого датчика достаточно для обеспечения обратной связи. Смотрим на состав выхлопных газов, если сгорело не все — льем меньше. Если сгорело дочиста — льем больше. Лямбда зонды бывают двух видов — узкополосные и широкополосные. Отличаются они точностью. Первые только показывают богатая или бедная у нас смесь, вторые показывают на сколько она богатая или бедная. Даже точно указывают тот самый AFR упоминаемый в начале статьи. Ну и цена, конечно. Первые стоят 25$, вторые — 200$. С лямбдами тоже не все просто — они достаточно капризны, требуют определенной температуры для работы, а это не всегда возможно, в некоторых типах зондов рабочий элемент специально подогревают от бортовой сети. Да, лямбда может быть не одна, но это уже тонкости.

Еще один сенсор, применяемый для анализа происходящего в двигателе — датчик детонации. Детонация это процесс сгорания топлива, который протекает взрывообразно. В нормальном режиме топливо просто сгорает, при детонации топливо взрывается. Это вредно для двигателя — все равно что бить по поршню молотком. Никто не любит когда не нему бьют молотком — поршень не исключение. Явление это крайне нежелательное и для определения того, что смесь детонирует и применяют такой датчик. Он по принципу работы похож на микрофон, который «слушает» двигатель (датчик закреплен на блоке цилиндров) и по услышанному пытается отфильтровать шум работы двигателя и понять где же детонация, а где нормальная работа. Все не просто и здесь. Для облегчения работы этого датчика ставят еще датчик неровной дороги, который покажет, что это наши дороги так шумят, а не двигатель. Востребованность этого датчика возрастает на турбированых двигателях.

В итоге сами по себе мозги работают примерно следующим образом: есть так называемая топливная карта — таблица, в которой записано какого состава должна быть смесь. У таблицы три измерения — частота вращения коленвала двигателя, нагрузка на двигатель и собственно AFR. Просто берем из таблицы значение, положенное туда опытным товарищем. Корректируем это значение в соответствии с показаниями датчиков температур, лямбда зонда, датчика детонации, изменением положения дроссельной заслонки и в соответствии со всеми этими поправками (часть из них тоже в табличках) вычисляем необходимое количество топлива. Пересчитываем объем топлива во время открытия форсунки в соответствии с ее производительностью, корректируем время в соответствии с напряжением бортовой сети и в момент впуска — открываем форсунку на вычисленное время.

Как видите — ничего сложного и заумного здесь нет. Просто таблицы, может быть местами ПИД регулятор, коэффициенты влияния тех или иных факторов и в итоге просто время открытия форсунки. С зажиганием тоже самое, только там карта углов, аналогичная топливной карте (тоже таблица) и тоже корректировки в соответствии с показаниями датчиков.

В штатном режиме все работает, но что делать, если один из датчиков вышел из строя? И как это понять? Если датчик температуры, например, показывает что двигатель нагрет до 200 градусов, или что смесь детонирует несмотря на все корректировки? В этом и заключается продуманность мозгов. Вычислить, что датчик врет, не принимать во внимание его показания, зажечь «check engine» на панели и продолжить работу. Благодаря такому поведению двигатель сохранит работоспособность при выходе из строя некоторых датчиков (не всех, как вы понимаете) и позволит доехать до СТО.

Да, многие из вас заметят, что инжектор по сути достаточно простое устройство. И схематически там нет ничего военного — входящие значения считываются по АЦП, выходящие так и вовсе чисто бинарные. Ну выходные транзисторы, ну достаточно жесткие условия работы. Но это не космос далеко. Касательно работы прошивки — тоже вроде как все не так и сложно. На мой взгляд проще всяких алгоритмов распознавания изображений и всякое такое. В процессе настройки саму прошивку никто не трогает обычно. В том смысле, что открывать исходники, корректировать алгоритмы, оптимизировать что-то — такого нет. Просто софт который позволяет изменять те самые топливные карты и другие коэффициенты. А прошивками занимаются уже инженеры на заводах. Или простые смертные, которым это интересно.

Да-да, не каждый готов платить за «мозги» космические деньги, а кому-то может быть просто хочется больше контроля над происходящим. Все это привело к тому, что есть несколько проектов вполне доступных «мозгов». Есть megasquirt — для этой аппаратной базы в последствии была написана и поддерживается кастомная прошивка с расширенным функционалом — клац. На последнем сайте есть даже схемы этих «мозгов», может быть кому-то из электронщиков будет интересно. А программистам может быть интересно глянуть на код. Если не ошибаюсь, то он есть здесь. Есть еще VEMS — который сначала назывался megasquirtAVR, но теперь сам по себе. Видел еще вот таких ребят — там у них какой-то свой проект FreeEMS. На мой взгляд все это показывает, что все не так уж сложно и местами даже очень даже доступно.

Надеюсь получилось достаточно интересно и в меру понятно. Об опечатках прошу писать в личку. Если где ошибся — поправьте.

принцип работы форсунки, как работает механический инжектор

17

Ещё совсем недавно большинство автомашин функционировали только на карбюраторных двигателях. Новые машины сегодня с карбюратором не выпускают: узлы питания для двигателя полностью заменили на инжекторные системы.
Инжектор – это специальная система, подающая топливо. Базируется она на принудительном дозировании горючего, которое впрыскивается в каналы впускного коллектора либо прямо в цилиндр.

Как устроен и для чего нужен инжектор автомобиля

Инжектор (от «injection», что значит – впрыск либо, собственно, инъекция) – самая распространенная электронно-механическая узловая система (либо отдельная форсунка) в автомобиле производстве. Она устанавливается на мотор и осуществляет подачу топлива.
Устроен инжектор несложно (следует лишь разобраться в деталях). Сложность представляет само функционирование системы. Основные ее элементы:

  • электронный блок управления;
  • электро-бензонасос;
  • стабилизаторы давления;
  • форсунки.

Каков принцип действия инжектора? Он важен как распределяющий горючее впрыскиватель. Именно в этом и состоит главное его отличие от карбюратора, который смешивает топливо с воздухом и подает заданное количество полученной смеси в действующие цилиндрические полости двигателя внутреннего сгорания (ДВС).
Благодаря инжектору достигается оптимальный уровень экономичности и производительности в процессе работы автомобиля.

