5Окт

Масло в турбине: Почему турбина гонит или ест масло — причины

7 причин почему гонит масло из турбины (все случаи). Их следствие и как решить

Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе. Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.

Содержание

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло. И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.

Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла — признаки, причины и что нужно делать
Подробнее

 

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.

Через сколько км менять масло в двигателе

Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее

 

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет синий дым из выхлопной трубы автомобиля.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.

Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее

 

Методы устранения поломки

Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.

  1. Замена (в крайнем, не нежелательном случае, чистка) воздушного фильтра. Запомните, что желательно менять фильтр немного раньше регламента, приблизительно на 10%. В среднем же, его замену нужно проводить не реже, чем через каждые 8-10 тысяч километров пробега.
  2. Проверка состояния крышки воздушного фильтра и патрубков, при обнаружении засора нужно обязательно хорошенько прочистить их, удалив мусор.
  3. Проверка герметичности крышки воздушного фильтра и патрубков. При обнаружении трещин или других повреждений в зависимости от ситуации можно попробовать отремонтировать их, наложив хомуты или другие приспособления, в крайнем случае нужно купить новые детали вместо поврежденных. При этом обязательным условием будет то, что если разгерметизация была обнаружена, то перед сборкой системы с новыми комплектующими ее обязательно нужно тщательно прочистить от мусора и пыли, которые в ней находятся. Если этого не сделать — мусор будет играть роль абразива и значительно изнашивать турбину.
  4. Правильный подбор моторного масла и его своевременная замена. Это актуально для всех двигателей, а особенно для тех, которые снабжены турбонагнетателем. Лучше пользоваться качественными синтетическими или полусинтетическими маслами известных производителей, таких как Shell, Mobil, Liqui Moly, Castrol и других.
  5. Периодически необходимо контролировать состояние масляных патрубков с тем, чтобы они обеспечивали нормальное перекачивание масла по масляной системе, в частности, к турбине и от нее. В случае, если вы полностью меняете турбину, то в профилактических целях нужно выполнить их чистку, даже если на первый взгляд они относительно чистые. Лишним это не будет!
  6. Регулярно нужно выполнять контроль состояния вала, крыльчатки и подшипников, не допускать их значительного люфта. При малейших подозрениях на неисправность нужно выполнить диагностику. Лучше делать это в автосервисе, где имеется соответствующее оборудование и инструменты.
  7. В случае, если имеет место масло на выходе из турбины, то имеет смысл проверить состояние дренажной трубки, наличие в ней критических изгибов. При этом уровень масла в картере обязательно должен быть выше, чем у отверстия той трубочки. Также имеет смысл проверить вентиляцию картерных газов. Обратите внимание, что конденсат, образующийся в выпускном коллекторе из-за разности температур, зачастую принимают за масло, поскольку влага, смешиваясь с грязью, приобретает черный цвет. Нужно быть внимательным, и убедиться, что это действительно масло.
  8. Если наблюдается течь во впускную или выпускную систему двигателя, то также имеет смысл проверить состояние прокладок. Со временем и под воздействием высоких температур она может значительно износиться и выйти из строя. Соответственно, ее нужно поменять на новую. Делать это самостоятельно нужно лишь в случае, если вы уверены в своих знаниях и практическом опыте по выполнению подобных работ. В некоторых случаях вместо замены помогает простая подтяжка стягивающих болтов (но реже). Однако сильно перетягивать тоже нельзя, поскольку это может привести к обратным последствиям, когда прокладка вообще не будет держать давление.

Помните, что перегревание турбокомпрессора способствует образованию на его поверхности закоксования от моторного масла. Поэтому перед тем как заглушить турбированный двигатель, необходимо дать ему поработать на холостых оборотах некоторое время с тем, чтобы он немного остыл.

Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.

Редкие случаи

Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.

Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.

Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset h2C или h2E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.

Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.

Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.

Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.

Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.

Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.

Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.

Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.

Спрашивайте в комментариях. Ответим обязательно!

Почему турбина гонит масло – причины течи турбины


Зачастую автолюбитель делает вывод о неисправности турбины по причине утечки масла через холодную и/или горячую улитки во впускной либо в выпускной коллектор. После этого сразу начинает искать сервис, где смогут выполнить качественный ремонт турбин, либо бросается в поиски новой турбины. Однако масло из турбины довольно часто может течь при неправильном обслуживании и эксплуатации двигателя, а также при изношенном двигателе либо по причине неправильной установки турбины на двигатель.

Чтобы удостовериться, что турбина гонит масло по причине её поломки, необходимо изначально проверить основные узлы, системы и агрегаты двигателя на предмет их возможной неисправности. При выявлении таковых, устранить их.

Откуда масло в интеркулере

Рассмотрим основные причины утечки масла через исправный турбокомпрессор. А для лучшего восприятия материала, напомним основные конструктивные моменты по работе турбины – смазка подается в турбину из масляной магистрали двигателя под давлением, а вот сливается масло из турбокомпрессора в картер двигателя уже самотеком. Поэтому очень важно при проведении слесарных либо монтажных работ не деформировать сливную и подающую в турбину масло трубку.

1) На рисунке слева приведен пример деформации сливной трубки. В результате чего масло вытекает из турбокомпрессора с затруднениями, а масло которое не успело вытечь самотеком, выдавливается через уплотнения в холодную или горячую улитку в турбине. Препятствием сливу также может послужить закоксованность, попадание посторонних предметов, деформация либо изгиб сливной магистрали.

2) Контролируйте уровень масла в картере двигателя, он должен находиться между отметкой «Min» и «Max». Если необходимо, долейте масло. Когда уровень выше отметки «Max», создается подпор самотечному его сливу из турбокомпрессора. При переливе уровня во время технического обслуживания, слейте излишнее масло! Пословица «Кашу маслом не испортишь» в данной ситуации не подходит.

3) Износ цилиндро-поршневой группы (ЦПГ) двигателя приводит к прорыву отработанных газов в поддон и созданию повышенного давления в масляном картере двигателя. Данный факт также препятствует самотечному сливу масла и, соответственно, по этой причине турбина выгоняет его через уплотнения.

4) Конструктивные особенности некоторых двигателей также влияют на создание сопротивления самотечному сливу масла из турбокомпрессора. Это происходит когда масло забрасывается в сливной маслопровод противовесом коленчатого вала двигателя.

5) Проверьте давление картерных газов. Зачастую, давление газов в картере повышается из-за забитой системы вентиляции картера, либо сапунного фильтра. А в холодное время года в системе вентиляции картера может образоваться ледяная пробка (замерзает конденсат). Оба данных факта приводят к тому, что турбина визуально бросает масло. Очистите либо замените систему вентиляции картера (сапунный фильтр).

6) На данном рисунке показаны идеальные условия для работы турбины. Уровень в норме. Сливной маслопровод имеет правильную форму – прямая трубка, без изгибов ведущая в масляный картер двигателя. Трубка подведена к картеру в правильном месте – чуть выше уровня масла в картере двигателя.

4 основные причины и ряд возможных решений

Оптимальная эксплуатация турбокомпрессора возможна лишь тогда, когда при использовании этого высокоточного механизма соблюдены правила, иначе возникают проблемы. Часто причиной поломок становится масло в турбине. Что предпринять, если турбокомпрессор гонит масло?

Типы проблем. Возможные решения

1. Масло поступает во впускную систему из компрессора

Возможные причины:

  • засорение патрубка;
  • обледенение или засорение воздушного фильтра;
  • повреждение сегмента впускного коллектора.

Для устранения неполадок необходимо проверить сопротивление поступающего воздуха. Параметры разрежения в области воздушного фильтра – не более 20 мм водного столба (на холостом ходу). Если остановить двигатель, резиновые патрубки вернут свою начальную форму. Напоследок необходимо освободить впускной коллектор иинтеркулер от масла. Если на крыльчатке нет царапин и биение подшипников не наблюдается, турбину менять не нужно.

2. Масло поступает во впускную систему двигателя

Возможна нехватка подкачанного воздуха в патрубках, интеркулере, коллекторе. Она возникает по причине утечки, которая увеличивает количество воздуха, идущее через компрессор, и уменьшает давление. В результате масло вытекает через компрессорную часть. Следует устранить утечку: заменить прокладки на новые, туже затянуть хомуты.

Необходимо проверить места, из которых масло может теряться по пути до турбины:

  • воздушный фильтр, наполненный маслом;
  • компрессор тормозной системы;
  • система замкнутой вентиляции.

3. Масло поступает в выпускную систему

Следует заглянуть в выпускной коллектор: скорее всего, это масляные пары или топливо. Конденсат, возникающий из-за разницы температур, часто принимают за следы масла. Если турбина на двигатель абсолютно новая, а в коллекторе обнаружено масло, возможно, что оно попало из двигателя.

4. Масло поступает в обе системы

Причин может быть две:

  1. Повреждение или засорение масляной магистрали, неправильное положение прокладки на стыке с турбиной.
  2. Неисправность картера двигателя, а именно засорение системы вентиляции. Возможно появление избытка газов из-за неполадок в двигателе или износа деталей. В этом случае для начала следует устранить неисправности. Если потеки масла слабые, скорее всего, виновата не турбина, а системы двигателя.

