14Янв

Степень сжатия газа: Степень сжатия газов в компрессорах

Содержание

Степень сжатия газов в компрессорах


    Известно, что производительность компрессора зависит от степени сжатия газа в рабочих камерах. Степенью сжатия называется отношение давления газа после сжатия к давлению до сжатия (Р2 Ру). Чем больше степень сжатия, тем меньше производительность компрессора. При многоступенчатом сжатии степень сжатия газа в каждой ступени уменьшается, следовательно, производительность компрессора увеличивается. Предположим, что газ необходимо сжать от 101 до 1520 кПа (1—16 ат). Если егс сжимать в одноступенчатом компрессоре, степень сжатия Р Pi =16. При сжатии газа в двухступенчатом компрессоре в первой ступени до 405 кПа (4 ат) и во второй до 1620 кПа (16 ат) степень сжатия в каждой камере будет равна 4. Таким образом, при двухступенчатом компрессоре степень сжатия уменьшается в 4 раза и производительность компрессора должна соответственно возрасти. [c.24]

    Двухроторный компрессор типа Руте представляет собой бесклапанную машину объемного типа. Два идентичных, обычно симметричных, двухлопастных ротора вращаются в противоположных направлениях внутри корпуса, составленного из двух полуцилиндров с минимально возможными зазорами между роторами и между роторами и корпусом. Синхронизация вращения роторов осуществляется при помощи шестерен, расположенных снаружи корпуса. Сжатие газа в этой машине происходит одновременно с нагнетанием благодаря уменьшению объема газа вследствие встречного движения роторов (см. заштрихованную область на рис. 6.3.3.3, а, б). В тот момент, когда лопасть ротора соединяет отсеченную порцию газа с линией нагнетания, давление в рабочей камере скачкообразно увеличивается. Из Р—V диаграммы видно (рис. 6.3.3.4), что такой способ малоэкономичен и обеспечивает малую степень сжатия газа. 

[c.395]

    Регулирование дросселированием возможно в одноступенчатых компрессорах путем установки клапана на всасывающей трубе. При чрезмерном давлении газа в газосборнике клапан опускается и перекрывает всасывающую трубу. Такой способ регулирования связан с увеличением степени сжатия газа и, следовательно, с увеличением расхода энергии. Он наименее экономичен, так как сопряжен с потерей энергии на сжатие перепускаемого газа. 

[c.228]

    Наконец, к числу достоинств многоступенчатых компрессоров нужно отнести высокий объемный коэффициент полезного действия, обусловленный более низкими степенями сжатия газа в отдельных ступенях. [c.144]


    Степень сжатия газа в одной ступени компрессора обычно невелика, поэтому в общем кожухе машины на одном валу размещают нескольке колес. Так, по выходе из направляющего аппарата 2 (рис. П1-7, а) газ обратным каналом 3 подводится ко второму колесу. Пройдя последовательно все ступени, сжатый газ уходит в нагнетательный газопровод. Скорость выхода газа из последнего направляющего аппарата все же достигает часто 50 м/с, поэтому для понижения ее до уровня скорости в газопроводе кожух машины делается спиральным и заканчивается расширяющим коническим патрубком (угол конусности 6-8 ). 
[c.148]

    ПО диаграммам состояния. По ним МОЖНО определить упругость паров при данной температуре, давление перегретых паров (газовой фазы) при данных условиях, удельный объем и плотность жидкой, паровой и газовой фаз, их теплосодержание (энтальпию), теплоту парообразования, степень сухости и влажности паров, работу сжатия газа компрессором и повышение температуры при сжатии, эффект охлаждения жидкости и газа при снижении давления (дросселировании), теплоемкость при постоянном давлении или постоянном объеме для жидкой, паровой и газовой фаз, скорость истечения газа из сопел газогорелочных устройств. [c.30]

    Для того чтобы установить оптимальные параметры рассчитываемого газопровода, надо прежде всего установить связь между его пропускной способностью, металлоемкостью (т. е. диаметром и толщиной стенки), давлением газа, поступающего в рассчитываемый участок, и перепадом давления на этом участке. При этом следует иметь Б виду, что так как на всех КС давление газа доводится до одинакового первоначального значения, т. е. до давления газа на стороне нагнетания компрессоров, выбранный перепад давления обусловливает степень сжатия газа компрессорами. 

[c.75]

    В мембранном компрессоре рабочая камера разделена мембраной, зажатой по контуру между крышкой и опорной плитой (рис. 17.2). Клапаны расположены в крышке. Объемный расход газа на входе у таких компрессоров небольшой (менее 2 м мин), но степень повышения давления в одной ступени очень высокая (е до 25). Поэтому их обычно используют в качестве дожимных после предварительного сжатия газа компрессорами других видов. [c.214]

    Степень сжатия газа после детандера в компрессоре, работающем на одном валу с детандером 1,25 1,25 1,5 1,25 1,25 1,5 1,25 

[c.193]

    Степень сжатия газа (отношение давлений в начале и конце этого процесса) жестко задана геометрией винтового компрессора, т. е. соотношением размеров корпуса, роторов, профилей зубьев. Она называется внутренней (или геометрической) степенью сжатия и обычно вносится в паспорт компрессора. [c.52]

    Наличие капельной влаги в газе неблагоприятно сказывается на работе компрессора, поскольку за счет выделения теплоты сжатия газа и трения происходит испарение капель. Это сопровождается дополнительным повышением степени сжатия в компрессоре вследствие возрастания конечного давления при испарении капель объем рабочего тела резко увеличивается. В результате понижаются Хо и производительность компрессора. Кроме того, испарение капель сопровождается возникновением локальных (в точках испарения капель) термических напряжений на стенках цилиндра — появляется усталость металла, снижается долговечность работы компрессора. Наконец, потребитель по условиям технологии может потребовать удаления капель из газа. Этим целям и служат влагоотделители (сепараторы), выводящие сконденсировавшуюся влагу из газовой системы. Заметим, что одновременно происходит и удаление капель смазочного масла, так что эти сепараторы по существу являются влагомаслоотделителями. 

[c.344]

    Затраты энергии на перемешивание рассчитываются по известным величинам V и Ар (либо по степени сжатия газа), как это было показано в гл.4. В частности, при небольших гидравлических сопротивлениях Ар, значительно уступающих абсолютным давлениям газа, мощность компрессора (газодувки, вентилятора) определяется по формуле (4.31)  [c.443]

    Наиболее экономичным, простым и надежным является способ регулирования путем присоединения к цилиндру компрессора дополнительных вредных пространств. С этой целью крышка цилиндра делается пустотелой и ее полость разделяется на ряд ячеек, из которых каждая может быть присоединена к цилиндру посредством клапана, открывающегося вручную или автоматически. На рис. И1-6, 6 показан вид индикаторной диаграммы (изображена сплошными линиями) после присоединения к нормальному объему вредного пространства увеличенного объема / 5д (вид диаграммы до присоединения изображен пунктирными линиями). Вследствие увеличения объема вредного пространства всасывание газа будет происходить не на пути а на меньшем пути т. е. уменьшится производительность компрессора [см. формулу (И1.5)] без заметного увеличения удельного расхода энергии и изменения степени сжатия газа. В случае многоступенчатого компрессора сохранится та же картина, если присоединение дополнительного вредного пространства возможно во всех ступенях. 

[c.147]


    Характеристика осевого компрессора (Я—V) отличается крутым падением нисходящей ветви (малым изменением производительности при резком изменении напора), а также резким падением коэффициента полезного действия Яа при отклонении от оптимального режима. Особенностью осевого компрессора является также большая неустойчивая зона (75—90% от расчетной производительности). На рис. 111-11 представлена универсальная характеристика осевого компрессора, причем по оси ординат отложена степень сжатия газа р /ри а по оси абсцисс — произво- 
[c.156]

    Степень сжатия газа, зависящая от отношения объемов полости А в начале и конце процесса, достигает в современных машинах 12—15 производительность машины превышает 8 м /с. Частота вращения роторов находится в пределах 1000— 10 ООО об/мин окружные скорости превышают 150 м/с, благодаря чему винтовые компрессоры весьма компактны. Объемный коэффициент полезного действия компрессора слабо зависит от степени сжатия газа, возрастая с увеличением числа оборотов [c.162]

    Пластинчатые компрессоры по сравнению с поршневыми значительно проще по устройству, требуют в 5—6 раз меньшей площади, непосредственно соединяются с электродвигателем, имеют равномерную подачу, небольшой вес и не нуждаются в тяжелых фундаментах. В отличие от центробежных машин они могут быть построены для малых и средних производительностей, имея при этом более высокий коэффициент полезного действия, а также слабую зависимость напора от производительности. Недостатками пластинчатых компрессоров являются ограниченная степень сжатия газа (3—4), более низкий механический коэффициент полезного действия, высокая точность изготовления. 

[c.168]

    Компрессоры с двумя вращающимися поршнями проще поршневых по устройству при большей компактности, меньшем весе и равномерной подаче. Подобно центробежным, осевым и винтовым машинам они не имеют внутренней смазки, но при этом не требуют для своего изготовления высококачественных материалов и часто имеют более высокий коэффициент полезного действия. Они, однако, не допускают степени сжатия газа более 1,2—2,0 из-за увеличения утечки газа и падения величины г)ад. 

[c.168]

    При поддержании заданного вакуума в аппарате непрерывного действия объем отсасываемого газа Vо, равный объему выделяющихся по ходу технологического процесса газов и подсасываемых извне через неплотности, не изменяется во времени. Мощность на валу вакуум-насоса также постоянна во времени и определяется по формулам, приведенным ранее для компрессоров, причем = 0,85—0,95. Заметим, что эта мощность несколько выше для машин с перепуском, поскольку в данном случае теряется работа расширения перепускаемого количества сжатого газа. В период же вакуумирования сосуда вследствие непрерывного изменения степени сжатия газа указанная мощность тоже из.меняется. Закономерность этого изменения можно установить по выражению для работы адиабатического сжатия 1 м газа от текущего давления в аппарате р до давления выталкивания [c.171]

    Во избежание значительного понижения объемного к. п. д. компрессора и недопустимого повышения температуры в нем степень сжатия газа в цилиндре компрессора не должна превышать некоторого предела. В одноступенчатых поршневых компрессорах с охлаждающими водяными рубашками отношение pg/pi обычно составляет 3—5. 

[c.54]

    Из выражения (П1.5) следует, что объемный коэффициент полезного действия компрессора падает с увеличением объема вредного пространства и с ростом степени сжатия pjpi- По этой причине стремятся при проектировании компрессоров к возможному уменьшению величины е на практике е,, = 0,03—0,08. В зависимости от интенсивности охлаждения цилиндра (особенно его крышки) т = 1,2—1,35. Заметим, что работа расширения остатка газа незначительно превышает работу его сжатия, поэтому влиянием объема вредного пространства на расход энергии для сжатии газов в компрессорах обычно пренебрегают. Наконец, высокие степени сжатия газа влекут за собой не только падение но сопряжены с повышением температуры газа и ухудшением условий смазки рабочей поверхности цилиндра, а также, как [c.139]

    Можно представить себе некоторую предельную степень сжатия газа, приблизительно равную отношению У У , при которой компрессор перестанет подавать сжатый газ в нагнетательный патрубок, а будет только сжимать его до величины объема мертвого пространства У при движении поршня влево, а при движении поршня вправо сжатый газ из мертвого пространства будет расширяться как раз до давления Р , после чего процессы сжатия и расширения одной и той же порции газа будут повторяться [c.164]

    Для получения высоких степеней сжатия используют многоступенчатые компрессоры, в которых сжатый в первой ступени газ затем сжимается во второй ступени, в третьей и т. д. Очевидно, что итоговая степень сжатия в п ступенях компрессора при одинаковой степени сжатия (Рз/Р ) в каждой ступени составит величину (Р2/Р1)». Так, например, при Р2/Р1 = 5 и л = 4 финальная степень сжатия газа на выходе из четвертой ступени будет равна 5 = 625. [c.165]

    Угол закрутки зубьев ведущего ротора. Углом закрутки называется угол, на который развернут торец винтовой части со стороны нагнетания по отношению к торцу со стороны всасывания. Величины углов на ведущем роторе выбираются в пределах 260—310°. В последнее время наметилась тенденция к увеличению этих углов [7], что позволяет повысить геометрическую степень сжатия в компрессоре, увеличить площади окон всасывания и нагнетания, снизить скорости газа в винтовых каналах и тем самым уменьшить потери на трение газа. Однако увеличение угла вызывает сокращение свободного объема парных полостей, так как к моменту начала сжатия полости еще не полностью освобождаются от зубьев на стороне нагнетания [7]. [c.67]

    Компрессорами называются нагнетатели, служащие для подачи сжатого воздуха или газа под избыточным давлением более 0,2—0,3 МПа. Повышенная степень сжатия в компрессорах обусловливает изменение термодинамических условий состояния воздуха или газов. [c.309]

    Для получения давления выше 6—8 ат применяют многоступенчатое сжатие. Сущность его состоит в том, что процесс сжатия газа разбивается на несколько последовательных ступеней. В каждой из этих ступеней осуществляется дополнительное сжатие газа, предпа-рительно сжатого в предыдущей степени, а перед поступлением на следующую ступень газ охлаждается в холодильнике. Степень сжатия газа в каждой ступени компрессора пе должна превышать [c.215]

    Для получения высокой степени сжатия газа е ис-пстьзуют несколько ступеней компрессора. Конструк-тпзно это обеспечивается установкой на одном валу нс-скольких рабочих колес, располагаемых в одном кор-пу е. В этом случае газ поступает в следующую сту-neib по каналам, образованным лопатками направляю-щ го аппарата. [c.173]

    Наиболее простыми по конструкции являются одноступенчатые центробежные компрессоры, на которых холодильники не монтируются. На рис. 4.24 показан одноступенчатый компрессор, предназначенный для сжатия горячих дымоходных газов с температурой 800°С. Подача компрессора 0,55 м /с, степень сжатия газа у него очень мала е=1,0025. Все детали, соприкасаю  [c.175]

    Отношение р21р = г называется степенью сжатия газа в компрессоре. Таким образом, для Ло можно записать [c.250]

    Для снижения температуры компримируемого хлора его можно охлаждать в специальных холодильниках или путем вспрыскивания во всасывающую линию компрессора заданного количества жидкого хлора [51, 52]. При этом за счет испарения жидкого хлора снижается температура компримируемого хлора, что позволяет достичь более высокой степени сжатия газа при той же его конечной температуре. [c.341]

    Пластинчатый компрессор (рис. III-14) состоит из ротора 2, эксцентрично расположенного в корпусе 1 таким образом, что между ними образуется серповидное пространство. В теле ротора по всей его длине сделаны радиальные или наклонные в сторону вращения пазы, в которые свободно вставляются стальные пластинкн вращении ротора пластинки под действием центробежной силы выходят из пазов и плотно прижимаются к внутренней цилиндрической поверхности корпуса и его боковых крышек. Пластины делят серповидное пространство на замкнутые ячейки, объемы которых в направлении вращения с одной стороны расширяются, а о другой — уменьшаются (пластины при каждом обороте ротора рыходят из пазов и возвращаются в них). Газ, входящий по всасывающему патрубку 4 ъ расширившиеся ячейки, сжимается при вращении ротора и вытесняется в нагнетательный газопровод 5. В точке 6 вытеснение заканчивается, ячейка разобщается с нагнетательным пространством и после расширения остатка газа, благодаря увеличивающемуся объему вновь наполняется всасываемым газом. Зазор между ротором и цилиндром в его нижней части образует вредное пространство. Отношение объема ячейки в момент ее полного расширения к объему в начале всасывания (после расширения остатка) определяет степень сжатия газа, а угол между этими двумя положениями называется углом всасывания. Таким образом, рассматриваемая машина работает по принципу поршневого компрессора газ сжимается в результате уменьшения рабочего объема. Достигаемая на практике степень сжатия газа обычно равна 3—4. [c.160]