Принцип работы инжектора

Рассмотрим подробнее принцип работы механического инжектора. Поначалу датчик измеряет массу поступающего в инжектор воздуха. Полученные данные передаются системой в управленческий блок. Туда же поступает информация от иных датчиков, например, измерителей:

  • быстроты движения коленного вала;
  • температуры.

Затем система считает, сколько и чего требуется для функционирования двигателя. В финальной стадии инжектор продолжительными электро-зарядами воздействует на форсунки, которые открываются и подают бензин из магистралей в коллектор. Наиболее сложная работа происходит в управленческом блоке. Именно потому и называют его мозгом всей системы.

Особенности работы форсунок инжектора

По сути, форсунка являет собой заполненную бензином емкость. Горючее под высоким давлением идет из топливной магистрали.

Каков принцип работы форсунки инжектора? С одной стороны топливо подается через специальную фильтровальную сетку. С другой, оно уже распыленное, проходит в действующую зону двигателя. Но это если на клапане форсунки имеется заданное напряжение.

Плюсы и минусы инжекторов

У любого устройства могут быть определенные недостатки. Это неизбежно. Не является исключением из правила и инжектор. И все же плюсов у системы гораздо больше. Стоит рассмотреть главные сильные стороны:

  • повышается мощность транспортного средства;
  • снижена токсичность выхлопных газов;
  • существенно экономится горючее;
  • автомобиль защищен от угона;
  • отсутствует регулировка подачи топлива в ручном режиме.

Отличительным свойством карбюраторов являлось то, что топливо они не экономили, расход был большим. Инжектор же позволяет уменьшить расходы, при чем функциональные обороты снижаются, повышая мощность мотора. Запуск двигателя стал делом более упрощенным – превратился в автоматизированный.

Однако, следует учитывать и определенные минусы системы:

  • особенности диагностирования;
  • требования к качеству горючего;
  • повышенное внутри инжекторное давление.

Владельцу авто придется пользоваться исключительно качественным топливом, иначе форсунки забьются несгораемыми остатками.

Диагностирование и ремонтные работы смогут осуществить профессионалы СТО, поскольку неосведомленному человеку своими силами разобраться с электронной системой будет крайне сложно.
Также стоит отметить, что система, зависящая от электропитания, является весьма чувствительной к нередким перепадам напряжения.

Виды инжекторных систем

Инжекторная система состоит из множества электронных элементов, а весь функционал ее – под контролем специального контроллера. На этом базируется устройство и принцип работы инжектора.
Существует 3 вида инжекторных систем. Различаются они по способу подачи топлива.

Центральная

На сегодняшний день является устаревшей. Ее суть состоит в том, что горючее впрыскивается в определенном участке (это вход во впускающий коллектор). Там оно перемешивается с воздухом, а далее происходит распределение по цилиндрам. Функционирование центральной инжекторной системы весьма схоже с работой карбюратора, с той лишь разницей, что горючее поступает под давлением.

Распределенная

Она наиболее оптимальна и применяется на многих автомашинах. У данного инжектора горючее подается для всех цилиндров отдельно, хотя впрыскивается также во впуск-коллектор.

Система непосредственного впрыска
Это самая совершенная на сегодня система. Отличительной особенностью ее является следующее: топливо поступает именно в цилиндры, а там уже смешивается с воздухом. По принципу функционирования данная система весьма походит на дизельную.

его достоинства, виды, конструктивные особенности

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

его достоинства, виды, конструктивные особенности

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.
  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа  инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Устройство электромагнитной форсунки

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Как работает топливная форсунка? Бензин и Дизель

Назначение топливной форсунки:

В основном, топливная форсунка предназначена для распыления топлива в распыленной или туманной форме, чтобы оно сгорело полностью и равномерно. Топливный насос высокого давления (FIP) подает дизельное топливо под давлением через линии высокого давления к впускному отверстию каждого инжектора. Однако обычные форсунки или форсунки первого поколения открываются под действием гидромеханического давления. Внутри обычного инжектора пружина удерживает игольчатый клапан в «закрытом» положении до тех пор, пока давление в линиях высокого давления не достигнет определенного значения.В дизельных двигателях DI и IDI более ранних поколений использовались обычные форсунки, как показано на диаграмме ниже.

Схема в разрезе обычной дизельной форсунки

Принцип работы обычной топливной форсунки:

Игольчатый клапан точно управляется чувствительной к давлению пружиной. Он поднимается со своего седла, впрыскивая дизельное топливо в цилиндр в сильно распыленной форме или в виде тумана. В момент падения давления игольчатый клапан возвращается на свое место, что приводит к прекращению впрыска.Форсунка впрыска имеет чрезвычайно критические допуски. Зазор между его движущимися частями составляет всего 0,002 мм или 2 микрона.

Современный инжекторный блок нагнетает дизельное топливо через небольшое отверстие в форсунке размером всего 0,25 мм². Количество впрыскиваемого топлива может варьироваться от 1 мм³ до 350 мм³. Обычные форсунки открываются и закрываются гидромеханически. Они имеют среднее давление открытия сопла от 140 до 210 кг / см2. Современный агрегат Bosch распыляет дизельное топливо на скорости до 2000 км / ч.Bosch и Lucas — ведущие мировые производители дизельных форсунок.

Принцип работы бензинового инжектора:

Бензиновые форсунки нового поколения существенно отличаются по конструкции и размерам от обычных дизельных форсунок. Двигатель с непосредственным впрыском бензина (GDI) создает топливно-воздушную смесь внутри камеры сгорания. Открытие впускного клапана позволяет поступать только свежему воздуху. В то время как форсунки высокого давления впрыскивают бензин в камеру сгорания, это улучшает охлаждение камеры сгорания.Это обеспечивает более высокий КПД двигателя за счет более высокой степени сжатия, что, в свою очередь, увеличивает топливную экономичность и крутящий момент.

Бензиновый тип GDI (Фото любезно предоставлено Bosch)

Насос высокого давления подает топливо в топливную рампу высокого давления (также известную как Common Rail). Кроме того, электромагнитный инжектор высокого давления Bosch HDEV5 имеет номинальное давление в системе до 20 МПа и размер капли / SMD (средний диаметр по Заутеру) всего 15 мкм. Форсунки установлены на топливной рампе / общей топливной рампе. Кроме того, форсунки дозируют и распыляют топливо под высоким давлением и очень быстро.Кроме того, форсунки обеспечивают оптимальную смесь и впрыскивают бензин в камеру сгорания.

Для получения дополнительной информации прочтите о GDI.

Что такое насос-форсунка?

