14Авг

Турбина кидает масло: Почему турбина гонит или ест масло — причины

Содержание

Турбина гонит масло в интеркулер дизельного двигателя, в чем причина и что делать?

Чем сложнее техника, тем чаще она выходит из строя и тем дороже обходится её восстановление — это правило является актуальным для любого механизма, включая и мотор автомобиля. При профилактическом обслуживании дизельного двигателя, оснащённого турбонаддувом и промежуточным охладителем (интеркулером) многие владельцы транспортных средств с удивлением обнаруживают в последнем следы масла. Паниковать и готовиться к огромным затратам при этом не стоит — вполне возможно, что проблему удастся решить «малой кровью». Сначала необходимо определить, почему же турбина гонит масло в интеркулер, а затем уже приступать к устранению обнаруженного дефекта.

Причины присутствия масла в интеркулере могут носить различный характер

Назначение детали

И тут у некоторых автомобилистов, не слишком подробно вникающих в устройство своего автомобиля, может возникнуть вопрос — а что, собственно говоря, такое интеркулер, как он выглядит и зачем нужен? Обратив своё внимание на школьный курс физики, мы можем вспомнить, что при сильном нагревании вещества расширяются, а при охлаждении — наоборот, уплотняются.

Если автомобиль оборудован турбонаддувом, воздух в нём проходит сквозь нагнетатель, приводимый в движение выхлопными газами. Последние, как известно, имеют очень высокую температуру, что приводит к нагреванию воздуха, использующегося в топливной смеси до 150–200 градусов. В результате сама смесь сильно расширяется, становится неоднородной и сгорает не полностью.

Чтобы улучшить характеристики приводного узла, смесь нужно охладить — следовательно, после турбины стоит установить радиатор, которым и является интеркулер. Он позволяет достичь множества положительных изменений, среди которых стоит назвать:

  • Повышение мощности мотора;
  • Снижение содержания токсичных веществ в выхлопе;
  • Уменьшение расхода топлива;
  • Повышение «эластичности» мотора, то есть быстроты реакции на изменение подачи горючего.

Видео о том, как работает интеркулер:

Изначально интеркулеры предназначались исключительно для установки на дизельные моторы, которые являются очень чувствительными к повышенной температуре смеси — ведь дополнительный радиатор снижает температуру воздуха, выходящего из турбины, до 50–75 градусов. Однако в настоящее время ведущие производители и тюнинговые ателье практикуют монтаж интеркулеров также на бензиновые моторы.

Чаще всего встречаются воздушные интеркулеры, которые представляют собой конструкцию, подобную стандартному радиатору системы охлаждения — отличием является только прохождение через внутренние соты воздуха вместо жидкости. Они дешевле и практичнее, однако, требуют наличия большого объёма свободного пространства под капотом. Жидкостные интеркулеры намного меньше, но они требуют использования собственного насоса и электронного блока управления. Как бы там ни было, масло в интеркулере дизельного двигателя вы можете обнаружить вне зависимости от того, какой конструкцией он обладает.

Основные причины поломки

Простые решения

Если вы нашли масло в интеркулере, не стоит паниковать — вполне возможно, что вам понадобится всего лишь пара часов на устранение этого недостатка. В первую очередь, проверьте состояние сливного маслопровода, который проложен между турбиной и картером мотора — он должен быть прямым и не содержать существенных изгибов. При изогнутой сливной трубе в турбине возникает повышенное давление, которое заставляет масло продавливаться сквозь кольца уплотнения и попадать в интеркулер. Как правило, этот трубопровод изготавливается из плотного жёсткого материала, но при длительной эксплуатации он может деформироваться. Решение предельно простое — выровнять маслопровод и закрепить его в этом положении.

Если турбина кидает масло в интеркулер, осмотрите также воздуховод, ведущий к ней — в нём не должно быть никаких трещин либо отверстий. Причиной может быть и сильно забитый фильтр, не пропускающий достаточное количество воздуха. В обоих случаях внутри нагнетателя образуется зона разрежения, которая вытягивает масло и постепенно разрушает кольца уплотнения, загрязняя интеркулер. Решение — очистить фильтр, а при первой возможности заменить его, а также устранить пробоины воздухопровода.

Серьёзные проблемы

Иногда так просто отделаться от возникших проблем не удаётся — масло в патрубке интеркулера появляется в результате нарушения сообщения с картером мотора. Причиной может быть образование засоров различного типа в сливном маслопроводе — от попадания в него мусора до возникновения нагара. Очень часто автолюбители, самостоятельно проводящие ремонт дизельного мотора, используют для крепления маслопровода не специальные средства, а обычные герметики, которые при нагреве проникают внутрь трубки и образуют пробки.

Решение проблемы — снять сливной маслопровод, тщательно прочистить его и промыть, стараясь не повредить стенки трубки.

Однако это ещё не худший вариант развития событий — вполне возможно, что смазочный материал в картере поднимается выше уровня дренажного патрубка, и в результате турбина кидает масло в интеркулер. Хорошо, если вы просто переборщили с объёмом применяемого масла — а вот при нарушении вентиляции картера ситуация будет не столь легко поправимой. Одной из причин возникновения проблемы может быть нарушение целостности уплотнительных колец в цилиндро-поршневой группе, в результате чего отработанные газы будут попадать в картер и выдавливать масло через сливную трубку. Решение — капитальный ремонт двигателя с заменой колец.

Устранение последствий

Предположим, вы уже разобрались, почему масло в интеркулере появилось столь внезапно, и устранили причину попадания смазочного материала в промежуточный охладитель. Однако вам предстоит ещё выполнить очистку самого интеркулера. Если не сделать этого, масло будет смешиваться с проходящим через радиатор воздухом и попадать в топливную смесь, ухудшая параметры её горения. Кроме того, существенно снизится эффективность охлаждения воздуха в интеркулере, что приведёт к лишению автомобиля преимуществ, получаемых от его установки. В самом неприятном случае масло может загореться, что обычно происходит в результате перегрева мотора при длительной работе в предельных режимах.

Необходимо провести комплексную очистку этого приспособления — чтобы сделать это, его придётся демонтировать. Большинство интеркулеров, работающих по принципу «воздух-воздух» снять можно максимально просто — для этого достаточно открутить несколько болтов и разжать хомуты, а вот с жидкостными моделями могут возникнуть сложности. Чтобы узнать, чем промыть интеркулер от масла, внимательно изучите инструкцию по эксплуатации транспортного средства — обычно производитель предоставляет перечень допустимых средств. Если указания на них отсутствуют, приобрести их не удаётся или они обходятся слишком дорого, можно обратить внимание на универсальную автомобильную химию. В частности, хорошие результаты даёт применение средства Profoam 2000.

В сети можно часто встретить рекомендации относительно применения бензина, керосина, Уайт-спирита и прочих веществ, однако применять их без консультации со специалистом нельзя. Некоторые интеркулеры содержат материалы, которые легко повреждаются растворителями или горючим — соответственно, использование таких средств приведёт к необратимому повреждению детали силового агрегата. Идеальным вариантом является использование услуг сервисного центра, хотя это потребует от вас немалых расходов.

После того как вы промыли интеркулер согласно инструкции, указанной на ёмкости с очистительным средством, смойте остатки автомобильной химии водой. Будьте внимательны — наливать её следует только под малым давлением, так как соты радиатора могут достаточно легко повреждаться большим напором.

Повторяйте цикл очистки до тех пор, пока из интеркулера не начнёт выходить чистая вода — обычно для этого требуется 5–6 промывок. В конце можете продуть устройство тёплым воздухом под небольшим давлением — но помните, что высокая температура и увеличенный напор могут повредить интеркулер. Когда всё будет завершено, и вы полностью устраните лишнюю воду, приспособление стоит также очистить от внешних загрязнений и установить на автомобильный двигатель.

Главное — своевременное обнаружение

Помните, что чем дольше масло будет находиться в интеркулере, тем сложнее его будет вымыть обычными средствами, не прибегая к приобретению дорогостоящей профессиональной автохимии. Кроме того, игнорирование проблемы приведёт к её усугублению, что заставит вас потратить немалые средства на восстановление нормальной работоспособности двигателя и связанных с ним систем автомобиля. Поэтому, как только вы обнаружили течь масла в интеркулер, немедленно прекратите эксплуатацию транспортного средства и займитесь его диагностикой. Если самостоятельно причину обнаружить не удаётся, обратитесь к профессионалу, являющемуся сотрудником автомобильного сервисного предприятия. В любом случае оставлять без внимания проблему нельзя — это обойдётся вам чересчур дорого.

Почему турбина гонит (кидает) масло в интеркулер? Причины здесь

Назначение интеркулера

С момента появления двигателей внутреннего сгорания конструкторы работали над повышением их мощности. Они шли двумя путями — увеличением подачи горючего и объёма цилиндров. Сначала появились большие моторы с большой мощностью. Но количественный рост возможен до определённых величин, дальше ДВС будет возить сам себя, а не машину. И в легковое авто не установишь мотор грузовика. Поэтому пробовали не изменяя объём двигателя, увеличить подачу топлива. Топливный насос легко справляется с этой задачей. Но для эффективного сгорания необходим дополнительный воздух. В обычный двигатель он самостоятельно всасывается в цилиндр из атмосферы. Поступление воздуха в этом случае ограничено. Такие двигатели называют атмосферными и увеличение подачи топлива ведёт лишь к незначительному повышению мощности. Изобретение турбонаддува решило эту проблему и мотор получил дополнительный объём воздуха.

Турбина на ДВС появилась еще в начале ХХ века. Инженеры заставили выхлопной газ раскручивать лопасти, вращать компрессор и нагнетать дополнительный воздух в цилиндры. С помощью наддува улучшилось качество сгорания топливо – воздушной смеси. Поэтому при повышении мощности двигателя расход топлива не вырос. Первый турбо двигатель получил мощность на 120% больше атмосферного собрата. Сначала их применение ограничивалось судостроением и авиацией. Так было до начала 1960-х годов.

Турбины и интеркулеры, как впрочем очень многие нововведения, появились в автомобилях благодаря автоспорту. Тяга к скорости и победам привели к установке на автомобили турбонагнетателей. При равном объёме, современный спортивный двигатель с турбонаддувом имеет в три раза большую мощность и крутящий момент.

Но, повысив мощность инженеры получили проблему, связанную теперь уже с качеством воздуха. Он нагревается дважды – горячей турбиной и из-за сильного сжатия. Получается, что чем сильнее давление, тем выше температура воздуха. Двигатель просто начинает «задыхаться» и плюсы турбонаддува превращаются в минусы. Двигатель в таком режиме сильнее греется, перерасходует топливо, теряет мощность и может детонировать.

Охладить воздух и уменьшить нагрев подаваемой в цилиндры топливо — воздушной смеси помог интеркулер. Как и всё гениальнее он прост и похож на обычный радиатор охлаждения. Устанавливается между турбиной и впускным коллектором. Проходя через него горячий воздух от турбины охлаждается и поступает в цилиндры с температурой 50 – 60 °C. Прохладным воздухом двигателю легче «дышится», поэтому установка охладителя может прибавить до 20% мощности.

По типу охлаждения интеркулеры различаются на два вида – воздушного и водяного.

Воздушный — это набор трубок через которые проходит воздух. Отводят тепло медные или алюминиевые пластины которые «нанизаны» на трубки. Конструкция проста и надежна. Но не лишена недостатков. Такой интеркулер имеет достаточно большие габариты и ему постоянно необходим обдув. Поэтому чаще всего располагают в бампере или перед радиатором охлаждения двигателя. В бампере делают отверстия для встречного потока воздуха.

В водяном, трубы заключены в теплообменник и охлаждаются жидкостью. Для него требуется ещё установка радиатора, насоса, труб и устройства управления. Сложная конструкция и специфика эксплуатации сделали его не очень популярным. Жидкостный приходит на помощь только, когда невозможно установить громоздкий воздушный.

Почему турбина гонит масло в интеркулер

Механизмы турбины работают на высоких оборотах и требуют хорошей смазки. Масло поступает из системы двигателя, смазывает узлы турбины и потом сбрасывается в картер. Именно это масло при неблагоприятных обстоятельствах, и может попасть в интеркулер.

Никому из автовладельцев не хочется услышать от мастера: Турбина погнала масло. Это значит, что устройство приходит в негодность и скоро потребуется ремонт или замена. Казалось бы, виновата сама турбина. Но это не так. Скорее всего её подвели помощники, по которым поступают масло и воздух. Турбина очень сложный и капризный механизм, работающий на больших оборотах. Что бы она хорошо справлялась с обязанностями нужны чистые масло и воздух, в достаточных количествах и под оптимальным давлением. Поэтому первым делом нужно обратить внимание на маслопровод, воздуховод и воздушный фильтр.

Деформация сливного маслопровода

Выяснить эту причину замасливания проще других. Достаточно осмотреть маслопровод. По нему смазка сбрасывается в картер двигателя. Если трубка пережата, деформирована или неправильно изогнута, то масло по ней плохо отходит из подшипникового узла. Оно просачивается через уплотнители в корпус турбины и нагнетается через интеркулер в цилиндры. В этом случае простая замена недорогой трубки убережёт от дорогостоящего ремонта.

Загрязнение маслопровода

Масло из турбины стекает в картер самотёком. Поэтому даже простое загрязнение трубки приводит к затруднению слива и повышению давления в узлах турбины. Причинами могут быть:

  • использование некачественного масла
  • несвоевременная замена
  • плохой герметик
  • неправильно установленные прокладки

Под воздействием температуры грязные и дешёвые масла образуют нагар на внутренней поверхности и забивают маслопровод. Плохо установленные прокладки перекрывают входные отверстия. Герметик под воздействием температуры может попасть в трубку. Поэтому нужно использовать рекомендованное автопроизводителем масло и своевременно его менять. При монтаже маслопроводов применять термо и маслостойкие герметики. Внимательно и аккуратно устанавливать прокладки под фланцы. А загрязненный маслопровод необходимо снять и промыть.

Неисправный воздуховод

Воздуховод это обычная резиновая трубка, которую можно проколоть, порвать, пережать или прожечь. Его неисправность нарушит работу турбины и вызовет появление масла в интеркулере. Обычно воздуховод легко доступен и осмотр не вызывает затруднений. Любые повреждения свидетельствуют в пользу покупки нового. Стоит он недорого и меняется легко.

Критическое загрязнение воздушного фильтра

Воздух поступающий в двигатель загрязнен пылью, абразивом, выхлопными газами и прочими вредными частицами. Вся грязь скапливается на воздушном фильтре и он успешно справляется с обязанностями до определённого времени. Засорение фильтра атмосферного ДВС ведет к потере мощности и перерасходу топлива. В турбо моторах к этим проблемам может добавиться появление масла в интеркулере.

Грязный фильтр затрудняет поступление воздуха и на входе в турбину создаётся разрежение. Разрушаются уплотнители, и масло поступает в камеру нагнетания. Турбина начинает гнать его через охладитель в цилиндры.

Турбированные двигатели потребляют много воздуха, поэтому фильтр забивается чаще обычных и требует повышенного внимания.

Очистка

Грязный интеркулер не пропускает воздух и нивелирует работу турбины. Поэтому после устранения неисправностей его необходимо очистить. Это можно сделать только демонтировав охладитель. При очистке нежелательно применение бензина, керосина, уайт-спирита и подобных веществ.

Для промывки нужно приобрести специальный очиститель масляного нагара. Важно, что бы он не был агрессивен к материалу из которого изготовлен интеркулер. Что бы промыть, нужно следовать инструкции очистителя. Затем необходимо промыть охладитель проточной водой без напора. Скорее всего потребуется пять – шесть промывок, прежде чем из трубок потечёт чистая вода. Остатки воды выгоняют воздухом. Она ни к чему в системе питания двигателя. Давление компрессора должно быть минимальным. После этого чистый и сухой кулер можно ставить на двигатель.

О важности своевременной диагностики

Масло в системе питания двигателя приводит к фатальным последствиям. Это поломка турбины, закоксовывание колец, прогорание поршней и клапанов и прочие неприятности. Даже небольшое появление масла в интеркулере должно насторожить владельца. Необходимо прекратить эксплуатацию авто и провести диагностику. Это убережёт от замены агрегатов и дорогостоящего ремонта двигателя.

Попадание масла в интеркулер — распространенная неисправность турбированных моторов. Она вызвана особенностями конструкции и работы турбины. Неприятный симптом, который сигнализирует, что двигателю нужно уделить пристальное внимание. Просто так эту проблему оставлять нельзя. Если самостоятельная диагностика не прояснила ситуацию, нужно обратиться к профессионалу.

Почему турбина кидает масло


7 причин почему гонит масло из турбины (все случаи). Их следствие и как решить

Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе. Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.

Содержание

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло. И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.

Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла — признаки, причины и что нужно делать
Подробнее

 

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.

Через сколько км менять масло в двигателе

Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее

 

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет синий дым из выхлопной трубы автомобиля.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.

Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее

 

Методы устранения поломки

Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.

  1. Замена (в крайнем, не нежелательном случае, чистка) воздушного фильтра. Запомните, что желательно менять фильтр немного раньше регламента, приблизительно на 10%. В среднем же, его замену нужно проводить не реже, чем через каждые 8-10 тысяч километров пробега.
  2. Проверка состояния крышки воздушного фильтра и патрубков, при обнаружении засора нужно обязательно хорошенько прочистить их, удалив мусор.
  3. Проверка герметичности крышки воздушного фильтра и патрубков. При обнаружении трещин или других повреждений в зависимости от ситуации можно попробовать отремонтировать их, наложив хомуты или другие приспособления, в крайнем случае нужно купить новые детали вместо поврежденных. При этом обязательным условием будет то, что если разгерметизация была обнаружена, то перед сборкой системы с новыми комплектующими ее обязательно нужно тщательно прочистить от мусора и пыли, которые в ней находятся. Если этого не сделать — мусор будет играть роль абразива и значительно изнашивать турбину.
  4. Правильный подбор моторного масла и его своевременная замена. Это актуально для всех двигателей, а особенно для тех, которые снабжены турбонагнетателем. Лучше пользоваться качественными синтетическими или полусинтетическими маслами известных производителей, таких как Shell, Mobil, Liqui Moly, Castrol и других.
  5. Периодически необходимо контролировать состояние масляных патрубков с тем, чтобы они обеспечивали нормальное перекачивание масла по масляной системе, в частности, к турбине и от нее. В случае, если вы полностью меняете турбину, то в профилактических целях нужно выполнить их чистку, даже если на первый взгляд они относительно чистые. Лишним это не будет!
  6. Регулярно нужно выполнять контроль состояния вала, крыльчатки и подшипников, не допускать их значительного люфта. При малейших подозрениях на неисправность нужно выполнить диагностику. Лучше делать это в автосервисе, где имеется соответствующее оборудование и инструменты.
  7. В случае, если имеет место масло на выходе из турбины, то имеет смысл проверить состояние дренажной трубки, наличие в ней критических изгибов. При этом уровень масла в картере обязательно должен быть выше, чем у отверстия той трубочки. Также имеет смысл проверить вентиляцию картерных газов. Обратите внимание, что конденсат, образующийся в выпускном коллекторе из-за разности температур, зачастую принимают за масло, поскольку влага, смешиваясь с грязью, приобретает черный цвет. Нужно быть внимательным, и убедиться, что это действительно масло.
  8. Если наблюдается течь во впускную или выпускную систему двигателя, то также имеет смысл проверить состояние прокладок. Со временем и под воздействием высоких температур она может значительно износиться и выйти из строя. Соответственно, ее нужно поменять на новую. Делать это самостоятельно нужно лишь в случае, если вы уверены в своих знаниях и практическом опыте по выполнению подобных работ. В некоторых случаях вместо замены помогает простая подтяжка стягивающих болтов (но реже). Однако сильно перетягивать тоже нельзя, поскольку это может привести к обратным последствиям, когда прокладка вообще не будет держать давление.

Помните, что перегревание турбокомпрессора способствует образованию на его поверхности закоксования от моторного масла. Поэтому перед тем как заглушить турбированный двигатель, необходимо дать ему поработать на холостых оборотах некоторое время с тем, чтобы он немного остыл.

Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.

Редкие случаи

Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.

Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.

Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset h3C или h3E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.

Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.

Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.

Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.

Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.

Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.

Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.

Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.

Спрашивайте в комментариях. Ответим обязательно!

Почему турбина гонит масло? Возможные причины и способы решения проблемы

Статистика сообщает о том, что турбированных двигателей становится все больше и больше. И это вполне нормально. Турбированный силовой агрегат несет массу прямых и косвенных бонусов своему владельцу. Наличие компрессора дает возможность рациональней использовать топливо. С помощью турбины можно увеличить мощностные характеристики двигателя без необходимости увеличения объема мотора. Этого достигают посредством подачи сжатого воздуха, нагнетаемого крыльчаткой. Но здесь есть одна проблема – турбина гонит масло, что доставляет массу неудобств и больших денежных трат. Попробуем разобраться в причинах неисправности и способах решения данной проблемы.

Устройство турбокомпрессора

Если говорить простыми словами о сложном, то компрессор имеет примитивнейшую конструкцию. Турбина представляет собой корпус в виде улитки. Внутри корпуса имеется вал с двумя лопастными шестернями. Одна такая шестеренка раскручивается за счет отработанных газов. Другая также вращается, так как посажена на одном валу. Частота вращения вала может быть запредельная – до 250 тысяч оборотов в минуту. Поэтому вал должен работать на качественных подшипниках. Обычно таких подшипников два.

