10Сен

Состав растворителей – Состав, характеристика и назначение растворителей

Многокомпонентные растворители — Википедия

НазваниеКомпоненты
Растворитель 645толуол 50%, бутилацетат 18%, этилацетат 12%, бутанол 10%, этанол 10%
Растворитель 646толуол 50%, этанол 15%, бутанол 10%, бутил- или амилацетат 10%, этилцеллозольв 8%, ацетон 7%
Растворитель 647бутил- или амилацетат 29,8%, этилацетат 21,2%, бутанол 7,7%, толуол или пиробензол 41,3%
Растворитель 648бутилацетат 50%, этанол 10%, бутанол 20%, толуол 20%
Растворитель 649этилцеллозольв 30%, бутанол 20%, ксилол 50%
Растворитель 650этилцеллозольв 20%, бутанол 30%, ксилол 50%
Растворитель 651уайт-спирит 90%, бутанол 10%
Растворитель КР-36бутилацетат 20%, бутанол 80%
Растворитель Р-4толуол 62%, ацетон 26%, бутилацетат 12%.
Растворитель Р-10ксилол 85%, ацетон 15%.
Растворитель Р-12толуол 60%, бутилацетат 30%, ксилол 10%.
Растворитель Р-14циклогексанон 50%, толуол 50%.
Растворитель Р-24сольвент 50%, ксилол 35%, ацетон 15%.
Растворитель Р-40толуол 50%, этилцеллозольв 30%, ацетон 20%.
Растворитель Р-219толуол 34%, циклогексанон 33%, ацетон 33%.
Растворитель Р-3160бутанол 60%, этанол 40%.
Растворитель РКЧксилол 90%, бутилацетат 10%.
Растворитель РМЛэтанол 64%, этилцеллозольв 16%, толуол 10%, бутанол 10%.
Растворитель РМЛ-315толуол 25%, ксилол 25%, бутилацетат 18%, этилцеллозольв 17%, бутанол 15%.
Растворитель РС-1толуол 60%, бутилацетат 30%, ксилол 10%.
Растворитель РС-2уайт-спирит 70%, ксилол 30%.
Растворитель РФГэтанол 75%, бутанол 25%.
Растворитель РЭ-1ксилол 50%, ацетон 20%, бутанол 15%, этанол 15%.
Растворитель РЭ-2сольвент 70%, этанол 20%, ацетон 10%.
Растворитель РЭ-3сольвент 50%, этанол 20%, ацетон 20%, этилцеллозольв 10%.
Растворитель РЭ-4сольвент 50%, ацетон 30%, этанол 20%.
Растворитель ФК-1 (?)абсолютированный спирт (99,8%) 95%, этилацетат 5%

ru.wikipedia.org

Применение растворителей, их виды, характеристики, отличие растворителей и разбавителей

Растворитель 645 ГОСТ 18188-72

Толуол

Бутилацетат или амилацетат

Бутиловый спирт

Этиловый спирт

Этилацетат

Ацетон

50

18

10

10

9

3

10-12 Нитроцеллюлозные Лаки: НЦ-134, НЦ-551, НЦ-286 черныйЭмали: НЦ-5121, НЦ-25, НЦ-26, НЦ-27, НЦ-5133 Г, НЦ-5133 М, НЦ-5134, НЦ-272Шпаклевки: НЦ-007, НЦ-008, НЦ-009
Растворитель 646 ГОСТ 18188-72

Бутилацетат

Этилцеллозоль

Ацетон

Бутанол

Этиловый спирт

Толуол

10

8

7

15

10

50

8-16 Нитратцеллюлозные, нитратцеллюлозно-глифталевые, эпоксидные, нитратцеллюлозно-эпоксидные, мочевиноформальдегидные, кремнийорганические Лаки: НЦ-269, НЦ-279, НЦ-292, НЦ-5108, ЭП-524Эмали: НЦ-170, НЦ-184, НЦ-216, НЦ-217, НЦ-25, НЦ-246, НЦ-258, НЦ-262, НЦ-271, НЦ-273, НЦ-1104, НЦ-282, НЦ-291, НЦ-299, НЦ-929, НЦ-5100, НЦ-5123.Нитроэмали для грузовых автомобилей, нитроэмали № 924, ЭП-773, КО-83, НЦ-1124, НЦ-1120Грунтовки: НЦ-081, МС-067, МЧ-042Шпаклевки: НЦ-007, НЦ-008, НЦ-009, ЭП-0010, ЭП-0020
Растворитель 647 ГОСТ 18188-72

Бутилацетат

Этилацетат

Бутиловый спирт

Толуол

29,8

21,2

7,7

41,3

8-12 Нитратцеллюлозные Эмали: НЦ-280, НЦ-11, НЦ-132 П, АК-194Грунтовка НЦ-097
Растворитель 648 ГОСТ 18188-72

Бутилацетат

Этиловый спирт

Бутиловый спирт

Толуол

50

10

20

20

11-18 Нитратцеллюлозные, нитратцеллюлозно-эпоксидные, бутилметакрилатные, полиакрилатные Лаки: ЭП-524, КО-940, АС-16Эмали: ХВ-130, АС-85, АС-95, АС-131, ГФ-570Р К, ЭП-51Грунтовки: АК-069, АК-070, ВЛ-02, ВЛ-023
Растворитель 649 ТУ 6-10-1358-78

Этилцеллозоль

Изобутиловый спирт

Ксилол

30

20

50

15-30 Нитратцеллюлозно-глифталевые Эмали: НЦ-132 К, ГФ-570Р К
Растворитель 650 ТУ 6-10-1247-96

Этилцеллозоль

Бутиловый спирт

Ксилол

20

30

50

20-30 Нитратцеллюлозные Эмали: ГФ-570Р К, НЦ-11
Растворитель Р-4 ГОСТ 7827-74

Бутилацетат

Ацетон

Толуол

12,0

26,0

62,0

5-15 Перхлорвиниловые, полиакриловые, сополимеры винилхлорида с винилиденхлоридом или винилацетатом Лаки: ХС-76, ХС-724Эмали: ХВ-16, ХВ-112, ХВ-124, ХВ-125, ХВ-142, ХВ-179, ХВ-518, ХВ-519, ХВ-553, ХВ-714, ХВ-750, ХВ-782, ХВ-1100, ХВ-785, ХВ-1120, ПХВ-29, ПХВ-101, ХВ-1149, ХВ-5169, ХС-119, ХС-527, ХС-710, ХС-717, ХС-720, ХС-724, ХС-747, ХС-748, ХС-759, ХС-781, ХС-5163Грунтовки: ХВ-062, ХВ-079, ХС-010, ХС-059, ХС-068, ХС-077, МС-067Шпаклевки: ХВ-004, ХВ-005, ЭП-0020
Растворитель Р-5 ГОСТ 7827-74

Бутилацетат

Ацетон

Толуол

30

30

40

9-15 Перхлорвиниловые, эпоксидные, кремнийорганические, полиакрилатные, каучуки Лаки: ХВ-139, АС-16, АС-82, АС-516, АС-552, АК-113Эмали: ЭЦ различных цветов, ХВ-124, ХВ-125, ХВ-160, ХВ-16, ХВ-782, ХВ-536, ХС-1107, АС-131, АС-560, АС-599, АК-192, ЭП-56, ЭП-140, ЭП-255, ЭП-275, ЭП-525, ЭП-567, КЧ-767, КО-96, КО-811, КО-814, КО-818, КО-822, КО-841Грунтовки: АК-069, АК-070, ЭП-0104Шпаклевки: ЭП-0020, ЭП-0026, ЭП-0028
Растворитель Р-6 ТУ 6-10-1328-77

Бутилацетат

Этиловый спирт

Бутиловый спирт

Бензол

15

30

15

40

9-11 Меламино-формальдегидные, резиловые, поливинилбутиральные Лаки: ВЛ-725, ВЛ-725 Г Эмали: ЭП-569, ХВ-535
Растворитель Р-7 ТУ 6-10-1321-77

Циклогексанон

Этиловый спирт

50

50

25-32 Поливинил-бутиральные, крезоло-формальдегидные Лак ВЛ-51
Растворитель Р-11 ТУ 6-11-1821-81

Бутилацетат

Толуол

Циклогексанон

Ацетон

0,7-1,2 (по ксилолу)
Растворитель Р-12 ГОСТ 7827-74

Бутилацетат

Толуол

Ксилол

30

60

10

8-14 Перхлорвиниловые, полиакрилатные Эмали: ХВ-533, ХВ-785, ХВ-1120, АК-194
Растворитель Р-14 ТУ 6-10-1509-75

Циклогексанон

Толуол

50

50

1,1-1,5 Эпоксидные (отверждаемые изоценатными отвердителями) Эмаль ЭП-711
Растворитель Р-24 ГОСТ 7827-74

Сольвент

Ксилол

Ацетон

50

35

15

10-20 Перхлорвиниловые Эмали: ХВ-110, ХВ-113, ХВ-238Грунтовка ХВ-050
Растворитель Р-40 ВТУ УХП 86-56

Этилцеллозоль

Толуол или

Ацетон

Этилцеллозоль

Толуол

50

50

20

30

50

Эпоксидные Эмаль ЭП-140 Грунтовка ЭП-076 Шпаклевки: ЭП-0010, ЭП-0020 Лак ЭП-741
Растворитель Р-60 ТУ 6-10-1256-77

Этиловый спирт

Этилцеллозольв

70

30

13-25 Крезоло-формальдегидные и поливинил-бутиральные Эмали: ФЛ-557, ВЛ-515
Растворитель Р-83 ТУ 6-10-1595-76

Лактон С12

Этилцеллозольв

Растворитель АР*

10

40

50

Эпоксиэфирные Грунтовка ЭФ-083
Растворитель Р-119 ТУ 6-10-1197-76

Толуол

Ацетон

Нитропропан

35

30

35

Ратсворитель Р-119 Э ТУ 6-10-1197-76

Ксилол

Циклогексанон

Этилцеллозольв

Бутиловый спирт

40

25

25

10

Растворитель Р-189 ТУ 6-10-1508-75

Этиленгликольацетат

Метилэтилектон

Ксилол

Бутилацетат

37

37

13

13

1,2-1,6 (по ксилолу) Полиуритановые, уралкидные Лаки: УР-293, УР-294
Растворитель Р-197 ТУ 6-10-1100-78

Растворитель АР*

скипидар экстирационный

Ксилол

70

3

27

не менее 80 Меламиноалкидные Эмали: МЛ-12, МЛ-197, МЛ-1214
Растворитель Р-198 ТУ 6-10-1197-76

Этилцеллозоль

Циклогексанон

50

50

35-45 Эмали: МЛ-1121
Растворитель Р-219 ТУ 6-10-960-76

Ацетон

Циклогексанон

Толуол

33

33

34

13-18 Полиэфирные Лаки: ПЭ-250М, ПЭ-247 Шпатлевка ПЭ-0025
Растворитель Р-265 ТУ 6-10-1789-80

Толуол

Бутилацетат

Этиловый спирт

Циклогексанон

Бутиловый спирт

Алкидноакриловые Эмаль: АС-265
Растворитель Р-548 ТУ 6-10-1033-75

Этилцеллозоль

Пропиленкарбонат

70

30

Полиакрилатные, Эпоксидные Эмаль: АС-576 Лак: АС-548
Растворитель Р-563 ТУ 6-10-1434-79

Этилацетат

Бутилацетат

Ацетон

5-15 Лак: ХС-563
Растворитель Р-1101 ТУ 6-10-1476-77

Этиленгликольацетат

Толуол

Сольвент

20

25

55

1,0-6,0 (по ксилолу) Полиакрилатные Эмаль: АС-1101
Растворитель Р-1101 М ТУ 6-10-1476-77

Лактон С12

Толуол

Сольвент

20

25

55

Эмаль: АС-1101 М
Растворитель Р-1166 ТУ 6-10-1566-75

Этилацетат

Ксилол

Этилцеллозоль

Циклогексанон

20

50

15

15

1,0-2,5 (по ксилолу) Полиакрилатные и нитроцелюлозные Эмали: АС-1166, АС-1166М
Растворитель Р-1176 ТУ 6-10-1811-81

Циклогексанон

Метилэтилкетон

50

50

1,0-1,6 (по ксилолу) Полиуретановые Полиуретановые эмали
Растворитель Р-2106 ТУ 6-10-1527-75

Сольвент

Циклогексанон

70

30

1,2-5,5 (по ксилолу) Полиакрилатные амидсодержащие, эпоксидные Эмаль АС-2106
Растворитель Р-2106 М ТУ 6-10-1527-75

Лактон С12

Сольвент

Циклогексанон

20

50

30

То же Эмаль АС-2106 М
Растворитель Р-2115 ТУ 6-10-1613-77 Нитроакриловые Эмали: АК-2115, АК-2130
Растворитель Р-3160 ТУ 6-10-1215-72

Этиловый спирт

Бутиловый спирт

40

60

Поливинилацетальные Эмаль ВЛ-55
Растворитель РЛ-176 ТУ 6-10-1474-76

Циклогексанон

Сольвент

50

50

1,5-4,5 (по ксилолу) Полиакрилатные, полиуретановые Лак АС-176
Растворитель РЛ-176 М ТУ 6-10-1613-77

Циклогексанон

Сольвент

Лактон С12

50

40

10

1,5-4,5 (по ксилолу) То же Лак АС-176
Растворитель РЛ-176 ПЭТУ 6-10-1647-77 Марка А Марка Б

Циклогексанон

Ацетон

Циклогексанон

МИБК

95

5

60

40

1,5-4,5 (по ксилолу) 1-5 (по ксилолу) Полиэфирные Лаки: ПЭ-251А, ПЭ-251Б
Растворитель РЛ-176 УРТУ 6-10-1512-75 Марка А Марка Б Марка В

Этиленгликольацетат

Циклогексанон

Этиленгликольацетат

Метилэтилектон

Этиленгликольацетат

Метилэтилектон

50

50

50

50

10

90

2,2-2,9 (по ксилолу) 1,5-2,3 (по ксилолу) 0,3-,05 (по ксилолу) Полиуретановые Лаки: УР-277, УР-277 М, УР-277 П, УР-268 П
Растворитель РЛ-278 ТУ 6-10-1503-75

Этилцеллозольв

Бутиловый спирт

Этиловый спирт

Ксилол

Толуол

10

20

15

30

25

0,82-1,1 (по ксилолу) Поливинилацетальные Лак ВЛ-278
Растворитель РЛ-298 ТУ 6-10-1528-75

Ксилол

Этилцеллозольв

70

30

1,3-1,8 (по ксилолу) Эпоксидные Лак ЭП-298
Растворитель РЛ-541 ТУ 6-10-1646-77

Толуол

Бутиловый спирт

Этиловый спирт

Бутилацетат

Этилцеллозольв

Ацетон

70

9

6

6

4,8

4,2

Эпоксифенольные Лак ЭП-541
Растворитель РВЛ ТУ 6-10-1269-77

Этилцеллозольв

Хлорбензол

50

50

1,3-2,0 (по ксилолу) Поливинилформальэтилаль Винифлексовые лаки
Растворитель РФГ ГОСТ 12708-77

Этиловый или изопропиловый сприт

Бутиловый или изобутиловый спирт

25

75

<1,3 (по ксилолу) Поливинилбутиральные Грунтовки: ВЛ-02, ВЛ-08, ВЛ-023, ВЛ-05
Растворитель РС-2 ТУ 6-10-952-75

Ксилол

Уайт-спирит

30

70

30 Маслянные, битумные, пентафталевые (тощие и средние) Эмали: ПФ-837, ПФ-1105
Растворитель № 30 ТУ 6-10-919-75 Этилцеллозольв 95 Смесь акрилатного сополимера и эпоксидной смолы, эпоксиднофенольные с добавкой поливинилбутираля Лаки: ФЛ-559, ФЛ-561 Эмали: АС-576, ЭП-547
Растворитель РМЛ-315 ТУ 6-10-1013-75

Бутиловый спирт

Этилцеллозоль

Бутилацетат

Толуол

Ксилол

15

17

18

25

25

13-22 Нитроцелюлозные Лак НЦ-223
Разбавитель РКБ-1 ТУ 6-10-1326-77

Ксилол

Бутиловый спирт

50

50

Меламино- и мочевино-фармальдегидные Лак МЛ-248 Эмали: МЛ-169, МЛ-242, МЛ-729, МЛ-629, МЧ-13, МЧ-277, ФЛ-511 Грунтовки: ГФ-089, МЛ-058, МЛ-064, МЧ-042
Разбавитель РКБ-2 ТУ 6-10-1037-75

Ксилол

Бутиловый спирт

5

95

Мочевино-фармальдегидные Лак МЧ-52
Растворитель РП ТУ 6-10-1095-76

Ксилол

Ацетон

75

25

Эпоксидные Грунтовка ЭП-057
Разбавитель РЭ-1В ГОСТ 18187-72

Сольвент

Бутиловый спирт

Диацетоновый спирт

70

20

10

12-18 Меламиноалкидные, меломино-формальдегидные Грунтовка МЧ-042 Эмали: МЛ-152, МЛ-12, МЛ-242 Лак МЧ-52
Разбавитель РЭ-2В ГОСТ 18187-72

Сольвент

Бутилацетат

Этилцеллозольв

60

20

20

12-18 То же Грунтовка МЧ-042Эмали: МЛ-152, МЛ-12, МЛ-242, МЛ-1214
Разбавитель РЭ-3В ГОСТ 18187-72

Сольвент

Бутиловый спирт

Этилцеллозольв

50

30

20

18-24 Пентафталевые, глифталевые, меламиноалкидные Эмали: ГФ-571, МЛ-152, ПФ-223
Разбавитель РЭ-4В ГОСТ 18187-72

Сольвент

Этилцеллозольв

30

70

18-24 Пентафталевые, глифталевые, мочевино-формальдегидные Лак МЧ-52 Эмали: МЛ-152, ГФ-1426, ПФ-115, ПФ-133, ПФ-223
Разбавитель РЭ-5В ГОСТ 18187-72

Ксилол

Диацетоновый спирт

Этилцеллозоль

Бутиловый спирт

40

25

25

10

16-22 Перхлорвиниловые Эмали: ХВ-113, ХВ-238, ХС-119, ХВ-124
Разбавитель РЭ-6В ГОСТ 18187-72

Сольвент

Диацетоновый спирт

Ксилол

50

15

35

16-22 Эмаль ХВ-124
Разбавитель РЭ-7В ГОСТ 18187-72

Ксилол

Бутилацетат

Диацетоновый спирт

Циклогексанон

60

25

10

5

12-18 Нитрацеллюлозные Лаки: НЦ-241, НЦ-258
Разбавитель РЭ-8В ГОСТ 18187-72

Ксилол

Бутиловый спирт

25

75

18-26 Алкидностирольные Эмаль МС-17
Разбавитель РЭ-9В ГОСТ 18187-72

Сольвент

Бутиловый спирт

Этилцеллозольв

50

30

20

14-20 Полиэфиракрилатные Эмаль ПЭ-126
Разбавитель РЭ-10В ГОСТ 18187-72

Сольвент

Бутилацетат

Этилцеллозольв

40

40

20

20-26 Маслянные краски, густотертые белила на природных неорганических пигментах
Разбавитель РЭ-11В ТУ 6-10-875-72

Этилацетат

Этилцеллозоль

Циклогексанон

Ксилол

20

30

10

40

18-24 Эпоксидные Грунтовка ЭФ-083 Эмаль ФЛ-777
Растворитель РЭС-5107 ТУ 6-10-1816-81

Бутилацетат

Толуол

Ксилол

17

66

17

5,0-9,0 Сополимер винилхлорида с винилацетатом Эмаль ХС-5107

lkmprom.ru

«Какой состав у растворителя 646?» – Яндекс.Знатоки

Состав совершенно разный у каждого производителя.

Даже в СССР состав варьировался.

При этом многие марки соотвествуют ГОСТу, т.к. ГОСТ по растворителям определяет только их физические свойства, а не состав.

Сейчас в магазинах абсолютное большинство марок 646 — некондиционные. Производители меняют состав в пользу дешевых компонент — ацетон, отходы производства НПЗ. Про самый дешевый метнол и не говрим, т.к. это уже за гранью закона. Производители в большинстве «полу-подвальные» с чернорабочими, в лучшем случае цеха при хим.базах, т.к. там можно без труда получить отходы производва НПЗ, так называемую «грязь» или «кубовые остатки».

Как результат, купить настоящий 646 в наше время практически невозможно.

Лишь какие-то гарантии можно получить, если смотреть на этикетку, чтобы производителем был настоящий завод — из времен СССР. Т.к. у завода совершенно другие интересы, чем у подвальных производств, к тому же РосТехНадзор постоянно проверяет эти реальные производства и его инспектора несут отвественность за соблюдение технологии на заводе, и у самого завода конечно тоже есть отвественность, в отличие от подвалов с чернорабочими.

А по составу. Наверное, самая главная компонента 646, как и у большинства растворителей — это бутилацетат. Проблема, как раз, в том, что бутилацетат — самая дорогая из компонент. Поэтому в самых дешевых марках 646-го нет бутилацетата. И с т.з. состава, это уже не 646, хотя он по ГОСТу вполне может всему соотвествовать.

Второй важный момент по составу 646 — чтобы ацетона не было чрезмерно много. Не более 10%, а лучше 9% или 8%. Ацетон часто на рынке стоит дешево и его льют вместо более дорогих компонент. Совсем ацетон тоже нельзя убрать, несмотря на его отрицательные характеристики — сильную агрессивность. Т.к. растворитель — это бленд, как коньяк или бензин. Если убрать или сократить сильно какую-то компоненту, полезные свойства могут кардинально поменяться.

А 646-й считался в СССР — одним из самых лучших блендов для краски.