причины и способы решения проблемы |

Всем привет. Сегодня на АвтоПульсаре будет поднят еще один, весьма актуальный вопрос, который интересует многих автомобилистов, особенно обладателей авто с турбинами. Я постараюсь ответить на вопрос: «Почему турбина гонит масло в интеркулер?», а также по какой причине это происходит.

Проблема свойственна, как правило, дизельным авто и встречается довольно часто. Для тех, кто не в курсе, масло в интеркулере — это не нормально, исправный интеркулер не должен взаимодействовать с моторным маслом. Когда турбина гонит масло в интеркулер, с двигателем наблюдаются определенные проблемы, это проявляется в виде падения мощности, а также снижением уровня масла, проще говоря ситуация, когда мотор ест масло. Скажу сразу, если проблема вами обнаружена, эксплуатировать авто с такой поломкой крайне не рекомендуется, во избежание возникновения еще больших неприятностей.

Что такое интеркулер?

Не все знают, что такое интеркулер и как он работает, поэтому не лишним будет рассказать, что это и как устроено. Однако на нашем сайте уже есть полноценная статья о том, Что такое интеркулер? Принцип его работы и предназначение, поэтому кому интересно может пройти по ссылке и ознакомиться. А мы едем дальше.

Почему турбина гонит масло в интеркулер?

  1. Деформация сливного маслопровода. Сам по себе маслопровод представляет собой изогнутую трубку. Он располагается между турбиной и картером, по нему происходит доставка масла из картера в турбину. Для того. чтобы понять в этом ли дело, необходимо оценить общее состояние сливного маслопровода. В случае повреждения или деформации маслопровода доставка необходимого количества масла к турбине происходит с перебоями, кроме того из-за деформации повышается давление в системе. Избыточное давление в системе приводит к тому, что масло ищет любые пути для того, чтобы выйти. В итоге, просачиваясь через наиболее уязвимые места, такие как уплотнители, оно проникает в интеркулер.
  2. Загрязнение маслопровода. Такая проблема встречается, как правило, у автомобилей с большим пробегом. Большая выработка и ряд сопутствующих проблем, в том числе и плохое масло, приводят к тому, что турбина гонит масло в интеркулер по причине забитого маслопровода. Внутренний диаметр маслопроводящего канала уменьшается за счет различных отложений, в результате пропускная способность снижается. Возникает избыток давления и, как я уже говорил, масло ищет пути выхода для снижения давления. Таким образом оно нередко попадает в интеркулер.
  3. Неисправный воздуховод. Если во время эксплуатации каким-то образом произошло повреждение воздуховода, турбина может начать бросать масло в интеркулер. Причина заключается в том, что в случае нарушения герметичности возникает зона разрежения, которая затягивает моторное масло, забрасывая его в интеркулер. Мелкие пробои и трещинки, в принципе, поддаются ремонту, однако в случае критических повреждений замена воздуховодов обязательна.
  4. Критическое загрязнение воздушного фильтра. Для обладателей турбовых моторов чистота фильтрующих элементов очень важна, поэтому замена должна быть регулярной и по возможности преждевременной. Несмотря на свою простоту, воздушный фильтр довольно важный элемент, от которого много зависит, в том числе и исправная работа турбокомпрессора. Недостаток воздуха при загрязненном фильтре крайне негативно сказывается на производительности турбины. Возникает зона разрежения, в которой происходит подсос и заброс масла в интеркулер.

Актуально: Что такое турботаймер на дизель и стоит ли его устанавливать?

Что делать если турбина гонит масло в интеркулер и как это устранить?

Поиск причин описан выше, необходимо установить какая именно из них привела к тому, что масло кидает в интеркулер. После этого причина устраняется и производится ликвидация последствий этого явления. В основном проблема сводится к тому, что большое количество масла и нагара покрывают воздушные каналы, ухудшая эффективность работы интеркулера. Это чревато тем, что воздушный поток не получает должного охлаждения, в результате чего она перегревается.

Очистка интеркулера производится посредством обязательного демонтажа загрязненных узлов. Без демонтажа очистка интеркулера будет неполной и поверхностной. В качестве моющего или правильнее будет сказать очищающего средства используется различная химия, способная растворить маслянистые отложения.

Своевременное обнаружение неисправности!

В данной ситуации самое главное — это вовремя диагностировать проблему. Чем раньше вы заметите, что турбина бросает масло в интеркулер, тем дешевле и проще будет ремонт. Промедление или наплевательское отношение может привести к неисправности турбины, цена которой довольно высока. Кроме того, по цепочке из строя могут выйти и другие узлы, которые взаимодействуют с турбокомпрессором.

Рекомендую посмотреть видео о том, как выполнить чистку интеркулера

Почему турбина гонит масло? |

Я, субъект персональных данных, в соответствии с Федеральным законом от 27 июля 2006 года № 152 «О персональных данных» предоставляю ООО «Мега групп» (далее — Оператор), расположенному по адресу 115191, г. Москва, Духовской переулок, дом 17, стр. 15, согласие на обработку персональных данных, указанных мной в форме веб-чата и/или в форме заказа обратного звонка на сайте в сети «Интернет», владельцем которого является Оператор.

Состав предоставляемых мной персональных данных является следующим: ФИО, адрес электронной почты и номер телефона.
Целями обработки моих персональных данных являются: обеспечение обмена короткими текстовыми сообщениями в режиме онлайн-диалога и обеспечение функционирования обратного звонка.
Согласие предоставляется на совершение следующих действий (операций) с указанными в настоящем согласии персональными данными: сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, передачу (предоставление, доступ), блокирование, удаление, уничтожение, осуществляемых как с использованием средств автоматизации (автоматизированная обработка), так и без использования таких средств (неавтоматизированная обработка).
Я понимаю и соглашаюсь с тем, что предоставление Оператору какой-либо информации о себе, не являющейся контактной и не относящейся к целям настоящего согласия, а равно предоставление информации, относящейся к государственной, банковской и/или коммерческой тайне, информации о расовой и/или национальной принадлежности, политических взглядах, религиозных или философских убеждениях, состоянии здоровья, интимной жизни запрещено.
В случае принятия мной решения о предоставлении Оператору какой-либо информации (каких-либо данных), я обязуюсь предоставлять исключительно достоверную и актуальную информацию и не вправе вводить Оператора в заблуждение в отношении своей личности, сообщать ложную или недостоверную информацию о себе.
Я понимаю и соглашаюсь с тем, что Оператор не проверяет достоверность персональных данных, предоставляемых мной, и не имеет возможности оценивать мою дееспособность и исходит из того, что я предоставляю достоверные персональные данные и поддерживаю такие данные в актуальном состоянии.
Согласие действует по достижении целей обработки или в случае утраты необходимости в достижении этих целей, если иное не предусмотрено федеральным законом.
Согласие может быть отозвано мною в любое время на основании моего письменного заявления.

Почему турбина гонит масло — причины появления масла в турбине

Наш информационный портал «Birud» предлагает водителям интересную и полезную информацию, как продлить эксплуатационный срок силового агрегата. И одним из частых вопросов, который волнует владельцев турбодвигателей: масло в турбине – причины и что делать?

Если проблему не устранить, то вы рискуете «влететь в копейку» во время ремонта всех системы, поэтому рекомендуем при малейших признаках поломки обратиться на СТО. Почитать отзывы клиентов про различные компании вы можете на нашем сайте.

Немного теории

Чтобы разобраться, почему турбина «гонит» масло, необходимо вникнуть в теоретическую часть и рассмотреть внутреннее строение агрегата и принцип его работы. Это можно сделать на примере одной из наиболее популярных среди водителей легкового транспорта модели турбированного компрессора Garrett GT15. Его внутренняя полость полностью изолирована от впускного и выпускного клапана двигателя специальным уплотнительным кольцом. Но наличие этой защитной детали (особенно это касается холостой работы мотора, когда количество оборотов ротора минимально) не гарантирует герметичности, они всего лишь затрудняют воздушную утечку между турбокомпрессором и подшипниками. В обычном же рабочем режиме давление внутри устройства достигает максимальной точки. Часть сжатых газов попадают в корпус подшипников и одновременного с маслом по системе слива проходят прямиком в резервуар картера турбомотора.

Масляные же уплотнители по своей сути являются динамическими и работают по центробежному принципу, чтобы предотвратить проблему, когда турбонагнетатель заливает смазкой. Поэтому на валу расположена пара канавок. Тот элемент, что находится ближе к колесу, применяется для монтажа уплотнительного комплектующего. Вторая деталь – динамическая масляная защита от возможных протечек. Отработанная смазка разбрызгивается на подшипники и затем перетекает сквозь сливное отверстие агрегата.

Чтобы обеспечить корректную работу силовому агрегату, и снизить риск ситуации, когда возможен слив масла с турбины – нужны исправные динамические комплектующие. А они могут нормально функционировать только в пространстве полном воздуха, то есть только в случае свободной подшипниковой полости от моторной смазки. Если область заполняется масляной жидкость, либо нарушается баланс показателей давления, то утечки не избежать.