Практика показывает, что на рабочих оборотах турбины ни один существующий сухой подшипник не может выдержать нагрузки в таких условиях. Подшипник заклинивает, а турбина отправляется в ремонт. Инженеры долго думали, как забрать лишнюю температуру и улучшить скольжение. Со всем этим хорошо справляется масло – к валу турбины подведены смазочные каналы для каждого подшипника от картера двигателя. Таким образом, механизм может работать на высоких оборотах, повышается его производительность и надежность.

Даже полностью исправная турбина будет потреблять определенное количество масло. Чем больше водитель будет давить на газ, тем больше потребление. Нормальный расход составляет до 2,5 литра на 10 тысяч километров. Может ли турбина гнать масло в больших объемах? Это зависит от состояния ДВС.

В турбокомпрессоре есть две части – горячая и холодная. Сверху к подшипникам компрессора подведены масляные каналы. Один нужен для горячей части, другой для холодной. Далее масло, смазав подшипники, возвращается в картер. Но герметичны ли подшипники?

Подшипник никак и ни при каких условиях не должен соприкасаться с лопастями, иначе в этом случае турбина гонит масло с одной стороны в коллектор или интеркулер, а с другой стороны — в глушитель. Между подшипником и крыльчаткой установлены запорные кольца. Давлением эти кольца подпирает и масло не уходит в больших объемах.

Главный недостаток турбины

Существующий опыт эксплуатации двигателей с турбинами показывает, что эти силовые агрегаты имеют ряд проблем. Самая главная проблема связана с утечками масла из компрессора. И если турбина гонит масло на каком-то двигателе, то замена ее не всегда помогает полностью решить данную проблему.

Масло течет из компрессора лишь в случае высокого давления. Для того чтобы турбина могла протолкнуть воздух, нужно приложить очень большое усилие. Это усилие и становится причиной того, что масло течет через подшипники скольжения.

Как нормализовать давление?

Для нормализации давления еще при монтаже турбокомпрессора нужно, чтобы соблюдались определенные условия и выполнялись действия.

Так, нужно выяснить, в каком состоянии воздушный фильтр. Если он грязный и забитый, следует поставить новый. Также проверяют чистоту корпуса воздушного фильтра и патрубок. Далее нужно удостовериться, что корпус фильтра и его крышка герметичны. Если это не так, то внутрь турбокомпрессора очень легко может попасть пыль и мусор, что вскоре приведет к выходу агрегата из строя. Вместе с этим прочищают все патрубки, а при сборке следят, чтобы внутрь не попал мусор и посторонние частицы.

Также лучше заменить масло в моторе. Грязь, которая всегда есть в масле, обязательно осядет на поверхности подшипников и через какое-то количество времени компрессор заклинит.

Далеко не все слесаря и автолюбители знают и полностью выполняют все эти операции, в результате турбина гонит масло. Устанавливая компрессор, нужно четко изучить инструкцию. В основном все проблемы из-за износа и нарушений в процессе установки.

Другие причины течи масла

Утечка масла через компрессор – частая проблема. С этим сталкивался практически каждый владелец. Можно выделить следующие причины этого явления:

  • Так, неприятность случается из-за повышенного уровня масла в системе, из-за забитой системы вентиляции картерных газов. С проблемой могут столкнуться владельцы двигателей с сильным износом поршневой группы – внутри мотора высокое давление. Если засорен катализатор, то турбина гонит масло, и это нормально. При забитом маслосливном канале турбины симптомы будут те же.
  • Многие причины связаны с проблемой системы слива масла. В корпус оно подается под давлением. Масло проходит через подающую магистраль, затем оно там смешивается с воздухом и продуктами сгорания. В итоге создается пена, которая затем стекает вниз корпуса «улитки». И только потом попадает в магистраль для слива масла и далее в картер. Если канал слива будет иметь недостаточную ширину или масла в двигателе будет больше, оно будет оставаться в корпусе турбины и течь через уплотнительные элементы.

Уплотнители

Многие зря думают, что уплотнительные детали в компрессоре нужны только для того, чтобы масло не попало в корпус турбины. Это так, но главная задача уплотнения – это дать газам возможность под высоким давлением попасть в картер двигателя. Некоторые производители выпускают компрессоры и вовсе без уплотнительных колец с впускного тракта, но в этом случае масло не течет.

Течь из-за засоренного воздушного фильтра

В процессе эксплуатации автомобиля воздушный фильтр постепенно засоряется. В нем скапливается абразив. Увеличивается сопротивление для прохода воздушного потока и на входе турбины образуется вакуум. На высоких и средних оборотах двигатель работает нормально. За колесом турбины избыточное давление, поэтому масло не течет.

А вот на холостых оборотах и переходных режимах вакуум уже на входе и на выходе. На малых нагрузках масло за счет разряжения поднимается снизу корпуса турбины и затем попадает во впускной коллектор. Это тот же случай, когда турбина гонит масло в интеркулер.

А для устранения неисправности нужно очень мало – достаточно замены воздушного фильтра на новый. Иногда достаточно хорошо продуть старый фильтр.

Засоренный катализатор и турбина

Когда забит катализатор, на выходе выпускных газов также появляется сопротивление. Это приводит к повышенной нагрузке на ротор компрессора. Если и дальше эксплуатировать автомобиль, то это скажется повышенным расходом топлива, снижением динамики и мощности. Также это влечет к износу подшипников в турбине. Вот почему турбина гонит масло.

Интеркулер

В процессе работы компрессора выделяется масса тепла. Это ведет к определенным последствиям. Так, понижается эффективность работы, так как турбине трудней сжимать горячий воздух. И еще за счет повышенных нагрузок интенсивно изнашиваются детали и узлы конструкции. Все это служило главной причиной выхода из строя турбокомпрессора. Чтобы решить эту проблему, был создан интеркулер. Он нужен для понижения температуры воздуха до оптимальной величины. В автомобильной отрасли используется воздушный и жидкостный радиатор.

Турбина и масло в интеркулере

Давайте рассмотрим ситуацию, когда турбина гонит масло в интеркулер. Причины данной неприятности – это все те же дефектные маслопроводы, грязь, поврежденные воздуховоды и фильтры.

Дефект маслопровода

Маслопровод следует оценивать визуально. Он находится в большинстве случаев между турбиной и кратером двигателя. Именно через него масло подается в компрессор. Изготавливают данную трубу из стали, она имеет сложную форму. Деформировать ее достаточно трудно, но можно. Если меняется форма маслопровода, то нарушается нормальная работа турбины. Падает пропускная способность и того количества масла для нормальной и эффективной работы компрессора не хватает. Это ведет к росту давления масла, оно течет в интеркулер.

Загрязненный маслопровод

Чем старше авто, тем больше в нем скрытых дефектов и неполадок. К ним можно отнести и ситуацию, когда турбина дизеля гонит масло. Со временем на внутренней полости маслопровода образуются наслоения, снижающие диаметр канала. Это ведет опять же к росту давления в коллекторе или интеркулере.

Засоренный фильтр

Нередко владельцы авто забывают о воздушных фильтрах – не меняют и не чистят их. А ведь он играет важную роль в работе наддува. Грязный воздух ведет к нарушениям в работе турбины. Если фильтр плохо очищает поступающий воздух, он подает его в недостаточном объеме. В результате гонит масло через турбину прямиком в систему охлаждения.

Поврежденный воздуховод

В корпусе воздуховода могут образовываться трещины. Они способствуют образованию зоны с разряжением. Это приведет к тому, что масло из зоны с высоким давлением будет течь в зону с низким давлением. Затем масло спровоцирует порчу уплотнительных элементов и прокладок. Зона разряжения будет расширяться, и в этом случае масло будет течь, как лавина или цунами.

Некритичные повреждения могут быть исправлены. А если исправить невозможно, тогда нужно срочно менять, так как эксплуатация в таком режиме приведет к необходимости чистки компрессора.

Масло

Мы рассмотрели случаи, когда турбина гонит масло. Причины эти основные. Но виновником может быть и само масло, особенно некачественное. Оно для турбокомпрессорных двигателей должно быть стойким к сгоранию. Есть специальное жаростойкое масло для турбокомпрессоров. Оно не должно гореть. Обычное масло приведет к закоксовке всех каналов для смазки подшипников турбины. Поэтому подбирать смазочные материалы нужно правильно.

Какое бы масло ни было, оно изнашивается и теряет свои свойства. Образуется нагар и закоксовка каналов. Это также ведет к тому, что компрессор гонит масло.

Грязный интеркулер и последствия

Если в интеркулере будет масло, то качество охлаждения воздуха для наддува снизится. Это приведет к перегревам турбины.

Заключение

Это еще не приговор, если турбина дизель гонит масло. Причины неполадки устранить можно недорого и сравнительно просто. Главное — сделать это вовремя. И тогда машина будет радовать и дарить эмоции.

Почему турбина гонит масло в интеркулер?

Здравствуйте, уважаемые гости и читатели автомобильного блога Автогид.ру. Мы встречаемся с вами для того, чтобы узнать почему турбина гонит масло в интеркулер и причины явления. Распространённая проблема среди различных марок дизельных автомобилей. В обычном состоянии интеркулер, не должен контактировать с моторным маслом. Надо искать причину неисправности.

Появление моторного масла в интеркулере, симптомом указывающий, что в системе турбонаддува автомобиля произошёл сбой. Нужно обратить внимание, иначе серьёзной поломки не избежать.

Попадание моторного масла в интеркулер сопровождается провалами мощности автомобиля. Использовать машину до проведения диагностики и поиска причины возникшей проблемы не желательно.

В конце статьи ждёт интересное видео, как очистить турбину и интеркуллер от масла без демонтажа. Оно дополнит текстовый материал и позволит лучше разобраться в проблеме. Приятного просмотра.

Что такое интеркулер?

За последние годы количество турбированных моторов повышается. Они выгодны для водителя. Турбированные агрегаты эффективно используют топливо и увеличивают мощность без повышения объёма двигателя.

Силовые установки с использованием турбин получили, второе дыхание. Использования сжатого воздуха турбиной мотор получает неплохое прибавление мощности.

В процессе работы турбина существенно нагревается. Это сказывается на качестве её работы (горячий воздух сложнее сжать) и механизм быстрее изнашивается. Первые турбокомпрессоры быстро выходили из строя по этой причине. Они не выдерживали высоких температур, и материал изнашивался.

Для охлаждения турбины придумали интеркулер. Главная задача задача устройства заключается в понижении температуры турбокомпрессора до приемлемых величин. Интеркулер охлаждает турбину до 50-60 градусов.

По внешнему виду интеркулер напоминает радиатор охлаждения и задачи сходные. При использовании интеркулера пришлось пожертвовать мощностью турбины. Интеркулер сдерживает потоки воздуха, играя роль барьера. Это сказывается на снижении давления наддува.

В турбированных моторах интеркулеры бывают 2 типов:
Воздушники – для охлаждения турбины используют потоки воздуха.

Жидкостники – для снижения температуры турбокомпрессора используют охлаждающую жидкость.

За счёт простой конструкции и надёжности воздушники получили широкое распространение. Они используются в массе автомобилей с турбированными моторами.

Если турбина начинает гнать масло в интеркулер, значит, турбокомпрессор нуждается в диагностике. Требует пристального внимания специалистов по ремонту. Тянуть не стоит, так как промедление увеличивает расходы на выполнение ремонта.

Почему турбина гонит масло в интеркулер?

Моторное масло используется для снижения трения между рабочими элементами турбокомпрессора. Иначе они за незначительный период эксплуатации автомобиля приходят в негодность и требуют замены. Турбина сообщается с мотором для получения масла. Специалисты рекомендуют на турбированных моторах чаще его менять.

При первых признаках появления масла в интеркулере турбокомпрессора нужно автомобиль поднять на подъёмнике или загнать на смотровую яму. Снять защиту двигателя и внимательно осмотреть для определения причины неисправности. Используется переноску для полноценного освещения передней части днища автомобиля.

Причины попадания масла в интеркулер:
Деформация сливного маслопровода

Оценивается внешний вид и состояние сливного маслопровода. Размещается между картером двигателя и турбиной. Обеспечивает доставку моторного масла из картера к турбокомпрессору.

Представлен в форме изогнутой прочной трубки. Для изготовления используют прочный стальной материал исключающий деформацию. Внешние факторы заставляют маслопровод изменить форму и его функции нарушаются.

Не может оперативно доставлять необходимое количество моторного масла турбине. Деформация снижает пропускную способность и повышает давление в системе.

Высокое давление ищет пути выхода. Масло через уплотнительный материал проникает в интеркулер. Внимание обращают на внешнее состояние маслопровода. Если нельзя вернуть первоначальный вид, требуется замена.

Загрязнение маслопровода

Чем старше автомобиль, тем больше он имеет болячек (неисправностей). В турбированных автомобилях при длительном использовании турбина начинает гнать масло в интеркулер. Причины этого явления могут быть в загрязнённом маслопроводе.

Внутренняя поверхность под влиянием времени и нарушениями интервалов замен масла обрастает отложениями. Нарушается пропускная способность маслопровода. Избыточное давление выталкивает масло в интеркулер.

Для устранения неисправности демонтируется маслопровод и очищается. Действия совмещают с очередной заменой моторного масла. Эффект от процедуры будет максимальным.

Повреждение воздуховода

При использовании машины произошло повреждение воздуховода и турбина начинает гнать масло в интеркулер. В воздуховоде начинают появляться трещины и прочие повреждения. Вызваны внешним механическим воздействием. Образуется зона разрежения.

Зона разряжения притягивает моторное масло и закидывает в интеркулер. Уплотнительный материал начинает разрушаться. Загрязнение интеркулера маслом происходит высокими темпами.

Незначительные повреждения воздуховода ремонтируются. Когда зона повреждения значительная, без замены просто не обойтись.

Загрязнение воздушного фильтра

Владельцы турбированных автомобилей не придают значения загрязнению воздушного фильтра. Он играет решающую роль в обеспечения эффективной работы турбокомпрессора.

Качественная подача очищенного воздуха важна для нормальной работы турбины. Загрязнённый и недостаточно очищенный воздух вызывает нарушения в работе.

Забитый пылью и грязью фильтр не пропускает необходимое количество воздуха. Образуется зона разрежения, втягивающая моторное масло в интеркулер. Процесс незаметен для водителя, но  загрязнении фильтрующего элемента он усиливается.

Если нет возможности приобрести воздушный фильтр его можно очистить. При первой возможности меняют фильтр. Риск попадания масла в интеркуллер снижается.

Как устранить последствия попадания масла в интеркулер?

Большое количество масла, попавшее в интеркулер, ухудшает эффективность работы. Снижается уровень охлаждения турбины и она перегревается.

Когда причина попадания масла в интеркулер устранена, приступают к его очистке. Некоторое количество моторного масла, смешиваясь с воздухом, попадает в камеру сгорания мотора. Увеличивался расход топлива и мощность мотора снижается.

Для удаления моторного масла из интеркулера он демонтируется. Можно очистить не снимая, но качество удаления масла будет низким.

Демонтаж интеркулера требует разбора передней части автомобиля до мотора. Процесс отнимает много времени, если процедуру ранее не приходилось выполнять.

Проблем с демонтажем интеркулера воздушного типа охлаждения не возникает. Если тип охлаждения водяной обращаются к специалистам. Повреждение трубопроводов, подводящих жидкость для охлаждения приводит к дорогостоящему ремонту.

Когда демонтаж интеркулера выполнен приступают к очистке. Использовать агрессивные химические вещества (бензин и различного рода растворители) не рекомендуется. Они могут вызвать повреждение материала интеркулера. Повреждённые места могут стать причиной развития коррозии.

Для очистки интеркулера используются чистящие химические вещества. Можно приобрести в магазине, торгующем автохимией. Эффективно удаляют масленые загрязнения.

Первоначально наноситься на поверхность интеркулера чистящее средство. Надо выждать некоторое время и потом смыть под небольшим напором воды.  Перед установкой интеркулера на место его сушат.

Когда турбина гонит масло в интеркулер, надо искать причину этой неисправности. Игнорирование приводит к серьёзной поломке и дорогостоящему ремонту. Реагировать надо оперативно и если не получается обращаются к специалистам.

Откуда в интеркулер и впускной коллектор попадает

19.03.2019, Просмотров: 3425

Проблема скопления масла в интеркулере встречается на турбированных двигателях. Теплообменник понижает температуру воздушного заряда, повышая тем самым его плотность. Но владельцы авто с атмосферным двигателем могут найти масляный налет в корпусе воздушного фильтра, гофре и впускном коллекторе. Давайте рассмотрим причина попадания моторного масла во впускной тракт, и какими последствиями это чревато для дизельных моторов.

Откуда берется масло?
  1. Масло на впуск гонит турбина. В случае износа деталей картриджа турбины масло через компрессорную часть начинает поступать во впуск. Но не стоит сразу ремонтировать или менять турбину, начните с проверки системы вентиляции картера.
  2. Неэффективная работа маслоотделителя системы вентилирования картерных газов. Маслоотделитель предназначен для удаления из газов масляной взвеси. Если фильтрующий элемент забит, во впускной коллектор газы попадают нефильтрованными. Поэтому частички масла скапливаются в интеркулере и патрубках.
Смазка и охлаждение турбокомпрессора

Поскольку турбинная часть переносит большие температурные нагрузки, моторное масло не только смазывает подшипники ротора, но и отводит львиную долю тепла. В конструкции картриджа турбины используются упорные (центрующие) и опорные подшипники скольжения (бронзовые втулки). Подшипники работают на масляном клине. С обеих сторон картриджа установлены металлические кольца (по типу поршневых), которые препятствуют проникновению в картер воздуха из компрессорной части и выхлопных газов из турбинной. Вместе с тем они отсекают область с масляным туманом.

Поскольку в турбинной и насосной частях постоянно повышенное давление, масло стремится стечь в поддон, над которым исправная система ВКГ создает разряжение или поддерживает давление близкое к атмосферному. Подобный тип уплотнения смазывающихся элементов называется газодинамическим.

Почему турбина кидает масло?

Основные причины, из-за которых турбина кидает масло в интеркулер:

  • износ опорных подшипников, из-за которых появляется люфт и дисбаланс при вращении ротора. Изнашиваются пары трения вследствие попадания абразивных частиц (закоксованное масло, грязь из поддона) и масляного голодания. Вследствие дисбаланса уплотнения системы недостаточно для предотвращения попадания масла в интеркулер;
  • износ упорного подшипника компрессорной части. Возникает вследствие продавливания масляного клина, дисбаланса при вращении ротора.
  • повышенное давление газов в картере. Моторное масло после прохождения по каналам корпуса турбины должно самотеком сливаться в поддон. Противодействие сливу переведет к его утечке в выпускной или впускной коллектор. Отсутствие циркуляции приведет к коксованию масла и трению пары ротор-подшипники на сухую;
  • забитая трубка слива масла с турбины. Некачественная продукция и/или несоблюдение сроков замены ведут к образованию закоксованности каналов масляной системы. Налет уменьшает проходное сечение трубки и, как следствие, ее пропускную способность;
  • забитый воздушный фильтр. Загрязненный фильтрующий элемент создает значительное противодействие. Раскручиваемое турбиной компрессорное колесо создает разряжение, из-за которого масло всасывается через компрессорную часть во впускной тракт.
Проверка системы вентиляции картерных газов

Простейший способ проверки ВКГ – вывести патрубок системы в емкость и некоторое время эксплуатировать автомобиль. Для этих целей используйте обычную канистру небольшого объема, которую можно будет разместить в подкапотном пространстве, и шланг подходящего диаметра, длины. Если спустя некоторое время в канистре образовался явный масляный налет, значит, маслоотделитель не справляется с вверенной ему функцией. Решается проблема чисткой маслоотделителя. На некоторых авто фильтрующий элемент сменный.

После снятия патрубка вентиляции картера обязательно заглушите отверстии в гофре впускного тракта.

Следующий шаг – измерение давления в картерном пространстве. В зависимости от режима работы двигателя, в картере должно быть небольшое разряжение либо близкое к атмосферному давление. Для измерения достаточно подключить механический манометр к отверстию щупа, после чего завести двигатель. Проверку нужно проводить на холостых оборотах, в режиме частичной и полной нагрузки. В случае обнаружения повышенного давления остается определить, виновата ВКГ или изношенная цилиндропоршневая группа.

Чем опасно масло в теплообменнике для ДВС цикла Дизеля?

В масле присутствует большое количество углеводородов, которые легко самовоспламеняются при воздействии высоких температурах. Воспламенение топливовоздушной смеси в дизельном двигателе происходит за счет контакта топлива с разогретым от сжатия воздухом. По большому счету, дизелю без разницы, на чем работать. Главное, чтобы температуры воздуха после сжатия хватило для воспламенения. Именно поэтому ДВС цикла дизеля может работать на моторном масле даже после выключения зажигания. В таких случаях говорят, что дизель ушел в разнос. Происходит цепная реакция, при которой сгоревшее в цилиндрах масло приводит к поднятию оборотов, раскручиванию турбины и попадании во впускной коллектор еще большего количества масла. Явление крайне опасное и если вовремя не перекрыть доступ воздуха, разнос чреват дорогостоящим ремонтом двигателя.

