19Дек

Как подключить противотуманные фары через реле: Как подключить противотуманки через реле

схема подключения через реле и кнопку

Правильная комплектация транспортного средства – залог безопасности, как водителя, так и его пассажиров. Даже несильные перемены погоды могут снизить видимость во время движения, что делает управление автомобилем опасным для всех участников дорожного движения и водителя в том числе.

Зачем нужны противотуманные фары на автомобиле

При ненастье, в снежную или дождливую погоду свет дальних и ближних фар рассеиваясь, создают пелену, усложняющую видимость водителя. Установка противотуманок – оптимальное решение для улучшения видимости на дороге, как в ночное время суток, так и в плохую погоду. Основная цель таких фар – подача света. При правильной настройке противотуманки способны осветить до 10 метров дороги перед собой и до 5 метров в стороны. Базовая комплектация многих автомобилей такого апгрейда не предусматривает, но оборудовать автомобиль противотуманными фарами можно самостоятельно с наименьшими затратами.

Принцип подключения противотуманок

Для оборудования автомобиля противотуманными фарами потребуется:

  • провода;
  • изолента;
  • противотуманки;
  • кнопка включения;
  • реле и колодка противотуманок;
  • предохранитель (15-ти амперный).

Если на бампере автомобиля не предусмотрены специальные места под противотуманные фары, нужно просверлить их самостоятельно в симметричных местах, либо купить такие фары, которые просто прикручиваются к бамперу.

Автомобиль нужно загнать на эстакаду и отсоединить массу от аккумулятора, чтобы не случилось замыкания во время ремонтных работ.

Инструкция по установке противотуманок на автомобиль через реле.

  • Необходимо убрать главную панель, под которой располагаются лампочки от подсветки печного регулятора. Лампочки можно отложить в сторону, дальше они не понадобятся.
  • Теперь нужно найти двухконтактный разъем. Он находится на конце провода от подсветки. Потребуется провести рукой по нему, чтобы нащупать необходимую деталь.
  • Первый провод от реле подсоединяем к двухконтактному разъему, а второй прикрепляем к кнопке включения ПТФ.
  • Чтобы наладить в системе 12-вольтную сеть от габаритов и 84 контакт, потребуется подвести провод к реле. Реле можно убрать в любое удобное для водителя место – за панель приборов или под нее, под обшивку кузова, в блок предохранителей и т. п.

Если вы самостоятельно подключали магнитолу, проблем не должно возникнуть. Принцип подключения хоть и не идентичен, но похож.

  • Теперь понадобится протянуть контакт под номером 87 к АКБ под педалями или вдоль проводки в моторный отсек.

На этом этапе рекомендуется установить предохранитель. Лучше расположить элемент как можно ближе к АКБ.

  • Контакт под номер 86 протягиваем на массу к кузову.
  • Противотуманки имеют по два провода – минус и плюс. Последние («плюсовые») понадобится соединить между собой и отправить на аккумулятор.
  • Затем нужно направить их на реле и подсоединить к разъему под номером 30.
  • «Минус» направляется на кузов.
  • Необходимо замотать изолентой все оголенные провода и проверить надежность соединений.

Если противотуманки не работают, проверьте правильность подключения разъемов реле. При правильной установке будут слышны щелчки.

Здесь мы рассмотрели вариант подключения противотуманных фар с питанием от печки салона. Также можно осуществить подключение от колодки подогрева заднего стекла. Для этого нужно будет использовать для питания провода от кнопки включения подогрева заднего стекла. Принцип подключения тот же, что и описан выше, только с использованием другого источника питания

В первом варианте противотуманки будут работать совместно с габаритами, а «подпитка» от кнопки подогрева заднего стекла, предполагает работу этих фар от замка зажигания. Второй вариант лучше подходит для езды в дневное время, так как противотуманки можно использовать вместо ходовых огней, не включая габаритов.

Особенности установки противотуманок

  • Установка противотуманных фар должна осуществляться строго внизу автомобиля, поэтому если на вашей машине не предусмотрено для них специального места расположите их как можно ближе к дорожному полотну. Так, получается «прослойка» между туманом и светом, что обеспечивает хорошую видимость водителю. Нельзя устанавливать противотуманные фары выше головных фар.
  • Необходимо следить за чистотой фар, также можно защитить их специальными предохранительными решетками, которые сберегут их от ударов камней, палок и т. п.
  • Чтобы избежать запотевания или помутнения стекол, рекомендуется один раз в несколько месяцев производить полировку специальным раствором. Особенно актуальна эта процедура для водителей часто ездящих по песку. Также может понадобится такая обработка стекол после зимы.

Настройка противотуманных фар

После завершения установки противотуманных фар, нужно убедиться в том, что они работают, а после приступать к регулировке.

  • Поставьте машину на ровную поверхность перед гаражом, воротами или стеной.
  • Проверьте давление в шинах – оно должно быть равным.
  • Измерьте расстояние от земли до середины фары.
  • Из этой величины отнимите 5 см и нарисуйте на стене полосу на расстоянии, соответствующем полученной величине.
  • Включите противотуманные огни и подведите их таким образом, чтобы верхняя линия светового потока была на начерченной линии.

На этом настройку противотуманок можно считать законченной. Теперь в любую погоду вы будете чувствовать себя уверенно.

Для установки противотуманок не нужно обладать специальными навыками, необходимо купить комплект качественных фар и запастись инструментами. Монтаж противотуманных фар можно осуществить самостоятельно, главное, четко следовать инструкции. Противотуманки значительно улучшают видимость на дороге в темное время суток и плохую погоду. Оборудовав свой автомобиль таким элементом, вы не только упростите движение себе, но и остальные автолюбители будут лучше вас видеть.

Противотуманные фары — установка и замена, схема подключения ПТФ через реле и кнопку

Противотуманные фары подсвечивают дорожное полотно непосредственно перед автомобилем. Особенности расположения позволяют световому потоку пробиваться через плотный туман, освещая обочины и разметку. Установить противотуманки можно самостоятельно на любое транспортное средство. Для этого нужно соблюсти правила размещения и подключить проводку к бортовой сети автомобиля.

Требования к установке противотуманных фонарей

Правилами дорожного движения регламентируются параметры монтажа противотуманок. В случае их несоблюдения возможны проблемы с сотрудниками технического осмотра и ДПС.

Правила установки противотуманных фар:

  1. Внешняя сторона корпуса фонаря должна быть не дальше 40 см от края бампера.
  2. Оптика монтируется не ниже 25 см от земли. Отсчет ведется от нижней границы противотуманки.
  3. Дополнительное освещение устанавливается ниже основных фар с ближним светом.

В ГОСТ 8769-75 говорится, сколько противотуманных фар разрешено устанавливать на автомобиль, какие лампы можно использовать и как настроить верный угол. При отклонениях от требований инспектор вправе выписать административный штраф и требование о приведении транспортного средства в надлежащее состояние.

Для прохождения технического осмотра ПТФ должны включаться только совместно с габаритными огнями. В случае некорректной схемы подключения сотрудники техосмотра откажут в выдаче бланка.

Виды оптики

Противотуманные огни подразделяются на несколько типов:

  • штатные;
  • универсальные;
  • линзовые;
  • лазерные противотуманки.

Заводская оптика монтируется на автомобили в высоких комплектациях и соответствует всем требованиям. Включение оптики возможно только при активном ближнем свете или габаритах. Для настройки угла луча используется специальный барашек, который находится на корпусе.

Универсальные огни требуют самостоятельной установки, подключения и настройки. Для крепления используются металлические держатели, которые прикручиваются к бамперу или усилителю кузова. При выборе оптики доверять стоит только известным производителям: это фары Hammali, Hella, Osram, PIAA, Wesem, Morimoto. Неизвестные китайские изделия плавятся при долгом использовании и плохо поддаются настройке.

Линзованные фары устанавливаются в редком случае и способны выдавать мощный луч света, который пробивает туман и освещает обе обочины. Для самостоятельной установки существуют комплекты с крепежами, кнопкой и проводами.

Лазерные варианты устанавливаются на задний бампер и используются для обозначения автомобиля в условиях недостаточной видимости.

Перед покупкой оптики нужно определиться с местом монтажа, измерить бампер и записать примерные габариты изделия.

Материалы для монтажа

Установка фар не требует от водителя специальных знаний или инструментов. Трудности могут возникнуть только при монтаже силовых кабелей, однако этот вопрос решается с помощью схем.

Инструменты для монтажа фар:

  • чистая ткань;
  • отвертка;
  • дрель или шуруповерт;
  • тонкое сверло;
  • изолента;
  • канцелярский нож;
  • провода для подключения птф;
  • кронштейн крепления;
  • предохранитель;
  • пластиковые гофры;
  • стяжки.

Место соединения можно изолировать с помощью термоусадки, которая сжимается от обычной зажигалки или промышленного фена. Фары поставляются в виде комплекта подключения и содержат все необходимые детали для самостоятельного монтажа. Резиновая заглушка, которая надевается на лампу, защищает конструкцию от попадания влаги, пыли, песка. В процессе монтажа требуется соблюдать осторожность и не повредить комплектующие, которые входят в набор для подключения.

Схемы подключения противотуманных фар

Подсоединение кабелей делится на два типа:

  • параллельное;
  • последовательное.

Правильным и безопасным вариантом считается подключение через реле и кнопку. Для защиты от короткого замыкания в схему встраивается плавкая вставка, которая идет в комплекте с противотуманками.

Монтажный набор часто содержит кабели, длины которых не хватает для аккуратной прокладки в подкапотном пространстве. Подключение противотуманных фар своими руками потребует не менее 3-5 часов времени. Чтобы установить металлические крепежи, на некоторых моделях автомобилей приходится снимать бампер.

Параллельное подключение

При таком соединении плюсовой контакт питает каждую из фар. В проводку устанавливается реле, а также предохранитель на 15 А. Чтобы правильно установить плавкую вставку, ее следует размещать как можно ближе к аккумулятору.

Подача питания появляется только при включенном зажигании или заведенном двигателе. Дополнить функционал можно с помощью подачи 12 В от сигнального провода контроля зарядки. В таком случае при запуске автомобиля фары автоматически включатся и могут использоваться в качестве дневных ходовых огней.

Как подключить туманки:

  1. Минусовой контакт от фар подсоединяется к кузову автомобиля.
  2. Плюсовые клеммы соединяются между собой и уходят в реле на 87 клемму.
  3. Положительный контакт из реле под номером 30 подключается к аккумулятору.
  4. Два оставшихся контакта используются для кнопки питания и 12 В при включении зажигания.

Параллельное соединение подает полный вольтаж к каждой фаре, благодаря этому не снижается яркость ламп, а потребляемый ток возрастает.

Последовательное подключение

Такой способ монтажа существенно снижает потребление тока и уменьшает яркость ламп. Схема отлично подходит для постоянного использования противотуманок в качестве ходовых огней.

Как подсоединить противотуманки:

  1. Минусовые контакты фар соединяются друг с другом одним проводом.
  2. Плюсовая клемма одной фары крепится к кузову, а вторая впаивается в реле.
  3. Клавиша в салоне и плюсовой кабель от зажигания подключаются к 86 и 85 клеммам реле.
  4. 30 контакт переходит на плюсовую клемму аккумуляторной батареи.

Включить автоматически розжиг можно подачей питания от датчика зарядки сети. В таком случае фары должны светить при запуске силового агрегата и гаснуть при его остановке.

Монтаж противотуманок в бампер

Установка туманок не займет много времени. Для точности нужно сделать замеры и отметить места расположения креплений фар.

Для монтажа нужно выполнить шаги:

  1. Отмыть бампер от загрязнений.
  2. Приложить противотуманку к месту инсталляции и сделать отметки для рамок.
  3. Снять монтажную рамку с фары.
  4. Просверлить отверстия в месте крепления.
  5. Установить рамку с помощью саморезов или болтов, которые идут в комплекте.
  6. Прикрутить фару к рамке.
  7. Вмонтировать выключатель в салоне.
  8. Провести проводку одним из предложенных способов.
  9. Аккуратно спрятать кабели в гофру и закрепить к основному жгуту с помощью пластиковых стяжек.

Все работы с электрикой выполняются при отключенных клеммах с аккумулятора. После монтажа фар требуется выполнить настройку угла света, чтобы не слепить встречных водителей.

Для установки штатных деталей в заводские места нужно удалить заглушки и прикрутить болты в специальные отливы. В некоторых случаях в автомобилях присутствует вся необходимая проводка для быстрого подключения.

Как демонтировать противотуманный фонарь

Для замены перегоревшей лампы требуется снятие фары и отключение контактов.

Как поменять лампу или разбитую туманку:

  1. Отсоединить клеммы с аккумулятора.
  2. Отметить положение противотуманки на крепеже.
  3. Открутить болты и отсоединить колодку с кабелями.
  4. Снять пружинку и вытащить лампу.

При установке ламп нельзя касаться руками колбы. Это снижает срок службы световых элементов, наполненных газом-галогеном.

Разобрать противотуманную фару для замены стекла можно с помощью нагрева. Для этого нужно:

  1. Поместить деталь в коробку с небольшим отверстием.
  2. Включить фен на 10-20 минут.
  3. Аккуратно поддеть старое стекло отверткой и оторвать герметик.
  4. Очистить поверхность отражателя от загрязнений и удалить старый клей.
  5. Обезжирить рамку, нанести герметик и приложить новое стекло.

После кристаллизации состава противотуманку можно установить на автомобиль в обратном порядке.

Противотуманные огни улучшают видимость дороги при осадках, снегопаде, тумане. Правильное подключение и настройка обеспечит исправную работу системы в любое время года.

Установка противотуманных фар (инструкция по установке ПТФ)

Безопасное передвижение автомобиля в любых дорожных условиях зависит от комплектации машины. Автопроизводители не на все модели устанавливают противотуманки. Густой туман зачастую заставляет водителей останавливаться, особенно ночью. Решить эту проблему поможет установка противотуманных фар (ПТФ).

Главной целью противотуманных фар является точная подача света перед автомобилем. Точно отрегулированные ПТФ освещают путь длиной в 10-15 м. Этого достаточно для безопасного передвижения в тумане с небольшой скоростью. А так как дорожные условия не всегда бывают плохими для управления автомобилем, водитель должен иметь возможность самостоятельно включать и выключать дополнительное освещение.

Регулировать положение противотуманных фар необходимо в процессе их установки. На эту процедуру нужно отвести максимум времени, терпения и внимания.

Особенности установки противотуманных фар

Перед покупкой противотуманных фар автовладельцу следует определиться с местом их установки на авто. Многие иномарки имеют в переднем бампере специальные ниши, предназначенные для установки дополнительной оптики. Соответственно под эти формы и размеры автомобилисту и нужно подбирать подходящие противотуманки.

Некоторые поклонники внедорожников монтируют дополнительные фонари на уровне со штатной оптикой или на крыше автомобиля. В этом случае подойдут ПТФ любого размера и формы. Важно, чтобы в комплекте были подходящие кронштейны для их надежного крепления.

Кроме самих противотуманных фар в магазине или на рынке нужно приобрести некоторые дополнительные материалы для их установки:

  • электрические провода,
  • клеммы для соединения проводов,
  • кнопку или ручку включения «противотуманок»,
  • предохранитель на 20-30 А,
  • четырехконтактное реле.

Подготовка к установке ПТФ на автомобиль

Установка противотуманных фар своими руками возможна при минимальных знаниях физики и умении держать в руках отвертку и гаечные ключи. В этом случае лучше всего работать в гараже, оснащенном смотровой ямой. Автомобилист должен запастись терпением, а работу вести без спешки, точно следуя технологической инструкции по установке. Перед началом работ лучше ознакомиться с рекомендациями производителя, найти электрическую схему для своего автомобиля.

Если же у автовладельца «руки растут не из того места», то лучше доверить эту работу автомобильному электрику. Так удастся избежать дополнительных сложностей и поломок.

Схема подключения противотуманных фар

Противотуманные фары можно подключить в автомобиле разными способами, принцип действий будет примерно одинаков. Наибольшей популярностью пользуется схема подключения противотуманных фар через реле (смотрите на видео выше). При этом нужно обратить внимание на маркировку ПТФ, если на них указана сторона установки (левая или правая), то важно не перепутать их местами.

Почти все иномарки имеют электроподготовку для установки противотуманных фар. Чтобы убедиться в этом, необходимо заглянуть в блок предохранителей. Если в нем есть свободные клеммы для реле с надписью «fog lamp relay», то подготовка выполнена производителем. А под бампером, скорее всего, можно обнаружить провода с клеммами для подключения ПТФ. Работа по установке противотуманных фар в таком авто значительно упростится.

Установка противотуманных фар своими руками

В процессе установки противотуманных фар придется осуществить несколько этапов:

  • установка фар в бампер,
  • протяжка проводов,
  • подключение реле и предохранителя,
  • монтаж кнопки или замена ручки переключения поворотов и света фар.

Каждая модель автомобиля имеет свои особенности, поэтому заранее необходимо выяснить нюансы подключения ПТФ на автомобильных форумах или у коллег с аналогичными машинами. Начинать работу по установке противотуманок в машину следует с отсоединения минусовой клеммы аккумулятора.

Установка противотуманных фар в передний бампер

Многие автомобилисты на данном этапе сталкиваются с проблемой снятия бампера. Облегчить задачу поможет смотровая яма или подъемник. Вот несколько простых советов, которые облегчат установку ПТФ в передний бампер:

  1. Предварительно нужно подготовить место, куда снятый бампер можно будет положить.
  2. Не нужно спешить и сильно дергать бампер, иначе пластик может треснуть.
  3. Когда бампер будет снят, необходимо аккуратно вырезать отверстия в соответствующих местах под установку противотуманных фар. Лучше делать эту операцию, начиная с малого отверстия, постепенно подгоняя его под размер каждой фары (так удастся избежать образования щелей, через которые в ПТФ будет в дальнейшем проникать влага и пыль).
  4. К некоторым противотуманкам продаются специальные декоративные заглушки, которые подбираются по модели автомобиля и даже по цвету бампера. При наличии таких заглушек, процесс подгонки отверстий в бампере под противотуманные фары намного упрощается.
  5. Далее останется прикрутить к бамперу крепления, а затем с их помощью закрепить и сами фары.

Когда обе противотуманки будут установлены на места, после монтажа бампера на автомобиль, к ним подключаются разъемы проводов питания.

Протяжка проводки для подключения ПТФ

От кнопки или ручки включения противотуманных фар нужно протянуть провода к блоку предохранителей. Для этого понадобится несколько проводов длиной от 20 см до 1,5 м (в зависимости от схемы подключения и особенностей конкретного автомобиля).

Смысл подключения достаточно простой: выключатель должен включить реле, которое в свою очередь замкнет цепь питания и подаст напряжение на противотуманки. Эту работу проще всего выполнить по универсальной схеме, подходящей практически для любой марки авто (см. видео выше).

На машинах, имеющих заводскую подготовку для подключения ПТФ все намного проще. В ином случае, проводку придется проложить самостоятельно.

  • Плюсовые контакты каждой фары соединяются между собой, а затем одним общим проводом подключаются к соответствующему реле цепи питания, согласно схемы подключения ПТФ.
  • Минусовой контакт каждой противотуманной фары соединяется с кузовом или шасси автомобиля. Место соединения должно быть хорошо зачищено от краски, ржавчины и грязи.
  • Все дополнительные провода лучше зафиксировать к элементам кузова или другой проводке пластиковыми хомутами или изолентой.

Ну а вставить в соответствующее посадочное гнездо реле и предохранитель большого труда не составит.

Монтаж выключателя противотуманных фар

В зависимости от модели автомобиля противотуманные фары могут включаться отдельной кнопкой в блоке управления включением-выключением света автомобиля или же ручкой включения указателей поворотов и фар.

В последнем случае необходимо будет демонтировать данный узел и установить на его место новый блок, оснащенный выключателем противотуманных фар. При выполнении этой работы важно подобрать все крепежные элементы кожухов и панелей, тогда демонтаж не принесет дополнительных проблем со сломанными пластиковыми деталями.

После выполнения всех этапов установки ПТФ остается проверить последовательность подключения, надежность крепежа соединений, присоединить минусовую клемму к аккумулятору и выполнить пробное включение противотумнок. Если включение и выключение противотуманных фар происходит в штатном режиме, необходимо провести точную регулировку светового потока по высоте (см. схему регулировки). В дальнейшем не забывайте регулярно очищать противотуманки от грязи и своевременно менять перегоревшие лампочки.

Видео-инструкция по установке штатных ПТФ на Ладу Калину

Общие принципы подключения противотуманных фар

Знание как подключить противотуманные фары может понадобиться при замене слабых ПТФ на более мощные. Конечно, можно обратиться и на СТО, где этим займутся специалисты, вполне можно научиться, как подключить противотуманные фары своими руками.

Что нужно для подключения противотуманных фар

  • инструменты – кусачки, нож, плоскогубцы, клеммник;
  • расходники – изолента (только синяя), пластиковые хомуты, термоусадка соединительные и массовые клеммы, автомобильная гофра;
  • материалы – 15-амперный предохранитель, колодка для ПТФ, кнопка включения, провода, изоляция.

Как подключить противотуманные фары

Чтобы подключить ПТФ понадобится снять центральную панель, дабы получить доступ к бортовой электросети.

Схема подключения противотуманных фар.

 

Для начала сделайте, а затем подключите разъемы к противотуманным фарам и прикрутите массовый (черный на схеме) провод, с помощью клеммы, на кузов. Плюсовой (он же зеленый на схеме) вывести в район АКБ, поскольку он будет подключаться к реле на клемму 30.