Кроме того, в системах впрыска топлива на дизельных двигателях CRDi используется «насос-форсунка» или «насос / форсунка». Она объединяет функции форсунки-форсунки и впрыскивающего насоса в единый блок. Эта конструкция состоит из отдельного насоса, назначенного для каждого цилиндра, а не из общего насоса, используемого для всех цилиндров в моделях предыдущего поколения.

Блочный инжектор (Изображение предоставлено Bosch)

В этой системе насос и форсунка объединены в единый компактный узел, который устанавливается непосредственно на головку блока цилиндров. Такая конструкция устраняет необходимость в топливопроводах высокого давления. Встроенные каналы, встроенные непосредственно в головку блока цилиндров, подают дизельное топливо. Таким образом, это помогает исключить потенциальные отказы утечек топливопровода.

Функционирование насос-форсунки:

При работе верхний распредвал приводит в действие топливный насос низкого давления.Затем он подает дизельное топливо в топливные каналы в головке блока цилиндров и во впускное отверстие всех форсунок. Для привода плунжерного насоса внутри форсунки используется общий распределительный вал. Такая конструкция обеспечивает более высокое давление впрыска до 2200 бар и точное время впрыска. Кроме того, он точно контролирует количество впрыскиваемого топлива. Кроме того, электромагнитный клапан работает как двухпозиционный переключатель для подачи топлива в форсунку.

Помпа двойного типа (Фото: VW)

Пьезоэлектрический инжектор:

Самым совершенным типом инжектора, несомненно, является пьезоэлектрический инжектор.’Он не только обеспечивает повышенную точность для двигателей последнего поколения CRDi, но также создает давление топлива до 3000 бар или 44000 фунтов на квадратный дюйм. Кроме того, эти современные топливные форсунки работают по принципу «пьезо». Слово «пьезо» происходит от греческого слова «пьезеин», что означает сдавливание или надавливание.

Пьезо-тип (Фото любезно предоставлено Denso)

Пьезо-привод состоит из сотен керамических пластин, уложенных одна над другой в инжекторе. Будучи электрически заряженными, пьезокристаллы могут изменить свою структуру всего за несколько тысячных долей секунды, слегка расширившись.Это расширение штабеля приводит к его линейному перемещению. Затем он передается непосредственно на иглу инжектора без какой-либо механической связи между ними. В результате форсунки открываются / закрываются за несколько миллисекунд (тысячную долю секунды). Следовательно, он может впрыскивать крошечное количество топлива, весящее менее одной тысячной грамма, а также тонко его распределять.

Пьезоэлектрические форсунки имеют:

1. Очень высокая скорость работы
2. Чрезвычайно быстрое время отклика
3.Повторяемость движения клапана
4. Точное дозирование впрыскиваемого топлива
5. Повышенная частота — до семи впрысков на цикл сгорания

Пьезо-форсунки:

1. Оптимизировать сгорание топливовоздушной смеси.
2. Меньший расход топлива.
3. Уменьшить загрязнение, снизить выбросы.

Видео о работе топливной форсунки смотрите здесь:

О CarBikeTech

CarBikeTech — это технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет.CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Как работают дизельные топливные форсунки?

Дизельные двигатели

используют топливную форсунку для подачи топлива в цилиндры. Процесс впрыска отличается от газовых двигателей, в которых используется карбюратор или система впрыска через порт. В то время как карбюратор смешивает воздух и топливо до того, как первый попадает в цилиндр, система впрыска через порт смешивает топливо перед тактом впуска.

Дизельные двигатели

используют систему прямого впрыска, которая подает топливо непосредственно в цилиндры двигателя. Форсунка дизельного двигателя — самая сложная деталь и может быть в разных областях.

Внутренний инжекторный процесс

Хорошая форсунка может выдерживать давление и температуру в цилиндре, обеспечивая при этом эффективную подачу топлива. Дизель образует мелкий туман, который циркулирует в цилиндрах двигателя для равномерного распределения. В некоторых двигателях используется камера предварительного сгорания, специальные впускные клапаны и другие устройства для улучшения процесса зажигания и сгорания.

Процесс сжатия нарушается, когда дизельный двигатель становится холодным, поскольку воздух не может достичь достаточно высокой температуры для возгорания топлива. Некоторые дизельные двигатели решают эту проблему с помощью свечи накаливания — проволоки с электронным обогревом, которая нагревает камеру сгорания.

Свечи накаливания

отлично справляются с повышением температуры при слишком холодном двигателе, что позволяет быстро достичь идеальных температур для зажигания.

Альтернативные инжекторные технологии

В современных форсунках дизельного топлива также используются компьютерные микросхемы, в частности, связь ECM.Эти чипы регулируют распыление топлива, воздухозаборник, охлаждающую жидкость двигателя, частоту вращения и другие функции процесса. Эти типы двигателей не имеют свечи накаливания.

Компьютерные микросхемы работают со сложным количеством датчиков для измерения температуры окружающего воздуха и задержки синхронизации двигателя в холодную погоду. Этот процесс позволяет инжектору подавать топливо в более теплую погоду для более эффективного сжатия.

Стоит отметить, что в двигателях меньшего размера не используются современные компьютерные микросхемы для решения проблемы запуска, вызванной холодной погодой.Цилиндры двигателя также имеют уникальные питающие магистрали от топливного бака для подачи дизельного топлива в форсунку. Каждый цилиндр оснащен фильтром, который удаляет любые загрязнения до начала процесса впрыска.

Процесс ширины импульса

Неотъемлемой частью форсунок дизельного топлива является соленоид, который открывается для пропуска испаренного топлива. Процесс называется шириной импульса , и каждый цилиндр получает разное количество топлива, рассчитанное ЭБУ. ЭБУ также обеспечивает достижение в процессе сгорания подходящего стехиометрического соотношения, которое представляет собой соотношение между воздухом и топливом, при котором начинается горение.

Частью этой экосистемы является небольшой насос, который нагнетает воздух в инжектор. Воздух смешивается с дизельным топливом, поэтому насос должен выдерживать повышенное давление и высокие температуры.

Маленькая форсунка используется для впрыскивания дизельного топлива в камеру сгорания. Форсунка имеет ряд отверстий для равномерного распределения в цилиндре.

Второй клапан всасывает воздух из камеры сгорания и смешивает его с испарившимся дизельным топливом для дальнейшей интенсификации процесса сгорания.Выпускной клапан отводит выбросы из камеры сгорания.