Как промыть интеркулер?

Если после устранения неисправности теплообменник не промыть, масляный налет будет препятствовать нормальному охлаждению воздуха. Для промывки лучше всего использовать керосин или бензин. Залейте жидкость внутрь, после чего оставьте интеркулер на 10-15 минут для растворения масляного налета. Однократной промывки будет недостаточно, поэтому запаситесь терпением. Поскольку теплообменник уже снят с автомобиля, нелишним будет вымыть мойкой высокого давления грязь, пух и насекомым из сот с его наружной части.

Почему турбина гонит масло – Турбобаланс

Для «знатоков» турботехники это не вопрос: «Износились сальники…» (вариации: «некачественные сальники», «китайские сальники» и т.п.). Ответ неверный хотя бы потому, что сальников в конструкции турбины нет. Центральный корпус подшипников с обеих сторон (со стороны турбины и компрессора) герметизируется, но не сальниками, а бесконтактными динамическими уплотнениями лабиринтного типа.

Лабиринт – зазор сложной формы, который образуется между поверхностями канавки, выполненной на валу ротора, и входящего в нее кольца прямоугольного сечения (аналогичного поршневому). Разрезное кольцо за счет упругости фиксируется в корпусе подшипников. Когда вал с канавкой вращается относительно неподвижного кольца, в «лабиринте» между ними создаются локальные зоны повышенного давления. Этим достигается не абсолютная, но приемлемая непроницаемость уплотнения для газов и вязких жидкостей.

Зачем нужно герметизировать центральный корпус турбокомпрессора?

Уплотнение со стороны турбины изолирует его полость от отработавших газов, вращающих турбинное колесо. Если двигатель исправен, давление внутри центрального корпуса подшипников практически атмосферное — он соединен с вентилируемым картером мотора трубкой для слива масла. В корпусе турбины давление всегда избыточное. Не будь уплотнения, горячие отработавшие газы прорывались бы в центральный корпус, а через него и в картер двигателя, что имело бы многочисленные негативные последствия. Собственно, так и происходит, когда эффективность уплотнения с турбинной стороны снижается. Обычно работоспособность уплотнения нарушается в результате механического износа его элементов (кольца и канавки), который, в свою очередь, является следствием увеличения подвижности ротора (осевой и радиальной) из-за выработки подшипников.

С противоположной, компрессорной стороны наблюдается другая картина. Пока давление наддува не достигло заметной величины (в режиме холостого хода и пониженных оборотов двигателя), под крыльчаткой компрессора создается разрежение. В этом случае уплотнение препятствует истечению картерных газов с парами масла из центрального корпуса во впускную систему. По мере увеличения давления наддува функция уплотнения меняется – оно предотвращает прорыв наддувочного воздуха в картер двигателя. Поскольку вынос масла наиболее вероятен именно через компрессорную сторону, здесь применяют дополнительные меры защиты: маслоотражающие экраны, шайбы или буртики на валу ротора, а иногда и двойные «лабиринты».

Почему иногда все это оказывается тщетным?

Прежде всего, нужно смириться с такой крамольной мыслью: уплотнения вала герметичны не «на все сто». При нормальных рабочих условиях их все же преодолевают и отработавшие газы, и картерные газы с масляным туманом, но, подчеркнем: в мизерных, допустимых количествах. Поэтому любая исправная турбина расходует какое-то количество масла. В любом турбодвигателе напорные патрубки (после компрессора) будут замаслены. У разных моторов – в разной степени, зависящей от их конструктивных особенностей и технического состояния. Допустимый расход масла оговаривается производителем мотора, а контролируется не иначе как по убыли уровня масла в картере.

Проницаемость лабиринтных уплотнений не неизменна — она возрастает с увеличением перепада давления между «внутри» и «извне». Так, вынос паров масла через компрессорную сторону повышается в режиме холостого хода, когда давления наддува нет и разрежение под компрессорным колесом наибольшее. Именно поэтому производители турбокомпрессоров советуют избегать продолжительной (более 20-30 минут) работы турбодвигателя на холостом ходу. За это время значительное количество масла в виде масляного тумана попадает во впускную систему и далее в камеру сгорания. «Потарахтел» на холостых, «газанул» и из выхлопной трубы — сизый дым! Сильно засоренный воздушный фильтр усугубляет ситуацию. С таким даже на номинальных оборотах мотора за колесом компрессора может создаваться ощутимое разрежение, провоцирующее повышенный вынос масляного тумана.

Эти явления, которые едва ли можно характеризовать как течь турбины, происходят при нормальной циркуляции масла в корпусе подшипников. Норма – это когда масло, продавленное сквозь зазоры в парах трения, а затем взбитое и разбрызганное бешено вращающимся валом, «самотеком» стекает по внутренним стенкам корпуса и беспрепятственно возвращается в картер по сливной трубке. Вот еслициркуляция масла нарушена (обычно, из-за снижения пропускной способности слива) полость корпуса подшипников переполняется маслом и тут уж никакие уплотнения не помогут – турбина «потечет» в прямом смысле этого слова.

Слив масла может быть затруднен по двум причинам: уменьшено сечение сливной магистрали или велико противодавление картерных газов. Трубка может быть пережата или закупорена изнутри, может быть смещена прокладка, посажена на герметик, выдавившийся вовнутрь и частично перекрывший отверстие, и т.д. Повышенное давление картерных газов может быть следствием износа ЦПГ и увеличения прорыва продуктов сгорания или неисправности системы вентиляции картера (засорения фильтра, маслоотделителя, отказа клапана). Иногда противодавление настолько велико, что слив масла полностью прекращается и оно выдавливается «из всех щелей». В общем, неспроста в гарантийных документах на турбину прописаны такие требования к двигателю как допустимое сопротивление воздушного фильтра и давление картерных газов в режиме холостого хода.

Со всеми возможными неисправностями турбин и возможными их причинами можно ознакомиться в разделе — Обязательная диагностика автомобиля.

Из сказанного следует такая аксиома: турбина с неизношенными до критического уровня уплотнениями (тем более, турбина новая) сама по себе не потечет. Если турбина все же течет, на то есть внешняя причина, которую надо установить и устранить.

Турбина гонит масло в интеркулер дизельного двигателя, в чем причина и что делать

Чем сложнее техника, тем чаще она выходит из строя и тем дороже обходится её восстановление — это правило является актуальным для любого механизма, включая и мотор автомобиля. При профилактическом обслуживании дизельного двигателя, оснащённого турбонаддувом и промежуточным охладителем (интеркулером) многие владельцы транспортных средств с удивлением обнаруживают в последнем следы масла. Паниковать и готовиться к огромным затратам при этом не стоит — вполне возможно, что проблему удастся решить «малой кровью». Сначала необходимо определить, почему же турбина гонит масло в интеркулер, а затем уже приступать к устранению обнаруженного дефекта.

Причины присутствия масла в интеркулере могут носить различный характер

Назначение детали


И тут у некоторых автомобилистов, не слишком подробно вникающих в устройство своего автомобиля, может возникнуть вопрос — а что, собственно говоря, такое интеркулер, как он выглядит и зачем нужен? Обратив своё внимание на школьный курс физики, мы можем вспомнить, что при сильном нагревании вещества расширяются, а при охлаждении — наоборот, уплотняются. Если автомобиль оборудован турбонаддувом, воздух в нём проходит сквозь нагнетатель, приводимый в движение выхлопными газами. Последние, как известно, имеют очень высокую температуру, что приводит к нагреванию воздуха, использующегося в топливной смеси до 150–200 градусов. В результате сама смесь сильно расширяется, становится неоднородной и сгорает не полностью.

Чтобы улучшить характеристики приводного узла, смесь нужно охладить — следовательно, после турбины стоит установить радиатор, которым и является интеркулер. Он позволяет достичь множества положительных изменений, среди которых стоит назвать:

  • Повышение мощности мотора;
  • Снижение содержания токсичных веществ в выхлопе;
  • Уменьшение расхода топлива;
  • Повышение «эластичности» мотора, то есть быстроты реакции на изменение подачи горючего.

Видео о том, как работает интеркулер:


Изначально интеркулеры предназначались исключительно для установки на дизельные моторы, которые являются очень чувствительными к повышенной температуре смеси — ведь дополнительный радиатор снижает температуру воздуха, выходящего из турбины, до 50–75 градусов. Однако в настоящее время ведущие производители и тюнинговые ателье практикуют монтаж интеркулеров также на бензиновые моторы.

Чаще всего встречаются воздушные интеркулеры, которые представляют собой конструкцию, подобную стандартному радиатору системы охлаждения — отличием является только прохождение через внутренние соты воздуха вместо жидкости. Они дешевле и практичнее, однако, требуют наличия большого объёма свободного пространства под капотом. Жидкостные интеркулеры намного меньше, но они требуют использования собственного насоса и электронного блока управления. Как бы там ни было, масло в интеркулере дизельного двигателя вы можете обнаружить вне зависимости от того, какой конструкцией он обладает.

[banner_adsense-netboard]{banner_adsense-netboard}[/banner_adsense-netboard]

Основные причины поломки


Простые решения

Если вы нашли масло в интеркулере, не стоит паниковать — вполне возможно, что вам понадобится всего лишь пара часов на устранение этого недостатка. В первую очередь, проверьте состояние сливного маслопровода, который проложен между турбиной и картером мотора — он должен быть прямым и не содержать существенных изгибов. При изогнутой сливной трубе в турбине возникает повышенное давление, которое заставляет масло продавливаться сквозь кольца уплотнения и попадать в интеркулер. Как правило, этот трубопровод изготавливается из плотного жёсткого материала, но при длительной эксплуатации он может деформироваться. Решение предельно простое — выровнять маслопровод и закрепить его в этом положении.

Если турбина кидает масло в интеркулер, осмотрите также воздуховод, ведущий к ней — в нём не должно быть никаких трещин либо отверстий. Причиной может быть и сильно забитый фильтр, не пропускающий достаточное количество воздуха. В обоих случаях внутри нагнетателя образуется зона разрежения, которая вытягивает масло и постепенно разрушает кольца уплотнения, загрязняя интеркулер. Решение — очистить фильтр, а при первой возможности заменить его, а также устранить пробоины воздухопровода.

Серьёзные проблемы

Иногда так просто отделаться от возникших проблем не удаётся — масло в патрубке интеркулера появляется в результате нарушения сообщения с картером мотора. Причиной может быть образование засоров различного типа в сливном маслопроводе — от попадания в него мусора до возникновения нагара. Очень часто автолюбители, самостоятельно проводящие ремонт дизельного мотора, используют для крепления маслопровода не специальные средства, а обычные герметики, которые при нагреве проникают внутрь трубки и образуют пробки. Решение проблемы — снять сливной маслопровод, тщательно прочистить его и промыть, стараясь не повредить стенки трубки.

Однако это ещё не худший вариант развития событий — вполне возможно, что смазочный материал в картере поднимается выше уровня дренажного патрубка, и в результате турбина кидает масло в интеркулер. Хорошо, если вы просто переборщили с объёмом применяемого масла — а вот при нарушении вентиляции картера ситуация будет не столь легко поправимой. Одной из причин возникновения проблемы может быть нарушение целостности уплотнительных колец в цилиндро-поршневой группе, в результате чего отработанные газы будут попадать в картер и выдавливать масло через сливную трубку. Решение — капитальный ремонт двигателя с заменой колец.

Устранение последствий


Предположим, вы уже разобрались, почему масло в интеркулере появилось столь внезапно, и устранили причину попадания смазочного материала в промежуточный охладитель. Однако вам предстоит ещё выполнить очистку самого интеркулера. Если не сделать этого, масло будет смешиваться с проходящим через радиатор воздухом и попадать в топливную смесь, ухудшая параметры её горения. Кроме того, существенно снизится эффективность охлаждения воздуха в интеркулере, что приведёт к лишению автомобиля преимуществ, получаемых от его установки. В самом неприятном случае масло может загореться, что обычно происходит в результате перегрева мотора при длительной работе в предельных режимах.

Необходимо провести комплексную очистку этого приспособления — чтобы сделать это, его придётся демонтировать. Большинство интеркулеров, работающих по принципу «воздух-воздух» снять можно максимально просто — для этого достаточно открутить несколько болтов и разжать хомуты, а вот с жидкостными моделями могут возникнуть сложности. Чтобы узнать, чем промыть интеркулер от масла, внимательно изучите инструкцию по эксплуатации транспортного средства — обычно производитель предоставляет перечень допустимых средств. Если указания на них отсутствуют, приобрести их не удаётся или они обходятся слишком дорого, можно обратить внимание на универсальную автомобильную химию. В частности, хорошие результаты даёт применение средства Profoam 2000.

В сети можно часто встретить рекомендации относительно применения бензина, керосина, Уайт-спирита и прочих веществ, однако применять их без консультации со специалистом нельзя. Некоторые интеркулеры содержат материалы, которые легко повреждаются растворителями или горючим — соответственно, использование таких средств приведёт к необратимому повреждению детали силового агрегата. Идеальным вариантом является использование услуг сервисного центра, хотя это потребует от вас немалых расходов.

После того как вы промыли интеркулер согласно инструкции, указанной на ёмкости с очистительным средством, смойте остатки автомобильной химии водой. Будьте внимательны — наливать её следует только под малым давлением, так как соты радиатора могут достаточно легко повреждаться большим напором. Повторяйте цикл очистки до тех пор, пока из интеркулера не начнёт выходить чистая вода — обычно для этого требуется 5–6 промывок. В конце можете продуть устройство тёплым воздухом под небольшим давлением — но помните, что высокая температура и увеличенный напор могут повредить интеркулер. Когда всё будет завершено, и вы полностью устраните лишнюю воду, приспособление стоит также очистить от внешних загрязнений и установить на автомобильный двигатель.

Главное — своевременное обнаружение


Помните, что чем дольше масло будет находиться в интеркулере, тем сложнее его будет вымыть обычными средствами, не прибегая к приобретению дорогостоящей профессиональной автохимии. Кроме того, игнорирование проблемы приведёт к её усугублению, что заставит вас потратить немалые средства на восстановление нормальной работоспособности двигателя и связанных с ним систем автомобиля. Поэтому, как только вы обнаружили течь масла в интеркулер, немедленно прекратите эксплуатацию транспортного средства и займитесь его диагностикой. Если самостоятельно причину обнаружить не удаётся, обратитесь к профессионалу, являющемуся сотрудником автомобильного сервисного предприятия. В любом случае оставлять без внимания проблему нельзя — это обойдётся вам чересчур дорого.

подводных океанических турбин: новый подход к чистой энергии?

Новая технология, использующая силу океанских течений, может обеспечить чистую и безграничную возобновляемую энергию, говорят некоторые ученые.

Группа ученых и инженеров, называющих себя «ботаниками в гидрокостюмах и ластах», запустила краудфандинговую кампанию под названием Crowd Energy, чтобы сделать именно это. Их идея состоит в том, чтобы использовать гигантские подводные турбины для сбора энергии из глубоководных течений, таких как Гольфстрим у побережья Флориды.

Хотя энергия, вырабатываемая этими турбинами, не может полностью заменить ископаемое топливо, как утверждает группа, эти устройства все же могут быть важным источником чистой энергии, говорят эксперты. [См. Изображения прототипов океанских турбин]

Океанские течения — это один из источников естественной энергии, к которому никто раньше не обращался, либо потому, что они не знали об этом, либо потому, что у них не было технологий для ее захвата, — сказал Тодд Янка, основатель из Crowd Energy, и человек, стоящий за идеей разработки океанских турбин.

Конечно, идея использования подводных турбин для использования энергии глубоководных течений вызывает опасения по поводу потенциального воздействия на окружающую среду. Хотя система предназначена для сведения к минимуму угрозы морской жизни, необходимо проводить исследования в океане для изучения потенциальных последствий.

Чистые токи

Проект Crowd Energy вырос из желания найти безграничный источник чистой энергии в качестве альтернативы ископаемому топливу и ядерной энергии.

Большинство людей знакомы с солнечной или ветровой энергией, но «то, что мы наблюдаем, — это захват энергии, которую большинство людей никогда не видели», — сказал Янка Live Science.По его словам, хотя ветер и солнечная энергия являются многообещающими, они ограничены своим качеством и постоянством.

Янка ранее работал с пилотируемыми подводными аппаратами, где, по его словам, большую часть времени он боролся за то, чтобы удерживать подводный аппарат в одном месте у морского дна, потому что течения были очень сильными. Он думает, что может использовать эти подводные потоки для выработки энергии, которую можно перебросить на берег.

Другие компании, такие как General Electric, пытались адаптировать ветряные турбины для использования в океане, но они предназначены для улавливания энергии низкой плотности, переносимой по воздуху, а не энергии высокой плотности от океанских течений.Crowd Energy стремится использовать другой подход.

Янка и его коллеги разработали систему, названную «турбиной энергии океана», которая вращается намного медленнее, чем ветряная турбина, но генерирует намного большую вращающую силу или крутящий момент.

Турбина Crowd Energy состоит из трех наборов лопастей, которые напоминают оконные ставни. Эти конструкции предназначены для закрытия, когда вода течет в том же направлении, что и лопасти, и открываются, когда вода движется в противоположном направлении. Сила воды вращает лопасти и заставляет вращаться вал, а

.

Научная причина, почему ветровые турбины имеют 3 лопасти

Люди веками использовали энергию ветра. Ветер был важным источником энергии на протяжении всей истории человечества — от парусных лодок до ветряных мельниц.

В последние годы энергия ветра приобрела большую популярность как эффективная и экологически безопасная альтернатива ископаемым видам топлива. Ветряные фермы начали усеивать береговые линии и горные вершины по всему миру, и теперь вы, вероятно, заметили их особый дизайн.

Так почему же у ветряных турбин три лопасти, а не меньше или больше? Ответ кроется в технике, лежащей в основе ветроэнергетики, и в том, как максимально увеличить выход энергии.Чтобы эффективно производить как можно больше электроэнергии, нужно учесть многое.

Источник: Жанна Менжуле / Flickr

Как работают ветряные турбины ?: История ветроэнергетики и наука, лежащая в основе этого

Ветряные турбины, вырабатывающие электричество, старше, чем некоторые могут подумать. Первая такая турбина была изобретена в 1888 году Чарльзом Ф. Брашем. Он имел замечательные 144 деревянных лопасти и мог генерировать мощность 12 киловатт.

До середины 1930-х годов многие сельские дома в Америке зависели от энергии ветра как единственного источника электроэнергии.Турбины были доступным и экономичным способом питания удаленных мест, которые иначе не обслуживались основными линиями электропередачи.

После расширения линий электропередачи по всей территории Соединенных Штатов Америки ветряные турбины в сельской местности практически прекратили свое существование, и энергия ветра ушла в прошлое. Лишь в последние десятилетия наблюдается возрождение интереса к энергии ветра как к дешевой альтернативе другим формам производства энергии.

Принципы производства энергии ветра сегодня так же просты, как и в 19 веке.Ветер — это просто движущийся воздух, а там, где есть движение, есть кинетическая энергия.

Ветровые турбины предназначены для создания препятствия для этой кинетической энергии, замедления ее и преобразования в электрическую энергию. Это препятствие представляет собой лопасти турбин, которые специально разработаны для выработки максимального количества энергии.

Однако разработка и использование лопаток турбины — это тонкая наука, которая зависит от ряда факторов, таких как аэродинамика и сопротивление воздуха.

Источник: Андрес Франки Угарт / Wikimedia Commons

Проектирование лопастей турбины: скорость, аэродинамика и скорость звука

При проектировании лопастей ветряной турбины учитывается ряд факторов. Пожалуй, самый важный фактор — это аэродинамика.

Аэродинамика относится к свойствам твердого объекта и воздуха вокруг него, взаимодействующего с ним. С учетом этого, лопасти ветряной турбины похожи на крылья самолета.

Задняя часть лопасти изогнута больше, чем передняя, ​​так же, как крыло самолета изгибается вверх на конце.Эта разнообразная форма вызывает перепад давления, когда воздух движется по лопасти, что и заставляет лопасти двигаться.

Из-за того, что лезвие заблокировано, воздух движется за лезвием с большей скоростью, чем перед ним. Это то, что приводит в движение вращение лопастей и запускает процесс выработки электроэнергии.

Однако, чтобы лопасти двигались ветром, недостаточно. Инженеры должны учитывать скорость и сопротивление при проектировании лопастей, чтобы обеспечить высочайший уровень эффективности.

Например, если слишком большое сопротивление создается препятствием лопастей, выходная мощность будет намного ниже. Если создается недостаточное сопротивление, лопасти могут двигаться слишком быстро, в результате чего они преодолевают звуковой барьер.

Одно из самых больших преимуществ ветряных турбин — их бесшумность. Если они преодолеют звуковой барьер, это может привести к тому, что жители вблизи предлагаемых ветряных электростанций с большей вероятностью будут противиться установке турбин.

Источник: Ad-liftra / Wikimedia Commons

Выбор идеального количества лопастей

В целом большинство ветряных турбин стандартно работают с тремя лопастями.Решение разработать турбину с тремя лопастями было чем-то вроде компромисса.