Интересно, что сейчас ценятся западные растворители-разбавители, видимо в виду засилия некондиции среди российского продукта. Но настоящий 646 гораздо лучше работает с красками, чем западные продукты. Причина в том, что в силу нефтяного уклона химических промышленностей западных стран, в отличие от нашего газового уклона, и вторичности по важности в них такого продукта как моно-растворители (из которых делают товарные растворители, например на западе всевозможные финеры и сольвенты) их растворители (или как их принято у нас называть — разбавители, хотя это точно такие же растворители) — нефтяные и гораздо слабее наших из продуктов газовой цепочки хим.передела. И в частности, дорогие линейки западных красок, например автоэмали, в свои растворители-финеры-разбавители вынуждены лить наш бутилацетат, чтобы довести их растворяющие функции до хотя бы более-менее состоятельного уровня для работы с их качественной, дорогой краской.

yandex.ru

Состав, характеристика и назначение смесевых растворителей

Растворитель

ГОСТ или ТУ

Состав

растворителя

Относи- тельная летучесть (по диэти- ловому эфиру) Назначение
Компоненты % Растворяемые пленко- образователи Основные марки лакокрасочных материалов
Растворитель 645
ГОСТ 18188-72
Толуол
Бутилацетат или амилацетат
Бутиловый спирт
Этиловый спирт
Этилацетат
Ацетон
50
18

10
10
9
3

10-12 Нитро- целлюлозные Лаки: НЦ-134, НЦ-551, НЦ-286 черный
Эмали: НЦ-5121, НЦ-25, НЦ-26, НЦ-27, НЦ5133г, НЦ-5133м, НЦ-5134, НЦ-272
Шпаклевки: НЦ-007, НЦ-008, НЦ-009
Растворитель 646
ГОСТ 18188-72
Бутилацетат
Этилцеллозольв Ацетон
Бутиловый спирт
Этиловый спирт
Толуол
10
8
7
15
10
50
8-16 Нитрат- целлюлозные, нитрат- целлюлозно- глифталевые, эпоксидные, нитрат- целлюлозно- эпоксидные, мочевино- формальде- гидные, кремний- органические Лаки: НЦ-269, НЦ-279, НЦ-292, НЦ-5108, ЭП-524
Эмали: НЦ-170, НЦ-184, НЦ-216, НЦ-217, НЦ-25, НЦ-246, НЦ-258, НЦ-262, НЦ-271, НЦ-273, НЦ-1104, НЦ-282, НЦ-291, НЦ-299, НЦ-929, НЦ-5100, НЦ-5123.
нитроэмали для грузовых автомобилей, нитроэмали № 924, ЭП-773, КО-83, НЦ-1124, НЦ-1120
Грунтовки: НЦ-081, МС-067, МЧ-042
Шпаклевки: НЦ-007, НЦ-008, НЦ-009, ЭП-0010, ЭП-0020
Растворитель 647
ГОСТ 18188-72
Бутилацетат
Этилацетат
Бутиловый спирт Толуол
29,8
21,2
7,7
41,3
8-12 Нитрат- целлюлозные Эмали: НЦ-280, НЦ-11, НЦ-132П, АК-194
Грунтовки: НЦ-097
Растворитель 648
ГОСТ 18188-72
Бутилацетат Этиловый спирт Бутиловый спирт Толуол 50 10 20 20 11-18 Нитрат- целлюлозные, нитрат- целлюлозно- эпоксидные, бутилмета- крилатные, поли- акрилатные Лаки: ЭП-524, КО-940, АС-16
Эмали: ХВ-130, АС-85, АС-95, АС-131, ГФ-570Рк, ЭП-51
Грунтовки: АК-069, АК-070, ВЛ-02, ВЛ-023
Растворитель 649
ТУ 6-10-1358-78
Этилцеллозольв Изобутиловый спирт
Ксилол
30
20

50

15-30 Нитрат- целлюлозно- глифталевые Эмали: НЦ-132к, ГФ-570Рк,
Растворитель 650 Этилцеллозольв Бутиловый спирт Ксилол 20 30 50 20-30 Нитрат- целлюлозные Эмали: ГФ-570Рк, НЦ-11
Растворитель Р-4
ГОСТ 7827-74
Бутилацетат
Ацетон
Толуол
12,0 26,0 62,0 5-15 Перхлор- виниловые, полиакри- ловые, сополимеры винилхлорида с винили- денхлоридом или винил- ацетатом Лаки: ХС-76, ХС-724
Эмали: ХВ-16, ХВ-112, ХВ-124, ХВ-125, ХВ-142, ХВ-179, ХВ-518, ХВ-519, ХВ-553, ХВ-714, ХВ-750, ХВ-782, ХВ-1100, ХВ-785, ХВ-1120, ПХВ-29, ПХВ-101, ХВ-1149, ХВ-5169, ХС-119, ХС-527, ХС-710, ХС-717, ХС-720, ХС-724, ХС-747, ХС-748, ХС-759, ХС-781, ХС-5163
Грунтовки: ХВ-062, ХВ-079, ХС-010, ХС-059, ХС-068, ХС-077, МС-067
Шпаклевки: ХВ-004, ХВ-005, ЭП-0020
Растворитель Р-5
ГОСТ 7827-74
Бутилацетат
Ацетон
Толуол
30 30 40 9-15 Перхлор- виниловые, эпоксидныу, кремний- органические, полиакрилат- ные, каучуки Лаки: ХВ-139, АС-16, АС-82, АС-516, АС-552, АК-113
Эмали: ЭЦ различных цветов, ХВ-124, ХВ-125, ХВ-160, ХВ-16, ХВ-782, ХВ-536, ХС-1107, АС-131, АС-560, АС-599, АК-192, ЭП-56, ЭП-140, ЭП-255, ЭП-275, ЭП-525, ЭП-567, КЧ-767, КО-96, КО-811, КО-814, КО-818, КО-822, КО-841
Грунтовки: АК-069, АК-070, ЭП-0104
Шпаклевки: ЭП-0020, ЭП-0026, ЭП-0028
Растворитель Р-6 
ТУ 6-10-1328-77
Бутилацетат Этиловый спирт Бутиловый спирт Бензол 15 30 15 40 9-11 Меламино- формальдегид- ные, резило- вые, поливинил- бутиральные Лаки: ВЛ-725, ВЛ-725г
Эмали: ЭП-569, ХВ-535
Растворитель Р-7
ТУ 6-10-1321-77
Циклогексанон Этиловый спирт 50 50 25-32 Поливинил- бутиральные, крезолофор- мальдегидные Лак: ВЛ-51
Растворитель Р-11
ТУ 6-11-1821-81
Бутилацетат
Толуол
Циклогексанон
Ацетон



0,7-1,2 (по ксилолу)    
Растворитель Р-12
ГОСТ 7827-74
Бутилацетат
Толуол
Ксилол
30 60 10 8-14 Перхлор- виниловые, полиакрилат- ные Эмали: ХВ-533, ХВ-785, ХВ-1120, АК-194
Растворитель Р-14 
ТУ 6-10-1509-75
Циклогексанон
Толуол
50 50 1,1-1,5 Эпоксидные (отверждае- мые изоценат- ными отвердителя- ми) Эмаль: ЭП-711
Растворитель Р-24
ГОСТ 7827-74
Сольвент
Ксилол
Ацетон
50 35 15 10-20 Перхлор- виниловые Эмали: ХВ-110, ХВ-113, ХВ-238
Грунтовка: ХВ-050
Растворитель Р-40 Этилцеллозольв
Толуол или
Ацетон
Этилцеллозольв
Толуол
50 50 20 30 50 Эпоксидные Эмаль: ЭП-140
Грунтовка: ЭП-076
Шпаклевки: ЭП-0010, ЭП-0020
Лак: ЭП-741
Растворитель Р-60 
ТУ 6-10-1256-77
Этиловый спирт
Этилцеллозольв
70 30 13-25 Крезоло- формальдегид- ные и поли- винилбути- ральные Эмали: ФЛ-557, ВЛ-515
Растворитель Р-83
ТУ 6-10-1595-76
Лактон С12
Этилцеллозольв
Растворитель АР*
10 40 50 Эпокси- эфирные Грунтовка ЭФ-083
Растворитель Р-119 Толуол
Ацетон
Нитропропан
35 30 35    
Ратсворитель Р-119Э Ксилол
Циклогексанон
Этилцеллозольв
Бутиловый спирт
40 25 25 10    
Растворитель Р-189
ТУ 6-10-1508-75
Этиленгликоль- ацетат
Метилэтилектон
Ксилол
Бутилацетат
37

37 13 13

1,2-1,6 (по ксилолу) Полиуритано- вые, уралкидные Лаки: УР-293, УР-294
Растворитель Р-197
ТУ 6-10-1100-78
Растворитель АР*
Скипидар
экстирационный
Ксилол
70

3
27

не менее 80 Меламино- алкидные Эмали: МЛ-12, МЛ-197, МЛ-1214
Растворитель Р-198
ТУ 6-10-1197-76
Этилцеллозольв Циклогексанон 50 50 35-45 Эмали: МЛ-1121
Растворитель Р-219
ТУ 6-10-960-76
Ацетон
Циклогексанон
Толуол
33 33 34 13-18 Полиэфирные Лаки: ПЭ-250М, ПЭ-247
Шпатлевка: ПЭ-0025
Растворитель Р-265
ТУ 6-10-1789-80
Толуол
Бутилацетат
Этиловый спирт Циклогексанон Бутиловый спирт




Алкидноакри- ловые Эмаль: АС-265
Растворитель Р-548
ТУ 6-10-1033-75
Этилцеллозольв Пропиленкарбо- нат 70 30 Полиакрила- тные, Эпоксидные Эмаль: АС-576
Лак: АС-548
Растворитель Р-563 
ТУ 6-10-1434-79
Этилацетат
Бутилацетат
Ацетон


5-15   Лак: ХС-563
Растворитель Р-1101
ТУ 6-10-1476-77
Этиленгликоль- ацетат
Толуол
Сольвент
20

25 55

1,0-6,0 (по ксилолу) Полиакрила- тные Эмаль: АС-1101
РастворительР-1101 
ТУ 6-10-1476-77
Лактон С12
Толуол
Сольвент
20 25 55   Эмаль: АС-1101М
Растворитель Р-1166
ТУ 6-10-1566-75
Этилацетат Ксилол Этилцеллозольв Циклогексанон 20 50 15 15 1,0-2,5 (по ксилолу) Полиакрила- тные и нитроцелюлоз- ные Эмали: АС-1166, АС-1166М
Растворитель Р-1176
ТУ 6-10-1811-81
Циклогексанон Метилэтилкетон 50 50 1,0-1,6 (по ксилолу) Полиуретано- вые Полиуретановые эмали
Растворитель Р-2106
ТУ 6-10-1527-75
Сольвент Циклогексанон 70 30 1,2-5,5 (по ксилолу) Полиакрила- тные амид- содержащие, эпоксидные Эмаль АС-2106
Растворитель Р-2106М
ТУ 6-10-1527-75
Лактон С12
Сольвент
Циклогексанон
20 50 30 То же Эмаль АС-2106М
Растворитель Р-2115
ТУ 6-10-1613-77
  Нитроакрило- вые Эмали: АК-2115, АК-2130
Растворитель Р-3160
ТУ 6-10-1215-72
Этиловый спирт Бутиловый спирт 40 60 Поливинилаце- тальные Эмаль ВЛ-55
Растворитель РЛ-176
ТУ 6-10-1474-76
Циклогексанон
Сольвент
50 50 1,5-4,5 (по ксилолу) Полиакрила- тные, полиуре- тановые Лак АС-176
Растворитель РЛ-176М
ТУ 6-10-1613-77
Циклогексанон
Сольвент
Лактон С12
50 40 10 1,5-4,5 (по ксилолу) То же Лак АС-176
Растворитель РЛ-176
ТУ 6-10-1647-77
Марка А

Марка Б

Циклогексанон
Ацетон

Циклогексанон
МИБК

95
5

60
40

1,5-4,5 (по ксилолу)
1-5 (по ксилолу)

Полиэфирные Лаки: ПЭ-251А, ПЭ-251Б
Растворитель РЛ-176
ТУ 6-10-1512-75
Марка А

Марка Б

Марка В

Этиленгликоль- ацетат
Циклогексанон
Этиленгликоль- ацетат
Метилэтилектон
Этиленгликоль- ацетат
Метилэтилектон

50

50
50

50
10

90

2,2-2,9 (по ксилолу)
1,5-2,3 (по ксилолу)
0,3-,05 (по ксилолу)

Полиуретановые Лаки: УР-277, УР-277м, УР-277п, УР-268п
Растворитель РЛ-278
ТУ 6-10-1503-75
Этилцеллозольв
Бутиловый спирт
Этиловый спирт
Ксилол
Толуол
10 20 15 30 25 0,82-1,1 (по кси- лолу) Поливинил- ацетальные Лак ВЛ-278
Растворитель РЛ-298
ТУ 6-10-1528-75
Ксилол
Этилцеллозольв
70 30 1,3-1,8 (по ксилолу) Эпоксидные Лак ЭП-298
Растворитель РЛ-541
ТУ 6-10-1646-77
Толуол
Бутиловый спирт Этиловый спирт Бутилацетат
Этилцеллозольв
Ацетон
70
9
6
6
4,8
4,2
Эпоксифеноль- ные Лак ЭП-541
Растворитель РВЛ
ТУ 6-10-1269-77
Этилцеллозольв
Хлорбензол
50 50 1,3-2,0 (по ксилолу) Поливинил- формальэтилаль Винифлексовые лаки
Растворитель РФГ
ГОСТ 12708-77
Этиловый или изопропиловый сприт
Бутиловый или изобутиловый спирт
25

75

Поливинил- бутиральные Грунтовки: ВЛ-02, ВЛ-08, ВЛ-023, ВЛ-05
Растворитель РС-2
ТУ 6-10-952-75
Ксилол
Уайт-спирит
30 70 30 Маслянные, битумные, пентафталевые (тощие и средние) Эмали: ПФ-837, ПФ-1105
Растворитель №30
ТУ 6-10-919-75
Этилцеллозольв 95 Смесь акрилатного сополимера и эпоксидной смолы, эпоксиднофе- нольные с добавкой поливинил- бутираля Лаки: ФЛ-559, ФЛ-561
Эмали: АС-576, ЭП-547
Растворитель РМЛ-315
ТУ 6-10-1013-75
Бутиловый спирт
Этилцеллозольв
Бутилацетат
Толуол
Ксилол
15 17 18 25 25 13-22 Нитроцелюлоз- ные Лак НЦ-223
Разбавитель РКБ-1
ТУ 6-10-1326-77
Ксилол
Бутиловый спирт
50 50 Меламино- и мочевино- фармальдегид- ные Лак МЛ-248
Эмали: МЛ-169, МЛ-242, МЛ-729, МЛ-629, МЧ-13, МЧ-277, ФЛ-511
Грунтовки: ГФ-089, МЛ-058, МЛ-064, МЧ-042
Разбавитель РКБ-2
ТУ 6-10-1037-75
Ксилол
Бутиловый спирт
5
95
Мочевино- фармальдегид- ные Лак МЧ-52
Растворитель РП
ТУ 6-10-1095-76
Ксилол
Ацетон
75 25 Эпоксидные Грунтовка ЭП-057
Разбавитель РЭ-1В
ГОСТ 18187-72
Сольвент
Бутиловый спирт
Диацетоновый спирт
70 20 10 12-18 Меламино- алкидные, меломинофор- мальдегидные Грунтовка МЧ-042
Эмали: МЛ-152, МЛ-12, МЛ-242
Лак МЧ-52
Разбавитель РЭ-2В
ГОСТ 18187-72
Сольвент
Бутилацетат
Этилцеллозольв
60 20 20 12-18 То же Грунтовка: МЧ-042
Эмали: МЛ-152, МЛ-12, МЛ-242, МЛ-1214
Разбавитель РЭ-3В
ГОСТ 18187-72
Сольвент
Бутиловый спирт
Этилцеллозольв
50 30 20 18-24 Пентафталевые, глифталевые, меламиноалкид- ные Эмали: ГФ-571, МЛ-152, ПФ-223
Разбавитель РЭ-4В
ГОСТ 18187-72
Сольвент
Этилцеллозольв
30 70 18-24 Пентафталевые, глифталевые, мочевинофор- мальдегидные Лак МЧ-52 Эмали: МЛ-152, ГФ-1426, ПФ-115, ПФ-133, ПФ-223
Разбавитель РЭ-5В
ГОСТ 18187-72
Ксилол
Диацетоновый спирт
Этилцеллозольв
Бутиловый спирт
40
25

25
10

16-22 Перхлорвинило- вые Эмали: ХВ-113, ХВ-238, ХС-119, ХВ-124
Разбавитель РЭ-6В
ГОСТ 18187-72
Сольвент
Диацетоновый спирт
Ксилол
50
15

35

16-22 Эмаль ХВ-124
Разбавитель РЭ-7В
ГОСТ 18187-72
Ксилол
Бутилацетат
Диацетоновый спирт
Циклогексанон
60
25
10

5

12-18 Нитрацеллюлоз- ные Лаки: НЦ-241, НЦ-258
Разбавитель РЭ-8В
ГОСТ 18187-72
Ксилол
Бутиловый спирт
25 75 18-26 Алкидности- рольные Эмаль МС-17
Разбавитель РЭ-9В
ГОСТ 18187-72
Сольвент
Бутиловый спирт
Этилцеллозольв
50 30 20 14-20 Полиэфиракри- латные Эмаль ПЭ-126
Разбавитель РЭ-10В
ГОСТ 18187-72
Сольвент
Бутилацетат
Этилцеллозольв
40 40 20 20-26 Маслянные краски, густотертые белила на природных неорганических пигментах
Разбавитель РЭ-11В
ТУ 6-10-875-72
Этилацетат
Этилцеллозольв
Циклогексанон
Ксилол
20 30 10 40 18-24 Эпоксидные Грунтовка ЭФ-083
Эмаль ФЛ-777
Растворитель РЭС-5107
ТУ 6-10-1816-81
Бутилацетат
Толуол
Ксилол
17 66 17 5,0-9,0 Сополимер винилхлорида с винилацетатом Эмаль ХС-5107

www.klkz.ru

Состав растворителей лаков и красок — DRIVE2

Растворители:

Растворитель 645: толуол 50%, бутилацетат 18%, этилацетат 12%, бутанол 10%, этанол 10%.
Растворитель 646: толуол 50%, этанол 15%, бутилацетат (или амилацетат) 10%, бутанол 10%, этилцеллозольв 8%, ацетон 7%.
Растворитель 647: толуол (или пиробензол) 41,3%, бутилацетат (или амилацетат) 29,8%, этилацетат 21,2%, бутанол 7,7%.
Растворитель 648: бутилацетат 50%, толуол 20%, бутанол 20%, этанол 10%.
Растворитель 649: ксилол 50%, этилцеллозольв 30%, изобутанол 20%.
Растворитель 650: ксилол 50%, бутанол 30%, этилцеллозольв 20%.
Растворитель 651: уайт-спирит 90%, бутанол 10%.
Растворитель КР-36: бутанол 80%, бутилацетат 20%.
Растворитель Р-4: толуол 62%, ацетон 26%, бутилацетат 12%.
Растворитель Р-10: ксилол 85%, ацетон 15%.
Растворитель Р-12: толуол 60%, бутилацетат 30%, ксилол 10%.
Растворитель Р-14: циклогексанон 50%, толуол 50%.
Растворитель Р-24: сольвент 50%, ксилол 35%, ацетон 15%.
Растворитель Р-40: толуол 50%, этилцеллозольв 30%, ацетон 20%.
Растворитель Р-219: толуол 34%, циклогексанон 33%, ацетон 33%.
Растворитель Р-3160: бутанол 60%, этанол 40%.
Растворитель РКЧ: ксилол 90%, бутилацетат 10%.
Растворитель РМЛ: этанол 64%, этилцеллозольв 16%, толуол 10%, бутанол 10%.
Растворитель РМЛ-315: толуол 25%, ксилол 25%, бутилацетат 18%, этилцеллозольв 17%, бутанол 15%.
Растворитель РС-1: толуол 60%, бутилацетат 30%, ксилол 10%.
Растворитель РС-2: уайт-спирит 70%, ксилол 30%.
Растворитель РФГ: этанол 75%, бутанол 25%.
Растворитель РЭ-1: ксилол 50%, ацетон 20%, бутанол 15%, этанол 15%.
Растворитель РЭ-2: сольвент 70%, этанол 20%, ацетон 10%.
Растворитель РЭ-3: сольвент 50%, этанол 20%, ацетон 20%, этилцеллозольв 10%.
Растворитель РЭ-4: сольвент 50%, ацетон 30%, этанол 20%.
Растворитель ФК-1 (?): абсолютированный спирт (99,8%) 95%, этилацетат 5%

Разбавители:

Разбавитель для водоразбавленных лаков и красок: бутанол 62%, бутилцеллозольв 38%.
Разбавитель М: этанол 65%, бутилацетат 30%, этилацетат 5%.
Разбавитель Р-7: циклогексанон 50%, этанол 50%.
Разбавитель Р-197: ксилол 60%, бутилацетат 20%, этилцеллозольв 20%.
Разбавитель РДВ: толуол 50%, бутилацетат (или амилацетат) 18%, бутанол 10%, этанол 10%, этилацетат 9%, ацетон 3%.
Разбавитель РКБ-1: ксилол 50%, бутанол 50%.
Разбавитель РКБ-2: бутанол 95%, ксилол 5%.
Разбавитель РКБ-3: ксилол 90%, бутанол 10%.

Разбавители для электроокраски:

Разбавители предназначаются для разведения лакокрасочных материалов, распыляемых в электрическом поле на стационарных установках и с помощью ручных электростатических распылителей.

Разбавитель РЭ-1В: сольвент 70%, бутанол 20%, диацетоновый спирт 10%.
Разбавитель РЭ-2В: сольвент 60%, бутилацетат 20%, этилцеллозольв 20%.
Разбавитель РЭ-3В: сольвент 50%, бутанол 30%, этилцеллозольв 20%.
Разбавитель РЭ-4В: этилцеллозольв 50%, сольвент 50%.
Разбавитель РЭ-5В: ксилол 40%, циклогексанон 25%, этилцеллозольв 25%, бутанол 10%.
Разбавитель РЭ-6В: сольвент 50%, ксилол 35%, диацетоновый спирт 15%.
Разбавитель РЭ-7В: ксилол 60%, бутилацетат 25%, диацетоновый спирт 10%, циклогексанон 5%.
Разбавитель РЭ-8В: бутанол 75%, ксилол 25%.
Разбавитель РЭ-9В: сольвент 50%, бутилацетат 30%, этилцеллозольв 20%.
Разбавитель РЭ-10В: сольвент 40%, бутанол 40%, этилцеллозоль

www.drive2.ru

Назначение, состав, характеристики растворителей.