Прикрепите реле и подключите провода. Подключите к аккумулятору, через предохранитель, красный провод, который 87 на схеме, а черный (86) к кузову через клемму или к минусу АКБ. Синий провод управления заведите в салон.

Теперь установите кнопку включения ПТФ и выберите тип включения. Независимое подключается на габариты или к постоянному +АСС. Правда, можно полностью посадить АКБ, если забыть выключить противотуманки.

Для использования только включенном зажигании нужно найти «+» замка зажигания или IGN1 (можно IGN2, что еще лучше).

Нештатную проводку для пущей безопасности и эстетичности лучше упаковать в гофру

Заключение

Теперь можно попробовать узнать, удалось ли правильно подключить противотуманные фары. Стоит отметить, что на разные модели машин идут различные схемы подключения. Приведенная здесь схема подключения ПТФ несколько обобщенная, так что лучше искать схему на свое авто. Но таков общий принцип.

Автор: Иван Матиешин

Спрашивайте в комментариях. Ответим обязательно!

Как подключить противотуманки — подключение противотуманок

Правильная комплектация автомобиля — это гарантия безопасности и водителя, и пассажиров. Частые поездки и путешествия на автомобиле становятся прямым доказательством того, как сложно автовладельцу обходиться без противотуманных фар. Даже небольшие перемены погоды способны нарушить привычное движение, если автомобиль эксплуатируется без «противотуманок».

Для их установки нужно не так уж и много: противотуманки, необходимые инструменты и схема подключения противотуманок, которая на самом деле довольно проста. Качественные противотуманные фары лучше покупать на авторынке, так как именно там специалисты посоветуют не только нужную модель, но и подскажут, как ее подключить.

Зачем же они нужны

Основной задачей противотуманных фар является четкая подача света. Точная регулировка фар дает возможность освещения пути на расстояние в десять метров. А этого вполне хватает при езде на невысокой скорости даже в очень ненастную погоду. Регулируются противотуманки непосредственно во время установки. Верная регулировка угла падения света — залог качественного освещения дороги.

Подключить фары-противотуманки несложно, главное — иметь хотя бы основные навыки работы с автомобильными инструментами и знать, где и что находится.

Инструкция по подключению

Кнопка включения противотуманок

Для выполнения задачи нужны:

  • противотуманки,
  • реле и колодка противотуманных фар,
  • кнопка включения,
  • 15-ти амперный предохранитель,
  • провода, изолента.

Если имеется опыт подключения автомагнитолы, то будет еще проще, несмотря на некоторые отличия.

Схема прокладки проводов

Для начала нужно снять клеммы с аккумулятора и убрать главную панель, под которой находится пара лампочек от подсветки печного регулятора. Сами лампочки не понадобятся, а вот провода — как раз наоборот. Проведя до самого конца по проводу, можно нащупать двухконтактный разъем. Именно к нему и нужно крепить первый контакт реле. Итак, первый провод необходимо подсоединить к разъему печной подсветки, другой — к кнопке.

Электрическая схема подключения

Затем провод нужно подвести к реле, чтобы таким образом получить 12-вольтную цепь от автогабаритов и реле контакт 85. Процесс подключения нельзя назвать сверхзамысловатым, поэтому он под силу даже новичкам. Кстати, реле можно спрятать куда угодно, как удобно водителю, например, за приборную панель.

Далее нужно протянуть контакт под номером 87 к аккумулятору под педалями. Только здесь важно установить предохранитель и лучше — ближе к аккумулятору. 86-й контакт отправляется на кузов.

И в заключение, самое главное — противотуманные фары. Каждая из них имеет по два провода: на плюс и минус. Плюсы от одной и другой фары нужно соединить между собой и направить на аккумулятор. После этого поднять их на реле таким образом, чтобы провода были незаметны, и затем подключить к разъему под 30-м номером. Минус отправляется на кузов. А теперь можно убедиться в исправности противотуманок. Не стоит сразу же собирать конструкцию, важно удостовериться, что все работает и подсоединено достаточно надежно, нигде не коротит. Оголенные провода обезопасить изолентой. И это все!

Все подключено

Если же противотуманки не работают, возможно, неправильно подключены разъемы реле, которое при правильной установке должно издавать щелчки. Исправление неполадок в этом случае спасет ситуацию.

На сегодняшний день есть некоторые правила, связанные с тем, как установить противотуманки. Они прописаны в своде Правил Дорожного Движения. Здесь же находится и сама схема подключения данных фар, предназначенная в помощь малоопытному водителю.

Установка и требования к ней

После установки необходимо отрегулировать

Четкость границ пучка света вверху гарантирует отличное освещение пути, иными словами, распространение света должно находиться над горизонтальной плоскостью. Установка фар должна производиться непосредственно внизу машины, потому как за счет этого получается некая прослойка между туманом и светом, обеспечивающая хорошее освещение.

В случае, если схема подключения предполагает оборудование фарами нижней части автомобиля, потребуются заглушки. Они представляют собой предохранительные решетки, защищающие фары от ударов камней, палок и прочих неприятностей, которые угрожают сохранности фар во время езды. Заглушка убережет детали при любых обстоятельствах.

За чистотой установленных фар важно постоянно следить при помощи полировки. Это увеличивает срок службы оборудования и делает более четким рассеивание света.

Таким образом, правильное следование описанным правилам позволит установить противотуманки самостоятельно, без затрат денег и ожидания очередей на СТО.

Видео

Как установить ПТФ на ВАЗ 2109 можно увидеть в следующем видеоролике:

Схема подключения противотуманок через реле и кнопку

Во время ненастья эффективность фар головного света заметно снижается, что не только делает управление автомобилем менее комфортным, но и сказывается на безопасности поездки.

Световой луч фар ближнего и дальнего света отражается от капель дождя и частичек водяного пара во время тумана, образуя плотную белую пелену.

Настоящим спасением для водителя в таких погодных условиях станут противотуманные фары (ПТФ), которые дают плоский и широкий горизонтальный луч света.

Он стелется над дорогой, хорошо подсвечивая обочину, улучшая видимость самого автомобиля для водителей встречных авто.

Штатные ПТФ редко встречаются в базовых комплектациях автомобилей, однако при желании противотуманки всегда можно приобрести отдельно и установить самостоятельно. Для этого достаточно иметь базовые знания в области электротехники и электроники.

Вот так выглядит схема подключения кнопки ПТФ через реле:

На ней все предельно просто и понятно.

  1. С аккумуляторной батареи плюс через предохранитель идет на контакт реле (30) и далее с контакта (85) идет на один контакт кнопки включения/выключения ПТФ.
  2. На второй контакт кнопки подается минус.
  3. Далее с контакта реле (87) плюс идет на лампы противотуманных фар.
  4. К контакту (86) подключается минус.

Обратите внимание на то, что каждая модель автомобиля имеет свои особенности, поэтому схема может корректироваться.

Инструкция — как подключить противотуманки через реле и кнопку на примере Шевроле Нива

Как видно из представленной выше схемы, для подключения противотуманок понадобятся:

  • сами ПТФ;
  • реле противотуманных фар;
  • кнопка включения/выключения фар;
  • предохранитель 10 А;
  • провода и соединительные клеммы.

Для работы также понадобятся некоторые инструменты: отвертки, острый нож для зачистки проводов и изолента.


Работу по установке и подключению противотуманок через реле и кнопку выполняем в следующей последовательности (рассмотрим на примере Шевроле Нива):

  1. Определяем место расположения реле. Поскольку данный компонент имеет небольшие размеры, его можно без труда спрятать за приборной панелью.
  2. Определяем место расположения кнопки включения/выключения ПТФ;
  3. Отмеряем необходимую для подключения длину проводов;
  4. Далее протягиваем медный провод от контакта 30 к аккумулятору (+), предварительно установив в удобном месте предохранитель на 10 Ампер;
  5. Подключаем кнопку противотуманных фар к контакту 85 и устанавливаем в выбранное место. Как правило, кнопка передних ПТФ устанавливается на место штатных кнопок, где стоит заглушка;
  6. Контакт реле 86 в любом удобном месте соединяем с массой;
  7. Устанавливаем противотуманные фары. Производители позаботились о том, чтобы те владельцы, которые пожелают установить противотуманные фары, не выдумывали «велосипед». В передних бамперах Шевроле Нива для этого предусмотрены специальные ниши, которые закрыты заглушками. Для того чтобы их снять необходимо с внутренней стороны бампера открутить саморезы. Вставляем фары и смотрим на обозначения проводов.
  8. Плюсовой провод на них подаем с контакта 87, минус — с кузова авто;
  9. Проводим тестирование.

ВИДЕО ИНСТРУКЦИЯ
» alt=»»>

Полезные правила — надо знать

При выборе самих противотуманок и места для их расположения следует внимательно ознакомиться с принятыми нормами, которые строго прописаны в ПДД.

Так, на территории России допускается установка только заводских ПТФ, прошедших сертификацию. Подтверждением этого является знак Е22 в круге, который наносится на корпус ПТФ.

  1. Самих противотуманок должно быть две штуки — не больше и не меньше.
  2. Установлены они должны быть на расстоянии не более 40 см от кромки рассеивателя бокового габарита и не ниже 25 см от уровня поверхности дорожного покрытия. У большинства современных автомобилей на бампере предусмотрены штатные места для установки ПТФ.
  3. Если данной комплектацией противотуманки не предусмотрены, на их место ставятся заглушки, которые легко извлекаются и на их место монтируются ПТФ.

В большинстве противотуманных фар, представленных на рынке, применяется стандартная однонитевая лампа категории Н1. Включаться ПТФ должны только вместе с габаритными огнями.

Неправильная установка противотуманные фар может привести к возникновению ДТП или будет вызывать дискомфорт у водителей встречных автомобилей. Соблюдайте все правила, и вы никогда не попадете в неприятную ситуацию.

После публикации статьи об установке и подключении противотуманных фар на ВАЗ 2109 многие читатели задавали мне вопрос: что делать если штатной проводки для ПТФ и кнопки включения ПТФ в салоне нет, то есть полностью отсутствует подготовка для установки противотуманок, что встречается на более ранних версиях ВАЗ 2108 и ВАЗ 2109?

В ответ на это вопрос я публикую эту статью, в которой мы рассмотрим, как подключать противотуманные фары, как говорится, «с нуля», при полном отсутствии проводки.

Рассмотрим для общего понятия схему подключения любого дополнительного оборудования на автомобиле с использованием реле:

К слову, по такой же схеме подключается и звуковой сигнал от Волги, и обогрев наружных зеркал.

Номинал предохранителя на этой схеме выбирается исходя из мощности подключаемой нагрузки. Например, в ПТФ ВАЗ 2109 стоят 2 лампы по 55 Вт. Тогда ток в цепи будет равен 55 Вт * 2 / 12В = 9,1 А. Предохранитель возьмем с небольшим запасом, т.е 15А.

Но такая схема в чистом виде для подключения противотуманок не подходит. Обращаем внимание на Правила, в которых говорится, что ПТФ должны включаться только после включения габаритных огней. Соответственно, схему нужно немного доработать, и она приобретает вот такой вид:

Здесь будет работать также и индикация включения противотуманных фар, т.е. будет загораться лампочка при включении ПТФ.

Единственное, чего не отражено на схеме, так это подсветка самой кнопки при включении габаритов. Но на некоторых кнопках, в том числе на старых ВАЗ 2108 она попросту отсутствует. А если необходимо, и кнопка позволяет сделать подсветку, то это очень просто сделать, подав на один контакт лампы подсветки плюс от любого провода, на котором появляется напряжение при включении габаритов (подсветка панели, соседней кнопки), а другой подключив на массу.

Ну а напоследок приведу пару типовых схем подключения ПТФ на ВАЗ 2108 и 2109, может кому пригодятся!.

Противотуманные фары не относятся к обязательному оборудованию автомобиля. Однако их наличие сделает поездки более комфортными и безопасными. Для монтажа не требуются особые навыки. Установка и подсоединение ПТФ к проводке вполне осуществимо в домашних условиях. Для этого понадобится монтажный набор подключения противотуманных фар, простейшие слесарные инструменты и изоляция.

Для чего нужны противотуманки

Стандартное головное освещение автомобиля обеспечивает достаточную видимость при ясной погоде. Однако в ненастье от него немного толку. Проблема в том, что лучи ламп ближнего и дальнего света отражается от капель тумана или снежинок, создавая «белую пелену» впереди машины.

Это следствие двух факторов:

  • узкие оптический пучок лучше отражается от поверхности;
  • высоко установленные фары подсвечивают участок с большой концентрацией капель тумана.

ПТФ специально спроектированы для эксплуатации в тяжелых погодных условиях. И дело тут не в желтых светофильтрах, которые некоторые водители считают панацеей в туманную погоду. Не зря ПДД допускают установку ПТФ двух цветов — белого и желтого.

Такие фары справляются с непогодой благодаря паре важных свойств:

  • Ширина светового пучка. Широкий луч меньше отражается от воды и льдинок и не создает «белую пелену».
  • Высота крепления. Концентрация тумана вблизи земли ниже. Поэтому низкое расположение позволяет подсвечивать под пелену.

Последний момент особенно важен. Если установить ПТФ на уровне фар головного освещения, они не будут справляться со своей задачей.

Кроме передних ПТФ, улучшающих видимость с водительского места, используются задние противотуманные фары, дублирующие габариты. Они четко обозначают авто в условиях плохой видимости, но обладают избыточной яркостью. Поэтому их не следует включать в ясную погоду.

Требования к установке противотуманных фар

ПТФ состоят из трех корпуса с цоколем для крепления лампы, отражателя и стеклянного рассеивателя, которые обеспечивают нужную форму светового пучка. Особенности эксплуатации и назначение противотуманок налагает на них особые требования, которые нашли отражение в действующих правилах дорожного движения:

  • устанавливать можно не более 2 фар;
  • ПТФ должны крепиться с отступом 40 см от боковых краев авто и выше 25 см от поверхности дороги;
  • луч должен быть направлен ниже, чем фары ближнего света;
  • углы видимости не могут выходить за пределы следующих значений: -10…+15 градусов и -10..+45 по вертикали и горизонтали соответственно.

В бампере современных легковушек предусмотрены специальные места для монтажа противотуманных фар. При их отсутствии противотуманки следует крепить согласно рекомендаций производителя. Главные требования:

  • жесткое крепление ПТФ на кронштейнах;
  • защита электропитания предохранителем;
  • правильные углы направления световых пучков.

Подключение ПТФ через реле и кнопку

Существует несколько вариантов сопряжения ПТФ с бортовой сетью автомобиля. Подключение противотуманных фар через реле с использованием отдельной кнопки — самое удобное, безопасное и правильное решение. Для выполнения работы вам понадобятся:

  • противотуманки;
  • соединительные клеммы;
  • предохранитель на 15 ампер;
  • четырехконтактное реле;
  • колодка подключения;
  • провода;
  • изоляция или термоусадочная трубка.

Материалы входят в монтажный комплект и продаются в одном наборе с ПТФ.

Из инструмента нужны отвертки, пассатижи и нож для зачистки изоляции проводов.

Разводка должна быть выполнена согласно плана параллельного или последовательного соединения ламп.

Схема подключения противотуманных фар приведена на рисунке

Операции по подключению ПТФ выполняются в такой последовательности:

  • Отсоединить минусовую клемму от АКБ;
  • Надежно зафиксировать реле в салоне машины. Для этого подойдет пространство под панелью приборов.
  • Закрепить кнопку для включения противотуманных фар на «торпеде» (обычно для нее предусмотрено отдельное место, прикрытое заглушкой).
  • Проложить провод от аккумулятора к реле, закрепить на нем клемму и присоединить к контакту «30».

Важно: в электроцепь между АКБ и реле необходимо вставить предохранитель, который лучше расположить в подкапотном пространстве поближе к аккумуляторной батарее. Это предотвратит возгорание проводки при замыкании на корпус.

  • Соединить кнопку и 85-й вывод реле.
  • Подключить плюсовой кабель ко входу кнопки, протянув его от замка контактов на замке зажигания. Подключать питание следует туда, где напряжение подается лишь после поворота ключа. Это не даст вам оставить ПТФ горящими при постановке машины на стоянку.
  • Соединить контакт «86» с массой, используя для этого ближайший болт или саморез.
  • Закрепить ПТФ на переднем бампере, удалив пластиковые заглушки. Иногда специальных мест для крепления ПТФ не предусмотрено. Тогда придется прорезать их лобзиком или зафиксировать фары на стальных кронштейнах над бампером.
  • Проложить кабеля от 87-го контакта реле к противотуманкам, подключив к цоколям.
  • Соединить выход массы ПТФ к кузову.
  • Надеть и закрепить минусовую клемму на АКБ.
  • Повернуть ключ зажигания и убедиться в работоспособности противотуманных фар.

При монтаже следует изолировать места соединения проводов и клеммы при помощи термоусадочных трубок или изоленты.

Схема параллельного включения противотуманок

Электросхемы монтажа противотуманных фар отличаются лишь количеством плюсовых проводов, протянутых к цоколям ламп. Последовательная схема предусматривает прокладку одного кабеля от контакта «87» к левой фаре. В месте крепления клеммы к нему подключается второй провод, который тянется к цоколю правой лампы.

Параллельное включение ПТФ предполагает укладку пары отдельных кабелей от реле к каждой противотуманке.

Кроме двух проводов к лампам ПТФ, можно провести третий, идущий к «контрольке», сигнализирующей об активации противотуманных фар. Она устанавливается на панели приборов. Место для нее предусмотрено на всех современных автомобилях. Единственное что понадобится для подключения — купить цоколь и лампу (накаливания или светодиодную) соответствующего размера.

Провода питания следует прокладывать, чтобы они не проходили вблизи горячих или острых деталей машины. В местах, где возможен перегиб провода или повреждение изоляции, их следует защитить гофрой или дополнительным слоем изоленты.

После монтажа и подключения ПТФ необходимо отрегулировать положение лучей. Фары не должны светить вверх. Иначе они будут слепить водителей встречных авто, но не помогут вам разглядеть дорогу в тумане. Также следует позаботиться о том, чтобы луч четко освещал обочину. Это поможет вам без проблем пройти техосмотр и обеспечит хорошую видимость даже в туман или при снегопаде.

схема, пошаговая инструкция

Если ваша профессия связана с частыми поездками на автомобиле, или вы просто любите путешествовать, то наверняка знаете, что без хорошей оптики гарантировать безопасную езду довольно сложно. На данный момент даже самую короткую поездку нельзя совершать без хорошего туманообразователя. Эта оптика теперь устанавливается практически на каждый автомобиль в базовой комплектации.

Однако есть машины, в которых необходимо самостоятельно подключать туманы через реле.Схема и этапы установки этой оптики — далее в этой статье.

Зачем нужны туманы?

Прежде чем рассказать об особенностях установки этих элементов, несколько слов о важности, которую они представляют для автомобиля. Основная функция противотуманных фар — обеспечивать свет. От этой характеристики зависит качество и дальность освещения проезжей части. Если правильно настроить противотуманные фары, они способны осветить перед вами до 10 метров асфальта, чего достаточно для безопасного передвижения на скорости 50-60 километров в час.И неважно, в какую погоду вы едете — при безоблачном небе или густом тумане — с этой функцией эта оптика работает всегда. Так как же установить его в машине?

Подключение противотуманных фар через реле: схема и инструкция по эксплуатации

Для начала подготовим необходимые инструменты и материалы. В процессе работ нам потребуются предохранитель на 15 ампер, несколько метров проводов, изолента, кнопка включения, колодка и реле ПТФ. Схема подключения противотуманных фар через реле указана на фото ниже.На этом мы будем ориентироваться.

Это та же схема подключения реле противотуманных фар. В принципе, никакой сложности это не представляет, и с этим очень легко справиться.

Как начать установку?

Первым делом снимаем центральную панель — здесь будут располагаться 2 лампы, освещающие регулятор духовки. На работу ПТФ они никак не влияют, но их провода нам понадобятся. Чтобы нащупать двухконтактный разъем, следует придерживать провод рукой до самого конца. Это особенно важно, так как именно здесь будет установлен первый контакт на реле.Далее провод подключается к месту разъема освещения топки, а вторая часть идет к отдельной кнопке включения ПТФ.

Подключить контакты

Как дальше подключить противотуманные фары через реле? Для того, чтобы в системе была двенадцатавольтная сеть из габаритов и 85 контактов, необходимо провести провод к реле. Далее протягиваем 87 контактов под педалями до аккумулятора.

Как правильно подключить противотуманные фары через реле? Схема включает 30, 85, 86 и 87 контактов.Их, судя по картинке, мы соединяем. Здесь мы устанавливаем предохранитель на 15 ампер. И чем ближе он к батарее, тем лучше. Следующий 86-й контакт. Здесь все просто — соединяем с телом.

О проводах

Теперь займемся противотуманными фарами. Как известно, от каждой фары идет всего два провода («плюс» и «минус» соответственно). Последний связан с телом, то есть будет нашей массой. Далее поднимаем к реле, чтобы не было видно проводов, и подключаем к АКБ.

На этом подключение противотуманных фар через реле завершено. Схема подключения, как видим, очень простая, поэтому с этой задачей справится даже начинающий автомобилист.