Из-за меньшего сопротивления одна лопасть была бы оптимальным числом, когда дело доходит до выхода энергии. Однако одна лопасть может вызвать разбалансировку турбины, и это не практический выбор для обеспечения устойчивости турбины.

Точно так же два лезвия обеспечат больший выход энергии, чем три, но будут иметь свои проблемы. Двухлопастные ветряные турбины более подвержены явлению, известному как гироскопическая прецессия, что приводит к колебаниям.Естественно, это колебание создаст дополнительные проблемы со стабильностью турбины в целом. Это также вызовет нагрузку на составные части турбины, что приведет к ее износу со временем и постепенному снижению эффективности.

Любое количество лопастей, большее трех, создаст большее сопротивление ветру, замедлит выработку электричества и, таким образом, станет менее эффективным, чем трехлопастная турбина.

По этим причинам турбины, спроектированные с тремя лопастями, являются идеальным компромиссом между высоким выходом энергии и большей стабильностью и долговечностью самой турбины.

Источник: Ionna22 / Wikimedia Commons

Будущее ветряных турбин: не может быть лопастей лучше трех?

Несмотря на то, что трехлопастные турбины стали стандартной моделью производства чистой энергии в последние годы, это не значит, что так будет всегда. Инженеры все еще работают над более совершенными и эффективными конструкциями для будущих усилий по производству энергии.

Одна из наиболее популярных предлагаемых конструкций — безлопастная турбина. Хотя это может показаться противоречащим сопротивлению, необходимому для преобразования энергии ветра в электричество, на самом деле создание турбины без лопастей дает ряд преимуществ.

Одно из преимуществ — стоимость и обслуживание. Современные турбины в своей работе подвергаются большим нагрузкам. Они могут выполнять до двадцати оборотов в минуту и ​​развивать скорость 180 миль в час (289 км / ч), что приводит к огромной силе. Помимо эрозии, которой они подвергаются в неблагоприятных погодных условиях на море, легко понять, почему качество лопаток турбины со временем значительно ухудшается.

Такие компании, как Vortex Bladeless, создали прототип безлопастных турбин, которые фактически используют гироскопическое движение для выработки энергии ветра.Производство их конструкции потенциально может стоить до 50% меньше, чем у традиционных турбин, и не будет так сильно ухудшаться со временем.

Хотя трехлопастные турбины, безусловно, являются наиболее эффективным решением на данный момент, это может быть не всегда. Пока безлопастные турбины не станут нормой, мы должны благодарить эффективность трехлопастных турбин за подавляющее большинство нашего производства энергии ветра.

.Блог

Ethical Man: Почему не работают ветряные микровентиляторы

Самое удручающее в попытках вести более экологичный образ жизни — это то, что все дело в бездействии.

Нам говорят, что мы должны прекратить летать, перестать водить машину, перестать есть мясо, перестать топить наши дома … список можно продолжать и продолжать.

Так что приятно узнать, что вы можете сделать что-то, что снизит ваше воздействие на окружающую среду, И требует, чтобы вы купили себе хороший комплект для загрузки.

Принесите отечественный ветряк!

Для просмотра этого контента у вас должен быть включен Javascript и установлен Flash. Посетите BBC Webwise для получения полных инструкций. Если вы читаете через RSS, вам необходимо посетить блог, чтобы получить доступ к этому контенту.

Что может быть экологически безопаснее, чем получение электричества от ветра, и что может быть лучше этического почетного знака, чем турбина, крутящаяся на моей крыше?

Это определенно то, о чем я думал три года назад, когда редактор Newsnight предложил мне и моей семье попытаться сделать наш образ жизни более экологичным.

К сожалению, я был не единственным подражателем этики, который хотел пожать ветер. Когда я начал изучать возможность установки турбины в моем лондонском доме с террасами, лидер тори Дэвид Кэмерон объявил о своем стремлении сделать то же самое.

Вопрос был в том, кто поднимет их первым?

Три года спустя, ни у меня, ни у лидера партии тори нет турбины на крыше.
Почему?

Ответ очень прост. В большинстве городских районов Великобритании ветряные турбины просто не работают.

Да, они вращаются, но они не вырабатывают значительного количества энергии. Почему бы и нет?

Вот немного науки … (не волнуйтесь, вы сможете следить за ней).

Простое уравнение дает силу ветра. Мощность = 0,5 x площадь сбора x куб скорости ветра.

Это говорит нам о том, что мощность турбины связана с двумя факторами: размером турбины и силой ветра.

Давайте сначала посмотрим на размер.

Вернитесь к математике на экзаменах GCSE (я достаточно взрослый, чтобы сдавать экзамены O-level).Без сомнения, вы смутно помните, что площадь круга равна константе пи (3,14), умноженной на радиус круга в квадрате.

Это означает, что при увеличении длины лопатки турбины площадь сбора непропорционально увеличивается.

Возьмите микротурбину, которую я планировал. Его лезвия имели длину 1,75 м, что давало площадь сбора чуть менее 10 кв. М. Крошечный.

Сравните это с ветряными турбинами, которые я посетил в Техасе ранее в этом году. У некоторых из них были лопатки турбины длиной 45 м, что дало собираемую площадь 6 358 кв. М.Огромный.

Вывод ясен из математики — небольшие турбины имеют непропорционально меньшие площади сбора и, следовательно, вырабатывают значительно меньше энергии.

А как насчет скорости ветра?

Ключевым моментом здесь является то, что куб зависит от скорости ветра. Сила ветра связана с кубом скорости ветра. Так что при малых скоростях ветра практически ничего не получится. Когда это действительно дует, вы получаете много энергии.

Вот почему. Удвойте скорость ветра, и вы получите в восемь раз больше мощности.Увеличьте его в четыре раза, и вы получите в 64 раза больше. В восемь раз больше скорости, а мы говорим о более чем 500-кратной мощности.

Цифры, данные Windsave, компанией, которая собиралась установить мою ветряную турбину, подтвердили это.

Он хвастался, что его турбина 1,75 м будет вырабатывать 1 кВт мощности на скорости 12,5 м в секунду.

Довольно хорошо, но 12,5 м / с — это ветер силой 6 баллов, приличный ветер.

Уменьшите скорость ветра вдвое до шести метров в секунду (умеренный ветер) и — благодаря этому закону куба — теперь вы получаете всего 120 Вт — это два стандартных лампы накаливания (10 энергосберегающих компактных флуоресцентных ламп).

Хм, неплохо.

Мой дом находится на склоне самого высокого холма в Лондоне и относительно незащищен, но мне сказали, что средняя скорость ветра, вероятно, будет от 4 до 5 метров в секунду. (Вы можете узнать скорость ветра в вашем районе здесь.)

На таких скоростях мне повезло получить 25 Вт. Этого едва хватает на две энергосберегающие лампочки. Недостаточно, чтобы выполнить обещание компании сократить мои счета за электричество «до 30% в год».

Сообщение ясное.В большинстве мест в Великобритании микроветровые турбины никогда не производят значительного количества электроэнергии.

Совершенно абсурдно заявление, сделанное Energy Saving Trust, когда я планировал свою турбину, о том, что домашние ветряные турбины могут обеспечивать 4% всей потребности Великобритании в электроэнергии и сокращать выбросы углекислого газа на 6%.

Это также предполагает, что правительству следует еще раз подумать о предложении щедрого зеленого тарифа на электроэнергию, вырабатываемую микроветровыми турбинами.

И, если потребуется еще какое-то доказательство моей точки зрения, в сентябре этого года Windsave разорился.

Конечно, не вся ветроэнергетика — это тупик. Наши расчеты говорят нам, что мощность резко возрастает по мере увеличения размера турбины и скорости ветра. Таким образом, 10-метровая турбина при ветре в 10 узлов генерирует в 100000 раз больше мощности, чем 1-метровая турбина при ветре в 1 узел.

Действительно, если бы Камден, мой местный совет, дал мне разрешение на проектирование одной из тех техасских громад, он бы генерировал значительную мощность — примерно 200 кВт — даже со скоростью 4 м / с.

Но даже эти впечатляющие цифры не могут скрыть неудобную правду об энергии ветра: за исключением штормовых условий, это — по сравнению с ископаемым топливом — очень разреженный источник энергии.

Профессор Дэвид Маккей, новый главный научный сотрудник Министерства энергетики и изменения климата, подсчитал это. Вместо кВт он рассчитывает мощность в кВт / ч и оценивает, что если мы разместим ветряные турбины в самых ветреных 10% страны, мы будем производить только 20 кВт / ч в день на человека в Великобритании.

По словам Маккея, для того, чтобы проехать 50 км, требуется 40 кВтч.

Добавьте морские турбины, покрывающие треть доступных участков мелководья (44 000 турбин), и установите глубоководные турбины на полосе шириной 9 км по всему британскому побережью, и вы получите дополнительно 48 кВт · ч в день на человека.

Это много энергии, но даже по весьма скромным оценкам средний житель Великобритании потребляет 125 кВт / ч в день.

Это приводит к удручающему выводу. Ветер — это, в лучшем случае, лишь частичное решение проблемы получения энергии с низким содержанием углерода.

.

VI. Сопоставьте компоненты 1-8 с их функциями a-h с помощью этой упрощенной схемы ветряной турбины.

А Б
1 ступица a передает мощность на генератор
2 лезвия b связывает лопасти с низкооборотным валом
3-ступенчатая коробка передач c содержит основные компоненты
4 быстроходных вала d останавливает турбину
5 генератор e захват энергии ветра
6 корпус (гондола) f увеличивает частоту вращения вала
7 тормоз г реле питания зубчатой ​​передачи
8 тихоходный вал ч производит электричество

VII. Прочтите веб-страницу и ответьте на вопросы ниже.

ТЕХНОКАНАЛ: телеканал для тех, кто любит технологии

Techno Channel взял интервью у эксперта по ветряным турбинам, доктора Роджера Джонса.

Как работает ветряк?

Ветер дует на лопасти и заставляет их вращаться. Это заставляет вал вращаться со скоростью около 30-60 об / мин.

Но разве это не слишком медленно? Вал генератора должен вращаться со скоростью 1200-1400 об / мин.

Верно. Есть два вала. Есть тихоходный вал и высокоскоростной вал. Тихоходная прикреплена к большой передаче. Быстроходный прикреплен к малой шестерне. Большая шестерня заставляет маленькую шестерню вращаться, а маленькая шестерня заставляет вращаться высокоскоростной вал. Этот вал вращается со скоростью 1200-1400 об / мин.

Ага, понятно. И он заводит генератор на такой скорости?

Верно. А затем генератор вырабатывает электричество переменного тока.

Что произойдет, если ветер будет слишком сильным?

Анемометр измеряет скорость ветра. Он отправляет эти данные контроллеру. (Контроллер представляет собой небольшой компьютер.) Если скорость ветра превышает 90 км / ч, контроллер автоматически выключает ветряную турбину. Это предотвращает повреждение турбины.

1. Какая часть вращает тихоходный вал?

2. Каковы две основные функции контроллера?

3.Какая часть передает вращение генератору?

Говоря

Роторы и турбины

VIII Пройдите эту викторину. Что вы знаете о ветряных турбинах?

1. Какова высота башни самой высокой ветряной турбины в мире? а) около 100 м б) около 180 м в) около 200 м 2. Насколько высока самая высокая турбина в мире? а) около 1800 м б) около 2300 м в) около 2600 м 3.Какая минимальная скорость ветра для большой ветряной турбины? а) примерно 15 км / ч б) примерно 20 км / ч в) примерно 25 км / ч 4. Какова максимальная скорость ветра для большой ветряной турбины? а) около 45 км / ч б) около 70 км / ч в) около 90 км / ч

Электродвигатели

Чтение

I. Прочтите следующие слова:

механический, двигатель, утилизировать, преобразовать, домашнее хозяйство, желательно, взаимозаменяемость, стандартизированный, синхронный, единообразие.


Дата: 11.12.2015; просмотр: 1706


.

Виды энергии — урок. Английский язык, 10–11 класс.

Когда вы говорите о различных типах энергии, которые влияют на окружающую среду, вам понадобится соответствующий словарь.

Ископаемое топливо — топливо, такое как уголь или нефть, добываемое из-под земли;

Выработка электроэнергии — производство энергии, обычно электричества, которая используется для обеспечения света, тепла и т. Д .;

Энергия ветра — электроэнергия, произведенная с помощью ветряных турбин;

Ветряная электростанция — группа ветряных турбин (= высокие конструкции с лопастями, обдуваемыми ветром), которые используются для производства электроэнергии;

Атомная электростанция — место, где производство энергии высвобождается при разделении ядра (= центральной части) атома;

Альтернативная форма энергии — одна из двух или более вещей, которые вы можете выбрать между видами энергии;

Ветряная турбина — машина с длинными частями наверху, которые вращаются ветром, используемая для производства электроэнергии;

Незанятые участки — места никого нет;

Контроль направления ветра — контроль направления ветра;

Солнечная энергия — энергия, использующая энергию солнца;

Гидроэнергетика — гидроэнергетика (= производство электроэнергии за счет быстро движущейся воды).

Примеры:

Китай мог бы удовлетворить значительную часть своих потребностей в электроэнергии за счет энергии ветра .

В Европе люди выбирают солнечную энергию .

Компания планирует разместить ветряных турбин .

.

Почему турбина гонит масло? возможные причины и способы решения проблемы

Даже с новыми двигателями, старые способы сохранить работу двигателя работают

Неожиданные или случайные серьезные ошибки — признак того, что пришло время действовать. Чем раньше вы отремонтируете свой автомобиль, тем дешевле это будет. Общей чертой всех современных дизелей является то, что одна неисправность создает другую.

Отказа турбины очень быстро приводит к блокировке клапана EGR и необратимо повреждает DPF. Иногда счет может оказаться болезненным, но быстрая реакция поможет сохранить деньги. Для многих владельцев предстоящие расходы — это момент, когда пришло время расстаться с автомобилем. Приобретая подержанный современный дизель, нужно учитывать тот факт, что он требует как минимум одного капитального ремонта.

Мы советуем вам подготовить «стартовый взнос» не менее 25 процентов стоимости автомобиля на срочный ремонт сразу после покупки. Однако, прежде чем у нас кончатся деньги на машину, обязательно отвезите ее в мастерскую. Диагностика не расскажет нам всего, но иногда она избавит вас от неприятностей.

Article Rating

Предыдущая

Как ухаживать за двигателем, чтобы продлить срок службы?

Назначение детали

И тут у некоторых автомобилистов, не слишком подробно вникающих в устройство своего автомобиля, может возникнуть вопрос — а что, собственно говоря, такое интеркулер, как он выглядит и зачем нужен? Обратив своё внимание на школьный курс физики, мы можем вспомнить, что при сильном нагревании вещества расширяются, а при охлаждении — наоборот, уплотняются. Если автомобиль оборудован турбонаддувом, воздух в нём проходит сквозь нагнетатель, приводимый в движение выхлопными газами

Последние, как известно, имеют очень высокую температуру, что приводит к нагреванию воздуха, использующегося в топливной смеси до 150–200 градусов. В результате сама смесь сильно расширяется, становится неоднородной и сгорает не полностью.

Чтобы улучшить характеристики приводного узла, смесь нужно охладить — следовательно, после турбины стоит установить радиатор, которым и является интеркулер. Он позволяет достичь множества положительных изменений, среди которых стоит назвать:

  • Повышение мощности мотора;
  • Снижение содержания токсичных веществ в выхлопе;
  • Уменьшение расхода топлива;
  • Повышение «эластичности» мотора, то есть быстроты реакции на изменение подачи горючего.

Видео о том, как работает интеркулер:

Чаще всего встречаются воздушные интеркулеры, которые представляют собой конструкцию, подобную стандартному радиатору системы охлаждения

— отличием является только прохождение через внутренние соты воздуха вместо жидкости. Они дешевле и практичнее, однако, требуют наличия большого объёма свободного пространства под капотом. Жидкостные интеркулеры намного меньше, но они требуют использования собственного насоса и электронного блока управления. Как бы там ни было, масло в интеркулере дизельного двигателя вы можете обнаружить вне зависимости от того, какой конструкцией он обладает.

Другие причины течи масла

Утечка масла через компрессор – частая проблема. С этим сталкивался практически каждый владелец. Можно выделить следующие причины этого явления:

  • Так, неприятность случается из-за повышенного уровня масла в системе, из-за забитой системы вентиляции картерных газов. С проблемой могут столкнуться владельцы двигателей с сильным износом поршневой группы – внутри мотора высокое давление. Если засорен катализатор, то турбина гонит масло, и это нормально. При забитом маслосливном канале турбины симптомы будут те же.
  • Многие причины связаны с проблемой системы слива масла. В корпус оно подается под давлением. Масло проходит через подающую магистраль, затем оно там смешивается с воздухом и продуктами сгорания. В итоге создается пена, которая затем стекает вниз корпуса «улитки». И только потом попадает в магистраль для слива масла и далее в картер. Если канал слива будет иметь недостаточную ширину или масла в двигателе будет больше, оно будет оставаться в корпусе турбины и течь через уплотнительные элементы.

Срок службы турбины на дизеле

Турбокомпрессор бензинового или дизельного двигателя изначально имеет достаточно большой ресурс, который планово может даже превышать моторесурс силового агрегата до первого капитального ремонта. На практике турбина может выходить из строя гораздо быстрее, требуя регулярной проверки работоспособности.

Средний срок службы турбины дизельного двигателя находится на отметке около 150-250 тыс. пройденных километров. Что качается бензиновых двигателей, турбина на таких моторах может прослужить немного дольше, однако на срок службы сильно влияют конструктивные особенности турбонагнетателя и индивидуальные условия эксплуатации.

Как сберечь турбину на «бензиновом» двигателе? Несколько простых советов!

Двигатели с турбонаддувом стали устанавливаться на автомобили всё чаще. Сейчас уже практически невозможно встретить атмосферные агрегаты даже в среднем классе, не говоря уже о премиальном. И такой подход полностью оправдан, ведь турбированные моторы выдают большую мощность при малом объеме и небольшом потреблении топлива. Но при неправильной эксплуатации, нагнетатели могут быстро прийти в негодность даже на новом авто.

Турбина это высокотехнологичный и сложный агрегат, замена которого может обойтись в существенную сумму. Чтобы сохранить его в рабочем состоянии как можно дольше, нужно соблюдать несколько советов.

Легко ли диагностировать повреждение лопастей турбины?

В случае если вы подозреваете износ компонентов турбины, для начала вы должны провести диагностику колес турбокомпрессора. Например, визуально осмотреть состояние колеса компрессора турбины вы можете достаточно легко. Для этого вам необходимо отсоединить от турбины модуль подачи воздуха. В результате вы сможете внимательно рассмотреть износ лопастей компрессора. 

Но для того чтобы сделать диагностику колеса турбины со стороны выпускной системы двигателя. Для этого вам придется полностью снимать турбокомпрессор с двигателя и полностью его разобрать. 

Правда чаще всего повреждается колесо компрессора, куда поступает воздух с улицы. Повреждение колеса со стороны выхлопной системы может произойти только при попадании в турбину посторонних предметов из двигателя.

Например, в случае обрыва ремня ГРМ (в случае, когда клапана двигателя встретились с поршнями) в результате чего двигатель вышел из строя. В этом случае после некачественной очистки двигателя от стружки и других компонентов разрушения, запуск мотора может привести к повреждению турбины. 

Признаки неисправностей турбокомпрессора
Симптом: Проявления: Что необходимо сделать:
Свист турбонагнетателя

При увеличении скорости слышен свист турбины. Возможно, поврежден вал турбины. Свист вызван из-за металлического трения.

Замена турбокомпрессора / Ремонт
Синий дым

Утечка масла в турбокомпрессоре. Возможно на валу есть сколы (износ). Масло попадает в выхлопную систему. 

Замена турбокомпрессора / Ремонт
Увеличился расход топлива Повреждение подшипников турбокомпрессора. Линия подачи масла в турбину неисправна или забита. Проверьте маслопроводы турбокомпрессора и при необходимости замените их
Черный дым

Возможно, турбине не хватает воздуха для подачи в двигатель. В результате в камере сгорания неправильная смесь топлива и кислорода. В итоге в процессе сгорания топлива образовывается черный дым. Скорее всего, в автомобиле есть утечка, поступаемого в двигатель, воздуха. 

Проверьте шланги и соединение системы всасывания воздуха. Также проверьте линию подачи сжатого воздуха на герметичность и при необходимости замените поврежденный компонент. 
Потеря мощности I Недостаток постоянной мощности. Компрессор может быть поврежден. Например, из-за сломанных лопастей колес, турбина больше не может подавать достаточное количество воздуха в цилиндры. Необходимы новые колеса компрессора колеса. Также необходимо защитить систему подачи воздуха в турбину от попадания инородных вещей. 
Потери мощности II Блок VTG загрязнен. В итоге работа лопаток турбины с изменяемой геометрией не эффективна. Например, из-за загрязнения лопаток может не хватать давления выхлопных газов.  Разобрать турбину и очистить лопатки, от образования сажи.
Чрезмерное давление наддува Неисправен клапан регулирования давления наддува. Неисправность вакуумного блока регулировки работы клапана. Замена вакуумного блока, очистка или замена клапана выхлопных газов
Шум от турбокомпрессора Обратное давление в выхлопной системе слишком высокое. Повреждение колеса компрессора или колеса турбины. Утечка выхлопных газов.  Проверьте выхлопную систему на наличие повреждений. Проверьте компрессор турбины на повреждения. Устраните неисправность с помощью ремонта турбокомпрессора.