ТОП причин поломок

Масло в турбине двигателя может заливаться во впускной отсек. Основными причинами этого являются:

– загрязнение патрубка или воздушного фильтра;

– поломка элементов коллектора.

Чтобы это устранить, можно проверить уровень сопротивления поступающих внутрь газов. При остановке мотора резиновые патрубки должны вернуть свою первоначальную форму. После освободите коллектор и полость интеркулера от технической смазки. Если крыльчатка не имеет видимых царапин, а биение подшипников отсутствует, то турбоагрегат полностью менять не требуется.

Еще одним вариантом, почему турбина льет масло, считается повышенный уровень давления в турбокомпрессоре. Разгадка кроется в забитом катализаторе. В этом случае нужно ремонтировать турбинный компрессор.

При возможном отсутствии или нехватке циркулирующих газов внутри патрубка, интеркулере наблюдается масло в турбине. Это происходит при минимальных показателях давления. Чтобы устранить неисправность необходимо заменить прокладки или затянуть хомуты. Также проверяются области, откуда смазка может теряться в направлении агрегата:

– фильтры;

– компрессорные участки системы тормозов;

– замкнутая вентиляция.

Масло под турбиной будет обнаружено, если слив заблокирован по турбокомпрессорной магистрали. Это происходит из-за:

– закупорки выхода посторонними предметами;

– остатков устаревшей прокладки;

– закоксованности;

– нарушения герметичности.

В основном это происходит из-за загрязнения и закупорки магистрали, а еще из-за неверного положения прокладок на турбинных стыках. Повреждения в области картера движка, а именно засорения вентиляции. Также можно обнаружить переизбыток газовых масс из-за неисправностей двигателя или износа отдельных запчастей. Если течь масла турбины слабая, то такой ремонт производится максимально быстро и без особых финансовых затрат.

Хотим предупредить, что любое подкапотное вмешательство непрофессионалов может привести к более серьезным проблемам, которые устранить будет дороже и сложнее. Особенно это касается элементов турбированного движка. Ознакомиться с перечнем компаний, оказывающим ремонт подобного рода можно на нашем сайте, а еще почитать отзывы клиентов, чтобы совершить правильный выбор.

Течь масла в турбине: как с этим справиться

Повышенное давление масла на выходе вызывает утечку масла в месте газо-масляного уплотнения. Как следствие, компрессору нужно усилено работать чтобы вытолкнуть воздух.

Почему бросает масло турбина с изменяемой геометрией

У турбины с изменяемой геометрией существует несколько причин почему может возникнут поломка подобного рода:

  • Засорение воздушного фильтра или нейтрализатора отработанных газов;
  • Повышение картерного давления;
  • Повышение уровня масла в двигателе;
  • Засорение сливного патрубка;
  • Длительная работа мотора на низких или холостых оборотах.

Способы устранения поломки:
  1. Замена засорившегося фильтра перед монтажом новой турбины;
  2. Обеспечение герметичности фильтра и коробки;
  3. Промывка всех патрубков и впускного коллектора от песка и пыли.

Какие еще существуют варианты устранения поломки?

Правильная эксплуатация автомобиля подразумевает обязательную и регулярную замену старого отработанного масла. Иначе грязь и мелкие посторонние предметы нанесут непоправимый урон вашей турбине. Если вы будете пренебрегать этим простым правилом, то утечка масла начнется даже в самой совершенной модели турбокомпрессора. При этом, длительность пробега не будет иметь значения.

Главное табу во время ремонта турбины

Для уплотнения отверстий между компрессором турбины и маслосливными патрубками нужно использовать специальные уплотнители и прокладки. Воспрещается заменять эти детали какими-либо герметиками. Пытаясь сэкономить, вы добьетесь лишь уменьшения просвета парубка и засорения турбины.

Что делать если возникли проблемы со сливом масла из компрессора?

Перед тем как попасть в корпус турбины масло проходит некоторый путь. На большой скорости оно смешивается с выхлопными газами и воздухом. Проходя через подшипники, оно превращается в маслянистую пену и попадает вниз турбинного корпуса, а оттуда – в поддон мотора. Если по какой-либо причине масло не проходит, оно начинает накапливаться в корпусе. После того как уровень масла достигает уровня уплотнений, оно начинает переливаться в корпус компрессорного и турбинного колес.

Как это устранить?

Порядок действий в случае возникновения подобного дефекта:

  1. Проверить герметичность маслосливной системы. Маслосливная система должна присоединятся к мотору выше уровня масла в картере (в этом месте отсутствует сопротивление току масла).
  2. Выровнять сливную гидравлическую линию вертикально.
  3. Заменить вентиляцию картера и поршневой группы в случае дефекта.

Сервис Turborotor быстро справится с утечкой масла в турбине любого типа. Обращайтесь к нам и мы вернем ваш компрессор к жизни без его полной замены.

ТУРБИННОЕ МАСЛО — Phillips 66 Смазочные материалы

Лицензии и разрешения

Turbine Oil соответствует требованиям следующих отраслевых спецификаций и спецификаций OEM: #ABB G12106 # Alstom Power HTGD 90 117, для турбин без зубчатых передач # Ansaldo Energia AE94.3A и AE94.2 без зубчатых передач (ISO VG 46) (одобрено) # ANSI / AGMA Standard 9005-E02, R&O Inhibited Oils # ASTM D4304-06a, Type I Turbine Oil # British Standard 489 # China National Standard GB 11120-2011 L-TSA (ISO VG 32 & 68) (Approved) # Denison Hydraulics HF-1 # DIN 51515 Часть 1, Смазочные масла, Тип L-TD # DIN 51517 Часть 2, Смазочные масла, Тип CL # DIN 51524 Часть 1, Гидравлические масла, Тип HL # General Electric GEK 46506e, GEK 32568k, GEK 121608, GEK 27070 (устаревший), GEK 28143b (устаревший), GEK 120498 (устаревший) #Siemens Power Generation TLV 9013 04, TLV 9013 05 # U.S. Military MIL-PRF-17672D, Symbol 2075 T-H (ISO VG 32), 2110 T-H (ISO VG 46), 2135 T-H (ISO VG 68) # США. Сталь 126

Дополнительная информация

Класс ISO 32
Удельный вес при 60 ° F 0,862
Плотность, фунт / галлон при 60 ° F 7,18
Цвет, ASTM D1500 0.5
Температура вспышки (COC), ° C (° F), ASTM D92 220 (428)
Температура застывания, ° C (° F), ASTM D97 -40 (-40)
Вязкость, ASTM D445
сСт при 40 ° C 31,8
сСт при 100 ° C 5,4
Индекс вязкости, ASTM D2270 106
Кислотное число, ASTM D974, мг КОН / г 0.04
Воздухоотделение, ASTM D3427, минут 3,0
Коррозия меди, ASTM D130, 3 часа при 100 ° C 1a
Деэмульгируемость, ASTM D1401, до конца 20
Испытание на пену, ASTM D892, Seq. I, мл 0/0
Испытание на пену, ASTM D892, Seq. II, мл 0/0
Испытание на пену, ASTM D892, Seq.III, мл 0/0
Устойчивость к окислению
TOST, ASTM D943-04a, часы > 10000
RPVOT, ASTM D2272, минут > 1550
Тест на ржавление, ASTM D665 A&B Пасс

Лицензии и разрешения

Turbine Oil соответствует требованиям следующих отраслевых спецификаций и спецификаций OEM: #ABB G12106 # Alstom Power HTGD 90 117, для турбин без зубчатых передач # Ansaldo Energia AE94.3A и AE94.2 без зубчатых передач (ISO VG 46) (одобрено) # ANSI / AGMA Standard 9005-E02, R&O Inhibited Oils # ASTM D4304-06a, Type I Turbine Oil # British Standard 489 # China National Standard GB 11120-2011 L-TSA (ISO VG 32 и 68) (одобрено) #Denison Hydraulics HF-1 # DIN 51515 Часть 1, Смазочные масла, Тип L-TD # DIN 51517 Часть 2, Смазочные масла, Тип CL # DIN 51524 Часть 1, Гидравлическое Масла типа HL # General Electric GEK 46506e, GEK 32568k, GEK 121608, GEK 27070 (устаревшее), GEK 28143b (устаревшее), GEK 120498 (устаревшее) #Siemens Power Generation TLV 9013 04, TLV 9013 05 # U.S. Military MIL-PRF-17672D, Symbol 2075 T-H (ISO VG 32), 2110 T-H (ISO VG 46), 2135 T-H (ISO VG 68) # США. Сталь 126

Дополнительная информация

Класс ISO 46
Удельный вес при 60 ° F 0,868
Плотность, фунт / галлон при 60 ° F 7,23
Цвет, ASTM D1500 0.5
Температура вспышки (COC), ° C (° F), ASTM D92 232 (450)
Температура застывания, ° C (° F). ASTM D97 -40 (-40)
Вязкость, ASTM D445
сСт при 40 ° C 46,0
сСт при 100 ° C 6,7
Индекс вязкости, ASTM D2270 102
Кислотное число, ASTM D974, мг КОН / г 0.04
Воздухоотделение, ASTM D3427, минут 3,0
Коррозия меди, ASTM D130, 3 часа при 100 ° C 1a
Деэмульгируемость, ASTM D1401, до конца 20
Испытание на пену, ASTM D892, Seq. I, мл 0/0
Испытание на пену, ASTM D892, Seq. II, мл 0/0
Испытание на пену, ASTM D892, Seq.III, мл 0/0
Устойчивость к окислению
TOST, ASTM D943-04a, часы > 10000
RPVOT, ASTM D2272, минут > 1500
Тест на ржавление, ASTM D665 A&B Пасс