Второй вариант установки

Где будет проще автовладельцам, у которых в бампере уже есть место для крепления противотуманных фар. Тогда вам не нужно покупать предохранители. Все, что требуется, это пара новых противотуманных фар и до 100 сантиметров провода (в запасе). ПТФ

для автомобилей обычно имеют два провода, окрашенные в черный и красный цвета.Последний сочетается с «плюсом», а первый — с «минусом». Хотя на некоторых экземплярах (как, например, на противотуманках для «Дэу Нексия» азиатского производства) неважно, к какому цвету подключаться. Красный прекрасно может выполнять функцию «плюс» и «минус». Кстати, если вы не нашли в бампере проводов для подключения оптики, можно попробовать подключить их напрямую к аккумулятору. И не обязательно вытаскивать «плюс» и «минус» из каждой лампы отдельно. Порядок установки может быть следующий — к клеммам АКБ (точнее, под ними) подключаются два провода (как мы уже говорили, черный и красный), которые идут сначала к левой фаре со стороны водителя, а затем к правому.Если провода короткие, возьмите более длинные, почистите их контакты на концах и подключите. Придется запастись этим изолентой. Цвет длинного провода, который будет соединяться с ПТФ и аккумулятором, не принципиален. Главное, чтобы вы не запутались в полярности. Также будьте начеку и отключите аккумулятор перед установкой. В противном случае малейшее соприкосновение провода с корпусом может привести к короткому замыканию.

Такой алгоритм установки ПТФ подходит не только для иномарок, но и для всех отечественных автомобилей, на которых производитель предусматривает место для крепления оптики.Например, на автомобилях ВАЗ 2110 и 2114 подключение туманов таким способом занимает не более 20-40 минут времени (и это при том, что у автолюбителя нет опыта установки подобного оборудования на транспортное средство).

Как заменить реле противотуманных фар

Большинство, но не все автомобили сегодня оснащены противотуманными фарами. Изначально противотуманные фары предназначались для улучшения зрения при наличии тумана. По этой причине большинство производителей обычно устанавливают противотуманные фары на переднем бампере или на нижней панели.

Симптомы неисправности реле противотуманных фар включают щелчок при включении или неправильное функционирование противотуманных фар. Чаще всего реле противотуманных фар находится в блоке реле и предохранителей под капотом. Блок реле / ​​предохранителей под капотом можно установить в любом из нескольких мест под капотом. Его можно установить на стороне водителя или пассажира, а также спереди или сзади моторного отсека.

Часть 1 из 1: Замена реле противотуманных фар

Необходимые материалы

Шаг 1. Найдите блок реле и предохранителей под капотом .Откройте капот и найдите блок предохранителей / реле. Производители обычно маркируют коробку словом «предохранитель» или «реле» на крышке.

Шаг 2: Снимите крышку блока реле и предохранителей под капотом . Крышку блока предохранителей / реле обычно можно снять вручную, но иногда может потребоваться небольшая отвертка, чтобы аккуратно поддеть фиксирующие язычки, чтобы освободить их.

Шаг 3: Найдите реле противотуманных фар, которое необходимо заменить . Определите реле противотуманных фар, которое необходимо заменить.Большинство производителей предоставляют схему на крышке блока предохранителей / реле под капотом, которая показывает расположение и функцию каждого предохранителя и реле, расположенных внутри блока.

Шаг 4: Снимите заменяемое реле противотуманных фар . Снимите реле противотуманных фар, которое необходимо заменить. Обычно это можно сделать, зажав ее пальцами и потянув вверх и наружу, или с помощью плоскогубцев.

Нередко возникает необходимость покачивать его взад и вперед, когда за него тянется.

  • Примечание : Вы также можете использовать небольшую отвертку, чтобы аккуратно вытащить предохранитель или реле из его положения, при условии, что вы очень осторожны, чтобы не коснуться металлических клемм на них. Это может вызвать короткое замыкание и привести к дополнительным проблемам.

Шаг 5: Совместите новое реле противотуманных фар с оригинальным . Визуально сравните замененное реле противотуманных фар со снимаемым. Убедитесь, что он имеет такие же основные размеры, одинаковую номинальную силу тока и что клеммы имеют одинаковое количество и ориентацию.

Шаг 6: Вставьте запасное реле противотуманных фар . Совместите новое реле противотуманных фар с выемкой, из которой вышло старое. Осторожно установите его на место и нажмите до упора. Основание должно быть заподлицо с декой блока предохранителей и быть примерно на той же высоте, что и реле вокруг него.

Шаг 7: Установите на место крышку блока реле / ​​предохранителей под капотом . Установите крышку блока предохранителей / реле под капотом обратно на блок предохранителей / реле и надавите на нее, пока она не войдет в фиксирующие язычки.При срабатывании должен быть либо слышимый щелчок, либо ощущаемый щелчок.

Шаг 8: Подтвердите замену предохранительного реле . После того, как все было переустановлено, поверните зажигание в положение «работа». Включите противотуманные фары и проверьте работу противотуманных фар.

Хотя противотуманные фары считаются скорее элементом удобства, чем элементом безопасности, в районах, где туман является более распространенным явлением, противотуманные фары могут обеспечить лучшее и безопасное вождение.Если на каком-либо этапе процесса вы почувствуете, что можете заменить реле противотуманных фар вручную, обратитесь к профессиональному технику, например, в YourMechanic. В YourMechanic работают обученные и сертифицированные специалисты, которые могут прийти к вам домой или на место работы и выполнить ремонт за вас.

Как работает реле — как подключить замыкающие и замыкающие контакты

Электрическое реле состоит из электромагнита и подпружиненных переключающих контактов. Когда электромагнит включается / выключается от источника постоянного тока, пружинный механизм соответствующим образом подтягивается и отпускается этим электромагнитом, обеспечивая переключение между концевыми выводами этих контактов.Внешняя электрическая нагрузка, подключенная к этим контактам, впоследствии включается / выключается в ответ на переключение релейного электромагнита.

В этом посте мы подробно узнаем о том, как реле работает в электронных схемах, как определить его распиновку любого реле через счетчик и подключить в схемах.

Введение

Реле предназначены для таких применений, будь то мигание лампы, включение двигателя переменного тока или другие подобные операции. Однако молодые энтузиасты электроники часто сбиваются с толку, оценивая выводы реле и настраивая их со схемой возбуждения внутри предполагаемой электронной схемы.

В этой статье мы изучим основные правила, которые помогут нам определить распиновку реле и узнать, как оно работает. Приступим к обсуждению.

Как работает реле

О работе электрического реле можно узнать из следующих пунктов:

  1. Релейный механизм в основном состоит из катушки и подпружиненного контакта, который может свободно перемещаться по оси вращения.
  2. Центральный полюс откидывается или поворачивается таким образом, что, когда на катушку реле подается напряжение, центральный полюс соединяется с одной из боковых клемм устройства, называемой замыкающим контактом (нормально замкнутым).
  3. Это происходит из-за того, что полюсное железо притягивается электромагнитным напряжением катушки реле.
  4. И когда катушка реле выключена, полюс отключается от нормально разомкнутой клеммы и соединяется со второй клеммой, называемой нормально разомкнутым контактом.
  5. Это положение контактов по умолчанию, оно происходит из-за отсутствия электромагнитной силы, а также из-за натяжения пружины металлического полюса, которое обычно удерживает полюс соединенным с замыкающим контактом.
  6. Во время таких операций включения и выключения он переключается с N / C на N / O поочередно в зависимости от состояний ON / OFF катушки реле.
  7. Катушка реле, намотанная на железный сердечник, ведет себя как прочный электромагнит, когда через катушку пропускают постоянный ток.
  8. Когда катушка находится под напряжением, генерируемое электромагнитное поле мгновенно вытягивает близлежащий подпружиненный металлический полюс, реализуя описанное выше переключение контактов.
  9. Вышеупомянутый подвижный подпружиненный полюс по своей сути образует главный центральный переключающий вывод, а его конец ts заканчивается как вывод этого полюса.
  10. Два других контакта N / C и N / O образуют соответствующие дополнительные пары клемм реле или выводы контактов, которые поочередно подключаются и отключаются от центрального полюса реле в ответ на активацию катушки.
  11. Эти замыкающие и замыкающие контакты также имеют концевые заделки, которые выходят из коробки реле и формируют соответствующие выводы реле.

Следующая приблизительная симуляция показывает, как полюс реле перемещается в ответ на катушку электромагнита при включении и выключении с входным напряжением питания.Мы можем ясно видеть, что первоначально центральный полюс удерживается подключенным к нормально-замкнутому контакту, а когда на катушку подается питание, полюс тянется вниз из-за электромагнитного воздействия катушки, заставляя центральный полюс соединиться с нейтралью О контакт.

Пояснение к видео

Таким образом, в основном существует три контактных вывода реле, а именно центральный полюс, N / C и нет.

Две дополнительные выводы оканчиваются катушкой реле

Это базовое реле также называется реле типа SPDT, что означает однополюсный двойной ход, поскольку здесь у нас один центральный полюс, но два альтернативных боковых контакта в виде N / O, N / C, отсюда и термин SPDT.

Таким образом, всего у нас есть 5 выводов в SPDT-реле: центральная подвижная или переключающая клемма, пара замыкающих и замыкающих клемм и, наконец, две клеммы катушки, которые вместе составляют выводы реле.

Как определить выводы реле и подключить реле

Обычно и, к сожалению, многие реле не имеют маркировки выводов, что затрудняет их идентификацию новым энтузиастам электроники и их использование для предполагаемых приложений.

Распиновки, которые необходимо идентифицировать, следующие (в указанном порядке):

  1. Выводы катушки
  2. Вывод общего полюса
  3. Вывод замыкающего контакта
  4. Вывод замыкающего контакта
Идентификация контакта Типичные выводы реле могут быть выполнены следующим образом:

1) Установите мультиметр в диапазоне Ом, предпочтительно в диапазоне 1K.

2) Начните с подключения измерительных штырей к любому из двух контактов реле в случайном порядке, пока не найдете контакты, которые указывают на какое-то сопротивление на дисплее измерителя.Обычно это может быть любое значение от 100 Ом до 500 Ом. Эти контакты реле будут обозначать распиновку катушки реле.

3) Затем выполните ту же процедуру и подключите стержни счетчика в случайном порядке к оставшимся трем клеммам.

4) Продолжайте делать это до тех пор, пока не найдете два контакта реле, указывающих на непрерывность между ними. Эти две выводы будут, очевидно, нормально закрытым и полюсом реле, потому что, поскольку реле не запитано, полюс будет соединен с размыкающим контактом из-за внутреннего напряжения пружины, что указывает на непрерывность друг друга.

5) Теперь вам нужно просто идентифицировать другой одиночный терминал, который может быть ориентирован где-то между двумя вышеуказанными терминалами, представляющими треугольную конфигурацию.

6) В большинстве случаев центральная распиновка из этой треугольной конфигурации будет вашим контактом реле, замыкающий контакт уже идентифицирован, и поэтому последним будет замыкающий контакт или вывод вашего реле.

Следующая симуляция показывает, как типичное реле может быть подключено к источнику постоянного напряжения на его катушках и к сетевой нагрузке переменного тока через его замыкающие и замыкающие контакты

Эти три контакта могут быть дополнительно подтверждены путем подачи питания на катушку реле. с указанным напряжением и проверив сторону замыкающего контакта с помощью измерителя на непрерывность..

Вышеупомянутая простая процедура может быть применена для определения любой распиновки реле, которая может быть вам неизвестна или не маркирована.

Теперь, когда мы тщательно изучили, как работает реле и как идентифицировать выводы реле, было бы также интересно узнать подробности о самом популярном типе реле, которое в основном используется в небольших электронных схемах, и о том, как подключите это.

Если вы хотите узнать, как спроектировать и сконфигурировать каскад драйвера реле с использованием транзистора, вы можете прочитать его в следующем посте:

Как сделать схему драйвера транзисторного реле

Типичные контакты реле китайского производства

Как подключить клеммы реле

На следующей схеме показано, как указанное выше реле может быть подключено к нагрузке, так что, когда катушка находится под напряжением, нагрузка срабатывает или включается через свои замыкающие контакты и через подключенный источник питания. вольтаж.

Это напряжение питания последовательно с нагрузкой может соответствовать техническим характеристикам нагрузки. Если нагрузка рассчитана на постоянный потенциал, то это напряжение питания может быть постоянным, если предполагается, что нагрузка будет работать от сети переменного тока, тогда это последовательное питание может быть 220 В или 120 В переменного тока в соответствии со спецификациями.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: //www.homemade-circuits.com /, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Лучший провод реле противотуманных фар — Выгодные предложения на провод реле противотуманных фар от глобальных продавцов проводов реле противотуманных фар

Отличные новости !!! Вы попали в нужное место для провода реле противотуманных фар. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот верхний провод реле противотуманных фар скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели провод реле противотуманных фар на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в проводе реле противотуманных фар и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести relay wire fog light по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.
19Дек

Признаки выхода из строя лямбда зонда: Лямбда-зонд (кислородный датчик): признаки и причины неисправности

Лямбда-зонд (кислородный датчик): признаки и причины неисправности

Что такое лямбда-зонд?

Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля.

Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси.

Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название – лямбда-зонд.



Признаки неисправности лямбда-зонда

1. Плавающий холостой ход

Значение оборотов при этом могут скакать и понижаться ниже оптимальных.

2. Увеличение расхода топлива

Обычно перерасход незначительный, однако можно определить при программном замере

3. Увеличение токсичности выхлопа

Выхлопные газы при этом становятся непрозрачными, а имеющими серый либо черный оттенок и более резкий, топливный, запах.

4. Появляется предупреждающий сигнал “Check Engine”

Заметны перебои при попытке увеличить обороты даже на хорошо прогретом двигателе.

5. Двигатель может перегреваться из-за неправильной смеси

7. Катализатор быстро забивается


Как проверить лямбда-зонд?

Все перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправность датчика кислорода требуется диагностика специалиста. Или…

Протестируйте сигнал зонда с помощью мотор-тестера, стрелочного вольтметра или осциллографа. Подсоедините тестер между проводом массы и сигнальным, поднимите обороты до 3 000 Нм, засеките время и следите за показаниями. Они должны изменяться от 0.1 до 0.9 вольт. Рекомендуем заменить датчик, если диапазон изменений меньше или за 10 секунд сменилось меньше 9–10 показаний.

Причины неисправности датчика кислорода

В большинстве случаев кислородный датчик работает около 100 тыс. км без сбоев, однако есть причины, которые значительно сокращают его ресурс и приводят к неисправности.
Неисправность цепи датчика кислорода. Выражаться по-разному

1. Замыкание датчика

В этом случае он полностью выходит из строя и не подает никаких сигналов. Большинство кислородных датчиков ремонту не подлежат и их надо менять на новые.

2. Загрязнение датчика продуктами сгорания топлива

В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию.

3. Термические перегрузки

Это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.

4. Механические повреждения датчика

Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.

5. Многократные неудачные попытки запуска двигателя

При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.

6. Попадание сторонних жидкостей или частиц на наконечник

7. Негерметичность в выпускной системе выхлопных газов

Например, может прогореть прокладка между коллектором и катализатором.

Признаки неисправности лямбда-зонда на Skoda Octavia

Основным параметром, за который отвечает лямбда-зонд в Skoda Octavia, является кислород остаточного типа в выхлопных газах. Показания датчика передаются на специальный блок электроники, который, в свою очередь, корректирует объём топлива, поступаемого в цилиндры.

Лямбда-зонд имеет небольшие габариты. Составляющими устройства являются внутренний и внешний электрод. Именно разница в напряжении между этими составляющими передаётся на блок, отражаясь в показателе кислородного остатка, отражаемого в процентах.

Показатели сбоя лямбда-зонда

Если в бесперебойном функционировании лямбда-зонда Skoda Octavia произошли некоторые сбои, то это сразу отразится на самом транспортном средстве. Проявлениями неполадок могут быть:
• проблемы с динамикой набора скорости;
• при холостом ходу обороты двигателя будут значительно «плавать»;
• станет видна неустойчивость в работе мотора;
• сильно увеличится расход топлива у автомобиля.

В случае когда подобные признаки начинают давать о себе знать, необходимо задуматься о диагностике лямбда-зонда.

Варианты неисправности датчика

Все неполадки лямбда-зонда на Skoda Octavia можно разделить на внутренние и внешние. Что касается внутренних проблем, то среди них выделяют:
• Молекулы кислорода перестают улавливаться платиной из-за наслоения на рабочую поверхность датчика продуктов горения. Обычно причиной возникновения подобной проблемы становится низкокачественное топливо.
• Нарушение работы датчика в результате его перегрева. Воздействие высоких температур на датчик возникает чаще всего из-за проблем в топливной системе или двигателе.
• Износ датчика. Со временем датчик теряет свою работоспособность. Он постоянно находится в агрессивной среде, что приводит к выработке его ресурса.
• При нарушении герметичности корпуса лямбда-зонда происходит проникновение в него выхлопных газов или кислорода.

Все внутренние неисправности не всегда можно заметить сразу. Они постепенно отражаются на работе двигателя. В свою очередь проявляются внешние неисправности лямбда-зонда, к которым можно отнести:
• повреждение корпуса и его элементов в результате удара;
• обрыв проводки датчика.

Причиной возникновения внешних неисправностей чаще всего становится агрессивная эксплуатация автомобиля на Skoda Octavia.

Для того чтобы поломка лямбда-зонда не стала неожиданностью, необходимо время от времени производить проверку. Диагностика работы датчика осуществляется на специализированных приборах – осциллографе или мультиметре. При возникновении сбоев в работе лямбда-зонда на Skoda Octavia может понадобиться его замена. В зависимости от года выпуска машины и мощности автомобиля на него устанавливаются датчики производства VAG с номерами в каталоге 06A906262AJ , 06A906262BR. При необходимости оригинальные датчики так же можно заменить неоригинальными. Замена лямбда-зонда происходит достаточно просто и не займёт много времени.

 

TechASSIST: диагностика проблем лямбда-зонда

Автор: ELTA Automotive UK TechAssist 0 комментариев

Лямбда-зонды впервые были установлены на автомобили в 1977 году для повышения эффективности двигателей внутреннего сгорания и снижения вредных выбросов выхлопных газов, таких как угарный газ.

Лямбда-зонды измеряют количество кислорода в выхлопных газах. Эффективному двигателю требуется определенное количество воздуха и топлива в его цилиндрах при сгорании. Идеальное соотношение 14,7:1 (14,7 частей воздуха на 1 часть топлива). Эта идеальная смесь называется Lambda, отсюда и берет свое начало необычное название. Однако их часто также называют датчиками кислорода или датчиками кислорода из-за их основной роли в измерении содержания кислорода. Уровни, рассчитанные Lambda, отправляются в виде данных в ECU, который затем рассчитывает и определяет, как лучше всего достичь идеальной смеси воздуха и топлива при сгорании.

Неправильная топливно-воздушная смесь будет либо богатой, либо обедненной:

• В богатой смеси воздух содержит много несгоревшего топлива, но мало кислорода.
• Бедная смесь имеет противоположный баланс и высокое содержание кислорода из-за недостаточного количества впрыскиваемого топлива.

Многие автомобили теперь оснащены лямбда-зондом перед катушкой и лямбда-зондом после каталитического нейтрализатора. В то время как лямбда-зонд перед катушкой связывается с ЭБУ, регулирующим соотношение воздух/топливо; Лямбда-зонд после каталитического нейтрализатора выполняет диагностическую роль, контролируя каталитический нейтрализатор.

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ ЛЯМБДА-ДАТЧИКА

Перед тем, как автомобиль не пройдет тест на выбросы или появится контрольная лампа двигателя; водители могут заметить повышенный расход топлива и/или неровный холостой ход. Оба являются признаками неисправности лямбда-зонда. После отказа датчика OBD может отображать либо код P0131, либо P0134.

Многие неисправности лямбда-зондов просто связаны с возрастом. Обычно срок службы датчика без подогрева составляет около 45 000 миль. Срок службы датчика с подогревом обычно приближается к 100 000 миль.

Лямбда-зонд работает при экстремально высоких температурах, поэтому наиболее частой неисправностью, связанной с этой деталью, является повреждение нагревательного элемента датчика. Вибрация или повреждение разъемов и/или проводов также могут привести к поломке.

Другой распространенной причиной преждевременного выхода из строя является загрязнение. Если лямбда вышла из строя в результате загрязнения, вполне вероятно, что датчик будет иметь визуальные подсказки к источнику. Важно проанализировать внешний вид, и если присутствуют признаки загрязнения, необходимо устранить причины до замены датчика.

Ниже приведены визуальные признаки и возможные причины:

ЗАГРЯЗНЕНИЕ АНТИФРИЗОМ

Визуальные признаки
Носик датчика будет загрязнен зернистым белым или светло-серым налетом.

Причина
Охлаждающая жидкость с антифризом могла попасть в процесс сгорания и достичь лямбда-зонда.

Решение
Перед заменой лямбда-зонда всегда устраняйте основную причину неисправности. В этом случае проверьте прокладку головки блока цилиндров на герметичность и при необходимости отремонтируйте.

ЗАГРЯЗНЕНИЕ ПРИСАДКИ ДЛЯ ДВИГАТЕЛЯ

Визуальные признаки
Как и в случае с антифризом, наконечник датчика будет загрязнен белыми или красными отложениями.

Причина
Чрезмерное использование каких-либо присадок к двигателю или топливу может привести к загрязнению или блокировке лямбда-зонда.

Решение
Прежде чем заменять лямбда-зонд, устраните основную причину неисправности. В этом случае требуется очистка топливной системы перед заменой.