Проблема в прокладках

Коллектор крепится к двигателю через прокладку, она позволяет избежать подсоса воздуха, а также ограничивает коллектор от попадания туда масла. Но, этот элемент может в процессе эксплуатации повреждаться, в таком случае происходит попадание смазки в коллектор, также мотор начинает сбоить. При наличии датчика массового расхода воздуха, блок управления выкинет ошибку. Все это признаки повреждение прокладки под коллектором.

Обратите внимание

, что причин для появления подобной неисправности может быть несколько. Чаще всего, повреждается прокладка в связи с длительным износом. В некоторых случаях происходит это в связи с перегревом, но в целом прокладки, которые применяются тут достаточно устойчивы к повышенным температурам. Иногда этот изолирующий элемент повреждается при сборе мотора.

Ремонт в этом случае достаточно простой. Необходимо снять коллектор, установить новую прокладку. Далее ставим коллектор обратно

Обратите внимание на пару нюансов. Соприкасающиеся поверхности коллектора и мотора следует тщательно зачистить, после сборки протягивают гайки с определенным моментом

Выводы

. Стоит отметить, что причины попадания масла во впускной коллектор могут быть различные. Поэтому, необходимо знать все возможные варианты и диагностировать проблему методом исключения.

Предупреждающие сигналы о поломке турбины

Есть определенные сигналы, которые связаны с отказом турбокомпрессора. Тщательный анализ рабочих характеристик автомобиля во время вождения помогает выявить неисправности и самостоятельно диагностировать проблемы с турбонаддувом.

Первые признаки поломки турбины такие:

  • Плохое ускорение, отсутствие заданной мощности. Автомобиль может не разгоняться быстро или не вырабатывать обычное количество энергии в дороге. Когда вы едете на машине с неисправной турбиной, то автомобиль медленно реагирует и не достигает своей оптимальной скорости так же быстро, как раньше;
  • Нерегулярный или чрезмерный выхлоп. Избыточное количество выхлопных газов или серого дыма из выхлопной трубы может быть признаком того, что настало время для проверки турбокомпрессора. Трещина в корпусе турбонагнетателя может привести к утечке масла в выхлопную систему, что приводит к образованию нерегулярных газов;
  • Сигналы на датчике двигателя. Во многих случаях датчик двигателя обнаруживает неисправный турбокомпрессор, включая контрольную лампу двигателя на приборной панели. Подсветка контрольной лампы двигателя может указывать на то, что необходим дополнительный осмотр для определения необходимости ремонта или замены турбины;
  • Громкий и пронзительный шум. Если турбина выходит из строя, то может издавать шум, когда работает наддув. Шум исходит непосредственно из двигателя и звучит как громкая сирена или скрежет, который становится все громче при усугублении проблемы. Любой необычный шум под капотом автомобиля стоит исследовать, особенно если этот звук сопровождается какими-либо дополнительными признаками неисправности турбины.

Другие причины течи масла

Утечка масла через компрессор – частая проблема. С этим сталкивался практически каждый владелец. Можно выделить следующие причины этого явления:

  • Так, неприятность случается из-за повышенного уровня масла в системе, из-за забитой системы вентиляции картерных газов. С проблемой могут столкнуться владельцы двигателей с сильным износом поршневой группы – внутри мотора высокое давление. Если засорен катализатор, то турбина гонит масло, и это нормально. При забитом маслосливном канале турбины симптомы будут те же.
  • Многие причины связаны с проблемой системы слива масла. В корпус оно подается под давлением. Масло проходит через подающую магистраль, затем оно там смешивается с воздухом и продуктами сгорания. В итоге создается пена, которая затем стекает вниз корпуса «улитки». И только потом попадает в магистраль для слива масла и далее в картер. Если канал слива будет иметь недостаточную ширину или масла в двигателе будет больше, оно будет оставаться в корпусе турбины и течь через уплотнительные элементы.

Замена масла в авто

12.07.2017

| Комментариев нет

почему гонит масло в выпускной коллектор


Как 100% разграничить причину расхода масла Сайт СТО «Ковш»: https://kovsh.com Для того чтобы определиться откуда утечка масла, из турбины или из двигателя, мы…

Урал 4320 . Масло в выпускном коллекторе двс камаз 740 Ссылка на группу в вк: https://vk.com/club150280626 Почему кидает масло в выпускной коллектор на двс камаз 740 Как снять…

Масло в выпускном коллекторе часть 4 заключительная

Масло в выпускном коллекторе часть 3

Течь из под коллектора Д245

Выхлопной коллектор в масле д 245

Из какого цилиндра выбрасывает масло? Проверка эндоскопом выхлопного коллектора Сайт СТО «Ковш»: https://kovsh.com Частые дымления двигателя связаны с попаданием углеводородов (ГСМ) в выхлопной…

Сильно гонит масло с под одной головы Камаз, выясняю причину! течьмасла#камазремонт.

Почему Масло вылетает через Сапун Контакты для связи. Емел ВК https://vk.com/id511176354 Кошельки если появиться желание отблагодарить за…

Картерные газы привели к попаданию масла в цилиндр, Renault Megane II 1.5d, K9K По причине неправильного удаления катализатора давление сопротивления выхлопным газам превышало допусти…

Как определить причину дымления и расхода масла. Renault Kangoo 1.5d K9K710 : https://kovsh.com/service Неисправности дизельного двигателя: https://kovsh.com/popular/engines_troubles Механические…

Масло в выпускном коллекторе

Масло в выпускном коллекторе часть 2

Кидает ли турбина масло во впуск? Как проверить. Audi A6C5 2.5TDI V6 Привет, меня зовут Олег, я механик — любитель, свою машину обслуживаю и ремонтирую практически всегда самост…

Как турбина гонит масло. Nissan 2.2 DDTI. При износе турбины масло может попадать как во впускной, так и в выпускной коллектор. Вот яркий пример изнош…

Масло во впускном коллекторе! Что делать? Проклейка крышки сапуна на K4M. | Видеолекция#2 На моторах RENAULT K4M (1.6 16V) почти на каждом присутствует масло на впускном коллекторе и на крышке сапуна (маслоу…

Д — 245 сырой коллектор Мокрый или Потеет коллектор на д 245 газ 3309. льют форсунки или гонит масло через шпильки.

Что кидает масло: двигатель или турбина? Подробно разбираем тему запотевания масла на впускных коллекторах, патрубках интеркулера, системы вентиля…

Ом 602.940 утечка масла в первый цилиндр. Ом 602.940 утечка масла в первый цилиндр.

ЯМЗ-236. Выкидывает масло в выхлопной коллектор.

Без рубрики

Ресурс турбодвигателя

А теперь о мифе, что турбодвижки имеют меньший ресурс, по сравнению с такими же атмосферниками. На самом деле – это не совсем правда. Ресурс практически одинаковый, вот только турбодвигатель более требователен к основным компонентам (топливу, маслу, эксплуатации), поэтому и дохнет он намного чаще.

Если следить за турбодвигателем – он без каких-либо проблем проедет те же 300 тысяч км, что и атмосферный.

Кстати, важный факт – за малообъемными турбодвигателями нужно еще больше ухода, чем за обычными. Такие двигатели постоянно работают под высокой нагрузкой (ведь они выдают очень много мощности). То есть, меняем масло не каждые 7500 км, а каждые 4-5 тысяч км.

Причины попадания масла во впускной коллектор. Список и действия

Многим водителям интересны причины попадания масла во впускной коллектор, ведь это не такое уж и частое явление, но приводящее к целому ряду проблем и сложностей. Поэтому, при возникновении таких затруднений, вам следует в самые короткие сроки выявить поломку и приступить к ее устранению. Некоторые сложности возникают с проведением диагностики. При определенных поломках для выявления проблемы потребуется частично разобрать мотор, это может далеко не каждый водитель. К тому же тут потребуется целый ряд дополнительных инструментов, которые имеются далеко не в каждом гараже. Но, все же стоит попробовать выявить и устранить причину самостоятельно. Причины попадания масла во впускной коллектор могут быть различными, но в любом случае – это неисправность двигателя. В некоторых случаях они незначительны, в других такой признак свидетельствует о сложной проблеме, которая требует незамедлительного устранения

Поэтому, если вы заметили масло в коллекторе, то следует уделить внимание диагностике

Основные неисправности и их причины

Как показывает практика эксплуатации, всего можно выделить две основные причины поломок – некачественное или несвоевременное ТО.

Если же по плану производить технический осмотр, то турбина будет работать долго и без особых нареканий со стороны автолюбителей.

Итак, на сегодня можно выделить несколько основных признаков и причин выхода из строя турбины:

1. Появление синего дыма из выхлопной трубы в момент повышения оборотов и его отсутствие при достижении нормы. Основная причина такой неисправности – попадание масла в камеру сгорания из-за течи в турбине.

2. Черный дым из выхлопной трубы — свидетельствует о сгорании топливной смеси в интеркулере или нагнетающей магистрали. Вероятная причина – повреждение или поломка системы управления ТКР (турбокомпрессора).

3. Дым из выхлопной трубы белого цвета свидетельствует о забитости сливного маслопровода турбины. В такой ситуации может спасти только чистка.

4. Чрезмерный расход масла до одного литра на тысячу километров

В этом случае нужно обратить внимание на турбину и наличие течи. Кроме этого, желательно осмотреть стыки патрубков

  • 5. Динамика разгона «притупляется». Это явный симптом нехватки воздуха в двигателе. Причина – нарушение работы или поломка системы управления ТКР (турбокомпрессор).
  • 6. Появление свиста на работающем двигателе. Вероятная причина – утечка воздуха между мотором и турбиной.
  • 7. Странный скрежет при работе турбины часто свидетельствуют о появлении трещины или деформации в корпусе узла. В большинстве случаев при таких симптомах ТКР долго не «живет» и дальнейший ремонт турбины может оказаться неэффективным.

  • 8. Повышенный шум в работе турбины может стать причиной засорения маслопровода, изменение зазоров ротора и задевание последнего о корпус турбокомпрессора.
  • 9. Увеличение токсичности выхлопных газов или расхода топлива часто говорит о проблемах с поставкой воздуха к ТКР (турбокомпрессору).

Читайте про другие причины дыма из выхлопной трубы.

Устройство турбокомпрессора

Если говорить простыми словами о сложном, то компрессор имеет примитивнейшую конструкцию. Турбина представляет собой корпус в виде улитки. Внутри корпуса имеется вал с двумя лопастными шестернями. Одна такая шестеренка раскручивается за счет отработанных газов. Другая также вращается, так как посажена на одном валу. Частота вращения вала может быть запредельная – до 250 тысяч оборотов в минуту. Поэтому вал должен работать на качественных подшипниках. Обычно таких подшипников два.

Практика показывает, что на рабочих оборотах турбины ни один существующий сухой подшипник не может выдержать нагрузки в таких условиях. Подшипник заклинивает, а турбина отправляется в ремонт. Инженеры долго думали, как забрать лишнюю температуру и улучшить скольжение. Со всем этим хорошо справляется масло – к валу турбины подведены смазочные каналы для каждого подшипника от картера двигателя. Таким образом, механизм может работать на высоких оборотах, повышается его производительность и надежность.

Даже полностью исправная турбина будет потреблять определенное количество масло. Чем больше водитель будет давить на газ, тем больше потребление. Нормальный расход составляет до 2,5 литра на 10 тысяч километров. Может ли турбина гнать масло в больших объемах? Это зависит от состояния ДВС.

В турбокомпрессоре есть две части – горячая и холодная. Сверху к подшипникам компрессора подведены масляные каналы. Один нужен для горячей части, другой для холодной. Далее масло, смазав подшипники, возвращается в картер. Но герметичны ли подшипники?

Подшипник никак и ни при каких условиях не должен соприкасаться с лопастями, иначе в этом случае турбина гонит масло с одной стороны в коллектор или интеркулер, а с другой стороны — в глушитель. Между подшипником и крыльчаткой установлены запорные кольца. Давлением эти кольца подпирает и масло не уходит в больших объемах.

Как предотвратить поломку

Разборка воздушного турбокомпрессора

Продлить срок службы турбины можно, следуя рекомендациям:

  • заменять грязный воздушный фильтр;
  • держать силовую установку чистой;
  • заправляться оригинальными, качественными ГСМ;
  • периодически контролировать температуру масла, антифриза;
  • регулярно обновлять смазку в системе — каждые 7-8 тыс. км пробега машины;
  • сразу не заглушать после длительных поездок мотор, оставляя работать его на холостых оборотах 3-4 минуты;
  • обязательно проводить плановые диагностики.

Турбокомпрессор только с виду кажется конструктивно простым. На самом деле для устранения неполадок, следует располагать соответствующей информацией. В частности — знать модель агрегата наддува, номер силовой установки, код производителя. А под рукой должен быть ремкомплект оригинального производства. Только это обеспечит грамотный ремонт.

Причины выхода из строя турбины в автомобиле

Прочтите правила эксплуатации автомобиля, которые выдали вам вместе с покупкой транспортного средства. В этой небольшой брошюре указаны все особенности функционирования двигателя и других важных деталей вашего авто. Это означает, что при соблюдении всех указанных особенностей поездки вы сможете сохранить ваш автомобиль и получить необходимое качество эксплуатации. Турбина выходит из строя при следующих вариантах поведения, которые постоянно повторяются:

  • чрезмерно быстрое ускорение, постоянная активация турбины в активном режиме и достаточно резко, это оборудование не любит нестабильной прерывистой работы;
  • поездка на топовых оборотах для придания максимального ускорения и звуковых эффектов — это выводит из строя не только турбину, но и много других деталей авто;
  • применение автомобиля не по назначению, непонимание разумных ограничений для конкретной модели авто, что может выливаться в самые неприятные последствия;
  • механические повреждения корпуса и мест крепления из-за самовольно установленного оборудования, которое плохо закреплено, а также по причине ударов и ДТП с машиной;
  • другие причины, которые можно также индивидуально описать для каждого производителя, так как конструкция и технологий турбокомпрессора отличается у брендов.

Вы можете использовать самые разные варианты автомобилей и различные модели двигателей, но не стоит забывать о том, что транспорт любит эксплуатацию в тех режимах, для которых он создан. Если же имеет место механическое повреждение, стоит не только заменить компрессор, но и полностью устранить причину, которая стала основой неполадки. В случае необходимости работ с турбокомпрессором лучше обращаться к специалистам.

Преимущества и недостатки современного турбомотора

Перед тем, как мы приступим к анализу плюсов и минусов турбодвигателя, хотелось бы еще раз обратить ваше внимание на один нюанс. Как утверждают маркетологи, доля реализуемых новых автомобилей с турбонаддувом сегодня существенно увеличилась

Более того, многочисленные источники делают акцент на том, что турбодвигатели все больше и больше теснят «атмосферники», автолюбители зачастую выбирают именно «турбо», так как считают атмосферные двигатели безнадежно устаревшим типом ДВС и т.п. Давайте разбираться, так ли хорош турбомотр на самом деле.

Плюсы турбодвигателя

  1. Начнем с явных плюсов. Действительно, турбодвигатель легче по весу, меньше по рабочему объему, но при этом выдает высокую максимальную мощность. Также моторы с турбиной обеспечивают высокий крутящий момент, который доступен на низких оборотах и является стабильным в широком диапазоне. Другими словами, турбомоторы имеют ровную полку крутящего момента, доступную с самых «низов» и до относительно высоких оборотов.
  2. В атмосферном двигателе такой ровной полки нет, так как тяга напрямую зависит от оборотов двигателя. На низки оборотах атмомотор  обычно выдает меньший крутящий момент, то есть его нужно раскручивать для получения приемлемой динамики.  На высоких оборотах мотор выходит на максимум мощности, но крутящий момент снижается в результате возникающих естественных потерь.
  3. Теперь несколько слов об экономичности турбодвигателей.  Такие моторы и правда расходуют меньше топлива по сравнению с атмосферными агрегатами в определенных условиях. Дело в том, что процесс наполнения цилиндров воздухом и топливом полностью контролируется электроникой.

    Получается, ЭБУ следит за тем, чтобы соотношение компонентов смеси было оптимальным на любых режимах работы турбированного ДВС, благодаря чему достигается полноценное сгорание заряда и происходит отдача максимума полезной энергии. В случае с атмосферными двигателями наполнение зависит как от оборотов коленвала, так и от температуры наружного воздуха, атмосферного давления и ряда других факторов.

  4. Если учесть небольшой вес самого агрегата с турбиной, доступную тягу на низких оборотах и отсутствие зависимости от внешних факторов, турбомотор закономерно расходует в штатных режимах эксплуатации меньше топлива. При этом следует помнить, что данное преимущество полностью исчезает в том случае, если постоянно ездить в режиме «газ в пол». Тогда расход топлива на турбодвигателе может оказаться даже большим, чем у атмосферных аналогов.

Минусы турбированного ДВС

Итак, с основными плюсами разобрались. Что касается минусов, они также присутствуют. Вполне очевидно, что турбомотор сложнее как в плане электроники и исполнительных устройств, так и в плане реализации самой схемы турбонаддува. Повышенные требования к качеству топлива и моторного масла тоже никуда не делись.

Дело в том, что небольшой по размерам и объему агрегат работает в условиях высоких механических и тепловых нагрузок. Давление наддува и температура в цилиндрах намного выше по сравнению с атмосферными двигателями, что означает ускоренный износ турбомотора.

Производители учитывают разные нюансы, закладывая больший запас прочности в агрегат, но во время ремонта турбодвигателя стоимость усиленных деталей получается ощутимо выше. Также двигатель с турбиной имеет большое количество датчиков и магистралей, а также дополнительных систем, что усложняет диагностику в случае возникновения неисправностей.

  1. Очень важным моментом является ресурс самой турбины. Турбонагнетатель повсеместно устанавливается на современные ДВС, окончательно вытеснив механический компрессор. При этом турбина на бензиновом двигателе обычно «ходит» всего около 150 тыс. км, на дизеле этот показатель в среднем составляет до 250 тыс. км. Затем турбокомпрессор нуждается в дорогом ремонте или полной замене.
  2. Что касается известной проблемы в виде «турбоямы» или «турболага», на современных двигателях этот недостаток практически устранен посредством установки турбин с изменяемой геометрией, путем использования технологий «би-турбо» и т.д. Почему практически, а не до конца? Дело в том, что идеальной остроты отклика во время дозирования тяги в процессе дросселирования, которая свойственна атмосферным моторам, все равно нет. Параллельно с этим более сложные системы турбонаддува требуют повышенных затрат, создают определенные затруднения, которые связаны с обслуживанием и ремонтом.

Почему масло попадает во впускной коллектор

В большинстве случаев причиной того, что масло оказывается во впускном коллекторе, является неисправный воздушный фильтр. Чтобы понять, как это происходит, рассмотрим весь процесс в подробностях.

В большинстве случаев воздушный фильтр уже загрязнён маслом. Поэтому воздух, проходя через него, захватывает с собой капельки жидкости, которые вскоре оказываются во впускном коллекторе. Естественно, это крайне негативно сказывается на работе автомобиля.

Подобные утечки возможны только на выходе из компрессора. Чтобы избавиться от масла во впускном коллекторе достаточно заменить фильтр на другой. Если же проблемы наблюдаются на входе, то способ восстановления нормальной работоспособности будет немного другим.

На выходе компрессора стоит воздушный фильтр. В процессе работы он пропускает через себя огромные объёмы воздуха. Поэтому со временем, мембраны забиваются частичками пыли. Как результат сопротивление растёт . Из-за этого падает давление.

В большинстве случаев автомобильные турбины подлежат ремонту

Если вы столкнулись с потерей мощности, свистящими шумами турбины, ростом потребления топлива или дымом, то, как правило, если ваша машина оснащена турбиной, скорее всего, существует проблема. Турбина неисправна. В этом случае автомобиль нужно как можно скорее отвезти на диагностику в специализированную мастерскую. 

Помните, что ни в коем случае не стоит затягивать поездку в автосервис для диагностики турбины. В противном случае вы рискуете потерять в будущем большие деньги, поскольку турбокомпрессор может не подлежать после поломки восстановительному ремонту. В итоге вам придется покупать новую турбину, которая стоит огромных денег. 

Кроме того, каждый владелец турбированной машины должен знать, что сломанные части турбины могут также привести к повреждению самого двигателя. В том числе при выходе турбины из строя также может пострадать еще один дорогостоящий компонент автомобиля — катализатор.

К счастью многие проблемы, связанные с работой турбины, могут быть устранены обычным ремонтом. Однако не все автомастерские осмелятся проводить подобные работы. Во многих сервисах в случае даже небольших проблем с турбиной часто советуют купить новую. 

Тем не менее, помните, что большинство видов ремонтов турбокомпрессоров значительно продлевают ее срок службы. Поэтому поломка турбины не всегда означает, что пришло время покупать новый турбокомпрессор.