Относительная летучесть

Марка растворителя

Стандарт (ГОСТ или ТУ)

Химический состав растворителей

растворителя
(по диэтиловому
эфиру)

Назначение и область применения растворителя

Компоненты, входящие в состав растворителей

% доля

Растворяемые пленкообразователи

Основные марки разбавляемых
лакокрасочных материалов

Растворитель 645

ГОСТ 18188-72

Толуол
Бутилацетат или амилацетат
Бутиловый спирт
Этиловый спирт
Этилацетат
Ацетон

50
18

10
10
9
3

10-12

Нитроцеллюлозные

Лаки: НЦ-134, НЦ-551, НЦ-286 черный
Эмали: НЦ-5121, НЦ-25, НЦ-26, НЦ-27, НЦ-5133 Г, НЦ-5133 М, НЦ-5134, НЦ-272
Шпаклевки: НЦ-007, НЦ-008, НЦ-009

Растворитель 646

ГОСТ 18188-72

Бутилацетат
Этилцеллозольв
Ацетон
Бутанол
Этиловый спирт
Толуол

10
8
7
15
10
50

8-16

Нитратцеллюлозные, нитратцеллюлозно-глифталевые, эпоксидные, нитратцеллюлозно-эпоксидные, мочевиноформальдегидные, кремнийорганические

Лаки: НЦ-269, НЦ-279, НЦ-292, НЦ-5108, ЭП-524
Эмали: НЦ-170, НЦ-184, НЦ-216, НЦ-217, НЦ-25, НЦ-246, НЦ-258, НЦ-262, НЦ-271, НЦ-273, НЦ-1104, НЦ-282, НЦ-291, НЦ-299, НЦ-929, НЦ-5100, НЦ-5123.
Нитроэмали для грузовых автомобилей, нитроэмали № 924, ЭП-773, КО-83, НЦ-1124, НЦ-1120
Грунтовки: НЦ-081, МС-067, МЧ-042
Шпаклевки: НЦ-007, НЦ-008, НЦ-009, ЭП-0010, ЭП-0020

Растворитель 647

ГОСТ 18188-72

Бутилацетат
Этилацетат
Бутиловый спирт
Толуол

29,8
21,2
7,7
41,3

8-12

Нитратцеллюлозные

Эмали: НЦ-280, НЦ-11, НЦ-132 П, АК-194
Грунтовка НЦ-097

Растворитель 648

ГОСТ 18188-72

Бутилацетат
Этиловый спирт
Бутиловый спирт
Толуол

50
10
20
20

11-18

Нитратцеллюлозные, нитратцеллюлозно-эпоксидные, бутилметакрилатные, полиакрилатные

Лаки: ЭП-524, КО-940, АС-16
Эмали: ХВ-130, АС-85, АС-95, АС-131, ГФ-570Р К, ЭП-51
Грунтовки: АК-069, АК-070, ВЛ-02, ВЛ-023

Растворитель 649

ТУ 6-10-1358-78

Этилцеллозольв
Изобутиловый спирт
Ксилол

30
20
50

15-30

Нитратцеллюлозно-глифталевые

Эмали: НЦ-132 К, ГФ-570Р К

Растворитель 650

ТУ 6-10-1247-96

Этилцеллозольв
Бутиловый спирт
Ксилол

20
30
50

20-30

Нитратцеллюлозные

Эмали: ГФ-570Р К, НЦ-11

Растворитель Р-4

ГОСТ 7827-74

Бутилацетат
Ацетон
Толуол

12,0
26,0
62,0

5-15

Перхлорвиниловые, полиакриловые, сополимеры винилхлорида с винилиденхлоридом или винилацетатом

Лаки: ХС-76, ХС-724
Эмали: ХВ-16, ХВ-112, ХВ-124, ХВ-125, ХВ-142, ХВ-179, ХВ-518, ХВ-519, ХВ-553, ХВ-714, ХВ-750, ХВ-782, ХВ-1100, ХВ-785, ХВ-1120, ПХВ-29, ПХВ-101, ХВ-1149, ХВ-5169, ХС-119, ХС-527, ХС-710, ХС-717, ХС-720, ХС-724, ХС-747, ХС-748, ХС-759, ХС-781, ХС-5163
Грунтовки: ХВ-062, ХВ-079, ХС-010, ХС-059, ХС-068, ХС-077, МС-067
Шпаклевки: ХВ-004, ХВ-005, ЭП-0020

Растворитель Р-5

ГОСТ 7827-74

Бутилацетат
Ацетон
Толуол

30
30
40

9-15

Перхлорвиниловые, эпоксидные, кремнийорганические, полиакрилатные, каучуки

Лаки: ХВ-139, АС-16, АС-82, АС-516, АС-552, АК-113
Эмали: ЭЦ различных цветов, ХВ-124, ХВ-125, ХВ-160, ХВ-16, ХВ-782, ХВ-536, ХС-1107, АС-131, АС-560, АС-599, АК-192, ЭП-56, ЭП-140, ЭП-255, ЭП-275, ЭП-525, ЭП-567, КЧ-767, КО-96, КО-811, КО-814, КО-818, КО-822, КО-841
Грунтовки: АК-069, АК-070, ЭП-0104
Шпаклевки: ЭП-0020, ЭП-0026, ЭП-0028

Растворитель Р-6

ТУ 6-10-1328-77

Бутилацетат
Этиловый спирт
Бутиловый спирт
Бензол

15
30
15
40

9-11

Меламино-формальдегидные, резиловые, поливинилбутиральные

Лаки: ВЛ-725, ВЛ-725 Г
Эмали: ЭП-569, ХВ-535

Растворитель Р-7

ТУ 6-10-1321-77

Циклогексанон
Этиловый спирт

50
50

25-32

Поливинил-бутиральные, крезоло-формальдегидные

Лак ВЛ-51

Растворитель Р-11

ТУ 6-11-1821-81

Бутилацетат
Толуол
Циклогексанон
Ацетон




0,7-1,2 (по ксилолу)

Растворитель Р-12

ГОСТ 7827-74

Бутилацетат
Толуол
Ксилол

30
60
10

8-14

Перхлорвиниловые, полиакрилатные

Эмали: ХВ-533, ХВ-785, ХВ-1120, АК-194

Растворитель Р-14

ТУ 6-10-1509-75

Циклогексанон
Толуол

50
50

1,1-1,5

Эпоксидные (отверждаемые изоценатными отвердителями)

Эмаль ЭП-711

Растворитель Р-24

ГОСТ 7827-74

сольвент
Ксилол
Ацетон

50
35
15

10-20

Перхлорвиниловые

Эмали: ХВ-110, ХВ-113, ХВ-238
Грунтовка ХВ-050

Растворитель Р-40

ВТУ УХП 86-56

Этилцеллозольв
Толуол или
Ацетон
Этилцеллозольв
Толуол

50
50
20
30
50

Эпоксидные

Эмаль ЭП-140
Грунтовка ЭП-076
Шпаклевки: ЭП-0010, ЭП-0020
Лак ЭП-741

Растворитель Р-60

ТУ 6-10-1256-77

Этиловый спирт
Этилцеллозольв

70
30

13-25

Крезоло-формальдегидные и поливинил-бутиральные

Эмали: ФЛ-557, ВЛ-515

Растворитель Р-83

ТУ 6-10-1595-76

Лактон С12
Этилцеллозольв
Растворитель АР*

10
40
50

Эпоксиэфирные

Грунтовка ЭФ-083

Растворитель Р-119

ТУ 6-10-1197-76

Толуол
Ацетон
Нитропропан

35
30
35

Ратсворитель Р-119 Э

ТУ 6-10-1197-76

Ксилол
Циклогексанон
Этилцеллозольв
Бутиловый спирт

40
25
25
10

Растворитель Р-189

ТУ 6-10-1508-75

Этиленгликольацетат
Метилэтилектон
Ксилол
Бутилацетат

37
37
13
13

1,2-1,6 (по ксилолу)

Полиуритановые, уралкидные

Лаки: УР-293, УР-294

Растворитель Р-197

ТУ 6-10-1100-78

Растворитель АР*
скипидар экстирационный
Ксилол

70
3
27

не менее 80

Меламиноалкидные

Эмали: МЛ-12, МЛ-197, МЛ-1214

Растворитель Р-198

ТУ 6-10-1197-76

Этилцеллозольв
Циклогексанон

50
50

35-45

Эмали: МЛ-1121

Растворитель Р-219

ТУ 6-10-960-76

Ацетон
Циклогексанон
Толуол

33
33
34

13-18

Полиэфирные

Лаки: ПЭ-250М, ПЭ-247
Шпатлевка ПЭ-0025

Растворитель Р-265

ТУ 6-10-1789-80

Толуол
Бутилацетат
Этиловый спирт
Циклогексанон
Бутиловый спирт





Алкидноакриловые

Эмаль: АС-265

Растворитель Р-548

ТУ 6-10-1033-75

Этилцеллозольв
Пропиленкарбонат

70
30

Полиакрилатные, Эпоксидные

Эмаль: АС-576
Лак: АС-548

Растворитель Р-563

ТУ 6-10-1434-79

Этилацетат
Бутилацетат
Ацетон



5-15

Лак: ХС-563

Растворитель Р-1101

ТУ 6-10-1476-77

Этиленгликольацетат
Толуол
Сольвент

20
25
55

1,0-6,0 (по ксилолу)

Полиакрилатные

Эмаль: АС-1101

Растворитель Р-1101 М

ТУ 6-10-1476-77

Лактон С12
Толуол
Сольвент

20
25
55

Эмаль: АС-1101 М

Растворитель Р-1166

ТУ 6-10-1566-75

Этилацетат
Ксилол
Этилцеллозольв
Циклогексанон

20
50
15
15

1,0-2,5 (по ксилолу)

Полиакрилатные и нитроцелюлозные

Эмали: АС-1166, АС-1166М

Растворитель Р-1176

ТУ 6-10-1811-81

Циклогексанон
Метилэтилкетон

50
50

1,0-1,6 (по ксилолу)

Полиуретановые

Полиуретановые эмали

Растворитель Р-2106

ТУ 6-10-1527-75

Сольвент
Циклогексанон

70
30

1,2-5,5 (по ксилолу)

Полиакрилатные амидсодержащие, эпоксидные

Эмаль АС-2106

Растворитель Р-2106 М

ТУ 6-10-1527-75

Лактон С12
Сольвент
Циклогексанон

20
50
30

То же

Эмаль АС-2106 М

Растворитель Р-2115

ТУ 6-10-1613-77

Нитроакриловые

Эмали: АК-2115, АК-2130

Растворитель Р-3160

ТУ 6-10-1215-72

Этиловый спирт
Бутиловый спирт

40
60

Поливинилацетальные

Эмаль ВЛ-55

Растворитель РЛ-176

ТУ 6-10-1474-76

Циклогексанон
Сольвент

50
50

1,5-4,5 (по ксилолу)

Полиакрилатные, полиуретановые

Лак АС-176

Растворитель РЛ-176 М

ТУ 6-10-1613-77

Циклогексанон
Сольвент
Лактон С12

50
40
10

1,5-4,5 (по ксилолу)

То же

Лак АС-176

Растворитель РЛ-176 ПЭ
ТУ 6-10-1647-77

Марка А

Марка Б


Циклогексанон
Ацетон

Циклогексанон
МИБК


95
5

60
40


1,5-4,5 (по ксилолу)


1-5 (по ксилолу)

Полиэфирные

Лаки: ПЭ-251А, ПЭ-251Б

Растворитель РЛ-176 УР
ТУ 6-10-1512-75

Марка А

Марка Б

Марка В


Этиленгликольацетат
Циклогексанон

Этиленгликольацетат
Метилэтилектон

Этиленгликольацетат
Метилэтилектон


50
50

50
50

10
90


2,2-2,9 (по ксилолу)

1,5-2,3 (по ксилолу)

0,3-,05 (по ксилолу)

Полиуретановые

Лаки: УР-277, УР-277 М, УР-277 П, УР-268 П

Растворитель РЛ-278

ТУ 6-10-1503-75

Этилцеллозольв
Бутиловый спирт
Этиловый спирт
Ксилол
Толуол

10
20
15
30
25

0,82-1,1 (по ксилолу)

Поливинилацетальные

Лак ВЛ-278

Растворитель РЛ-298

ТУ 6-10-1528-75

Ксилол
Этилцеллозольв

70
30

1,3-1,8 (по ксилолу)

Эпоксидные

Лак ЭП-298

Растворитель РЛ-541

ТУ 6-10-1646-77

Толуол
Бутиловый спирт
Этиловый спирт
Бутилацетат
Этилцеллозольв
Ацетон

70
9
6
6
4,8
4,2

Эпоксифенольные

Лак ЭП-541

Растворитель РВЛ

ТУ 6-10-1269-77

Этилцеллозольв
Хлорбензол

50
50

1,3-2,0 (по ксилолу)

Поливинилформальэтилаль

Винифлексовые лаки

Растворитель РФГ

ГОСТ 12708-77

Этиловый или
изопропиловый сприт
Бутиловый или
изобутиловый спирт

25

75

<1,3 (по ксилолу)

Поливинилбутиральные

Грунтовки: ВЛ-02, ВЛ-08, ВЛ-023, ВЛ-05

Растворитель РС-2

ТУ 6-10-952-75

Ксилол
Уайт-спирит

30
70

30

Маслянные, битумные, пентафталевые (тощие и средние)

Эмали: ПФ-837, ПФ-1105

Растворитель № 30

ТУ 6-10-919-75

Этилцеллозольв

95

Смесь акрилатного сополимера и эпоксидной смолы, эпоксиднофенольные с добавкой поливинилбутираля

Лаки: ФЛ-559, ФЛ-561
Эмали: АС-576, ЭП-547

Растворитель РМЛ-315

ТУ 6-10-1013-75

Бутиловый спирт
Этилцеллозольв
Бутилацетат
Толуол
Ксилол

15
17
18
25
25

13-22

Нитроцелюлозные

Лак НЦ-223

Разбавитель РКБ-1

ТУ 6-10-1326-77

Ксилол
Бутиловый спирт

50
50

Меламино- и мочевино-фармальдегидные

Лак МЛ-248
Эмали: МЛ-169, МЛ-242, МЛ-729, МЛ-629, МЧ-13, МЧ-277, ФЛ-511
Грунтовки: ГФ-089, МЛ-058, МЛ-064, МЧ-042

Разбавитель РКБ-2

ТУ 6-10-1037-75

Ксилол
Бутиловый спирт

5
95

Мочевино-фармальдегидные

Лак МЧ-52

Растворитель РП

ТУ 6-10-1095-76

Ксилол
Ацетон

75
25

Эпоксидные

Грунтовка ЭП-057

Разбавитель РЭ-1В

ГОСТ 18187-72

Сольвент
Бутиловый спирт
Диацетоновый спирт

70
20
10

12-18

Меламиноалкидные, меломино-формальдегидные

Грунтовка МЧ-042
Эмали: МЛ-152, МЛ-12, МЛ-242
Лак МЧ-52

Разбавитель РЭ-2В

ГОСТ 18187-72

Сольвент
Бутилацетат
Этилцеллозольв

60
20
20

12-18

То же

Грунтовка МЧ-042
Эмали: МЛ-152, МЛ-12, МЛ-242, МЛ-1214

Разбавитель РЭ-3В

ГОСТ 18187-72

Сольвент
Бутиловый спирт
Этилцеллозольв

50
30
20

18-24

Пентафталевые, глифталевые, меламиноалкидные

Эмали: ГФ-571, МЛ-152, ПФ-223

Разбавитель РЭ-4В

ГОСТ 18187-72

Сольвент
Этилцеллозольв

30
70

18-24

Пентафталевые, глифталевые, мочевино-формальдегидные

Лак МЧ-52 Эмали: МЛ-152, ГФ-1426, ПФ-115, ПФ-133, ПФ-223

Разбавитель РЭ-5В

ГОСТ 18187-72

Ксилол
Диацетоновый спирт
Этилцеллозольв
Бутиловый спирт

40
25
25
10

16-22

Перхлорвиниловые

Эмали: ХВ-113, ХВ-238, ХС-119, ХВ-124

Разбавитель РЭ-6В

ГОСТ 18187-72

Сольвент
Диацетоновый спирт
Ксилол

50
15
35

16-22

Эмаль ХВ-124

Разбавитель РЭ-7В

ГОСТ 18187-72

Ксилол
Бутилацетат
Диацетоновый спирт
Циклогексанон

60
25
10
5

12-18

Нитрацеллюлозные

Лаки: НЦ-241, НЦ-258

Разбавитель РЭ-8В

ГОСТ 18187-72

Ксилол
Бутиловый спирт

25
75

18-26

Алкидностирольные

Эмаль МС-17

Разбавитель РЭ-9В

ГОСТ 18187-72

Сольвент
Бутиловый спирт
Этилцеллозольв

50
30
20

14-20

Полиэфиракрилатные

Эмаль ПЭ-126

Разбавитель РЭ-10В

ГОСТ 18187-72

Сольвент
Бутилацетат
Этилцеллозольв

40
40
20

20-26

Маслянные краски, густотертые белила на природных неорганических пигментах

Разбавитель РЭ-11В

ТУ 6-10-875-72

Этилацетат
Этилцеллозольв
Циклогексанон
Ксилол

20
30
10
40

18-24

Эпоксидные

Грунтовка ЭФ-083
Эмаль ФЛ-777

Растворитель РЭС-5107

ТУ 6-10-1816-81

Бутилацетат
Толуол
Ксилол

17
66
17

5,0-9,0

Сополимер винилхлорида с винилацетатом

Эмаль ХС-5107

pentan-krasnodar.ru

Состав и назначение растворителей в Челябинске.

Растворитель

ГОСТ или ТУ

Состав

растворителя

Относи- тельная летучесть (по диэти- ловому эфиру) Назначение
Компоненты % Растворяемые пленко- образователи Основные марки лакокрасочных материалов
Растворитель 645
ГОСТ 18188-72
Толуол
Бутилацетат или амилацетат
Бутиловый спирт
Этиловый спирт
Этилацетат
Ацетон
50
18

10
10
9
3

10-12 Нитро- целлюлозные Лаки: НЦ-134, НЦ-551, НЦ-286 черный
Эмали: НЦ-5121, НЦ-25, НЦ-26, НЦ-27, НЦ5133г, НЦ-5133м, НЦ-5134, НЦ-272
Шпаклевки: НЦ-007, НЦ-008, НЦ-009
Растворитель 646
ГОСТ 18188-72
Бутилацетат
Этилцеллозольв Ацетон 
Бутиловый спирт
Этиловый спирт
Толуол
10
8
7
15
10
50
8-16 Нитрат- целлюлозные, нитрат- целлюлозно- глифталевые, эпоксидные, нитрат- целлюлозно- эпоксидные, мочевино- формальде- гидные, кремний- органические Лаки: НЦ-269, НЦ-279, НЦ-292, НЦ-5108, ЭП-524
Эмали: НЦ-170, НЦ-184, НЦ-216, НЦ-217, НЦ-25, НЦ-246, НЦ-258, НЦ-262, НЦ-271, НЦ-273, НЦ-1104, НЦ-282, НЦ-291, НЦ-299, НЦ-929, НЦ-5100, НЦ-5123.
нитроэмали для грузовых автомобилей, нитроэмали № 924, ЭП-773, КО-83, НЦ-1124, НЦ-1120
Грунтовки: НЦ-081, МС-067, МЧ-042
Шпаклевки: НЦ-007, НЦ-008, НЦ-009, ЭП-0010, ЭП-0020
Растворитель 647
ГОСТ 18188-72
Бутилацетат
Этилацетат
Бутиловый спирт Толуол
29,8
21,2
7,7
41,3
8-12 Нитрат- целлюлозные Эмали: НЦ-280, НЦ-11, НЦ-132П, АК-194
Грунтовки: НЦ-097
Растворитель 648
ГОСТ 18188-72
Бутилацетат Этиловый спирт Бутиловый спирт Толуол 50 10 20 20 11-18 Нитрат- целлюлозные, нитрат- целлюлозно- эпоксидные, бутилмета- крилатные, поли- акрилатные Лаки: ЭП-524, КО-940, АС-16
Эмали: ХВ-130, АС-85, АС-95, АС-131, ГФ-570Рк, ЭП-51
Грунтовки: АК-069, АК-070, ВЛ-02, ВЛ-023
Растворитель 649
ТУ 6-10-1358-78
Этилцеллозольв Изобутиловый спирт
Ксилол
30
20

50

15-30 Нитрат- целлюлозно- глифталевые Эмали: НЦ-132к, ГФ-570Рк,
Растворитель 650 Этилцеллозольв Бутиловый спирт Ксилол 20 30 50 20-30 Нитрат- целлюлозные Эмали: ГФ-570Рк, НЦ-11
Растворитель Р-4
ГОСТ 7827-74
Бутилацетат
Ацетон
Толуол
12,0 26,0 62,0 5-15 Перхлор- виниловые, полиакри- ловые, сополимеры винилхлорида с винили- денхлоридом или винил- ацетатом Лаки: ХС-76, ХС-724
Эмали: ХВ-16, ХВ-112, ХВ-124, ХВ-125, ХВ-142, ХВ-179, ХВ-518, ХВ-519, ХВ-553, ХВ-714, ХВ-750, ХВ-782, ХВ-1100, ХВ-785, ХВ-1120, ПХВ-29, ПХВ-101, ХВ-1149, ХВ-5169, ХС-119, ХС-527, ХС-710, ХС-717, ХС-720, ХС-724, ХС-747, ХС-748, ХС-759, ХС-781, ХС-5163
Грунтовки: ХВ-062, ХВ-079, ХС-010, ХС-059, ХС-068, ХС-077, МС-067
Шпаклевки: ХВ-004, ХВ-005, ЭП-0020
Растворитель Р-5
ГОСТ 7827-74
Бутилацетат
Ацетон
Толуол
30 30 40 9-15 Перхлор- виниловые, эпоксидныу, кремний- органические, полиакрилат- ные, каучуки Лаки: ХВ-139, АС-16, АС-82, АС-516, АС-552, АК-113
Эмали: ЭЦ различных цветов, ХВ-124, ХВ-125, ХВ-160, ХВ-16, ХВ-782, ХВ-536, ХС-1107, АС-131, АС-560, АС-599, АК-192, ЭП-56, ЭП-140, ЭП-255, ЭП-275, ЭП-525, ЭП-567, КЧ-767, КО-96, КО-811, КО-814, КО-818, КО-822, КО-841
Грунтовки: АК-069, АК-070, ЭП-0104
Шпаклевки: ЭП-0020, ЭП-0026, ЭП-0028
Растворитель Р-6 
ТУ 6-10-1328-77
Бутилацетат Этиловый спирт Бутиловый спирт Бензол 15 30 15 40 9-11 Меламино- формальдегид- ные, резило- вые, поливинил- бутиральные Лаки: ВЛ-725, ВЛ-725г 
Эмали: ЭП-569, ХВ-535
Растворитель Р-7
ТУ 6-10-1321-77
Циклогексанон Этиловый спирт 50 50 25-32 Поливинил- бутиральные, крезолофор- мальдегидные Лак: ВЛ-51
Растворитель Р-11
ТУ 6-11-1821-81
Бутилацетат
Толуол
Циклогексанон
Ацетон



0,7-1,2 (по ксилолу)    
Растворитель Р-12
ГОСТ 7827-74
Бутилацетат 
Толуол 
Ксилол
30 60 10 8-14 Перхлор- виниловые, полиакрилат- ные Эмали: ХВ-533, ХВ-785, ХВ-1120, АК-194
Растворитель Р-14 
ТУ 6-10-1509-75
Циклогексанон
Толуол
50 50 1,1-1,5 Эпоксидные (отверждае- мые изоценат- ными отвердителя- ми) Эмаль: ЭП-711
Растворитель Р-24
ГОСТ 7827-74
Сольвент 
Ксилол 
Ацетон
50 35 15 10-20 Перхлор- виниловые Эмали: ХВ-110, ХВ-113, ХВ-238
Грунтовка: ХВ-050
Растворитель Р-40 Этилцеллозольв
Толуол или 
Ацетон
Этилцеллозольв
Толуол
50 50 20 30 50 Эпоксидные Эмаль: ЭП-140 
Грунтовка: ЭП-076 
Шпаклевки: ЭП-0010, ЭП-0020 
Лак: ЭП-741
Растворитель Р-60 
ТУ 6-10-1256-77
Этиловый спирт
Этилцеллозольв
70 30 13-25 Крезоло- формальдегид- ные и поли- винилбути- ральные Эмали: ФЛ-557, ВЛ-515
Растворитель Р-83
ТУ 6-10-1595-76
Лактон С12
Этилцеллозольв
Растворитель АР*
10 40 50 Эпокси- эфирные Грунтовка ЭФ-083
Растворитель Р-119 Толуол 
Ацетон 
Нитропропан
35 30 35    
Ратсворитель Р-119Э Ксилол
Циклогексанон
Этилцеллозольв
Бутиловый спирт
40 25 25 10    
Растворитель Р-189
ТУ 6-10-1508-75
Этиленгликоль- ацетат
Метилэтилектон
Ксилол
Бутилацетат
37

37 13 13

1,2-1,6 (по ксилолу) Полиуритано- вые, уралкидные Лаки: УР-293, УР-294
Растворитель Р-197
ТУ 6-10-1100-78
Растворитель АР*
Скипидар
экстирационный
Ксилол
70

3
27

не менее 80 Меламино- алкидные Эмали: МЛ-12, МЛ-197, МЛ-1214
Растворитель Р-198
ТУ 6-10-1197-76
Этилцеллозольв Циклогексанон 50 50 35-45 Эмали: МЛ-1121
Растворитель Р-219
ТУ 6-10-960-76
Ацетон
Циклогексанон
Толуол
33 33 34 13-18 Полиэфирные Лаки: ПЭ-250М, ПЭ-247 
Шпатлевка: ПЭ-0025
Растворитель Р-265
ТУ 6-10-1789-80
Толуол
Бутилацетат
Этиловый спирт Циклогексанон Бутиловый спирт
— 
— 
— 
— 
Алкидноакри- ловые Эмаль: АС-265
Растворитель Р-548
ТУ 6-10-1033-75
Этилцеллозольв Пропиленкарбо- нат 70 30 Полиакрила- тные, Эпоксидные Эмаль: АС-576 
Лак: АС-548
Растворитель Р-563 
ТУ 6-10-1434-79
Этилацетат
Бутилацетат
Ацетон
— 
— 
5-15   Лак: ХС-563
Растворитель Р-1101
ТУ 6-10-1476-77
Этиленгликоль- ацетат
Толуол
Сольвент
20 