    Из выражения (III.5) следует, что объемный коэффициент полезного действия одноступенчатого компрессора «ко падает с увеличением степени сжатия газа рг ру и относительного объема вредного пространства бд. Легко видеть, что при некоторых значениях и р 1р. величина может обратиться в нуль, т. е. весь ход всасывания будет потрачен на расширение объема сжатого газа, вмещаемого вредным пространством поступление свежих порций газа в цилиндр и подача сжатого газа в нагнетательный газопровод прекратятся (кривые сжатия газа и расширения остатка на рис. П1-3 совпадут). Полагая К = 0. можно при заданных значениях определить теоретически достижимые предельные степени сжатия газа (Р2/Я1)прсд- Так, при — 0,05 и т = 1,4 получаем (р2/Р1)гфед = 28,7, т. е. газ может быть сжат от 0,1 до 2,9 МПа. Однако, помимо потери производительности и далеко недостаточной степени сжатия для ряда химических производств, температура сжатого газа была бы в данном случае недопустимо высокой — около 490 °С. Воздух, имея начальную [c.140]

    Для достижения степеней сжатия газов выше 4—6 применяют многоступенчатые компрессоры, сос гоящие из ряда [c.141]

    Величины т] з и т]ад зависят главным образом от степени сжатия газа и интенсивности охлаждения компрессора в среднем они колеблются в следующих пределах л з = 0,75—0,85 Т1ад = = 0,85—0,95 т]м = 0,85—0,95. [c.145]

    Мшгимальная степень сжатия выпускаемых газотурбинных установок превышает 4. Количество воздуха, необходимого для сжигания топлива трубчатых печей, значительно превышает количество уходящих газов. Поэтому предложена схема интеграции (рис. 82), при которой недостающее для горения топлива трубчатых печей в заданных условиях количество воздуха перед смешением с выхлопными газами газотурбинной установки сжимают в компрессоре до промежуточного давления и направляют на доохлаждение уходящих газов трубчатых печей в теплообменники, установленные последними по ходу уходящих газов. Эта схема обеспечивает эксплуатацию газотурбинной установки при оптимальной степени сжатия в компрессоре, надежную и экономичную утилизацию тепла уходящих газов трубчатой печи. [c.126]

    Рециркуляция водородсодержащего газа осуществляется центробежным компрессором. Использование центробежных компрессоров для рециркуляции водородсодержащего газа обусловлено большим его объемом, большей плотностью газа и меньшей степенью сжатия. Центробежные компрессоры очень надежны в работе и долговечны, благодаря чему на зарубежных уста[новках гидрокрекинга запасные компрессоры обычно отсутствута. [c.110]

    В 1969 г. фирмой Borden hemi al Со. был пущен завод мощностью 240 тыс. т/год с одним потоком технологического оборудования, оснащенный турбокомпрессорами. Однако пусковой период завода затянулся почти на полгода, что связано с высокими степенями сжатия газа. При условии реше1шя этих проблем себестоимость производства метанола на этом заводе может оказаться ниже, чем на других заводах, использующих поршневые компрессоры с электроприводом. [c.54]

    Выбор типа компрессора и привода к нему может быть произведен только в результате детальной проработки многих вариантов полной технологической схемы завода. От давления нирогаза на выходе из пиролизной установки зависит степень сжатия при компрессии. Относителшо небольшое повышение конечного давления в пиролизной установке, например от 1,25 до 2 ата, приводит к уменьшению степени сжатия в компрессоре от 32—30 до 20—18, а это влечет за собой снижение расхода энергии на сн атие газа, а также габаритов машин и аппаратов и капиталовложений в компрессоры, тенлообменную аппаратуру, трубопроводы и арматуру на линии всасывания, здания и сооружения цехов компрессии. Однако увеличение давления на выходе из пиролизного реактора предопределяет увеличение среднего давления в зоне пиролиза, а это, как указывалось выше (см. гл. П1), обусловливает уменьшение выходов этилена, а следовательно, уменьшение обш ей производительности завода, увеличение выходов высокомолекулярных углеводородов, увеличение капиталовложений в установку очистки газа и усложнение системы газоразделения (при этом не исключена возможность уменьшения сроков пробега отдельных агрегатов, в том числе и установки компрессии технологического газа, в результате выпадения полимеров). [c.113]

    Для сжатия газа с 1 до 320 ат обычно устанавливаются ше-стиступенчатые компрессоры, для сжатия до 700—1000 ат — семиступенчатые. Обычно степень сжатия газа в одной ступени [c.200]

    Для сжатия газа с 1 до 320 ат обычно устанавливаются шестиступенчатые компрессоры, для сжатия до 700—1000 ат — семиступенчатые. Обычно степень сжатия газа в одной ступени поршневого компрессора принимается 2,5—3,5, т. е. давление [c.201]

    Порпшевые циркуляционные компрессоры (ПЦК) представляют собой машины двойного действия с сжатием газа в одну ступень и с одним или двумя параллельно работающими цилиндрами Цилиндры не охлаждаются, так как количество выделяющегося тепла незначительно вследствие небольшой степени сжатия газа. [c.292]

    Для осуществления циркуляции гавов в аппаратуре блоков, высокого давления применяются циркуляционные газовые компрессоры, называемые также ввиду небольшой степени сжатия газа цир1куляционными газовыми насосами. [c.141]


Сжатие газов степень — Справочник химика 21

    На установках гидроочистки старого типа для сжатия газа всех назначений применялись только поршневые компрессоры, что объясняется, в основном, невысокой мощностью установок. В настоящее время поршневые компрессоры используются тогда, когда невозможно или нецелесообразно применять центробежные компрессоры (если в широких пределах изменяются характеристики газов, нри высоких значениях степени сжатия и низкой производительности). [c.116]
    Газ в компрессоре сжимается в полостях, образуемых стенкой корпуса и винтовыми впадинами ведущего и ведомого роторов, следующим образом. Винтовые впадины роторов заполняются всасываемым газом в то время, когда они проходят мимо всасывающего окна, расположенного в торцовой стенке корпуса. При дальнейшем вращении роторов полость, заполненная газом, отсекается от всасывающего окна, и газ оказывается заключенным в замкнутом объеме, ограниченном стенками корпуса и поверхностями впадин ротора. Далее зубья одного ротора входят во впадины зубьев другого ротора, что приводит к уменьшению объема, занимаемого газом в каждой из полостей, и, следовательно, к сжатию газа. Степень сжатия газа зависит от соотношения чисел зубьев. Обычно применяют соотношения чисел 4 6 3 3 3 4 4 4, а для наиболее высоких степеней сжатия — 6 8. Газ нагнетается, когда впадины, в которых он заключен, сообщаются с нагнетательным окном, расположенным с другой торцовой стенки корпуса. Наличие нескольких впадин и винтовое расположение их на роторах обеспечивают непрерывность подачи газа. [c.107]

    Растворяющая способность тех или иных надкритических газовых растворителей в сильной степени зависит от их плотности, температуры и давления. Большое значение имеет также их вязкость, так как она характеризует транспортные возможности сжатых газов. Поэтому физические и термодинамические свойства надкритических флюидов заслуживают особого внимания. Но в связи с небольшим объемом книги здесь дается характеристика свойств лишь некоторых газов, принимающих наибольшее участие в природных, а также в технических процессах. К таким газам относятся углеводородные газы, углекислый газ и надкритический водяной пар. Кроме того, для примера приведены данные, характеризующие изменение плотности и вязкости некоторых газов при растворении в них веществ. [c.16]

    Компрессорные установки оснащают местными дистанционными приборами контроля температуры, давления и других параметров в соответствии с действующими нормами. Во время эксплуатации компрессоров устанавливают постоянный контроль за всеми параметрами их работы. Компрессоры оборудуют необходимой сигнализацией, предупреждающей об отклонении режима работы, и блокировками для автоматической остановки при аварийной ситуации. Во время работы компрессора следят также за смазкой цилиндров и механизмов, не допуская растекания и разбрызгивания смазочных материалов. Сжатый газ или воздух очищают от масла после каждой степени сжатия, регулярно дренируют накопившуюся смазку из маслоотделителей. [c.106]


    Еслп полностью открыть байпасный вентиль (кран), весь сжатый газ снова возвращается во всасывающий трубопровод и циркулирует, проходя по цилиндрам и трубопроводам компрессора. При частично перекрытом байпасном вентиле (крапе) на всасывание поступает только часть сжатого газа, а остальная его часть направляется в нагнетательный трубопровод. Максимальную производительность компрессор дает нри полностью закрытом байпасном вентиле (кране). Таким образом, изменяя степень открытия байпасного вентиля (крана), можно плавно регулировать производительность компрессора в широких пределах. Открывание и закрывание байпасного вентиля осуществляется как автоматически, так и вручную. [c.218]

    Находят применение также сухие центробежные газодувки. Степень сжатия газа в подобных и а шинах не превышает 2—2,4. [c.78]

    Регулирование дросселированием возможно в одноступенчатых компрессорах путем установки клапана на всасывающей трубе. При чрезмерном давлении газа в газосборнике клапан опускается и перекрывает всасывающую трубу. Такой способ регулирования связан с увеличением степени сжатия газа и, следовательно, с увеличением расхода энергии. Он наименее экономичен, так как сопряжен с потерей энергии на сжатие перепускаемого газа. [c.228]

    Ранее уже подчеркивалось, что характерной особенностью надкритических жидкостей и сжатых газов как растворителей является то, что их растворяющая способность сильно зависит от давления. Одновременно с изменением растворяющей способности флюида меняются и его селективные свойства. Как правило, с увеличением степени сжатия газа его селективные свойства понижаются, а растворяющие растут. [c.98]

    Опасный разогрев горючих газов и воздуха возникает при их сжатии в неисправных компрессорах. Конечная температура газа зависит от степени сжатия и начальной температуры, поэтому для исключения чрезмерного перегрева сжатие газа до высоких давлений ведут постепенно в многоступенчатых компрессорах с охлаждением после каждой ступени в промежуточных холодильниках. [c.84]

    В мембранном компрессоре рабочая камера разделена мембраной, зажатой по контуру между крышкой и опорной плитой (рис. 17.2). Клапаны расположены в крышке. Объемный расход газа на входе у таких компрессоров небольшой (менее 2 м мин), но степень повышения давления в одной ступени очень высокая (е до 25). Поэтому их обычно используют в качестве дожимных после предварительного сжатия газа компрессорами других видов. [c.214]

    Одним из важнейших свойств смазочных масел, характеризующих их при продолжительной работе двигателя, является стабильность против окисления при высоких температурах. Изменение качеств масел в процессе эксплуатации зависит главным образом от их химического состава и стойкости к действию кислорода воздуха и высокой температуры, от действия поверхности металла и продуктов реакции, а также от конструкции и условий работы двигателя. Возможность длительной работы масла в цилиндрах современных двигателей еще больше уменьшается вследствие чрезмерно высоких температур, большой степени сжатия газа, высокой мощности и большого числа оборотов, значительной нагрузки на подшипники и др. [c.13]

    Другие уравнения состояния получены в большей или меньшей степени на эмпирической основе, поэтому их параметры связаны очень мало или совсем не связаны со свойствами молекул. Таким образом, экстраполяция по этим уравнениям весьма рискованна, ибо они надежно описывают только ту область параметров состояния, для которой имеются экспериментальные данные. Если экстраполяция необходима, то ее лучше осуществлять с помощью уравнения, имеющего теоретическую основу. (Это утверждение не следует рассматривать как разрешение на произвольную экстраполяцию для вириального уравнения. При любой экстраполяции необходимо соблюдать большую осторожность.) Однако основное достоинство вириального уравнения состояния заключается не в возможности более обоснованной экстраполяции, а в его теоретически аргументированной связи с межмолекулярными взаимодействиями, в частности с силами, действующими между молекулами. Как известно, многие макроскопические свойства вещества в большой степени зависят от межмолекулярных сил. Для некоторых из них, например транспортных свойств разреженных газов, вириальных коэффициентов и свойств простых кристаллов, функциональная связь между межмолекулярными силами и указанными свойствами вполне понятна. Это позволяет на основании экспериментально определенных свойств рассчитывать межмолекулярные силы, и, наоборот, зная последние, рассчитывать макроскопические свойства. Однако теория уравнения состояния и транспортных свойств сжатых газов, а также свойств жидкостей и твердых веществ сложной структуры находится на начальной стадии развития, и успех в этой области зависит от нашего знания природы межмолекулярных сил, основанного на экспериментальных данных по макроскопическим свойствам. [c.9]


    Многоступенчатое сжатие газа. Увеличение степени сжатия в одноступенчатом компрессоре свыше 5 приводит к снижению к. п. д. компрессора, кроме того, сильно возрастают температура сжатого газа и расход энергии на сжатие. [c.110]

    Увеличение числа ступеней компрессора позволяет получить процесс сжатия газа, приближающийся к изотермическому, однако это приводит к усложнению конструкции компрессора. В зависимости от степени сжатия обычно применяют следующее число ступеней  [c.111]

    Таким образом, в реакторных устройствах, имеющих разные степени вспенивания, для достижения одной и той же глубины процесса нужно поддерживать различные концентрации порошкообразного катализатора в жидкости путем регулирования рециркуляции пульпы катализатора. Так, при возрастании степени вспенивания рециркуляцию пульпы нужно увеличить. Кроме того, из кривых, изображенных на рис. 34—36, следует, что при постоянной подаче циркулирующего газа степень вспенивания возрастает с увеличением пропускной способности установок. Поэтому условия транспортирования водорода в установках разной производительности получаются тоже разные, а в опытных и промышленных системах они просто несопоставимы. Следовательно, ведение процесса при постоянных соотношениях сжатого газа и жидкости теоретически не обосновано. Для получения сравнимых условий на экспериментальных и промыш- [c.162]

    Многоступенчатое сжатие. С увеличением степени сжатия в одной ступени возрастают потери, связанные с сжатием газа во вредном пространстве, и уменьшается к. п. д. компрессора. Кроме того, происходит сильное нагревание газа и возрастает расход энергии на его сжатие. Если известны величины сил, то по формуле (7-39), приняв = 0. можно найти предельную степень одноступенчатого сжатия, при которой производительность компрессора падает до нуля. [c.226]

    Отличительной особенностью вакуум-насосов является высокая степень сжатия газа. В вакуум-насосе, который создает разрежение, равное 90% (остаточное давление Р1 = 0,1 ат), [c.236]

    Синтез при низком давлении проводится на цинк-медь-алюминиевых или цинк-медь-хромовых катализаторах при температуре 250—300°С и давлении 5—10 МПа. Использование в этом методе низкотемпературных катализаторов, активных при более низких давлениях, позволяет снизить энергозатраты на сжатие газа и уменьшить степень рециркуляции непрореагировавшего сырья, то есть увеличить степень его конверсии. Однако, в этом методе требуется особо тонкая очистка исходного газа от соединений, отравляющих катализатор. [c.264]

    Вместе с тем при анализе технико-экономических показателей автомобилей на сжатом газе, работающих повременно (по часовому тарифу), установлено, что экономический эффект на один газобаллонный автомобиль составит 230—300 руб/год, что в значительной степени определяет область эффективного использования этих автомобилей. Технико-экономические показатели автомобилей, работающих на сжатом газе можно улучшить за счет  [c.232]

    Под степенью повышения давления (или, не совсем точно — степенью сжатия) газа будем понимать отношение [c.172]

    Исходный сжатый газ при его введении через сопловые каналы закручивающего устройства обладает большим запасом кинетической энергии. Течение закрученных потоков в цилиндрическом канале вихревой трубы происходит в поле центробежных сил. Процесс расширения и движения вытекающей газовой струи происходит при наличии аксиальной, тангенциальной и радиальной составляющих скорости газовых слоев, образующих струю. В сопловом сечении канала происходит расширение струи преимущественно в радиальном направлении, т.к. в этом направлении она встречает наименьшее сопротивление. Струя исходного газа опускается в приосевую область, однако это происходит под некоторым углом, отличным от прямого угла, т.к. имеется аксиальная составляющая скорости, зависящая, кроме всего, и от конструкции закручивающего устройства (от угла ввода газового потока или угла закрутки Р). Глубина опускания или расширения в радиальном направлении исходной газовой струи зависит от степени расширения и геометрических параметров сопла. У ТЗУ профиль вводимой струи точно соответствует сечению вводного канала, а у ВЗУ он совпадает со срезом вводного канала под углом Р . [c.35]