Оставшееся топливо течет по обратной топливной магистрали в бак.

У вас есть вопросы по форсункам дизельного топлива или другие вопросы, связанные с дизельным двигателем? Свяжитесь с дружелюбными профессионалами ближайшего к вам Taylor Diesel сегодня же.

Как работает топливная форсунка внутри двигателя?

То, как вы ухаживаете за своим автомобилем, является прямым отражением того, насколько хорошо вы разбираетесь в различных компонентах, которые делают его современным чудом.К сожалению, один из наиболее часто сбивающих с толку аспектов современных автомобилей — это способ подачи топлива в двигатель. Все мы знаем, насколько это важно, потому что мощность, вырабатываемая двигателем автомобиля, прямо пропорциональна правильному количеству подаваемого в него топлива. В то время как в прошлом автомобили полагались на не очень совершенные карбюраторные механизмы для подачи топлива в двигатель, сегодня все по-другому. Современные автомобили теперь оснащены топливными форсунками для выполнения той же основной задачи. Таким образом, понимание того, как работают топливные форсунки, имеет решающее значение для лучшего ухода за автомобилем.

Основные проблемы подачи моторного топлива

Все мы знаем назначение двигателя. Все также осознают тот факт, что воздух и топливо должны быть объединены или смешаны в камере сгорания, чтобы вызвать контролируемые взрывы и оживить двигатель. Таким образом, очень важно, чтобы топливо подавалось в камеру сгорания в очень точных количествах. Слишком много (богатая топливная смесь), и вы рискуете забить двигатель, затрудняя его запуск или даже заглохнет. Слишком мало (наклон), и вы также не сможете запустить двигатель.Вот почему важно обеспечить камеру сгорания правильным количеством топлива для смешивания с правильным количеством воздуха.

К сожалению, это непростая задача, потому что существует множество факторов, которые могут повлиять на подачу как воздуха, так и топлива. В прошлом это всегда было проблемой, особенно среди карбюраторных двигателей. Основная проблема заключалась в том, что один карбюратор должен был снабжать топливом определенное количество цилиндров. Обычно это означало, что цилиндр, наиболее удаленный от карбюратора, будет получать немного меньше топлива, чем цилиндр, расположенный ближе к карбюратору.Вот почему в некоторых старых системах были двойные карбюраторы для лучшей подачи топлива в двигатель. К сожалению, их было намного сложнее настроить или синхронизировать, и, что хуже всего, они снижали расход топлива.

С этими проблемами необходимо было разработать более эффективный механизм для предоставления более точных измерений топлива. Здесь на помощь приходят системы впрыска топлива.

Система впрыска топлива

Современная система впрыска топлива технически включает в себя своего рода чувствительный механизм для определения правильного количества топлива, которое необходимо распылить во впускной коллектор двигателя.Другой механизм необходим для подачи или распыления «рассчитанного» количества топлива в каждый цилиндр. Это функция топливных форсунок, которую мы обсудим более подробно в следующем разделе.

Существует два типа систем впрыска топлива, которые обычно соответствуют двум основным типам двигателей, которые мы имеем сегодня на рынке.

Прямой

Конструкция некоторых двигателей требует, чтобы топливо подавалось или распылялось непосредственно в камеру сгорания двигателя.Каждый баллон уже заполнен сжатым воздухом. Когда распыленное топливо впрыскивается в каждый цилиндр, оно самовоспламеняется. Это верно для большинства дизельных двигателей. Мы сказали «большинство», потому что есть некоторые конструкции дизельных двигателей, которые перемещают топливо в камеру предварительного сгорания, прежде чем оно попадет в цилиндр.

Косвенный

Автомобили, работающие на бензине, имеют системы непрямого впрыска топлива. Топливо под давлением подается в моторный отсек из топливного бака автомобиля. Топливо под давлением подается во впускной канал или во впускной коллектор, в зависимости от конструкции двигателя.Это позволяет топливу сначала смешиваться с воздухом, который проходит через впускной канал или коллектор, прежде чем смесь будет вытолкнута в камеру сгорания.

Последние современные автомобили оснащены многоточечным впрыском. В этой системе каждый цилиндр получает топливо от одной конкретной топливной форсунки. Итак, если у вас 6 цилиндров, вы также можете ожидать 6 топливных форсунок. Именно эта конфигурация 1: 1 делает эту систему очень мощной и эффективной, хотя и сложной и дорогой в ремонте. Однако в большинстве автомобилей имеется одноточечная система впрыска топлива или даже инжектор на каждые два цилиндра.

Что такое топливные форсунки?

Топливные форсунки — это части современных автомобильных двигателей, которые прямо или косвенно доставляют топливо в камеру сгорания двигателя. Эти небольшие электромеханические устройства обычно располагаются под определенным углом, чтобы топливо распылялось к впускному клапану двигателя или непосредственно в цилиндр.

Как работает механическая топливная форсунка?

Многие путают механическую систему впрыска топлива с карбюратором.Хотя принцип в основе своей аналогичен, существует большая разница в типе топлива, подаваемого в двигатель. В то время как карбюраторные системы подают топливо под низким давлением из бензобака, механический топливный инжектор подает топливо под высоким давлением в аккумулятор. Вы можете думать об этом как о временном хранилище вашего топлива. Затем топливо проходит через распределитель, который обычно рассматривается как блок управления дозированием системы. Отсюда топливо «распределяется» по каждому цилиндру в нужном количестве и в нужное время.

Поток топлива, впрыскиваемого во впускной канал, регулируется заслонкой, которая расположена на воздухозаборнике двигателя, поскольку воздух и топливо должны быть смешаны в первую очередь перед входом в цилиндр. Когда вы ускоряетесь, откидной клапан открывается, увеличивая количество проходящего через него воздуха. Это также побуждает распределитель топлива увеличивать количество топлива, проталкиваемого через инжектор, чтобы поддерживать правильный баланс воздуха и топлива.

Если топливо не впрыскивается во впускной канал, клапан внутри топливной форсунки остается закрытым из-за натяжения его пружинного механизма.Когда топливо отправляется для смешивания с воздухом на входе воздуха, давление топлива открывает этот клапан, позволяя впрыскивать топливо. По этой причине механические топливные форсунки называют подпружиненными форсунками.