ЗАГРЯЗНЕНИЕ МАСЛА

Визуальные признаки
Ищите маслянистые черные отложения, оставшиеся на наконечнике датчика.

Причина
Автомобиль может сжигать чрезмерное количество масла, которое может загрязнить датчик и/или заблокировать его.

Решение
Тщательно проверьте двигатель на наличие утечек, включая все обычные уплотнения, которые могут выйти из строя. После ремонта замените датчик.

ЗАГРЯЗНЕНИЕ ТОПЛИВА

Визуальные признаки
Если топливо сгорает слишком богато, на наконечнике датчика может быть виден черный нагар.

Причина
Повреждение лямбда-зонда или неисправность в топливной системе могут привести к высокому соотношению воздух-топливо с образованием черной сажи, которая повреждает лямбда-зонд.

Решение

Измерьте выхлопные газы, чтобы убедиться, что топливная система работает правильно. Проверьте управление нагревателем лямбда-зонда и нагреватель датчика. Перед заменой датчика устраните все неисправности.

ЗАГРЯЗНЕНИЕ СВИНЦОМ

Визуальные признаки
Носик датчика может быть загрязнен блестящими серыми отложениями.

Причина
В настоящее время это не так распространено, так как этот тип загрязнения обычно вызывается этилированным топливом, воздействующим на платиновые детали или датчик.

Решение
Перед заменой датчика замените все этилированное топливо в системе на неэтилированное.

Диагностика проблем лямбда-зонда | Авто:ресурс

Elta Automotive Ltd — 27 ноября 2020 г.

Детали и компоненты

Лямбда-зонды

впервые были установлены на автомобили в 1977 году для повышения эффективности двигателей внутреннего сгорания и снижения вредных выбросов выхлопных газов, таких как угарный газ. Лямбда-зонды работают, измеряя количество кислорода в выхлопных газах. Эффективному двигателю требуется определенное количество воздуха и топлива в его цилиндрах при сгорании. Идеальное соотношение 14,7:1 (14,7 частей воздуха на 1 часть топлива). Эта идеальная смесь называется Lambda, отсюда и берет свое начало необычное название. Однако их часто также называют датчиками кислорода или датчиками кислорода из-за их основной роли в измерении содержания кислорода. Уровни, рассчитанные Lambda, отправляются в виде данных в ECU, который затем рассчитывает и определяет, как лучше всего достичь идеальной смеси воздуха и топлива при сгорании. Неправильная топливно-воздушная смесь будет либо богатой, либо обедненной: • В богатой смеси в воздухе много несгоревшего топлива, но мало кислорода. • Бедная смесь имеет противоположный баланс и содержит много кислорода из-за недостаточного количества впрыскиваемого топлива. Многие автомобили теперь оснащены лямбда-зондом перед катушкой и лямбда-зондом после котла. В то время как лямбда-зонд перед катушкой связывается с ЭБУ, регулирующим соотношение воздух/топливо; Лямбда-зонд после каталитического нейтрализатора выполняет диагностическую роль, контролируя каталитический нейтрализатор.

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ ЛЯМБДА-ДАТЧИКА

Перед тем, как автомобиль не пройдет тест на выбросы или появится контрольная лампа двигателя; водители могут заметить повышенный расход топлива и/или неровный холостой ход. Оба являются признаками неисправности лямбда-зонда. После отказа датчика OBD может отображать либо код P0131, либо P0134.

Многие неисправности лямбда-зондов просто связаны с возрастом. Обычно срок службы датчика без подогрева составляет около 45 000 миль. Срок службы датчика с подогревом обычно приближается к 100 000 миль.

Лямбда-зонд работает при экстремально высоких температурах, поэтому наиболее частой неисправностью, связанной с этой деталью, является повреждение нагревательного элемента датчика. Вибрация или повреждение разъемов и/или проводов также могут привести к поломке.

Другой распространенной причиной преждевременного выхода из строя является загрязнение. Если лямбда вышла из строя в результате загрязнения, вполне вероятно, что датчик будет иметь визуальные подсказки к источнику. Важно проанализировать внешний вид, и если присутствуют признаки загрязнения, необходимо устранить причины до замены датчика.

Ниже приведены визуальные признаки и возможные причины:

ЗАГРЯЗНЕНИЕ АНТИФРИЗОМ

Визуальные признаки
Носик датчика будет загрязнен зернистым белым или светло-серым налетом.

Причина
Охлаждающая жидкость с антифризом могла попасть в процесс сгорания и достичь лямбда-зонда.

Решение
Перед заменой лямбда-зонда всегда устраняйте основную причину неисправности. В этом случае проверьте прокладку головки блока цилиндров на герметичность и при необходимости отремонтируйте.

ЗАГРЯЗНЕНИЕ ПРИСАДКИ ДЛЯ ДВИГАТЕЛЯ

Визуальные признаки
Подобно антифризу, наконечник датчика будет загрязнен белыми или красными отложениями.

Причина
Чрезмерное использование каких-либо присадок к двигателю или топливу может привести к загрязнению или блокировке лямбда-зонда.

Решение
Прежде чем заменять лямбда-зонд, устраните основную причину неисправности. В этом случае требуется очистка топливной системы перед заменой.

ЗАГРЯЗНЕНИЕ МАСЛА

Визуальные признаки
Ищите черные маслянистые отложения, оставшиеся на наконечнике датчика.

Причина
Автомобиль может сжигать чрезмерное количество масла, которое может загрязнить датчик и/или заблокировать его.

Решение
Тщательно проверьте двигатель на наличие утечек, включая все обычные уплотнения, которые могут выйти из строя. После ремонта замените датчик.

ЗАГРЯЗНЕНИЕ ТОПЛИВА

Визуальные знаки
Если топливо сгорает слишком богато, на наконечнике датчика может быть виден черный нагар.

Причина
Повреждение лямбда-зонда или неисправность в топливной системе могут привести к высокому соотношению воздух-топливо с образованием черной сажи, которая повреждает лямбда-зонд.

19Дек

Как управлять автоматом: Как управлять коробкой автомат и режимы переключения на АКПП

Как управлять коробкой автомат и режимы переключения на АКПП

Как управлять коробкой автомат и не поломать трансмиссию? В АКПП водитель подаёт команду, используя рычаги. Электроника принимает сигналы и переключает коробку по своим алгоритмам. Несмотря на то, что часть функций водителя перешла к автомату, расслабляться нельзя. Если неправильно управлять трансмиссией, может появиться шум, толчки, задержки переключений. И тогда придётся готовиться к дорогому ремонту АКПП.

Содержание

  1. Что такое автоматическая коробка передач
  2. Несколько советов по правильному переключению режимов
  3. Зимний и другие специальные режимы
  4. Как начать движение в выбранном режиме
  5. Запуск автомобиля с АКПП
  6. Как трогаться на автомате
  7. Как тормозить двигателем на автомате
  8. Как пользоваться ручником
  9. Как правильно прекращать движение при АКПП
  10. Чего нельзя делать с АКПП
  11. Заключение

Что такое автоматическая коробка передач

Автомат — это трансмиссия, в которой передачи переключаются без вмешательства водителя. Чтобы управлять коробкой, в салоне расположены педали тормоза и газа (акселератора), а также селектор переключения режимов.

Автоматическая коробка передач бывает разных типов:

  • «классическая» коробка с планетарным механизмом;
  • бесступенчатый CVT;
  • робот.

В качестве сцепления в первых двух типах используется гидротрансформатор, а в роботе — диски.

Коробка автомат передаёт крутящий момент от двигателя к колёсам. Кроме прямой передачи автоматическая коробка передач снижает или повышает передаточные числа, что позволяет трогаться и передвигаться на машине с разной скоростью. Так, чтобы сдвинуть автомобиль с места, нужна большая мощность, поэтому первая ступень имеет передаточное число выше 2. Для поддержания высокой скорости нужен «спринтер» — высшая ступень с числом меньше 1.

От количества ступеней зависит, какой крутящий момент сможет переварить автоматическая коробка передач, и насколько незаметны будут переключения. До 2000-х годов автоматы имели 3 — 4 ступени. Наиболее популярные сейчас 5-, 6-. 8-ступенчатые. Встречаются также 9-ступки, например, ZF9HP28/48, и 10-ступки, GM 10L90.

Несколько советов по правильному переключению режимов

Количество режимов работы АКПП зависит от модели коробки. Основные расположены на панели селектора. Управлять программами автомата нужно, передвигая рычаг в нужную позицию:

  • «Р» — «Паркинг» блокирует ведущие колёса, поэтому используется для долгой стоянки. Равнозначен затянутому ручнику. Переходить в режим можно только после остановки;
  • «N» — «Нейтраль» не блокирует колёса, поэтому машина может покатиться, если не затянут ручник;
  • «D» — «Драйв» позволяет автомобилю ехать вперёд. Система сама выбирает передачу, которая подходит для условий движения. Скорость разгона зависит от силы нажатия акселератора. При плавном отпускании педали машина будет тормозить двигателем;
  • «R» — «Реверс» или «Задний ход». Управлять «Реверсом» допустимо только после остановки.

Управлять программами коробки автомат можно только на заведённом двигателе:

  1. Нажмите на тормоз.
  2. Нажмите кнопку на рукоятке селектора (при наличии).
  3. Переместите рычаг в соответствующее положение.

Особенностью езды на автомате является использование только правой стопы, в отличие от механики. Для переключения тормоза и акселератора стопу перекидывают с одной педали на другую. Если управлять обеими стопами, в экстренный момент может сработать не та нога, что приведёт к аварии.

Зимний и другие специальные режимы

Помимо основных программ в автомат встраивают дополнительные настройки для расширения возможностей вождения. Подробнее, как ими управлять, написано в инструкции. Один и тот же режим может называться по-разному. Например, «Зимний». Он же «Snow», «Winter», «Hold».

«Зимний» режим коробки активируется нажатием кнопки. Данная настройка предотвращает пробуксовку колёс на льду, защищая автоматическую коробку передач от нагрузки. Автомобиль трогается с места сразу на 2 — 3 передаче. А следующие скорости включаются на меньших оборотах двигателя, снижая перепад ускорений. Управлять зимней программой летом нельзя: гидротрансформатор перегревается, что вредит автомату.

Какими ещё настройками можно управлять в автоматической коробки передач:

  • «OD» — «Овердрайв» поддерживает стабильное движение на трассе на повышенной передаче, что позволяет экономить топливо. Часто управлять автомобилем в «OD» вредно. Режим задействует гидротрансформатор, то подключая, то отключая блокировку. От этого быстро загрязняется масло, и изнашиваются детали. Программа включается кнопкой во время движения на скорости 75 — 110 км/ч;
  • «S» — Спортивные настройки помогают управлять АКПП, используя мощность мотора по максимуму. Разгоны становятся резче, сжигая много топлива и ресурс узлов автомата;
  • «E» — «Экономичный» режим позволяет двигаться плавно и спокойно, сберегая топливо;
  • «KickDown» — «Кикдаун» при резком нажатии акселератора сбрасывает 1 — 2 передачи и ускоряет машину на высоких оборотах двигателя. Часто управлять АКПП в режиме «Кикдаун» нельзя: коробка быстро изнашивается.

С использованием различных программ езда с автоматом становится приятней и безопасней. Однако, чтобы пользоваться полезными функциями, нужно разобраться как управлять автоматической коробкой передач в разных ситуациях.

https://www.youtube.com/watch?v=yJojxTWbBn8&t=547s

Как начать движение в выбранном режиме

Чем современнее коробка автомат, тем больше в ней электроники. Автоматическая коробка усложняется, чаще капризничает. Чтобы избежать разочарований и дорогих вложений, нужно знать особенности езды на автомате, как новичкам, так и водителям, пересевшим после механики.

В некоторых машинах коробка автомат блокируется. Например, без поворота ключа в замке зажигания водитель не сможет управлять селектором. Электроника в большинстве автоматов не разрешает управлять запуском двигателя, если селектор не был переведён в позицию «Паркинга».

Приучите себя всегда держать ногу на педали тормоза во время запуска мотора и перемещения селектора автоматической коробки передач. Это предотвратит откатывание машины.

Запуск автомобиля с АКПП

Запустить мотор можно через удалённую систему или с помощью ключа:

  1. Сядьте на водительское место.
  2. Потяните ручной тормоз, чтобы убедиться в полном заторможении автомобиля.
  3. Селектор должен быть установлен в положении «Р».
  4. Выжмите тормоз.
  5. Переведите переключатель двигателя в положение «Старт». На панели загорятся лампочки. Подождите несколько секунд, чтобы подключился бензонасос.

Управлять машиной с автоматической коробкой передач можно после прогрева двигателя и масла АКПП. Рабочая температура жидкости — 75 — 95℃. В холодном состоянии ATF не может полноценно смазывать и охлаждать автомат. Летом достаточно проехать 10 мин на медленной скорости. Зимой для разогрева нужно перемещать селектор по всем положениям, задерживаясь по 5 — 10 секунд.

Как трогаться на автомате

Как управлять автоматической коробкой во время трогания:

  1. Держите тормоз.
  2. Переведите рычаг переключения передач в режим «D» или «R».
  3. Отпустите ручник.
  4. Плавно отпускайте педаль тормоза — автомобиль начнёт движение.
  5. Находясь в «D», нажимайте педаль акселератора для разгона.
  6. Для перехода из «Реверса» в режим движения в перёд, нажмите на тормоз и переведите селектор.

Управлять АКПП нужно плавно: электроника за это время успеет принять сигнал и передать команду исполнительным механизмам коробки. Резкие действия заставляют автомат работать с высокой нагрузкой. Маслонасос не успевает прокачивать масло, и коробка испытывает недостаток смазки.

Как тормозить двигателем на автомате

Торможение двигателем экономит топливо и сберегает колодки, поскольку не задействует тормозную систему. Сбрасывать скорость за счёт двигателя лучше всего на спуске со склона, на горном серпантине или скользкой дороге. Там, где приходится постоянно держать тормоз.

 

Управлять автоматом  для торможения двигателем можно в ручном режиме «М» или «L»:

  1. Двигаясь в позиции «D» на скорости 90 км/ч, перейдите на управление АКПП в ручном режиме.
  2. Для спуска с крутой горы переключитесь на первую передачу. Если уклон небольшой включите третью.
  3. Отпустите акселератор.

Как пользоваться ручником

Настройка коробки автомат «Паркинг» блокирует колёса, чтобы машина самопроизвольно не покатилась. Однако, производитель рекомендует всегда использовать стояночный тормоз. Ручник задействует тормозные колодки для фиксации колёс, что иногда приводит к проблемам:

  • зимой, после мойки или езды по лужам колодки могут примёрзнуть, и машина не тронется с места;
  • при долгом простаивании автомобиля на ручнике колодки могут «заржаветь».

Пользоваться ручником нужно при остановке на крутом склоне, остановках с включенным двигателем или во время ремонта для дополнительного стопорения машины с автоматом:

  1. Остановитесь.
  2. Удерживайте тормоз и резко потяните ручник.
  3. Переведите селектор на «Паркинг».
  4. Отпустите тормоз. Выключите двигатель.

Как правильно прекращать движение при АКПП

Как правильно управлять автомобилем с автоматической коробкой передач для полной остановки и выхода из салона:

  1. Нажмите на тормоз и остановитесь.
  2. Переведите селектор в позицию «Паркинга».
  3. Затяните ручник.
  4. Отпустите тормоз.
  5. Заглушите мотор.

Для остановки на минуту не жгите зря топливо и дайте отдохнуть двигателю. Переведите коробку на программу «Паркинга», чтобы дать ноге отдохнуть, или «Нейтрали», удерживая тормоз.

Чего нельзя делать с АКПП

Специалисты по ремонту коробок автомат ведут статистику причин поломок. Бывают неудачные конструкции, но чаще виноваты водители. Автоматическая коробка дольше живёт у заботливых хозяинов, которые меняют масло по регламенту и соблюдают правила эксплуатации автомобиля. Об этом можно прочитать в техническом руководстве.

Чего нельзя делать с автоматом

Последствия

Ездить на непрогретой машинеНедостаточная смазка, охлаждение. Появляются пинки, толчки.
Буксовать по грязи, льду, пустыням, бездорожью.Коробка перегревается от долгой пробуксовки колёс
Буксировать прицепы, превышающие допустимую массуАвтомат перегревается и быстро изнашивается.
Буксировать машину без соблюдения правил по скорости и расстояниюБуксировка на дальше 30 — 50 км может привести к перегреву АКПП. Со сломанным двигателем, автоматическая коробка передач не сможет работать.

Главное правило, как управлять коробкой автомат — избегать резких ускорений, торможений, виражей. От высокой нагрузки в узлах АКПП изменяются зазоры, появляются задиры, усиливается трение из-за недостатка смазки. Управлять трансмиссией становится некомфортно. Коробка начинает дёргаться, появляются задержки или провалы в переключениях. В этом случае придётся перебирать автомат.

Заключение

Управление автоматической коробкой передач проще, чем механической КПП. Не нужно думать о переключении скорости, выжимать сцепление и каждый раз дёргать ручку. Машина с автоматом даёт расслабиться в пробках и на городских улицах. Если управлять педалями плавно, коробка будет работать мягко и точно. При агрессивной езде придётся чаще заглядывать в автомастерские.

Как управлять коробкой автомат и режимы переключения на АКПП

Как управлять коробкой автомат и не поломать трансмиссию? В АКПП водитель подаёт команду, используя рычаги. Электроника принимает сигналы и переключает коробку по своим алгоритмам. Несмотря на то, что часть функций водителя перешла к автомату, расслабляться нельзя. Если неправильно управлять трансмиссией, может появиться шум, толчки, задержки переключений. И тогда придётся готовиться к дорогому ремонту АКПП.

Что такое автоматическая коробка передач

Автомат — это трансмиссия, в которой передачи переключаются без вмешательства водителя. Чтобы управлять коробкой, в салоне расположены педали тормоза и газа (акселератора), а также селектор переключения режимов.

Автоматическая коробка передач бывает разных типов:

  • «классическая» коробка с планетарным механизмом;
  • бесступенчатый CVT;
  • робот.

В качестве сцепления в первых двух типах используется гидротрансформатор, а в роботе — диски.

Коробка автомат передаёт крутящий момент от двигателя к колёсам. Кроме прямой передачи автоматическая коробка передач снижает или повышает передаточные числа, что позволяет трогаться и передвигаться на машине с разной скоростью. Так, чтобы сдвинуть автомобиль с места, нужна большая мощность, поэтому первая ступень имеет передаточное число выше 2. Для поддержания высокой скорости нужен «спринтер» — высшая ступень с числом меньше 1.

От количества ступеней зависит, какой крутящий момент сможет переварить автоматическая коробка передач, и насколько незаметны будут переключения. До 2000-х годов автоматы имели 3 — 4 ступени. Наиболее популярные сейчас 5-, 6-. 8-ступенчатые. Встречаются также 9-ступки, например, ZF9HP28/48, и 10-ступки, GM 10L90.

Другие положения рычага переключения передач

«3» — коробка передач использует только три первых передачи. Режим предназначен для периодического использования при большой нагрузке, например, в горной местности.

«2» — коробка передач использует только первые две передачи. Режим предназначен для использования, когда автомобиль, например, сильно загружен.

«1» — коробка передач заблокирована на первой передаче. Данный режим используется, например, для преодоления грязи или подъему по крутому склону с прицепом.

Несколько советов по правильному переключению режимов

Количество режимов работы АКПП зависит от модели коробки. Основные расположены на панели селектора. Управлять программами автомата нужно, передвигая рычаг в нужную позицию:

  • «Р» — «Паркинг» блокирует ведущие колёса, поэтому используется для долгой стоянки. Равнозначен затянутому ручнику. Переходить в режим можно только после остановки;
  • «N» — «Нейтраль» не блокирует колёса, поэтому машина может покатиться, если не затянут ручник;
  • «D» — «Драйв» позволяет автомобилю ехать вперёд. Система сама выбирает передачу, которая подходит для условий движения. Скорость разгона зависит от силы нажатия акселератора. При плавном отпускании педали машина будет тормозить двигателем;
  • «R» — «Реверс» или «Задний ход». Управлять «Реверсом» допустимо только после остановки.

Читать
Где расположен газ и тормоз на машине с автоматической коробкой передач

Управлять программами коробки автомат можно только на заведённом двигателе:

  1. Нажмите на тормоз.
  2. Нажмите кнопку на рукоятке селектора (при наличии).
  3. Переместите рычаг в соответствующее положение.

Особенностью езды на автомате является использование только правой стопы, в отличие от механики. Для переключения тормоза и акселератора стопу перекидывают с одной педали на другую. Если управлять обеими стопами, в экстренный момент может сработать не та нога, что приведёт к аварии.

Езда на автомате для начинающих

Итак, рычаг селектора переключения АКПП имеет несколько основных положений: P, R, N, D, D2 (или L), D3 или S. Рассмотрим каждый по отдельности.

  • Положение рычага переключения передач в позиции «P» — паркинг. Движение автомобиля невозможно, при этом в таком режиме разрешен запуск двигателя.
  • Положение рычага переключения передач в позиции «R» — реверс. Задний ход. Нельзя пользоваться этой позицией во время движения автомобиля вперед. В этом режиме запуск двигателя невозможен.
  • «N» — нейтраль. Автомобиль может свободно перемещаться. В этом режиме разрешен запуск двигателя, а также буксировка авто. Положение рычага переключения передач в позиции «D» – драйв (основной режим движения). Этот режим обеспечивает автоматическое переключение с первой по четвертую передачу (рекомендуется использовать в нормальных режимах движения).
  • Положение рычага переключения передач в позиции D3 (S) второй диапазон пониженных передач (на дорогах с небольшими подъемами и спусками) или D2 (L) диапазон пониженных передач (на бездорожье).