    В теоретических разработках по вихревому эффекту уровень исходного давления сжатого газа не учитывается, но вязкость газа оказывает влияние на скорость истечения из сопел и диафрагмы, на трение о стенки и процесс взаимодействия потоков. Экспериментально на ТЗУ определено, что снижение уровня давления при сохранении степени расширения приводит к уменьшению и температурного к.п.д. [c.127]

    Однако нельзя однозначно определить оптимальную длину вихревых охлаждаемых труб для переменных технологических параметров сжатого газа и охлаждающего агента. Необходимо учитывать влияние исходной температуры газа, степени расширения, давления и параметров хладагента. Так, в случае, когда температура сжатого газа и хладагента соизмеримы и их разность не превышает (10-15) градусов, охлаждение незначительно сказывается на изменении температурного перепада в холодном потоке в диапазоне (0,1 [c.140]

    Значение температуры сжатого газа также сказывается на величине но изменение температур от Т, = (290-293) К до Т = (363-370) К при 71 = 1,5 и 2 приводит к незначительному увеличению У . Это увеличение составляет примерно около 5%, что близко к погрешности замера У . Увеличение степени расширения до 71 = 3 при ц четкое разделение кривых изменения У от Т,, с ростом Т, общий расход газа снижается и превышает диапазон 5% пофешности замера расхода. [c.143]

    На рис. 4.13 приведены результаты экспериментов на оптимальной по длине вихревой трубе с, ВЗУ Р = 75 при постоянном расходе хладагента с температурой (288-290)К. Изменение входной температуры сжатого газа и степени его расширения показывает, что при малой разности между Т, и (менее 3 градусов) с [c.152]

    Дальнейшие исследования в этих направлениях показали, что на влияет не только уровень исходного давления, но и степень расширения газового потока (см. рис. 4.13), температура сжатого газа и хладагента. Чтобы получить более универсальную расчетную зависимость для определения была проведена математическая обработка экспериментальных данных на основе следующих основных предпосылок  [c.157]

    Уровень исходного давления сжатого газа при постоянной степени его расширения влияет на общую удельную холодопроизводительность, она растет с ростом Pj во всем диапазоне изменения /л. [c.161]

    Из научной литературы известно использование различного вида конструкций вихревых аппаратов для интенсификации процессов конденсации и сепарации различных веществ из сжатых газов [2, 11, 14, 15]. Доказано, что наличие эффекта температурного разделения повышает эффективность очистки холодного потока и увеличивает степень сепарации твердой и жидкой фазы. [c.162]

    Наличие предварительного охлаждения сжатого газа дает ощутимый результат в снижении общего температурного перепада по холодному потоку. Температура сжатого газа до поступления его в вихревую трубу снижается на (4—6) градусов со значительной степенью его очистки от жидкой фазы. Это обеспечивает рост эффективности температурного разделения газа в вихревой трубе, т.к. влагосодержание и содержание жидкой фазы невелико. Общий температурный перепад растет и температурный к.п.д. в диапазоне изменения степени расширения (2—4) достигает 0,65. Температура холодного потока при Т, = (311—312)К достигает (269—249)К, в зависимости от я и ц. Резко падает с увеличением ц и влагосодержание холодного потока, так при 0,15 [c.234]

    При вращении рабочего колеса в зонах, расположенных у оси вращения, давление газа становится меньше, чем во всасывающем трубопроводе, вследствие чего образуется непрерывный поток газа через проточную часть колеса и диффузор. При работе одного колеса и диффузора, образующих ступень центробежного компрессора, где происходит одноступенчатое сжатие газа, степень сжатия г—Р21Р1 невелика и составляет не более 1,2. [c.173]

    Для получения давления выше 6—8 ат применяют многоступенчатое сжатие. Сущность его состоит в том, что процесс сжатия газа разбивается на несколько последовательных ступеней. В каждой из этих ступеней осуществляется дополнительное сжатие газа, предпа-рительно сжатого в предыдущей степени, а перед поступлением на следующую ступень газ охлаждается в холодильнике. Степень сжатия газа в каждой ступени компрессора пе должна превышать [c.215]

    Процесс газификации методом Lurgi отличается высокой степенью конверсии углерода, достигающей 99%. Термический к. п. д. газогенератора составляет 75—85%. Преимуществом процесса Lurgi является также то, что он проводится при повышенном давлении, что значительно увеличивает единичную производительность газогенератора и позволяет снизить затраты на сжатие газа при его использовании в дальнейших синтезах. [c.95]

    Для высоких степеней сжатия при большой производительности практикуется совместное использование центробежных и поршневых компрессорных машин. Созданы наддувные турбокомпрессоры давлением до 30 ат и производительностью 40 000 м ч, которые подают сжатый газ или воздух непосредственно в третью ступень поршневого компрессора высокого давления. Создание наддувных компрессоров явилось крупным шагом в совершенствовании таких производств, как синтез аммиака, спиртов и разделение газовых смесей. [c.263]

    Для компримирования ацетилена и ацетиленсоде 5-жащих газов применяются как поршневые компрессоры, так и турбокомпрессоры. Подробно oпи aн5 применяемый в производстве ацетилена методом термоокислительного пиролиза турбокомпрессор фирмы ОНИ (ФРГ) для сжатия газов пиролиза. Производительность его 20 000 м ч (в расчете на газ, приведенный ь нормальным условиям) при абсолютном давлении нагнетания 9 ат. Турбокомпрессор (рис. 30) состоит и двух корпусов — низкого и высокого давления, что обусловлено малой степенью сжатия. [c.77]

    Та же фирма провела более глубокие исследования внешнеадиабатического сжатия газа в поршневом газовом компрессоре с целью уменьшения эксплуатационных расходов на внешнее охлаждение компрессорных машин. Детали исследуемого компрессора были точно измерены для определения степени износа при работе компрессора без охлаждения. Затем поршневой компрессор эксплуатировался без водяного охлаждения. 30 дней и снова его детали были измерены. В результате сопоставления данных первого и второго измерений оказалось, что величина износа находилась в таких же пределах, что и при работе компрессора с водяным охлаждением цилиндров. Далее испытания внешнеадиабатического сжатия были продолжены еще 60 дней, и после этого не было обнаружено ускоренного износа деталей. [c.135]

    Выбор параметров процесса определяется требованиями высокой селективности и интенсивности. Температура зависит главным образом от активности катализаторов и может изменяться в пределах 250—420 °С. В зависимости от этого выбирают давление, которое, в соответствии с термодинамическими характеристиками, должно быть тем больше, чем выше температура, и может изменяться от 5 до 20—35 МПа. Очевидно, что снижение давления бла-гоириятно для уменьшения энергетических затрат на сжатие газа. Этому же способствует снижение рециркуляции непревращенного газа, т. е. увеличение фактической степени конверсии реагентов. Однако приближение к равновесной степени конверсии невыгодно из-за падения производительности и селективности. Поэтому фактическую степень конверсии синтез-газа ограничивают величиной 15—20%, что достигается при времени контакта 10—40 с. [c.528]

    Этот удельный расход энергии соответствует определенной степени сжатия. Изменсггие степени сжатня при прочих равных условиях изменяет и 5уд. Поэтому сравнение удельных расходов энергии с целью выяснения энергетической эффективности данного компрессора можно производить только для компрессоров, нагнетающих одинаковые газы с одинаковыми степенями сжатия. [c.376]

    Всэ Еышеиэложенапые закономерности при сжатии газов в равной степени относится и к сжатию жидкостей., [c.34]

    Уровень давления сжатого газа при одинаковой степени расширения также оказывает заметное влияние на эффективность теплосъема с вихревой трубы. Увеличение давления сопровождается и ростом общего расхода газа через вихревую трубу, причем рост расхода почти пропорционален росту давления. [c.146]

    В опьггах на различных по масштабу и калибру трубах, осна-шенных ВЗУ с переменным значением р, а также при изменении основных технологических параметров сжатого газа Т, и Р, и степени расширения исследовалась зависимость коэффициента теплоотдачи со стороны закрученного газового потока от этих переменных. [c.151]

    Основной областью применения такого типа аппаратов является очистка сжатых газов (воздуха) для питания пневмоприборов и пневмоафегатов, когда от рабочего газа требуется высокая степень чистоты по содержанию влаги (низкая точка росы), механических примесей и минеральных масел. [c.227]


Как подобрать компрессор по степени сжатия?

Что такое степень сжатия газа, как происходит разделение на ступени, на что ориентироваться при выборе компрессора – тема сегодняшней статьи.


Что такое степень сжатия?

Производительность компрессора напрямую зависит от степени сжатия рабочей среды: чем больше степень, тем меньше производительность у аппарата. Поэтому очень часто при выборе компрессора обращают внимание на эту характеристику. Рассчитывается степень сжатия (R) следующим образом:

R = Pd / Ps, где

Pd – абсолютное давление нагнетания

Ps – абсолютное давление на всасывании.

Степень сжатия — безразмерная величина, которая показы¬вает, во сколько раз повышается давление воздуха в компрессоре по сравнению с давлением воздуха на всасывании.

Рассмотрим на примере степень сжатия воздуха в одноступенчатом компрессоре. Аппарат на входе имеет давление 101 кПа. Поступающий атмосферный воздух следует сжать с давлением нагнетания до 1520 кПа (то есть от 1 до 16 атм). Таким образом, степень сжатия будет равна: 1520 / 101 = 16.

Чтобы увеличить производительность компрессора и не терять показатели по давлению используют многоступенчатое сжатие. Известно, что в процессе сжатия газа выделяется тепло. Чтобы сохранить стабильную температуру внутри аппарата, выделяемое тепло следует отводить. Для этого вокруг камер сжатия предусмотрены специальные отсеки с охлажденной водой.

В процессе сжатия воздуха при повышении давления до 4 атмосфер (405 кПа) и выше, становится все труднее полностью вывести выделяемое тепло. Поэтому для снижения температуры процесс сжатия разделяют на ступени.

Процесс разделения на ступени происходит следующим образом:

На начальном этапе сжатия (первая ступень) газ сжимается до 304-405 кПа (3-4 атмосфер), и поступает в специальную камеру для охлаждения до первоначальной температуры. На втором этапе газ отводится в другую камеру, где сжимается до следующего промежуточного давления (вторая ступень), затем газ поступает на охлаждение, и так далее. Такое многоступенчатое сжатие будет задействовано до тех пор, пока показатели давления не достигнут требуемой величины.

Если взять предыдущие значения по давлению (из примера расчета степени у одноступенчатого компрессора), то в двухступенчатом компрессоре в первой ступени давление достигнет величины 4 атм (405 кПа), а на второй ступени – уже 16 атмосфер (1620 кПа). Степень сжатия в данном случае в каждой камере будет равняться 4, а производительность компрессора увеличится.

Что нужно знать при выборе компрессора по степени сжатия?

Одноступенчатый компрессор имеет только одно значение степени сжатия (R). Тогда как у двухступенчатого аппарата таких значений уже будет три: R = общая степень сжатия компрессора, R1 = степень сжатия первой ступени, R2 = степень сжатия второй ступени.

Степень сжатия рабочей среды в каждой ступени компрессора будет составлять от 2,5 до 3,5. С увеличением количества ступеней сжатия, конструкция компрессора усложняется – ввиду добавления новых камер и трубопроводов. Свыше 5-6 ступеней сжатия увеличивается стоимость аппарата и затраты на его обслуживание.

При выборе компрессора по степени сжатия, можно ориентироваться на данные Таблицы 1:

Расчетное значение степени сжатия (R): Количество ступеней
1-3 Одноступенчатый агрегат
3-5 Одноступенчатый компрессор (в некоторых исполнениях – двухступенчатый)
5-7 Двухступенчатый компрессор (редко – одноступенчатый)
7-10 Двухступенчатый
10-15 Двух- или трехступенчатый
15+ Трехступенчатый компрессор

При степени сжатия более 150 количество ступеней может достигнуть 6 и более. Однако в современных компрессорах с водяным охлаждением степени повышения давления выше 7 встречаются редко.

На рисунке ниже изображен процесс четырехступенчатого сжатия:

Преимущества одноступенчатых компрессоров

Одноступенчатый компрессорный аппарат представляет собой самый простой вид компрессора – с одной камерой, где происходит сжатие рабочей среды. Например, принцип работы одноступенчатого компрессора довольно прост: поршень, работающий от энергии двигателя внутреннего сгорания, возвратно-поступательными движениями сжимает газ с требуемым давлением. Несмотря на то, что ступень сжатия воздуха в нем одна, аппарат находит широкое применение во многих сферах. Его популярность обусловлена следующими факторами:

  1. Компактные размеры и небольшой вес.
  2. Для работы достаточно задействовать двигатель небольшой мощности.
  3. Простое управление, обслуживание и ремонт.
  4. Занимает мало места.

При этом, стоит помнить, что коэффициент сжатия одноступенчатого агрегата редко достигает 16 атмосфер. По этой причине их не используют в сложных пневматических сетях, или для производства больших объемов сжатого воздуха под высоким давлением.

Двухступенчатые компрессоры – баланс производительности и мощности

Двухступенчатые компрессоры представляют собой универсальные аппараты для широкого спектра применения. Конструкция агрегата имеет уже две ступени сжатия, соответственно, нагрузка по сжатию равномерно распределяется на две камеры.

За счет экономии мощности, потраченной на сжатие воздуха, КПД компрессора увеличивается. Двухступенчатые компрессоры имеют небольшие размеры по сравнению с многоступенчатыми моделями. Срок эксплуатации у двухступенчатых компрессоров гораздо дольше, чем у одноступенчатых.

Многоступенчатые агрегаты: нюансы

Многоступенчатые компрессоры представляют собой мощные промышленные аппараты, которые используют в сложных и крупных пневмосетях для получения больших объемов сжатого воздуха. Особенности их эксплуатации заключаются в следующем:

  • Многоступенчатые агрегаты производят сжатый воздух для крупных предприятий.
  • По сравнению с одно- и двухступенчатыми моделями, многоступенчатый компрессор гарантирует бОльшую плавность распределения и перехода нагрузок на рабочие узлы и трубопровод.
  • Готовый сжатый воздух на выходе имеет относительно низкую температуру, что увеличивает срок эксплуатации осушителей и фильтров.
  • При правильном подборе компрессора и сопутствующих аппаратов риск возникновения поломок или самовозгорания – минимален.

Что выбрать?

При выборе компрессора, ресивера и другого оборудования неизменно встает вопрос о проведении расчетов технических параметров, гарантированно удовлетворяющих потребности технологического процесса. В частности, рассматривая и сопоставляя технические характеристики одноступенчатых, двухступенчатых и многоступенчатых компрессоров, можно на начальном этапе подбора оборудования понять, подходит ли аппарат для конкретного производства или нет.

Например, для пищевых предприятий или медицинских целей, предпочтительнее использовать безмасляные компрессоры низкого давления, которые выдают сухой чистый сжатый воздух, соответствующего Класса чистоты по ГОСТ. Тогда как для работы промышленного пневматического инструмента (шлифовальные машины, гайковерты, дрели) потребуется двухступенчатый компрессор среднего давления от 6-7 бар с расходом воздуха 180-450 л/мин. Но такие показатели являются усредненными данными.