Во время холодного пуска микропроцессор активирует специальный инжектор, чтобы добавить в смесь дополнительное топливо для облегчения более плавного пуска. После прогрева двигателя подача топлива из форсунки холодного пуска автоматически прекращается. Это отличается от карбюратора, поскольку вам нужно только заблокировать воздушный поток, чтобы создать более богатую смесь.

Как работают электронные топливные форсунки?

Многие современные автомобили оснащены электронными системами впрыска. Их часто обозначают аббревиатурой EFI. По сути, они почти такие же, как механические системы впрыска топлива, за исключением того, что они не зависят от количества топлива и натяжения пружины для открытия и закрытия клапана форсунок. У них есть очень сложные мини-компьютеры, называемые электронным блоком управления или ЭБУ. ЭБУ выполняет множество функций, включая следующие.

  • Регулирует топливную смесь.
  • Управляет холостым ходом.
  • Управляет моментом зажигания.
  • Управляет фазами газораспределения.

Датчики, которые измеряют давление воздуха, температуру воздуха на впуске, положение акселератора, температуру двигателя и частоту вращения коленчатого вала двигателя, установлены на двигателе автомобиля. Эти датчики передают информацию в ЭБУ, который обрабатывает эти биты данных для расчета нужного количества топлива, которое нужно впрыскивать в цилиндры двигателя. Клапаны на топливных форсунках получают сигнал от ЭБУ, поэтому он точно знает, когда открыть, чтобы топливо могло попасть во впускное отверстие.

Система настолько эффективна, что все эти сложные процессы — от сбора данных с датчиков до их интеграции на уровне ЭБУ и их обработки и последующего ввода в клапан топливной форсунки — выполняются за доли секунды.

По пути топливо из бензобака попадает в топливную рампу благодаря электрическому топливному насосу, который забирает топливо из бака. В этом, кстати, проявляется еще одно отличие от механических топливных форсунок. Поскольку движение топлива управляется электроникой, нет необходимости в его подаче под высоким давлением.Системе нужно только поддерживать постоянное давление для подачи топлива из бака в рейку.

Топливные форсунки подключены к рейке и, как мы уже упоминали выше, открывают свои клапаны только после получения входного сигнала от ЭБУ. Электронные сигналы от блока управления двигателем поступают на один из двух контактов форсунок. Другой контакт подключен к аккумулятору и через реле зажигания. Замыкание цепи осуществляется путем посылки импульсного заземления от ЭБУ к форсунке.Это активирует соленоид форсунки, который притягивает магнитный верх плунжера, открывая клапаны. Поскольку давление топлива внутри рампы уже высокое, это помогает направлять топливо через распылительный наконечник форсунки с высокой скоростью. Здесь он поступает во впускной коллектор или прямо в цилиндр, в зависимости от типа системы впрыска топлива в вашем автомобиле.

Топливные форсунки

— это очень инновационные устройства, которые помогают гарантировать, что ваш двигатель получает нужное количество топлива в нужное время. Хотя до сих пор существуют системы, использующие механический впрыск топлива, многие современные автомобили теперь используют системы электронного впрыска топлива.Это позволяет повысить топливную эффективность и экономичность, поскольку различные факторы принимаются во внимание для определения правильного количества топлива для заливки в каждый цилиндр.

Вам также может понравиться:

Лучшие очистители топливных форсунок

Источники:
  1. Как работает впрыск топлива? — ThoughtCo
  2. Как работают системы впрыска топлива — howstuffworks

Как работают дизельные топливные форсунки

Рынок дизельных двигателей продолжает расти из года в год, поскольку потребность в надежных автомобилях малой и большой грузоподъемности возрастает в основном в странах второго и третьего мира.По мере совершенствования инфраструктуры во всем мире растет потребность в надежных рабочих тележках. JD Power and Associates прогнозирует, что продажи дизельного топлива увеличатся более чем в три раза в следующие 10 лет, что составит более 10% от всех продаж автомобилей по сравнению с 3,6% всего 10 лет назад в 2005 году. С 2000 по 2005 год регистрация дизельных двигателей увеличилась более чем на 80%. более 550 000 автомобилей. С 2005 по 2015 год это число увеличилось еще на 67%.

Как работают топливные форсунки

Топливные форсунки — это небольшие электрические компоненты, которые используются для подачи топлива через распылитель непосредственно во впускной коллектор перед впускным клапаном в дизельном двигателе.Форсунки дизельного топлива довольно сложны; инжектор имеет фильтр с высокими микронами на верхней стороне впуска, который соответствует небольшим отверстиям для подкожных инъекций внизу для распыления дизельного топлива. Дизельное топливо действует как источник смазки для внутренних частей форсунки. Основной источник выхода из строя форсунок — вода в топливе. Когда вода в топливе вытесняет смазочные свойства, внутренние детали быстро изнашиваются, и форсунка в целом может довольно быстро выйти из строя.

Форсунки — чрезвычайно важный компонент двигателя.Клапан форсунки открывается и закрывается с той же частотой вращения, что и дизельный двигатель. Типичная частота вращения дизельных двигателей в Северной Америке составляет около 1800. Это примерно 140 000 оборотов в час! Помимо воды в топливе, форсунки подвергаются воздействию частиц углерода и грязи, попадающих в агрегат через плохой элемент воздухоочистителя. Тип топлива, марка и используемые присадки также оказывают значительное влияние на ожидаемый срок службы топливной форсунки. ECM (модуль управления двигателем) управляет топливными форсунками в большинстве электрических дизельных двигателей.Дизельные форсунки постоянно находятся под напряжением при включении ключа независимо от того, включен ли двигатель. Контроллер ЭСУД заземляет форсунку, замыкая цепь и вызывая открытие форсунки. Контроллер ЭСУД после получения информации от различных датчиков управления определяет продолжительность времени, в течение которого форсунки должны быть заземлены, чтобы впрыснуть точное количество топлива, учитывая требуемую мощность двигателя в лошадиных силах.

Процесс открытия, закрытия дизельных форсунок и выдачи нужного количества топлива происходит за миллисекунды.Запуск цикла форсунки в среднем занимает от 1,5 до 5 миллисекунд. Форсунки дизельного топлива бывают разных форм и размеров в зависимости от марки и модели двигателя, а также потребляемой мощности. Автомобильные форсунки немного меньше, чем дизельные двигатели для тяжелых условий эксплуатации, и измеряются в кубических дюймах. Существует два типа форсунок дизельного топлива: первый называется впрыском в корпус дроссельной заслонки, где 1-2 форсунки расположены в самом корпусе дроссельной заслонки в дизельном двигателе и подают отмеренное количество распыляемого тумана топлива во впускной коллектор.Эта система подачи по существу заряжает впускной канал, а впускной клапан втягивает топливо в цилиндр двигателя. Вторая система подачи, известная как топливная форсунка с отдельным портом, является более новой и более экономичной. Портовый впрыск более эффективен, чем карбюратор, поскольку он подстраивается под плотность воздуха и высоту и не зависит от вакуума в коллекторе.