Лицензии и разрешения

Turbine Oil соответствует требованиям следующих отраслевых спецификаций и спецификаций OEM: #ABB G12106 # Alstom Power HTGD 90 117, для турбин без зубчатых передач # Ansaldo Energia AE94.3A и AE94.2 без зубчатых передач (ISO VG 46) (одобрено) # ANSI / AGMA Standard 9005-E02, R&O Inhibited Oils # ASTM D4304-06a, Type I Turbine Oil # British Standard 489 # China National Standard GB 11120-2011 L-TSA (ISO VG 32 и 68) (одобрено) #Denison Hydraulics HF-1 # DIN 51515 Часть 1, Смазочные масла, Тип L-TD # DIN 51517 Часть 2, Смазочные масла, Тип CL # DIN 51524 Часть 1, Гидравлическое Масла типа HL # General Electric GEK 46506e, GEK 32568k, GEK 121608, GEK 27070 (устаревшее), GEK 28143b (устаревшее), GEK 120498 (устаревшее) #Siemens Power Generation TLV 9013 04, TLV 9013 05 # U.S. Military MIL-PRF-17672D, Symbol 2075 T-H (ISO VG 32), 2110 T-H (ISO VG 46), 2135 T-H (ISO VG 68) # США. Сталь 126

Дополнительная информация

Класс ISO 68
Удельный вес при 60 ° F 0,871
Плотность, фунт / галлон при 60 ° F 7,25
Цвет, ASTM D1500 0.5
Температура вспышки (COC), ° C (° F), ASTM D92 243 (469)
Температура застывания, ° C (° F), ASTM D97 -34 (-29)
Вязкость, ASTM D445
сСт при 40 ° C 68,0
сСт при 100 ° C 8,8
Индекс вязкости, ASTM D2270 100
Кислотное число, ASTM D974, мг КОН / г 0.04
Воздухоотделение, ASTM D3427, минут 4,0
Коррозия меди, ASTM D130, 3 часа при 100 ° C 1a
Деэмульгируемость, ASTM D1401, до конца 20
Испытание на пену, ASTM D892, Seq. I, мл 0/0
Испытание на пену, ASTM D892, Seq. II, мл 0/0
Испытание на пену, ASTM D892, Seq.III, мл 0/0
Устойчивость к окислению
TOST, ASTM D943-04a, часы > 10000
RPVOT, ASTM D2272, минут > 1000
Тест на ржавление, ASTM D665 A&B Пасс

Лицензии и разрешения

Turbine Oil соответствует требованиям следующих отраслевых спецификаций и спецификаций OEM: #ABB G12106 # Alstom Power HTGD 90 117, для турбин без зубчатых передач # Ansaldo Energia AE94.3A и AE94.2 без зубчатых передач (ISO VG 46) (одобрено) # ANSI / AGMA Standard 9005-E02, R&O Inhibited Oils # ASTM D4304-06a, Type I Turbine Oil # British Standard 489 # China National Standard GB 11120-2011 L-TSA (ISO VG 32 и 68) (одобрено) #Denison Hydraulics HF-1 # DIN 51515 Часть 1, Смазочные масла, Тип L-TD # DIN 51517 Часть 2, Смазочные масла, Тип CL # DIN 51524 Часть 1, Гидравлическое Масла типа HL # General Electric GEK 46506e, GEK 32568k, GEK 121608, GEK 27070 (устаревшее), GEK 28143b (устаревшее), GEK 120498 (устаревшее) #Siemens Power Generation TLV 9013 04, TLV 9013 05 # U.S. Military MIL-PRF-17672D, Symbol 2075 T-H (ISO VG 32), 2110 T-H (ISO VG 46), 2135 T-H (ISO VG 68) # США. Сталь 126

Дополнительная информация

Класс ISO 100
Удельный вес при 60 ° F 0,874
Плотность, фунт / галлон при 60 ° F 7,28
Цвет, ASTM D1500 0.5
Температура вспышки (COC), ° C (° F), ASTM D92 277 (531)
Температура застывания, ° C (° F), ASTM D97 -27 (-17)
Вязкость, ASTM D445
сСт при 40 ° C 100
сСт при 100 ° C 11,3
Индекс вязкости, ASTM D2270 100
Кислотное число, ASTM D974, мг КОН / г 0.04
Воздухоотделение, ASTM D3427, минут 4,0
Коррозия меди, ASTM D130, 3 часа при 100 ° C 1a
Деэмульгируемость, ASTM D1401, до конца 25
Испытание на пену, ASTM D892, Seq. I, мл 0/0
Испытание на пену, ASTM D892, Seq. II, мл 0/0
Испытание на пену, ASTM D892, Seq.III, мл 0/0
Устойчивость к окислению
TOST, ASTM D943-04a, часы > 10000
RPVOT, ASTM D2272, минут > 800
Тест на ржавление, ASTM D665 A&B Пасс

Турбинные масла — инженеры по смазке

Турбинные масла, разработанные для обеспечения бесперебойной работы и длительного срока службы

По оценкам Afton Chemical Corp., проблемы с маслом являются причиной почти одной пятой всех вынужденных простоев турбин.Основными среди различных механизмов внутри турбинной системы, которые могут привести к ухудшению качества масла во время эксплуатации, являются окисление и термическое разложение. Компания Lubrication Engineers создала уникальные смеси высокопроизводительного масла для газовых турбин, масла для паровых турбин, масла для паровых турбин, масла для гидроэлектрических турбин и экологически чистого турбинного масла для защиты деталей даже самых требовательных к техническому обслуживанию машин.

Состав турбинного масла

Составы турбинного масла относительно просты; они представляют собой смесь следующих ингредиентов: базовое масло, ингибиторы коррозии, ингибиторы окисления, пеногасители и деэмульгаторы.Базовое масло обычно составляет 97 процентов или более от формулы турбинного масла. Присадки добавляются к базовому маслу в небольших количествах для защиты как масла, так и деталей турбины. Добавки следует выбирать таким образом, чтобы они обеспечивали оптимальную работу турбины в соответствии с требованиями производителя оборудования. Однако многие новые турбинные масла созданы на основе базовых масел, очищенных с помощью более новых технологий. Большинство данных лабораторных стендовых испытаний показывают, что использование этих новых базовых жидкостей должно обеспечить более длительный срок службы смазки в полевых условиях.К сожалению, этого не произошло. В дополнение к новым базовым жидкостям, исследования связывают определенные комбинации антиоксидантов с образованием осадка и нагара.

Специалисты компании

Lubrication Engineers обнаружили, что турбинные масла Monolec® устраняют эти проблемы. Как? Турбинные масла Monolec от LE созданы с использованием специально оптимизированной смеси базовых масел и присадок, включая Monolec, эксклюзивную присадку LE, снижающую износ. Практический опыт показал, что этот состав обеспечивает надлежащую синергию между турбиной и турбинным маслом.Технический персонал LE провел сотни часов исследований, разработки и тестирования турбинных масел, чтобы предложить продукты, превосходящие ожидания по характеристикам.

Независимо от того, использует ли ваш бизнес магистральные или пиковые турбины, турбинные масла премиум-класса LE вдохнут новую жизнь в ваше оборудование, избавляя его от чрезмерных температур и позволяя ему с большей легкостью выдерживать большие нагрузки. Универсальные турбинные масла LE соответствуют или превосходят требования производителей оригинального оборудования для многих турбин, генераторов и регуляторов; они обеспечивают длительный срок службы, отличное водоотделение, устойчивость к ржавчине и окислению, непенящиеся свойства и устойчивость к образованию отложений и отложений.


Ищите продукты, содержащие Monolec

Monolec® — это запатентованная компанией LE жидкая присадка, снижающая износ, которая создает единую молекулярную смазочную пленку на металлических поверхностях, значительно увеличивая прочность масляной пленки, не влияя на зазоры. Бесценный компонент многих моторных масел, индустриальных масел и других смазочных материалов LE, Monolec позволяет противоположным металлическим поверхностям скользить друг относительно друга, значительно снижая трение, нагрев и износ. Узнайте больше о Monolec.


Турбинное масло для сжигания газа и комбинированного цикла

Endure ™ Turbine Oil (6481-6482) разработано специально для использования в газовых турбинах внутреннего сгорания и представляет собой уникальную смесь высокоочищенных базовых масел и запатентованных присадок, включая Monolec.Его передовая формула обеспечивает превосходную окислительную и термическую стабильность, предотвращая образование лака и отложений на критических поверхностях. Endure Turbine Oil обеспечивает длительную безотказную работу газовых турбин, сводя к минимуму незапланированные простои и увеличивая время безотказной работы.