Цена по запросу

Предлагаем электрические компрессоры Atlas Copco давлением от 8 до 13 бар и производительностью 0,24 — 9,3 м3/мин. Подберем под вашу конкретную задачу нужную модель, рассчитаем и организуем пневмосеть на вашем предприятии. Есть модели в наличии со склада. Перейти в раздел >>>

Для полноценной работы пневмосети необходимо произвести полноценный расчет параметров компрессора, а также учесть следующие факторы:

  1. Цели применения сжатого газа.
  2. Целесообразность подбора компрессора с двумя или выше ступенями сжатия.
  3. Требуемый Класс чистоты сжатого воздуха для конкретного технологического процесса.
  4. Продолжительность работы пневмосети.
  5. Потребность в осушении или дополнительной очистке сжатого газа перед использованием.
  6. Климатическое исполнение (место установки компрессора).

    Получить консультацию в подборе компрессора и другого оборудования для сжатого воздуха вы можете у нашего специалиста, для этого свяжитесь с ним одним из способов:

    • По телефону: 8-800-555-95-28 (звонок бесплатный)
    • По электронной почте: [email protected]
    • Заполнив заявку в нашем онлайн-чате.

Сжатие и транспортировка газов. Компрессоры и вентиляторы

В соответствии с характером действия, поршневые компрессоры могут быть одинарного (или простого) действия и двойного действия. В агрегатах простого действия, за один ход поршня осуществляется одно всасывание или нагнетание. В компрессорах двойного действия, за один ход поршня осуществляется два всасывания или нагнетания.

По количеству ступеней сжатия поршневые компрессоры делятся на три типа: одноступенчатые, двухступенчатые и многоступенчатые. Ступенью сжатия принято называть часть компрессора, в которой газ сжимается до промежуточного или конечного давления.

Конструктивно, одноступенчатые компрессоры могут быть вертикальными или горизонтальными. Как правило, компрессоры с горизонтальной конструкцией являются машинами двойного действия, а компрессоры с вертикальной конструкцией относятся к агрегатам простого действия.

В одноступенчатом компрессоре простого действия с горизонтальным типом конструкции, поршень перемещается внутри цилиндра. Цилиндр оснащен крышкой, которая имеет всасывающий и нагнетательный клапаны. Поршень компрессора соединяется с шатуном и кривошипом. На валу кривошипа располагается маховик. В процессе хода поршня слева направо, в зоне между поршнем и цилиндром возникает разрежение. Разность давления в линии всасывания и цилиндре заставляет открываться клапан, в результате чего газ поступает в цилиндр. Когда поршень совершает обратное движение справа налево, всасывающий клапан закрывается, и газ в цилиндре сжимается до уровня давления p2. Далее, через клапан газ вытесняется в линию нагнетания. Цикл завершается и повторяется снова.

Одноступенчатый компрессор двойного действия оснащен четырьмя клапанами (двумя всасывающими и двумя нагнетательными). Такие машины устроены сложнее, но уровень производительности у них в два раза выше. В целях охлаждения цилиндр и крышки могут оснащаться водяными рубашками. Чтобы увеличить показатель производительности данные машины могут изготавливаться многоцилиндровыми конструкциями. Одноступенчатые компрессоры с вертикальным типом конструкции являются более производительными и быстроходными, чем горизонтальные. Кроме того, они занимают меньшую производственную площадь и более долговечны.

Двухступенчатые компрессоры с горизонтальным типом конструкции, как правило, оснащены одним цилиндром и ступенчатым или дифференциальным типом поршня. Газ подвергается сжатию в цилиндре левой стороной поршня, после чего проходит сквозь холодильник и подается в цилиндр с другой стороны, где сжимается до уровня p2.

Многоступенчатые конструкции оснащены цилиндрами, которые располагаются последовательно (система тандем) или параллельно (система компаунд). Существуют также оппозитные конструкции компрессоров, где поршни двигаются взаимно противоположно. Цилиндры в конструкциях данного типа располагаются по обе стороны вала.

Следует отметить, что реальный процесс сжатия газа в компрессоре отличается от теории. Так, между поршнем, когда он находится в крайнем положении и крышкой цилиндра есть некий свободный объем. Данный зазор носит название вредного пространства. В данном зазоре, по завершению нагнетания, сжатый газ расширяется при обратном ходе поршня. По этой причине всасывающий клапан открывается только после снижения уровня давления до уровня давлении на всасывании. Таким образом, поршень совершает холостое движение, что снижает производительность компрессора.

1. Процесс сжатия воздуха

Для работы турбореактивного двигателя необходима непрерывная подача сжатого воздуха в камеры сгорания. Сжатие воздуха в этих типах двигателей происходит в специальных лопаточных машинах — компрессорах.

Лопаточными машинами компрессоры называются потому, что рабочими элементами в них являются лопатки. Компрессор турбореактивного двигателя приводится во вра­щение газовой турбиной.

При сжатии воздуха температура его повышается на 100—200° С.

В сжатом и подогретом воздухе топливо хорошо испаряется, быстро и полностью сгорает.

На современных турбореактивных двигателях применяются два типа компрессоров: центробежные и осевые. Каждый из них имеет свои преимущества и недостатки.

Степень сжатия

Главной величиной, характеризующей компрессор турбо­реактивного двигателя, является степень повышения давления воздуха в компрессоре, называемая еще степенью сжатия; обозначают ее греческой буквой “эпсилон” — ε.

Степень сжатия компрессора — это отношение давления воздуха на выходе из компрессора к давлению воздуха на входе в него:

Где Р2 – давление на выходе компрессора, Р1 – давление на входе компрессора.

Степень сжатии — величина безразмерная, она показы­вает, во сколько раз повышается давление воздуха в ком­прессоре по сравнению с давлением воздуха перед ним.

Если взять отношение давления воздуха за компрессором к давлению воздуха, окружающего двигатель, то получим степень сжатия двигателя:

Где Р0 – давление атмосферного воздуха.

Чтобы представить себе разницу между этими двумя величинами, подсчитаем их для следующих условий: — ско­рость полета с0 = 0; давление окружающего воздуха РО = 1,033 кг/см2; давление перед компрессором Р1 = 0,92 кг/см2; давление за компрессором Р2 = 4,35 кг/см2. Тогда:

Как видно, εДВИГ меньше εКОМП.

Для современных ТРД величина степени сжатия ком­прессора лежит в пределах от 4,2 до 7,1 (иногда 8).

Степень сжатия двигателя зависит от скорости вращения колеса (ротора) компрессора, от высоты полета (от темпе­ратуры окружающего воздуха) и от скорости полета.

С увеличением скорости вращения колеса компрессора степень сжатия компрессора увеличивается.

В осевом компрессоре с увеличением числа его оборо­тов окружная скорость движения лопаток растет. Вслед­ствие этого увеличиваются силы, сжимающие воздух, и, сле­довательно, давление воздуха, выходящего из компрес­сора.

Так как давление воздуха на входе в компрессор остается постоянным (оно не зависит от скорости вращения колеса компрессора), то степень сжатия компрессора увеличивается.

В центробежном компрессоре с увеличением числа его оборотов растет окружная скорость колеса компрессора. Вследствие этого увеличиваются центробежные силы, сжи­мающие воздух, и, следовательно, давление воздуха, выхо­дящего из компрессора. В результате степень сжатия ком­прессора увеличивается.

Вход воздуха в двигатель

Имея общее представление о работе турбореактивного двигателя и процессах, которые происходят в воздушно-газовом потоке, протекающей через двигатель, рассмотрим теперь более подробно работу отдельных элементов ТРД и процессы, происходящие в них.

Воздухоподводящие или входные каналы служат для подвода воздуха к компрессору с возможно меньшими поте­рями.

Входной канал является частью конструкции самолета или образуется обводами капотов двигателя и самого дви­гателя.

Изменение параметров воздуха во входном канале будет различно в зависимости от условий работы двигателя: на месте или в полете.

Поэтому рассмотрим отдельно эти два случая.

А. Двигатель работает на месте (скорость полета с0 = 0)

При работе двигателя на месте компрессор засасывает воздух из окружающей атмосферы. Скорость воздушного потока при подходе к двигателю возрастает от нуля у невозмущенного воздуха впереди двигателя (сечение 0-0) до скорости с1 на входе в компрессор (сечение 1-1, рис. 1).

Для различных турбореактивных двигателей величина скорости с1 лежит в пределах от 70 до 180 м/сек.

Как показывает опыт, температура и давление воздуха во входном канале падают.

Чтобы понять, почему это происходит, напишем уравне­ние энергии движущегося потока воздуха для сечений 0-0 и 1-1

Где k – показатель адиабаты, R – газовая постоянная, g – ускорение свободного падения.

Так как двигатель работает на месте (неподвижен), то скорость с0 = 0. В этом случае уравнение энергии будет:

Подставив в последнее уравнение численное значениеk, g, R, определим температуру Т1.. Она будет равна:

Из уравнения видно, что температура воздуха на входе в компрессорТ1 должна быть ниже, чем температура окру­жающего воздуха Т0. Для существующих ТРД это падение температуры составляет 8—10°. Разделив все члены этого уравнения на Т0, получим:

Рис.1 Изменение параметров воздуха при работе двигателя на месте.

Заменим отношение температур отношением давлений (считая процесс адиабатическим) и опреде­лим давление воздуха на входе в компрессор:

Так как с1 = 70-180 м/сек, то численная величина ква­дратной скобки будет меньше единицы. Следовательно, дав­ление на входе в компрессор Р1 будет меньше давления окружающего воздуха Р0. Для выполненных ТРД падение давления во входном канале составляет 0,1-0,16 кг/смг.

Степень сжатия под газ

На чтение 12 мин. Просмотров 47 Обновлено

О достоинствах газомоторного топлива, в частности метана, сказано немало, но напомним о них еще раз.

Это экологичный выхлоп, удовлетворяющий текущие и даже будущие законодательные требования к токсичности. В рамках культа глобального потепления это важное преимущество, поскольку нормы Euro 5, Euro 6 и все последующие будут насаждаться в обязательном порядке и проблему с выхлопом так или иначе придется решать. К 2020 г. в Евросоюзе новым транспортным средствам будет разрешено производить в среднем не более 95 г СО2 на километр. К 2025 г. этот допустимый предел могут еще опустить. Двигатели на метане способны удовлетворить эти нормы токсичности, и не только благодаря меньшему выбросу СО2. Показатели выбросов твердых частиц в газовых двигателях также ниже, чем у бензиновых или дизельных аналогов.

Далее, газомоторное топливо не смывает масло со стенок цилиндра, что замедляет их износ. Как утверждают пропагандисты газомоторного топлива, ресурс двигателя волшебным образом вырастает в разы. При этом они скромно умалчивают о теплонапряженности работающего на газе двигателя.

И главное преимущество газомоторного топлива – это цена. Цена и только цена покрывает все недостатки газа как моторного топлива. Если мы говорим о метане, то это неразвитая сеть АГНКС, которая буквально привязывает газовый автомобиль к заправке. Количество заправок сжиженным природным газом ничтожно, этот вид газомоторного топлива сегодня представляет собой нишевой, узкоспециальный продукт. Далее, газобаллонное оборудование занимает часть полезной грузоподъемности и полезного пространства, ГБО хлопотно и накладно в обслуживании.

Технический прогресс породил такой вид двигателя, как газодизель, живущий в двух мирах: дизельном и газовом. Но как универсальное средство газодизель не реализует в полном объеме возможности ни того, ни другого мира. Нельзя оптимизировать ни процесс сгорания, ни показатели КПД, ни образование выбросов для двух видов топлива на одном двигателе. Для оптимизации газовоздушного цикла нужно специализированное средство – газовый двигатель.

Сегодня все газовые двигатели используют внешнее образование газовоздушной смеси и воспламенение от свечи зажигания, как в карбюраторном бензиновом двигателе. Альтернативные варианты – в стадии разработки. Газовоздушная смесь образуется во впускном коллекторе путем инжекции газа. Чем ближе к цилиндру происходит этот процесс, тем быстрее реакция двигателя. В идеале газ должен впрыскиваться прямо в камеру сгорания, о чем речь пойдет ниже. Сложность управления не единственный недостаток внешнего смесеобразования.

Инжекция газа управляется электронным блоком, который также регулирует угол опережения зажигания. Метан горит медленнее дизельного топлива, то есть газовоздушная смесь должна воспламеняться раньше, угол опережения также регулируется в зависимости от нагрузки. Кроме того, метану нужна меньшая степень сжатия, нежели дизельному топливу. Так, в атмосферном двигателе степень сжатия снижают до 12–14. Для атмо­сферных двигателей характерен стехиометрический состав газовоздушной смеси, то есть коэффициент избытка воздуха a равен 1, что в какой-то степени компенсирует потерю мощности от снижения степени сжатия. КПД атмосферного газового двигателя на уровне 35%, тогда как у атмосферного же дизеля КПД на уровне 40%.

Автопроизводители рекомендуют использовать в газовых двигателях специальные моторные масла, отличающиеся водостойкостью, пониженной сульфатной зольностью и одновременно высоким значением щелочного числа, но не возбраняются и всесезонные масла для дизельных двигателей классов SAE 15W-40 и 10W-40, которые на практике применяются в девяти случаях из десяти.

Турбокомпрессор позволяет снизить степень сжатия до 10–12 в зависимости от размерности двигателя и давления во впускном тракте, а коэффициент избытка воздуха увеличить до 1,4–1,5. При этом КПД достигает 37%, но одновременно значительно возрастает теплонапряженность двигателя. Для сравнения: КПД турбированного дизельного двигателя достигает 50%.

Повышенная теплонапряженность газового двигателя связана с невозможностью продувки камеры сгорания при перекрытии клапанов, когда в конце такта выпуска одновременно открыты выпускные и впускные клапаны. Поток свежего воздуха, особенно в наддувном двигателе, мог бы охлаждать поверхности камеры сгорания, снижая таким образом теплонапряженность двигателя, а также снижая нагрев свежего заряда, это увеличило бы коэффициент наполнения, но для газового двигателя перекрытие клапанов недопустимо. Из-за внешнего образования газовоздушной смеси воздух всегда подается в цилиндр вместе с метаном, и выпускные клапаны в это время должны быть закрыты во избежание попадания метана в выпускной тракт и взрыва.

Уменьшенная степень сжатия, повышенная теплонапряженность и особенности газовоздушного цикла требуют соответствующих изменений, в частности, в системе охлаждения, в конструкции распредвала и деталей ЦПГ, а также в применяемых для них материалах для сохранения работоспособности и ресурса. Таким образом, стоимость газового двигателя не так уж отличается от стоимости дизельного аналога, а то и выше. Плюс к этому стоимость газобаллонного оборудования.

Флагман отечественного автомобилестроения ПАО «КАМАЗ» серийно выпускает газовые 8-цилиндровые V-образные двигатели серий КамАЗ-820.60 и КамАЗ-820.70 размерностью 120х130 и рабочим объ­емом 11,762 л. Для газовых двигателей используют ЦПГ, обеспечивающую степень сжатия 12 (у дизельного КамАЗ-740 степень сжатия 17). В цилиндре газовоздушная смесь воспламеняется искровой свечой зажигания, установленной вместо форсунки.

Для большегрузных автомобилей с газовыми двигателями используют специальные свечи зажигания. Так, Federal-Mogul поставляет на рынок свечи с иридиевым центральным электродом и боковым электродом, выполненным из иридия или платины. Конструкция, материалы и характеристики электродов и самих свечей учитывают температурный режим работы большегрузного автомобиля, характерный широким диапазоном нагрузок, и сравнительно высокую степень сжатия.

Двигатели КамАЗ-820 оборудуют системой распределенного впрыска метана во впускной трубопровод через форсунки с электромагнитным дозирующим устройством. Газ инжектируется во впускной тракт каждого цилиндра индивидуально, что позволяет корректировать состав газовоздушной смеси для каждого цилиндра с целью получения минимальных выбросов вредных веществ. Расход газа регулируется микропроцессорной системой в зависимости от давления перед инжектором, подача воздуха регулируется дроссельной заслонкой с приводом от электронной педали акселератора. Микропроцесорная система управляет углом опережения зажигания, обеспечивает защиту от воспламенения метана во впускном трубопроводе при сбое в системе зажигания или неисправности клапанов, а также защиту двигателя от аварийных режимов, поддерживает заданную скорость автомобиля, обеспечивает ограничение крутящего момента на ведущих колесах автомобиля и самодиагностику при включении системы.