25 55

1,0-6,0 (по ксилолу) Полиакрила- тные Эмаль: АС-1101
РастворительР-1101 
ТУ 6-10-1476-77
Лактон С12
Толуол 
Сольвент
20 25 55   Эмаль: АС-1101М
Растворитель Р-1166
ТУ 6-10-1566-75
Этилацетат Ксилол Этилцеллозольв Циклогексанон 20 50 15 15 1,0-2,5 (по ксилолу) Полиакрила- тные и нитроцелюлоз- ные Эмали: АС-1166, АС-1166М
Растворитель Р-1176
ТУ 6-10-1811-81
Циклогексанон Метилэтилкетон 50 50 1,0-1,6 (по ксилолу) Полиуретано- вые Полиуретановые эмали
Растворитель Р-2106
ТУ 6-10-1527-75
Сольвент Циклогексанон 70 30 1,2-5,5 (по ксилолу) Полиакрила- тные амид- содержащие, эпоксидные Эмаль АС-2106
Растворитель Р-2106М
ТУ 6-10-1527-75
Лактон С12
Сольвент
Циклогексанон
20 50 30 То же Эмаль АС-2106М
Растворитель Р-2115
ТУ 6-10-1613-77
  Нитроакрило- вые Эмали: АК-2115, АК-2130
Растворитель Р-3160
ТУ 6-10-1215-72
Этиловый спирт Бутиловый спирт 40 60 Поливинилаце- тальные Эмаль ВЛ-55
Растворитель РЛ-176
ТУ 6-10-1474-76
Циклогексанон
Сольвент
50 50 1,5-4,5 (по ксилолу) Полиакрила- тные, полиуре- тановые Лак АС-176
Растворитель РЛ-176М
ТУ 6-10-1613-77
Циклогексанон 
Сольвент
Лактон С12
50 40 10 1,5-4,5 (по ксилолу) То же Лак АС-176
Растворитель РЛ-176
ТУ 6-10-1647-77 
Марка А 

Марка Б

Циклогексанон
Ацетон 

Циклогексанон 
МИБК

95 

60 
40

1,5-4,5 (по ксилолу) 
1-5 (по ксилолу)

Полиэфирные Лаки: ПЭ-251А, ПЭ-251Б
Растворитель РЛ-176
ТУ 6-10-1512-75 
Марка А 

Марка Б 

Марка В

Этиленгликоль- ацетат
Циклогексанон 
Этиленгликоль- ацетат
Метилэтилектон
Этиленгликоль- ацетат
Метилэтилектон

50 

50 
50 

50 
10 

90

2,2-2,9 (по ксилолу) 
1,5-2,3 (по ксилолу) 
0,3-,05 (по ксилолу)

Полиуретановые Лаки: УР-277, УР-277м, УР-277п, УР-268п
Растворитель РЛ-278
ТУ 6-10-1503-75
Этилцеллозольв
Бутиловый спирт 
Этиловый спирт
Ксилол 
Толуол
10 20 15 30 25 0,82-1,1 (по кси- лолу) Поливинил- ацетальные Лак ВЛ-278
Растворитель РЛ-298
ТУ 6-10-1528-75
Ксилол
Этилцеллозольв
70 30 1,3-1,8 (по ксилолу) Эпоксидные Лак ЭП-298
Растворитель РЛ-541
ТУ 6-10-1646-77
Толуол
Бутиловый спирт Этиловый спирт Бутилацетат
Этилцеллозольв
Ацетон
70 



4,8 
4,2
Эпоксифеноль- ные Лак ЭП-541
Растворитель РВЛ 
ТУ 6-10-1269-77
Этилцеллозольв
Хлорбензол
50 50 1,3-2,0 (по ксилолу) Поливинил- формальэтилаль Винифлексовые лаки
Растворитель РФГ
ГОСТ 12708-77
Этиловый или изопропиловый сприт 
Бутиловый или изобутиловый спирт
25 

75

<1,3 (по ксилолу) Поливинил- бутиральные Грунтовки: ВЛ-02, ВЛ-08, ВЛ-023, ВЛ-05
Растворитель РС-2 
ТУ 6-10-952-75
Ксилол 
Уайт-спирит
30 70 30 Маслянные, битумные, пентафталевые (тощие и средние) Эмали: ПФ-837, ПФ-1105
Растворитель №30 
ТУ 6-10-919-75
Этилцеллозольв 95 Смесь акрилатного сополимера и эпоксидной смолы, эпоксиднофе- нольные с добавкой поливинил- бутираля Лаки: ФЛ-559, ФЛ-561 
Эмали: АС-576, ЭП-547
Растворитель РМЛ-315 
ТУ 6-10-1013-75
Бутиловый спирт
Этилцеллозольв
Бутилацетат 
Толуол 
Ксилол
15 17 18 25 25 13-22 Нитроцелюлоз- ные Лак НЦ-223
Разбавитель РКБ-1
ТУ 6-10-1326-77
Ксилол 
Бутиловый спирт
50 50 Меламино- и мочевино- фармальдегид- ные Лак МЛ-248 
Эмали: МЛ-169, МЛ-242, МЛ-729, МЛ-629, МЧ-13, МЧ-277, ФЛ-511 
Грунтовки: ГФ-089, МЛ-058, МЛ-064, МЧ-042
Разбавитель РКБ-2
ТУ 6-10-1037-75
Ксилол 
Бутиловый спирт

95
Мочевино- фармальдегид- ные Лак МЧ-52
Растворитель РП 
ТУ 6-10-1095-76
Ксилол 
Ацетон
75 25 Эпоксидные Грунтовка ЭП-057
Разбавитель РЭ-1В
ГОСТ 18187-72
Сольвент
Бутиловый спирт
Диацетоновый спирт
70 20 10 12-18 Меламино- алкидные, меломинофор- мальдегидные Грунтовка МЧ-042 
Эмали: МЛ-152, МЛ-12, МЛ-242 
Лак МЧ-52
Разбавитель РЭ-2В
ГОСТ 18187-72
Сольвент
Бутилацетат
Этилцеллозольв
60 20 20 12-18 То же Грунтовка: МЧ-042 
Эмали: МЛ-152, МЛ-12, МЛ-242, МЛ-1214
Разбавитель РЭ-3В
ГОСТ 18187-72
Сольвент
Бутиловый спирт
Этилцеллозольв
50 30 20 18-24 Пентафталевые, глифталевые, меламиноалкид- ные Эмали: ГФ-571, МЛ-152, ПФ-223
Разбавитель РЭ-4В
ГОСТ 18187-72
Сольвент
Этилцеллозольв
30 70 18-24 Пентафталевые, глифталевые, мочевинофор- мальдегидные Лак МЧ-52 Эмали: МЛ-152, ГФ-1426, ПФ-115, ПФ-133, ПФ-223
Разбавитель РЭ-5В
ГОСТ 18187-72
Ксилол 
Диацетоновый спирт 
Этилцеллозольв
Бутиловый спирт
40 
25 

25 
10

16-22 Перхлорвинило- вые Эмали: ХВ-113, ХВ-238, ХС-119, ХВ-124
Разбавитель РЭ-6В
ГОСТ 18187-72
Сольвент 
Диацетоновый спирт 
Ксилол
50 
15 

35

16-22 Эмаль ХВ-124
Разбавитель РЭ-7В
ГОСТ 18187-72
Ксилол
Бутилацетат
Диацетоновый спирт
Циклогексанон
60 
25 
10 

5

12-18 Нитрацеллюлоз- ные Лаки: НЦ-241, НЦ-258
Разбавитель РЭ-8В
ГОСТ 18187-72
Ксилол
Бутиловый спирт
25 75 18-26 Алкидности- рольные Эмаль МС-17
Разбавитель РЭ-9В
ГОСТ 18187-72
Сольвент
Бутиловый спирт
Этилцеллозольв
50 30 20 14-20 Полиэфиракри- латные Эмаль ПЭ-126
Разбавитель РЭ-10В
ГОСТ 18187-72
Сольвент
Бутилацетат
Этилцеллозольв
40 40 20 20-26 Маслянные краски, густотертые белила на природных неорганических пигментах
Разбавитель РЭ-11В
ТУ 6-10-875-72
Этилацетат 
Этилцеллозольв
Циклогексанон 
Ксилол
20 30 10 40 18-24 Эпоксидные Грунтовка ЭФ-083 
Эмаль ФЛ-777
Растворитель РЭС-5107
ТУ 6-10-1816-81
Бутилацетат 
Толуол 
Ксилол
17 66 17 5,0-9,0 Сополимер винилхлорида с винилацетатом Эмаль ХС-5107
 

nikart74.ru

10Сен

Принцип работы оппозитного двигателя: принцип работы, плюсы и минусы

принцип работы, плюсы и минусы

После создания первого в мире двигателя внутреннего сгорания, возникла необходимость его усовершенствования и повышения мощности. Когда решение в виде увеличения количества цилиндров себя исчерпало, начались поиски оптимального расположения цилиндров в силовом агрегате. Одним из самых удачных вариантов стало их горизонтальное расположение, а двигатель подобной конструкции стал называться оппозитным.

Устройство и принцип работы оппозитного двигателя

Главной отличительной чертой оппозитного двигателя выступает расположение поршней, угол между которыми равен 180о. То есть движение в нем пар поршней происходит в горизонтальной плоскости. У каждой пары есть свой газораспределительный вал, который вместе с клапанами, в отличие от привычного рядного двигателя, расположены горизонтально. Такой тип мотора широко применяется на автомобилях производителей Volkswagen Group и SUBARU, ими были оснащены советские мотоциклы «Урал» и «Днепр», автобус «Икарус».

Горизонтальное расположение цилиндров позволяет снизить вибрации, взаимно их компенсируя, и достичь более плавного хода. В результате двигатель обладает способностью плавно наращивать мощность без заметных рывков, при этом не так быстро изнашиваться. Оппозитный двигатель находится в автомобиле возле шасси, что перемещает центр тяжести ниже, тем самым повышает устойчивость и управляемость транспортного средства.

Оппозитные двигатели выпускаются в бензиновом и дизельном исполнении. В современных вариантах таких силовых агрегатов для достижения максимального крутящего момента, экономного расхода топлива и экологичности, используют следующие технические решения:

  1. Уменьшенный объем камеры сгорания, повышающий степень сжатия.
  2. Применение технологии ковки при изготовлении деталей поршневой группы, что уменьшает их вес.
  3. Применение технологий изменения газораспределительных фаз.
  4. Использование нового типа масляного насоса, благодаря которому смазка двигателя выполняется более качественно.
  5. Конструктивно новая система охлаждения, имеющая 2 контура: отдельный контур блока цилиндров и его головки.

Типы оппозитных двигателей

Оппозитный двигатель с момента создания совершенствовался более 70 лет, что привело к появлению его следующих модификаций:

1. Boxer – фирменная разработка Субару. Отличается равным удалением поршней друг от друга: когда один расположен в ВМТ, второй находится в нижней.

2. ОРОС. В течение длительного периода не был востребован, но в последнее время двигатель устанавливается на автомобили и усовершенствуется. В конструкции применен один коленвал, а в каждом цилиндре работает 2 поршня, работающих навстречу друг другу.

3. Танковый ТДФ. Используется на танках, разработанных в СССР. Это двухтактный двигатель, применяющийся только на военной технике.

Оппозитный двигатель: плюсы и минусы

Главные преимущества оппозитного двигателя:

  1. Сбалансированная работа и высокий КПД. Это обусловлено расположением поршней по горизонтали, когда они друг другу обеспечивают противовес. Самой эффективной моделью такого двигателя в плане управляемости и баланса считается оппозитная шестерка.
  2. Низкий центр тяжести в автомобиле, повышающий его устойчивость. Такое преимущество не слишком полезно городскому автомобилю, но очень нужно спортивным авто, для которых жизненно важна устойчивость на высокой скорости.
  3. Высокая надежность и долговечность. Большинство из оппозитных моторов способны проработать до капремонта 500 тыс. км, что намного выше ресурса работы двигателей многих бюджетных автомобилей, в том числе Фольксвагена.
  4. Соответствие высоким стандартам пассивной безопасности. В случае лобового столкновения такой двигатель смещается вниз, не нанося вреда пассажирам и водителю.

Слабые стороны оппозитов:

  1. Конструктивные особенности агрегата, делающие ремонт слишком дорогим. Для обслуживания такого двигателя требуется высокий профессионализм мастера, а также использование специального оборудования.
  2. Большие габариты двигателя позволяют его устанавливать только в продольном направлении.
  3. Высокий расход масла, обусловленный сложностью конструкции.

Сложности при ремонте и обслуживании оппозитного двигателя

Все преимущества оппозитного двигателя полностью раскрываются в шестицилиндровом варианте его исполнения. Агрегаты с меньшим количеством цилиндров по характеристикам практически такие, как и традиционные. Главной проблемой владельца автомобиля с оппозитом будет сложность обслуживания, обусловленная горизонтальным расположением цилиндра и малым по этой причине свободным пространством под капотом.

Водитель самостоятельно способен заменить в нем масло, а остальные виды работ возможно проделать только в автоцентре. Так, простая замена свечей должна проводиться квалифицированным специалистом, а новичок, выполняя эту операцию самостоятельно, способен повредить головку блока цилиндров. В случае неполадки, ремонт такого двигателя следует производить также на специализированном СТО.

Единственно, что можно с успехом проводить самостоятельно, это бороться с нагаром на деталях поршневой группы и камере сгорания, который образуется при использовании некачественного топлива, езде без нагрузки и на холодном двигателе. Для этого применяется методика удаления нагара, именуемая раскоксовкой, которую делят на мягкую и жесткую. При жесткой через отверстие от вывернутой свечи на 12 часов заливают смягчающую жидкость, разрушающую нагар.

Для оппозитного двигателя такой метод не годится, так как выкручивание в нем свечей – процедура достаточно проблематичная, требует навыков и наличия специального инструмента. Но можно применить мягкую очистку в виде специальной очищающей присадки к маслу. Пробега 200 км будет вполне достаточно для ее действия, после чего масло в силовом агрегате необходимо заменить.

Если на вашем субару пинается коробка автомат, это не всегда предвещает дорогостоящий ремонт.

Перспективы применения оппозитных двигателей

Самые известные автопроизводители, использующие в выпускаемых моделях оппозитный двигатель – это Porsche и Subaru. Первый переживает период расцвета, а второй не лучшие времена. Это связано с нацеленностью продукции на разную целевую аудиторию: в первом случае автомобили Порш позиционируются как элитная продукция, подразумевающая высокую технологичность и стоимость обслуживания, и во втором – машины среднего класса для любителей иметь гоночные технологии на обычном авто.

За Porsche клиенты готовы отдать достаточно большие суммы денег, но автомобилю с двигателем, немного превышающим по мощности 100 л. с., которому после пробега 130 тыс. км. потребуется дорогой ремонт, особенно если он турбированный, могут отдать предпочтение только самые преданные клиенты. Но учитывая то, что усовершенствованием оппозитов занимаются многие фонды и разработчики, а также тот факт, что они применяются и в мототехнике, позволяет сохранять уверенность в том, что оппозитные двигатели еще долго будут актуальны.

типы, устройство и принцип работы

Оппозитный двигатель (оппозитный — [фр., англ, opposite] противоположный) представляет собой двигатель внутреннего сгорания, расположение цилиндров друг на против друга, то есть с противоположным расположением цилиндров. Принцип работы прост, когда один цилиндр находиться на крайней мёртвой точке, второй цилиндр находиться на противоположной мёртвой точке параллельно ему, под углом 180 градусов. Оппозитный двигатель может быть дизельный и бензиновый.

Схема работы оппозитного двигателя

Самые первые двигатели такого типа устанавливались на венгерский автобус «Икарус» и мотоциклы, также такой тип расположения цилиндров получил обширное применение для военной техники, устанавливались на машины BMW и лишь, потом получили огромный спрос со стороны Porsche и Subaru. Субару используют двигатели такого типа работы очень активно, у их авто можно встретить как дизельный, так и бензиновый вариант.

Основные типы оппозитных двигателей

ОРОС

Оппозитный двигатель типа ОРОС очень сложен в своём устройстве, имеет один коленвал, но при этом два поршня работают в одном цилиндре, которые движутся на встречу друг друга. Такое усложнение привело к закрытию работы над ОРОСом, но недавно благодаря спонсорской помощи разработка возобновлена в поисках альтернативных решений.

5ТДФ

Принцип работы у двигателей такого типа не всегда одинаковый. Второй оппозитный двигатель 5ТДФ, имеет огромное различие от забытого ОРОС или популярного аналога Subaru «боксер» который мы ещё рассмотрим. В 5ДТФ как и в ОРОС два поршня работают в одном цилиндре двигаясь на встречу друг другу, но имеет два коленвала, которые располагаются на местах головки субаровского «боксера». В момент достижения крайней мёртвой точки между двумя поршнями остаётся пространство, называемой как у дизельных, так и у бензиновых систем камерой сгорания, отличие лишь в способе подаче. Тут дело в том, что оппозитный двигатель 5ДТФ двухтактный, в то время как ОРОС и «боксер» четырёхтактные, естественно газообмен происходит как у двухтактного. Активное применение двух коленвальчетый дизельный 5ДТФ получил на танках Т-64, но после завершения их производство от него всё больше отказываются в пользу других двигателей. Такое положение дел могло быть и у «боксера» если бы не Субару.

Боксер

Самый востребованный и часто используемый оппозитный двигатель «боксер» эволюционирует и до сих пор совершенствуется только благодаря Subaru, которые ставят его практически на все машины. В «боксере» стоит один кривошиповый коленвал ровно по его середине, такое расположение коленвала даёт возможность равномерно распределить массу двигателя. Количество цилиндровот четырёх до двенадцати, самый лучший из двигателей «боксер» имеет шесть цилиндров. Это и не удивительно ведь такое количество цилиндров оптимально для всех типов двигателей. Расположение коленвала повлияла не только на массу и размеры двигателя, но и на его пониженную рабочую вибрацию, понизить которую помогают так же специальные крепления. Повышением мощности в таких двигателях занимается турбина, двигатели без неё работали бы на 30 процентов хуже.

Принцип действия типа «боксер»:

  • Принцип работы типа «Боксер»

Теперь мы понимаем, принцип работы, какие оппозитные двигатели бывают, но так ли они хороши?

Разрушение мифов

Самая главная цель, так и не была достигнута, размеры оппозитного двигателя отличаются от обычного V-образного настолько слабо, что гордиться этим не приходится, а расположение не чего не меняет. Вот и выходит, что плюсы и минусы будем искать в другом, да и не важно это для автолюбителей, мало или много место, под капот умещается и значит всё хорошо.

Оппозитный двигатель Subaru WRC

Достоинства

Но плюсы оппозитного двигателя действительно радуют:

    Улучшенная управляемость машины, это достигается благодаря смешению центру тяжести, масса имеет
  • расположение около оси и машина действительно ведёт себя более послушно. Для многих автолюбителей, особенно в России это очень важно.
  • Повышенный комфорт, достигается за счёт уменьшенной вибрации двигателя, которая не переходит к другим частям автомобиля.
  • Повышенный ресурс износа, самый главный плюс двигателей такого типа. Жизнь рассчитана больше чем на миллион километров.

Сравнение устойчивости автомобилей с разными типами двигателей

Недостатки

Но и минусы заставляют задуматься:

  • Повышенное потребление топлива, если взять два автомобиля, один с оппозитником а другой с V-образным примерно одинаковой мощности, расход на 100 километров у оппозитного двигателя будет примерно на пять литров больше.
  • Повышенный расход масла, двигатели других типов «едят» в разы меньше масла.
  • Дорогостоящий ремонт двигателя, это касается не только стоимости процедуры, но и стоимости запасных частей для вашего двигателя.
  • Поиски станции, даже если у вас и будут деньги на ремонт и запчасти, не каждый мастер возьмется за столь сложный двигатель.

Оппозитный двигатель Subaru Tribeca

Получается, что все минусы касаются именно вашего кошелька, все вопросы лишь в том готовы ли вы отдать за это деньги. Но качество не оспаривается, именно по этому, нужно задуматься, лучше платить много раз по малу или не заплатить вовсе не когда.

Оппозитный двигатель Subaru Impreza

Поломка двигателя это большая редкость для двигателей и с меньшой работа способность, что уж говорить о «боксере», рассчитанным на миллион километров лучшими инженерами Fuji Heavy Indastries Ltd, специально для Subaru. Не знаю, зависит ли это от этого или нет, но Subaru не собираются отказываться от своих двигателей ещё очень долгое время и судя по их продажам людей это вполне устраивает. Такая позиция в первую очередь основывается на мнение, что отказ от оппозитного двигателя станет огромным шагом назад.

  • Принцип работы

принцип работы, плюсы и минусы

Оппозитный двигатель — это не просто техника, которая опередила свое время, а на самом деле решение многих задач, которые не способны решить многие современные традиционные двигатели.

Что такое оппозитный двигатель? Видео

Оппозитный двигатель представлен особым типом силовой установки, которая напоминает сама по себе традиционный двигатель, однако цилиндры при этом расположены – горизонтально. В простонародье данный мотор получил название «боксер». Это обусловлено движением поршней друг от друга, либо же друг другу, навстречу. Однако, при этом два поршня находятся в одинаковом положении.

Оппозитный двигатель. Фото

Первым образцом является двигатель от компании Volkswagen в 1938 году. В то время агрегат состоял из 4-цилиндрового «оппозитника» объемом 2 литра, мощностью 150 лошадиных сил. После этого мотор приобрел популярность и начал широко использоваться.

Оппозитный двигатель Субару

На сегодняшний день оппозитные двигатели производят и устанавливают компании Subaru и Porsche. До недавнего времени такую участь также разделяли и Toyota, Honda, Ferrari, и само собой, родоначальник оппозитных моторов – Volkswagen. Подобные установки можно заметить не только в мотоциклах, автобусах фирмы Икарус, но и в некоторых танках.

Видео про оппозитный двигатель Субару:

 

Принцип работы оппозитного двигателя. Видео

Чтобы сформировать окончательную картину о том, что же из себя представляет оппозитный двигатель, следует разобраться в его строении. Повторим то же, что было сказано ранее – это ДВС, которому свойственна одна особенность – движение пары поршней производится в горизонтальной плоскости. Вторая же пара по соседству находится также в горизонтальном положении.

Общая сумма таких цилиндров может достигать 12, начинается, конечно же, отсчет с 2. Количество обязательно будет кратно двум. Наиболее популярными образцами являются 4 и 6 цилиндров. Опытные механики и профессионалы отметили, что схема работы 2-х и 4-х цилиндрового оппозитника не слишком то и отличается от традиционного двигателя. Особенности начинают проявляться начиная с шести цилиндров.

Видео принципа работы оппозитного двигателя  Субару:

 

Разновидность оппозитных двигателей

Не будет новостью, что сам принцип работы зависит от особенности вида агрегата. Это относится и к оппозитным двигателям.

Они делятся на:

  1. Оппозитные боксер, которые часто применяются в автомобилях марки Subaru. Что касается принципа их работы, то следует сказать, что поршни при этом располагаются за заранее определенной дистанции друг от друга, на одинаковом расстоянии от оси двигателя. Но при этом каждый поршень расположен отдельно друг от друга в цилиндрах. Данный принцип работы схож с поединков в боксе, откуда, собственно, и название;

    Оппозитный двигатель — боксер. Фото

  2. ОРОС кардинально отличается от боксера, как строением, так и последовательностью работы поршней. Данные агрегаты относятся к двухтактным. Один из цилиндров расположен сразу за двумя поршнями, которые прикреплены к единому коленчатому валу. Один из них ответственный за впуск смеси, второй – за своевременность выхода продуктов сгорания. В данной конструкции отсутствует головка, которая в большинстве случаев имеется на блоке цилиндра. К преимуществам ОРОС двигателей относится то, что поршни «работают на один коленчатый вал». Именно это позволяет создавать эти двигатели небольших размеров и массой. Из этого вытекает более широкая сфера их применения. Также этот двигатель одинаково работает что на дизельном топливе, что на бензиновом. При всем при этом поршни проходят гораздо меньше расстояние, в связи с чем сила трения в разы меньше, что продлевает жизнь двигателя. А еще, учитывая то, что он обладает меньшим размером и массой, следовательно, для его изготовления требуется в раза два меньше деталей. Это позволяет сэкономить средства. Общим недостатком ОРОС двигателей является то, что они не так давно были разработаны и по сей день совершенствуются. Из-за этого не стоит исключать непредвиденные проблемы в процессе его эксплуатации;

    ОРОС двигатель оппозитный. Фото

  3. Танковые двигатели. Оппозитный двигатель рассчитан также и на работу военной техники, имеющую крупные габариты. Поршни при этом делят один цилиндр и двигаются в одном и том же направлении, однако каждый имеет свой коленчатый вал. Камера сгорания создается в тот момент минимального расстояния между поршнями. Сходством с ОРОС является то, что в сами цилиндры входит воздух, а излишние газы с помощью турбонаддува удаляются. Данная силовая установка обладает мощностью в 700 лошадиных сил, предельное количество оборотов – 2000. Объем при этом равен шести, либо тринадцати литрам.