Тест лака турбинного масла

Когда турбинное масло начинает окисляться, образуются побочные продукты и начинают потреблять антиоксидантные присадки масла. По мере развития окисления образуется все больше и больше этих побочных продуктов, которые начинают объединяться в более крупные нерастворимые тела.Со временем эти нерастворимые тела отклеиваются в виде лака в более холодных областях турбинной системы, таких как отстойники, теплообменники и устройства управления гидравликой. Лак может привести к серьезным ситуациям, таким как поездки или отказ от запуска.

Чтобы гарантировать, что турбинное масло выдерживает окисление и избежать этих проблем для своих клиентов, Lubrication Engineers разработали тест на наличие лака турбинного масла — TOVT. Целью этого испытания является изучение окислительного поведения новых турбинных масел в ускоренной окислительной среде, при этом каждая неделя испытаний эквивалентна примерно одному году реального использования в турбине внутреннего сгорания с большой рамой, хотя в действительности существует множество факторов. использование, которое может повлиять на долговечность масла.TOVT был разработан таким образом, чтобы образцы можно было анализировать на протяжении всего теста для оценки состояния жидкости. Результаты этого теста следующие.

Турбинное масло выдерживает окисление

Турбинные масла могут сильно различаться по цвету. Одним из первых признаков окисления рабочей жидкости является изменение цвета. Когда масла начинают разлагаться, они резко меняют цвет и темнеют из-за накопления побочных продуктов окисления. Чтобы продлить срок службы смазочного материала, в состав конкурирующих турбинных масел входят все более и более высокие уровни очистки базового масла и повышенные уровни антиоксидантов.Однако это способствовало образованию нагара и шлама в турбинных системах. Endure Turbine Oil решает эти проблемы с помощью уникальной сбалансированной смеси базовых масел и присадок, специально разработанных и доказавших свою способность препятствовать образованию отложений и отложений.

Endure Turbine Oil контролирует побочные продукты деградации

Большинство турбинных масел разработано с учетом окислительной стабильности и долговечности; таким образом, не были оптимизированы для предотвращения образования отложений. Из-за этого составители рецептур перешли на высокоочищенные базовые масла, которые более устойчивы к окислению, но имеют более низкую растворяющую способность.Это приводит к более высокому риску образования нерастворимого лака и шлама. Компания LE разработала турбинное масло Endure Turbine Oil для борьбы с образованием отложений деградации. Одним из способов достижения этого было использование смеси базовых масел, которая обладает способностью к растворению, чтобы гарантировать растворимость любых образующихся продуктов разложения без ущерба для устойчивости к окислению.

Колориметрический тест на мембранных пластырях измеряет количество нерастворимых отложений разложения турбинных масел при эксплуатации. Через 18 недель при тех же условиях испытаний значения ΔE Endure остались нормальными, что указывает на то, что масло практически не содержало нерастворимых отложений.

Турбинное масло Endure защищает от нагара

По мере того, как в турбинном масле образуются побочные продукты окислительного и термического разложения, а также ухудшенные присадки, они начинают объединяться в более крупные молекулы, которые не растворяются в турбинном масле. Эти нерастворимые продукты разложения начинают отслаиваться в турбинной системе в виде лака. Результаты Endure Turbine Oil показывают отсутствие лака на сосудах после 18 недель нагрузочных испытаний.

Некоторые антиоксиданты, используемые в турбинных маслах, становятся нерастворимыми побочными продуктами, поскольку они потребляются в процессе окисления, а затем в конечном итоге способствуют образованию лака.Однако тщательно подобранные антиоксиданты в Endure действуют синергетически, нарушая процесс окисления, не вызывая образования лака.

Endure защищает металлические детали

Нерастворимые побочные продукты разложения обычно представляют собой полярные молекулы; поэтому они притягиваются к металлическим поверхностям, в конечном итоге образуя лак на поверхностях турбинной системы. Самая большая проблема, связанная с образованием лака турбинными маслами, заключается в том, что лак влияет на работу клапанов в критических системах управления. Накопление лака на клапанах системы управления может вызвать вялую работу клапанов или полное заедание, что приведет к дорогостоящим пропускам, невозможности запуска и остановкам.

Endure Turbine Oil защищает поверхности двумя способами: во-первых, препятствуя полимеризации побочных продуктов разложения и превращению их в нерастворимый лак; во-вторых, его передовые ингибиторы ржавчины и дезактиваторы металла связываются с поверхностью металла и образуют защитный слой, защищая от загрязнений. Кроме того, свойства Endure по контролю за коррозией не позволяют металлам износа в масле вызывать вредную химическую реакцию, предотвращая дальнейшую деградацию масла.

Полезные качества

  • Обладает превосходной окислительной и термической стабильностью для длительного срока службы
  • Препятствует образованию нагара, шлама и отложений
  • Обладает превосходными воздухоотводящими свойствами и подавляет образование пены
  • Обеспечивает превосходную защиту от ржавчины, коррозии и износа
  • Легко отделяется от воды
  • Подходит для фильтрации для обеспечения долговременной чистоты масла

Типичные области применения: Газовые турбины внутреннего сгорания, турбины комбинированного цикла, центробежные компрессоры

Доступные классы вязкости по ISO: 32 (6481), 46 (6482)


Масло для паровых, комбинированных и гидротурбинных двигателей

Monolec Turbine Oil (6461-6463) высокоэффективно для паровых, гидро- и газовых турбин.Он уменьшает образование лака, снижает загрязнение воды, продлевает срок службы оборудования и увеличивает интервалы замены. Это высокоэффективное турбинное масло премиум-класса с отличными водоотталкивающими свойствами, ингибиторами ржавчины и окисления и улучшенными свойствами снижения износа. Его запатентованная формула состоит из отобранных базовых жидкостей с низкой летучестью, усиленных синергетической смесью высокоэффективных присадок.

Полезные качества

  • Обладает превосходной термической стабильностью и обеспечивает долгосрочную стойкость к окислению и термическую стабильность
  • Устойчив к образованию отложений и отложений
  • Снижает загрязнение воды за счет легкого отделения от воды
  • Обеспечивает отличную стойкость к пенообразованию за счет быстрого удаления воздуха
  • Обеспечивает превосходную защиту от ржавчины и поддерживает превосходную прочность пленки
  • Защищает упорные пластины в подшипниках
  • Легко фильтруется для длительной чистоты масла

Типичные области применения: Паровые турбины, гидротурбины, газотурбинные генераторы, системы циркуляции масла, центробежные компрессоры, другие приложения с длительным сроком службы

Доступные классы вязкости по ISO: 32 (6461), 46 (6462), 68 (6463)


Экологически чистое турбинное масло для гидротурбин

Low Tox® Turbine Oil (6412-6414) разработано для турбин, где экологические требования требуют использования малотоксичного масла, обеспечивающего превосходные характеристики с длительным сроком службы и отличной защитой от износа, при минимальном воздействии на окружающую среду.Не стоит беспокоиться о преждевременном окислении или выходе из строя смазки, как в случае с большинством продуктов на основе растительных масел. Турбинные масла Low Tox Turbine созданы на основе качественных белых минеральных масел USP и специально подобранных присадок, обеспечивающих низкотоксичный продукт с хорошей биологической разлагаемостью, который не снижает смазочные характеристики и не требует сокращения интервалов замены смазочного материала.

Low Tox Turbine Oil — турбинное масло с низкой токсичностью, разработанное с использованием передовых технологий, которое превосходит характеристики турбинных масел премиум-класса, но при этом обладает низкой экологической токсичностью для решения экологических проблем.Имеет низкий уровень токсичности по сравнению со стандартными промышленными турбинными маслами и биоразлагаемыми турбинными маслами. Низкотоксичные турбинные масла LE соответствуют или превосходят требования OEM для многих генераторов, турбин и регуляторов.

Полезные качества

  • Снижает экологическую токсичность до десяти раз без ухудшения характеристик смазочного материала
  • Работает значительно дольше, чем турбинные масла на растительной основе
  • Устойчивость к окислению в два-три раза лучше, чем у обычных масел
  • Обладает превосходной деэмульгирующей способностью и совместимостью с уплотнениями
  • Лучше сопротивляется гидролизу, чем растительные масла на основе синтетических эфиров

Типичные области применения: Гидротурбины, генераторы, регуляторы, забойные водяные насосы, лесозаготовительное и лесозаготовительное оборудование, водоочистные сооружения и очистные сооружения, бумажные фабрики, элеваторы

Доступные классы вязкости по ISO: 46 (6412), 68 (6413), 100 (6414)


Чтобы узнать больше о наших турбинных маслах и связанных с ними продуктах и ​​услугах по обеспечению надежности смазочных материалов, свяжитесь с нами сегодня.

Нужна рекомендация по продукту? Нажмите здесь, чтобы начать

Как выбирать и обслуживать турбинные масла

На вопрос «Как долго прослужит это турбинное масло?» следует ответить звуковой инженерной реакцией «это зависит от обстоятельств».

Поставщики турбинного масла могут дать довольно широкие оценки, скажем, от 5 до 15 лет для применения в газовых турбинах.Любая попытка получить более точную оценку требует учета такого количества переменных, что становится в некоторой степени бесполезной. Вода, тепло, загрязнения, часы работы и методы технического обслуживания будут иметь значительное влияние на долговечность турбинного масла.