«КАМАЗ» в значительной степени унифицировал детали газовых и дизельных двигателей, но далеко не все, и многие внешне схожие детали для дизеля – коленвал, распредвал, поршни с шатунами и кольцами, головки блока цилиндров, турбокомпрессор, водяной насос, масляный насос, впускной трубопровод, поддон картера, картер маховика – не подходят для газового двигателя.

В апреле 2015 г. «КАМАЗ» запустил корпус газовых автомобилей мощностью 8 тыс. единиц техники в год. Производство размещено в бывшем газодизельном корпусе автозавода. Технология сборки следующая: шасси собирают и устанавливают на него газовый двигатель на главном сборочном конвейере автомобильного завода. Потом шасси буксируют в корпус газовых автомобилей для монтажа газобаллонного оборудования и проведения всего цикла испытаний, а также для обкатки автотехники и шасси. При этом газовые двигатели КАМАЗ (в том числе модернизированные с компонентной базой «БОШ»), собираемые на моторном производстве, также проходят испытания и обкатку в полном объеме.

«Автодизель» (Ярославский моторный завод) в содружестве с компанией Westport разработал и выпускает линейку газовых двигателей на базе семейства 4- и 6-цилиндровых рядных двигателей ЯМЗ-530. Шестицилиндровый вариант может устанавливаться на автомобили нового поколения «Урал NEXT».

Как уже говорилось выше, идеальный вариант газового двигателя – это непосредственный впрыск газа в камеру сгорания, но до сих пор мощнейшее глобальное машиностроение не создало такой технологии. В Германии исследования ведет консорциум Direct4Gas, возглавляемый компанией Robert Bosch GmbH в партнерстве с Daimler AG и Штутгартским научно-исследовательским институтом автомобильной техники и двигателей (FKFS). Министерство экономики и энергетики Германии поддержало проект суммой в 3,8 млн евро, что на самом деле не так уж много. Проект будет работать с 2015-го до января 2017 г. На-гора должны выдать промышленный образец системы непосредственного впрыска метана и, что не менее важно, технологию ее производства.

По сравнению с нынешними системами, использующими многоточечный впрыск газа в коллектор, перспективная система непосредственного впрыска способна на 60% увеличить крутящий момент на низких оборотах, то есть ликвидировать слабое место газового двигателя. Непосредственный впрыск решает целый комплекс «детских» болезней газового двигателя, принесенных вместе с внешним смесеобразованием.

В проекте Direct4Gas разрабатывают систему непосредственного впрыска, способную быть надежной и герметичной и дозировать точное количество газа для впрыска. Модификации самого двигателя сведены к минимуму, чтобы промышленность могла использовать прежние компоненты. Команда проекта комплектует экспериментальные газовые двигатели недавно разработанным клапаном впрыска высокого давления. Систему предполагается тестировать в лаборатории и непосредственно на транспортных средствах. Исследователи также изучают образование топливно-воздушной смеси, процесс управления зажиганием и образование токсичных газов. Долгосрочная цель консорциума – это создание условий, при которых технология сможет выйти на рынок.

Итак, газовые двигатели – это молодое направление, еще не достигшее технологической зрелости. Зрелость наступит, когда Bosch со товарищи создадут технологию непосредственно впрыска метана в камеру сгорания.

сайт внедорожной техники

  • Темы пользователя
  • >в конференции
  • >>в форуме
  • Сообщения пользователя
  • >в конференции
  • >>в форуме
  • >>>в теме

Повышение степени сжатия для установки газового оборудования

  • Перейти на страницу:

Адаптация под пропан. Весь комплекс проблем.

Сообщение Бамбула. » 12.02.08 22:04

Re: Адаптация под пропан. Весь комплекс проблем.

Сообщение Бамбула. » 13.02.08 1:07

Re: Снизить головку под 95-ий и пропан бутан ?

Сообщение Бамбула. » 13.02.08 5:03

Re: Повышение компрессии для установки газа

Сообщение Бамбула. » 13.02.08 5:25

Re: Повышение компрессии для установки газа

Сообщение Бамбула. » 14.02.08 15:34

Re: Повышение компрессии для установки газа

Сообщение Бамбула. » 14.02.08 15:42

Re: Повышение компрессии для установки газа

Сообщение andrei » 14.02.08 19:34

Re: Повышение компрессии для установки газа

Сообщение Бамбула. » 15.02.08 3:58

Re: Повышение компрессии для установки газа

Сообщение andrei » 15.02.08 10:09

Re: Повышение компрессии для установки газа

Сообщение andrei » 16.02.08 9:26

Re: Повышение компрессии для установки газа

Сообщение andrei » 19.02.08 8:00

Re: Повышение компрессии для установки газа

Сообщение Бамбула. » 20.02.08 0:18

Re: Повышение компрессии для установки газа

Сообщение andrei » 21.02.08 7:45

Re: Повышение компрессии для установки газа

Сообщение Добрый Фей » 26.02.08 12:41

Закончили флуд, общаемся по сути.

Модераторы, зачистите тему.
Бамбула, хватит лозунгов. Не согласен (еще одно сообщение в том же стиле) отлучение от форума на месяц.

Тел. +7 910 GAZ 66 15
Помогу с документами на переоборудование А/М
Строим машины
Устанавливаю и привожу КМУ

В умелых руках и член — балалайка, а в неумелых и «киска» хуже варежки!

Re: Повышение компрессии для установки газа

Сообщение Kairat » 26.02.08 13:50

Я думаю что решение проблемы надо у америкосов подсмотреть. У них богатый опыт по бензиновым движкам большого литража, восмеркам, высооктановому топливу вплоть до спирта.
У меня есть движок форд америкосовский, заточенный под 91 с 235 лошадками, но его пока не снимаю с крановой установки, пока не найду решение с дизелем, абы кран большой и работает быстро благодаря оборотистости бензинки.
Я знаю английский, но мне пока в лом по их форумам шарахаться. Знаю, что у них тюнинговый рынок развит сильно.
И потому самый бескровный метод перехода на пропан, без дальнейшего заморачивания головы с поиском решения под родной движок и возможными большими расходами в связи с переделкой и ошибками, вероятней копить денежку и ставить американца.
Будем делиться на три группы : дизелисты с япошками, газовщики с американцами и бензинщики с родным.

Почему американский движок? Качество, технологии на голову выше российского и если не ошибаюсь, только у них повернутых на бензине, мощносте и литраже есть богатый опыт.

Либо самим пройти длинный путь ошибок, нервотрепки и кучи расходов правильной переделки под газ: чтобы и мощность и расход малый получить.

Год ездил на тачке. Расход по городу летом 12.5/ зимой 13.5л. По трассе 7.5-8л всегда при скорости 100-110км/ч быстрее не езжу.
Хотел сразу газ поставить, но не сошлось, о чём жалею, можно было денег нормально съэкономить.
За это время успел убить коробку. Трогался с 1-ой, потом на Д4 переключал)
Не давно поставил газ) Даже с убитой коробкой проезжал по городу на полном балоне газа (42л) -280км. Расход газа на убитой коробке и МЕГАпенсионерском стиле езды 15л газа на 100 км.
До этого были куплен комплект фрикционов, знал я что коробка уже на грани.
Так же год назад был куплен комплект поршней 81.0+0.5мм.
Короче, решил замутить полный капремонт.
Так как дальнейшая эксплуатация тачки предполагалась на газу, реши увеличить степень сжатия до 12.5 ед.
Сказано сделано)
Хотел сделать отчет, фотки там, все дела. Но когда разбираешь коробку она вся грязная, руки грязные и фоткать не охота.
Вообщем перебрал коробку. Всё почистил. Поменял фрикционы на всех передачах. Коробас после сборки работает, как часы. О нем все.

Мотор.
Стандартная степень сжатия на моторе В20Z (150л.с) — 9.6ед. Для газа это мало.
Чтобы мотор на газе работал оптимально нужно повысить ст.сж. до оптимального для газа, а это 13-14 ед.
Но надо чтобы мотор работал и на бензе. Поэтому 12.5 ед оптимальная степень сжатия.
Я промерил объём камеры сгорания (КС) и объем надпоршнего пространства, кстати на этом моторе поршень не доходит до верха блока 1.2мм.
Решено было:
Фрезеровать ГБЦ на 1.8мм, Блок на 1.2мм. С заменой поршней, получено 12.65 ед с.ж.
В остальном двиг собирается, как обычно. Новые вкладыши, сальники, ролики, помпа и т.д.

После сборки мотор заводится без проблем. Угол опережения зажигания я оставил стандартный 14+-2 градуса.
Результаты:
Мотор на газе едет даже лучше, чем раньше на бензе. Льём 95 бенз. Детонации нет. У меня газовое оборудование на высоких оборотах при резких разгонах на бенз переключается, поэтому не могу сказать что типа на газу валит. Она на газу примерно до 4000/об едет после на газе.

А у нас в машине газ…. Степень сжатия двигателя Степень сжатия газового двигателя

О достоинствах газомоторного топлива, в частности метана, сказано немало, но напомним о них еще раз.

Это экологичный выхлоп, удовлетворяющий текущие и даже будущие законодательные требования к токсичности. В рамках культа глобального потепления это важное преимущество, поскольку нормы Euro 5, Euro 6 и все последующие будут насаждаться в обязательном порядке и проблему с выхлопом так или иначе придется решать. К 2020 г. в Евросоюзе новым транспортным средствам будет разрешено производить в среднем не более 95 г СО2 на километр. К 2025 г. этот допустимый предел могут еще опустить. Двигатели на метане способны удовлетворить эти нормы токсичности, и не только благодаря меньшему выбросу СО2. Показатели выбросов твердых частиц в газовых двигателях также ниже, чем у бензиновых или дизельных аналогов.

Далее, газомоторное топливо не смывает масло со стенок цилиндра, что замедляет их износ. Как утверждают пропагандисты газомоторного топлива, ресурс двигателя волшебным образом вырастает в разы. При этом они скромно умалчивают о теплонапряженности работающего на газе двигателя.

И главное преимущество газомоторного топлива – это цена. Цена и только цена покрывает все недостатки газа как моторного топлива. Если мы говорим о метане, то это неразвитая сеть АГНКС, которая буквально привязывает газовый автомобиль к заправке. Количество заправок сжиженным природным газом ничтожно, этот вид газомоторного топлива сегодня представляет собой нишевой, узкоспециальный продукт. Далее, газобаллонное оборудование занимает часть полезной грузоподъемности и полезного пространства, ГБО хлопотно и накладно в обслуживании.

Технический прогресс породил такой вид двигателя, как газодизель, живущий в двух мирах: дизельном и газовом. Но как универсальное средство газодизель не реализует в полном объеме возможности ни того, ни другого мира. Нельзя оптимизировать ни процесс сгорания, ни показатели КПД, ни образование выбросов для двух видов топлива на одном двигателе. Для оптимизации газовоздушного цикла нужно специализированное средство – газовый двигатель.

Сегодня все газовые двигатели используют внешнее образование газовоздушной смеси и воспламенение от свечи зажигания, как в карбюраторном бензиновом двигателе. Альтернативные варианты – в стадии разработки. Газовоздушная смесь образуется во впускном коллекторе путем инжекции газа. Чем ближе к цилиндру происходит этот процесс, тем быстрее реакция двигателя. В идеале газ должен впрыскиваться прямо в камеру сгорания, о чем речь пойдет ниже. Сложность управления не единственный недостаток внешнего смесеобразования.

Инжекция газа управляется электронным блоком, который также регулирует угол опережения зажигания. Метан горит медленнее дизельного топлива, то есть газовоздушная смесь должна воспламеняться раньше, угол опережения также регулируется в зависимости от нагрузки. Кроме того, метану нужна меньшая степень сжатия, нежели дизельному топливу. Так, в атмосферном двигателе степень сжатия снижают до 12–14. Для атмо­сферных двигателей характерен стехиометрический состав газовоздушной смеси, то есть коэффициент избытка воздуха a равен 1, что в какой-то степени компенсирует потерю мощности от снижения степени сжатия. КПД атмосферного газового двигателя на уровне 35%, тогда как у атмосферного же дизеля КПД на уровне 40%.

Автопроизводители рекомендуют использовать в газовых двигателях специальные моторные масла, отличающиеся водостойкостью, пониженной сульфатной зольностью и одновременно высоким значением щелочного числа, но не возбраняются и всесезонные масла для дизельных двигателей классов SAE 15W-40 и 10W-40, которые на практике применяются в девяти случаях из десяти.

Турбокомпрессор позволяет снизить степень сжатия до 10–12 в зависимости от размерности двигателя и давления во впускном тракте, а коэффициент избытка воздуха увеличить до 1,4–1,5. При этом КПД достигает 37%, но одновременно значительно возрастает теплонапряженность двигателя. Для сравнения: КПД турбированного дизельного двигателя достигает 50%.

Повышенная теплонапряженность газового двигателя связана с невозможностью продувки камеры сгорания при перекрытии клапанов, когда в конце такта выпуска одновременно открыты выпускные и впускные клапаны. Поток свежего воздуха, особенно в наддувном двигателе, мог бы охлаждать поверхности камеры сгорания, снижая таким образом теплонапряженность двигателя, а также снижая нагрев свежего заряда, это увеличило бы коэффициент наполнения, но для газового двигателя перекрытие клапанов недопустимо. Из-за внешнего образования газовоздушной смеси воздух всегда подается в цилиндр вместе с метаном, и выпускные клапаны в это время должны быть закрыты во избежание попадания метана в выпускной тракт и взрыва.

Уменьшенная степень сжатия, повышенная теплонапряженность и особенности газовоздушного цикла требуют соответствующих изменений, в частности, в системе охлаждения, в конструкции распредвала и деталей ЦПГ, а также в применяемых для них материалах для сохранения работоспособности и ресурса. Таким образом, стоимость газового двигателя не так уж отличается от стоимости дизельного аналога, а то и выше. Плюс к этому стоимость газобаллонного оборудования.

Флагман отечественного автомобилестроения ПАО «КАМАЗ» серийно выпускает газовые 8-цилиндровые V-образные двигатели серий КамАЗ-820.60 и КамАЗ-820.70 размерностью 120х130 и рабочим объ­емом 11,762 л. Для газовых двигателей используют ЦПГ, обеспечивающую степень сжатия 12 (у дизельного КамАЗ-740 степень сжатия 17). В цилиндре газовоздушная смесь воспламеняется искровой свечой зажигания, установленной вместо форсунки.

Для большегрузных автомобилей с газовыми двигателями используют специальные свечи зажигания. Так, Federal-Mogul поставляет на рынок свечи с иридиевым центральным электродом и боковым электродом, выполненным из иридия или платины. Конструкция, материалы и характеристики электродов и самих свечей учитывают температурный режим работы большегрузного автомобиля, характерный широким диапазоном нагрузок, и сравнительно высокую степень сжатия.

Двигатели КамАЗ-820 оборудуют системой распределенного впрыска метана во впускной трубопровод через форсунки с электромагнитным дозирующим устройством. Газ инжектируется во впускной тракт каждого цилиндра индивидуально, что позволяет корректировать состав газовоздушной смеси для каждого цилиндра с целью получения минимальных выбросов вредных веществ. Расход газа регулируется микропроцессорной системой в зависимости от давления перед инжектором, подача воздуха регулируется дроссельной заслонкой с приводом от электронной педали акселератора. Микропроцесорная система управляет углом опережения зажигания, обеспечивает защиту от воспламенения метана во впускном трубопроводе при сбое в системе зажигания или неисправности клапанов, а также защиту двигателя от аварийных режимов, поддерживает заданную скорость автомобиля, обеспечивает ограничение крутящего момента на ведущих колесах автомобиля и самодиагностику при включении системы.