    Танковый оппозитный двигатель. Фото

Плюсы оппозитных двигателей

Вне зависимости от вида мотора, оппозитные двигатели имеют общие достоинства, среди которых можно выделить:

Минусы оппозитных двигателей

Разумеется, в мире нет ничего идеального, что можно сказать и о оппозитных двигателях. К недостаткам относятся:

  • Весьма большая сумма на обслуживание, которое требует вмешательство профессионалов;
  • Большая стоимость запчастей;
  • Сложность всей конструкции в целом;
  • Более высокая затрата масла при работе.

Но даже учитывая вышеперечисленные минусы, многим производителям это не мешает устанавливать оппозитные двигатели на свои автомобили. Перед этим происходит взвешивание всех плюсов и минусов.

Главный из плюсов является больше возможностей и шире перспективы. Ведь, по сути, все недостатки упираются в денежные средства. Однако, большая часть людей осознает тот факт, что за хорошее качество требуется отдавать больше денег. К тому же, использование оппозитных двигателей является следующей ступенью в технологическом развитии.

 

Различия между оппозитным и рядным четырехцилиндровым двигателем

Сейчас мы будем говорить об общих чертах и отличительных особенностях рядных и оппозитных четырёхцилиндровых двигателях Boxer Four и Straight Four. А так же об их плюсах и минусах. Ниже короткое видео где подробно все описано.

Различия между оппозитным и рядным четырехцилиндровым двигателем. Видео

  1. Обе конструкции работают по принципу четырёхтактного цикла — пуск, сжатие, рабочий ход и выпуск.
  2. В обеих конструкциях рабочий ход происходит каждые 180 градусов поворота количества валов, но у них немного разный порядок зажигания.
  3. На каждом двигателе мы видим мы видим цилиндры под номерами 1, 2, 3, 4. Для оппозитных порядок зажигания 1, 3, 2, 4., а для рядной 1, 3, 4, 2. Так что порядок работы двух последних цилиндров поменян. Эта разница влияет на то как двигатель сбалансирован. У оппозитного двигателя пары цилиндров, наружу и во внутрь, двигаются вместе. Это значит, что сила инерции первого порядка, которая возникает, когда поршень достигает верхне или нижней мёртвой точки взаимокомпенсируются. С рядным четырёхтактном двигателем та же история — силы инерции первого порядка взаимокомпенсируют друг друга, что касается силы инерции второго порядка — здесь двигатели начинают отличаться. Силы инерции второго порядка создаются за счёт того, что поршень движется быстрее верхней части цилиндра, чем в нижней. Когда поршень достигает максимальной или минимальной мёртвой точки, силы инерции второго порядка направлены вверх или вниз от поршня. У оппозитного двигателя, поскольку поршни расположены напротив друг друга, эти силы инерции сбалансированы, что обеспечивает ровную работу двигателя. В рядный четырёхцилиндровой установке все силы направлены в одном направлении, из-за чего двигатель начинает вибрировать, если не использовать балансировочные валы.

Но всё-таки оппозитный двигатель не идеален, из-за того что поршни находятся не на одной линии друг с другом создаётся крутящий момент, который способствует вращению двигателя по вертикальной оси.

КСТАТИ ГОВОРЯ! Если добавить по два цилиндра к любой из конструкций, будь это оппозитная или рядная шестёрка, все силы инерции крутящего момента будут скомпенсированы.

Вы наверное подумали, что оппозитная шестёрка будет иметь вибрации из-за группы 3-х поршней, но каждая группа из трёх поршней балансирует вибрацию другой группы. Если сравнить размеры двигателей Subaru EJ20 2.0L Boxer-4 и Toyota 22R-E 2.0L Inline-4, то они практически одинаковые, с такой конфигурацией двигатели обычно не выполняют объёма более трёх литров, но раньше их выпускали гораздо большего объёма.

Самая большая современная рядная четвёрка — это бензиновый двигатель от автомобиля Toyota Tacoma, объёмом 2,7 литров.

Но это не значит, что рядная четвёрка не имеет своих преимуществ:

  1. Как правило, она более компактная, имеет только одну крышку цилиндров и не такая широкая. Что оставляет больше места для подвески и позволяет уменьшить радиус поворота, так как шины автомобиля имеют больше места для поворота.
  2. Что касается газораспределительного механизма, эта конкретная рядная четвёрка имеет один распредвал с верхним расположением, но чаще в современных автомобилях встречается два распредвала.
  3. Большим преимуществом рядной четвёрки является, то что она имеет только одну головку цилиндра, один впускной и один выпускной распредвал, меньше движущихся частей, меньше веса, а так же намного проще добраться до колодки цилиндра для обслуживания, будь это регулировка клапанов, или замена свеч с рядной конфигурацией — это сделать намного проще.

Наконец мы добрались до темы звучания двигателей. Многие люди утверждают, что оппозитные двигатели звучат лучше, но на самом деле это не преимущество. Этот звук связан с тем, что выхлопные патрубки имеют разную длину.

И так как Субару отказались от данной конструкции выхлопа, новые оппозитные четвёрки будут звучать так же как и остальные четырёхцилиндровые двигатели. Конечно можно создать выхлопную систему с патрубками, которые имеют разную длину, для получения уникального звука выхлопа. Но это может ухудшить продувку цилиндра из-за неравных пульсаций, да и особого смысла в этом нет. Однако, что касается оппозитного двигателя, установка патрубков с разной длинной кажется привлекательной.

Сложности ремонта и обслуживания оппозитных двигателей

Как было сказано ранее, если требуется провести какие-либо манипуляции на двигателе, без помощи специалиста не обойтись. В оппозиционном двигателей без последствий получится собственноручно произвести лишь  замену масла.

Одним из факторов, который имеет значительное влияние на срок службы – это вовремя и систематично проведенная раскоксовка. При этой процедуре производится очистка камеры сгорания, клапанов и поршней от скопившегося нагара. Лучше всего данную процедуру проводить осенью, либо в начале весны. Именно в этот период будет разумным и проверка масла с его сменной.

Оппозитный двигатель – выигрывают ли его обладатели?

Для того чтобы переместить центр тяжести автомобиля как можно ниже и снизить уровень вибрации, конструкторами в свое время был разработан оппозитный двигатель, плюсы и минусы которого будут рассмотрены в данной статье. Что он собой представляет и в чем его отличие от общепринятых конструкций силовых агрегатов?

Устройство оппозитного двигателя и принцип работы

Основное отличие данного типа V-образных моторов заключается в особенностях расположения поршней, которые находятся под углом 180о, что позволяет добиться более плавной работы двигателя, по сравнению с аналогами. Наиболее широкое применение этот тип моторов получил в производстве автомобилей Volkswagen, Subaru, отечественных мотоциклов «Днепр», «Урал» и венгерских автобусов «Икарус», на которых устанавливается оппозитный дизельный двигатель.

Горизонтальное расположение цилиндров позволяет значительно снизить вибрацию и достичь плавности хода. Это возможно благодаря тому, что при движении поршней в противоположных направлениях происходит взаимная нейтрализация вибрации, и набор мощности осуществляется плавно, без заметных рывков. К тому же, износ двигателя происходит не так интенсивно.

Оригинальное устройство оппозитного двигателя положительно влияет на устойчивость и управляемость автомобиля, поскольку мотор с горизонтальным расположением цилиндров гораздо проще разместить ближе к шасси. В результате чего центр тяжести смещается максимально низко. Автолюбителям, которые хотят подробно ознакомиться с тем, какой имеет оппозитный двигатель принцип работы, видеоматериалы нашего сайта помогут это сделать в полном объеме.

Оппозитный двигатель – сложность ремонта

Следует сказать, что преимущества оппозитного двигателя проявляются, в основном, на шестицилиндровых моторах. А вот работа четырех и двухцилиндровых оппозитников практически ничем не отличается от стандартных рядных силовых агрегатов. Что касается недостатков, то в первую очередь они заключаются в сложности обслуживания. К тому же, из-за горизонтального расположения цилиндров двигатель занимает в моторном отсеке слишком много места.

Самостоятельное обслуживание оппозитных двигателей предусматривает лишь замену масла. Все остальные работы требуют применения специального оборудования и поэтому проводятся в автоцентрах. Например, даже замена свечей зажигания требует определенных навыков, без которых можно легко повредить головку цилиндров.

Ремонт оппозитного двигателя, как и любого другого, проводится лишь на станциях технического обслуживания. Для продления ресурса мотора необходимо регулярно проводить его раскоксовку. Работа заключается в удалении нагара с поверхности поршней, клапанов и камеры сгорания. Проводить ее рекомендуют перед началом сезона, то есть весной или ранней осенью, что обычно по срокам совпадает с заменой моторного масла.


Ремонт оппозитного двигателя своими силами

Если на рядных двигателях очистку можно провести самостоятельно, то V-образные, в особенности оппозитные, требуют участия специалистов технических центров обслуживания. Что же служит причиной интенсивного образования нагара? Вот основные факторы, которые приводят к закоксовыванию камеры сгорания:

  • Использование топлива низкого качества – в результате на поверхности поршней и стенках цилиндров происходит интенсивное образование слоя нагара и различных углеродистых отложений.
  • Езда на автомобиле с непрогретым двигателем, без нагрузки и на малых оборотах.

Существует два способа удаления нагара: мягкая и жесткая раскоксовка цилиндров. При мягкой проводится лишь очистка поршневых колец. Для этого в моторное масло добавляется специальный очищающий состав, а после 200 км пробега проводится его замена. Жесткая раскоксовка подразумевает механическую очистку камеры сгорания, поверхности поршней и клапанов через свечное отверстие. Технология довольно проста: в каждый цилиндр на 12 часов заливается специальная жидкость, которая размягчает нагар.

По истечении времени свечи выкручиваются, а жидкость удаляют путем прокрутки двигателя стартером. После этой процедуры мотор прогревают и проводят замену масла. Сложность в очистке цилиндров оппозитного двигателя заключается в том, что из-за их горизонтального расположения возникают затруднения с заливкой очищающей жидкости. К тому же, опустившись вниз, она будет воздействовать лишь на нижнюю часть цилиндров.

Оцените статью: Поделитесь с друзьями!

Оппозитный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Схема работы двигателя Различие между оппозитным (вверху) и V-образным с углом развала цилиндров 180 градусов (внизу) двигателями Двигатель UL260i

Оппозитный двигатель — поршневой двигатель внутреннего сгорания, в котором угол между рядами цилиндров составляет 180 градусов, а противостоящие поршни двигаются зеркально по отношению друг к другу (одновременно достигают верхней мёртвой точки). Следует отличать от V-образного двигателя с развалом цилиндров 180 градусов, в котором поршни двигаются синхронно (когда один поршень находится в верхней мёртвой точке, противостоящий ему находится в нижней).

Оппозитный двигатель лучше чем рядный с горизонтальным размещением цилиндров имеет более низкий центр тяжести, нежели двигатель, в котором цилиндры расположены вертикально или под углом, кроме того, оппозитное движение поршней позволяет им взаимно нейтрализовывать вибрации.

Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Käfer выпущенной за годы производства (с 1938 по 2003 год) в количестве 21 529 464 штук.

Компания Porsche использует его в большинстве своих спортивных и гоночных моделей, таких как Porsche 911, Porsche Boxster и другие.

Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru, который устанавливается практически во все модели Subaru c 1963 года. Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров.

Также устанавливался на румынские автомобили Oltcit Club (является точной копией Citroen Axel), с 1987 по 1993 годы. В производстве мотоциклов оппозитные двигатели нашли широкое применение в моделях фирмы BMW и Honda, а также в советских тяжёлых мотоциклах «Урал» и «Днепр».

Оппозитный двигатель устанавливался на некоторых моделях марки Alfa Romeo.

Ferrari 512 Testarossa ’1984–92 тоже имела оппозитный двигатель мощностью 400 сил, объем — 4,9 литра.

Ссылки

Реле давления масла в двигателе Принципы работы и диагностика

Реле давления масла

обычно используются в качестве исполнительного механизма, который непосредственно включает сигнальную лампу уровня масла на приборной панели водителя, когда давление масла в двигателе падает ниже заданного критического уровня или передает сигнал на ЭБУ (блок управления двигателем), чтобы предупредить о низком давлении моторного масла и предотвратить повреждение двигателя.

В зависимости от конструкции двигателя реле давления масла обычно находится в одном из наиболее распространенных мест: в блоке цилиндров двигателя или в корпусе масляного фильтра, а также на некоторых типах двигателей его можно найти в головке двигателя. .

Принципы работы

Переключатель приводится в действие самоупругой диафрагмой или подвижной диафрагмой с установленной волосковой пружиной, положение которой определяется приложенным к ней давлением. Необходимое критическое давление для перемещения диафрагмы вверх и активации (включения или выключения) контактов переключателя определяется давлением масла в двигателе. Это критическое значение давления масла индивидуально для каждого типа двигателя и может варьироваться. Обычное значение от 0,25 до 0.75 бар (3,5 — 11 фунтов на кв. Дюйм).

Если давление масла опускается ниже этого критического значения, переключатель непосредственно включает контрольную лампу масла на приборной панели водителя или в некоторых системах управления двигателем, переключатель возвращает сигнал в ЭБУ, чтобы предупредить о низком давлении моторного масла и предотвратить повреждение к двигателю. Контакты переключателя могут быть нормально разомкнутыми или нормально замкнутыми.

Рисунок 1. Реле давления моторного масла:
1. Шайба для уплотнения, 2. Диафрагма, 3.Корпус переключателя, 4. Разъем,
5. Контакты переключателя (A нормально разомкнутый, B нормально замкнутый), 6. Резьба для герметичности.

На рисунке 1 под (A) показан иллюстративный чертеж одного типа реле давления масла с нормально разомкнутыми контактами, а под (B) — одного типа переключателя с нормально замкнутыми контактами. Работа этих типов переключателей во всех случаях принципиально схожа, хотя тип, размер и конструкция могут варьироваться в зависимости от приложения производителя или требований используемой системы.

В переключателях с нормально разомкнутыми контактами, когда давление моторного масла достигает заданного критического уровня, вызывает движение диафрагмы и активирует контакты переключателя, так что контакты соединяются вместе, т.е. переключатель замыкается (включается). Выключатели с нормально замкнутыми контактами работают наоборот, когда давление моторного масла достигает заданного критического уровня, отключает уже подключенные контакты выключателя, поэтому теперь контакты разъединены, т.е.е. выключатель разомкнут (выключен).

Процедуры диагностики и тестирования

Переключатель с нормально разомкнутыми контактами

• Убедитесь, что между контактами нет обрыва при неработающем двигателе.
• Убедитесь в отсутствии короткого замыкания (непрерывности) между контактами при работающем двигателе.
• Проверьте целостность и состояние контактов, клемм и проводов.

Переключатель с нормально замкнутыми контактами

• Убедитесь в отсутствии короткого замыкания (непрерывности) между контактами при неработающем двигателе.
• Убедитесь в отсутствии обрыва цепи между контактами при работающем двигателе.
• Проверьте целостность и состояние контактов, клемм и проводов.

Процедуры тестирования с помощью мультиметра

Отсоедините разъем от реле давления масла и проверьте соединение между контактами. Если переключатель с двумя контактами, то проверка должна быть между контактами. В случае, если переключатель только с одним штырем, то проверка должна быть между штифтом и массой (отрицательный полюс).

Когда двигатель не работает , считываемое значение электрического сопротивления мультиметра в случае переключателя с нормально разомкнутыми контактами должно быть бесконечным (контакты отключены — выключены), а в случае переключателя с нормально замкнутыми контактами должно быть быть нулевым (контакты подключены — включены).

При работающем двигателе считываемое значение электрического сопротивления с мультиметра в случае переключателя с нормально разомкнутыми контактами должно быть равно нулю (контакты соединены — включены), а в случае переключателя с нормально замкнутыми контактами должно быть бесконечно (контакты отключены — выключены).

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Спасибо, что прочитали мой пост! Пожалуйста, оставьте свой отзыв.

Вам также могут быть интересны мои недавние сообщения:
• Разъем OBD-II и коды неисправностей
• Объяснение датчиков частоты вращения на индуктивном и эффекте Холла
• Система зажигания с индуктивным датчиком
• Система зажигания с датчиком на эффекте Холла
• Топливная форсунка Принципы работы и диагностика
• Основы и тестирование автомобильных реле
• Основы и испытания тормозной жидкости для автомобилей
• 6 советов по подготовке автомобиля к летнему вождению
• Что означают сигнальные огни на приборной панели?
• Маркировка шин легковых автомобилей и их значение

Разработано и опубликовано Кириллом Мучевски.
Инженер-автомобилестроитель с более чем 15-летним опытом работы в следующих областях:
• Диагностика, техническое обслуживание и ремонт автомобилей
• Помощь на дороге, обучение диагностике и устранению неисправностей автомобилей
• Сборка гоночных двигателей, модификация двигателей, разработка и Тестирование
• Исследования в области двигателей внутреннего сгорания, пропульсивного топлива, моторных масел и присадок
• Продажа шин и легкосплавных дисков, решение проблем с гарантией
• Написание и публикация технических книг, руководств и статей по автомобилестроению

Если вы хотите прочитать мои будущие сообщения, нажмите «Подписаться» или отправьте мне приглашение LinkedIn.Я рад расширить свою сеть LinkedIn новыми контактами.

Конструкция / принцип действия

4.7.1 Конструкция / принцип действия

Принцип работы одноступенчатых насосов Рутса. соответствует принципу работы многоступенчатых насосов, т.к. описано в главе 4.5. В вакуумном насосе Рутса два синхронно Роторы встречного вращения (4) бесконтактно вращаются в корпусе (рис. 4.16). Роторы имеют конфигурацию восьмерки и разделены друг от друга и от статора узким зазором.Их действующие принцип аналогичен шестеренному насосу с одним двухзубым каждая шестерня перекачивает газ от впускного отверстия (3) к выпускному порт (12). Один вал приводится в движение двигателем (1). Другой вал синхронизируется с помощью пары шестерен (6) в зубчатой ​​камере. Смазка ограничена двумя камерами подшипника и шестерни, которые изолированы от всасывающей камеры (8) лабиринтными уплотнениями (5) с компрессионные кольца. Потому что на всасывании нет трения камеры, вакуумный насос Рутса может работать на высоких скоростях вращения (1500 — 3000 об / мин).Отсутствие возвратно-поступательных масс также обеспечивает беспроблемную динамическую балансировку, что означает, что вакуум Корня насосы работают очень тихо, несмотря на свою высокую скорость.

Типовой проект

Подшипники вала ротора расположены в двух боковых крышках. Они есть спроектированы как неподвижные подшипники с одной стороны и как подвижные (свободные) подшипники с другой стороны, чтобы обеспечить неравномерное тепловое расширение корпуса и ротор. Подшипники смазываются маслом, которое вытесняется в подшипники и шестерни разбрызгивающими дисками.Проход карданного вала к снаружи в стандартных версиях уплотняется радиальными уплотнительными кольцами вала изготовлены из FPM, погруженного в уплотнительное масло. Чтобы защитить вал, уплотнительные кольца проходят по защитной втулке, которую можно заменить при изношенный. Если требуется герметичное уплотнение снаружи, насос также может приводиться в движение посредством муфты на постоянных магнитах с баллончиком. Этот конструкция обеспечивает уровень утечки $ Q_I $ менее 10 -6 Па · м 3 с -1 .

Характеристики насоса, нагрев

Так как насосы Рутса не имеют внутренней компрессии или выхода клапан, при открытии всасывающей камеры объем газа возвращается назад во всасывающую камеру и затем должен быть снова выпущен против давление на выходе. В результате этого эффекта, особенно в наличие высокого перепада давления между входом и выходом, a генерируется высокий уровень рассеивания энергии, что приводит к значительный нагрев насоса при малых расходах газа, которые только транспортируют низкое количество тепла.Вращающиеся поршни Рутса относительно трудно охладить по сравнению с корпусом, так как они практически с вакуумной изоляцией. Следовательно, они расширяются больше, чем корпус. Чтобы предотвратить контакт или захват, максимально возможное давление дифференциал, а также рассеиваемая энергия ограничены перепускной клапан (7). Он подключен к входной стороне, и давление сторона прокачиваемых каналов. Открывается нагруженная пластина клапана при превышении максимального перепада давления и позволяет большая или меньшая часть всасываемого газа течет обратно из сторона нагнетания к стороне входа, в зависимости от производительности.Из-за ограниченный перепад давления, стандартные насосы Рутса не могут разряд в зависимости от атмосферного давления и требует подкладочного насоса. Однако вакуумные насосы Рутса с перепускными клапанами могут быть включены. вместе с подкачивающим насосом даже при атмосферном давлении, таким образом увеличивая их скорость откачки с самого начала. Это сокращает время эвакуации.

Рисунок 4.16: Принцип работы насоса Рутса

Подвесные насосы

Одноступенчатые или двухступенчатые пластинчато-роторные насосы или внешняя пластина насосы используются в качестве маслосмазываемых форвакуумных насосов.Винтовые насосы или многоступенчатые насосы Рутса могут использоваться в качестве сухих реверсивных насосов. Насос такие комбинации могут использоваться для всех приложений с высокая скорость откачки в диапазоне низкого и среднего вакуума. Жидкое кольцо насосы также можно использовать в качестве форвакуумных насосов.

Насосы Рутса с газовым охлаждением

Чтобы вакуумные насосы Рутса работали против атмосферных давления, некоторые модели имеют газовое охлаждение и не имеют перепускных клапанов (Рисунок 4.17). В этом случае газ, выходящий из выпускного фланца (6) через охладитель (7) снова попадает в середину всасывающей камера (4). Этот искусственно созданный поток газа охлаждает насос, позволяя ему сжиматься против атмосферного давления. Вход газа есть управляется поршнями Рутса, что устраняет необходимость в каких-либо дополнительные клапаны. Нет возможности термической перегрузки даже при работе на предельном давлении.

Рисунок 4.17: Принцип работы насоса Рутса с газовым охлаждением

На рисунке 4.17 показано поперечное сечение системы охлаждения с газовым охлаждением. Вакуумный насос Рутса. Направление потока газа вертикальное сверху вниз. дно, позволяя жидким или твердым частицам захватывать впускное отверстие поток стечь вниз. На этапе I камера (3) открывается вращение поршней (1) и (2). Газ поступает в камеру через входной фланец (5) под давлением $ p_1 $.На этапе II камера (3) изолирована как от входного фланца, так и от фланец давления. Входное отверстие (4) для охлаждающего газа открыто. вращением поршней в фазе III. Камера (3) заполнена до выходного давления $ p_2 $, и газ продвигается к фланец давления. Первоначально объем всасывания не меняется с вращательное движение поршней Рутса. Газ сжимается поступающий охлаждающий газ. Поршень Рутса теперь продолжает вращаться (фаза IV), и это движение выталкивает уже сжатый газ через охладитель. (7) в сторону нагнетания (фаза V) при давлении $ p_2 $.

Насосы Рутса с газовым охлаждением могут использоваться в диапазоне входного давления от 130 до 1013 гПа. Потому что во всасывании нет смазки камеры, они не выпускают туман и не загрязняют среду, которая перекачивается. Последовательное соединение двух из этих насосов позволяет предельное давление снизить до 20–30 гПа. В комбинации с дополнительные вакуумные насосы Рутса, предельное давление может быть уменьшено до диапазон среднего вакуума.

Скорость откачки и степень сжатия

Характерные рабочие характеристики насосов Рутса: скорость и степень сжатия.Теоретическая скорость откачки $ S_ {th} = S_0 $ — объемный расход, который насос вытесняет без противодавление. Степень сжатия $ K_0 $ при работе без газа рабочий объем (входной фланец закрыт) зависит от выходного давления $ p_2 $. Диапазон скоростей откачки от 200 м 3 · ч -1 до нескольких тысяч м 3 · ч -1 . Типичный Значения $ K_0 $ находятся в диапазоне от 10 до 75.