Такие режимы переключения есть не на всех АКПП, все зависит от модификации трансмиссии. Переключение рычага из положения D в положение D2 или D3 и обратно может производиться во время движения транспортного средства. АКПП также могут дополнительно оборудоваться режимами переключения скоростей: N – нормальный, Е – экономичный, S – спортивный.

Зимний и другие специальные режимы

Помимо основных программ в автомат встраивают дополнительные настройки для расширения возможностей вождения. Подробнее, как ими управлять, написано в инструкции. Один и тот же режим может называться по-разному. Например, «Зимний». Он же «Snow», «Winter», «Hold».

Читать

Технические характеристики АКПП, виды и их отличие друг от друга

«Зимний» режим коробки активируется нажатием кнопки. Данная настройка предотвращает пробуксовку колёс на льду, защищая автоматическую коробку передач от нагрузки. Автомобиль трогается с места сразу на 2 — 3 передаче. А следующие скорости включаются на меньших оборотах двигателя, снижая перепад ускорений. Управлять зимней программой летом нельзя: гидротрансформатор перегревается, что вредит автомату.

Какими ещё настройками можно управлять в автоматической коробки передач:

  • «OD» — «Овердрайв» поддерживает стабильное движение на трассе на повышенной передаче, что позволяет экономить топливо. Часто управлять автомобилем в «OD» вредно. Режим задействует гидротрансформатор, то подключая, то отключая блокировку. От этого быстро загрязняется масло, и изнашиваются детали. Программа включается кнопкой во время движения на скорости 75 — 110 км/ч;
  • «S» — Спортивные настройки помогают управлять АКПП, используя мощность мотора по максимуму. Разгоны становятся резче, сжигая много топлива и ресурс узлов автомата;
  • «E» — «Экономичный» режим позволяет двигаться плавно и спокойно, сберегая топливо;
  • «KickDown» — «Кикдаун» при резком нажатии акселератора сбрасывает 1 — 2 передачи и ускоряет машину на высоких оборотах двигателя. Часто управлять АКПП в режиме «Кикдаун» нельзя: коробка быстро изнашивается.

С использованием различных программ езда с автоматом становится приятней и безопасней. Однако, чтобы пользоваться полезными функциями, нужно разобраться как управлять автоматической коробкой передач в разных ситуациях.

https://www.youtube.com/watch?v=yJojxTWbBn8&t=547s

Обозначения (символы) на панели АКПП

Чтобы научиться правильно пользоваться «автоматом», сначала нужно разобраться, что же означают буквенные символы (английские буквы) и цифры на панели АКПП с рукояткой переключения передач. Сразу отметим, что в зависимости от марки машины цифры и буквы могут различаться.

  • «P»
    – «паркинг». Включается при парковке автомобиля на стоянке. Некий аналог стояночного тормоза, только с блокировкой вала, а не с прижатием тормозных колодок.
  • «R»
    – «реверс». Включается для движения назад. Обычно его называют – «задняя скорость».
  • «N»
    – «нейтральный». Нейтральная передача. Часто называют – «нейтралка». В отличие от режима паркинга «P», в нейтральном режиме «N» колеса разблокированы, поэтому машина может двигаться накатом. Соответственно, машина также может самопроизвольно покатиться под уклон на парковке, если колеса не зафиксированы ручным тормозом.
  • «D»
    – «драйв». Режим движения вперед.
  • «A»
    – «автомат». Автоматический режим (практически, то же самое, что и режим «D»).
  • «L»
    – «лоу» (низкий). Режим пониженной передачи.
  • «B»
    – Такой же режим, как и «L».
  • «2»
    – режим движения не выше второй передачи.
  • «3»
    – режим движения не выше третьей передачи.
  • «M»
    – «мануал». Режим ручного управления с повышением/понижением передачи через знаки «+» и «–». Данный режим имитирует механический режим переключения с МКПП, только в более простом варианте.
  • «S»
    – «спорт». Спортивный режим движения.
  • «OD»
    – «овердрайв». Повышение передачи (ускоренный режим).
  • «W»
    – «винтер». Режим движения для зимнего периода, при котором трогание с места начинается со второй передачи.
  • «E»
    – «экономик». Движение в экономичном режиме.
  • «HOLD»
    – «удержание». Используется совместно с «D», «L», «S», как правило, на машинах марки «Мазда». (Читать руководство).

При эксплуатации АКПП особое внимание следует уделить изучению руководства по эксплуатации конкретного автомобиля, так как некоторые обозначения могут функционально отличаться.

Например, в руководстве некоторых автомобилей буква «B» означает «Block» (блокировка) – режим блокировки дифференциала, который нельзя включать во время движения.

А если в полноприводном автомобиле присутствуют обозначения «1» и «L», то буква «L» может означать не «Low» (понижение), а «Lock»

(замок) – что также обозначает блокировку дифференциала.

Как начать движение в выбранном режиме

Чем современнее коробка автомат, тем больше в ней электроники. Автоматическая коробка усложняется, чаще капризничает. Чтобы избежать разочарований и дорогих вложений, нужно знать особенности езды на автомате, как новичкам, так и водителям, пересевшим после механики.

Читать

Как правильное затормозить двигателем на коробке автомате

В некоторых машинах коробка автомат блокируется. Например, без поворота ключа в замке зажигания водитель не сможет управлять селектором. Электроника в большинстве автоматов не разрешает управлять запуском двигателя, если селектор не был переведён в позицию «Паркинга».

Приучите себя всегда держать ногу на педали тормоза во время запуска мотора и перемещения селектора автоматической коробки передач. Это предотвратит откатывание машины.

Запуск автомобиля с АКПП

Запустить мотор можно через удалённую систему или с помощью ключа:

  1. Сядьте на водительское место.
  2. Потяните ручной тормоз, чтобы убедиться в полном заторможении автомобиля.
  3. Селектор должен быть установлен в положении «Р».
  4. Выжмите тормоз.
  5. Переведите переключатель двигателя в положение «Старт». На панели загорятся лампочки. Подождите несколько секунд, чтобы подключился бензонасос.

Управлять машиной с автоматической коробкой передач можно после прогрева двигателя и масла АКПП. Рабочая температура жидкости — 75 — 95℃. В холодном состоянии ATF не может полноценно смазывать и охлаждать автомат. Летом достаточно проехать 10 мин на медленной скорости. Зимой для разогрева нужно перемещать селектор по всем положениям, задерживаясь по 5 — 10 секунд.

Как трогаться на автомате

Как управлять автоматической коробкой во время трогания:

  1. Держите тормоз.
  2. Переведите рычаг переключения передач в режим «D» или «R».
  3. Отпустите ручник.
  4. Плавно отпускайте педаль тормоза — автомобиль начнёт движение.
  5. Находясь в «D», нажимайте педаль акселератора для разгона.
  6. Для перехода из «Реверса» в режим движения в перёд, нажмите на тормоз и переведите селектор.

Управлять АКПП нужно плавно: электроника за это время успеет принять сигнал и передать команду исполнительным механизмам коробки. Резкие действия заставляют автомат работать с высокой нагрузкой. Маслонасос не успевает прокачивать масло, и коробка испытывает недостаток смазки.

Как тормозить двигателем на автомате

Торможение двигателем экономит топливо и сберегает колодки, поскольку не задействует тормозную систему. Сбрасывать скорость за счёт двигателя лучше всего на спуске со склона, на горном серпантине или скользкой дороге. Там, где приходится постоянно держать тормоз.

Читать

Как правильное ездить на автомате

Управлять автоматом для торможения двигателем можно в ручном режиме «М» или «L»:

  1. Двигаясь в позиции «D» на скорости 90 км/ч, перейдите на управление АКПП в ручном режиме.
  2. Для спуска с крутой горы переключитесь на первую передачу. Если уклон небольшой включите третью.
  3. Отпустите акселератор.

Как пользоваться ручником

Настройка коробки автомат «Паркинг» блокирует колёса, чтобы машина самопроизвольно не покатилась. Однако, производитель рекомендует всегда использовать стояночный тормоз. Ручник задействует тормозные колодки для фиксации колёс, что иногда приводит к проблемам:

  • зимой, после мойки или езды по лужам колодки могут примёрзнуть, и машина не тронется с места;
  • при долгом простаивании автомобиля на ручнике колодки могут «заржаветь».

Пользоваться ручником нужно при остановке на крутом склоне, остановках с включенным двигателем или во время ремонта для дополнительного стопорения машины с автоматом:

  1. Остановитесь.
  2. Удерживайте тормоз и резко потяните ручник.
  3. Переведите селектор на «Паркинг».
  4. Отпустите тормоз. Выключите двигатель.

Коробка автомат – как пользоваться

Прежде всего следует разобраться, как переключаются режимы в автоматической коробке передач

Режимы переключения и управления АКПП

Управление автоматической коробкой передач состоит в следующем. • Парковочный (буква Р на селекторе) – предназначен для пуска двигателя. Переключение в позицию Р производится после полной остановки и постановки авто на «ручник»;

• Движение вперед (D) – стандартный режим работы АКПП, используемый чаще остальных;

• Реверс (задний ход, позиция R) – автомобиль способен двигаться только назад. Переключение во время остановки с нажатой педалью тормоза;

• «Нейтралка» (N) – режим, когда двигатель и коробка автомат полностью разомкнуты. Чаще всего используется для прогревания мотора на холостых оборотах при холодной погоде;

• D3 (S) — Режимы пониженной передачи: переключается на спусках или подъемах. Автомобиль больше тормозит двигателем;

• D2 – предназначен для тяжелых условий (скользкое покрытие, горная дорога и т.п.). Движение возможно на первой и второй передаче. Движение на третьей и четвертой передаче запрещено.

• D1 на японских автомобилях обозначается как L — движение возможно только на первой передаче. В основном применяется при торможение двигателем на крутых спусках, движение по грязной, заболоченной или заледенелой дороге, где нужно двигаться «внатяг», без перегазовки.

Дополнительные режимы работа АКПП

Кроме того, более современные коробки автоматы оснащаются все большим количеством добавочных алгоритмов работы: нормальный или обычный (N), экономичный (Е), спорт-режим (S) и прочие. Имеется режим овердрайв, этот режим обсуждается в отдельной статье.

Это интересно: Лампочка заряда аккумулятора отказывается гореть: почему и как это исправить

Как правильно прекращать движение при АКПП

Как правильно управлять автомобилем с автоматической коробкой передач для полной остановки и выхода из салона:

  1. Нажмите на тормоз и остановитесь.
  2. Переведите селектор в позицию «Паркинга».
  3. Затяните ручник.
  4. Отпустите тормоз.
  5. Заглушите мотор.

Читать

Как правильно дрифтовать на автомате

Для остановки на минуту не жгите зря топливо и дайте отдохнуть двигателю. Переведите коробку на программу «Паркинга», чтобы дать ноге отдохнуть, или «Нейтрали», удерживая тормоз.

Диапазон R (Reverse) — режим заднего хода.

Попытка включить режим R во время движения вперед неизбежно приведет к поломке коробки-автомата и прочих трансмиссионных элементов (на автомобилях, в трансмиссиях которых отсутствует соответствующая блокировка, строго противопоказано до полной остановки включать режим R). Также невозможен запуск двигателя если рычаг переключения режимов передач находится в этом положении. Четырехступенчатые автоматические коробки переключения передач для движения вперед имеют четыре режима: D, 3, 2 и 1 (L). Здесь необходимо отметить, что запуск двигателя невозможен если включен один из перечисленных режимов.

Чего нельзя делать с АКПП

Специалисты по ремонту коробок автомат ведут статистику причин поломок. Бывают неудачные конструкции, но чаще виноваты водители. Автоматическая коробка дольше живёт у заботливых хозяинов, которые меняют масло по регламенту и соблюдают правила эксплуатации автомобиля. Об этом можно прочитать в техническом руководстве.

Чего нельзя делать с автоматом Последствия
Ездить на непрогретой машинеНедостаточная смазка, охлаждение. Появляются пинки, толчки.
Буксовать по грязи, льду, пустыням, бездорожью.Коробка перегревается от долгой пробуксовки колёс
Буксировать прицепы, превышающие допустимую массуАвтомат перегревается и быстро изнашивается.
Буксировать машину без соблюдения правил по скорости и расстояниюБуксировка на дальше 30 — 50 км может привести к перегреву АКПП. Со сломанным двигателем, автоматическая коробка передач не сможет работать.

Главное правило, как управлять коробкой автомат — избегать резких ускорений, торможений, виражей. От высокой нагрузки в узлах АКПП изменяются зазоры, появляются задиры, усиливается трение из-за недостатка смазки. Управлять трансмиссией становится некомфортно. Коробка начинает дёргаться, появляются задержки или провалы в переключениях. В этом случае придётся перебирать автомат.

Диапазон D (Drive) — основной режим для движения вперед.

Этот режим производит автоматическое последовательное переключение скоростей (в этом режиме обычно задействованы все передачи за исключением повышающих). Именно этот режим рекомендован при нормальных условиях движения. Диапазон 3 (Цифра 3 на некоторых типах АКПП) — три первых передачи задействованы во время движения. Этот режим активный, он отлично подходит для городского движения, при отключении зажигания выключается. Особенно при большой скорости работы коробки-автомата экономить топливо не получится, этот режим не допускает того чтобы муфта гидротрансформатора многократно блокировалась-разблокировалась в условиях рваной городской езды(не более 80 км.ч.) , также частично блокируется переключаясь на передачи повышенные. Наиболее подходит для движения когда неизбежны частые остановки и для езды по дорогам насыщенных спусками и подъемами. Торможение двигателем в этом режиме возможно. Диапазон 2 (Цифра 2 на АКПП) — в этом режиме допустимо движение только на второй и первой передаче. Наиболее подходит для использование в условиях горных извилистых дорог. Запрещено переключение на четвертую и третью передачу. Диапазон 1 (L или Low) — пониженная передача. В этом режиме разрешено движение лишь на первой передаче. Тяговые возможности двигателя в этом диапазоне реализовываются максимально, так как крутящий момент передаваемый на колеса только на первой передаче максимален. Особенно эффективное торможение двигателем именно в этом режиме. Движение на крутых спусках и подъемах необходимо осуществлять именно на первой передаче.

Пикап RAM


Пикап RAM сложно упрекнуть в неверности американским ценностям. Но посмотрите на его шайбу управления автоматом!
Пикап RAM сложно упрекнуть в неверности американским ценностям. Но посмотрите на его шайбу управления автоматом!

С подрулевой «кочерги» история автоматов начиналась. Они пришли в автомобильный мир из США начала прошлого века, где мода на такое расположение селектора держалась долгие десятилетия. Сейчас она близка к вымиранию. Так, из «большой тройки» пикапов-бестселлеров ей верен только Chevrolet Silverado, а Ford F-150 и Ram записались в ренегаты.

Кнопочное управление автоматом


Кнопочное управление автоматом — редкость на легковых машинах. На фото — Aston Martin Rapide с кнопками выбора режимов под центральными дефлекторами вентиляции.
Кнопочное управление автоматом — редкость на легковых машинах. На фото — Aston Martin Rapide с кнопками выбора режимов под центральными дефлекторами вентиляции.

Еще один тип управления автоматом получил распространение уже в новейшей истории. Это вращающаяся шайба, которую параллельно делают утапливаемой в нерабочем состоянии — решение стильное и нестандартное. В пристрастии к нему замечены британские марки Jaguar и Land Rover. На шайбы перешел весь модельный ряд двух брендов. Что удивительно, похожий подход практикует брутальный пикап Ram. Уж ему-то сам автомобильный бог велел быть верным американским традициям!

Инструкции по эксплуатации швейной машины и основы

По

Дебби Колгроув

Дебби Колгроув

Дебби Колгроув — отмеченная наградами швея и портной, которая делится своими знаниями с начинающими швеями о том, как работать с выкройками и тканями. Она имеет более чем 40-летний опыт работы и пишет книги уже два десятилетия.

Узнайте больше о The Spruce Crafts’ Редакционный процесс

Обновлено 03.05.21

Вестенд61 / Getty Images

Швейные машины имеют огромное разнообразие опций, но основная работа швейной машины одинакова от машины к машине. Как только вы освоите самые основы работы на швейной машине, вам захочется обратиться к руководству по эксплуатации вашей машины, чтобы вы могли использовать все возможные опции, которые предлагает ваша швейная машина.

  • 01 из 08

    Руководство по эксплуатации вашей швейной машины

    Ель / Дебби Колгроув

    Если вы не первый владелец швейной машины, у вас может не быть инструкции. Это хорошая идея, чтобы попытаться получить руководство по эксплуатации швейной машины для вашей швейной машины. Руководство не собирается просто рассказывать вам, как управлять машиной. Он также научит вас, как ухаживать за вашей конкретной машиной, и раскроет советы и приемы, которые вы, возможно, не узнаете больше нигде. К счастью, для многих новых моделей машин доступны онлайн-руководства. Будет сложнее получить руководство для старых машин, но иногда вы можете найти их в продаже на таких сайтах, как eBay или Craigslist.

  • 02 08

    Части швейной машины

    Ель / Дебби Колгроув

    Руководство к швейной машине может показаться написанным на иностранном языке, если вы не знаете различные части машины. Все новые швейные машины и старые швейные машины имеют одни и те же основные детали — разница в том, что детали новой машины менее открыты. Изображения деталей швейных машин, которые вы найдете в Интернете, могут изображать более старую машину, просто чтобы вы могли увидеть настоящие детали, которые скрыты на новых швейных машинах. Посмотрите, сможете ли вы запомнить основные части, это определенно поможет вам расшифровывать выкройки и устранять неполадки со швейной машиной.

  • 03 из 08

    Регулятор скорости

    Ель / Дебби Колгроув

    Ножная педаль швейной машины по сути аналогична педали газа в вашем автомобиле. Чем сильнее вы нажимаете, тем быстрее будет шить швейная машина. Большинство машин могут двигаться довольно быстро. Чтобы почувствовать скорость машины, попробуйте шить босиком. Для начала держите пятку на полу, а подушечку стопы на педали. Попробуйте использовать только большой палец ноги, чтобы нажимать на педаль, если вы обнаружите, что двигаетесь быстрее, чем можете контролировать. Практикуйтесь в управлении скоростью обучения без заправки машины. Как только вы научитесь контролировать скорость машины, заправьте нитку в швейную машину и попрактикуйтесь еще немного.

  • 04 из 08

    Иглы для швейных машин

    Ель / Дебби Колгроув

    Для разных тканей нужны разные иглы для швейных машин. Самый распространенный признак того, что вам нужно сменить иглу, — это пропуски стежков. Вес и тип ткани играют важную роль при выборе правильной иглы для швейной машины для типа ткани, которую вы шьете. Существуют также специальные иглы для удовлетворения особых потребностей; узнайте обо всех вариантах игл для швейных машин, чтобы избежать простых проблем.

  • 05 из 08

    Используйте руководство

    Ель / Дебби Колгроув

    Наблюдая за иглой во время шитья, вы можете получить волнистую строчку. Лучше всего установить направитель и следить за тем, чтобы ткань совпадала с направителем во время шитья, чтобы получить прямые швы с ровными припусками. Направляющая может находиться на станине швейной машины или на прижимной лапке.

    Вы также можете поэкспериментировать с положением иглы, чтобы получить желаемый результат. Помните, что вы сидите за рулем и решаете, где машина будет сшивать ткань.

  • 06 из 08

    Ознакомьтесь с гребенками подачи

    Ель / Дебби Колгроув

    Собачка транспортера отвечает за захват ткани под иглу и подачу ее через машину. Зубчатая рейка работает вместе с прижимной лапкой для подачи ткани во время шитья. Ваша обязанность состоит в том, чтобы просто провести ткань между зубчатой ​​рейкой и прижимной лапкой.

    Когда вы принудительно протягиваете машину или протягиваете ткань через машину, вы можете погнуть иглу швейной машины и создать всевозможные проблемы. Пусть машина сделает всю работу и просто направит ткань в стабильном темпе.

  • 07 из 08

    Заправка нити в швейную машину

    Ель / Дебби Колгроув

    Руководство по швейной машине — лучшее место, где можно узнать, как заправить нить в швейную машину, но если вы хотите начать работу и у вас нет руководства к машине, вам могут помочь основы заправки нити в швейную машину.

    При заправке ниток в швейную машину обязательно заправляйте их прижимной лапкой вверх. Когда прижимная лапка находится в верхнем положении, натяжение ослабляется, что позволяет нити укладываться правильно. Вы можете проверить разницу, потянув нить за иглу с прижимной лапкой вверх и с опущенной прижимной лапкой — нить будет тянуться плавно, если она правильно установлена.

  • 08 из 08

    Качественная резьба

    Ель / Дебби Колгроув

    Купить катушку с нитью за доллар может показаться отличным способом сэкономить, но вы можете столкнуться с последствиями, если нить некачественная. Нить тоже стареет, поэтому, если ваша машинка барахлит, а вы пытаетесь шить деревянной катушкой ниток вашей бабушки, попробуйте новую высококачественную нить и посмотрите, изменится ли она.