Но не всегда ремонт турбины оправдан. Все зависит от типа и вида неисправности. Например, часто в турбокомпрессорах выходят из строя несколько важных компонентов, в результате чего ремонт (переборка) турбины будет не целесообразен, поскольку дешевле будет приобрести новый турбокомпрессор.

Пример повреждения втулок из-за износа

Если турбина свистит: Самые распространенные неисправности автомобильных турбин.

Начало 21 века можно смело назвать эрой турбокомпрессоров в автопромышленности. В настоящий момент большинство современных двигателей стали оснащаться турбинами, когда как еще 10-15 лет назад, турбомоторы были большой редкостью.

Почему же автопроизводители сделали турбокомпрессоры популярными в автопромышленности? Какие преимущества дает турбина современным силовым агрегатам? Надежны ли современные турбированные двигатели?

Но главный вопрос, который интересует многих, связан с их ремонтом и восстановлением. И так давайте ответим на все вопросы, которые интересуют автолюбителей, а также узнаем о функции современных турбокомпрессоров, о самых частых причинах неисправности и их ремонте. 

Как гласит американская поговорка «Ничто не заменит рабочий объем». Речь идет о двигателе внутреннего сгорания. С самого начала истории автопромышленности стало ясно, что для того чтобы увеличить мощность автомобиля, нужно увеличить объем силового агрегата. Долгое время инженеры и конструкторы не могли придумать, как уменьшить объем моторов, не снижая мощность. Ведь законы физики невозможно изменить.

Но с появлением турбокомпрессоров стало ясно, что законы физики не являются преградой для постепенного увеличения мощности при уменьшении рабочего объема силовых агрегатов. В итоге, начиная с 2000-х годов, в автопромышленности стали набирать популярность турбины, которые позволили существенно увеличить экономичность транспортных средств, добиться увеличения мощности, а также уменьшить объем моторов. 

Сегодня современные технологии позволяют автопроизводителям с 1,6 литрового четырехцилиндрового мотора выдавать до 270 л.с. (например Peugeot RCZ-R). 

В итоге турбокомпрессоры позволили многим производителям автомобилей использовать вместо восьмицилиндровых моторов, шестицилиндровые силовые агрегаты без потери мощности. А в некоторых случаях многие шестицилиндровые двигатели стали даже мощнее своих восьмицилиндровых атмосферных аналогов.

Также в настоящий момент наблюдается тенденция по уменьшению количества цилиндров шестицилиндровых моторов. На рынке уже не мало машин, у которых вместо шестицилиндровых двигателей появились 4-х цилиндровые, с той же мощностью, но гораздо экономичней. В том числе недавно стали появляться и трехцилиндровые моторы, которые пришли на замену четырехцилиндровым.

Не раскручивайте до максимума холодный двигатель

Типичной ошибкой многих автовладельцев является раскручивание мотора до красной зоны тахометра только начав поездку на автомобиле. На таком едва прогретом моторе, если его раскручивают до красной зоны тахометра, существенно ухудшается смазка турбины, она начинает работать посуху, что, в конечном счете, приводит к критическим неисправностям, а часто такой изношенный турбонаддув вовсе приходится менять.

Подведём итоги

Эксплуатация автомобилей с турбонаддувом имеет свои определенные особенности, в частности, следует изучить рекомендации автопроизводителя, использовать качественное масло и своевременно его менять, обязательно прогревать мотор, избегать длительной работы на холостых оборотах. Не следует раскручивать до максимума холодный мотор, а после даже кратковременной поездки, приехав на место назначения, дать двигателю немного поработать, чтобы охладить двигатель и турбину.

11.12.2020

В каких случаях турбина гонит масло? Что предпринять?

Турбина кидает масло во впуск Турбина гонит масло в интеркулер дизельного двигателя, в чем причина и что делать Чем сложнее техника, тем чаще она выходит

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло. И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.

Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла – признаки, причины и что нужно делать
Подробнее

 

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.

Через сколько км менять масло в двигателе

Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее

 

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет

синий дым

из выхлопной трубы автомобиля.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.

Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее

 

Для чего нужна автомобильная турбина

Турбокомпрессор предназначен для нагнетания дополнительной порции кислорода в камеры сгорания ДВС (двигателя внутреннего сгорания), так как при стандартной подаче топливовоздушной смеси в цилиндры воздуха не хватает, из-за этого теряется КПД, соответственно, эффективность работы мотора снижается.

Система сконструирована так, что часть выпускных газов поступает в корпус турбины на «горячую» крыльчатку, которая, вращаясь, начинает нагнетать воздух во впускной тракт ДВС. Вал крыльчатки вращается в подшипниках, сам механизм от раскаленного выхлопа сильно нагревается. Чтобы как-то охладить работающий узел, придуман интеркулер, который остужает воздушный поток до температуры 50-60 градусов. ИЗОБРАЖЕНИЕ

Также в турбине имеется и другая крыльчатка, «холодная», которая закачивает воздух со стороны впускного коллектора, но она тоже нагревается от остальных частей механизма, только не настолько сильно. Одним словом, турбина устанавливается для того, чтобы увеличить мощность двигателя, повысить коэффициент полезного действия автомобильного двигателя, сделать мотор более приемистым и динамичным. Но турбокомпрессор работает при большой нагрузке и в тяжелом температурном режиме, поэтому требует ухода и соблюдения правил эксплуатации авто.

Почему турбина гонит масло в интеркулер?

Моторноемасло нужно, чтобы уменьшить трение между рабочими поверхностямитурбокомпрессора. При его отсутствии элементы выходили бы из строя спустя оченькороткий срок. Для получения рабочей жидкости турбина соединена с двигателем.Опытные водители советуют менять масло как можно чаще.

Маслов патрубке интеркулера — свидетельство неисправности турбонаддува. Необходимонемедленно обследовать узел. Отремонтировать турбину, конечно, можно, но этобудет стоить не дешевле, чем полная замена. Поэтому для предупреждениянеисправностей стоит принимать профилактические меры.

Что необходимо сделать для нормализации давления?

Для этого, при монтаже турбинного агрегата, необходимо выполнить определенные действия, в частности:

  1. Выяснить состояние фильтра, в случае если он загрязнен необходимо его или прочистить, или заменить.
  2. Необходимо проверить состояние коробки воздушного фильтра и заборного патрубка. В случае необходимости их надо будет прочистить.
  3. Выяснить насколько герметична коробка и крышка фильтра. В случае ее нарушения во внутренние части турбины могут попасть посторонние частицы и это рано или поздно приведет ее к выходу из строя.
  4. Кроме, вышеперечисленных операций необходимо прочистить все патрубки, установленные в этом агрегате. При сборке необходимо проследить, чтобы внутрь не попали посторонние частицы.

Важно! Если было принято решение о замене турбинного агрегата и не были проведены указанные мероприятия, то вероятность того, что установленная турбина начнет сочиться маслом.

Дополнительные операции, которые необходимо выполнить при обслуживании или замене турбины:

Необходимо заменить моторное масло, залитое в двигатель. Все дело в том, посторонние частицы которые находятся в масле рано или поздно осядут на поверхности подшипников и компрессор через какое-то время будет заклинен.

 Важно! Во избежание попадания в масло посторонних частиц недопустимо применять герметизирующие составы. Со временем они высыхают и начинают разрушаться, образуя при этом мелкие твердые частицы.

К сожалению, не все автомобильные слесаря знают и выполняют указанные выше операции. Поэтому приобретая турбину в специализированном магазине необходимо взять инструкцию по монтажу, изучить ее самому и потребовать от механика, устанавливающего компрессор ее четкого соблюдения. При этом не особо важно, компрессор будут заменять в «поле» или на станции технического обслуживания.

Устройство турбокомпрессора

Если говорить простыми словами о сложном, то компрессор имеет примитивнейшую конструкцию. Турбина представляет собой корпус в виде улитки. Внутри корпуса имеется вал с двумя лопастными шестернями. Одна такая шестеренка раскручивается за счет отработанных газов. Другая также вращается, так как посажена на одном валу. Частота вращения вала может быть запредельная – до 250 тысяч оборотов в минуту. Поэтому вал должен работать на качественных подшипниках. Обычно таких подшипников два.

Практика показывает, что на рабочих оборотах турбины ни один существующий сухой подшипник не может выдержать нагрузки в таких условиях. Подшипник заклинивает, а турбина отправляется в ремонт. Инженеры долго думали, как забрать лишнюю температуру и улучшить скольжение. Со всем этим хорошо справляется масло – к валу турбины подведены смазочные каналы для каждого подшипника от картера двигателя. Таким образом, механизм может работать на высоких оборотах, повышается его производительность и надежность.

Даже полностью исправная турбина будет потреблять определенное количество масло. Чем больше водитель будет давить на газ, тем больше потребление. Нормальный расход составляет до 2,5 литра на 10 тысяч километров. Может ли турбина гнать масло в больших объемах? Это зависит от состояния ДВС.

В турбокомпрессоре есть две части – горячая и холодная. Сверху к подшипникам компрессора подведены масляные каналы. Один нужен для горячей части, другой для холодной. Далее масло, смазав подшипники, возвращается в картер. Но герметичны ли подшипники?

Подшипник никак и ни при каких условиях не должен соприкасаться с лопастями, иначе в этом случае турбина гонит масло с одной стороны в коллектор или интеркулер, а с другой стороны — в глушитель. Между подшипником и крыльчаткой установлены запорные кольца. Давлением эти кольца подпирает и масло не уходит в больших объемах.

Главное — своевременное обнаружение

Помните, что чем дольше масло будет находиться в интеркулере, тем сложнее его будет вымыть обычными средствами, не прибегая к приобретению дорогостоящей профессиональной автохимии. Кроме того, игнорирование проблемы приведёт к её усугублению, что заставит вас потратить немалые средства на восстановление нормальной работоспособности двигателя и связанных с ним систем автомобиля. Поэтому, как только вы обнаружили течь масла в интеркулер, немедленно прекратите эксплуатацию транспортного средства и займитесь его диагностикой. Если самостоятельно причину обнаружить не удаётся, обратитесь к профессионалу, являющемуся сотрудником автомобильного сервисного предприятия. В любом случае оставлять без внимания проблему нельзя — это обойдётся вам чересчур дорого.

Назначение детали

И тут у некоторых автомобилистов, не слишком подробно вникающих в устройство своего автомобиля, может возникнуть вопрос — а что, собственно говоря, такое интеркулер, как он выглядит и зачем нужен? Обратив своё внимание на школьный курс физики, мы можем вспомнить, что при сильном нагревании вещества расширяются, а при охлаждении — наоборот, уплотняются. Если автомобиль оборудован турбонаддувом, воздух в нём проходит сквозь нагнетатель, приводимый в движение выхлопными газами. Последние, как известно, имеют очень высокую температуру, что приводит к нагреванию воздуха, использующегося в топливной смеси до 150–200 градусов. В результате сама смесь сильно расширяется, становится неоднородной и сгорает не полностью.

Чтобы улучшить характеристики приводного узла, смесь нужно охладить — следовательно, после турбины стоит установить радиатор, которым и является интеркулер. Он позволяет достичь множества положительных изменений, среди которых стоит назвать:

  • Повышение мощности мотора;
  • Снижение содержания токсичных веществ в выхлопе;
  • Уменьшение расхода топлива;
  • Повышение «эластичности» мотора, то есть быстроты реакции на изменение подачи горючего.

Видео о том, как работает интеркулер:


Изначально интеркулеры предназначались исключительно для установки на дизельные моторы, которые являются очень чувствительными к повышенной температуре смеси — ведь дополнительный радиатор снижает температуру воздуха, выходящего из турбины, до 50–75 градусов. Однако в настоящее время ведущие производители и тюнинговые ателье практикуют монтаж интеркулеров также на бензиновые моторы.

Чаще всего встречаются воздушные интеркулеры, которые представляют собой конструкцию, подобную стандартному радиатору системы охлаждения

— отличием является только прохождение через внутренние соты воздуха вместо жидкости. Они дешевле и практичнее, однако, требуют наличия большого объёма свободного пространства под капотом. Жидкостные интеркулеры намного меньше, но они требуют использования собственного насоса и электронного блока управления. Как бы там ни было, масло в интеркулере дизельного двигателя вы можете обнаружить вне зависимости от того, какой конструкцией он обладает.

Что делать, если течет турбина

Причин течи масла из турбокомпрессора много, но если в этом виновата лишь сама турбина, ее необходимо менять:

  • • качественный ремонт турбокомпрессора могут выполнить только высококвалифицированные специалисты, профессионалов в этом деле мало;
  • • стоимость подобной работы высока, во многих случаях она сопоставима с ценой новой турбины, или может быть даже выше.

Если вы определили, что через турбокомпрессор течет масло, рекомендуется сразу же обращаться к квалифицированным мастерам на станцию техобслуживания.

Засоренный катализатор и турбина

Когда забит катализатор, на выходе выпускных газов также появляется сопротивление. Это приводит к повышенной нагрузке на ротор компрессора. Если и дальше эксплуатировать автомобиль, то это скажется повышенным расходом топлива, снижением динамики и мощности. Также это влечет к износу подшипников в турбине. Вот почему турбина гонит масло.

Прокладки

Впускной коллектор закреплен на силовом агрегате при помощи прокладок. Это позволяет избежать возможных подсосов воздуха. Также прокладка позволяет ограничить попадание в коллектор масла. Но со временем она может повредиться. В этом случае масло туда все-таки попадает. Мотор может из-за этого начать сбоить. Если имеется датчик массового расхода воздуха, то ЭБУ выдаст ошибку. Все это говорит о том, что под коллектором повреждена прокладка.

Причин повреждения ее может быть много. Чаще всего эти элементы выходят из строя по причине износа. Иногда прокладка разрушается из-за перегрева. Однако современные элементы устойчиво выдерживают высокотемпературные воздействия. Иногда прокладку повреждают в процессе сборки двигателя.

Избавиться от масла во впускном коллекторе в этом случае просто – нужно лишь заменить прокладку. Затем коллектор устанавливают обратно. Но нужно соблюдать некоторые нюансы. Поверхности двигателя и коллектора рекомендуется тщательно зачистить. Гайки протягиваются со строго определенным моментом.

Очистка

Грязный интеркулер не пропускает воздух и нивелирует работу турбины. Поэтому после устранения неисправностей его необходимо очистить. Это можно сделать только демонтировав охладитель. При очистке нежелательно применение бензина, керосина, уайт-спирита и подобных веществ.

Для промывки нужно приобрести специальный очиститель масляного нагара. Важно, что бы он не был агрессивен к материалу из которого изготовлен интеркулер. Что бы промыть, нужно следовать инструкции очистителя. Затем необходимо промыть охладитель проточной водой без напора. Скорее всего потребуется пять – шесть промывок, прежде чем из трубок потечёт чистая вода. Остатки воды выгоняют воздухом. Она ни к чему в системе питания двигателя. Давление компрессора должно быть минимальным. После этого чистый и сухой кулер можно ставить на двигатель.

Опасно ли попадание масла в интеркулер?

Зададимся вопросом – а насколько опасно попадание масла в охладитель? Может быть это не причиняет никакого вреда автомобилю и его силовой установке?
Небольшое количество масла (25-30 мл) практически всегда присутствует в интеркулере и не приносит какого-либо вреда ни ему, ни двигателю.

Однако, если масла становится много, то оно вместе с воздухом оказывается в камере сгорания цилиндра и изменят условия сгорания воздушно-топливной смеси. При этом не происходит полного сгорания, теряется мощность двигателя, образуется нагар, и коксование.

Но и это еще не самое страшное. В некоторых случаях масла в цилиндры поступает так много, что возможно его возгорание и перегрев двигателя. В результате – двигатель придется отдавать в капремонт.

Поврежденный воздуховод

В корпусе воздуховода могут образовываться трещины. Они способствуют образованию зоны с разряжением. Это приведет к тому, что масло из зоны с высоким давлением будет течь в зону с низким давлением. Затем масло спровоцирует порчу уплотнительных элементов и прокладок. Зона разряжения будет расширяться, и в этом случае масло будет течь, как лавина или цунами.

Некритичные повреждения могут быть исправлены. А если исправить невозможно, тогда нужно срочно менять, так как эксплуатация в таком режиме приведет к необходимости чистки компрессора.

Интеркулер в дизельных машинах и в машинах с бензиновым двигателем

Сначала, основным предназначением промежуточных охладителей (интеркулеров) являлась их установка на дизельные двигатели, ведь они слишком чувствительны к высокой температуре вещества, а запасной радиатор способен снижать температуру воздуха, который выходит из турбины от 50 и до 75 градусов по Цельсию. Но, на сегодняшний день, довольно много производителей, а также, тюнинговых мастерских уже практикуют установку интеркулеров на бензиновые двигатели.

Почему Турбина Гонит Масло в Интеркулер, Причины Попадания в Патрубки, Как Снять и Установить, Чем Промыть

string(10) "error stat"

Масло в патрубке интеркулера – это признак, указывающий, что в механизме турбонаддува появились неисправности. Поскольку назначение интеркулера – это повышение мощности и увеличение ресурса турбированного мотора, то своевременное выявление причины, по которой происходит попадание масла в интеркулер, ускорит процесс восстановления рабочих параметров двигателя.

Почему масло в итеркулере двигателя это плохо

При работе двигателя с турбиной, происходит повышенный нагрев мотора, поскольку нагнетание воздуха в камеры сгорания приводит к его сжатию и, как следствие, температура увеличивается. Это изменяет режим сгорания топлива, что может привести к прогоранию клапанов и поршней. Интеркулер представляет собой радиатор охлаждения, через который проходит воздух, нагнетаемый турбиной. Причины проникновения смазки в интеркулер:

Последствия от такого рода поломок, оставленных без внимания, могут привести к большим затратам на восстановление мотора.

Неполадки в системе вентиляции картера

В рваном ритме работы мотора, при разгонах, движении по бездорожью, сгорающей топливно-воздушной смесью создаётся давление, намного больше обычного. При этом возрастает объём газов, проникающих через поршневые кольца в поддон двигателя. Правильно функционирующая вентиляция поддона позволяет газам свободно перемещаться в интеркулер, а потом и в камеры сгорания вместе с топливно воздушной смесью. Вследствие того, что работа маслоуловителя постепенно ухудшается, как и пружин клапанов, то в поддоне увеличивается давление, из-за чего выхлопные газы начинают гнать капли масла в интеркулер.

После остывания, попавшее в интеркулер масло накапливается внизу радиатора. Помимо этого, масло начинает терять свои свойства, из-за чего смазка турбины ухудшается, образуются следы износа на валу. Другой негативный момент, которым чревато плохое функционирование этой системы – снижение мощности двигателя и рост потребления топлива. Из-за того, что поток воздуха кидает масло в интеркулер, а оттуда оно поступает в цилиндры, изменяется режим сгорания топлива.

Загрязнён масляный фильтр

При засорении фильтра масла, циркуляция рабочего тела системы смазки ухудшается, что ведёт к увеличению давления. Из-за чего повреждения получают сальники силовой установки, образуется течь, и лопатки нагнетателя воздуха бросают масло в интеркулер. Если поменять фильтр, то это уменьшит течь смазки, но не устранит её полностью. Замена всех сальников решит проблему.

Забит пылью воздушный фильтр

Во время открытия впускных клапанов шатун идёт вниз, а в патрубке, соединенном с выходом из системы вентиляции поддона, создаётся значительное разряжение. Когда фильтр воздуха засорен, из-за разницы давления в патрубке и поддоне, газы вырываются намного интенсивнее, захватывая с собой частицы масла. Эффективность работы маслоуловителя при этом снижается, и смазка летит в интеркулер. Помимо этого, дефицит воздуха оказывает влияние на качество горючей смеси. Топливовоздушная эмульсия становится слишком обогащённой, а частицы смазки, которые попадают в камеры сгорания, ещё больше изменяют пропорцию топлива к воздуху.

Перегрев двигателя

Закипание охлаждающей жидкости в двигателе в основном связано с долгой работой агрегата на предельной мощности. Если так случилось, то к объёму газов, прорвавшихся из камер сгорания, прибавляется усиленное образование паров смазки, вызванное повышением температуры. При закипании охлаждающего вещества неизбежно образование паровой пробки в головке мотора. Температура головки блока цилиндров значительно возрастает, что усиливает испарение масла. От перегрева текучесть масла увеличивается, и оно может просачиваться через микротрещины в изношенных сальниках. По этой причине крыльчатка нагнетает воздух с частицами смазки и это оказывает воздействие на функционирование мотора, уменьшая его износостойкость, а также ухудшая рабочие параметры.

Неисправность турбины из-за повреждения сальника

Ресурс турбины рассчитан на пробег около 150 тыс. км, при условии применения качественной смазки и нормативного давления в масляной системе. Падение качества масла или увеличение давления ведут к течи в сальнике, при которой турбина бросает смазку в интеркулер. Радиатор некоторое время может выполнять функцию маслоуловителя, не пропуская частицы смазки в камеры сгорания. При достижении уровня масла в интеркулере пределов нижних ячеек, создаётся эффект карбюрации и в поток воздуха втягиваются частицы смазки, изменяя свойства горючей смеси.

Перегиб масляной трубки турбины

Функционирование турбины в рабочем режиме подразумевает отвод смазки без препятствий. В случае перегиба маслопровода по любой причине, отток масла становится затруднён. Как результат такой поломки: турбина, с возникшей течью масла сквозь сальники, не только нагнетает в цилиндры воздух под давлением, но и гонит в него масляные частицы.