Рисунок 4.18: Степень сжатия воздуха для корней без нагрузки насосы

На степень сжатия отрицательно влияют два эффекта:

  • Обратным током в зазоры между поршнем и корпусом
  • Газом, который осаждается при адсорбции на поверхностях поршень на выходной стороне и повторно десорбируется после поворота в направлении сторона всасывания.

В случае выходного давления от 10 -2 до 1 гПа молекулярная поток преобладает в зазорах уплотнения, что приводит к меньшему обратному потоку из-за их низкая проводимость.Однако объем перекачиваемого газа обратно через адсорбцию, которая относительно высока по сравнению с объем перекачиваемого газа снижает степень сжатия.

$ K_0 $ является самым высоким в диапазоне от 1 до 10 гПа, поскольку молекулярный поток все еще преобладает из-за низкого давления на входе в уплотнительные зазоры насоса, поэтому обратный поток невелик. Поскольку газ перенос за счет адсорбции не зависит от давления, он меньше важнее, чем пропорциональный давлению поток газа, который транспортируется по скорости откачки.

При давлениях выше 10 гПа ламинарный поток возникает в зазоры и проводимость зазоров значительно увеличиваются, что приводит к снижению степени сжатия. Этот эффект особенно заметно в насосах Рутса с газовым охлаждением, которые достигают степени сжатия всего приблизительно $ K_0 $ = 10.

Ширина зазора имеет большое влияние на степень сжатия. Из-за разного теплового расширения поршней и корпуса, однако они не должны опускаться ниже определенных минимальных значений, чтобы Избегайте контакта ротора со статором.

Почему поднятие тяжестей не увеличивает силу удара

Существует распространенное заблуждение, что поднятие тяжестей HEAVY гарантирует повышенную силу удара. Каждый месяц я вижу бесконечные электронные письма, форумы и веб-сайты, полные бойцов, пытающихся рационализировать преимущества весов для боя. Неудивительно, что многие из них написаны ребятами с ограниченным боевым опытом. Силовые тренировки МОГУТ построить мощные мышцы, но не гарантируют сильных ударов.

Я дам вам 5 причин, почему…

Мой опыт работы с гирями

В подростковом возрасте я поднимал тяжести по разным причинам — функциональным и эстетическим. В средней школе я поднимала тяжести, чтобы произвести впечатление на девочек (кстати, это не сработало). В старшей школе я следил за взрывными тренировками с отягощениями в легкой атлетике, чтобы увеличить свою силу спринта. После легкой атлетики я провел 5 лет в пауэрлифтинге, развивая свою силу и мощь с помощью интенсивных силовых тренировок.Во время фазы пауэрлифтинга я открыл для себя бокс.

Я ТОЖЕ думал, что мой пауэрлифтинг даст мне преимущество в боксе. Если поднятие тяжестей сделало меня более сильным лифтером, разве это не должно сделать меня более сильным панчером? Я слышал о боксерах старой школы, которые избегают весов, но я отказался отказаться от своего самопровозглашенного «преимущества». Сравнивая себя с другими новичками, я мог видеть, что я был сильнее их всех. Мой тренер по боксу и все профессиональные боксеры в зале посоветовали мне перестать поднимать тяжести.Все они оспаривали мои теории, подчеркивая, что веса делают меня медленным и жестким, а я быстрее устаю. Мне сказали, что бывшие чемпионы по боксу никогда не поднимали тяжести. И все же я сопротивлялся. Я не мог понять, как силовые упражнения могут быть важны для силового спорта!

Переломный момент наступил, когда я начал проигрывать спарринги более быстрым и худым парням. У них было стройное телосложение, но они били намного сильнее меня! Я все думал, что их техника лучше, или, может быть, я недостаточно долго боксировал.В конце концов, мне надоело проигрывать, и я решил подчиняться каждому слову тренера. Помимо прочего, я перестал заниматься с отягощениями и через несколько недель стал бить все быстрее и сильнее. Что меня шокировало, так это то, что я не только бил сильнее, но и улучшились мои боксерские навыки. Оглядываясь назад, я ясно вижу, что поднятие тяжестей действительно сдерживало меня. Это имеет большой смысл, если вы понимаете технику нанесения ударов.

Почему поднятие тяжестей не увеличивает силу удара

ПРИЧИНА №1 — Удар — это щелкающее движение, а НЕ толкающее движение

Поднятие тяжестей — это ТЯГА.

Вы прикладываете как можно больше силы и с максимальной последовательностью, чтобы поднять самый тяжелый вес, который вы можете. Во время толкающего движения объект перемещается, когда вы сначала устанавливаете контакт и прикладываете силу в течение относительно длительного периода времени.

Естественный прогресс в поднятии тяжестей — поднимать более тяжелые. Конечно, все стараются поднимать быстро, но как только они могут что-то поднять, следующим шагом будет поднять ТЯЖЕЛЕЕ. В центре внимания не скорость, а сила. К сожалению, многие начинающие бойцы ошибочно считают, что нанесение ударов руками — это одно и то же толкающее движение.Эти новички думают, что цель удара кулаком — толкнуть кулак с максимальной силой, чтобы как можно сильнее проникнуть в противника.

Примеры видов спорта с ТОЛКАЮЩИМИ движениями (все они также имеют щелкающие движения):

  • бег
  • гимнастика
  • футбол
  • борьба
  • тяжелая атлетика

Пробивка — это УДАРНОЕ ДВИЖЕНИЕ.

Щелкающее движение — это приложение как можно большей силы за минимальное время.Щелкающим движением вы ускоряете руку к объекту, а затем используете УДАР этого ускорения для приложения силы.

Предположим, вы хотите быстро ударить. Цель состояла в том, чтобы нанести удар по противнику как можно быстрее и вступить в контакт с противником за кратчайшее время. Удар — это не толчок, это быстрый взрыв, ускоренная сила, которая достигает максимальной мощности при контакте. При поднятии тяжестей вы можете потратить несколько секунд на то, чтобы напрячь свои силы.Ударяя противника кулаком, у вас нет этой роскоши времени — он должен почувствовать вашу силу, когда вы прикоснетесь к нему. Ваш кулак должен щелкнуть при ударе и быстро вернуться, чтобы вы могли наносить другие удары или возвращаться в защиту. Требование скорости удара кулаком увеличивает взрывной урон, который чувствует ваш противник. При поднятии тяжестей гораздо меньше внимания уделяется скорости, что стоит вам ВЗРЫВООПАСНОСТИ.

Примеры занятий спортом с УПРАВЛЯЮЩИМИ движениями:

  • теннис
  • бейсбол (удар, не бросок)
  • гольф
  • волейбол
  • БОКС!

Нажатие против привязки

Основное различие между толкающим движением и щелкающим движением — это время контакта и постоянство затраченной энергии.Сравните тела этих разных типов спортсменов. Если бы тяжелая атлетика улучшила щелкающие движения, разве профессиональные волейболисты не стали бы поднимать тяжести, чтобы бросать мяч сильнее? Если бы у тяжелоатлетов было преимущество в ударе, все они были бы сильными ударниками, верно?

Толчок определенно позволяет вам перемещать более тяжелые предметы, потому что у вас больше времени для приложения силы. Привязка позволяет вам применить большую взрывную силу (урон), потому что у вас есть свобода ускоряться. Можно сказать, что толкание — это как бросок бейсбольного мяча, а щелчок — как бросок в волейбол.Оба являются мощными движениями, но удары руками определенно больше похожи на щелчки, чем на толчки.

ПРИЧИНА № 2 — Мощные удары требуют расслабления, а НЕ сильных мышц

Многие бойцы не умеют бить…

Когда вы не умеете бить, все ваши удары превращаются в толчки. Без правильной техники все, что вы можете сделать, это использовать свою силу и мощь. Вот почему поднятие тяжестей помогло мне, как новичку, бить сильнее. Но разница была незначительной, я был в лучшем случае на 20% сильнее.Изучение правильной техники может утроить мою силу.

Так как же пробивать?

Я не буду сейчас вдаваться в подробности, но вот несколько простых концепций:

  1. Сила удара (нанесенный урон) = ускорение (скорость руки) x сила (сила мышц и вес тела)
  2. Вы бьете сильнее, используя больше скорости и силы.

Как увеличить мощность БЕЗ использования большего количества энергии?

А теперь вот трюк, чтобы ударить СЛОЖНО ЖЕСТКО.Есть 2 способа увеличить силу противника. Один из распространенных способов — потратить больше энергии. Логично, работает, но эффективно ли? НЕТ! Использование большего количества энергии увеличивает вашу силу удара, но не увеличивает эффект взрыва. Это похоже на более сильный толчок, и это не дает вашим ударам такого эффекта * BANG! *.

ДРУГОЙ способ (единственный) создать взрывную силу — это УМЕНЬШИТЬ «вес», чтобы ваш удар перемещался быстрее. Затем вы добавляете вес в самом конце удара, когда он приземляется — это делает ваши удары быстрее и расходует меньше энергии! Так что же такое «вес» и как его уменьшить? Вес в данном случае — это НАПРЯЖЕНИЕ в вашем теле! Чем больше напряжение и тяжелее ваше тело, тем тяжелее становится ваш ударный вес.Вы уменьшаете этот вес, РАССЛАБЛЯЯ ТЕЛО во время удара, позволяя вашему ударному весу свободно ускоряться по направлению к противнику. Прямо перед тем, как ваш удар приземлится, ваша ступня завершает поворот, ваше бедро вращается, а плечи поворачиваются, чтобы сформировать удар. В этот последний момент вам нужно только короткое компактное сокращение, чтобы все ваше тело (как резиновая лента) превратилось в один единый взрывной удар. Чем лучше вы расслабляете свое тело, тем сильнее вы будете!

Расслабьтесь, чтобы помочь защелке

Расслабляющие движения — критический аспект силы удара.

Расслабьте тело, расслабив мышцы. Это расслабляющее движение, это «расслабление» вашего тела позволяет вашему удару ускоряться быстрее, создавая гораздо более разрушительный взрыв, когда вы, наконец, прибавляете вес. Если подумать: ударное движение максимально расслабляет кулак по направлению к противнику, оставляя только последний момент удара для сокращения ваших мышц. Научитесь применять силу посредством расслабления, и вы овладеете 99% своей техники удара.

Конечно же, расслабление тела не означает, что тело может вертеться в воздухе. Используйте правильную форму удара, чтобы расслабить свое тело во время удара. Затем в самом конце сократите все мышцы одновременно, чтобы добавить веса к удару. Освоение этой доли секунды для удара всем телом одновременно — вот что делает удар невероятно мощным. (Наращивание мышечной силы бесполезно, если вы не можете заставить свое тело работать сразу.)

Взрывной удар — 99.99% щелчок и 0,01% толчок.

Поднятие тяжестей не научит вас расслабляться, а только замедлит ваше тело во время фазы сокращения удара. Если вы так привыкли прилагать силу в течение нескольких секунд, как вы сможете приложить максимальную силу всего за доли секунды? Простой ответ — вы не можете (или у вас не получится так хорошо).

Правильная штамповка требует щелкающего движения (приложения максимальной силы в кратчайшие сроки). К сожалению, большинство бойцов обучаются только правильной форме нанесения ударов, которой легко научить, потому что вы можете это видеть.С другой стороны, технику нужно чувствовать и обучать. Это особый навык, требующий сочетания времени и визуализации. Теперь вы понимаете, почему старый опытный боксер все еще может бить сильнее, чем молодой атлетичный ребенок. Это потому, что он научился расслаблять свое тело, а затем сокращать мышцы в нужный момент, чтобы создать взрывную силу.

Перфораторы для начинающих увеличивают мощность за счет усилия.
Опытные перфораторы увеличивают мощность за счет расслабления.

ПРИЧИНА № 3 — поднятие тяжестей может снизить способность расслабления мышц

Вот здесь и появляются старые аргументы против веса. Я уверен, что вы слышали их все раньше.

Грузоподъемность:

  • замедляет
  • делает вас жестким
  • утомляет быстрее

Это правда? Что ж, давайте подумаем о крайностях. Предположим, мне нужно было сравнить двух парней — один был тяжелоатлетом, а другой — танцором.Как их тела могут выглядеть иначе? Как их тела могут двигаться по-другому? Как вы думаете, какое тело лучше имитирует движения боксера?

В моем случае аргументы старой школы были верны. Пауэрлифтинг ограничивал мою скорость и выносливость, делая меня «окоченевшим». Я не чувствовал себя ущемленным против других новичков, но против опытных бойцов, все они были НАМНОГО быстрее и били сильнее и выносливее. Они не использовали никаких весов и умоляли меня сделать то же самое.

Предположим, вы не заботитесь о том, чтобы стать медленнее или иметь меньшую выносливость.Вы все равно должны учитывать вероятность того, что поднятие тяжестей может УНИЧТОЖИТЬ вашу способность расслабляться и, следовательно, вашу способность к силовым ударам. Даже небольшое снижение скорости может сделать разницу между приземленным ударом и пропущенным ударом. Быть более могущественным не стоит, если вы не можете поддерживать эту силу в течение целых 3 раундов.

Настоящая проблема с весами и борьбой

Я действительно не верю, что поднятие тяжестей делает вас жесткими. Может быть, это просто способствует неправильному отношению начинающих спортсменов.Большинство людей знают, как мощно двигаться, только напрягая мышцы, а не расслабляясь. Расслабление ради силы — понятие очень чуждое и требует времени для практики. Реальный риск подъема тяжестей заключается в том, что вы никогда не научитесь мощно двигаться, расслабляясь.

Поднятие тяжестей не учит вас расслабляться,
и не помогает практиковать этот тип движений.

ПРИЧИНА №4 — Вес ваших ударов — НЕ ваши мышцы

Поднятие тяжестей создает силу ИСТИННО от ваших мышц.Удар создает силу, преобразуя силу тяжести вашего тела в прямое воздействие. Конечно, вы могли бы попытаться создать силу удара, используя свои мышцы, но всем известно, что это неэффективное использование энергии. Я бы предпочел опускать свою 145-фунтовую раму 100 раз за раунд, чем пытаться генерировать 145 фунтов силы с каждым ударом по моим мышцам … вы понимаете, что я говорю?

Сила ваших ударов в основном зависит от веса вашего тела. Роль ваших мышц в ударной мощи состоит в том, чтобы утяжелить вес вашего тела и НАПРАВИТЬ СИЛУ на вашего противника.Ваши мышцы не должны создавать ударную силу, они просто сжимают ваше тело в компактный «вес» и направляют этот вес на вашего противника.

Визуализируйте это

Представьте, что вы хотите ударить по земле. Вместо прямого удара по земле вы бросаете гирю в воздух и используете свои мышцы, чтобы хлопать по этому весу, заставляя его быстрее падать на землю. Таким образом, вместо того, чтобы использовать мышцы, чтобы ударить противника, вы используете свои мышцы, чтобы хватать свое тело, чтобы ударить противника.

Альтернативная визуализация: представьте, что вы хотите, чтобы пушечное ядро ​​прыгнуло в воду и произвело большой всплеск. Вы можете быть настолько мускулистыми, насколько хотите, но вес вашего тела не меняется, и всплеск остается относительно прежним. Ваша способность расслабляться определяет, насколько высоко вы можете прыгнуть. Ваша сила мышц и техника определяют, насколько сильно вы сможете сжать себя в компактное пушечное ядро. Моя точка зрения такова: одна мышечная сила не может бить сильнее, чем вес вашего тела.

ПРИЧИНА № 5 — Ударная мощность не гарантирует нанесенный ущерб

Сила удара в сравнении с поврежденной доставкой

Размер нанесенного ущерба определяется по:

  • сила мышц (кондиционирование)
  • техника (умение)
  • угол (скилл)
  • точность (умение)
  • тайминги (навык)

Бокс — это соревнование по ударам, а не силовое соревнование.

Наличие мощных мускулов не гарантирует хорошего удара. У тебя должно быть умение. Вам нужна техника, угол, точность и время. Новички полагаются на грубую силу во время слагфестов, но опытные бойцы генерируют гораздо больше энергии, используя НАВЫКИ!

Ваши навыки составляют большую часть вашей ФУНКЦИОНАЛЬНОЙ силы удара, чем что-либо еще. Я могу бить в 3 раза сильнее, чем когда только начал заниматься боксом, и я уверен, что это не потому, что я в 3 раза сильнее. Если бы у меня было ограниченное количество часов на тренировку, я бы уделял приоритетное внимание развитию своих навыков.Бокс — это спорт, требующий навыков, поэтому вам нужны навыки, чтобы использовать свою силу. Если вы не заинтересованы только в том, чтобы похвастаться тяжелой сумкой, вам нужны навыки, чтобы использовать свою силу в драках.

Попробуйте поразить двустороннюю грушу своими самыми сильными ударами и используйте это как показатель своей функциональной ударной мощи. Если вы не можете ударить движущуюся сумку своей силой, вы, вероятно, не сможете поразить и живого противника. Хорошие противники двигаются больше как двусторонние мешки, чем тяжелые мешки.

Нельзя ли поднимать тяжести для бокса?

Я не говорю, что вы никогда не сможете поднимать тяжести для бокса.
Я только говорю: «поднятие тяжестей не увеличивает силу удара».

Есть десятки отличных применений для гирь. Есть хорошие упражнения для работы с разными группами мышц. Вы можете накачать поддерживающие мышцы с помощью небольших гантелей. Вы можете проработать определенные группы мышц, которые иначе трудно достичь с помощью художественной гимнастики (упражнений с собственным весом).

Ключ к любым эффективным упражнениям, будь то тяжелая атлетика или нет, — это развитие функциональной боксерской подготовки. Какое бы упражнение вы ни выполняли, убедитесь, что оно улучшает боксерские способности — это может означать увеличение физических возможностей или усиление контроля над моторикой или даже мышечной поддержки (снижение вероятности травмы).Внимательно посмотрите на тела большинства боксеров. Если благодаря упражнениям ваше тело выглядит иначе, возможно, вы развиваете неправильное телосложение для бокса.

ПРИМЕЧАНИЕ: те из вас, кто задается вопросом, стоит ли делать теневой бокс на высокой скорости, удерживая гантели, — это плохая идея. Это повреждает ваши суставы и не делает вас намного быстрее или сильнее. Это упражнение обычно выполняется профессионалами с использованием медленных движений для поддержки наращивания мышечной массы (не пробивать скорость / мощность).

Поднятие тяжестей может повлиять на вашу боеспособность

Я написал эту статью, потому что перепробовал десятки способов приспособить тяжелую атлетику к боксу.Какая-то часть меня всегда ищет все возможные преимущества, и я действительно думал, что у меня это есть в том, что я пауэрлифтер. Я был поражен таким количеством «более слабых» и менее сложенных панчеров, что у меня не было другого выбора, кроме как принять правду. Всегда будет кто-то, кто думает, что выходит за рамки правил (в том числе и я). Всегда найдется кто-то, кто думает, что они такие особенные, что их тело и «специальная подготовка» могут преодолеть простые факты о боксе. Худшая часть неправильного обучения — это однажды проснуться и понять, что вы сдерживаете свой прогресс.

По правде говоря, бокс — это спорт с быстрыми движениями. Бокс требует быстрых движений и многих из них. В одном бою могут быть сотни быстрых быстрых движений во всех направлениях. Поднятие тяжестей — это относительно медленное движение с относительно ограниченным диапазоном движений, что делает его менее эффективным для тренировок по боксу. Даже если поднятие тяжестей увеличило вашу силу удара, вам все равно лучше развивать свои навыки удара. Вы должны тренироваться как боксер, если хотите стать боксером.

Боксу тысячи лет, и весы — не новое изобретение. Если бы силовые тренировки нашли свое место в боксерских тренировках, они уже нашли бы широкое применение. Нет ничего нового в концепции использования силовых тренировок для развития силы. Вы можете дать ему новое имя или поменять нагрузки и повторения, но в этом нет ничего нового. Каждый преданный атлет всегда ищет новые способы улучшить свое тело, и можно поспорить, что тяжелые веса уже стали бы популярными, если бы они действительно были настолько эффективными.

Я знаю о недавних тренировках боксеров с отягощениями, но ни один из них не достиг такого уровня физической подготовки и мастерства, как это сделали старожилы. Подавляющее большинство тренированных боксеров и тренеров по-прежнему выступают против тяжелой атлетики. Исключения из этого правила немногочисленны. Я был в миллионах тренажерных залов и видел, как тренируются сотни профессионалов. По сей день я ни разу не видел, чтобы они использовали тяжелые веса. Прошу вас сходить в лучший боксерский зал, который вы можете найти, спросить главного тренера о весах и посмотреть, что он скажет.

*** Я понял, что многие люди категорически не согласны со мной по поводу этой статьи. И вам, ребята, я могу сказать только одно: веса могут быть полезны постепенно, но наибольший риск для развития вашей ударной силы будет заключаться в том, что вы позволите силе тяжелой атлетики замаскировать отсутствие эффективной техники удара. Причина, по которой я предпочитаю не поднимать тяжелые веса, заключается в том, что одна только моя техника удара дает мне силу, о которой я всегда мечтал. Я, безусловно, один из самых сильных панчеров в своем зале, и я не трогаю ни одного веса.Я еще не встречал ни одного смертоносного силового панчера, который утверждал, что его сила исходит от подъема тяжестей.

Причина, по которой некоторые люди бьют тяжелее с отягощениями, заключается в том, что они используют свою силу, чтобы компенсировать отсутствие эффективной техники. Если вы не знаете, как использовать вес своего тела, тогда, конечно … такие действия, как укрепление мышц и попытки протолкнуть противника кулаком, могут помочь. Сказать мне, что вам нужны веса, чтобы бить сильнее, — все равно что сказать, что вам нужен купальный костюм, чтобы быстро плавать (и, наоборот, без ЭТОГО вы не сможете).Я не спорю, что вес МОЖЕТ заставить меня бить сильнее … но правда в том, что я уже бью довольно сильно, как сейчас, потому что моя техника позволяет мне это делать.

Но, пожалуйста, делай уроки и не слушай меня. Спросите у лучших тренеров, таких как Фредди Роуч или Роджер Мэйвезер, насколько тяжелая атлетика влияет на силу удара. Поговорите с кем-нибудь, кто участвует в игре более 20, 30, 40 лет. Если вы хотите отбросить их ОПЫТ как «олдскульный» или «старомодный», что ж, во что бы то ни стало, сделайте это в свою пользу.Слушаю тренеров с лучшими бойцами.

Пожалуйста, не оставляйте комментарий, если вы собираетесь проявить эмоции и неуважительно по этому поводу. Я просто удалю его, и НИКТО (даже я) никогда не прочтет его. Люди становятся чувствительными, когда думают, что вы говорите им, что они неправы. Когда все, что я на самом деле делаю, это делюсь своим мнением … что должно быть причиной того, почему люди все равно приходят на этот сайт — чтобы услышать мое мнение.

Люди вкладывают столько души во что-то, что то, как они тренируются, становится их личностью, и они чувствуют себя обиженными, если это не соответствует тому, что кто-то считает «лучшим способом».Затем они начинают попытки рационализировать и оправдать свои действия. И чем больше я объясняю, почему то, что я делаю, на самом деле ЯВЛЯЕТСЯ «развитым и научным», тем больше они пытаются доказать, что я глуп / неопытен / отсталый.

И реальный ущерб состоит в том, что … согласны они со мной или нет … это их потеря, если они не попробуют то, что я говорю. Это их потеря, когда они не принимают во внимание разные мнения и взгляды.