«КАМАЗ» в значительной степени унифицировал детали газовых и дизельных двигателей, но далеко не все, и многие внешне схожие детали для дизеля – коленвал, распредвал, поршни с шатунами и кольцами, головки блока цилиндров, турбокомпрессор, водяной насос, масляный насос, впускной трубопровод, поддон картера, картер маховика – не подходят для газового двигателя.

В апреле 2015 г. «КАМАЗ» запустил корпус газовых автомобилей мощностью 8 тыс. единиц техники в год. Производство размещено в бывшем газодизельном корпусе автозавода. Технология сборки следующая: шасси собирают и устанавливают на него газовый двигатель на главном сборочном конвейере автомобильного завода. Потом шасси буксируют в корпус газовых автомобилей для монтажа газобаллонного оборудования и проведения всего цикла испытаний, а также для обкатки автотехники и шасси. При этом газовые двигатели КАМАЗ (в том числе модернизированные с компонентной базой «БОШ»), собираемые на моторном производстве, также проходят испытания и обкатку в полном объеме.

«Автодизель» (Ярославский моторный завод) в содружестве с компанией Westport разработал и выпускает линейку газовых двигателей на базе семейства 4- и 6-цилиндровых рядных двигателей ЯМЗ-530. Шестицилиндровый вариант может устанавливаться на автомобили нового поколения «Урал NEXT».

Как уже говорилось выше, идеальный вариант газового двигателя – это непосредственный впрыск газа в камеру сгорания, но до сих пор мощнейшее глобальное машиностроение не создало такой технологии. В Германии исследования ведет консорциум Direct4Gas, возглавляемый компанией Robert Bosch GmbH в партнерстве с Daimler AG и Штутгартским научно-исследовательским институтом автомобильной техники и двигателей (FKFS). Министерство экономики и энергетики Германии поддержало проект суммой в 3,8 млн евро, что на самом деле не так уж много. Проект будет работать с 2015-го до января 2017 г. На-гора должны выдать промышленный образец системы непосредственного впрыска метана и, что не менее важно, технологию ее производства.

По сравнению с нынешними системами, использующими многоточечный впрыск газа в коллектор, перспективная система непосредственного впрыска способна на 60% увеличить крутящий момент на низких оборотах, то есть ликвидировать слабое место газового двигателя. Непосредственный впрыск решает целый комплекс «детских» болезней газового двигателя, принесенных вместе с внешним смесеобразованием.

В проекте Direct4Gas разрабатывают систему непосредственного впрыска, способную быть надежной и герметичной и дозировать точное количество газа для впрыска. Модификации самого двигателя сведены к минимуму, чтобы промышленность могла использовать прежние компоненты. Команда проекта комплектует экспериментальные газовые двигатели недавно разработанным клапаном впрыска высокого давления. Систему предполагается тестировать в лаборатории и непосредственно на транспортных средствах. Исследователи также изучают образование топливно-воздушной смеси, процесс управления зажиганием и образование токсичных газов. Долгосрочная цель консорциума – это создание условий, при которых технология сможет выйти на рынок.

Итак, газовые двигатели – это молодое направление, еще не достигшее технологической зрелости. Зрелость наступит, когда Bosch со товарищи создадут технологию непосредственно впрыска метана в камеру сгорания.

МАШИНОСТРОЕНИЕ

УДК 62l.43.052

ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ИЗМЕНЕНИЯ СТЕПЕНИ СЖАТИЯ МАЛОЛИТРАЖНОГО ДВИГАТЕЛЯ, КОТОРЫЙ РАБОТАЕТ НА ПРИРОДНОМ ГАЗЕ

Ф.И. Абрамчук, профессор, д.т.н., А.Н. Кабанов, доцент, к.т.н.,

А.П. Кузьменко, аспирант, ХНАДУ

Аннотация. Приведены результаты технической реализации изменения степени сжатия на двигателе МеМЗ-307, который переоборудован для работы на природном газе.

Ключевые слова: степень сжатия, автомобильный двигатель, природный газ.

ТЕХНІЧНА РЕАЛІЗАЦІЯ ЗМІНИ СТУПЕНЯ СТИСКАННЯ МАЛОЛІТРАЖНОГО АВТОМОБІЛЬНОГО ДВИГУНА,

ЩО ПРАЦЮЄ НА ПРИРОДНОМУ ГАЗІ

Ф.І. Абрамчук, професор, д.т.н., О.М. Кабанов, доцент, к.т.н.,

А.П. Кузьменко, аспірант, ХНАДУ

Анотація. Наведено результати технічної реалізації зміни ступеня стискання двигуна МеМЗ-307, переобладнаний для роботи на природному газі.

Ключевые слова: ступінь стискання, автомобільний двигун, природний газ.

TECHNICAL REALIZATION OF COMPRESSION RATIO VARIATION OF SMALL-CAPACITY AUTOMOTIVE NATURAL GAS POWERED ENGINE

F. Abramchuk, Professor, Doctor of Technical Science, A. Kabanov, Associate Professor, Doctor of Technical Science, A. Kuzmenko, postgraduate, KhNAHU

Abstract. The results of technical realization of compression ratio variation of MeMZ-3Q7 engine converted for natural gas running are given.

Key words: compression ratio, automotive engine, natural gas.

Введение

Создание и успешная эксплуатация чисто газовых двигателей, которые работают на природном газе, зависят от правильного выбора основных параметров рабочего процесса, определяющих их технические, экономические и экологические характеристики. В первую очередь это касается выбора степени сжатия.

Природный газ, имея высокое октановое число (110-130), позволяет повысить степень сжатия. Максимальное значение степени

сжатия, исключающее детонацию, можно в первом приближении выбрать расчетным путем. Однако проверить и уточнить расчетные данные возможно только экспериментально.

Анализ публикаций

В работе при переводе бензинового двигателя (Vh = 1 л) автомобиля VW POLO на природный газ упрощена форма огневой поверхности поршня. Уменьшение объема камеры сжатия привело к увеличению степени сжатия с 10,7 до 13,5.

На двигателе Д21А для снижения степени сжатия с 16,5 до 9,5 дообрабатывался поршень . Камера сгорания полусферического типа для дизеля изменена под рабочий процесс газового двигателя с искровым зажиганием.

При конвертации дизеля ЯМЗ-236 в газовый двигатель степень сжатия с 16,2 до 12 уменьшена также за счет дообработки поршня .

Цель и постановка задачи

Целью работы является разработка конструкции деталей камеры сгорания двигателя МеМЗ-307, позволяющих обеспечить степень сжатия е = 12 и е = 14 для проведения экспериментальных исследований.

Выбор подхода к изменению степени сжатия

Для малолитражного бензинового двигателя, конвертируемого в газовый, изменение степени сжатия означает её увеличение по сравнению с базовым ДВС. Выполнить эту задачу можно несколькими способами.

В идеальном случае на двигатель желательна установка системы изменения степени сжатия, позволяющей выполнять эту задачу в режиме реального времени, в том числе не прерывая работы двигателя. Однако такие системы очень дорогие и сложные в конструкции и эксплуатации, требуют внесения существенных изменений в конструкцию, а также являются элементом ненадежности двигателя.

Изменять степень сжатия можно также за счет увеличения количества или толщины прокладок между головкой и блоком цилиндров. Этот способ дешёвый, однако при этом увеличивается вероятность прогорания прокладок при нарушении нормального процесса сгорания топлива. Кроме того, такой способ регулирования степени сжатия отличается низкой точностью, так как значение е будет зависеть от силы затяжки гаек на шпильках головки блока и качества изготовления прокладок. Чаще всего такой способ используют для понижения степени сжатия.

Использование накладок на поршни технически сложно, так как возникает проблема надежного крепления относительно тонкой накладки (около 1 мм) к поршню и надёжной работы этого крепления в условиях камеры сгорания.

Оптимальным вариантом является изготовление комплектов поршней, каждый из которых обеспечивает заданную степень сжатия. Этот способ требует частичной разборки двигателя для изменения степени сжатия, однако обеспечивает достаточно высокую точность значения е в эксперименте и надежность работы двигателя с измененной степенью сжатия (не снижается прочность и надёжность конструктивных элементов двигателя). К тому же этот способ сравнительно дешёвый.

Результаты исследований

Суть задачи состояла в том, чтобы, используя положительные качества природного газа (высокое октановое число) и особенности смесеобразования, компенсировать потерю мощности при работе двигателя на данном топливе. Для выполнения поставленной задачи было решено изменять степень сжатия.

Согласно плану эксперимента степень сжатия должна изменяться от е = 9,8 (серийная комплектация) до е = 14. Целесообразно промежуточное значение степени сжатия выбрать е = 12 (как среднее арифметическое крайних значений е). В случае необходимости возможно изготовление комплектов поршней, обеспечивающих другие промежуточные значения степени сжатия.

Для технической реализации указанных степеней сжатия были выполнены расчеты, конструкторские разработки и экспериментально проверенные объемы камер сжатия методом проливки. Результаты проливки указаны в таблицах 1 и 2.

Таблица 1 Результаты проливки камеры сгорания в головке цилиндров

1 цил. 2 цил. 3 цил. 4 цил.

22,78 22,81 22,79 22,79

Таблица 2 Результаты проливки камеры сгорания в поршнях (поршень установлен в цилиндр)

1 цил. 2 цил. 3 цил. 4 цил.

9,7 9,68 9,71 9,69

Толщина прокладки в сжатом состоянии составляет 1 мм. Утопание поршня относительно плоскости блока цилиндров составляет 0,5 мм, что было определено с помощью обмеров.

Соответственно объем камеры сгорания Ус будет состоять из объема в головке цилиндров Уг, объема в поршне Уп и объема щели между поршнем и головкой цилиндра (уто-пание поршня относительно плоскости блока цилиндров + толщина прокладки) Ущ = 6,6 см3.

Ус = 22,79 + 9,7 + 4,4 = 36,89 (см3).

Принято решение — степень сжатия изменять за счет изменения объема камеры сгорания путем изменения геометрии головки поршня, так как данный способ позволяет реализовать все варианты степени сжатия, и при этом есть возможность вернуться к серийной комплектации.

На рис. 1 приведена серийная комплектация деталей камеры сгорания с объемами в поршне Уп = 7,5 см3.

Рис. 1. Серийная комплектация деталей камеры сгорания Ус = 36,9 см3 (е = 9,8)

Для получения степени сжатия е = 12 достаточно комплектовать камеру сгорания поршнем с плоским днищем, в котором выполнены две небольшие выборки общим объемом

0,1 см3, предотвращающие встречу впускных и выпускных клапанов с поршнем во время

перекрытия. В этом случае объем камеры сжатия равен

Ус = 36,9 — 7,4 = 29,5 (см3).

В этом случае зазор между поршнем и головкой цилиндров остается 8 = 1,5 мм. Конструкция камеры сгорания, обеспечивающая є = 12, показана на рис. 2.

Рис. 2. Комплектация деталей камеры сгорания газового двигателя для получения степени сжатия є = 12 (Ус = 29,5 м3)

Реализовать степень сжатия є = 14 принято за счет увеличения высоты поршня с плоским днищем на И = 1 мм. В данном случае поршень также имеет две выборки под клапаны общим объемом 0,2 см3. Объем камеры сжатия уменьшается на

ДУ = — И = . 0,1 = 4,42 (см3).

Такая комплектация деталей камеры сгорания дает объем

Ус = 29,4 — 4,22 = 25,18 (см3).

На рис. 3 показана комплектация камеры сгорания, обеспечивающая степень сжатия є = 13,9.

Зазор между огневой поверхностью поршня и головкой цилиндра составляет 0,5 мм, что достаточно для нормальной работы деталей.

Рис. 3. Комплектация деталей камеры сгорания газового двигателя с е = 13,9 (Ус = 25,18 см3)

1. Упрощение геометрической формы огневой поверхности поршня (плоская головка с двумя маленькими выборками) позволило увеличить степень сжатия с 9,8 до 12.

2. Уменьшение зазора до 5 = 0,5 мм между головкой цилиндра и поршнем в ВМТ и упрощение геометрической формы огневой по-

верхности поршня позволило увеличить є до 13,9 единиц.

Литература

1. По материалам сайта: www.empa.ch

2. Бганцев В.Н. Газовый двигатель на базе

четырехтактного дизеля общего назначения / В.Н. Бганцев, А.М. Левтеров,

B.П. Мараховский // Мир техники и технологий. — 2003. — №10. — С. 74-75.

3. Захарчук В.І. Розрахунково-експеримен-

тальне дослідження газового двигуна, переобладнаного з дизеля / В.І. Захарчук, О.В. Сітовський, І.С. Козачук // Автомобильный транспорт: сб. науч. тр. -Харьков: ХНАДУ. — 2005. — Вып. 16. —

4. Богомолов В.А. Особенности конструкции

экспериментальной установки для проведения исследований газового двигателя 64 13/14 с искровым зажиганием / В.А. Богомолов, Ф.И. Абрамчук, В.М. Ма-нойло и др. // Вестник ХНАДУ: сб. науч. тр. — Харьков: ХНАДУ. -2007. — № 37. — С. 43-47.

Рецензент: М. А. Подригало, профессор, д.т.н., ХНАДУ.

Характеризуется рядом величин. Одна из них – степень сжатия двигателя. Важно не путать ее с компрессией – значением максимального давления в цилиндре мотора.

Что такое степень сжатия

Данная степень – это соотношение объема цилиндра двигателя к объему камеры сгорания. Иначе можно сказать, что значение компрессии – отношение объема свободного места над поршнем, когда тот находится в нижней мертвой точке, к аналогичному объему при нахождении поршня в верхней точке.

Выше упоминалось, что компрессия и степень сжатия – не синонимы. Различие касается и обозначений, если компрессию измеряют в атмосферах, степень сжатия записывается как некоторое отношение, например, 11:1, 10:1, и так далее. Поэтому нельзя точно сказать, в чем измеряют степень сжатия в двигателе – это «безразмерный» параметр, зависящий от других характеристик ДВС.

Условно степень сжатия можно описать также как разницу между давлением в камере при подаче смеси (или дизтоплива в случае с дизельными двигателями) и при воспламенении порции горючего. Данный показатель зависит от модели и типа двигателя и обусловлен его конструкцией. Степень сжатия может быть:

  • высокой;
  • низкой.

Расчет сжатия

Рассмотрим, как узнать степень сжатия двигателя.

Она вычисляется по формуле:

Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.

Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:

Здесь D – диаметр, а S – ход поршня.

Иллюстрация:


Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.

Альтернативный способ, как определить степень сжатия двигателя – обратиться к документации на него.

На что влияет степень сжатия

Важно понимать, на что влияет степень сжатия двигателя: от нее прямо зависит компрессия и мощность. Если сделать сжатие больше, силовой агрегат получит больший КПД, поскольку уменьшится удельный расход горючего.

Степень сжатия бензинового двигателя определяет, горючее с каким октановым числом он будет потреблять. Если топливо низкооктановое, это приведет к неприятному явлению детонации, а слишком высокое октановое число вызовет нехватку мощности – двигатель с малой компрессией просто не сможет обеспечивать нужное сжатие.

Таблица основных соотношений степеней сжатия и рекомендуемых топлив для бензиновых ДВС:

Сжатие Бензин
До 10 92
10.5-12 95
От 12 98

Интересно: бензиновые турбированные двигатели функционируют на горючем с большим октановым числом, чем аналогичные ДВС без наддува, поэтому их степень сжатия выше.

Еще больше она у дизелей. Поскольку в дизельных ДВС развиваются высокие давления, данный параметр у них также будет выше. Оптимальная степень сжатия дизельного двигателя находится в пределах от 18:1 до 22:1, в зависимости от агрегата.

Изменение коэффициента сжатия

Зачем менять степень?

На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:

  • при желании форсировать двигатель;
  • если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
  • после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.

Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).

Перевод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.

Форсирование двигателя

Чтобы снимать больше мощности или получить возможность ездить на более дешевых сортах топлива, ДВС можно форсировать путем изменения объема камеры сгорания.