Чтобы по-настоящему освоиться со швейной машиной, нужны практика и самоотверженность. Чем больше вы узнаете о том, как это работает, тем легче будет устранять неполадки. И если ваша машина будет работать бесперебойно, вы сможете сшить все, что пожелаете.

5 советов по безопасной эксплуатации тяжелой техники

Если вы работаете в строительстве, вы знаете, что работа на строительной площадке может быть одной из самых опасных и опасных работ. В среднем ежегодно на производстве получают около 150 000 травм, и только в 2013 году погибло 824 рабочих. Работая на различных строительных площадках, вы лучше других знаете, что надлежащая безопасность начинается и заканчивается вашими решениями и тем, как вы себя ведете.

Одной из главных опасностей на площадке является тяжелая техника, используемая для различных проектов. Безопасная эксплуатация этих машин имеет первостепенное значение. Тридцать пять процентов производственных травм ежегодно вызваны несчастными случаями с машинами, а также 14 процентов смертей, связанных с работой.

Итак, какие шаги и меры вы можете предпринять, чтобы гарантировать, что безопасность является главным приоритетом при эксплуатации тяжелой техники?

Вот пять советов, которые помогут обеспечить постоянную безопасность всех сотрудников на вашем объекте:

Инвестируйте в обучение — работают. Эти машины высокотехнологичны, и каждая из них имеет свои особенности и особенности. Вы должны разобраться в своем оборудовании еще до того, как возьмете в руки элементы управления, иначе неизбежны катастрофы.

I Осмотрите свои машины – Каждая машина имеет тысячи или более движущихся частей, и каждая из них должна быть в наилучшем состоянии, прежде чем она сможет выполнять свою работу. Надлежащий осмотр ваших машин и знание того, что они соответствуют номиналу, имеют решающее значение для обеспечения безопасности. Регулярный осмотр ваших машин поможет избежать несчастных случаев и травм.

Помедленнее – В любом проекте всегда есть крайние сроки, поэтому вы испытываете стресс, чтобы завершить проект. К сожалению, одна из основных причин несчастных случаев на строительных площадках связана с тем, что люди передвигаются слишком быстро. Избежать травмы или несчастного случая так же просто, как не торопиться и убедиться, что вы бережно относитесь к используемым машинам.

Спешка на работе обязательно приведет к несчастным случаям, так что не позволяйте стрессу из-за дедлайна овладеть вами — подумайте о том, чтобы немного замедлить его.

Всегда будьте внимательны — на работе в любой момент есть десятки отвлекающих факторов из-за всего, что происходит вокруг вас. Основной причиной несчастных случаев на строительной площадке является то, что рабочие не обращают внимания на выполняемую задачу. Сосредоточенность на том, что вы делаете, и на машине, на которой вы работаете, спасает вас от ошибок и спасает жизни. Оставайтесь на работе, и вы останетесь в безопасности.

Эффективное общение – Во всех аспектах жизни общение является, пожалуй, наиболее важным способом достижения результатов и соблюдения сроков. При работе с тяжелой техникой общение так же важно. Создание политик и процедур безопасности для ваших машин — и постоянное информирование о них — может спасти жизни и деньги в долгосрочной перспективе.

Следите за работниками, которые не соблюдают правила техники безопасности, и следите за тем, чтобы они знали обо всех ваших правилах.

Будьте бдительны – На строительной площадке существует множество операций, которые могут привести к травмам, например, падение с лесов/высот, опасности при земляных работах и ​​аварии с электричеством. Смерть на производстве – реальная возможность при работе на стройке, и тяжелая техника часто может быть одной из главных причин этих трагедий.

Знание и безопасность своего оборудования — это верный способ защитить себя и своих коллег. Есть даже курсы, которые вы можете пройти, чтобы проверить свои знания в области безопасности, чтобы быть в курсе последних протоколов безопасности. Эти курсы также будут обучать ваших сотрудников и обеспечивать их безопасность на протяжении всего проекта.

Строительные площадки могут быть опасными местами, и несчастные случаи могут произойти в любую минуту. Если вы остаетесь в безопасности, обращаете внимание и понимаете свое оборудование, ваша работа останется безопасной и полезной.

Об авторе: Джеймс Уайт — строитель и опытный блоггер по благоустройству дома. Его работы публиковались во многих изданиях, включая True Look, Constructonomics и Building Blok. Уайт участвует в продвижении идей устойчивого строительства и безопасности строительства.

19Дек

Ротор принцип работы: Двигатель Ванкеля — устройство и принцип работы РПД автомобиля

Роторный двигатель, принцип работы и техника применения | Халва

Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
 Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.

 Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень),  поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
 В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.

Принцип работы роторно-поршневого  двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Узлы (детали) роторного двигателя

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Ротор роторного двигателя

Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем.  На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя.  Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.

Корпус роторного двигателя

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
 А теперь мы расскажем о рабочих камерах корпуса роторного двигателя.  

  Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
 Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Выходной вал роторного двигателя

 Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.

Достоинства роторного двигателя

Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т.д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
 К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
 роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
 Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.

Недостатки роторных двигателей

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

Всемирно известные автомобили, выпускающиеся с роторными двигателями

(На фото Mazda Cosmo Sport и Mazda RX8)

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.  И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Синхронный электродвигатель с обмоткой возбуждения

Дмитрий Левкин

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитные поля ротора и статора сцепленные друг с другом

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Бесколлекторный двигатель постоянного тока: особенности и принцип работы

Как работает бесколлекторный двигатель?

Бесколлекторный двигатель постоянного тока имеет на статоре трёхфазную обмотку, и постоянный магнит на роторе. Вращающееся магнитное поле создаётся обмоткой статора, при взаимодействии с которым магнитный ротор приходит в движение. Для создания вращающегося магнитного поля на обмотку статора подаётся система трёхфазных напряжений, которая может иметь различную форму и формируется различными способами. Формирование питающих напряжений (коммутация обмоток) для бесколлекторного двигателя постоянного тока производиться специализированными блоками электроники – контроллером двигателя. 

Заказать бесколлекторный двигатель в нашем каталоге

В простейшем случае обмотки попарно подключаются к источнику постоянного напряжения и по мере того как ротор поворачивается в направлении вектора магнитного поля обмотки статора производится подключение напряжения к другой паре обмоток. Вектор магнитного поля статора при этом занимает другое положение и вращение ротора продолжается. Для определения нужного момента подключения следующих обмоток используется датчик положения ротора, чаще других используются датчики Холла. 


Возможные варианты и специальные случаи

Выпускаемые сейчас бесколлекторные двигатели могут иметь самую разную конструкцию. 

По исполнению статорной обмотки можно выделить двигатели с классической обмоткой, намотанной на стальной сердечник, и двигатели с полой цилиндрической обмоткой без стального сердечника. Классическая обмотка обладает значительно большей индуктивностью, чем полая цилиндрическая обмотка, и соответственно большей постоянной времени. Из-за этого с одной стороны, полая цилиндрическая обмотка допускает более динамичное изменение тока (а, следовательно, и момента), с другой стороны при работе от контроллера двигателя, использующего ШИМ-модуляцию невысокой частоты для сглаживания пульсаций тока, требуются фильтрующие дроссели большего  номинала (а соответственно и большего размера). Кроме того, классическая обмотка, как правило, имеет заметно больший момент магнитной фиксации, а также меньший КПД, чем полая цилиндрическая обмотка.


Ещё одно отличие, по которому разделяются различные модели двигателей – это взаимное расположение ротора и статора – существуют  двигатели с внутренним ротором и двигатели с внешним ротором. Двигатели с внутренним ротором, как правило, имеют более высокие скорости и меньший момент инерции ротора, чем модели с внешним ротором. Благодаря этому двигатели с внутренним ротором имеют более высокую динамику. Двигатели с внешним ротором часто имеют несколько больший номинальный момент при том же наружном диаметре двигателя. 

Отличия от других типов двигателей

Отличия от коллекторных ДПТ. Размещение обмотки на роторе позволило отказаться от щёток и коллектора и избавиться тем самым от подвижного электрического контакта, который значительно снижает надёжность ДПТ с постоянными магнитами. По этой же причине  скорость у бесколлекторных двигателей, как правило, значительно выше, чем у ДПТ с постоянными магнитами. С одной стороны это позволяет увеличить удельную мощность бесколлекторного двигателя, с другой стороны не для всех применений такая высокая скорость является действительно необходимой

Отличия от синхронных двигателей с постоянными магнитами. Синхронные двигатели с постоянными магнитами на роторе очень похожи на бесколлекторные ДПТ по конструкции, однако есть и ряд различий. Во-первых термин синхронный двигатель объединяет в себе много различных видов двигателей, часть из которых предназначены для непосредственной работы от стандартной сети переменного тока, другая часть (например синхронные серводвигатели) может работать только от преобразователей частоты (контроллеров двигателей). Бесколлекторные двигатели, хотя и имеют на статоре трёхфазную обмотку, не допускают непосредственную работу от сетевого напряжения, и обязательно требуют наличия соответствующего контроллера. Кроме того синхронные двигатели предполагают питание напряжением синусоидальной формы в то время как бесколлекторные двигатели допускают питание переменным напряжением ступенчатой формы (блочная коммутация) и даже предполагают его использование в номинальных режимах работы.

Когда нужен бесколлекторный двигатель?

Ответ на этот вопрос достаточно прост – в тех случаях, когда он имеет преимущество перед остальными типами двигателей. Так, например, практически невозможно обойтись без бесколлекторного двигателя в применениях, где требуются большие скорости вращения: свыше 10000 об/мин. Оправдано применение бесколлекторных двигателей также и в тех случаях, когда требуется высокий срок службы двигателя. В тех случаях, когда требуется применять сборку из двигателя с редуктором, однозначно оправдано применение низкоскоростных бесколлекторных двигателей (с большим числом полюсов). Высокоскоростные бесколлекторные двигатели в этом случае будут иметь скорость выше, чем предельно допустимая скорость редуктора, и по этой причине не будет возможности использовать их мощность полностью. Для  применений, где требуется максимально простое управление двигателем (без использования контроллера двигателя) естественным выбором будет коллекторный ДПТ. 

С другой стороны, в условиях повышенной температуры или повышенной радиации проявляется слабое место бесколлекторных двигателей – датчики Холла. Стандартные модели датчиков Холла имеют ограниченную стойкость к радиации и диапазон рабочих температур. Если в подобном применении всё же имеется необходимость использовать бесколлекторный двигатель, то неизбежными становятся заказные исполнения с заменой датчиков Холла на более стойкие к указанным факторам, что увеличивает цену двигателя и сроки поставки.

Роторные компрессоры

Компрессоры используются для того, чтобы для различных газов (в том числе воздух, хладагенты, природный газ и специальные газы: аммиак, кислород, азот и др.) получить давление выше, чем нормальное атмосферное давление.

Роторные компрессоры являются компрессорам объемного типа. Объемный компрессор создает уменьшение объема газа для увеличения его давления.

Роторные компрессоры получили свое название от вращающегося рабочего элемента. Они сжимают газы при помощи кулачковых роторов, жидкости, винтов или пластин. В ответ на запросы рынка усилиями многих компаний-производителей появились на свет компактные и эффективные компрессорные машины.

К роторным компрессорам относятся компрессоров следующих типов: винтовой, кулачковый (Рутс компрессор), пластинчатый, спиральный и жидкостно-кольцевой.

За исключением различий в конструктивном исполнении, компрессоры этого типа имеют несколько общих особенностей. Наиболее важная особенность, которая отличает их от поршневых компрессоров, – отсутствие большого количества клапанов. Роторные компрессоры имеют меньший вес, чем поршневые, имеют простое конструктивное решение, могут быть с одним или несколькими роторами. Дизайн ротора отличает типы друг от друга, и также режим работы и размер являются уникальными для каждого типа компрессоров.

Роторные компрессоры часто представляют собой одинарный агрегат с приводом. Кроме того встречаются установки с последовательным расположением, в комплекте или без промежуточного редуктора.

Большинство компрессоров роторного типа комплектуют электродвигателем, однако переносные компрессоры могут комплектоваться также двигателем внутреннего сгорания.

Роторный винтовой компрессор

рис 1. Винтовой компрессор

Винтовой компрессор – это широко используемое средство для сжатия воздуха, технологических газов и хладагента. Эффективная работа винтовых компрессоров зависит в основном от правильного дизайна ротора. Данный тип компрессоров часто используется в промышленности. В последние десятилетия данный тип компрессоров стал широко популярен в газовой промышленности при работе с низким давлением и высокой производительностью. Давление на всасывании может быть очень низким, а на нагнетании достигать 400psig.

Винтовой компрессор имеет показатели, близкие к поршневым и центробежным компрессорам. Так, например, большая винтовая установка, рассчитанная на 40000 cfm – это типичная зона применения центробежных компрессоров, а небольшие установки для автомобильного кондиционирования воздуха – это типичная область применения поршневых компрессоров.

Конструктивное устройство:

Рабочий элемент компрессора – два винтовых ротора, которые вращаются по направлению друг к другу: когда левый ротор поворачивается по часовой стрелке, правый ротор вращается против часовой стрелки. Роторы и корпус разделены небольшим зазором. Оба ротора могут крепиться к валу привода, который приводит компрессор в рабочее состояние. В компрессоре есть впускное и выпускное отверстие для рабочей среды. Винтовые компрессоры могут иметь различные материальные исполнения. Термическая обработка роторов обычно не требуется.

Принцип работы

Роторный винтовой компрессор, показанный на рисунке 1, состоит из двух винтов или роторов в зацеплении, которые удерживают газ между собой и корпусом компрессора. Двигатель приводит в движение ведущий ротор, который, в свою очередь, приводит в движение ведомый ротор. Оба ротора расположены в корпусе, в котором также имеются входное и выходное отверстие. Газ поступает в компрессор через входное отверстие и заполняет пустоты между роторами. Когда роторы находятся в движении, газ сжимается роторами, тем самым уменьшая его объем. В процессе работы компрессора между роторами нет прямого контакта, что, в свою очередь означает отсутствие износа поверхности роторов, увеличение надежности всего оборудования и равномерную подачу газа.

Описание типа

Компрессоры данного типа могут быть безмасляными или маслозаполненными. В маслозаполненном компрессоре винтового типа смазка впрыскивается в газ, который задерживается внутри корпуса. В этом случае смазка также используется для охлаждения компрессора. Газ удаляется из сжимаемой газосмазывающей смеси в сепараторе. Роторные винтовые компрессоры рециркулируют смесь газа с маслом от 1 до 8 раз в минуту для охлаждения газа и последующего их разделения. Так как винтовые компрессоры используют закрытую смазочную систему, требуется небольшое количество масла. Вязкость масла подбирается в зависимости от удельной теплоемкости газа.

В компрессорах сухого типа роторы движутся без смазки (или хладагента). Тепло от сжатия удаляется из компрессора, ограничивая возможность его работы до одной ступени.

Безмаслянные винтовые компрессоры обычно используются для специальных условий. Из-за отсутствия масла не требуется много ступеней как в компрессорах маслозаполненного типа чтобы достичь такого же высокого давления. Некоторые безмаслянные компрессоры используют воду в качестве охладителя. Для масла и воздуха используются отдельные отверстия.

Большинство промышленных воздушных компрессоров винтового типа имеют двигатели мощностью от 30 до 200 лс. Эти компрессоры используют от одного до трех винтовых роторов, которые удерживают среду внутри камеры, которая уменьшается в размере для увеличения давления. Клапаны открываются при остановке для сброса внутреннего давления и делают пуск более плавным.

Промышленный роторный винтовой компрессор может работать круглосуточно 7 дней в неделю и обычно работает дольше и эффективнее, если используется именно таким образом. Если винтовой компрессор подобран правильно, он может быть одним из энергоэффективных типов компрессоров.

Обычно маслозаполненный компрессор укомплектован клапаном минимального давления, который не позволяет воздуху попасть в пневмосистему, пока не будет достигнуто минимальное давление для смазки компрессора. Масляный фильтр удаляет загрязняющие вещества в масле, и также есть второй масляный фильтр, который очищает от крупных загрязнений. На компрессор монтируют перепускной клапан для поддержания давления, когда компрессор на холостом ходу.

У безмасляного компрессора несколько другие компоненты. Обычно это две винтовые пары, воздух охлаждается в промежуточном радиаторе между ними и шестерни для обоих винтовых пар расположены в корпусе редуктора и редуктор смазывается. Масляное уплотнение и повышенное давление удерживают масло от попадания из редуктора на винты.

В роторном винтовом компрессоре смазывающее вещество впрыскивается в корпус компрессора. Вращающиеся роторы соприкасаются со смесью газов и смазывающего вещества. В дополнение к тому, что тонкая пленка смазывающего вещества предотвращает контакт металл по металлу, смазывающее вещество также несет функцию уплотнителя, предотвращая рекомпрессию газа, которая возникает, когда горячий газ под высоким давлением попадает в уплотнение между роторами и сжимается снова. Рекомпрессия может привести к тому, что температура нагнетания газа превысит расчетную, что в конечном итоге приведет к потери надежности установки. Смазывающее вещество также выступает в качестве охладителя, удаляя тепло во время процесса сжатия газа.

Основные преимущества роторных компрессоров

  • все рабочие части движутся и могут работать при больших скоростях;
  • контакта между вращающимися частями практически нет, что делает их очень надежными;
  • несложное техническое обслуживание;
  • низкие затраты на техническое обслуживание и эксплуатацию;
  • работа при низком давлении всасывания;
  • компактность и небольшой вес;
  • долгий срок службы.

Области применения:

Винтовые компрессоры обычно используют для непрерывной работы в различных промышленностях и могут быть как стационарными, так и передвижными. Их мощность может быть от 3 лс (2,2кВт) до более 1200 лс (890кВт), а давление от низкого до более 1,200 psi (8.3 MPa).

Винтовые компрессоры работают с большим количеством сред, среди которых могут быть газы, пары или мультифазные смеси с учетом, что фазы внутри машины могут меняться. Обычно, компрессоры для хладагента и технологических газов, которые работают продолжительное время, имеют высокую эффективность, в то время как для воздушных компрессоров, особенно для мобильных, эффективность может быть менее важна, чем размер и стоимость.

Винтовые компрессоры идеально подходят для большинства применений, где требуется сжатие:

  • дожатие топливного газа;
  • дожатие газа из буровой скважины;
  • улавливание паров;
  • сжатие газа из органических отходов и газа вторичной переработки;
  • сжатие коррозионных и или грязных технологических газов;
  • воздух
  • холодильное оборудование
  • и др.

Роторный компрессор с кулачковыми роторами

рис 2. Компрессор с кулачковыми роторами

Описание типа и конструктивное устройство:

Схематическая диаграмма роторного компрессора с кулачковыми роторами, представлена на рис. 2. Обычно данный тип компрессоров используется там, где требуется большой объем. Эти машины очень надежны, так как вращающиеся части не соприкасаются друг с другом, необходимость подачи масла для их смазки исключается и потребность в техническом обслуживании невелика. Подаваемый воздух 100% безмасляный. Расход компрессора в большей степени зависит от рабочей скорости.

Установки большого размера (свыше 5000cfm) имеют прямое подсоединение к своим двигателям, установки меньшего размера имеют клиноременную передачу. В качестве приводов обычно выступают электродвигатели. Также компрессоры могут поставляться с голым валом, для подсоединения к приводу Заказчика. В комплект поставки могут входить звукопоглотитель, клапаны, фильтры, перепускной клапан и компенсаторы.

Основные части компрессора: роторы, корпус, распределительные шестерни, подшипники, уплотнения. Профиль кулачков роторов обычно эвольвентный, хотя может быть и циклоидальный. Зазор между роторами и корпусом делают обычно минимальный для предотвращения протечек. У ротора может быть два или три кулачка. Корпус обычно изготавливают из чугуна, конструкцию из алюминия поставляют для специальных условий. Обычно используется смазывание разбрызгиванием, однако на некоторых установках делают внешнюю систему смазки.

Принцип работы

Принцип работы компрессор аналогичен принципу роторного винтового компрессора, кроме того, что соприкасающиеся кулачковые роторы обычно не смазываются. Особенность данного типа компрессоров в том, что газ внутри не сжимается. Роторы могут монтироваться на параллельных валах внутри цилиндра. Комплект шестерен синхронизирует вращение роторов. Кулачки не соприкасаются друг с другом. Когда кулачковые рабочие колеса вращаются, газ поступает между ними и корпусом компрессора, где он сжимается из-за их вращения, а затем поступает в нагнетательную линию. При этом подшипники и распределительные шестерни смазываются.

Области применения:

Данный тип компрессоров предназначены для сжатия воздуха и нейтральных газовых смесей.

Сфера применения:

  • сельское хозяйство;
  • строительство;
  • химическое производство;
  • электроника;
  • металлургия;
  • системы водоснабжения
  • пищевая промышленность.
  • промышленные печи
  • фармацевтическая промышленность
  • центральная подача вакуума
  • дегазация
  • пневмотранспорт
  • фильтрация
  • места хранения органических отходов

Роторные компрессоры с кулачковыми роторами находят свое применение там, где требуется относительно постоянный расход при меняющемся давлении на нагнетании при транспортировке материалов, насыщении жидкости воздухом, добыче газа и улавливании паров, снабжении газом и воздухом низкого давления, обработке отработанной воды, рекультивации почв, на цементных заводах и пр.

Ротационно-пластинчатый компрессор

рис 3. Пластинчатый компрессор

Описание типа и конструктивное устройство:

Ротационно-пластинчатый компрессор схематически представлен на рисунке 3. Ротационно-пластинчатые компрессоры имеют в своем составе ротор с несколькими скользящими пластинами, которые эксцентрически монтируются в корпусе.