При впрыске через дроссельную заслонку неэффективность достигается тогда, когда в цилиндрах, ближайших к форсункам, смесь лучше, чем в наиболее удаленных.При впрыске с портом этот недостаток устраняется путем впрыска одинакового количества топлива в каждый цилиндр двигателя.

Инжектор

Каждая топливная форсунка немного отличается, но все они состоят из 15 основных частей, включая фильтр, направляющее кольцо, пружину сердечника, пружину седла, седло, полюсный наконечник, упор, катушку соленоида, корпус соленоида, кольцо сердечника, сердечник, корпус распылительного наконечника, директор и распылительный наконечник. Контроллер ЭСУД регулирует подачу топлива, поднимая шар с седла. Это позволяет топливу течь через отверстие седла, а затем выходить через неподвижную направляющую пластину с несколькими отверстиями.Направляющая пластина служит для направления факела распыления топлива. Этот тип инжектора имеет форму распыления от 10 до 15 градусов. Распыление топлива этого типа форсунки аналогично форсунке дискового типа. Форсунки дискового и шарового типа по своей конструкции менее подвержены засорению.

Форсунки дизельного топлива

Форсунки для дизельного топлива

бывают разных форм и размеров, а также условий работы. В статье, размещенной здесь, объясняется разница между OEM, восстановленными, восстановленными и использованными форсунками.Capital Reman Exchange может помочь вам определить, какой тип топливной форсунки подходит для вашего дизельного двигателя.

Как работает инжектор дизельного топлива?

Дизельные двигатели

используют инжектор дизельного топлива для подачи топлива в цилиндры двигателя. Используется система прямого впрыска, что означает, что топливо впрыскивается непосредственно в цилиндры, поэтому инжектор имеет жизненно важный характер.В настоящее время это стало довольно сложной инженерной разработкой, в которой используются компьютерные микросхемы (связь ECM) для регулирования впуска воздуха, распыления топлива, числа оборотов в минуту и ​​т. Д. Дизельные двигатели обычно намного эффективнее бензиновых двигателей, но не так давно они работали на дизельном топливе. автомобили ассоциировались с большими и вредными грузовиками. Это правда, что дизель отлично подходит для больших грузов, но это еще не все, потому что сегодня все начало меняться, и случайный водитель осознал тот факт, что современные дизельные двигатели намного чище и производят меньше шума.

Как проходит топливо

Топливо перекачивается первичным насосом через фильтр, а затем в топливный насос. Там давление на каждую форсунку составляет 2300–3500 фунтов на квадратный дюйм.

Само инжекторное устройство

Топливная форсунка управляется ЭБУ с помощью различных датчиков. Электронный блок управления двигателем выполняет соответствующие расчеты, например, для определения впрыска воздуха и впрыска топлива, а также других функций. В инжекторе используется соленоид, который обычно открывается, так что испарившееся дизельное топливо может проходить (продолжительность этого процесса называется шириной импульса).Каждая форсунка каждого цилиндра получает разное количество топлива, рассчитанное ЭБУ. Последнее позволит процессу сгорания достичь идеального стехиометрического соотношения (воздух, топливо и зажигание смешаны вместе). К устройству инжектора прикреплен небольшой насос, который нагнетает воздух в инжектор, смешиваясь с топливом, поэтому устройство должно выдерживать высокие температуры и высокое давление. Устройство использует небольшое сопло для впрыска дизельного топлива в камеру сгорания.Форсунка имеет последовательность маленьких отверстий, так что топливо соответствующим образом распределяется по цилиндру. В системе используется другой клапан для всасывания воздуха из камеры, который смешивается с испарившимся дизельным топливом, чтобы интенсифицировать процесс сгорания.

Заключительный этап

Наконец, выпускной клапан удаляет любые выбросы, присутствующие в камере сгорания, в то время как возвратный топливопровод удаляет любое оставшееся топливо, присутствующее в камере, и возвращает его в топливный бак.

Типы дизельных двигателей

Некоторые дизельные двигатели могут иметь свечу накаливания.Свеча накаливания — это то оборудование, которое нагревает камеры сгорания для повышения температуры, потому что иногда двигатель не нагревается до требуемой температуры для правильного сгорания из-за холодной погоды. Сегодня в больших двигателях свечи накаливания не используются. Вместо этого всю работу выполняет блок управления двигателем, который считывает температуру окружающей среды и соответственно замедляет распыление дизельного топлива в цилиндры. Однако свечи накаливания по-прежнему являются альтернативной системой для повышения температуры на небольших дизельных двигателях.

Технический отдел: описание пьезо-топливных форсунок

Если вы когда-нибудь видели искры, создаваемые кем-то, жующим Wint-O-Green Life Savers в затемненной комнате, вы были свидетелями этого феномена: определенные кристаллические материалы, такие как сахар, вырабатывают небольшое количество электричества, когда вы их сжимаете. Для этого даже есть слово «пьезоэлектрический», которое описывает электричество, возникающее в результате давления.Но этот процесс также обратим, поскольку те же самые материалы немного расширяются при подаче на них электричества. В автомобиле есть множество мест, где пьезоэлектрическое расширение может пригодиться.

Возьмем, к примеру, точный дозатор, необходимый для современной подачи топлива. Bosch, Continental и Delphi, среди прочих, использовали это своеобразное свойство расширяющегося пьезоматериала — а не обычного электромагнита — для открытия форсунки топливного инжектора и точного распыления топлива как в бензиновые, так и в дизельные двигатели.Однако заставить эти устройства работать непросто.

Одна из причин — незначительное расширение пьезокристаллов. Кусочек пьезоматериала толщиной в две сотых дюйма расширяется только примерно на 0,00002 дюйма, когда на него попадает примерно 140 вольт электричества. Этих двухсот тысячных дюйма недостаточно, чтобы сдвинуть иглу форсунки, которая закрывает форсунку и должна открываться для впрыска топлива.