Для получения дополнительной мощности двигатель следует форсировать, увеличивая степень сжатия.

Важно: заметный прирост по мощности будет лишь на том двигателе, который штатно работает с более низкой степенью сжатия. Так, например, если ДВС с показателем 9:1 тюнингован до 10:1, он выдаст больше дополнительных «лошадей», чем двигатель со стоковым параметром 12:1, форсированный до 13:1.

Возможные следующие методы, как увеличить степень сжатия двигателя:

  • установка тонкой прокладки ГБЦ и доработка головки блока;
  • расточка цилиндров.

Под доработкой ГБЦ подразумевают фрезеровку ее нижней части, соприкасающейся с самим блоком. ГБЦ становится короче, благодаря чему уменьшается объем камеры сгорания и растет степень сжатия. То же происходит и при монтаже более тонкой прокладки.

Важно: эти манипуляции могут также потребовать установки новых поршней с увеличенными клапанными выемками, поскольку в ряде случаев возникает риск встречи поршня и клапанов. В обязательном порядке настраиваются заново фазы газораспределения.

Расточка БЦ также ведет к установке новых поршней под соответствующий диаметр. В результате растет рабочий объем и становится больше степень сжатия.

Дефорсирование под низкооктановое топливо

Такая операция проводится, когда вопрос мощности вторичен, а основная задача – приспособить двигатель под другое горючее. Это делается путем снижения степени сжимания, что позволяет двигателю работать на малооктановом бензине без детонации. Кроме того, налицо и определенная финансовая экономия на стоимости горючего.

Интересно: подобное решение нередко используется для карбюраторных двигателей старых машин. Для современных инжекторных ДВС с электронным управлением дефорсирование крайне не рекомендуется.

Основной способ, как уменьшить степень сжатия двигателя — сделать прокладку ГБЦ более толстой. Для этого берут две стандартные прокладки, между которыми делают алюминиевую прокладку-вставку. В результате растет объем камеры сгорания и высота ГБЦ.

Некоторые интересные факты

Метанольные двигатели гоночных машин имеют сжатие более 15:1. Для сравнения, стандартных карбюраторный двигатель, потребляющий неэтилированный бензин, имеет сжатие максимум 1.1:1.

Из серийных образцов моторов на бензине со сжатием 14:1 на рынке присутствуют образцы от Mazda (серия Skyactiv-G), ставящиеся, например, на CX-5. Но их фактическая СЖ находится в пределах 12, поскольку в данных моторах задействован так называемый «цикл Аткинсона», когда смесь сжимается в 12 раз после позднего закрытия клапанов. Эффективность таких двигателей измеряется не по сжатию, а по степени расширения.

В середине XX века в мировом двигателестроении, особенно в США, наблюдалась тенденция к увеличению степени сжатия. Так, к 70-м основная масса образцов американского автопрома имела СЖ от 11 до 13:1. Но штатная работа таких ДВС требовала использования высокооктанового бензина, который в то время умели получать только процессом этилирования – добавлением тетраэтилсвинца, высокотоксичного компонента. Когда в 1970-х годах появились новые экологические стандарты, этилирование стали запрещать, и это привело к обратной тенденции – снижению СЖ в серийных образцах двигателей.

Современные двигатели имеют систему автоматической регуляции угла зажигания, которая позволяет ДВС работать на «неродном» топливе – например, 92 вместо 95, и наоборот. Система управления УОЗ помогает избежать детонации и других неприятных явлений. Если же ее нет, то, например, залив высокооктановый бензин двигатель, не рассчитанный на такое горючее, можно потерять в мощности и даже залить свечи, поскольку зажигание будет поздним. Ситуацию можно поправить ручным выставлением УОЗ по инструкции к конкретной модели автомобиля.

Обсуждение степени сжатия и совместимости с насосом

Если вы называете себя редуктором, то, скорее всего, цените мощность. Один из способов увеличить мощность двигателя без наддува — это начать с высокой степенью сжатия. В этой истории мы коснемся нескольких моментов, касающихся сжатия, и того, как вы можете заставить это сжатие работать в ваших интересах.

Сжатие — одна из немногих областей двигателя, в которых действительно верна теория «больше — лучше».Стандартная рекомендация для уличных двигателей, работающих на бензиновом насосе, всегда заключалась в том, чтобы обеспечить степень сжатия от 9,0: 1 до, возможно, 9,5: 1. Это сделано для того, чтобы двигатель мог безопасно работать с бензиновым насосом, который для большей части страны ограничен 91-октановым числом. В то время как 9: 1 — безопасное число, максимальное сжатие — отличный способ увеличить мощность, а также улучшить расход топлива, реакцию дроссельной заслонки и управляемость. Общепринятая оценка — улучшение от трех до четырех процентов на полную точку сжатия.Это означает, что простое изменение статической степени сжатия 9: 1 на 10: 1 на небольшом блоке мощностью 400 л.с. будет стоить целых 16 лошадиных сил.

Графически вот как выглядит детонация на кривой давления. Зубчатые края — это неконтролируемые резкие скачки давления, которые имеют тенденцию вызывать дребезжание поршня в цилиндре и вызывать повреждение двигателя.

Сдерживающая детонация

Самым большим ограничивающим фактором при попытке увеличить степень сжатия является угроза детонации.Это определяется как неконтролируемое горение, которое происходит после зажигания свечи зажигания. Думайте о процессе возгорания не как о взрыве, а скорее как о костре кустарника, горящем на большом поле сухой травы.

В двигателе свеча зажигания начинает возгорание в одном углу верхней части поршня, который представляет собой нашу травянистую прерию. Однако есть одно большое различие. Когда происходит сгорание, давление в цилиндре продолжает расти вместе с температурой. В какой-то момент, если октановое число топлива окажется недостаточным, отходящие газы загорятся сами по себе в результате самопроизвольного мини-взрыва в той части камеры, где собрались отходящие газы.Это создает скачок давления, который вызывает вибрацию поршня в отверстии. Это то, что вызывает этот слишком частый скрежет или стук.

Детонация — это плохо, и ее нельзя допускать продолжения, потому что она может сломать детали, повредить камеры сгорания и повредить прокладки головки блока цилиндров. Самым простым и легким средством является добавление в топливо октанового числа, и в конце мы сделаем несколько предложений, которые доступны по цене и очень хорошо работают. Но с механической точки зрения производитель двигателя также может предпринять несколько шагов, чтобы увеличить сжатие, а также минимизировать вероятность детонации.

Статический или динамический

Когда мы говорим о сжатии, это должно быть более точно определено как статическая степень сжатия. Это буквально соотношение объема цилиндра с поршнем внизу по сравнению с объемом поршня наверху своего хода. Если мы вычислим объем 6,0-литрового двигателя Stroker LS с диаметром цилиндра 4,030 дюйма и ходом поршня 4,00 дюйма, то получится объем 51 кубический дюйм (куб. Дюйм) или 836 кубических сантиметров (куб. См). Если затем мы подтолкнем поршень к верхней точке его хода, в нашем конкретном случае мы теперь сжимаем тот же объем почти в десять раз, создавая объем только в 5 раз.1 кубический дюйм или 83,6 куб. См для степени сжатия 10,0: 1. Это статическая степень сжатия.

Вот пример того, что детонация может сделать с поршнем. Эти стрелки указывают на разорванные участки кольца, вызванные сильной детонацией. Это мгновенно приведет к повреждению уплотнения цилиндра, и вы очень быстро узнаете, что двигатель поврежден.

Хотя это хороший компаратор между двигателями, реальность такова, что двигатели фактически работают с гораздо более низким передаточным числом, потому что впускной клапан все еще открыт, когда поршень движется вверх от нижней мертвой точки (НМТ).Фактическую или динамическую степень сжатия можно рассчитать, только зная, где находится поршень при закрытии впускного клапана. United Engine and Machine (UEM) предлагает калькулятор динамической степени сжатия, который вводит статическую степень сжатия, ход и длину шатуна вместе с числом закрытия впуска при подъеме толкателя 0,050 дюйма плюс 15 градусов. Если ваша видеокарта предлагает закрытие входа на 0,006 дюйма (заявленная продолжительность), вы можете использовать это число (возможно, прибавив один градус к указанному числу), и вы будете очень близки.

Плотная закалка достигается за счет минимизации зазора между поршнем и головкой до менее 0,045 дюйма для двигателей с клиновой головкой диаметром 4,00 дюйма. Таким образом, для двигателя с размером поршня 0,003 дюйма, добавление прокладки 0,041 дюйма даст зазор между поршнем и головкой 0,044 дюйма. Узкая зона закалки улучшает движение смеси и фактически увеличивает эффективность сгорания. Избегайте больших зазоров между поршнем и головкой более 0,050 дюйма.

Для того же двигателя Stroker LS мы подключили статическое сжатие 10: 1, 6.Длина стержня 125 дюймов, ход 4,00 дюйма и число закрытия впуска 0,050 дюйма 47 градусов плюс 15 градусов. Это равно 62 градусам. С этими входными данными калькулятор UEM предлагал динамическое сжатие 8,198 или 8,2: 1. Общепринятая консервативная оценка составляет от 8,0 до, возможно, 8,5: 1 динамической степени сжатия для бензинового насоса с октановым числом 91. Это, как правило, справедливо для старых традиционных двигателей с менее эффективными камерами сгорания. Но для более поздних моделей двигателей с лучшими камерами это могло быть улучшено до 9.0: 1 динамический.

Двумя наиболее эффективными переменными в этом расчете являются статическая степень сжатия и точка закрытия впуска. Если мы добавим 8 градусов к точке закрытия впускного клапана (70 градусов), это снизит динамическое сжатие с 8,2: 1 до 7,7: 1. Чтобы восстановить динамическое сжатие, потребуется увеличить степень статического сжатия до 10,67: 1. Это показывает драматическое влияние фаз газораспределения на динамическое сжатие.

Чтобы еще больше подчеркнуть эту концепцию, наихудшей комбинацией будет большой кулачок с очень поздней точкой закрытия впуска, используемый в двигателе с низкой степенью статического сжатия.В качестве примера представьте небольшой блок 350 с статической степенью сжатия 8,2: 1, заявленной продолжительностью 300 градусов и закрытием впуска на 58 градусов при 0,050 дюйма плюс 15 градусов, что соответствует точке закрытия ABDC на 73 градуса. Эта комбинация снижает динамическое сжатие до жалких 6,1: 1. Это показывает, как динамическая степень сжатия может помочь определить относительную силу или слабость комбинации двигателей перед сборкой двигателя.

Двигатели

LS — хороший образец современной камерной конструкции.Это камера в нашем 6,0-литровом двигателе с головками объемом 225 куб. См. Trick Flow Specialties.

Но есть много других факторов, помимо статической и динамической степени сжатия. Дизайн камеры, безусловно, является решающим фактором. В двигателях последних моделей используются камеры гораздо меньшего размера и улучшенной конструкции, улучшающие процесс сгорания. Преимущество лучшей камеры в том, что она уменьшает время зажигания, необходимое для достижения максимальной мощности. Возможно, 30 лет назад не было ничего необычного в том, чтобы увидеть небольшой блок с большим кулачком и куполообразными поршнями, которые требовали от 38 до 42 градусов полного угла опережения зажигания для оптимизации мощности.Сравните это с современными двигателями, такими как GM LS, со статическим сжатием 10,5: 1 и хорошим кулачком, которому для достижения максимальной мощности требуется всего 30 градусов времени. Уменьшение требований по времени является важным показателем того, что пространство для сгорания намного более эффективно.

Время — ключ

Конечно, слишком большой угол опережения зажигания может вызвать другие проблемы. Для современных двигателей трехмерная временная карта, основанная как на нагрузке, так и на оборотах, будет иметь большое значение для контроля детонации. Все двигатели могут получить выгоду от этого более точного управления зажиганием.В качестве примера, мы потратили некоторое время на настройку большого блока Chevy нашего друга Эрика Розендаля 468ci после установки корпуса дроссельной заслонки Sniper EFI.

С помощью всего четырех простых входных данных этот бесплатный калькулятор United Engine & Machine может определить динамическую степень сжатия двигателя. Как видно из этих входных данных, механизм статического сжатия 10,0: 1 вычисляет динамическое сжатие 8,2: 1, что хорошо, но немного консервативно.

После точной настройки соотношения воздух-топливо мы затем заменили распределитель HEI и вакуумную камеру опережения на распределитель Sniper и использовали программное обеспечение для управления синхронизацией.Мы смогли добавить больше времени в крейсерском режиме, но убрать синхронизацию в двух критических точках нагрузки с неполным дросселем, которые вызывали детонацию при использовании опережения вакуума. Раньше это требовало, чтобы мы отключили вакуумное продвижение, потому что мы не могли настроить его. Но с конечным цифровым управлением кривой синхронизации мы смогли добавить больше времени там, где этого требовал двигатель, а также защитить двигатель от детонации в других точках. Это было невозможно с простым дистрибьютором.

Эти же методы могут позволить интеллектуальному тюнеру увеличивать динамическое сжатие, сводя к минимуму проблемы детонации с помощью газового насоса с октановым числом 91.Еще одна область, о которой стоит упомянуть, — это то, что температура воздуха на входе имеет большое влияние на чувствительность к детонации. Мы узнали эту информацию от ныне ушедшего на пенсию инженера по топливу компании Rockett Racing Тима Вуса. Он рассказал нам, что несколько лет назад заводские установки провели серьезное испытание, в ходе которого оценили взаимосвязь между температурой воздуха на входе и детонацией. Они обнаружили, что повышение температуры входящего воздуха на 25 градусов, скажем, с 70 до 95 градусов, требует увеличения октанового числа на одну точку (например, с 90 до 91), чтобы предотвратить детонацию.Другими словами, если вы можете снизить температуру воздуха на входе на 25 градусов, это снизит требования к октановому числу двигателя на одно полное октановое число — например, с 91 до 90.

Детка, на улице холодно

Этот эффект может быть уменьшен другими атмосферными условиями. Например, высокий уровень влажности имеет тенденцию немного снижать октановую чувствительность, поскольку дополнительная вода из воздуха попадает в камеру сгорания. Это может изменить тенденцию к детонации. И наоборот, повышение атмосферного давления приведет к увеличению давления в цилиндре.Это добавляет мощности, но также имеет тенденцию облагать налогом пределы существующего октанового числа топлива. Идеальной ситуацией для максимальной мощности будет холодный приточный воздух со средней влажностью и высоким атмосферным давлением. Это увеличивает мощность, но также может вызвать скачок давления в цилиндре и, возможно, привести к небольшой детонации.

Свечи зажигания с удлиненным носиком помещают искру ближе к центру камеры и могут помочь в процессе минимизации детонации.

Также важно усилить прямую связь между точкой закрытия впуска и степенью статического сжатия как действительно критическими факторами, относящимися к динамическому давлению в цилиндре.Например, мы исследовали несколько гидравлических кулачков с роликовыми роликами COMP Cams, которые мы использовали на протяжении многих лет, и большинство из этих кулачков проверяются с закрытием впуска при подъеме толкателя 0,006 дюйма (заявленная продолжительность) в диапазоне от 62 до 72 градусов. ABDC. Это может оказать некоторую помощь в определении полезного распределительного вала, помня, что меньшее число (например, 62 градуса) повысит динамическое сжатие, а большее число (более позднее закрытие) уменьшит его.

Одним из быстрых способов повышения октанового числа может быть добавление небольшого количества E85 для создания смесей этанола от 20 до 30 процентов (от E20 до E30).Смешивание этанола в смесях до этих уровней повысит октановое число R + M / 2 примерно на два полных числа, увеличивая октановое число 91 до 93. Конечно, это также потребует перенастройки системы подачи топлива.