Риски, возникающие при наполнении интеркулера маслом

Интеркулер дизельного мотора с пробегом более 100 т. км содержит 30-60 грамм смазки. Нахождение масла ниже уровня внутренних ячеек не грозит перебоями в работе двигателя. При наполнении радиатора смазкой до нижних ячеек, она начинает интенсивно втягиваться с воздухом в камеры сгорания, из-за чего смесь топлива с воздухом плохо сгорает. Возникает эффект детонации в головке двигателя и выпускных патрубках, что наблюдается при догорании остатков топливной эмульсии. Как результат – прогорают клапана, вместе с выпускным коллектором.

Из-за перегрева коллектор раскаляется до 600-700 градусов, нагревая мотор. Система охлаждения даёт сбои, агрегат перегревается, теряя ресурс.

Что предпринять при наличии масла в интеркулере

При обнаружении смазки на поверхности или внутри радиатора, нужно диагностировать причину её появления. Что для этого понадобится:

  • проверить функционирование вентиляции поддона;
  • заменить фильтра;
  • осмотреть сальники.

Если нет опыта в проведении подобных работ, можно обратиться к специалистам в сервисный центр. При полностью исправном моторе, по результатам диагностики, стоит откорректировать стиль вождения. Так эксплуатация силового агрегата на оборотах свыше 2000 в минуту приводит к избыточному нагреву охлаждающего вещества, особенно при езде на подъём в условиях горных серпантинов.

После выполнения этих мер промываем интеркулер. Для этого потребуется:

  • снять интеркулер с силовой установки, воспользовавшись рекомендациями из инструкции по обслуживанию автомобиля;
  • очистить от масла и грязи радиатор снаружи;
  • вопрос, чем промыть интеркулер, легко решаем, для этого используются бензин, керосин, ацетон в равных пропорциях. Эта смесь заливается внутрь радиатора на 12 часов;
  • для последующей очистки интеркулера от остатков промывочной смеси подойдёт моющее средство для посуды, смешанное с горячей водой;
  • промывка интеркулера завершается чистой подогретой водой.

Оперативное обнаружение масла в интеркулере позволит своевременно устранить неисправности двигателя, не допуская ухудшения его рабочих параметров. На всех этапах промывки радиатора следует использовать средства индивидуальной защиты и не допускать контакта моющих средств с открытыми участками тела.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Откуда в интеркулер и впускной коллектор попадает

19.03.2019, Просмотров: 7936

Проблема скопления масла в интеркулере встречается на турбированных двигателях. Теплообменник понижает температуру воздушного заряда, повышая тем самым его плотность. Но владельцы авто с атмосферным двигателем могут найти масляный налет в корпусе воздушного фильтра, гофре и впускном коллекторе. Давайте рассмотрим причина попадания моторного масла во впускной тракт, и какими последствиями это чревато для дизельных моторов.

Откуда берется масло?
  1. Масло на впуск гонит турбина. В случае износа деталей картриджа турбины масло через компрессорную часть начинает поступать во впуск. Но не стоит сразу ремонтировать или менять турбину, начните с проверки системы вентиляции картера.
  2. Неэффективная работа маслоотделителя системы вентилирования картерных газов. Маслоотделитель предназначен для удаления из газов масляной взвеси. Если фильтрующий элемент забит, во впускной коллектор газы попадают нефильтрованными. Поэтому частички масла скапливаются в интеркулере и патрубках.

Смазка и охлаждение турбокомпрессора

Поскольку турбинная часть переносит большие температурные нагрузки, моторное масло не только смазывает подшипники ротора, но и отводит львиную долю тепла. В конструкции картриджа турбины используются упорные (центрующие) и опорные подшипники скольжения (бронзовые втулки). Подшипники работают на масляном клине. С обеих сторон картриджа установлены металлические кольца (по типу поршневых), которые препятствуют проникновению в картер воздуха из компрессорной части и выхлопных газов из турбинной. Вместе с тем они отсекают область с масляным туманом.

Поскольку в турбинной и насосной частях постоянно повышенное давление, масло стремится стечь в поддон, над которым исправная система ВКГ создает разряжение или поддерживает давление близкое к атмосферному. Подобный тип уплотнения смазывающихся элементов называется газодинамическим.

Почему турбина кидает масло?

Основные причины, из-за которых турбина кидает масло в интеркулер:

  • износ опорных подшипников, из-за которых появляется люфт и дисбаланс при вращении ротора. Изнашиваются пары трения вследствие попадания абразивных частиц (закоксованное масло, грязь из поддона) и масляного голодания. Вследствие дисбаланса уплотнения системы недостаточно для предотвращения попадания масла в интеркулер;
  • износ упорного подшипника компрессорной части. Возникает вследствие продавливания масляного клина, дисбаланса при вращении ротора.
  • повышенное давление газов в картере. Моторное масло после прохождения по каналам корпуса турбины должно самотеком сливаться в поддон. Противодействие сливу переведет к его утечке в выпускной или впускной коллектор. Отсутствие циркуляции приведет к коксованию масла и трению пары ротор-подшипники на сухую;
  • забитая трубка слива масла с турбины. Некачественная продукция и/или несоблюдение сроков замены ведут к образованию закоксованности каналов масляной системы. Налет уменьшает проходное сечение трубки и, как следствие, ее пропускную способность;
  • забитый воздушный фильтр. Загрязненный фильтрующий элемент создает значительное противодействие. Раскручиваемое турбиной компрессорное колесо создает разряжение, из-за которого масло всасывается через компрессорную часть во впускной тракт.

Проверка системы вентиляции картерных газов

Простейший способ проверки ВКГ – вывести патрубок системы в емкость и некоторое время эксплуатировать автомобиль. Для этих целей используйте обычную канистру небольшого объема, которую можно будет разместить в подкапотном пространстве, и шланг подходящего диаметра, длины. Если спустя некоторое время в канистре образовался явный масляный налет, значит, маслоотделитель не справляется с вверенной ему функцией. Решается проблема чисткой маслоотделителя. На некоторых авто фильтрующий элемент сменный.

После снятия патрубка вентиляции картера обязательно заглушите отверстии в гофре впускного тракта.

Следующий шаг – измерение давления в картерном пространстве. В зависимости от режима работы двигателя, в картере должно быть небольшое разряжение либо близкое к атмосферному давление. Для измерения достаточно подключить механический манометр к отверстию щупа, после чего завести двигатель. Проверку нужно проводить на холостых оборотах, в режиме частичной и полной нагрузки. В случае обнаружения повышенного давления остается определить, виновата ВКГ или изношенная цилиндропоршневая группа.

Чем опасно масло в теплообменнике для ДВС цикла Дизеля?

В масле присутствует большое количество углеводородов, которые легко самовоспламеняются при воздействии высоких температурах. Воспламенение топливовоздушной смеси в дизельном двигателе происходит за счет контакта топлива с разогретым от сжатия воздухом. По большому счету, дизелю без разницы, на чем работать. Главное, чтобы температуры воздуха после сжатия хватило для воспламенения. Именно поэтому ДВС цикла дизеля может работать на моторном масле даже после выключения зажигания. В таких случаях говорят, что дизель ушел в разнос. Происходит цепная реакция, при которой сгоревшее в цилиндрах масло приводит к поднятию оборотов, раскручиванию турбины и попадании во впускной коллектор еще большего количества масла. Явление крайне опасное и если вовремя не перекрыть доступ воздуха, разнос чреват дорогостоящим ремонтом двигателя.

Как промыть интеркулер?

Если после устранения неисправности теплообменник не промыть, масляный налет будет препятствовать нормальному охлаждению воздуха. Для промывки лучше всего использовать керосин или бензин. Залейте жидкость внутрь, после чего оставьте интеркулер на 10-15 минут для растворения масляного налета. Однократной промывки будет недостаточно, поэтому запаситесь терпением. Поскольку теплообменник уже снят с автомобиля, нелишним будет вымыть мойкой высокого давления грязь, пух и насекомым из сот с его наружной части.

Ветрогенератор был отключен на выходных из-за утечки масла

УИЛЛМАР — В минувшие выходные утечка масла вывела из строя одну из двух ветряных турбин коммунального предприятия Уиллмар.

Проблема всплыла поздно вечером в среду, когда отключилась турбина № 4, расположенная ближе всего к средней школе Уиллмар.

Инженеры коммунальных служб были отправлены и увидели утечку масла, но не смогли войти в узел и проверить работу, поскольку у них нет кодов доступа для работы в центре, сказал Уэс Хомп, штатный инженер-электрик.

Техники из Миннесоты, работающие на DeWind, производителя турбин, были недоступны, потому что они помогали с вводом в эксплуатацию ветряной электростанции в Техасе.

Хомп сказал, что техник DeWind был отправлен и должен был быть в Уиллмаре в понедельник, чтобы помочь техникам коммунальных служб с проблемой, объяснил Хомп в понедельник муниципальной комиссии по коммунальным предприятиям.

Должностные лица DeWind и коммунального предприятия заявили, что DeWind будет производить платежи в течение гарантийного периода для покрытия упущенной выгоды, когда турбины не вращаются.

Компания Hompe представила предварительные данные о производстве турбин с момента ввода их в эксплуатацию 1 августа 2009 г.

Он сказал номер турбины.№ 3 произвел 3 миллиона киловатт-часов, а № 4 — 2,5 миллиона киловатт-часов. По его словам, производство составляет 1500 тонн и 1200 тонн, соответственно, замещенного угля или 4300 тонн и 3600 тонн, соответственно, не произведенного диоксида углерода.

«Вот как ветер сравнивается с углем», — сказал Хомп. «Это наш первый год, и эти цифры меньше, чем мы ожидали. Летом было произведено больше продукции, чем в начале года, и тенденция к росту.»

Генеральный директор Брюс Гомм сказал, что коммунальное предприятие работает над годовым отчетом по ветряным турбинам. По словам Гомма, общественность сделала несколько запросов на информацию о производстве турбин.

Система масляного и газового уплотнения турбокомпрессора

Во многих случаях утечки масла ошибочно возлагают вину на идеально работающую турбину. Понимание того, как работает система уплотнений, очень помогает в диагностике возможных основных причин неисправности автомобиля и минимизирует затраты времени на ремонт.Руководство по диагностике системы турбокомпрессора может помочь вам в этом процессе.

Сальники

В автомобилях и двигателях используются различные сальники. Наиболее распространенным из них является контактное уплотнение манжетного типа, которое очень эффективно работает с вращающимися валами, такими как коленчатый вал. Если один из них начинает протекать, относительно легко диагностировать и устранить проблему, заменив уплотнение. В турбонаддуве этот тип уплотнения не используется из-за высокой скорости, экстремально высоких температур и больших зазоров вала, необходимых для правильной работы.Если обнаружена течь масла из турбины, то, во-первых, ее сложнее правильно диагностировать, а во-вторых, нет возможности просто поменять сальник, как на коленвале. Замена турбины может не решить проблему, так как утечка масла очень часто является симптомом какой-то другой проблемы с автомобилем.

Динамическая система уплотнения перепада давления

В турбокомпрессорах

используется динамическая система уплотнения перепада давления. Динамический, потому что он использует вращение вала и перепад давления, потому что он использует нормальную разницу давлений между тремя корпусами турбокомпрессора: в большинстве рабочих условий давление в корпусе турбины выше, чем в центральном корпусе, и давление в корпусе компрессора выше центрального корпуса.

Система торцевого уплотнения турбины

Со стороны турбины система уплотнения проста. После того, как масло закончило свою работу в подшипниках, оно движется вдоль вала, пока не достигнет ступицы, где вращающийся маслометатель буквально выбрасывает масло наружу под действием центробежной силы, и оно встречается с внутренней поверхностью центрального корпуса, где оно падает вниз под самотеком собираться через слив масла и возвращаться в поддон двигателя. В дополнение к этому используются одно или два поршневых кольца, которые вписываются в очень точно обработанное «ступенчатое отверстие».В отличие от поршневых колец внутри цилиндров двигателя эти поршневые кольца неподвижны. В процессе сборки поршневые кольца сжимаются, и после правильной установки поршневое кольцо никогда не меняет своего положения.

Естественным свойством любого поршневого кольца является то, что оно никогда не может быть герметичным на 100%, потому что должен быть рабочий зазор на двух концах плюс зазоры по всей прямоугольной части кольца. Тем не менее, в турбонаддуве эта естественная особенность используется с пользой, поскольку часть выхлопных газов под высоким давлением из впускного отверстия турбины проходит за головку колеса турбины, обеспечивая очень эффективное уплотнение под давлением вокруг поршневого кольца, чтобы предотвратить попадание масла. из центрального корпуса.Тщательно контролируемые зазоры поршневых колец позволяют очень небольшому потоку выхлопных газов проходить из корпуса турбины в центральный корпус, дополнительно помогая удерживать масло там, где оно должно быть. На некоторых турбинах мы можем использовать выпускные отверстия в тепловом кожухе для дальнейшего увеличения давления в области поршневых колец.

Система торцевого уплотнения компрессора

Со стороны компрессора система уплотнения более сложная, и существует множество различных конструкций для работы с конкретными моделями турбокомпрессоров и приложениями.

Когда масло заканчивает свою работу в опорном подшипнике, оно выливается наружу и выбрасывается наружу под действием центробежной силы задней поверхностью упорного кольца, в то время как масло из упорного подшипника также выбрасывается наружу вращающимся упорным кольцом, где снова падает вниз под действием силы тяжести и собирается в маслослив. Упорная муфта может представлять собой простой диск или комбинированную упорную муфту, включающую в себя масляно-воздушный сепаратор и упорную прокладку, включающую одно, два или даже три поршневых кольца, в зависимости от применения турбокомпрессора.

Вы можете узнать больше о турбокомпрессорах в нашей БЕСПЛАТНОЙ серии обучающих программ Installer Connect.

ледяных турбин: миф или опасность?

Конечно, они производят чистую энергию, но они также могут метнуть снежный ком. (Фото: Getty Images)

Как ведут себя ветряки зимой?

Не очень хорошо, если верить одному маленькому городку в Англии.Wisbech Standard сообщает душераздирающую историю о том, как «глыбы льда длиной три или четыре фута летели по воздуху» и врезались в выставочный зал ковров и на автостоянку.

Очевидно, они оторвались от вращающихся лопастей ветряной турбины высотой 410 футов.

Никто не пострадал, но жители Уиттлси в юго-восточной части Англии не успокоятся, пока не остановят турбину.Один местный бизнесмен назвал ледяные осколки отлетающими дротиками. лезвия.

Ветроэнергетика признает, что, как и все высокие объекты (например, здания или деревья), лед и снег могут накапливаться и, в конечном счете, падать, создавая опасность для людей и сооружений внизу.

Но индустрия отрицает, что «бросание льда» — еще одна проблема, связанная с ветровой энергетикой — является проблемой.«Лед может оказаться не только у основания турбины, но и в других местах. миф о том, что турбина будет (и может) работать на высокой скорости со льдом на ней и разбрасывать лед на многие мили», — сказал Рон Стиммел из Американской ассоциации ветроэнергетики в сообщении по электронной почте.

Точно так же, как самолет не сможет летать со слишком большим количеством льда на крыльях, сказал г-н Стиммел, ветряные турбины спроектированы таким образом, чтобы автоматически останавливаться или отключаться, когда они ощущают дополнительный вес льда.

Американская ассоциация ветроэнергетики опубликовала краткую информацию по этому вопросу, а также обсуждает этот вопрос в своем справочнике по размещению новых ветровых проектов.

Но публикация 2006 года G.E. Компания Energy, производитель больших ветряных турбин, предупреждает, что «вращающиеся лопасти турбины могут толкать лед. осколков на некотором расстоянии от турбины — до нескольких сотен метров при подходящих условиях.

Его рекомендации включают установку ограждений и предупреждающих знаков вокруг турбин, а также размещение их на безопасном расстоянии от зданий или дорог. Они также рекомендуют отключать турбины, когда начинает образовываться лед.

В прошлогоднем швейцарском отчете под названием «Исследования выброса льда ветряными турбинами в швейцарских Альпах» основное внимание уделялось турбине, расположенной недалеко от горнолыжного курорта. В этом отчете было указано, что метание льда представляет собой «значительный риск для безопасности».Самое опасное для льда место было под турбиной, но около 5 процентов осколков упали более чем на 80 метров — или на 260 метров. ноги — от турбины.

Диаграмма из исследования показывает, куда и как далеко были отброшены лед и снег относительно положения турбины:

Более раннее немецкое исследование пришло к аналогичному выводу:

В качестве общей рекомендации можно отметить, что разработчики ветряных электростанций должны быть очень осторожными на участках, подверженных риску обледенения, на этапе планирования и принимать во внимание выбросы льда как вопрос безопасности.Каждое происшествие или авария вызванный ледоходом, является ненужным событием и снизит общественное признание энергии ветра.

Катастрофический отказ турбины на ветряной электростанции в Вермонте вызывает сомнения в безопасности и долговечности турбины

НЬЮ-ГЭМПШИР (16 октября 2008 г.). Турбина № 10 на ветроэнергетической установке Сирсбург в Сирсбурге, штат Вермонт, потерпела катастрофический отказ, когда одна из лопастей коснулась башни турбины, в результате чего она прогнулась во время сильного ветра.28-тонная гондола этой турбины и узел ротора с 3 лопастями рухнули на землю, разбросав обломки в нескольких сотнях футов от конструкции. Приблизительно 20 галлонов тяжелой нефти вылилось из установки, когда ее резервуары для жидкости были повреждены. Завод Searsburg с 11 турбинами был введен в эксплуатацию в 1997 году, и, согласно документам, предшествующим строительству, турбины Zond Z-P40-FS имели ожидаемый срок службы 30 лет[1].

[Щелкните фото, чтобы увеличить его, скачать]

Исполнительный директор Industrial Wind Action (IWA) Group Лиза Линовес не была удивлена ​​неудачей.«Башни Searsburg расположены на высоте почти 3000 футов в одних из самых суровых погодных условий в Новой Англии. Проблемы с производительностью и отказы лопастей преследовали этот проект в течение некоторого времени», — сказала она, указывая на инциденты в мае 2006 года. и снова в мае 2008 г.[3].

В то время как одиннадцатилетние турбины Searsburg выходят из строя, новые модели не улучшили показатели безопасности. «Сегодня разработчики ветроэнергетики заявляют, что ожидаемый срок службы промышленных ветряных турбин превышает 20 лет, — сказал Линовес, — но факт остается фактом: оценки функционального срока службы современных ветряных турбин коммунального масштаба являются спекулятивными и не могут быть подтверждены, поскольку до сих пор очень немногие работает уже десять лет.» К сожалению, если в результате отказа турбины не причинен вред человеку или имуществу, владелец промышленной ветровой турбины не обязан сообщать об инциденте. эти жизненно важные данные не учитываются должным образом при оценке долговечности турбины. Отказ Searsburg произошел 15 сентября.Эти отказы включают броски лезвий, утечки масла, пожары и обрушение». IWA объясняет увеличение количества сообщений тем фактом, что машины стали более заметными, они устанавливаются ближе к местам проживания людей, а также растущим интересом к развитию ветровой энергетики. , Только за последний год IWA отслеживала катастрофические сбои в Айдахо, Миннесоте, Калифорнии, Нью-Йорке, Пенсильвании и других местах, что вызвало обеспокоенность по поводу общественной безопасности. промышленности указывают, что спешка с установкой промышленных ветряных турбин достигается за счет обеспечения качества и безопасных методов установки.Business Week опубликовал отчет [4] в августе 2007 года, в котором говорилось: «Объекты могут быть не такими надежными и долговечными, как заявляют производители. Действительно, учитывая, что за последние годы были зарегистрированы тысячи несчастных случаев, поломок и несчастных случаев, трудности, похоже, монтироваться». Отчет за этот год показал, что владельцы турбин не проводили регулярное плановое техническое обслуживание, необходимое для поддержания механических башен в хорошем рабочем состоянии. Неофициальный опрос примерно семидесяти пяти операторов ветряных электростанций в Соединенных Штатах показал, что до шестидесяти процентов отстают в своих процедурах технического обслуживания[5].

«Общественная безопасность должна иметь первостепенное значение при размещении промышленных ветряных турбин», — сказал Линовес, добавив: «Существует мнение, что 400-футовые конструкции можно безопасно возводить всего в нескольких сотнях футов от границ собственности, общественных зон и полос отчуждения. .» В качестве примера она указала на частную среднюю школу в Массачусетсе[6], где массивная турбина была установлена ​​всего в нескольких футах от подъездной дорожки к школе. Баррингтон, штат Род-Айленд, обсуждает размещение еще большей турбины, которая будет стоять в пределах 200 футов от здания государственной средней школы[7], хотя эта турбина может быть перемещена в ответ на опасения родителей и жителей по поводу шума и безопасности.В обоих случаях турбины превышают размеры разрушенной башни Searsburg.

Производители рекомендуют зону безопасности радиусом не менее 1300 футов от ветряной турбины, а детям запрещается стоять или играть вблизи конструкций[8]. «Зеленая энергия не должна преобладать над здравым смыслом», — сказал Линовес.