Нельзя отрицать, что надлежащим образом протестированные и обслуживаемые, более качественные турбинные масла обеспечат более длительный срок службы, чем плохо проверенные и обслуживаемые продукты более низкого качества. Ниже приводится обсуждение новых эксплуатационных характеристик турбинного масла, которые будут способствовать более длительной и безотказной работе.

Более 100 тонн стали, вращающихся со скоростью 3600 об / мин, поддерживаются подшипниками скольжения на масляной подушке, которая тоньше человеческого волоса. На электростанциях по всему миру одна и та же гидродинамика происходит изо дня в день без особого уведомления.

Упущенная выгода во время сезонных пиков может исчисляться миллионами долларов. В среднем коммунальное предприятие продает электроэнергию по цене около 50 долларов за МВт в час в непиковые периоды и до 1000 долларов за МВт в час в периоды пиковой нагрузки.Неправильный выбор и техническое обслуживание турбинного масла может привести к производственным потерям, превышающим 500 000 долларов США в день.

При выборе турбинного масла для паровых, газовых, гидро- и авиационных турбин в рамках процесса выбора следует оценивать услуги поставщика масла и обязательства перед заказчиком.

Найдите подходящий инструмент для работы

Перед тем, как приступить к процессу выбора, важно иметь представление о физических и химических характеристиках турбинных масел по сравнению с другими смазочными маслами.

Паровые, газовые и гидротурбины работают на семействе смазочных масел, известных как масла R&O (масло с ингибитором ржавчины и окисления). Геометрия турбинного оборудования, рабочие циклы, методы технического обслуживания, рабочие температуры и возможность загрязнения системы предъявляют особые требования к смазочным маслам по сравнению с другими смазочными маслами, такими как бензиновые и дизельные двигатели.

Объем отстойников паровых и газовых турбин может составлять от 1 000 до 20 000 галлонов, что является экономическим стимулом для смазочного масла с длительным сроком службы.Низкие нормы подпитки турбинного масла (примерно пять процентов в год) также способствуют потребности в высококачественных смазочных материалах с длительным сроком службы. Без значительных проблем с загрязнением масла срок службы турбинного масла в первую очередь определяется устойчивостью к окислению.

На окислительную стабильность отрицательно влияют тепло, вода, аэрация и загрязнение твердыми частицами. Антиоксиданты, ингибиторы ржавчины и деэмульгирующие присадки смешиваются с базовым маслом высшего качества для продления срока службы масла. С этой же целью в системах смазки турбин устанавливаются охладители смазочного масла, системы удаления воды и фильтры.

В отличие от большинства бензиновых и дизельных моторных масел, турбинное масло предназначено для отвода воды и позволяет твердым частицам оседать там, где они могут быть удалены через дренажные системы отстойника или системы фильтрации почек во время работы. Для облегчения отделения загрязнений большинство турбинных масел не содержат добавок с высоким содержанием детергентов или диспергаторов, которые очищают и уносят загрязнения. Турбинные масла не подвергаются воздействию топлива или сажи, поэтому их не нужно часто сливать и заменять.

Рекомендуемые рабочие характеристики турбинного масла зависят от области применения паровых турбин

Хорошо обслуживаемое масло для паровых турбин с умеренными темпами подпитки должно прослужить от 20 до 30 лет. Когда масло для паровой турбины выходит из строя на ранней стадии из-за окисления, это часто происходит из-за загрязнения водой. Вода снижает стойкость к окислению и способствует образованию ржавчины, которая, помимо прочего, действует как катализатор окисления.

Различные количества воды будут постоянно попадать в системы смазки паровой турбины из-за утечки сальникового уплотнения.Поскольку вал турбины проходит через корпус турбины, необходимы паровые уплотнения низкого давления, чтобы минимизировать утечку пара или попадание воздуха в вакуумный конденсатор.

Вода или конденсированный пар обычно отводится от системы смазки, но неизбежно некоторое количество воды проникает в корпус и попадает в систему смазочного масла. Состояние сальникового уплотнения, давление пара сальникового уплотнения и состояние дымососа сальникового уплотнения влияют на количество воды, попадающей в систему смазки.

Обычно системы отвода пара и высокоскоростное нисходящее масло создают вакуум, который может втягивать пар через уплотнения вала в подшипник и масляную систему. Вода также может попадать из-за отказов охладителя смазочного масла, неправильной очистки электростанции, загрязнения водой подпиточного масла и конденсированной влаги из окружающей среды.

Во многих случаях влияние плохого разделения масла и воды можно компенсировать правильным сочетанием и качеством присадок, включая антиоксиданты, ингибиторы ржавчины и присадки, улучшающие деэмульгируемость.

Избыточная вода также может быть удалена на постоянной основе с помощью ловушек для воды, центрифуг, коалесцеров, дегидраторов над резервуаром и / или вакуумных дегидраторов. Если деэмульгируемость турбинного масла не удалась, воздействие окисления смазочного масла, связанного с водой, будет зависеть от производительности систем водоотделения.

Тепло также приведет к сокращению срока службы турбинного масла из-за повышенного окисления. В паровых турбинах общего назначения температура подшипников обычно составляет от 120 до 160 ° F (от 49 до 71 ° C), а температура масляного поддона составляет 120 ° F (49 ° C).Обычно считается, что воздействие тепла удваивает скорость окисления на каждые 18 градусов выше 140ºF (на 10 градусов выше 60ºC).

Обычное минеральное масло начинает быстро окисляться при температуре выше 180 ° F (82 ° C). Большинство опорных подшипников с оловянным покрытием начинают выходить из строя при температуре 250 ° F (121 ° C), что значительно превышает температурный предел для обычных турбинных масел. Высококачественные антиоксиданты могут замедлить термическое окисление, но необходимо свести к минимуму избыток тепла и воды, чтобы продлить срок службы турбинного масла.

Газовые турбины

Для большинства крупных газотурбинных агрегатов с рамой высокая рабочая температура является основной причиной преждевременного выхода из строя турбинного масла. Стремление к более высокому КПД турбин и температурам горения в газовых турбинах было основным стимулом для тенденции к более термостойким турбинным маслам. Современные крупногабаритные рамы работают с температурами подшипников в диапазоне от 160 до 250 ° F (от 71 до 121 ° C).

Сообщается, что рамы нового поколения работают при еще более высоких температурах.Производители газовых турбин повысили свои рекомендуемые ограничения на характеристики RPVOT — ASTM D2272 (испытание на окисление в сосуде под давлением при вращении) и TOST — ASTM D943 (Устойчивость к окислению турбинного масла), чтобы соответствовать этим более высоким рабочим температурам.

По мере появления на рынке коммунальных услуг газовых турбин нового поколения изменения в рабочих циклах также создают новые препятствия для смазывания. Проблемы со смазкой, характерные для газовых турбин, работающих в циклическом режиме, начали возникать в середине 1990-х годов.Более высокие температуры подшипников и цикличность работы приводят к засорению гидравлики системы, что задерживает запуск оборудования.

Правильно составленные гидрокрекинговые турбинные масла были разработаны для решения этой проблемы и увеличения интервалов замены масла в газовых турбинах. Такие продукты, как Exxon Teresstic GTC и Mobil DTE 832, продемонстрировали отличные характеристики в течение почти пяти лет службы в газовых турбинах с циклическим режимом работы, где обычные минеральные масла часто выходили из строя в течение одного-двух лет.

Гидротурбины

В гидротурбинах обычно используются масла ISO 46 или 68 R&O. Деэмульгируемость и гидролитическая стабильность являются ключевыми рабочими параметрами, влияющими на срок службы турбинного масла из-за постоянного присутствия воды. Колебания температуры окружающей среды в гидроэлектростанциях также делают стабильность вязкости, измеряемую индексом вязкости, важным критерием эффективности.

Авиационные газовые турбины

Авиационные газовые турбины представляют собой уникальные проблемы с турбинными маслами, которые требуют масел с гораздо более высокой стойкостью к окислению.Основное беспокойство вызывает тот факт, что смазочное масло в авиационных турбинах находится в прямом контакте с металлическими поверхностями в диапазоне от 204 до 316 ° C (400–600 ° F). Температура смазочного масла в поддоне может составлять от 160 до 250 ° F (от 71 до 121 ° C).

Эти компактные газовые турбины используют масло для смазки и передачи тепла обратно в масляный поддон. Кроме того, их циклический режим работы вызывает значительные термические и окислительные нагрузки на смазочное масло. Эти самые сложные условия требуют использования синтетических смазочных масел высокой чистоты.Средний расход смазочного масла 0,15 галлона в час поможет омолодить турбомасло в этих сложных условиях.

Турбинные масла современной технологии для турбин наземной энергетики описываются как турбомасла 5 сСт. Турбины на базе авиационных двигателей работают с гораздо меньшими маслосборниками, обычно 50 галлонов или меньше. Ротор турбины работает на более высоких скоростях, от 8000 до 20 000 об / мин, и поддерживается подшипниками качения.

Синтетические турбомасла разработаны для удовлетворения требований газовых турбомоторов военных самолетов, определенных в формате военных спецификаций.Эти спецификации MIL составлены, чтобы гарантировать, что аналогичные по качеству и полностью совместимые масла доступны во всем мире и указаны в спецификациях смазочных материалов OEM.