Трудно сделать какие-либо общие заявления о комбинациях, но мы можем поделиться парой примеров динамической степени сжатия. Например, Chevy нашего друга 468ci с большим блоком и портированными заводскими чугунными овальными головками портов, относительно консервативным распредвалом COMP с гидравлическими роликами (XR-282HR, 230/236 градусов при 0.050) со сжатием 10,5: 1 — это довольно отзывчивый мотор, который отлично работает на премиум-классе с октановым числом 91. Калькулятор UEM обеспечивает динамическую степень сжатия 8,2: 1. Как упоминалось ранее, двигатель действительно дребезжал в определенных местах, что вынудило нас немного замедлить синхронизацию. Это заставляет нас думать, что при динамике 8,2: 1 это довольно близко к максимальной степени сжатия, которую мы можем запустить в этом двигателе с октановым числом топлива 91.

Начальник отдела обвинения

Некоторые могут быть обеспокоены железными головками, поскольку энтузиасты опасаются, что железные головки более подвержены детонации, чем алюминиевые.Несколько лет назад мы провели динамометрический тест, используя небольшой блок Chevy, чтобы проверить эту теорию. Результаты показали, что алюминиевые головки производили больше энергии, чем железная версия с тем же размером и формой камеры. Единичный тест вряд ли будет окончательным, но было бы справедливо сказать, что старые железные головки с плохой конструкцией камеры будут менее эффективными и будут способствовать чувствительности к детонации.

Вот еще один пример взрыва. Эта голова оторвалась от небольшого блока 434ci, который в течение длительного периода времени подвергался слабой детонации.Этот двигатель работал на бензиновом насосе с октановым числом 91, мягким кулачком с роликовыми гидрораспределителями и степенью статического сжатия 11,0: 1. Небольшие кратеры образовались в результате взрыва.

Мы также использовали 6,0-литровый двигатель LS на динамометрическом стенде, используя систему управления Holley HP EFI с компрессией 10,5: 1, красивую пару алюминиевых головок Trick Flow Specialties с портом 225 см3, ход поршня 3,62 дюйма, шатуны 6,10 дюйма, и кулачок с закрытием впуска 62 градуса ABDC. Этот пакет обеспечивает впечатляющее динамическое сжатие 8,54: 1.Двигатель также выдавал более 550 л.с. на динамометрическом стенде с бензиновым насосом с октановым числом 91. У нас не было возможности запустить этот двигатель на улице, так как это наш тестовый двигатель-испытатель, но, судя по всему, он будет более чем доволен этой комбинацией на бензиновом насосе с октановым числом 91.

Безусловно, существуют возможности для достижения статических степеней сжатия до 10,5: 1 включительно в сочетании с современной камерой сгорания, синхронизацией кулачков и надлежащей настройкой двигателя. Безусловно, оригинальные производители движутся в этом направлении с новыми двигателями GM LT1 с непосредственным впрыском топлива, которые теперь работают под двигателем 11.Статическая степень сжатия 5: 1. Эти двигатели также извлекают выгоду из датчиков детонации и миллионов долларов на исследования и разработки. Но есть признаки того, что при правильной комбинации деталей и времени кулачка дни, когда требовалась статическая степень сжатия 9,0: 1 на безнаддувном двигателе, быстро выходят из моды.

Степень сжатия

и октановое число: что нужно знать

Для тех, кто никогда не изучал это или забыл, полезно знать: все двигатели внутреннего сгорания автомобилей работают примерно одинаково.Подавляющее большинство автомобилей имеют четырехтактные газовые двигатели; каждый такт или такт сжатия — это когда цилиндр, полный газа и воздуха, сжимается до значительно меньшего объема, прежде чем он воспламеняется свечой зажигания [источник: Arman].

Точнее говоря, поршень сжимает смесь топлива и воздуха в камере сгорания двигателя. А так называемая степень сжатия — а у каждого двигателя есть своя степень — относится к тому, сколько топлива и воздуха сжимает поршень.«В четырехцилиндровом 2-литровом двигателе каждый цилиндр имел бы объем 500 куб. «Когда поршень движется вниз по цилиндру, он втягивает 500 куб. См воздуха и топлива. Клапаны закрываются, и поршень движется вверх, сжимая заряд объемом 500 куб. быть 10: 1 «.

Помните, что в нормальных условиях смесь сжатого воздуха и газа воспламеняется от свечи зажигания.Но когда этого не происходит, и вместо этого смесь взрывается в камере сгорания, а не воспламеняется свечой зажигания, это называется детонацией — или, как более широко известно, стуком и звоном [источник: Нильсен].

Чтобы проиллюстрировать, что здесь происходит, Нильсен предлагает подумать о велосипеде. Для выработки максимальной мощности оптимальным подходом является приложение давления вниз в верхней части хода и равномерное давление примерно в нижней части хода.«То же самое и с поршнем, движущимся в цилиндре», — говорит он. «Когда цилиндр взрывается, топливо горит со сверхзвуковой скоростью и слишком быстро высвобождает свою энергию, что-то вроде быстрого удара по педали велосипеда».

Это подводит нас к октановому числу бензина. Проще говоря, октановое число — это показатель способности газа сопротивляться детонации. Большинство заправочных станций предлагают три класса октана: обычно 87, среднее 89 и премиальное 92 или 93 [источник: Федеральная торговая комиссия].Определить октановое число бензина несложно: станции должны размещать их на ярко-желтых наклейках на каждом насосе.

Щелкните вперед, чтобы узнать, что такое степень сжатия и как двигатель может предупреждать вас о стуке и пинге.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файлах cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Сжатие и расширение

Термодинамика — раздел физики который имеет дело с энергией и работой системы. Термодинамика имеет дело только с крупномасштабным откликом системы, который мы можем наблюдайте и измеряйте в экспериментах.Как и братья Райт, мы больше всех интересуется термодинамикой из-за той роли, которую она играет в конструкция двигателя.

На этом слайде мы выводим два важных уравнения, которые связывают давление и температура газа до объема, который газ занимает в течение компрессионные и силовые удары двигателя внутреннего сгорания. В верхнем левом углу рисунка мы показываем компьютерный рисунок одного цилиндр двигателя Wright 1903.Движение серого поршня внутри синего цилиндр поворачивает красную часть коленчатый вал что превращает пропеллеры для создания тяги. По мере движения поршня в цилиндре объем топливовоздушной газовой смеси внутри цилиндра изменен. Это изменение объема приводит к изменению давление и температура газа, определяющие, насколько Работа поршень может поставить. При движении поршня будем считать, что тепло не передается в цилиндр.В дальнейшем мы будем игнорировать любые трение между поршнем и цилиндром и предположим, что нет потери энергии любого вида. (На самом деле есть небольшие убытки, и мы учитывать потери с помощью «коэффициента полезного действия», примененного к результату получаем без потерь.)

Мы начинаем наш вывод с определения значения фактора, который мы будем нужно позже. Из определений коэффициенты удельной теплоемкости, удельная теплоемкость при постоянном давлении cp минус удельная теплоемкость при постоянном объеме cv равна газовая постоянная R:

cp — cv = R

и мы определяем отношение удельной теплоемкости как число, которое мы позвонит «гамма»

гамма = cp / cv

Если мы разделим первое уравнение на cp и воспользуемся определением «гамма» мы получаем:

R / cp = 1 — (1 / гамма) = (гамма — 1) / гамма

Теперь воспользуемся полученным уравнением для энтропия газа:

s2 — s1 = cp ln (T2 / T1) — R ln (p2 / p1)

где числа 1 и 2 обозначают состояния в начале и конце процесс сжатия, с — энтропия, T — температура, p — давление, а «ln» обозначает натуральный логарифм. (гамма)

Величина (v1 / v2) представляет собой отношение объема в состоянии 1 и состоянии 2 и называется степенью сжатия .Для v2 меньше, чем v1 , давление p2 больше, чем с.1 . С помощью этого уравнения можно определить изменение давления для данной степени сжатия. И используя предыдущий уравнение мы знаем и изменение температуры. Значение степени сжатия является функцией дизайна отверстие и ход поршня.


Деятельность:

Навигация..


Возрождение пути Райта
Руководство по воздухоплаванию для новичков
Домашняя страница НАСА
http://www.nasa.gov

Основы сжатия природного газа — Введение

Эта подсказка E -Наконечник является первой из серии, которая охватывает основы сжатия природного газа. Несмотря на то, что компрессоры представляют собой сложные машины, эта серия призвана упростить ключевые концепции, вызывающие озабоченность при сжатии природного газа в поршневых или винтовых компрессорах.Основываясь на основах взаимосвязи между объемом, давлением и температурой газа, в этой серии статей будет разрабатываться понимание емкости и мощности для сжатия, а также ключевых переменных, влияющих на то и другое.

Во-первых, мы упростим сжатие до уменьшения известного объема газа, чтобы обсудить взаимосвязь между объемом , давлением и температурой . Это должно вернуть вас в старшую школу с воспоминаниями о Бойлсе Ло и Чарльзе Лоу.

Затем мы добавим свойства сжимаемого газа в соответствие с законом идеального газа и сжимаемостью. Закон определяет количество молекул газа, которые могут поместиться в определенный объем при известных условиях, что важно при сжатии газа, поскольку мы пытаемся переместить как можно больше газа.

Упрощенный объем, использованный выше, определяется физическими размерами цилиндров компрессора (или роторов в случае винта) и, умноженный на рабочую скорость, об / мин , по сути, является рабочим объемом компрессора.Однако производительность компрессора по газу зависит от того, сколько молекул газа поместится в этот объем смещения, на который влияют давление и температура, а также от того, какая часть смещения может быть использована.

Не весь рабочий объем можно заполнить газом, который со временем будет выходить из баллона. Это отношение объема к рабочему объему называется Volumetric Efficiency , на которое влияет объем цилиндра зазор (например, VVCP, карманы, прокладки и т. Д.) И коэффициент сжатия .Хотя винтовой компрессор не имеет возможности регулировать зазор, производительность можно уменьшить относительно рабочего объема, открыв золотниковый клапан .

Наконец, для сжатия газа требуется энергия. Эта энергия поступает от привода, и для поршневых и винтовых компрессоров природного газа этот привод чаще всего представляет собой двигатель, работающий на природном газе, или электродвигатель, и выражается как мощность в киловаттах или лошадиных силах . Количество Power , необходимое для сжатия, зависит от количества сжимаемого газа, Емкость , и диапазона давлений, в котором должен сжиматься газ, Степень сжатия .

Таким образом, несмотря на то, что инженерные расчеты, определяющие сжатие газа, являются сложными, эта серия рекомендаций E -Tips покажет, как твердое понимание характеристик компрессора может быть достигнуто путем понимания поведения газа при изменении давления и температуры и что:

Вместимость ( Q) является функцией

Рабочий объем ( D) и объемный КПД ( VE%)

Объемный КПД ( VE%) является функцией

Зазор ( CL%) и степень сжатия ( CR)

Мощность ( кВт / л.с.) зависит от

Вместимость ( Q) и степень сжатия ( CR)

При разработке вышеуказанных взаимосвязей эти E -Наконечники будут использовать концепции, чтобы объяснить рабочий диапазон компрессоров и почему кривые производительности выглядят именно так.Кроме того, они будут смотреть на то, как изменения параметров смещают кривые производительности, увеличивая или уменьшая производительность при заданном давлении всасывания или требуя большей или меньшей мощности для сжатия заданного объема газа. Это ключевая концепция для понимания влияния изменения условий, таких как температура всасывания и давление нагнетания, а также того, почему изменение положения кармана ( VVCP ) приводит к определенному результату работы компрессора (или, может быть, почему это нет! ).

Во втором E -Tip в этой серии, Enalysis Tip 1.17: Основы сжатия природного газа 1 — Свойства газа , мы исследуем некоторые основные свойства газа, чтобы увидеть, как газы реагируют на изменения давления и температуры и что это означает количество газа, которое может поместиться в нашем компрессоре при условиях всасывания.

Чтобы узнать больше о E-Tips , посетите Учебный центр Detechtion Technologies.

Исследование воспламенения от сжатия бензина (GCI) в тяжелонагруженном одноцилиндровом дизельном двигателе с высокой степенью сжатия

Образец цитирования: Cung, K., Битсис, Д., Мива, Дж., Смит, Э. и др., «Исследование воспламенения от сжатия бензина (GCI) в одноцилиндровом дизельном двигателе большой мощности с высокой степенью сжатия», Технический документ SAE 2021- 01-0495, 2021 г., https://doi.org/10.4271/2021-01-0495.
Загрузить Citation

Автор (ы): Хан Кунг, Дэниел Кристофер Битсис, Джейсон Мива, Эдвард Смит, Томас Бриггс, Эндрю Моррис, Александр Михлбергер, Ахмед Абдул Мойз

Филиал: Юго-Западный научно-исследовательский институт

Страниц: 18

Событие: Цифровой саммит SAE WCX

ISSN: 0148-7191

e-ISSN: 2688-3627

HVAC Степени сжатия и информация

Общие сведения о замене сервисного компрессора

Это вторая часть из трех статей, посвященных замене компрессора.

Что такое степени сжатия и как они влияют на компрессоры?

Как обсуждалось в первой части этой серии, газ повторного расширения компрессора кондиционера напрямую влияет на его объемный КПД при различных рабочих условиях системы. Объемный КПД поршневого компрессора может варьироваться в широком диапазоне в зависимости от конструкции компрессора и степени сжатия.

Степень сжатия

Степень сжатия — это отношение абсолютного давления нагнетания (psia) к абсолютному давлению всасывания (psia), которое определяется по формуле Абсолютное давление нагнетания ÷ Абсолютное давление всасывания.

В той диаграмме, которая сопровождает первую часть этой серии, левая сторона (ось Y) представляет степени сжатия. По мере увеличения степени сжатия объемный КПД поршневых компрессоров уменьшается.

Чтобы преобразовать любое манометрическое давление в абсолютное, добавьте 14,7 (или 15, чтобы упростить задачу) к показаниям давления из набора манометров. 14.7 представляет собой атмосферное давление, которое уже учитывается манометром коллектора. (При 0 фунтах на квадратный дюйм фактическое показание составляет 14.7 фунтов на кв. Дюйм)

Рассмотрим несколько примеров:

Напор = 185 фунтов на кв. Дюйм + 15 = 200 фунтов на кв. Дюйм
Всасывание = 5 фунтов на кв. Дюйм + 15 = 20 фунтов на кв. Дюйм

В этом примере используется диапазон применения при низких температурах и округлено 14,7 (атмосферное) до 15. Используя эти значения давления в фунтах на квадратный дюйм из приведенных выше примеров, вычисляется степень сжатия 10: 1

200 фунтов / кв. Дюйм = 10: 1
20 фунтов / кв. Дюйм

10: 1 — это степень сжатия, обычно встречающаяся в холодильных установках. Если вы думаете о кондиционировании воздуха, часто это примерно 3: 1 или 4: 1

.

Пример 2:

200 фунтов / кв. Дюйм = 20: 1
10 фунтов / кв. Дюйм

В этом примере давление всасывания падает на 10 фунтов на квадратный дюйм, что удваивает степень сжатия.При такой степени сжатия компрессору, рассчитанному на соотношение 10: 1, было бы нелегко выжить. Как вы думаете, заметит ли сервисная служба такое падение абсолютного давления всасывания? Возможно нет.

Пример 3:

400 фунтов / кв. Дюйм = 20: 1
20 фунтов / кв. Дюйм

В этом расчете абсолютное давление нагнетания повышено до 400 фунтов на квадратный дюйм, существенно увеличивая его вдвое, чтобы получить ту же степень сжатия 20: 1. Как вы думаете, сервисный техник заметит, если его давление нагнетания увеличится вдвое? С надеждой.В любом случае компрессору будет сложно работать с удвоенной номинальной степенью сжатия. После понимания того, как степень сжатия влияет на объемный КПД, на каком уровне эффективности, по вашему мнению, сейчас работает эта система, по сравнению с ее конструктивным диапазоном?

Важно обращать внимание на эти давления в системе, и в следующей статье мы свяжем степень сжатия и объемный КПД, чтобы лучше понять замену сервисного компрессора.