Компрессоры этого типа бывают сухого типа и маслонаполненные. Компрессоры с маслом наиболее эффективны и могут достигать 90%-й эффективности. Также они создают большее давление, чем сухой тип компрессора.

Компрессоры данного типа могут быть стационарными или переносными, иметь одну или несколько ступеней, могут иметь привод от электродвигателя или двигателя внутреннего сгорания. Ротационно-пластинчатый компрессор сухого типа используют при относительно низком давлении (2бар), в то время как маслонаполненные компрессоры имеют достаточный коэффициент полезного действия для достижения давления в 13 бар на одной ступени.

Наиболее часто используемый тип привода – электрический двигатель. На небольших установках (менее 100 лс) применяют клиноременную передачу.

Цилиндр изготавливают обычно из чугуна. Входные и выходные отверстия имеют фланцевое подсоединение. Для установок со смазкой пластины изготавливают из слоистого асбеста с вкраплениями фенолоальдегидных полимеров. Графит используется в установках без смазки. Ротор изготавливают из углеродистой стали. На больших установках ротор может быть изготовлен из чугуна, а вал из углеродистой стали.

Принцип работы

Лопасти ротора выдвигаются и скользят по внутренней поверхности цилиндра под действием центробежной силы. В результате из-за вращения объем камеры между двумя лопастями постоянно меняется. По мере вращения ротора, рабочая среда попадает в область большего объема, а затем подается на нагнетание уже в качестве сжатого газа из области меньшего объема.

Процесс смазки ротационно-пластинчатого компрессора происходит один раз за режим работы. Смазка впрыскивается в компрессор и выходит вместе со сжимаемым газом и обычно не рециркулирует. Смазывающее вещество создает тонкую пленку между корпусом компрессора и скользящими пластинами. Скольжение пластин по поверхности корпуса требует от смазывающего вещества, чтобы оно выдерживало высокое давление в компрессорной системе.

Области применения:

Ротационно-пластинчатые компрессоры используются при улавливании газов и для повышения давления газа, конкурируя с поршневыми компрессорами. Они уступают в эффективности, но они достаточно компактны, имеют меньший вес и не требуют подготовки для них специального фундамента. Данный тип компрессоров используется также для удаления паров. Ротационно-пластинчатые компрессоры доказали свою надежность в качестве сжимающего оборудования для природного газа и метана.

Ротационно-пластинчатые компрессоры применяют для:

  • центральной подачи вакуума
  • охлаждения
  • извлечения растворителей
  • пропитки (поверхности материала под воздействием вакуума пропитывающим веществом)
  • сушки (напр. медицинской продукции)
  • дегазации
  • герметизации солнечных модулей
  • упаковки продуктов питания
  • вакуумной формовки
  • герметизация лотков в пищевой промышленности
  • упаковки непищевой продукции
  • обработки заготовок
  • пневмотранспорта
  • полиграфической и целлюлозно-бумажной промышленности

Особое внимание необходимо уделять контролю за износом пластин, так как их износ может послужить причиной повреждения цилиндра.

Жидкостно-кольцевые компрессоры

Конструктивное устройство и описание типа

Жидкостно-кольцевой компрессор является уникальным видом компрессоров, так как в нем используется сжатие при помощи жидкостного кольца, которое действует как поршень. Одиночный ротор располагается эксцентрически внутри корпуса. Входное и выходное отверстие для газа располагается на роторе. Стандартное материальное исполнение – чугун для цилиндра и углеродистая сталь для вала, сталь для частей ротора. Конструктивно жидкостно-кольцевые компрессоры могут быть как одноступенчатыми, так и многоступенчатыми.

Принцип работы

Сжимающая жидкостная среда заполняет частично ротор и цилиндр, и образует кольцо при движении поршня. При движении поршня в корпусе образуется газовый карман. Газ сжимается в полостях, которые образуют поверхности жидкостного кольца и ротора. На стороне всасывания объем полостей увеличивается и происходит её заполнение газом, на нагнетании объем уменьшается, происходит сжатие газа и подача его в нагнетательную линию. В качестве сервисной жидкости обычно используют воду.

Основные преимущества

  • надежность;
  • возможность эксплуатации при минусовых температурах;
  • эффективная теплоотдача;
  • простое техническое обслуживание;
  • низкий уровень шума и почти полное отсутствие вибраций;
  • компрессоры могут работать почти со всеми газами и парами;
  • нет металлического контакта между вращающимися частями.

    Области применения:

    Данный тип компрессоров применяют для сжатия паров, опасных и токсических газов, а также горячих газов, в том числе с содержанием пыли или жидкости. После взаимодействия газа и рабочей жидкости, температура газа повышается незначительно, что дает почти изометрическое уплотнение. Жидкостно-кольцевые компрессоры используются там, где требуются надежная, безопасная работа и требуются специальные технологические условия.

    Сферы применения

    • производство пластмасс – регенерация технологических газов,
    • нефтехимическая промышленность – уплотнение горючих газов (паров бензина, водорода)
    • общий газовый перенос
    • удаление воздуха из глины
    • удаление нефтяных остатков
    • защита от коррозии водопроводных труб
    • удаление пыли в горнодобывающей промышленности
    • производство биогаза
    • сжатие анаэробных газов
    • очистка и утилизация сточных вод
    • разлив продукта на пивоваренных заводах
    • погрузочно-разгрузочные операции
    • системы очистки и удаления жира из частиц углеводородов
    • прочее

    Спиральные компрессоры

    Конструктивное устройство и описание типа

    Спиральный компрессор – это объемная машина с движением по орбите, в которой сжатие происходит при помощи двух спиральных элементов вложенных друг в друга.

    Хотя идея спирального компрессора известна уже давно спиральные компрессоры это достаточно новая технология. Первый патент на спиральный компрессор был выдан в 1905 году французскому инженеру Леону Круа, но только в 1970 году с развитием высокоточной механической обработки удалось сделать рабочий прототип. На сегодняшний день спиральные компрессоры находят свое применение, как в коммерческих, так и бытовых областях.

    Спиральные компрессоры полностью герметичны. Блок спиралей, муфта, противовесы, двигатель и подшипники смонтированы в сварном стальном корпусе. Большинство спиральных компрессоров для кондиционирования имеют вертикальную конструкцию. Кожух представляет собой цилиндрическую емкость, расположенную вертикально и разделенную на часть низкого давления и часть высокого давления. Нижняя часть кожуха служит в качестве резервуара для масла и жидкости. Спирали обычно изготавливают из заготовок из углеродистой стали. Особое внимание уделяется изготовлению спиралей, так как требуется их точная подгонка.

    Принцип работы

    Спиральный компрессор использует две спирали, одну зафиксированную, а другую движущуюся, соединенную с двигателем. Спирали вложены одна в другую, так что во время движения при их взаимодействии образуются полости для рабочей среды. Среда подвергается сжатию при движении по орбите подвижной спирали вокруг неподвижной спирали и постепенно нагнетается к центру. Когда полости перемещаются, они уменьшаются в объеме и сжимают газ.

    Основные преимущества

    Спиральная технология предлагает преимущества по ряду причин. Большие отверстия на всасе и нагнетании сокращают потери давления, возникающие в процессе всасывания и нагнетания. Также физическое разделение этих процессов сокращает передачу тепла к всасываемому газу. Преимущества спиральных компрессоров заключается в их небольших размерах и меньшем весе, чем у поршневых компрессоров среднего класса. Это эффективные устройства, работающие при различных коэффициентах сжатия. Также к преимуществам можно отнести относительно низкий уровень шума и вибраций, высокий уровень надежности и долгий срок эксплуатации, благодаря тому, что в сжатии участвует небольшое количество деталей и отсутствуют клапаны.

    Области применения

    Спиральные компрессоры изготавливают в разных размерах до 25т. Они нашли широкое применение в бытовых и коммерческих системах обогрева, вентиляции и кондиционирования воздуха. Они успешно используются для охлаждения молока в оптовой таре, в контейнерных перевозках, в морских контейнерах и продовольственных прилавках-витринах, в водяных охладителях. Спиральные компрессоры используются для производства сжатого воздуха и безмасляного сжатого воздуха.

    Горизонтальные герметичные спиральные компрессоры могут работать с природным газом, воздухом и гелием и имеют масляное охлаждение. Другая область применения для такого компрессора – это улавливание газовых паров на нефтяных месторождениях.

  • Однофазный асинхронный двигатель: принцип работы

    Особенности устройства и работы

    Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.

    Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.

    Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.

    Расчет:

    Mn = М1 — М2

    М — противоположные моменты;

    n — частота вращения.

    Асинхронный однофазный двигатель: принцип работы

    При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.

    У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.

    Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.

    Для расчета обмоток статора разработаны специальные программы.

    Какие бывают типы однофазных двигателей

    На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.

    Бифилярный пуск

    Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.

    Конденсаторный пуск

    Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.

    Основные принципы работы

    В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.

    Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.

    Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.

    Схема центробежного выключателя

    Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.

    Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.

    При запуске двигателя работает две фазы, потом — только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.

    В чем достоинства однофазного асинхронного двигателя:

    • доступная цена;
    • простая конструкция;
    • небольшой вес, компактность;
    • большая двигательная способность из-за отсутствия коллектора;
    • питание от синусоидальной сети.

    В чем недостатки однофазного асинхронного двигателя:

    • небольшой диапазон регулировки частоты вращения;
    • отсутствие или небольшой пусковой момент, низкий КПД.

    Асинхронный двигатель с фазным ротором

    Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. Этим асинхронный двигатель с фазным ротором выгодно отличается от АД с короткозамкнутым ротором.

    Статор (3) выполнен, так же как и в обычном асинхронном двигателе, он представляет из себя полый цилиндр, набранный из листов электротехнической стали, в который уложена трехфазная обмотка.

    Ротор (4) по сравнению с короткозамкнутым, представляет из себя более сложную конструкцию. Он состоит из сердечника в который уложена трехфазная обмотка, аналогично обмотке статора. Отсюда название двигателя. Если двигатель двухполюсный, то обмотки ротора смещены геометрически друг относительно друга на 120. Эти обмотки соединяются с тремя контактными кольцами (2), расположенными на валу (5) ротора. Контактные кольца выполнены из латуни или стали, причем друг от друга они изолированы. С помощью нескольких металлографитовых щеток (обычно двух), которые расположены на щеткодержателе (1) и прижимаются пружинами к кольцам, в цепь вводятся добавочные сопротивления. Выводы обмоток соединяются по схеме «звезда».

    Добавочное сопротивление вводится только при пуске двигателя. Причем им обычно служит ступенчатый реостат, сопротивление которого уменьшают с увеличением оборотов двигателя. Таким образом пуск двигателя осуществляется тоже ступенчато. После того, как разгон закончился и двигатель вышел на естественную механическую характеристику, обмотку ротора закорачивают. Для того, чтобы сохранить щетки и снизить потери на них, в двигателях с фазным ротором существует специальное устройство, которое поднимает щетки и замыкает кольца. Таким образом, удается повысить еще и КПД двигателя.

    Добавочное сопротивление позволяет главным образом осуществить пуск двигателя под нагрузкой, работать с ним длительное время двигатель не может, так как механические характеристики слишком мягкие и работа двигателя на них нестабильна.

    Для того чтобы автоматизировать пуск двигателя, в обмотку ротора включают индуктивность. В момент пуска, частота тока в роторе наибольшая, а значит и индуктивное сопротивление максимально. Затем, при разгоне двигателя, частота, как и сопротивление уменьшаются, и двигатель постепенно начинает работать в обычном режиме.

    За счет усложнения своей конструкции, асинхронный двигатель с фазным ротором, обладает хорошими пусковыми и регулировочными характеристиками. Но по той же причине, его стоимость возрастает приблизительно в 1.5 по сравнению с обычным АД, кроме того увеличивается масса, размеры и как правило, уменьшается надежность двигателя.

  • Просмотров: 26724
  • Асинхронный электродвигатель. Устройство и принцип действия. – www.motors33.ru

    Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
    В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.
    Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

    Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

    На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.
    На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.
    Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

    Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

    Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором
    Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

    Рис. 3. Короткозамкнутый ротор
    а — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,
    в — короткозамкнутый ротор, залитый алюминием;
    1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,
    4 — вентиляционные лопатки
    Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.
    Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

    Рис. 4. Разрез асинхронного двигателя с фазным ротором
    1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
    Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.
    Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

    Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.
    Изд. 10-е, перераб. «Высшая школа», 1970.

    Конструкция, принцип работы, типы и различия

    Электромагнитное вращение — первая роторная машина, разработанная «Аньосом Йедликом» с 1826 по 1827 год с помощью коммутатора и электромагнитов. В двигателе или генераторе ключевую роль играют обе части, такие как ротор и статор. Основное различие между этими двумя параметрами заключается в том, что статор является неактивной частью двигателя, а ротор — вращающейся частью. Точно так же асинхронные двигатели, такие как асинхронные, и синхронные двигатели, такие как генераторы переменного тока и генераторы, включают электромагнитную систему, которая включает в себя статор, а также ротор. В асинхронном двигателе доступны два типа конструкций: с короткозамкнутым ротором и с обмоткой. В генераторах переменного тока доступны два типа конструкций: выступающий полюс и цилиндрический. В этой статье обсуждается обзор ротора двигателя / генератора.

    Что такое ротор?

    Определение: Это подвижная часть в электромагнитной системе двигателя, генератора и генератора переменного тока. Его еще называют Маховиком, вращающимся магнитопроводом, генератором переменного тока.В генераторе переменного тока он включает в себя постоянные магниты, которые движутся примерно к железным пластинам статора, чтобы произвести переменный ток (переменный ток). Он использует существующее движение для своей функции. Его вращение может происходить из-за взаимодействия между магнитными полями и обмотками, которые создают крутящий момент в области оси.


    ротор

    Конструкция и принцип работы ротора

    В трехфазном асинхронном двигателе после подачи переменного тока на ротор обмотки статора усиливаются, создавая вращающийся магнитный поток. Поток создает магнитное поле в воздушном зазоре между статором и ротором, чтобы индуцировать напряжение для генерации тока через стержни. Цепь этого может быть замкнута, и ток будет течь по проводникам.

    сердечник ротора

    Действие магнитного потока и тока создает силу для создания крутящего момента для запуска двигателя. Ротор генератора переменного тока может быть сконструирован с проволочной катушкой, заключенной в область железного сердечника.

    Магнитный компонент может быть изготовлен из листовой стали, чтобы облегчить штамповку паза для проводника до точных размеров и форм.Когда ток проходит в катушке в магнитном поле, он создает ток поля в области сердечника.

    обмотка ротора

    Сила тока поля в основном определяет уровень мощности магнитного поля. Постоянный ток (постоянный ток) управляет током возбуждения в направлении катушки с проволокой через набор контактных колец и щеток.

    Подобно любому магниту, генерируемое магнитное поле будет состоять из двух полюсов, таких как юг и север. Направление двигателя по часовой стрелке можно контролировать с помощью магнитов и магнитных полей, закрепленных в этой конструкции, что позволяет двигателю вращаться против часовой стрелки.

    Типы ротора

    Они подразделяются на различные типы, такие как жесткий тип, тип с явным полюсом, тип с короткозамкнутым ротором, воздушный тип, раневой тип. Некоторые из них описаны ниже.

    Жесткий ротор

    Это механическая вращающаяся система. Ротор, как и произвольный, может представлять собой трехмерное жесткое устройство. Его можно регулировать в пространстве с помощью трех углов, называемых углами Эйлера. Линейный тип — это особый жесткий тип, для объяснения которого используются просто два угла. Например, в двухатомной молекуле есть много общих молекул, которые существуют в трехмерном пространстве, таких как вода, аммиак или метан.Здесь вода асимметричного типа, аммиак — симметричного типа, а метан — сферического типа.

    Ротор с короткозамкнутым ротором

    Это вращающаяся часть асинхронного двигателя с короткозамкнутым ротором. Это своего рода двигатель переменного тока. Он включает стальные листы цилиндрической формы. Проводники, такие как медь, в противном случае — алюминий, закреплены на его поверхности

    Ротор с обмоткой

    Это цилиндрический сердечник, спроектированный со стальным ламинированием, включает прорези для удержания проводов, которые расположены на одинаковом расстоянии 1200 по отдельности и соединены в Y-образной конфигурации.Выводы этих обмоток вынуты для соединения с тремя контактными кольцами вместе со щетками на валу.

    Щетки на контактных кольцах позволяют использовать внешние трехфазные резисторы, которые подключены последовательно с обмотками для управления скоростью.

    Внешнее сопротивление превращается в долю ротора, чтобы создать огромный крутящий момент при запуске двигателя. Когда скорость двигателя увеличивается, сопротивление может быть уменьшено до нуля.

    Ротор с явным полюсом

    Сюда входит количество выступающих полюсов, расположенных на магнитном колесе. В конструкции столбы могут быть вынесены наружу, что выполнено из стальных пластин. Обмотка в этом случае может быть обеспечена на полюсах, которые поддерживаются полюсными наконечниками. Эти типы роторов включают более короткую осевую длину и большой диаметр. Как правило, они используются в электрических машинах с диапазоном скоростей от 100 до 1500 об / мин.

    Разница между статором и ротором

    Основные различия между статором и ротором заключаются в следующем.

    Статор

    Ротор

    Это неактивная часть статора Это вращающаяся часть статора
    Включает в себя сердечник статора, внешний рама и обмотка Включает обмотку и сердечник
    Использует трехфазное питание Использует источник постоянного тока
    Обмотка сложна Расположение обмоток простое
    Изоляция тяжелая Изоляция меньше
    Потери на трение высокие Потери на трение низкие
    Охлаждение просто Охлаждение затруднено

    Применения

    применений ротора в основном включают

    • Автомобильные двигатели
    • Промышленные холодильники
    • Снегоуборочные машины
    • 90 118 В пищевой промышленности для подачи чистого воздуха
    • Медицина
    • Санитарные цели
    • В силосных тележках для устройств под давлением для перемещения сухих материалов, таких как пластмассы, грануляты, песок, цемент, известь, силикаты и мука.

    Часто задаваемые вопросы

    1). Что такое ротор?

    Это вращающаяся часть двигателя.

    2). Какие бывают типы ротора?

    Они жесткие, выступающие, с беличьей клеткой, воздушные и намотанные

    3). Какие основные части ротора?

    Это сердечник статора, внешняя рама и обмотка

    4). Питание, используемое в роторе?

    В этом случае используется трехфазное питание.

    Таким образом, все это касается обзора ротора, конструкции, принципа работы, различных типов и различий.Вот вам вопрос, каковы функции ротора?

    Что такое ротор — типы, работа, функции и применение

    Ротор был изобретен в начале 1800-х годов и был обнаружен военно-морскими офицерами Р. П. К. Шпенглером и Тео А. ван Хенгелем. Ранее он использовался в динамике ротора для шифрования файлов, особенно используемых в криптографии. Изобретение этого типа также поддерживает Густав де Лаваль, который занимается разработкой турбинного оборудования. Этот тип должен был называться типом Лаваля по его имени Густав де Лаваль.В этой статье мы обсудим, что такое ротор, виды работы, как он работает и принцип работы, функции и приложения.

    Что такое ротор?

    Это вращающаяся часть станка. Он прикреплен к валу, который на конце соединен со шпонкой в ​​качестве замка. Эта вращающаяся часть рассматривается как ротор, который вращается внутри магнитного поля, когда создается крутящий момент.

    Конструкция

    Беличья клетка и контактное кольцо IM отличаются только вращающейся конструкцией, тогда как конструкция статора для обеих машин одинакова.Машина сделана из пластин, а эти пластинки, сделанные из статора, более тонкие и сделаны из более толстых пластин. Проводники сделаны из меди, и они закорочены с обеих сторон концевыми кольцами так, чтобы образовался замкнутый путь. Эти стержни перекошены, чтобы уменьшить потери на вихревые токи. Эти медные шины также выкованы для увеличения механической прочности, чтобы через них могло проходить большее количество тока. Медные шины намотаны в соответствии с требованиями к сердечнику якоря и считаются обмоткой, показанной на рисунке ниже.

    обмотка

    Причина использования только меди состоит в том, что мы получаем меньше омических потерь, а также можно повысить эффективность. Но если использовать алюминиевые проводники, у них высокое сопротивление, то омические потери будут больше, а КПД меньше. Коммутатор, якорь, многослойный магнитный сердечник из мягкого чугуна, вал, обмотка и шарикоподшипник — все вместе считаются вращающейся частью. Потому что все эти внутренние части вместе вращаются внутри магнитного поля. Ядро этого типа показано на рисунке ниже.

    сердечник

    Работа / функция

    Обычно в генераторе он вращается, когда проводник вращается внутри магнитного потока, он индуцирует ЭДС, которая дополнительно создает крутящий момент. Этот крутящий момент, в свою очередь, вращает вращающуюся часть.

    Типы

    Есть разные типы вращающихся частей. Это беличья клетка и контактное кольцо. Тип с короткозамкнутым ротором и статор рассматриваются как асинхронный двигатель с короткозамкнутым ротором, тогда как тип контактного кольца и статор вместе рассматриваются как асинхронный двигатель с контактным кольцом.Электродвигатель с контактным кольцом показан на рисунке ниже.