10. Двигатели внутреннего сгорания Введение В этом разделе рассматриваются основные характеристики и принципы работы практических систем сгорания,

1 10.Двигатели внутреннего сгорания Введение В этом разделе будут рассмотрены основные характеристики и принципы работы практических систем сгорания, в основном двигателей внутреннего сгорания, которые преимущественно используются для движения. Будут описаны двигатели внешнего сгорания, но не будут обсуждаться. Различие между двигателями внутреннего и внешнего сгорания зависит от природы рабочего тела. 10. Двигатели внутреннего сгорания 1 AER 1304 ÖLG

2 Рабочая жидкость, как следует из названия, — производит работу, нажимая на поршень или лопатку турбины, которая, в свою очередь, вращает вал, или — работает как жидкость с большим импульсом, которая используется непосредственно для движущая сила.В двигателях внутреннего сгорания источником энергии является горючая смесь, а продуктами сгорания — рабочее тело. В двигателях внешнего сгорания продукты сгорания используются для нагрева второй жидкости, которая действует как рабочая жидкость. 10. Двигатели внутреннего сгорания 2 AER 1304 ÖLG

3 Согласно этому определению, это наиболее распространенные двигатели внутреннего сгорания: — Бензиновые двигатели (также известные как искровое зажигание, SI): однородный / слоистый заряд. — Дизельные двигатели (также известные как двигатели с воспламенением от сжатия, CI).- Двигатели HCCI (воспламенение от сжатия с однородным зарядом): в настоящее время разрабатываются. — Газотурбинные двигатели: авиационная силовая установка; стационарное производство энергии. — Химические ракеты. 10. Двигатели внутреннего сгорания 3 AER 1304 ÖLG

4 Примеры двигателей внешнего сгорания: — Паровые электростанции. — Домашние отопительные печи, работающие на газе или мазуте. — Двигатели Стирлинга. Что за двигатели следующие? — Солнечная электростанция. — Атомная электростанция. -Топливные элементы. — Ракетный электродвигатель.10. Двигатели внутреннего сгорания 4 AER 1304 ÖLG

5 Двигатели внутреннего сгорания Двигатели внутреннего сгорания с постоянным потоком: — Газовая турбина — Ramjet / Scramjet — Химические ракеты Двигатели внутреннего сгорания с неустановившимся потоком: — Непредмешанный заряд — Предварительный заряд — Стратифицированный заряд 10. Двигатели внутреннего сгорания 5 AER 1304 ÖLG

6 10. Двигатели внутреннего сгорания 6 AER 1304 ÖLG

7 Газотурбинные двигатели Авиационные реактивные двигатели: — Турбореактивные двигатели: все реактивные, кроме работ, необходимых для турбины, приводящей в действие компрессор.- Турбореактивные двухконтурные двигатели: парреактивный, приводной для привода вентилятора (в дополнение к компрессору). Вентилятор пропускает примерно в 5-6 раз больше воздуха вокруг сердечника двигателя. 10. Двигатели внутреннего сгорания 7 AER 1304 ÖLG

8 — Турбовинтовые двигатели: такие же, как и турбовентиляторные, но скорость воздушного потока через воздушный винт может в 25–30 раз превышать воздушный поток через основной двигатель. Турбовальные двигатели: — Промышленные стационарные двигатели, используемые для производства электроэнергии: выработка электроэнергии; управлять насосом.- Для управления винтом (вертолетом) или судовым винтом. 10. Двигатели внутреннего сгорания 8 AER 1304 ÖLG

9 10. Двигатели внутреннего сгорания 9 AER 1304 ÖLG

10 10. Двигатели внутреннего сгорания 10 AER 1304 ÖLG

11 Турбовальный двигатель. 10. Двигатели внутреннего сгорания 11 AER 1304 ÖLG

12 10. Двигатели внутреннего сгорания 12 AER 1304 ÖLG

13 Турбореактивный двигатель.10. Двигатели внутреннего сгорания 13 AER 1304 ÖLG

14 Внутреннее полное давление турбореактивного двигателя. 10. Двигатели внутреннего сгорания 14 AER 1304 ÖLG

15 Историческая тенденция изменения степени давления в двигателе. 10. Двигатели внутреннего сгорания 15 AER 1304 ÖLG

16 Исторический тренд температуры на входе в турбину. 10. Двигатели внутреннего сгорания 16 AER 1304 ÖLG

17 Три основных типа камер сгорания.10. Двигатели внутреннего сгорания 17 AER 1304 ÖLG

18 Многоканальная камера сгорания. 10. Двигатели внутреннего сгорания 18 AER 1304 ÖLG

19 Кольцевая камера сгорания. 10. Двигатели внутреннего сгорания 19 AER 1304 ÖLG

20 Схема турбореактивного двигателя с форсажной камерой. 10. Двигатели внутреннего сгорания 20 AER 1304 ÖLG

21 Сжигание в газовых турбинах: спрей (жидкое топливо) Зажигание Стабильность пламени — шум сгорания Распространение пламени Образование загрязняющих веществ [CO, несгоревшие углеводороды, NO x, сажа] Передача тепла Охлаждение / разбавление 10.Двигатели внутреннего сгорания 21 AER 1304 ÖLG

22 Текущие проблемы сгорания в газовых турбинах: контроль NO x Шум сгорания (гудок) Образование сажи (образование углерода) Точность CFD кодов сгорания Текущие изменения в области горения в газовых турбинах: сжигание с предварительно приготовленной обедненной смесью [NO x контроль, сажа] Обогащение водородом [NO x, КПД] Более высокие коэффициенты давления [КПД] 10. Двигатели внутреннего сгорания 22 AER 1304 ÖLG

23 ПВРД Простейший из воздушно-реактивных двигателей.Диффузор, камера сгорания и выхлопное сопло. Наиболее подходит для сверхзвуковых скоростей. Сжатие ударным эффектом. Впрыск топлива в сжатый поток — пламегасители для стабилизации пламени. Газы сгорания расширяются в сопле с высокой скоростью. 10. Двигатели внутреннего сгорания 23 AER 1304 ÖLG

24 Принципиальная схема ПВРД. 10. Двигатели внутреннего сгорания 24 AER 1304 ÖLG

25 Химические ракеты Ракеты на жидком топливе: Топливо и окислитель хранятся в отдельных тонкостенных баках при низком давлении.Перед сгоранием они проходят через турбинные насосы и попадают в камеру сгорания, где сгорают под высоким давлением. Ракеты на твердом топливе: топливный блок Entrire (состоящий из предварительно смешанного топлива и окислителя), хранящийся в камере сгорания. Горение происходит от поверхности частицы пороха со скоростью, которая зависит от давления, температуры и геометрии поверхности горения. 10. Двигатели внутреннего сгорания 25 AER 1304 ÖLG

26 Принципиальная схема ракетного двигателя.10. Двигатели внутреннего сгорания 26 AER 1304 ÖLG

27 Неравновесное расширение: равновесный состав зависит от давления и температуры, для данного топлива и Φ и может включать большие количества диссоциированного материала. В выхлопном сопле диссоциированные соединения имеют тенденцию к рекомбинации из-за падения температуры. Эти экзотермические реакции рекомбинации могут действовать как источник тепла в потоке. На следующем рисунке показана относительная важность энергий диссоциации до и после равновесного расширения стехиометрической смеси H 2 -O 2.10. Двигатели внутреннего сгорания 27 AER 1304 ÖLG

28 10. Двигатели внутреннего сгорания 28 AER 1304 ÖLG

29 Чтобы продукты сохраняли свой равновесный состав при расширении, реакции рекомбинации должны быть достаточно быстрыми, чтобы идти в ногу с быстрым расширением. Поскольку процесс расширения происходит очень быстро, это условие не всегда выполняется. В пределе, т.е. τ рекомб >> τ экспанс, мы имеем замороженный поток при постоянном составе.Для некоторых порохов разница между равновесным и замороженным потоком может быть заметной. 10. Двигатели внутреннего сгорания 29 AER 1304 ÖLG

30 Текущие проблемы горения в ракетах: нестабильность горения: И жидкостные, и твердотопливные ракеты подвержены нестабильности горения в виде больших колебаний давления в камере, которые могут привести к отказу двигателя. Низкочастотные колебания (около 100 Гц) из-за связи системы сгорания и питания.Высокочастотные колебания (несколько тысяч Гц): термоакустика, то есть связь между горением и акустикой (и полем потока). 10. Двигатели внутреннего сгорания 30 AER 1304 ÖLG

31 В твердотопливных ракетах скорость горения очень чувствительна к давлению и скорости. Выделение энергии и скорость топлива или характер давления, которые вызывают неоднородность, могут взаимодействовать, создавая устойчивые колебания. Такие колебания приводят к высокой скорости эрозионного горения, которое может изменить геометрию камеры для стабильного горения или может привести к отказу двигателя.Скорость горения твердого топлива Распыление / перемешивание в жидкостных ракетах. 10. Двигатели внутреннего сгорания 31 AER 1304 ÖLG

32 Назначение Посетите и прочтите: — Как работают автомобильные двигатели? — Как работают газотурбинные двигатели? — Как работают ракеты? По ссылкам посетите сайты, связанные с газовыми турбинами и ракетными двигателями. 10. Двигатели внутреннего сгорания 32 AER 1304 ÖLG

33 Двигатели с искровым и компрессионным зажиганием В наше формальное определение двигателей внутреннего сгорания мы включили в эту классификацию газовые турбины и ракеты.Однако обычно термин двигатели внутреннего сгорания используется для двигателей с искровым зажиганием и с воспламенением от сжатия. Двигатели с искровым зажиганием (двигатели с циклом Отто, бензиновые двигатели или бензиновые двигатели, хотя могут использоваться и другие виды топлива). Двигатели с воспламенением от сжатия (дизельные двигатели и двигатели HCCI). 10. Двигатели внутреннего сгорания 33 AER 1304 ÖLG

34 10. Двигатели внутреннего сгорания 34 AER 1304 ÖLG

35 Свеча зажигания Передняя часть пламени Топливная форсунка Пламя распыления топлива Топливо + воздушная смесь Только воздух Предварительно смешанный заряд (бензин) Непредмешанный заряд (дизельное топливо) Схемы двигателей SI и CI.10. Двигатели внутреннего сгорания 35 AER 1304 ÖLG

36 Принципиальная схема бензинового двигателя. 10. Двигатели внутреннего сгорания 36 AER 1304 ÖLG

37 Рабочий цикл четырехтактного двигателя SI. 10. Двигатели внутреннего сгорания 37 AER 1304 ÖLG

38 Четырехтактный двигатель SI: большинство поршневых двигателей работают с четырехтактным циклом. Каждому цилиндру требуется четыре хода поршня — два оборота коленчатого вала — для завершения последовательности событий, которые производят один рабочий ход.Оба двигателя SI и CI используют этот цикл. Четыре такта: впуск, сжатие, мощность и выпуск. 10. Двигатели внутреннего сгорания 38 AER 1304 ÖLG

39 Такт всасывания: начинается с поршня в точке TC и заканчивается поршнем BC, который втягивает свежую смесь в цилиндр. Для увеличения массы впускной клапан открывается незадолго до начала хода и закрывается после его завершения. Такт сжатия: оба клапана закрываются, и смесь внутри цилиндра сжимается до небольшой части своего первоначального объема.Ближе к концу такта сжатия начинается сгорание и давление в цилиндре возрастает быстрее. 10. Двигатели внутреннего сгорания 39 AER 1304 ÖLG

40 Рабочий ход: или ход расширения: — начинается с поршня в TC и заканчивается в BC, поскольку высокотемпературные газы высокого давления толкают поршень вниз и заставляют кривошип повернуть. — Во время рабочего хода поршня выполняет примерно в пять раз больше работы, чем поршень во время сжатия.- Когда поршень приближается к BC, выпускной клапан открывается, чтобы запустить процесс выпуска и снизить давление в цилиндре до уровня, близкого к давлению выпуска. 10. Двигатели внутреннего сгорания 40 AER 1304 ÖLG

41 Такт выпуска: когда оставшиеся сгоревшие газы выходят из цилиндра: — во-первых, потому что давление в цилиндре может быть значительно выше, чем давление выхлопа; — затем, когда они выметаются поршнем, когда он движется к TC. — Когда поршень приближается к TC, впускной клапан открывается.Сразу после TC выпускной клапан закрывается, и цикл начинается снова. 10. Двигатели внутреннего сгорания 41 AER 1304 ÖLG

42 Двухтактный двигатель SI: четырехтактный цикл требует для каждого цилиндра двигателя двух оборотов коленчатого вала на каждый рабочий ход. Чтобы получить более высокую мощность при данном размере двигателя и более простую конструкцию клапана, был разработан двухтактный цикл. Двухтактный цикл (как четырехтактный) применим как к двигателям SI, так и к двигателям CI. Это два хода: сжатие и сила или расширение.10. Двигатели внутреннего сгорания 42 AER 1304 ÖLG

43 Рабочий цикл двухтактного двигателя. 10. Двигатели внутреннего сгорания 43 AER 1304 ÖLG

44 Такт сжатия: начинается с закрытия впускного и выпускного отверстий, затем сжимается содержимое цилиндра и всасывается свежий заряд в картер. Когда поршень приближается к TC, начинается горение. Мощность или такт расширения: аналогичен таковому в четырехтактном цикле, пока поршень не приблизится к BC, когда сначала будут открыты выпускные отверстия, а затем впускные отверстия.Большая часть сгоревших газов выходит из цилиндра в процессе продувки выхлопных газов. Когда впускные отверстия открыты, свежий заряд, сжатый в картере, перетекает в цилиндр. 10. Двигатели внутреннего сгорания 44 AER 1304 ÖLG

45 Рабочий цикл четырехтактного двигателя CI. 10. Двигатели внутреннего сгорания 45 AER 1304 ÖLG

46 Рабочий цикл двигателя Ванкеля. 10. Двигатели внутреннего сгорания 46 AER 1304 ÖLG

47 Работа двигателя Ванкеля: Роторный двигатель Ванкеля работает с четырехтактным циклом.Когда ротор делает один полный оборот, эксцентриковый вал совершает три оборота. Когда ротор делает один оборот, каждая камера производит один рабочий ход. На каждый оборот ротора приходится три импульса мощности; таким образом, на каждый оборот эксцентрикового вала приходится один импульс мощности. 10. Двигатели внутреннего сгорания 47 AER 1304 ÖLG

48 Сжигание в двигателях внутреннего сгорания: подготовка смеси: — Карбурация (больше не используется на рынках Северной Америки). — Портовый впрыск — топливо впрыскивается в воздушный поток непосредственно перед впускным клапаном.- Прямой впрыск — топливо впрыскивается в цилиндр (DISI). Зажигание: свеча зажигания. Развитие ядра пламени и распространение пламени. 10. Двигатели внутреннего сгорания 48 AER 1304 ÖLG

49 Детонация двигателя: -фелоктановое число — степень сжатия двигателя Образование загрязняющих веществ: — оксиды азота, NO x — двуокись углерода, CO — несгоревшие углеводороды, углеводороды Обработка выхлопных газов: — Каталитические нейтрализаторы 10. Двигатели внутреннего сгорания 49 AER 1304 ÖLG

50 Сгоревшие Несгоревшие Поперечное сечение камеры сгорания бензинового двигателя.10. Двигатели внутреннего сгорания 50 AER 1304 ÖLG

51 Сгорание в двигателе CI: прямой впрыск в цилиндр (большие двигатели). Форкамерный впрыск (двигатели легковых автомобилей). Распылительное горение: — Компрессионное зажигание — Задержка воспламенения — Дизельцетановое число Образование загрязняющих веществ: -NO x, CO, HC, сажа (твердые частицы) Уловитель твердых частиц и каталитический нейтрализатор. 10. Двигатели внутреннего сгорания 51 AER 1304 ÖLG

52 10. Двигатели внутреннего сгорания 52 AER 1304 ÖLG

53 10.Двигатели внутреннего сгорания 53 AER 1304 ÖLG

54 Тепловыделение при сгорании дизельного двигателя. 10. Двигатели внутреннего сгорания 54 AER 1304 ÖLG

55 Конструкция впускного отверстия для воздуха Конструкция камеры Турбонаддув Движение воздуха / турбулентность в камере сгорания ПРОЦЕСС СМЕШИВАНИЯ ТОПЛИВА и ВОЗДУХА ЗАЖИГАНИЕ ЧАСТИЧНО «ПРЕДВАРИТЕЛЬНОЕ» ПРОЦЕСС СГОРАНИЯ СГОРАНИЯ, ЧАСТИЧНО НЕПРЕВЗОЙДЕННОЕ РАСПЫЛЕНИЕ ТОПЛИВА.

10Сен

Как проверить машину на госуслугах – Проверка авто на Госуслугах по VIN-коду

ГИБДД | Энциклопедия госуслуг gosuslugi-online.ru

Сохранение номеров в ГИБДД через Госуслуги

Авто

Иногда при смене авто совершенно не хочется отдавать привычный номер. Для одних — это

Энциклопедия госуслуг gosuslugi-online.ru Обжаловать штраф ГИБДД с камеры через Госуслуги

ГИБДД

Все чаще простые граждане России регистрируются на официальном портале государственных услуг и решают вопросы

Энциклопедия госуслуг gosuslugi-online.ru Водительское удостоверение кем выдано как узнать Госуслуги

ГИБДД

Различные услуги, связанные с получением водительского удостоверения, его возобновлением и другими вопросами, нередко граждане

Энциклопедия госуслуг gosuslugi-online.ru Как получить талон в ГИБДД через Госуслуги

ГИБДД

На сегодняшний день более половины граждан РФ имеют право управлять транспортным средством. Владельцы авто

Энциклопедия госуслуг gosuslugi-online.ru Как получить номера на автомобиль через Госуслуги

Авто

Покупка автомобиля продолжает оставаться для многих граждан не рядовым событием, как, впрочем, и любое

Энциклопедия госуслуг gosuslugi-online.ru Записаться на выдачу водительского удостоверения через Госуслуги

ГИБДД

Водительское удостоверение – главный документ, позволяющий управлять транспортным средством. Сегодня благодаря сайту https://www.gosuslugi.ru/ значительно

Энциклопедия госуслуг gosuslugi-online.ru Получение знака инвалид на автомобиль через Госуслуги

Авто

Сложно переоценить актуальность работы портала Госуслуг для людей с ограниченными возможностями. Ведь для того

Энциклопедия госуслуг gosuslugi-online.ru Восстановление стс при утере 2019 через Госуслуги

ГИБДД

Регистрация автомобиля – обязательная процедура для каждого автолюбителя. Оформить регистрационный номер можно, подав заявление

Энциклопедия госуслуг gosuslugi-online.ru Госуслуги проверить автомобиль по вин коду

Авто

Покупка автомобиля – это ответственный процесс, требующий внимательности и уверенности покупателя в том, что

Энциклопедия госуслуг gosuslugi-online.ru Потерял права как восстановить через Госуслуги

ГИБДД

Законное управление транспортным средством предполагает наличие водительского удостоверения. В противном случае, автовладелец совершает правонарушение,

Энциклопедия госуслуг gosuslugi-online.ru Как зарегистрировать автомобиль в ГИБДД через Госуслуги

Авто

С порталом муниципальных и государственных услуг жизнь автовладельцев стала намного удобнее: теперь пользователям предоставляется

Энциклопедия госуслуг gosuslugi-online.ru Энциклопедия госуслуг gosuslugi-online.ru

ГИБДД

Завершив обучающий курс в автошколе, необходимо позаботиться о получении прав на управление транспортным средством.

Энциклопедия госуслуг gosuslugi-online.ru

Процедура оформления и получения водительского удостоверения требует не только временных, но и финансовых затрат,

Энциклопедия госуслуг gosuslugi-online.ru Госуслуги снятие с учета автомобиля при продаже

Авто

По действующему законодательству нельзя использовать автомобиль без оформления пакета необходимой документации: СТС, ПТС, регистрационных

Энциклопедия госуслуг gosuslugi-online.ru Как заплатить транспортный налог через Госуслуги

Авто

Владея любым современным транспортным средством, вам потребуется систематически вносить оплату транспортного сбора. Безусловно, наиболее

Энциклопедия госуслуг gosuslugi-online.ru Как зарегистрироваться в гаи через Госуслуги

ГИБДД

С момента запуска государственного портала, предоставляющего услуги онлайн с 2011 года, широким спектром возможностей

Энциклопедия госуслуг gosuslugi-online.ru Как застраховать автомобиль онлайн ОСАГО через Госуслуги

Авто

Приобретая транспортное средство, каждый водитель обязан пройти процедуру обязательного страхования. Его целью является гарантирование

Энциклопедия госуслуг gosuslugi-online.ru Как зарегистрировать авто через Госуслуги: пошаговая инструкция

Авто

Если возникает необходимость зарегистрировать автомобиль с максимальной экономией сил и времени, стоит подумать о

Энциклопедия госуслуг gosuslugi-online.ru

Итогом завершения обучения в автошколе является получение водительского удостоверения. Как правило, чтобы получить долгожданный документ

Энциклопедия госуслуг gosuslugi-online.ru Как записаться на экзамен пдд через Госуслуги

ГИБДД

С момента запуска государственного портала, предоставляющего услуги онлайн с 2011 года, широким спектром возможностей

Энциклопедия госуслуг gosuslugi-online.ru Как поменять водительское удостоверение через Госуслуги инструкция

ГИБДД

Для того чтобы жизнь водителей была проще и легче, все вопросы по оформлению и

Энциклопедия госуслуг gosuslugi-online.ru Можно ли оплатить административный штраф через Госуслуги

ГИБДД

Видеокамеры, регистраторы, определители скорости, электронные парковки и прочие устройства если не заменили человека полностью,

Энциклопедия госуслуг gosuslugi-online.ru

gosuslugi-online.ru

Как проверить, снят ли автомобиль с учёта: пошаговая инструкция

Процесс продажи автомобиля несет за собой массу трудностей. Одним из важных факторов является переоформление машины на нового владельца. Недобропорядочный покупатель может не сделать этого в определенный срок и тогда вам придется платить транспортный налог уже за проданный автомобиль. Кроме того вы будете нести полную ответственность за него, так, например, попав в аварию и скрывшись с места ДТП, новый владелец, не имея регистрации, сможет избежать ответственности и переложить её на вас. Для того чтобы избежать подобных ситуаций и предостеречь себя от других неприятностей, следует узнать снята ли машина с учета в ГИБДД.

Внимание! Если у вас возникнут вопросы, можете бесплатно проконсультироваться в чате с юристом внизу экрана или позвонить по телефонам: +7 (499) 938-50-82 Москва; +7 (812) 425-68-16 Санкт-Петербург; +7 (800) 350-14-96 Бесплатный звонок для всей России.

Можно ли проверить, снят ли автомобиль с учета?

На оформление необходимых документов новому владельцу даётся 10 дней, по истечении которых все формальности должны быть закрыты. Проверка снятия регистрации транспортного средства с учета в ГИБДД может проводиться несколькими способами:

  1. В отделении ГИБДД.

Не позднее, чем за 10 дней после продажи, для проверки снятия с учета автомобиля вам необходимо написать заявление на имя начальника отдела о предоставлении информации о статусе проданного вами авто, приложив к бумаге копии всех документов. Заявление рассматривается в течение 30 дней, процедура полностью бесплатна. Если по истечению этого срока заявка на проверку снятия с учета проданного ТС так и не была рассмотрена, можно подать иск в суд.

Может возникнуть ситуация, когда автомобиль уже не состоит на учете, но старому владельцу продолжают приходить квитанции с просьбой заплатить транспортный налог. В этом случае нужно обратиться в налоговую, запросив информацию о начислении платежей, тем самым предотвратив возможное возникновение подобных ситуаций в будущем.

  1. Через интернет сервисы.

Интернет плотно вошел в нашу жизнь, сейчас за руль начинают садиться молодые люди, активные пользователи сети. С помощью интернет сервисов также можно проверить снят ли автомобиль с учёта. Преимуществами данного способа является удобство и простота. Использование онлайн сервисов значительно облегчает задачу: водителю не нужно ехать в автоинспекцию и тратить свое время на заполнение бумаг.  Проверка снятия с учета может осуществляться посредством различных сайтов, таких как:

  1. Официальный сайт ГИБДД
  2. Портал Госуслуги
  3. Сервис «Автокод»

Проверка через сайт ГИБДД

Для того чтобы проверить факт снятия транспортного средства с учета, можно обратиться к официальному сайту ГИБДД — https://гибдд.рф. Для проверки необходимо сделать следующее:

  1. В верхней панели найдите вкладку «Сервисы» и нажмите на неё.
  2. В выдвинувшемся сверху меню выберите пункт «Проверка автомобиля».
  3. Введите номер VIN двигателя в предложенном поле. Узнать его можно в паспорте ТС либо в регистрационном свидетельстве. Если найти этот номер у вас нет возможности, введите вместо него данные о шасси или кузове.
  4. Подтвердите запрос проверочным кодом, указанным на картинке.
  5. Через минуту результаты проверки выйдут на экран.