————
О IWA: Группа действий по промышленному ветру стремится распространять знания и повышать осведомленность о рисках и разрушительном воздействии на окружающую среду развития промышленной ветроэнергетики.Информация и аналитические материалы по этому вопросу доступны на его веб-сайте www.windaction.org. Чтобы подписаться на еженедельный информационный бюллетень IWA, посетите http://www.windaction.org/subscribe.

###

[1] Разработка проекта ветроэнергетики Green Mountain Power, http://www.windaction.org/?module=uploads&func=download&fileId=79

[2] http://www.windaction.org /pictures/2185

[3] http://www.windaction.org/pictures/15942

[4] Опасности энергии ветра, http://www.ветер. .org/news/18175

[7] Школьный комитет Баррингтона откладывает голосование по ветровой турбине, http://www.windaction.org/news/18228

[8] Руководство Vestas по механической эксплуатации и техническому обслуживанию турбины V90-3,0 МВт

Факты о ветре против болтунов

Давний критик ветроэнергетики Такер Карлсон из Fox News вернулся в пятницу, 22 октября, чтобы запустить своего рода фальшивый новостной фильм, который он назвал «Унесённые ветром: Люди против людей».Сила ветра.» Вы можете посмотреть его трейлер здесь, а полная версия дебютирует в пятницу.

Такер Карлсон, конечно, имеет долгую историю продвижения теорий заговора, в том числе упиваясь предполагаемой и полностью фиктивной войной президента Байдена с гамбургерами.

Проверка фактов не является приоритетом для Карлсона, поскольку ранее его неоднократно вызывали за странные нападки на энергию ветра в Соединенных Штатах. Ранее в этом году во время зимнего шторма в Техасе, который вывел из строя 30 ГВт тепловой энергии, Карлсон был одним из первых, кто обвинил ветер, когда Техас потерпел неудачу из-за газа и угля.Пластовая вода от нефтегазовых операций замерзала в трубах.

Тогда Такер Карлсон появился на канале Fox News, утверждая, что «Зеленый новый курс пришел в Техас», повторяя ложное утверждение о том, что энергия ветра вызвала перебои в работе, связывая это со знакомыми ему темами антиэлитаризма, сельской аутентичности, играющей против » разлагающиеся прогрессивные города и ксенофобия. Утверждения Карлсона тогда были проверены фактами и дискредитированы, но теперь он вернулся к распространению дезинформации.

Даже при просмотре трейлера его нового опуса ложь и искажения очевидны.

Например, Карлсон показывает специального посланника президента Байдена по климату Джона Керри и говорит, что богатые люди, такие как Керри, продвигают ветер, но не хотят, чтобы он был в их сообществах. Конечно, Керри не только поддерживал Cape Wind в своем родном штате Массачусетс, но и поддерживает проект Vineyard Wind, который буквально находится у него на заднем дворе.

Итак, пока мы ждем, чтобы увидеть «фильм» Такера Карлсона целиком, давайте начнем с предварительных разоблачений некоторых возмутительных обвинений, которые, как мы уже знаем, в нем содержатся.

 

Ложь горячего воздуха № 1 о ветре: вред энергии ветра Значения свойств  

Правда:  
  • Наиболее полное исследование на сегодняшний день, опубликованное в рецензируемом журнале в 2015 году исследователями из Национальной лаборатории Лоуренса в Беркли (LBNL), Федерального резервного банка Канзас-Сити, Техасского университета A&M и Университета штата Сан-Диего, с участием данные о продажах более 50 000 домов в 27 округах девяти штатов США.С. заключает: «Мы не находим статистических доказательств того, что стоимость домов рядом с турбинами была затронута в периоды после строительства турбины или после объявления / до строительства».
  • Национальная лаборатория Лоуренса Беркли провела два других крупных исследования по этой теме (в 2009 и 2013 годах) и во всех случаях не обнаружила статистических доказательств того, что работа ветряных турбин оказала какое-либо измеримое влияние на цены продажи жилья.
  • Ветроэнергетические проекты приносят пользу всем местным владельцам недвижимости, стимулируя экономические инвестиции и налоговые поступления.Эти средства улучшают дороги, школы и коммунальные услуги, а также снижают местные налоги — все факторы, которые могут положительно повлиять на стоимость недвижимости.

 

Ложь горячего воздуха № 2: энергия ветра вредна для вашего здоровья

Правда:
  • Ветряные электростанции помогают сделать воздух, которым мы дышим, чище и здоровее, и миллионы людей каждый день безопасно живут и работают рядом с ветряными электростанциями.
  • Энергия ветра снижает расходы на здравоохранение в США на 8 миллиардов долларов в год благодаря предотвращению загрязнения воздуха, вызывающего смог и приступы астмы.
  • Сокращая загрязнение углекислым газом на миллионы тонн в год, ветроэнергетика также предлагает ведущее решение проблемы изменения климата.
  • Миллионы людей во всем мире живут и работают рядом с работающими ветряными турбинами без каких-либо неблагоприятных последствий для здоровья, и более 80 достоверных, рецензируемых научных данных и различных правительственных отчетов в США, Канаде, Австралии и Соединенном Королевстве обнаруживают ветряные электростанции. не оказывают отрицательного воздействия на здоровье.


Ложь горячего воздуха № 3: Энергия ветра — это шумовое загрязнение

Правда:
  • Как правило, два человека могут вести разговор с нормальным уровнем голоса, даже стоя прямо под турбиной.


Ложь горячего воздуха № 3: Энергия ветра портит ваше зрение

Правда:
  • В соответствии с отраслевой практикой рассмотрение мест размещения и отступов является стандартной практикой. «Отступ» для ветряных турбин определяет минимальное расстояние, на котором турбина может быть построена от жилых построек, границ собственности, дорог, экологически, визуально или исторически уязвимых районов и других мест. Неудачи могут быть установлены федеральными, государственными и / или местными органами власти в зависимости от местоположения проекта.Неудачи помогают защитить безопасность людей и имущества.
  • Разработчики размещают турбины, чтобы свести к минимуму воздействие на официально обозначенные живописные ресурсы, и работают с сообществами, чтобы свести к минимуму воздействие на обзорные площадки.


Ложь горячего воздуха № 4: ветряные турбины опасны и могут убить ВАС

Правда:  
  • Насколько известно ACP, никто из населения никогда не пострадал из-за поломки лезвия.
  • Современные ветряные турбины оснащены самыми современными технологиями и специализированными датчиками, которые автоматически отключают турбину, если превышены определенные параметры производительности или безопасности.
  • Лопасти
  • спроектированы так, чтобы выдерживать экстремальные погодные явления, включая торнадо, ураганы и удары молнии.
  • По данным Министерства энергетики США: «Ветряные турбины имеют отличные показатели безопасности… Выбросы лопастей, отказ, при котором лопасть турбины отрывается во время работы, практически не встречаются на современных турбинах благодаря более совершенным технологиям и использованию датчики. Хотя этот тип отказа был проблемой в первые годы ветроэнергетики, современные ветряные турбины являются надежными, безопасными, современными электростанциями с сотнями тысяч часов опыта эксплуатации. 
  • Обоснованные отказы и меры по обеспечению безопасности приводят к чрезвычайно низкому уровню риска.
  • Отступы могут быть фиксированным расстоянием или расстоянием относительно высоты турбины (например, в 1,1 раза больше высоты наконечника турбины).


Ложь горячего воздуха № 5: энергия ветра ненадежна
 

Правда:  
  • Возобновляемые ресурсы доказали свою способность поставлять большие объемы электроэнергии без возникновения проблем с надежностью.
  • Временами энергия ветра обеспечивает 60% или более общего объема электроэнергии в Юго-западном энергетическом пуле, системе, которая охватывает части 14 штатов и простирается от Техаса до Северной Дакоты. Шесть штатов производят более 20% своей электроэнергии за счет ветра, а два — Айова и Канзас — производят более 40% электроэнергии за счет ветра.
  • Достижения в области аккумулирования энергии помогают еще больше повысить надежность возобновляемых источников энергии, улавливая солнечную или ветровую энергию при ее выработке, а затем высвобождая ее в периоды повышенного спроса на электроэнергию.
  • Появляются гибридные проекты, которые объединяют чистые ресурсы, такие как ветер, солнечная энергия и аккумуляторные технологии, в один разнообразный энергетический продукт. Это будущее. Комбинированные технологии, работающие вместе, обещают сделать общее больше, чем сумма его частей, и предоставить американцам еще лучший, более эффективный и надежный источник энергии.
  • Реальность такова, что ни один источник энергии не генерирует электричество в 100% случаев. Например, угольные склады в Техасе были затоплены во время урагана Харви, что привело к отключению угольных электростанций, а атомные электростанции на побережье Флориды были вынуждены закрыться из-за опасений по поводу штормовых нагонов.Точно так же угольные отвалы замерзли, а газопроводы вышли из строя во время Полярного вихря 2014 года из-за сильного холода, в то время как генераторы возобновляемой энергии продолжали генерировать энергию.

 

Ложь горячего воздуха № 6: Энергия ветра излучает низкочастотные импульсы, вызывающие у людей заболевания  

Правда:
  • Несколько агентств общественного здравоохранения изучили современные турбины коммунального масштаба и определили, что воздействие ветряных турбин не оказывает неблагоприятного воздействия на здоровье.[1] В последнем обзоре, опубликованном в начале этого года, участвуют авторы из Национального института общественного здравоохранения и окружающей среды Нидерландов. [2] Заключение этого обзора: 
  • «Нет доказательств того, что болезни или недуги могут быть результатом инфразвука или низкочастотного звука, которые отличаются от такого воздействия «нормального» звука. Любой звук, в том числе звук ветряной турбины, может раздражать, а у некоторых людей вызывать стресс. Нет необходимости в синдроме ветряной турбины, основанном на ошибочных представлениях о воздействии звука, точно так же, как нет необходимости в синдроме дорожного движения или самолета (хотя эти источники шума также могут привести к стрессу).
  • Повсеместное присутствие неслышимого инфразвука на уровнях, близких к уровням инфразвука ветряных турбин или превышающих их, свидетельствует о том, что такие уровни не причиняют вреда. Если это так, то ходьба может вызвать у нас недомогание из-за колебаний давления воздуха в ушах во время ходьбы. «Важно отметить, что в Соединенных Штатах работает более 65 000 ветряных турбин коммунального масштаба, и сотни тысяч людей живут рядом с этими ветряными турбинами без побочных реакций. Ветроэнергетика очень серьезно относится к проблемам здоровья населения, и, как свидетельствует обширная литература по этому вопросу, ветряные электростанции не представляют опасности для здоровья.

 

Журнал Северного побережья |

округ Гумбольдт -Все даты-понедельник, 10 января, вторник, 11 января, среда, 12 января, четверг, 13 января, пятница, 14 января, суббота, 15 января, воскресенье, 16 января, понедельник, 17 января, вторник, 18 января, среда, 19 января, четверг, 20 января, пятница, 21 января, суббота, 22 января, воскресенье, 23 января, вторник, 2 января. , 25 января среда, 26 января четверг, 27 января пятница, 28 января суббота, 29 января воскресенье, 30 января понедельник, 31 января вторник, 1 февраля среда, 2 февраля четверг, 3 февраля пятница, 4 февраля суббота, 5 февраля воскресенье, 6 февраля понедельник, 7 февраля вторник, 8 февраля среда, 9 февраля — все Категории-Искусство и культура художественные книги Comedy Tance Лекция фильма Музыка разговорное слово ТеатрЛиместал и сообщество Выборы События для детей Питание сад праздничные события встречи на открытом воздухе Спорт ItCsummer Fun General & Multi слияние визуальные и исполнительские искусства Природа и научные виды спорта, легкой атлетики и приключения — все окрестности -ВИРТУАЛЬНЫЙ МИРВиртуальный мирARCATA Arcata Bayside Northtown Hsu Arcata Plaza Sunny Brae Northtowneureka Eureka Freshwater Cutton Поля Посадка Henderson Centre Kingwater Salmon Myrtletown Старый Город Остров Остров Манила Самоээль Река Карлотта Ferndale Fortuna Fernbridge CarritaCurry County Gold Beach Brookingsdel Norte County Crescent Champate Chamlath Camp Hayfork Unce City Weverville Salyersiskiyou County County Shastahumboldt County County County Counfordt Bay Call для подробностей Мондоцино Округ Covelo Fort Bragg Legettt Mendocino Overro Ukiahahah Realtonville Willitslake County Reddingnernerherher County Diennershasta County Reddingnernerhernoundt Blue Lake Fieldbrook Trinidad Westhavensounderherville Orich KlaMath Trinidad Harberville Laytonville Mattole Bragg Garberville Laytonville Флэт Миранда Петролия Филлипсвилл Пирси Редкрест Редуэй Рио Делл Скотия Шелтер Коув Уотт Авеню the Giants WhitethornWILLOW CREEK/EAST Bridgeville Hawkins Bar Hoopa  Orleans Ruth Willow CreekALAMEDA COUNTY  BerkeleyLASSEN COUNTY SusanvilleOREGON Oregon  Портленд

-Все даты-понедельник, 10 января, вторник, 11 января, среда, 12 января, четверг, 13 января, пятница, 14 января, суббота, 15 января, воскресенье, 16 января, понедельник, 17 января, вторник, 18 января, среда, 19 января, четверг, 20 января, пятница, 21 января, суббота, 22 января, воскресенье, 23 января, вторник, 2 января. , 25 января среда, 26 января четверг, 27 января пятница, 28 января суббота, 29 января воскресенье, 30 января понедельник, 31 января вторник, 1 февраля среда, 2 февраля четверг, 3 февраля пятница, 4 февраля суббота, 5 февраля воскресенье, 6 февраля понедельник, 7 февраля вторник, 8 февраля среда, 9 февраля — все Категории ночной жизни-Живые группыДи-джеиДругоеОткрытый микрофонКараоке-Все места-Блонди Еда и напиткиClam Beach TavernHumboldt BrewsThe JamThe Madrone TaphouseRichards’ Goat Tavern & Tea RoomSavage Henry Comedy ClubThe Siren’s Song TavernStone Junction BarThirsty Bear Lounge, Bear River Casino ResortVirtual World-All Neighborhoods-VIRTUAL WORLD  Virtual WorldARCATA Арката  Бейсайд  Нортто Wn HSU Arcata Plaza Sunny Breae Northtowreureka Eureka Freshwater Cutton Поля Посадка Henderson Center Kingle Salmon Myrtletown Старый город Вудли Остров Манила Самоаээль Река Carlotta Ferndale Fortuna Fernbridge Loortacurry County Gold Beach Brookingsdel Norte County Crescent City Klamath Smith Rivertrinity County City Weaverville Salyersiskiyou County County County County County County County County County Mendocino County Covelo Fort Bragg Legettt Mendocino Ovarro Ukiah Realtonville Willitslake County Readdingnerhernerher County Diennershasta County Reddingnernerher Huminoldt Blue Orake Fieldbrouok Trinidad Westhavensourderhervildt orick klaht Fort Bragg Garberville Laytonville Mattole River Myers Flation Mairanda Петролия, Филлипсвилл, Пирси, Редкрест, Редуэй, Рио-Делл, Шотландия, Шелтер-Коув, Уотт, Авеню Гигантов, Уайтторн, УИЛ. ЛОУ-КРИК/ВОСТОК  Бриджвилль  Хокинс-Бар Хупа  Орлеан Рут  Уиллоу-Крик ОКРУГ АЛАМЕДА  Беркли ОКРУГ ЛАССЕН Сюзанвилл ОРЕГОН  Орегон  Портленд

Преобразователь крутящего момента

ПРЕОБРАЗОВАТЕЛИ МОМЕНТА
Гидротрансформатор представляет собой гидромуфту, выполняющую ту же основную функцию, что и сухое фрикционное сцепление механической коробки передач (рис.4-24). Он обеспечивает средство отсоединения двигателя для остановки транспортного средства на передаче. Он также обеспечивает средства соединения двигателя для ускорения.

Преобразователь крутящего момента состоит из четырех основных частей:

1. Наружный корпус — обычно изготавливается из двух стальных деталей, сваренных вместе в форме пончика, и содержит крыльчатку, статор и турбину. Корпус заполнен трансмиссионной жидкостью.
2. Крыльчатка — приводной элемент, создающий движение масла внутри преобразователя при работающем двигателе.Рабочее колесо также называют преобразовательным насосом.
3. Турбина — ведомый вентилятор, соединенный шлицами с первичным валом АКПП. Размещены перед статором и рабочим колесом в корпусе. Турбина не прикреплена к рабочему колесу, а может вращаться независимо. Нефть — единственная связь между ними.

Рисунок 4-24.- Гидротрансформатор, частичный разрез.

4. Статор – предназначен для улучшения циркуляции масла внутри гидротрансформатора.Повышает эффективность и крутящий момент, заставляя масло циркулировать внутри корпуса.

Основное действие гидротрансформатора является результатом действия рабочего колеса, пропускающего масло под углом к ​​лопаткам турбины. Масло давит на поверхности лопаток турбины, заставляя турбину вращаться в том же направлении, что и рабочее колесо (рис. 4-25). При работе двигателя на холостом ходу крыльчатка вращается медленно. В статор и турбину попадает лишь небольшое количество масла.Внутри гидротрансформатора создается недостаточное усилие для вращения турбины. Автомобиль остается неподвижным с включенной передачей.

При разгоне коленчатый вал двигателя, корпус гидротрансформатора и крыльчатка начинают двигаться быстрее. Больше масла выбрасывается центробежной силой, вращая турбину. В результате первичный вал трансмиссии и автомобиль начинают двигаться, но с некоторым проскальзыванием.

Рис. 4-25.- Гидротрансформатор в гидромуфте.

На крейсерских скоростях крыльчатка и турбина вращаются почти с одинаковой скоростью с очень небольшим проскальзыванием. Когда крыльчатка вращается достаточно быстро, центробежная сила выбрасывает масло достаточно сильно, чтобы почти заблокировать крыльчатку и турбину. После того, как масло передало свою силу турбине, масло следует по контуру кожуха и лопаток турбины, так что оно выходит из центральной секции турбины, вращающейся против часовой стрелки.

Поскольку турбина поглотила силу, необходимую для изменения направления вращения масла по часовой стрелке, теперь она имеет большее усилие, чем создается двигателем.Начался процесс увеличения крутящего момента двигателя. Умножение крутящего момента относится к способности гидротрансформатора увеличивать крутящий момент двигателя, прикладываемый к входному валу коробки передач. Увеличение крутящего момента происходит, когда крыльчатка вращается быстрее, чем турбина (рис. 4-26). Например, если двигатель быстро разгоняется, обороты двигателя и крыльчатки могут быстро увеличиваться, в то время как турбина почти неподвижна. Это известно как скорость сваливания. Скорость срыва гидротрансформатора возникает, когда крыльчатка работает на максимальной скорости без вращения турбины.Это условие приводит к тому, что трансмиссионная жидкость сбрасывается с лопаток статора с огромной скоростью. Наибольшее увеличение крутящего момента происходит на скорости сваливания.

Рисунок 4-26.- Преобразователь крутящего момента при умножении крутящего момента

Рисунок 4-27.- Сборка статора.

Когда скорость турбины приближается к скорости крыльчатки, увеличение крутящего момента падает. Крутящий момент увеличивается в преобразователе за счет отказа от движения.Турбина вращается медленнее, чем крыльчатка при увеличении крутящего момента.

Если бы масло продолжало поступать против часовой стрелки к центральной части рабочего колеса, масло попадало бы на лопасти насоса в направлении, препятствующем его вращению и сводя на нет любое увеличение крутящего момента. Чтобы предотвратить это, вы можете добавить узел статора.

Статор (рис. 4-27) расположен между насосом и турбиной и установлен на обгонной муфте, которая позволяет ему вращаться по часовой стрелке, но не против часовой стрелки.Цель статора — перенаправить масло, возвращающееся из турбины, и изменить его вращение обратно на вращение крыльчатки. Действие статора необходимо только тогда, когда крыльчатка и турбина вращаются с разной скоростью. Односторонняя муфта блокирует статор, когда крыльчатка вращается быстрее, чем турбина. Это заставляет статор правильно направлять поток масла на лопасти рабочего колеса. Затем, когда скорость турбины почти равна скорости вращения крыльчатки, статор может свободно вращаться на своем валу, чтобы не препятствовать потоку.

Даже на обычных скоростях в гидротрансформаторе наблюдается некоторое проскальзывание. Еще одним типом гидротрансформатора, широко используемым в современных автомобилях, является гидротрансформатор с блокировкой (рис. 4-28). Блокировка гидротрансформатора обеспечивает повышенную экономию топлива и увеличение срока службы трансмиссии за счет устранения нагрева, вызванного проскальзыванием гидротрансформатора. Типичный механизм блокировки состоит из гидравлического поршня, торсионных пружин и фрикционного материала сцепления.

На низших передачах муфта гидротрансформатора размыкается.Преобразователь крутящего момента работает нормально, допуская проскальзывание и увеличение крутящего момента. Однако при переключении на высокий или прямой привод трансмиссионная жидкость направляется к поршню гидротрансформатора. Поршень гидротрансформатора сжимает фрикционные диски, блокируя турбину и рабочее колесо.