Турбомасла типа II были коммерциализированы в начале 1960-х годов для удовлетворения требований ВМС США по улучшенным характеристикам, в результате чего был создан MIL — L (PRF) — 23699. Большинство авиационных производных в энергетике сегодня используют эти масла Type II, MIL — L. (PRF) — 23699, базовое масло на основе сложного эфира полиола, синтетические турбомасла.Эти масла типа II обладают значительными эксплуатационными преимуществами по сравнению с более ранними синтетическими турбо-маслами на основе диэфиров типа I.

Усовершенствованные турбомасла типа II были коммерциализированы в начале 1980-х годов для удовлетворения требований ВМС США по лучшей устойчивости к высоким температурам. Это привело к созданию новой спецификации MIL — L (PRF) — 23699 HTS. В 1993 году Mobil JetOil 291 было коммерциализировано как первое турбомасло четвертого поколения, удовлетворяющее современным условиям высоких температур и высоких нагрузок реактивных масел.Продолжаются улучшения в технологии смазочных материалов с турбонаддувом.

В подшипниковых узлах генератора обычно используется масло ISO 32 R&O или гидравлическое масло. Более низкие температуры застывания гидравлического масла по сравнению с маслом R&O могут диктовать необходимость использования гидравлического масла в холодных условиях.

Написание стандарта

на закупку турбинного масла

Масла для паровых, газовых и гидротурбинных двигателей представляют собой смесь высокоочищенных или гидроочищенных базовых масел на основе нефти, обычно ISO VG 32 и 46 или 68. Поставщики смазочных материалов разработали турбинные масла для удовлетворения различных требований турбин в силовых установках и производстве электроэнергии.

Эти составы были разработаны в соответствии со спецификациями производителей турбин. Многие производители турбин отказались от утверждения конкретных торговых марок турбинных масел из-за усовершенствованных технологий в своих турбинах и соответствующих улучшений турбинных масел. Производители оригинального оборудования определили предлагаемые или рекомендуемые критерии проверки характеристик смазочного масла и, как правило, оговаривают, что масло, которое, как известно, успешно работает в полевых условиях, все равно можно использовать, даже если все рекомендуемые значения не были соблюдены.

Стендовые испытания смазочного масла, соответствующие отраслевым стандартам, могут дать хорошее представление об эксплуатационных характеристиках и ожидаемом сроке службы турбинных масел. Однако производители турбин и поставщики масел в целом согласны с тем, что прошлые успешные эксплуатационные характеристики конкретного масла в аналогичных условиях являются наилучшим общим представлением о качестве и характеристиках.

Независимо от типа или срока службы турбинного масла, качество базовых масел и химический состав присадок будут иметь решающее значение для его долговечности.Высококачественные базовые масла характеризуются более высоким процентным содержанием насыщенных веществ, более низким процентным содержанием ароматических углеводородов и более низким содержанием серы и азота. Характеристики присадок должны быть тщательно проверены. Их также необходимо смешивать с маслом в строго контролируемом процессе.

Ключом к превосходному турбинному маслу является сохранение свойств. Было обнаружено, что некоторые составы турбинного масла дают хорошие результаты лабораторных испытаний, но могут испытывать преждевременное окисление из-за выпадения присадок и окисления базового масла.

Опять же, лабораторный анализ смазочного масла может поддержать ваши усилия по определению долговечности турбинного масла, но прямой практический опыт должен иметь приоритет. Обратите внимание, что поставщики турбинного масла будут предлагать типичные данные анализа смазочного масла, чтобы помочь оценить прогнозируемые характеристики. Используются типичные данные, потому что смазочные масла незначительно отличаются от партии к партии из-за незначительных изменений базовых компонентов.

Промышленные паровые и газотурбинные масла могут быть как минеральными (Группа 1), так и гидрообработанными (Группа 2).Высококачественные традиционные масла на минеральной основе хорошо зарекомендовали себя как в паровых, так и в газовых турбинах более 30 лет. Тенденция к более высокому КПД циклических газовых турбин стимулировала разработку турбинных масел Группы 2, подвергнутых гидрообработке.

Большинство турбинных масел, подвергнутых гидрообработке, будут иметь лучшие начальные показатели RPVOT и TOST, чем обычные турбинные масла. Это преимущество в стойкости к окислению подходит для применения в газовых турбинах, работающих в тяжелых условиях.

Преимущества окислительной способности турбинного масла, подвергнутого гидрообработке, могут не потребоваться во многих менее требовательных применениях паровых и газовых турбин. Известно, что обычные масла на минеральной основе обладают лучшей растворимостью, чем масла, подвергнутые гидрообработке, которые могут обеспечивать лучшее удерживание пакета присадок и повышенную способность растворять продукты окисления, которые в противном случае потенциально могли бы привести к образованию лаков и шламов.

При написании спецификации турбинного масла для систем, недоступных для полного слива и промывки, также следует рассмотреть вопрос о проверке совместимости марок турбинного масла.Неправильный химический состав присадок или низкое качество масла в процессе эксплуатации могут препятствовать смешиванию различных и несовместимых турбинных масел. Ваш поставщик масла должен провести испытания на совместимость, чтобы подтвердить пригодность для дальнейшей эксплуатации.

Это испытание должно касаться состояния масла в процессе эксплуатации по сравнению с различными возможными смесями с предлагаемым новым маслом. Эксплуатационное масло следует проверять на пригодность для дальнейшей эксплуатации. Затем смесь 50/50 должна быть протестирована на устойчивость к окислению (RPVOT ASTM D2272), деэмульгируемость (ASTM D1401), пену (ASTM D892, последовательность 2) и отсутствие выпадения пакета присадок, что засвидетельствовано в ходе семидневного испытания на совместимость при хранении.

Промывка системы смазочного масла турбины

Промывку системы смазочного масла турбины и первоначальную фильтрацию следует решать одновременно с выбором турбинного масла. Промывка системы смазки может быть либо вытеснительной промывкой после слива и заливки, либо высокоскоростной промывкой для первоначальной заливки турбинного масла. Промывка вытеснением выполняется одновременно во время замены турбинного масла, а промывка с высокой скоростью предназначена для удаления загрязняющих веществ, попадающих при транспортировке и вводе в эксплуатацию новой турбины.

Промывка вытеснением с использованием отдельного промывочного масла выполняется для удаления остаточного продукта окисления масла, который не удаляется сливом или вакуумом. Промывка вытеснением осуществляется с использованием циркуляционных насосов системы смазки без каких-либо изменений в обычных путях циркуляции масла, за исключением возможной фильтрации почечного контура.

Эта промывка обычно выполняется в зависимости от временного интервала в зависимости от чистоты (уровней частиц), чтобы облегчить удаление растворимых и нерастворимых загрязняющих веществ, которые обычно не удаляются системными фильтрами.

Большинство производителей турбин предлагают рекомендации по высокоскоростной промывке и фильтрации. Некоторые подрядчики и поставщики масла также предлагают инструкции по промывке и фильтрации. Часто при вводе турбины в эксплуатацию эти руководящие принципы сокращаются, чтобы сократить затраты и время. Есть общие элементы высокоскоростной промывки, которые обычно поддерживаются заинтересованными сторонами. Есть также некоторые процедурные проблемы, которые могут отличаться и должны решаться на основе соотношения риска и вознаграждения.

Общие элементы взаимного согласия при высокоскоростной промывке следующие:

  • Емкости для подачи и хранения должны быть чистыми, сухими и без запаха.Промывка дизельным топливом недопустима.

  • Скорость жидкости в два-три раза выше нормальной, достигаемая с помощью внешних насосов большого объема или путем последовательной сегментирующей промывки через перемычки подшипников.

  • Удаление масла после промывки завершено для проверки и ручной очистки (безворсовой ветошью) внутренних поверхностей системы смазочного масла турбины.

  • Высокоэффективная гидросистема байпасной системы исключает риск повреждения мелкими частицами.

Возможные дополнительные или альтернативные элементы высокоскоростной промывки:

  • Использование отдельного промывочного масла для удаления растворимых в масле загрязняющих веществ, которые могут повлиять на пену, деэмульгируемость и устойчивость к окислению

  • Необходимо отфильтровать начальную заправку масла до уровня, соответствующего спецификации фильтрации

    .
  • Термоциклирование масла при промывке

  • Вибраторы для трубопроводов и использование резиновых молотков на коленах труб

  • Установка специальных фильтров для проверки чистоты и отверстий для отбора проб

  • Желаемые критерии чистоты для выкупа смыва

  • Лаборатория ISO 17/16/14 — 16/14/11 допустимый диапазон твердых частиц

  • Использование локальных оптических счетчиков частиц

  • Сетчатый фильтр 100 меш, частицы не обнаруживаются невооруженным глазом

  • Патч-тест Millipore

Предварительное планирование и встречи со строителями, запуском, поставщиком нефти и конечным пользователем должны быть запланированы заранее, чтобы достичь консенсуса по этим процедурам промывки.