Инжектор Continental имеет сотни маленьких пьезосрезов, уложенных друг на друга, так что комбинированное расширение увеличивает общее движение.Стопка перемещается на 0,004 дюйма — этого достаточно, чтобы переместить иглу достаточно далеко для впрыска топлива. Но поскольку это движение происходит в неправильном направлении — вниз, а не вверх, — добавление двух крошечных рычагов позволяет расширению пьезоэлемента, что приводит к подъему стержня и началу распыления топлива. Когда инжекция завершена, напряжение отключается, пьезоэлемент сжимается, и пружина закрывает стержень.

У пьезо-форсунок есть несколько ключевых преимуществ, которые оправдывают все эти хлопоты. Во-первых, они открываются и закрываются намного быстрее, чем обычные форсунки.Это позволяет более точно контролировать интервал впрыска, который определяет, сколько топлива впрыскивается в двигатель. Пьезоустановки также обеспечивают обратную связь, производя мельчайшие колебания электричества, используемого для их активации. Например, если компьютер управления двигателем требует времени открытия форсунки 0,5 секунды, а ответ форсунки показывает, что она открылась всего на 0,496 секунды, компьютер может добавить немного времени к следующему циклу впрыска для компенсации. Такое точное дозирование топлива способствует лучшему сгоранию, что приводит к лучшей экономии топлива и сокращению выбросов.

Пьезоинжекторы не только более точны, чем обычные твердые инжекторы, они также могут выполнять некоторые трюки, которые полностью выходят за рамки возможностей их предшественников. Во-первых, при подаче немного меньшего количества электричества пьезокристаллы расширяются меньше, поэтому форсунки могут частично открываться. Меньшее отверстие означает более длительное время впрыска, что полезно при попытке точно впрыснуть небольшое количество топлива, например, когда автомобиль почти едет по инерции. Поскольку они действуют очень быстро, пьезо-форсунки также могут производить впрыск несколько раз (до семи в некоторых дизелях) в течение одного цикла сгорания.Такая гибкость может снизить выбросы во всех двигателях, а также ограничить образование сажи в дизелях.

Эти преимущества стали основой для пьезо-форсунок во многих новейших дизельных двигателях и бензиновых двигателях с прямым впрыском. А компания Continental, например, утверждает, что ее пьезоэлектрические устройства не стоят дороже, чем менее производительные традиционные аналоги. Пьезо-форсунки — одно из ключевых устройств, которые будут поддерживать внутреннее сгорание конкурентоспособным по сравнению с этими надоедливыми электрическими выскочками на долгие годы.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Как работает электронный впрыск топлива

Новые автомобили сбивают с толку. Со всеми компьютерами, датчиками и гаджетами может показаться, что под капотом происходит какое-то волшебное колдовство. Мы здесь, чтобы показать вам, как работают современные автомобильные компьютерные системы управления. На прошлой неделе мы рассмотрели возможность изменения фаз газораспределения. Сегодняшняя тема: Электронный впрыск топлива.

Раньше старый добрый карбюратор отвечал за подачу необходимого количества топлива в цилиндры.Сегодня эта работа принадлежит ECU.

Посмотрим, как это работает.

Для многих из вас это обзор, но если мы хотим, чтобы новое поколение автолюбителей заботилось об автомобилях, не помешает объяснить, как они на самом деле работают.

G / O Media может получить комиссию

ЭЛЕКТРОННЫЙ ВПРЫСК ТОПЛИВА

Фото предоставлено: Альбертас Агеевас

Если сердцем автомобиля является его двигатель, то его мозгом должен быть блок управления двигателем ( ЭБУ).Также известный как модуль управления трансмиссией (PCM), ЭБУ оптимизирует работу двигателя, используя датчики, чтобы решить, как управлять определенными исполнительными механизмами в двигателе. ЭБУ автомобиля в первую очередь отвечает за четыре задачи. Во-первых, ЭБУ контролирует топливную смесь. Во-вторых, ЭБУ контролирует холостой ход. В-третьих, ЭБУ отвечает за опережение зажигания. Наконец, в некоторых приложениях ЭБУ управляет фазой газораспределения.

Прежде чем мы поговорим о том, как ЭБУ выполняет свои задачи, давайте проследим путь капли бензина, попадающей в ваш бензобак.Времена изменились после видео Down the Gasoline Trail , так что пришло время для обновления. Первоначально, когда капля газа попадает в ваш бензобак (который теперь сделан из пластика), она всасывается электрическим топливным насосом. Электрический топливный насос обычно поставляется в модуле в баке, который состоит из насоса, фильтра и отправляющего устройства. Передающее устройство использует делитель напряжения, чтобы сообщить измерителю газа, сколько топлива осталось в вашем баке. Насос перекачивает бензин через топливный фильтр, по трубопроводам с твердым топливом и в топливную рампу.

Регулятор давления топлива с вакуумным приводом на конце топливной рампы гарантирует, что давление топлива в рампе остается постоянным по отношению к давлению на впуске. Для бензинового двигателя давление топлива обычно составляет порядка 35-50 фунтов на квадратный дюйм. Топливные форсунки подключаются к рейке, но их клапаны остаются закрытыми до тех пор, пока блок управления двигателем не решит отправить топливо в цилиндры.

Обычно форсунки имеют два контакта. Один вывод подключается к батарее через реле зажигания, а другой вывод идет к ЭБУ.ЭБУ посылает импульсное заземление на форсунку, которая замыкает цепь, обеспечивая ток на соленоид форсунки. Магнит в верхней части плунжера притягивается к магнитному полю соленоида, открывая клапан. Поскольку в рампе находится высокое давление, при открытии клапана топливо с высокой скоростью направляется через распылительный наконечник форсунки. Продолжительность открытия клапана и, следовательно, количество топлива, подаваемого в цилиндр, зависит от ширины импульса (то есть от того, как долго ЭБУ посылает сигнал заземления на форсунку).

Когда плунжер поднимается, он открывает клапан, и форсунка направляет топливо через распылительный наконечник во впускной коллектор непосредственно перед впускным клапаном или непосредственно в цилиндр. Первая система называется многоточечным впрыском топлива, а вторая — прямым впрыском.

Схема из Википедия

Контроль топливной смеси

Мы уже рассмотрели, как работает электронное управление дроссельной заслонкой.Мы показали вам, что, когда водитель нажимает на педаль газа, датчик положения педали акселератора (APP) посылает сигнал в ЭБУ, который затем дает команду на открытие дроссельной заслонки. ЭБУ получает информацию от датчика положения дроссельной заслонки и приложения до тех пор, пока дроссельная заслонка не достигнет желаемого положения, установленного водителем. Но что будет дальше?