    Электродвигатель с контактным кольцом

    С короткозамкнутым ротором / жестким ротором

    Конкретного количества полюсов для конструкции не существует, оно зависит от количества полюсов статора. Если у статора 4 полюса, то и у вращающейся части должно быть 4 полюса. Этот тип реакции вращающейся части будет автоматически изменяться при изменении статора. Количество вращающихся фаз равно количеству медных шин на полюс. Например, если трехфазный двигатель IM имеет 4 полюса и 32 паза статора и 28 вращающихся пазов, то количество медных стержней на полюс = 28/4 = 7.Работа этого типа двигателя невозможна, если количество статоров и вращающихся пазов не одинаково. Но работа возможна, даже если фазы статора и вращающейся части не равны.

    Преимущества беличьей клетки
    • За счет увеличения длины вращающихся стержней улучшаются пусковые характеристики ИД.
    • Гармоники устраняются, и распределение потока в воздушном зазоре становится равномерным.
    • Ползание и зубчатость устранены.
    Недостатки
    • Низкий пусковой момент за счет меньшего сопротивления.
    • Пусковой ток больше, поскольку сопротивление меньше.

    Эти недостатки можно преодолеть, изменив площадь поперечного сечения вращающихся токопроводящих шин. Это достигается перекосом вращающихся стержней проводов.

    Контактное кольцо / обмотка

    Для улучшения пускового момента мы последовательно подключаем внешнее сопротивление к машине, которое действует как дополнительное сопротивление, помогающее увеличить пусковой момент.Обычно в контактном кольце обмотка наматывается звездой для увеличения пускового момента. Поскольку соединение звездой имеет больший пусковой момент, чем соединение треугольником. При соединении треугольником эффективное сопротивление будет низким, что приведет к уменьшению пускового момента. Вращающийся сердечник контактного кольца показан на рисунке ниже.

    контактное кольцо

    Разница между статором и ротором

    Статор Ротор
    Это неподвижная часть Это вращающаяся часть
    Хомут, сердечник, и обмотка вместе рассматриваются как статор Якорь, коммутатор, сердечник ротора вместе рассматриваются как ротор
    Обмотка является сложной Расположение обмотки не является сложной
    Питание статора трехфазное Самовозбуждается по принципу индукции.
    Потери на трение больше.Он требует большей изоляции из-за того, что пропускает большой ток. Потери на трение меньше. Требуется меньше изоляции.

    В этом обсуждении мы изучили, что такое ротор и другие его части. Он описывается как вращающаяся часть машины, которая используется в любой вращающейся машине для функции генерации или передачи энергии. В дополнение к этому, мы также обсудили различные типы доступных вращающихся частей и их работу, преимущества, недостатки, разницу между статором и ротором, а также области применения.Вот вопрос к читателям, в чем функция типа Air?

    Определение и принцип работы трехфазного асинхронного двигателя

    Электродвигатель — это электромеханическое устройство, преобразующее электрическую энергию в механическую. В случае трехфазного переменного тока (переменного тока) наиболее широко используемым двигателем является трехфазный асинхронный двигатель , так как этот тип двигателя не требует дополнительного пускового устройства. Эти типы двигателей известны как асинхронные двигатели с самозапуском.

    Чтобы получить хорошее представление о принципе работы трехфазного асинхронного двигателя, важно понять конструкцию трехфазного асинхронного двигателя. Трехфазный асинхронный двигатель состоит из двух основных частей:

    Статор трехфазного асинхронного двигателя

    Статор Трехфазного асинхронного двигателя состоит из ряда пазов для создания трехфазной цепи обмотки, которую мы соединяем с трехфазной. Источник переменного тока. Трехфазную обмотку размещаем в пазах так, чтобы они создавали одно вращающееся магнитное поле, когда мы включаем источник трехфазного переменного тока.

    Ротор трехфазного асинхронного двигателя

    Ротор трехфазного асинхронного двигателя состоит из многослойного цилиндрического сердечника с параллельными прорезями, по которым могут проходить проводники. Проводники представляют собой тяжелые медные или алюминиевые шины, вставленные в каждый паз и закороченные концевыми кольцами. Прорези не совсем параллельны оси вала, но они немного скошены, потому что такое расположение снижает шум магнитного гудения и может избежать остановки двигателя.

    Работа трехфазного асинхронного двигателя

    Создание вращающегося магнитного поля

    Статор двигателя состоит из перекрывающейся обмотки, смещенной на электрический угол 120 o . Когда мы подключаем первичную обмотку или статор к трехфазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.

    Секреты вращения:
    Согласно закону Фарадея ЭДС, индуцированная в любой цепи, происходит из-за скорости изменения магнитной индукционной связи в цепи .Поскольку обмотка ротора в асинхронном двигателе либо замкнута через внешнее сопротивление, либо напрямую закорочена концевым кольцом и сокращает вращающееся магнитное поле статора, в медном стержне ротора индуцируется ЭДС, и из-за этой ЭДС через ротор течет ток дирижер.

    Здесь относительная скорость между вращающимся потоком и неподвижным проводником ротора является причиной генерации тока; следовательно, согласно закону Ленца, ротор будет вращаться в том же направлении, чтобы уменьшить причину, то есть относительную скорость.

    Таким образом, исходя из принципа работы трехфазного асинхронного двигателя , можно заметить, что скорость ротора не должна достигать синхронной скорости, создаваемой статором. Если скорости станут равными, такой относительной скорости не будет, поэтому в роторе не будет индуцированной ЭДС, не будет протекать ток и, следовательно, не будет создаваться крутящий момент. Следовательно, ротор не может достичь синхронной скорости. Разница между скоростями статора (синхронной скорости) и ротора называется скольжением.Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

    Таким образом, трехфазный асинхронный двигатель :

    • Самозапускающийся.
    • Меньшая реакция якоря и искрение щеток из-за отсутствия коммутаторов и щеток, которые могут вызвать искры.
    • Прочная конструкция.
    • Экономичный.
    • Легче в обслуживании.

    Видео — Принцип работы трехфазного асинхронного двигателя

    Асинхронный двигатель с короткозамкнутым ротором

    : принцип работы и применение

    Что такое асинхронный двигатель с короткозамкнутым ротором

    3-фазный асинхронный двигатель с короткозамкнутым ротором типа трехфазного асинхронного двигателя, который работает по принципу электромагнетизма.Его называют двигателем с «беличьей клеткой», потому что ротор внутри него — известный как «ротор с беличьей клеткой» — выглядит как беличья клетка.

    Этот ротор представляет собой цилиндр из стальных пластин, в поверхность которых встроен металл с высокой проводимостью (обычно алюминий или медь). Когда через обмотки статора пропускается переменный ток, создается вращающееся магнитное поле.

    Это индуцирует ток в обмотке ротора, который создает собственное магнитное поле. Взаимодействие магнитных полей, создаваемых обмотками статора и ротора, создает крутящий момент на роторе с короткозамкнутым ротором.

    Одним из больших преимуществ двигателя с короткозамкнутым ротором является то, насколько легко вы можете изменить его характеристики скорости-момента. Это можно сделать, просто отрегулировав форму стержней в роторе. Асинхронные двигатели с короткозамкнутым ротором широко используются в промышленности, поскольку они надежны, самозапускаются и легко настраиваются.

    Асинхронный двигатель с короткозамкнутым ротором Принцип работы

    Когда на обмотку статора подается трехфазное питание, он создает вращающееся магнитное поле в пространстве. Это вращающееся магнитное поле имеет скорость, известную как синхронная скорость.

    Это вращающееся магнитное поле индуцирует напряжение в стержнях ротора и, следовательно, в стержнях ротора начинают течь токи короткого замыкания. Эти токи ротора создают собственное магнитное поле, которое взаимодействует с полем статора. Теперь поле ротора будет пытаться противодействовать своей причине, и, следовательно, ротор начинает следовать за вращающимся магнитным полем.

    В момент, когда ротор улавливает вращающееся магнитное поле, ток ротора падает до нуля, поскольку больше нет относительного движения между вращающимся магнитным полем и ротором.Следовательно, в этот момент ротор испытывает нулевую тангенциальную силу, следовательно, ротор на данный момент замедляется.

    После замедления ротора относительное движение между ротором и вращающимся магнитным полем восстанавливается, следовательно, ток ротора снова индуцируется. Итак, снова тангенциальная сила для вращения ротора восстанавливается, и, следовательно, снова ротор начинает следовать вращающемуся магнитному полю, и, таким образом, ротор поддерживает постоянную скорость, которая немного меньше скорости вращающегося магнитного поля или синхронной скорости. .

    Скольжение — это мера разницы между скоростью вращающегося магнитного поля и скоростью ротора. Частота тока ротора = скольжение × частота питания

    Асинхронный двигатель с короткозамкнутым ротором

    Асинхронный двигатель с короткозамкнутым ротором состоит из следующих частей:

    Статор

    Он состоит из трехфазной обмотки с сердечником и металлическим корпусом. Обмотки расположены таким образом, что они электрически и механически разнесены на 120 o от пространства.Обмотка установлена ​​на многослойном железном сердечнике, чтобы обеспечить путь с низким сопротивлением для потока, генерируемого токами переменного тока.

    Ротор


    Это часть двигателя, которая будет вращаться, чтобы обеспечить механическую мощность для заданного количества электроэнергии. Номинальная мощность двигателя указана на паспортной табличке в лошадиных силах. Он состоит из вала, короткозамкнутых медно-алюминиевых стержней и сердечника.

    Сердечник ротора ламинирован, чтобы избежать потерь мощности из-за вихревых токов и гистерезиса.Проводники перекошены для предотвращения зазубрин во время запуска и обеспечивают лучший коэффициент трансформации между статором и ротором.

    Вентилятор

    Вентилятор прикреплен к задней стороне ротора для обеспечения теплообмена и, следовательно, поддерживает температуру двигателя на ограниченном уровне.

    Подшипники

    Подшипники служат в качестве основы для движения ротора, а подшипники обеспечивают плавное вращение двигателя.

    Применение асинхронного двигателя с короткозамкнутым ротором

    Асинхронные двигатели с короткозамкнутым ротором обычно используются во многих промышленных приложениях.Они особенно подходят для приложений, в которых двигатель должен поддерживать постоянную скорость, самозапускаться или требовать минимального обслуживания.

    Эти двигатели обычно используются в:

    • Центробежных насосах
    • Промышленных приводах (например, для ленточных конвейеров)
    • Большие воздуходувки и вентиляторы
    • Станки
    • Токарные станки и другое токарное оборудование

    Преимущества индукционной индукции с короткозамкнутым ротором Двигатель

    Некоторые преимущества асинхронных двигателей с короткозамкнутым ротором:

    • Низкая стоимость
    • Требуют меньше обслуживания (поскольку отсутствуют контактные кольца или щетки)
    • Хорошее регулирование скорости (они могут поддерживать постоянную скорость)
    • Высокая эффективность преобразования электрической энергии в механическую (во время работы, а не во время запуска)
    • Лучшее регулирование нагрева (т. е.е. не нагреваются)
    • Маленький и легкий
    • Взрывобезопасный (поскольку нет щеток, исключающих риск искрения)

    Недостатки асинхронного двигателя с короткозамкнутым ротором

    Хотя двигатели с короткозамкнутым ротором очень популярны и имеют много плюсы — у них есть и минусы. Некоторые недостатки асинхронных двигателей с короткозамкнутым ротором:

    • Очень плохое регулирование скорости
    • Хотя они энергоэффективны при работе с полным током нагрузки, они потребляют много энергии при запуске
    • Они более чувствительны к колебаниям напряжения питания .Когда напряжение питания снижается, асинхронный двигатель потребляет больше тока. Во время скачков напряжения увеличение напряжения насыщает магнитные компоненты асинхронного двигателя с короткозамкнутым ротором
    • У них высокий пусковой ток и плохой пусковой момент (пусковой ток может в 5-9 раз превышать ток полной нагрузки; пусковой момент может составлять 1,5- В 2 раза больше крутящего момента при полной нагрузке)

    Разница между асинхронным двигателем с короткозамкнутым ротором и контактным кольцом

    Хотя асинхронные двигатели с контактным кольцом (также известные как двигатель с фазным ротором) не так популярны, как асинхронные двигатели с короткозамкнутым ротором, у них есть несколько преимуществ.

    Ниже приведена сравнительная таблица двигателей с короткозамкнутым ротором и с цилиндрическим ротором:

    Двигатель с короткозамкнутым ротором Двигатель с контактным кольцом
    Стоимость Низкий Высокий
    Техническое обслуживание Низкое Высокая
    Регулировка скорости Плохая Хорошая
    Эффективность при запуске Низкая Хорошая
    Эффективность во время работы Хорошая Плохая
    Регулировка нагрева Хорошая Плохое
    Пусковой ток и крутящий момент Высокий Низкий

    Классификация асинхронного двигателя с короткозамкнутым ротором


    NEMA (Национальная ассоциация производителей электрооборудования) в США и IEC в Европе классифицировали конструкцию двигателя. асинхронные двигатели с короткозамкнутым ротором на базе их скоростные характеристики на несколько классов.Эти классы — Класс A, Класс B, Класс C, Класс D, Класс E и Класс F.

    Конструкция класса A

    1. Нормальный пусковой момент.
    2. Нормальный пусковой ток.
    3. Низкое скольжение.
    4. В этом классе крутящий момент отрыва всегда составляет от 200 до 300 процентов крутящего момента при полной нагрузке, и это происходит при небольшом скольжении (менее 20 процентов).
    5. Для этого класса пусковой крутящий момент равен номинальному крутящему моменту для более крупных двигателей и составляет около 200 или более процентов от номинального крутящего момента для меньших двигателей.

    Конструкция класса B

    1. Нормальный пусковой момент,
    2. Низкий пусковой ток,
    3. Низкое скольжение.
    4. Асинхронный двигатель
    5. этого класса развивает примерно такой же пусковой крутящий момент, что и асинхронный двигатель класса А.
    6. Момент отрыва всегда больше или равен 200% номинального момента нагрузки. Но он меньше, чем у конструкции класса А, потому что имеет повышенное реактивное сопротивление ротора.
    7. Опять же, скольжение ротора все еще относительно низкое (менее 5 процентов) при полной нагрузке.
    8. Применение конструкции класса B аналогично применению конструкции A. Но конструкция B предпочтительнее из-за более низких требований к пусковому току.

    Класс C

    1. Высокий пусковой момент.
    2. Низкие пусковые токи.
    3. Низкое скольжение при полной нагрузке (менее 5%).
    4. Пусковой момент до 250% от крутящего момента при полной нагрузке соответствует этому классу конструкции.
    5. Момент отрыва ниже, чем у асинхронных двигателей класса А.
    6. В этой конструкции двигатели построены из двухклеточных роторов. Они дороже моторов классов А и В.
    7. Конструкции класса C используются для нагрузок с высоким пусковым моментом (нагруженные насосы, компрессоры и конвейеры).

    Конструкция класса D

    1. В этой конструкции класса двигатели имеют очень высокий пусковой момент (275 процентов или более от номинального момента).
    2. Низкий пусковой ток.
    3. Высокое скольжение при полной нагрузке.
    4. Опять же, в этом классе конструкции высокое сопротивление ротора смещает пиковый крутящий момент на очень низкую скорость.
    5. Даже при нулевой скорости (100-процентное скольжение) самый высокий крутящий момент может возникнуть в этом классе конструкции.
    6. Проскальзывание при полной нагрузке (обычно составляет от 7 до 11 процентов, но может достигать 17 процентов и более) в этом классе конструкции довольно велико из-за всегда высокого сопротивления ротора.

    Конструкция класса E

    1. Очень низкий пусковой крутящий момент.
    2. Нормальный пусковой ток.
    3. Низкое скольжение.
    4. Компенсатор или резистивный пускатель используются для управления пусковым током.

    Конструкция класса F

    1. Низкий пусковой крутящий момент, в 1,25 раза превышающий крутящий момент при полной нагрузке при подаче полного напряжения.
    2. Низкий пусковой ток.
    3. Нормальное скольжение.

    Типы ротора трехфазного асинхронного двигателя

    Есть два типа роторов асинхронных двигателей:

    1. Ротор с короткозамкнутым ротором или просто ротор с короткозамкнутым ротором.
    2. Роторы с фазовой или фазовой обмоткой. Двигатели, в которых используется этот тип ротора, известны как роторы с контактным кольцом.

    Ротор с короткозамкнутым ротором:

    Двигатель с короткозамкнутым ротором работает по принципу Электромагнетизм . Он состоит из ротора, статора и других частей, таких как подшипники, многослойный цилиндрический сердечник, вал и т. Д.

    Подшипники в двигателе с сепаратором ротора предназначены для уменьшения трения между вращающейся и неподвижной частями машины. Ротор двигателя состоит из многослойного цилиндрического сердечника с параллельными пазами для несения проводников ротора.Проводники ротора не являются проводами, а состоят из тяжелых стержней из меди, алюминия или сплава. Вал используется в двигателе для передачи механической энергии от или к машине. Статор — это внешняя неподвижная часть двигателя.

    Рисунок: Ротор клетки

    Преимущества перекоса проводников сепаратора ротора:

    1. Помогает снизить шум во время работы и обеспечить равномерный крутящий момент.
    2. Во время блокировки зубья ротора и статора притягиваются друг к другу из-за магнитного поля, и эта тенденция к блокировке уменьшается в двигателе с кожухом.

    Ротор с обмоткой или ротор с контактным кольцом:

    Ротор с обмоткой состоит из якоря с прорезями. Изолированные проводники вставляются в пазы и соединяются, образуя трехфазную двухслойную распределенную обмотку, аналогичную обмотке статора. Обмотки ротора соединены звездой.

    Обмотки ротора распределены равномерно и обычно соединены звездой, причем выводы выводятся из машины через контактные кольца, размещенные на валу. Нарезание токосъемных колец выполняется с помощью угольных медных щеток. Конструкция с фазным ротором обычно используется для крупногабаритных машин, где требования к пусковому крутящему моменту являются жесткими. Внешнее сопротивление может быть добавлено в цепь ротора через контактное кольцо для уменьшения пускового тока и одновременно пускового момента.

    Рисунок: Асинхронный двигатель с контактным кольцом

    Разница между обоймой и обмоткой роторов:

    Преимущества сепаратора ротора:

    • Роторы с сепаратором имеют прочную конструкцию и дешевле, чем роторы с обмоткой.
    • Эти роторы не имеют щеток, что снижает риск искрообразования.
    • Требуется меньше обслуживания.
    • Имеют высокий КПД и более высокий коэффициент мощности.

    Роторные роторы имеют следующие преимущества:

    • Роторы с обмоткой имеют высокий пусковой момент и низкий пусковой ток по сравнению с роторами с сепаратором.
    • В случае роторов с обмоткой, мы можем подключить дополнительные роторы в цепь ротора для управления скоростью.
    Асинхронный двигатель

    | Почему вращается ротор

    Асинхронный двигатель , также известный как асинхронный двигатель . — это обычно используемый электродвигатель переменного тока. Для асинхронного двигателя электрический ток или переменный ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может использоваться как ротор с короткозамкнутым ротором.

    Почему вращается ротор

    При трехфазном питании статора. Этот ток течет к обмотке статора (проводнику). Затем он создает магнитный поток и вращается вокруг проводника по часовой стрелке. Магнитный поток, наводимый на стержень ротора по закону электромагнитной индукции. За счет этого потока ротор получает магнитодвижущие силы, а ротор создает вращающий момент.

    Наконец, ротор вращается в том же направлении, что и магнитный поток.

    почему асинхронный двигатель называется асинхронным двигателем?

    Асинхронный двигатель состоит из двух частей: статора , и ротора . Между ними нет магнитной и электрической связи. Электрический поток, наведенный на ротор согласно закону Фарадея электромагнитной индукции. Для этого асинхронный двигатель называется асинхронным двигателем.

    Ссылка по теме:

    Автоматический выключатель | Работа и типы автоматического выключателя

    Что такое предохранитель? Виды предохранителей и их применение.

    Как работать Хорн антенны | Практическое применение | Преимущества и недостатки

    различных типов антенн с характеристиками | Их работа

    Что такое выпрямитель? Объясните различные типы выпрямителей

    Полупроводниковый диод / Типы диодов / и их применение

    Преобразование преобразования Wye-дельта

    Нравится:

    Нравится Загрузка…

    Сводка

    Название изделия

    Асинхронный двигатель | Почему вращается ротор | Принцип работы

    Описание

    Почему вращается ротор -При трехфазном питании статора. Этот ток течет к обмотке статора. Затем он производит магнитный поток …

    Автор

    Мизан

    Имя издателя

    Мизан владелец ICEEET

    Логотип издателя


    Каков принцип работы асинхронного двигателя | by Starlight Generator

    Асинхронный двигатель

    Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.

    Статор — это не вращающаяся часть двигателя. Основная задача — создать вращающееся магнитное поле. Вращающееся магнитное поле не достигается механически. Вместо этого он подключен к паре электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.

    Принцип работы

    Вращающееся магнитное поле, создаваемое статором (скорость вращения — это синхронная скорость вращения n1) и относительное движение обмотки ротора, линия магнитной индукции, режущая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора. Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный момент также соответственно уменьшается. Когда асинхронный двигатель работает в режиме двигателя, скорость ротора меньше синхронной скорости.

    Разница между синхронным двигателем и асинхронным двигателем

    Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. В отличие от этого, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.

    Маленькие синхронные двигатели используются в системах хронометража, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости — это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.

    Синхронные двигатели доступны от самовозбуждающихся субфракционных мощностей до промышленных размеров.

    Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]

    В диапазоне дробной мощности большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.