Хорошей практикой для документации характеристик турбинного масла является отбор пробы объемом 1 галлон из резервуара подачи, а затем пробы второго галлона из резервуара турбины после 24 часов работы. Рекомендуемые испытания соответствуют испытаниям для оценки состояния турбинного масла:

Прошлый опыт, рекомендации производителей турбин, отзывы клиентов и репутация поставщика масла — ключевые элементы, которые следует учитывать при выборе турбинного масла. Правильный первоначальный выбор турбинного масла и продолжающееся техническое обслуживание с кондиционированием должны подготовить почву для многих лет безотказной эксплуатации.На многих заводах закон Мерфи действует в самый неподходящий момент. Это когда вы по-настоящему оцените турбинное масло с превосходными эксплуатационными характеристиками и поставщика масла с обширной технической поддержкой.

Список литературы
1. Ассоциация инженеров черной металлургии AISE. (1996). Руководство для инженеров по смазке — второе издание. Питтсбург, Пенсильвания.

2. Блох, Х. П. (2000). Практическая смазка для промышленных объектов. Литберн, Джорджия: Fairmont Press.

3. Корпорация Exxon Mobil. Руководство по осмотру турбины. Фэрфакс, Вирджиния.

4. Свифт, С.Т., Батлер Д.К. и Девальд В. (2001).
Требования к качеству турбинного масла и практическому применению. Смазка турбин в 21 веке ASTM STP 1407. West Conshohocken, PA.

5. ASTM. (1997). Стандартная практика мониторинга минеральных турбинных масел для паровых и газовых турбин в процессе эксплуатации ASTM D4378-97. Ежегодная книга стандартов ASTM Vol. 05.01.

Турбины | Mobil ™

Имя*

Компания

Адрес электронной почты*

Телефонный номер

Область* } — Выберите свой вариант — Северная Америка — Служба технической поддержки Mobil Industrial Lubricants Центральная Америка — Служба технической поддержки Mobil Industrial Lubricants Южная Америка — Служба технической поддержки Mobil Industrial Lubricants Европа — Служба технической поддержки Mobil Industrial Lubricants Африка — Служба технической поддержки Mobil Industrial Lubricants Ближний Восток — Служба технической поддержки Mobil Industrial Lubricants Австралия и Новая Зеландия — Служба технической поддержки промышленных смазочных материалов Mobil Китай и Тайвань — служба технической поддержки Mobil Industrial Lubricants Индия — Служба технической поддержки Mobil Industrial Lubricants Таиланд, Сингапур и Малайзия — Служба технической поддержки промышленных смазочных материалов Mobil Остальные страны Азиатско-Тихоокеанского региона — Служба технической поддержки Mobil Industrial Lubricants

Я Существующий клиент Новый покупатель

Как мы можем помочь?*

Я даю согласие ExxonMobil на обработку моих персональных данных для отправки мне информации об акциях, предложениях и предстоящих событиях, включая любую связанную обработку с целью предоставления мне этой информации.

Три причины ухудшения качества турбинного масла

Современные турбины спроектированы так, чтобы обеспечивать более высокую мощность и эффективность, чтобы справляться с растущим спросом на электроэнергию. Но современные условия эксплуатации и конструкция оборудования создают повышенную нагрузку на турбинные масла.

Для операторов турбин это создает повышенное давление, чтобы гарантировать эффективную работу турбинных масел в этих суровых условиях, чтобы избежать незапланированных простоев оборудования.

Понимание причин ухудшения качества турбинных масел в процессе эксплуатации является первым шагом в мониторинге состояния вашего масла для обеспечения безотказной работы.

Важно, чтобы вы постоянно отслеживали все эти факторы на протяжении всего срока службы турбинного масла.

1. ТЕРМИЧЕСКАЯ И ОКИСЛИТЕЛЬНАЯ ДЕГРАДАЦИЯ

Турбинные масла работают в высокотемпературных средах и подвергаются воздействию воздуха и каталитических металлов во время работы.

Высокая скорость потока и короткое время пребывания в резервуаре означают больше возможностей для взаимодействия и реакции воздуха и нефти.Это создает побочные продукты окисления, которые могут привести к образованию шлама и нагара.

Более высокие рабочие температуры увеличивают скорость окисления и термического разложения турбинного масла, что означает, что образование шлама и нагара происходит быстрее при более высоких температурах. Этот осадок и нагар могут привести к повышению температуры подшипников, заеданию клапанов и засорению фильтров, что может вызвать незапланированные простои и снизить производительность.

2. ЗАГРЯЗНЕНИЕ

Турбинные масла подвержены воздействию различных загрязняющих веществ, в том числе:

  • воды, особенно в паровых турбинах
  • пыли и других проникающих материалов, в том числе неподходящего масла
  • внутренних загрязнений, таких как износ металлы, такие как медь, железо и свинец.

Эти загрязнители часто способствуют деградации масла. Металлы износа могут ускорить окисление масла. Вода препятствует способности турбинного масла рассеивать пену и обеспечивать защиту от ржавчины и коррозии, а также может способствовать другим процессам разложения, таким как гидролиз.

Турбинное масло | Valvoline Europe

Приложения

Турбинные масла

Valvoline рекомендуются к использованию для охлаждения и смазки подшипников паровых, водяных и газовых турбин.Кроме того, благодаря своим превосходным герметизирующим свойствам эти масла обычно используются в регулирующих и управляющих турбинных системах для обеспечения безопасной и правильной работы.

Кроме того, турбинные масла Valvoline часто применяются для определенных типов компрессоров и подходят для использования вместо гидравлических жидкостей. Они также подходят для использования в системах, требующих превосходной защиты от ржавчины и коррозии, а также выдающейся стойкости к окислению.

Преимущества

Турбинные масла

Valvoline — это высококачественные смазочные материалы, используемые для обеспечения исключительной смазки, превосходной защиты и превосходных характеристик.Вот некоторые из их ключевых преимуществ:

  • Их долговременная стабильность, долговечность и увеличенный срок службы.
  • Превосходная устойчивость к ржавчине, коррозии и образованию отложений, что делает их более устойчивыми к неблагоприятным условиям работы.
  • Впечатляющая термическая, окислительная и химическая стабильность.
  • Хорошие воздухо- и водоотделительные свойства.
  • Низкие пенообразующие свойства.
  • Они нейтральны по отношению к стандартным уплотнениям.
  • Турбинные масла Valvoline обладают высокой надежностью и способны обеспечить безопасную и надежную работу компонентов.

* Перед использованием проверьте руководство пользователя и / или информационный лист продукта.

Ссылки на информацию о продукте и паспорта безопасности

Турбинное масло 32 EEE
Turbine Oil 46 EEE
Turbine Oil 100 EEE
Turbine Oil Plus 32 EEE
Turbine Oil Plus 46 EEE
Turbine Oil Plus 68 EEE
Turbine Oil 150 EEE
Turbine Oil 220 EEE

Технический паспорт Portal
SDS

В чем разница между гидравлическим маслом и турбинным маслом?

И.Прежде всего, давайте поговорим о разнице между определениями гидравлического масла и турбинного масла.

Определение гидравлического масла: гидравлическое масло использует давление жидкости, чтобы сделать гидравлическую систему гидравлической средой, которая действует как противоизносная, системная смазка, защитное охлаждение, предотвращение ржавчины и т. Д. Для гидравлической системы. .

Определение турбинного масла: Турбинное масло обычно называют турбинным маслом, включая масло для газовых турбин, масло для паровых турбин и т. Д., которые обычно используются в редукторах, подшипниках скольжения и гидравлических системах управления подключенных агрегатов. Основными функциями турбинного масла являются охлаждение, регулировка скорости и смазка.

II. Различия между гидравлическим маслом и турбинным маслом. Требования к рабочим характеристикам

Требования к рабочим характеристикам гидравлического масла: Гидравлическое масло требует отличной чистоты. Чтобы поддерживать или повышать эффективность гидравлической системы, продление срока службы гидравлического масла может сэкономить некоторые затраты на техническое обслуживание, имеет хорошие противоизносные свойства, что является преимуществом турбинного масла и гидравлического масла.

Требования к характеристикам турбинного масла: Турбинное масло должно иметь хорошую устойчивость к ржавчине и коррозии, хорошее антипенообразование и воздухоотделение, хорошую деэмульгирующую способность, хорошую стабильность и подходящую вязкость.

III. Различия между гидравлическим маслом и характеристиками турбинного масла

Характеристики турбинного масла: Газовая турбина имеет характеристики энергосбережения и мощности. Во время работы смазочное масло подвергается воздействию высокой тепловой поверхности, смешивается с воздухом (дымовыми газами), накачивается и циркулирует со значительной скоростью и используется под высоким давлением.Следовательно, требуется, чтобы масло для газовых турбин обладало превосходной стойкостью к окислению при высоких температурах и износостойкостью, чем масло для паровых турбин.

Характеристики гидравлического масла: Гидравлическое масло используется в качестве рабочего тела гидравлической системы. Он в основном передает гидравлическую энергию при смазке гидравлических компонентов.
Турбинное масло обычно относится к маслу для газовых турбин и маслу для гидротурбин. Гидравлическое масло используется в системах гидравлических трансмиссий. Эти две среды разные.