Датчик массового расхода воздуха (MAF) или датчик абсолютного давления в коллекторе (MAP) определяет, сколько воздуха поступает в корпус дроссельной заслонки, и отправляет информацию в ЭБУ.ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы смесь оставалась стехиометрической. Компьютер постоянно использует TPS для проверки положения дроссельной заслонки и датчик MAF или MAP, чтобы проверить, сколько воздуха проходит через впускное отверстие, чтобы отрегулировать импульс, отправляемый на форсунки, гарантируя, что соответствующее количество топлива попадает во впускной патрубок. воздух. Кроме того, ЭБУ использует датчики o2 для определения количества кислорода в выхлопных газах. Содержание кислорода в выхлопе указывает на то, насколько хорошо горит топливо.Между датчиками массового расхода воздуха и датчиком 02 компьютер точно настраивает импульс, который он отправляет на форсунки.

Контроль холостого хода

Фото предоставлено: Aidan

Давайте поговорим о холостом ходу. В большинстве ранних автомобилей с впрыском топлива использовался электромагнитный клапан управления воздухом холостого хода (IAC) для изменения потока воздуха в двигатель на холостом ходу (см. Белую пробку на изображении выше). Управляемый ЭБУ, IAC обходит дроссельную заслонку и позволяет компьютеру обеспечивать плавный холостой ход, когда водитель не нажимает педаль акселератора.IAC похож на топливную форсунку в том, что они оба изменяют поток жидкости через штифт, приводимый в действие соленоидом.

Большинство новых автомобилей не имеют клапанов IAC. В старых дросселях с тросовым управлением воздух, поступающий в двигатель на холостом ходу, должен был обойти дроссельную заслонку. Сегодня это не тот случай, поскольку системы электронного управления дроссельной заслонкой позволяют ЭБУ открывать и закрывать дроссельную заслонку с помощью шагового двигателя.

ЭБУ контролирует скорость вращения двигателя с помощью датчика положения коленчатого вала, который обычно представляет собой датчик Холла или оптический датчик, который считывает скорость вращения шкива коленчатого вала, маховика двигателя или самого коленчатого вала.ЭБУ отправляет топливо в двигатель в зависимости от скорости вращения коленчатого вала, что напрямую связано с нагрузкой на двигатель. Допустим, вы включаете кондиционер или переключаете автомобиль на движение. Скорость вашего коленчатого вала снизится ниже пороговой скорости, установленной ЭБУ из-за дополнительной нагрузки. Датчик положения коленчатого вала будет сообщать об этой пониженной частоте вращения двигателя в ЭБУ, который затем будет больше открывать дроссельную заслонку и посылать более длинные импульсы на форсунки, добавляя больше топлива, чтобы компенсировать повышенную нагрузку на двигатель.В этом прелесть управления с обратной связью.

Почему у вашего двигателя больше оборотов при запуске? Когда вы впервые включаете автомобиль, ЭБУ проверяет температуру двигателя с помощью датчика температуры охлаждающей жидкости. Если он замечает, что двигатель холодный, он устанавливает более высокий порог холостого хода для прогрева двигателя.

Управление моментом зажигания

Фото предоставлено: AJ Hill

Теперь, когда мы упомянули задачи ECU по поддержанию холостого хода двигателя, а также поддержанию надлежащей топливно-воздушной смеси, давайте поговорим о зажигании. сроки.Для достижения оптимальной работы в свечу зажигания должен подаваться ток в очень точные моменты времени, обычно от 10 до 40 градусов поворота коленчатого вала до верхней мертвой точки в зависимости от частоты вращения двигателя. Точный момент зажигания свечи зажигания относительно положения поршня оптимизирован, чтобы способствовать развитию пикового давления. Это позволяет двигателю извлекать максимум работы из расширяющегося газа.

Старые двигатели (до середины 2000-х) использовали распределители для контроля искры.Показанная выше система состоит из ротора и крышки распределителя. Ротор электрически соединен с катушкой зажигания, которая, по сути, представляет собой трансформатор, который изменяет напряжение с 12 В до более чем 10 000 вольт, необходимых для искры. Ротор механически соединен с распределительным валом через шестерню. Когда распредвал вращается, вращается и ротор. Когда ротор вращается, он очень близко подходит к медным столбам (по одному на каждый цилиндр). Ток от катушки зажигания перепрыгивает через небольшой воздушный зазор между ротором и штырями, посылая высокое напряжение через провода свечи зажигания на свечу зажигания каждого цилиндра в определенное время.Обратите внимание, что этим системам нужен был способ изменить время. При высоких оборотах двигателя необходима опережающая искра. Ранние двигатели с распределителями использовали вакуум двигателя или вращающиеся грузы для регулировки времени. Позднее стали более распространены системы хронометража на основе транзисторов.

В современных автомобилях не используется центрально расположенная катушка зажигания. Вместо этого эти системы зажигания без распределителя (DIS) имеют катушку, расположенную на каждой отдельной свече зажигания. На основе входных данных от датчика положения коленчатого вала, датчика детонации, датчика температуры охлаждающей жидкости, датчика массового расхода воздуха, датчика положения дроссельной заслонки и других, ЭБУ определяет, когда запускать транзистор драйвера, который затем включает соответствующую катушку.

ЭБУ может контролировать положение поршня с помощью датчика положения коленчатого вала. ЭБУ постоянно получает информацию от датчика положения коленчатого вала и использует ее для оптимизации момента зажигания. Если ЭБУ получает информацию от датчика детонации (который представляет собой не что иное, как небольшой микрофон) о том, что в двигателе возникла детонация (которая часто вызывается преждевременным искровым зажиганием), ЭБУ может замедлить опережение зажигания, чтобы уменьшить детонацию.

Регулировка фаз газораспределения

Четвертая основная функция ЭБУ — регулировка фаз газораспределения.Это относится к автомобилям, в которых используется система изменения фаз газораспределения, что позволяет двигателям достигать оптимальной эффективности при различных оборотах двигателя. См. Статью на прошлой неделе, чтобы узнать больше об этом.

Обычно я не выкладываю самодельные видеоролики, но приведенное ниже является отличным ресурсом для изучения основ систем впрыска топлива:

Автор фотографии: JAK SIE MASZ

.