Сайт позволяет просмотреть данные о типе транспортного средства, марке и модели, его годе выпуска, номере кузова и шасси, объеме двигателя, мощности и даже о его цвете. С помощью сервиса вы сможете узнать и другие регистрационные действия, связанные с автомобилем: проверка на участие в ДТП, нахождение автомобиля в розыске и наличие ограничений.

Освоив простой алгоритм действий, вы сэкономите себе время и избавите себя от необходимости похода в ГИБДД.

Также обратите внимание на пункт «Периоды владения транспортным средством». В этом подразделе отображены все промежутки, в течение которых машина была оформлена. С помощью этого вы сможете посмотреть, сколько человек за определенный период владели авто, и есть ли сейчас у нее владелец. Если вы видите в последней строке запись «… по настоящее время», это значит, что кто-то официально является владельцем авто прямо сейчас. В таком случае покупателю стоит быть осторожным и еще раз напомнить продавцу о необходимости снятия продаваемого транспортного средства с учёта.

Юридическая консультация онлайн

Проверка на снятие с учета авто через портал Госуслуги

В случае использования доверенности и не имея возможности проконтролировать все действия нового владельца, удобно будет обратиться к порталу Госсуслуги – сервису, предназначенному для отслеживания и контроля над получением и состоянием различных документов, справок и прочих бумаг, связанных со сферой государственного обслуживания. Для начала проверки зайдите на официальный сайт портала: https://www.gosuslugi.ru. В данный момент портал отключил возможность проверки, на сайте доступна функция непосредственного проведения операции по перерегистрации транспортного средства. Как это сделать?

  1. Первый и обязательный шаг – регистрация и создание личного кабинета. Для этого в разделе «вход в Госуслуги», расположенном в правой части страницы, нажмите на кнопку «зарегистрироваться». В открытой странице заполните необходимые данные: фамилию, имя, мобильный телефон и электронную почту.
    Юридическая консультация онлайн
    Юридическая консультация онлайн
  2. Для начала переоформления автомобиля перейдите в раздел «Услуги», расположенный в верхнем меню, затем выберите подраздел «Органы власти». В открывшемся меню выберите пункт «Министерство внутренних дел РФ». Пролистайте новую страницу вниз и найдите вкладку «Регистрация транспортного средства».
    Юридическая консультация онлайн
    Юридическая консультация онлайн
  3. Далее в открывающихся друг за другом страницах выберите категорию «Оформление документов при покупке, лизинге и изменении данных о собственнике», а затем пункт «Изменение данных собственника транспортного средства».
    Юридическая консультация онлайн
    Юридическая консультация онлайн
  4. После откроется форма заявления, куда нужно будет ввести необходимые данные. Следуйте инструкции, при правильном заполнении откроется подтверждение и, спустя некоторое время, вы получите ответ. Также данный бланк можно распечатать и прийти с ним в отделение автоинспекции, там процедура переоформления будет продолжена.

Портал Госуслуги – полезный инструмент не только для автовладельцев. Множество других задач и вопросов теперь можно решить через интернет, не выходя из дома. Кроме того это значительно сэкономит ваше время и деньги: на портале постоянно проходят различные акции, воспользовавшись которыми можно, например, заплатить за регистрацию авто на порядок меньше.

Проверка через «Автокод»

Еще одним вариантом проверки снятия авто с учета после продажи является использование портала «Автокод» — https://avtocod.ru/. Появившись совсем недавно, удобный сервис завоевал заслуженную популярность среди автолюбителей. Процедура здесь практически ничем не отличается от проверки через сайт ГИБДД:

  1. Для начала на главной странице в единственном поле введите VIN номер автомобиля либо его регистрационный номер. Для японских автомобилей, не имеющих VIN, можно ввести номер шасси или кузова. Все данные можно найти на свидетельстве о регистрации транспортного средства.
    Юридическая консультация онлайн
  2. Через несколько секунд загрузится страница, на которой будут детально отображены все данные об автомобиле, включая не только данные по ПТС, но и данные о возможных ДТП, стоимости ремонтных работ, пробеги, залог, стоимость ОСАГО, штрафы и многое другое.Юридическая консультация онлайн

В отличие от других сайтов, «Автокод» является платным. За полный отчёт нужно заплатить 583 рубля. Часто можно провести проверку дешевле – в сервисе постоянно проводятся различные скидки и акции. Однако, нельзя не сказать, что цена компенсируется огромным объемом информации о машине, включая всевозможные советы и рекомендации по эксплуатации.

Юридическая консультация онлайн

Что делать если машина так и не была переоформлена?

Новому владельцу дается 10 дней на переоформление автомобиля. Если в течение положенного периода этого так и не было сделано, нужно посетить отделение ГИБДД и написать заявление о прекращении регистрации на ваше имя. Новый владелец будет объявлен в розыск, инспекция будет искать автомобиль по номерам для того, чтобы завершить процедуру и привлечь недобросовестного покупателя к ответственности.

Передвигаться на автомобиле, снятом с учета, запрещено. Новому владельцу следует помнить, что после покупки сразу же стоит заняться всеми формальностями: оформить полис ОСАГО, исправить все возможные технические неисправности, провести ТО и, наконец, оформить регистрацию машины на свое имя. Если вы будете замечены при нарушении закона, с вашего автомобиля дорожная автоинспекция сразу же снимет регистрационный номер и изымет свидетельство о регистрации. Процедура осуществляется в соответствии с пунктом 51 Приказа №1001:

«При прекращении (аннулировании) регистрации признаются недействительным конкретное регистрационное действие (несколько регистрационных действий) и все последующие регистрационные действия».

Кроме штрафа за несвоевременную постановку на учет, регистрационный номер вашего автомобиля и СТС будут утилизированы. Таким образом, передвигаться на машине вы не сможете, а номера будут утеряны навсегда. Для восстановления регистрации необходимо подать соответствующее заявление в любой орган ГИБДД независимо от места регистрации, либо онлайн через портал Госуслуги.  По истечению срока заявки, вам будет дана возможность получить новые номера и новое свидетельство о регистрации транспортного средства.

Возможные нюансы

Во избежание различных проблем при купле-продаже авто, и продавцу и покупателю нужно быть внимательными. Часто сделки проходят в течение длительного времени, осложняются всевозможными запретами и ограничениями со стороны органов судебной власти, следственного управления, таможенных органов, органов соцзащиты и отдела розыска ГИБДД. Эти государственные ведомства могут замедлить процесс, таким образом, период продажи, а соответственно и снятие автомобиля с учета затянутся. Для их осуществления потребуется устранить все проблемы. Продавец и покупатель должны проверить ограничения на автомобиль, связанные с регистрационными действиями.

Важно также понимать весь механизм проверки. Это позволит получить наиболее подробную информацию об автомобиле, оценить его достоинства и найти возможные проблемы, скрытые продавцом. Ведь когда за год автомобиль меняет сразу несколько владельцев, это явно о чем-то говорит. Разберитесь в юридических и технических проблемах перед покупкой, не делайте спешных решений, обдумайте все и только после этого действуйте.

Автор статьи: Рокотов Леонид

Автор статьи: Рокотов Леонид

Автоюрист. Стаж работы 11 лет в судах общей юрисдикции по вопросам, связанным с возмещением ущерба от ДТП, с возмещением ущерба в порядке регресса. В настоящее время является старшим преподавателем на кафедре Гражданского процесса. Его колоссальный опыт и знания в этой области помогают читателям портала избежать необоснованных трат и рисков.

Автор статьи: Рокотов Леонид
Latest posts by Автор статьи: Рокотов Леонид (see all)
Юридическая консультация онлайн

prav-voditel.ru

Как проверить штрафы ГИБДД через Госуслуги

Проверить наличие штрафов ГИБДД, а так же оплатить их можно онлайн на портале Госуслуг. Данная услуга доступна только зарегистрированных пользователям с подтвержденным аккаунтом. Услуга предоставляется бесплатно  в режиме реального времени.

Для того чтобы узнать штрафы ГИБДД через интернет Вам понадобится:

  • Водительское удостоверение;
  • Свидетельства о регистрации ТС (СТС).

Инструкция проверки штрафов ГИБДД через Госуслуши

Для того чтобы узнать штрафы зайдите на сайт gosuslugi.ru под своими учетными данными и следуйте инструкции:

  • Перейдите в «Каталог услуг»;

Как узнать штрафы ГИБДД на Госуслугух

  • Найдите рубрику «Транспорт и вождение»;

Транспорт и вождение

  • Далее выбираем «Штрафы ГИБДД»;

Штрафы ГИБДД

  • После чего попадаем на страницу с информацией о данной услуге, где нужно нажать на кнопку «Получить услугу»;

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

  • На следующей странице представлены 2 способа получения информации: по данным автомобиля и водителя и по номеру квитанции;

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

  • В первом варианте заполняются номер водительского удостоверения и данные транспортного средства. В данных ТС указывается Госномер транспортного средства и свидетельство о регистрации ТС.

Укажите номер водительского удостоверения и данные ТС

  • После заполнения необходимых данных, нажимаем на кнопку «Найти штрафы»;
  • Система приступит к поиску и через некоторое время покажет наличие или отсутствие штрафов ГИБДД.

Результаты поиска штрафов ГИБДД

Как оплатить штрафы ГИБДД через Госуслуги

  • После того как Вы получили список штрафов, нажмите на кнопку «Перейти к оплате»;

Оплата штрафов ГИБДД

  • Далее сайт перенаправит Вас на страницу с квитанцией и способом оплаты штрафа. Оплатить данную услугу можно несколькими способами: Банковской картой, электронными деньгами или средствами с мобильного телефона;

Выбор способа оплаты штрафов

  • Выберите удобный способ оплаты и нажмите кнопку «Ввести данные карты»;

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

  • После чего заполните данные карты и нажмите «Продолжить»;
  • Если Вы оплачиваете штраф банковской картой, подтвердите платеж кодом в СМС.
  • После проверки системой всех данных, появится уведомление о принятие оплаты, а сама квитанция появится в ленте уведомлений в разделе «Платеж».

Настройка уведомлений о новых штрафах.

Данная функция достаточно полезна. Так как своевременно оплаченные штрафы, будут со  скидкой в размере 50% .

Для того чтобы настроить уведомления о новых нарушениях, следует:

  • Зайти в личный кабинет;

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

  • Перейти в раздел «Настройка уведомлений»;

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

  • Поставить в Информеры госуслуг галочку «Вкл»;

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

  • Теперь на главной странице сайта и в личном кабинете, сразу будет появляться информация о новых штрафах.

Узнать и оплатить штрафы ГИБДД по номеру машины через Госуслуги

Вот так, вот просто проверить и оплатить штрафы ГИБДД через портал Государственных услуг.

gosuslugionline.ru

Штрафы ГИБДД через Госуслуги — проверить и оплатить онлайн

Даже если и существуют водители, которым ни разу не приходилось оплачивать штрафы за нарушение тех или иных правил дорожного движения то это большая редкость. Когда сотрудник ГИБДД ловит водителя на месте нарушения, то им сразу выписывается квитанция на оплату штрафа.

Другое дело если нарушение зафиксировала камера наблюдения или радар. В этом случае извещение о наложении штрафа отправляется заказным письмом. Письмо может прийти с опозданием или совсем потеряться.

Значит информация так и не поступит адресату, и он не будет знать о наложении взыскания. В результате образуется задолженность, погашение которой — дело судебных приставов.

Проверить и оплатить штрафы ГИБДД через Госуслуги

Полную информацию о наличии штрафов можно своевременно и без проблем получать на сайте Госуслуги.

В порядке информации! Доступ к информации о штрафах, наложенных ГИБДД, на ресурсе Госуслуги имеют только авторизованные пользователи. Для этого они проходят через простую процедуру регистрации. Делается это очень быстро.

Как выполняется проверка наличия штрафов?

Для получения информации о наличии штрафов от ГИБДД можно воспользоваться двумя вариантами:

  1. Ввести сведениями о водителе и транспортном средстве.
  2. Воспользоваться номером квитанции. Его надо взять с постановления, выдаваемого нарушителю, если на месте составляется протокол.

Чтобы проверить и узнать штрафы ГИБДД через Госуслуги, нужно выполнить несколько простых действий. В результате вы получите полную информацию о наличии нарушений или их отсутствии.

Пошаговая инструкция проверки штрафов через Госуслуги

Выполните последовательность действий на сайте государственных услуг, чтобы посмотреть наличие штрафов ГИБДД.

  1. Войдите в личный кабинет Госуслуги.
  2. Перейдите на главную страницу и нажмите на пункт «Услуги» в верхнем меню страницы.
  3. Найдите категорию «Транспорт и вождение» и нажмите на нее.
  4. На странице выберите пункт «Найти штрафы», либо перейдите по прямой ссылке https://www.gosuslugi.ru/10001/form?block=gibdd.
  5. Введите информацию о водительском удстоверении, если он не указан у вас в личном кабинете физического лица. Данную процедуру нужно выполнить в том случае, если вы хотите осуществить поиск по данным автомобиля или водителя.
  6. В случае, если вам нужно найти штрафы ГИБДД через Госуслуги по номеру квитанции, то на этой же странице перейдите на вкладку «По номеру квитанции» и введите ее номер.
  7. После ввода информации по первому или второму варианту нажимается кнопка «Найти штрафы» или «Перейти к оплате» соответственно.

Система практически сразу выдает ответ. При отсутствии взысканий, появляется табличка «Штрафов не найдено». Если же наложение штрафов имело место, то появляется список с их перечислением. По желанию пользователя они могут быть рассортированы по срокам давности.

Немного о достоинствах сервиса предоставления информации по штрафам ГИБДД

Прежде всего — это наглядность и понятность. Для каждого действия прилагается пошаговая инструкция. Это делает возможной проверку наличия штрафов от Госавтоинспекции даже для начинающего пользователя. Воспользовавшись услугами портала, можно сразу произвести оплату штрафов. При этом получается электронная квитанция, подтверждающую факт проведения платежа.

Если в этом имеется необходимость, пользователь может оформить подписку на получение оповещений о каждом, вновь поступившем штрафе. Сделано это может быть тремя способами:

  1. С помощью СМС-сообщения, переданного на мобильное устройство.
  2. В виде письма, отправленного на адрес электронной почты.
  3. Онлайн-сообщение, которое приложением Госуслуги будет послано на смартфон.

Наличие таких возможностей позволяет своевременно узнавать о количестве штрафов, их размере и времени погашения.

Как оплачиваются штрафы?

Пользователь, получивший оповещение о применении к нему штрафных санкций, может быстро их оплатить, даже не покидая для этого собственного дома. Портал предоставляет возможность сделать это несколькими способами:

  • используя банковскую карту;
  • произведя мобильный платеж;
  • выполнив транзакцию с онлайн-кошелька.

Выбор способа оплаты остается за плательщиком, но в любом случае ему пересылается электронная квитанция. Для проведения этой операции не надо затрачивать большого количества времени, а на счет получателя средства поступят на протяжении нескольких рабочих дней. Более подробную информацию о сроках осуществления платежа можно получить, заполняя платежную ведомость.

Обратите внимание, что оплачивать штрафы через мобильное приложение выгоднее. Достаточно установить Госуслуги на мобильный телефон и вы сможете оплатить штрафы со скидкой.

gosuslugi.help

Узнать свой транспортный налог через госуслуги

В 2016 году порталом государственных услуг воспользовалось более 9 миллионов людей (по данным посещаемости сайта). Разработчики постоянно стараются сделать его более удобным в использовании, и, стоит сказать, им это удается. Но и сегодня многие пользователи не знают, как воспользоваться теми или иными услугами. К примеру, граждане ищут информацию о том, как узнать транспортный налог через госуслуги. На самом деле, сделать это очень просто. Более того, существует несколько способов. Разберем каждый из них.

Как узнать задолженность по транспортному налогу на сайте gosuslugi.ru

Для этого необходимо выполнить следующие действия:

  1. Авторизоваться. На главной странице сайта госуслуг в правой стороне есть кнопка «Войти». После нажатия на нее пользователь будет перенаправлен на страницу, где нужно указать логин и пароль. Если Вы не зарегистрированы в системе, необходимо пройти процедуру регистрации (соответствующая кнопка находится под кнопкой входа). Она здесь очень короткая – нужно указать свой адрес электронной почты (или телефон) и подтвердить его с помощью ссылки в письме (или пароля в СМС), а потом придумать пароль. Сразу указывать ИНН и паспортные данные не нужно.

1

1
  1. На следующей странице внизу ищем кнопку «Все услуги». Нажимаем на нее.

2

2

Если эта кнопка недоступна, возможно, система приняла Вас за иностранного гражданина или предпринимателя. А нужно, чтобы она воспринимала Вас как обычного гражданина. Для этого в левом верхнем углу сайта есть небольшая панель (рядом с гербом), в которой следует выбрать вариант «Для граждан».

3

3
  1. Как видим, список услуг разделен на три классификации – по категориям, по органам власти и по жизненным ситуациям. Если мы ищем, как проверить транспортный налог на госуслугах, удобнее всего сделать это будет в классификации по органам власти. Выбираем соответствующую вкладку.
  2. Среди органов власти жмем на пункт «Федеральная налоговая служба».

4

4
  1. На открывшейся странице выбираем пункт «Налоговая задолженность».

4

4
  1. Дальше можно видеть инструкцию для тех, кто не знает, как узнать задолженность по транспортному налогу. Сначала нужно заполнить личные данные, а потом уже и заявку на получение информации о задолженности. Сначала делаем первое – нажимаем на надпись «Заполните личные данные». На этом этапе нужно будет указывать практически все личные данные в своем профиле. К ним относится гражданство, серия и номер паспорта, СНИЛС, дата и место рождения, адреса регистрации и проживания, желательно также добавить такие документы, как водительское удостоверение, свидетельство о рождении, полис ОМС, военный билет. Также нужно будет добавить информацию о своем транспортном средстве.

После этого жмем на кнопку «Заполнить профиль» справа. Если Вы сделали это еще на этапе регистрации, то сейчас делать этого не нужно. После заполнения этой информации проходит несколько минут (не более 15), на почту или телефон приходит подтверждение, что все документы подтверждены и учетная запись приобретает статус «Стандартная». За эти 15 минут все введенные данные проверяются в реестре ПФР и МВД РФ.

6

6
  1. Теперь можно нажимать на надпись «Заполнить заявку». Эта процедура тоже занимает не более нескольких минут. А вот обработка заявки может длиться до 5 рабочих дней. После этого на почту или телефон придет уведомление о том, что справка готова и ее можно просмотреть. Вам остается пройти по указанной ссылке или же снова авторизоваться на портале госуслуг, чтобы увидеть справку. Она будет иметь примерно такой вид, как показано на фото ниже.

7

7

Если у Вас возникают какие-либо вопросы или сложности, лучше всего обратиться в один из центров обслуживания пользователей. Квалифицированные специалисты смогут помочь Вам решить возникшую проблему. Найти ближайший такой центр можно пройдя по этой ссылке. Там достаточно разрешить системе определить Ваше местоположение, при необходимости поставить галочки напротив соответствующих пунктов фильтра и увидеть на карте, где находится центр обслуживания.

8

8

Есть еще несколько способов, как узнать транспортный налог через госуслуги. Они, фактически, выполняются не на сайте gosuslugi.ru, но другие ресурсы, где тоже можно выполнить эту операцию, все равно берут информацию из тех же источников, что и сайт госуслуг. А если у гражданина есть регистрация на gosuslugi.ru, данная услуга выполняется намного быстрее.

Альтернативные способы

Способы, описанные далее, пригодятся на случай, когда портал госуслуг не работает или же все советы относительно того, как проверить транспортный налог на госуслугах, выполнить не получается. Но лучше все же пользоваться сайтом gosuslugi.ru, чтобы узнавать задолженность по транспортному налогу и другим видам налогов.

Старый сайт госуслуг

Для тех, кто ищет информацию о том, как узнать транспортный налог через госуслуги, будет приятной новостью то, что и сейчас доступен старый портал gosuslugi.ru (вот ссылка). Дело в том, что раньше выполнить любую операцию на портале государственных услуг было в несколько раз проще. Это касается и транспортного налога. В интернете можно найти множество гневных отзывов о новом дизайне и подходе gosuslugi.ru. На старом сайте любую информацию можно было узнать, имея лишь ИНН, не обязательно было проходить долгие процедуры регистрации и подтверждения, описанные выше.

Итак, Вы перешли на старый сайт госуслуг. Дальше нужно сделать следующее:

  1. На главной странице вверху выбрать вкладку «Органы власти». На схеме найти пункт «Федеральная налоговая служба» (практически в самом низу).

9

9
  1. На следующей странице переходим на вкладку «Услуги» (практически всегда она и так загружается по умолчанию, но в некоторых случаях пользователю приходится делать это самостоятельно). Выбираем там шестой пункт – «Бесплатное информирование…».

10

10
  1. Раньше узнать свой транспортный налог можно было прямо на этом сайте. Сейчас же есть ссылка на сайт ФНС России. Переходим по ней. Правда, это не полноценная страница для получения информации о транспортном налоге, это лишь ссылка на страницу направления обращения в ФНС. Стоит сказать, что справа есть ссылки на якобы предоставление той же услуги в письменной или устной форме. Они не работают и перенаправляют на ту же страницу, где Вы находитесь сейчас.

11

11
  1. На сайте ФНС выбираем свой юридический статус. Скорее всего, это «Физическое лицо или ИП». Чтобы увидеть нужные кнопки, нужно немного прокрутить страницу вниз.

12

12
  1. Заполняем все необходимые поля, а в поле «Содержание обращения» пишем, что «Я, ФИО, желаю получить информацию о своем транспортном налоге, на сайте госуслуг сделать это у меня не получается» или что-то подобное. Важно указать, что выполнить данную операцию на gosuslugi.ru не представляется возможным и указать причины или описать, что конкретно не получается. В противном случае сотрудники ФНС просто направят Вас на тот же самый сайт госуслуг.

13

13

Сайт ФНС

На портале Федеральной налоговой службы можно рассчитать транспортный налог. Причем здесь все намного проще. Вам нужно сделать следующее:

  1. Пройти по ссылке на страницу расчета транспортного налога.
  2. Вверху выбрать свой регион. Заполнить все необходимые поля и нажать кнопку «Далее» и «Рассчитать» (появится на том же месте).

14

14
  1. Увидеть размер своего налога в таком виде, как показано на фото ниже.

15

15

Если зайти на сайт ФНС с ресурса Сбербанка онлайн, можно будет сразу же оплатить задолженность. Для этого нужно иметь карту данного банка и мобильный телефон. Нужно сделать следующее:

  1. Пройти на страницу Сбербанка онлайн и авторизоваться или же пройти процедуру регистрации. Здесь это тоже недолго.
  2. После входа в личный кабинет нужно вверху перейти на вкладку «Переводы и платежи».
  3. В меню слева выбрать вариант «Федеральная налоговая служба».
  4. После этого сайт Сбербанка перенаправит на уже знакомый нам сайт ФНС. Разница только в том, что теперь Вы авторизованы с данными Сбербанка. Выбираем там вариант «Поиск и оплата налогов ФНС».
  5. На следующей странице доступно два варианта: первый – «Оплата налогов по индексу документа» актуален, если у пользователя есть квитанция по задолженности, и второй – «Поиск задолженности по ИНН». В нашем случае актуален второй вариант. Выбираем его.
  6. Появляется поле для выбора карты, с которой будет списана определенная сумма денег и, собственно, поле для ввода ИНН. Указываем все это и нажимаем «Продолжить».
  7. Возле надписи «Найденные начисления» и можно будет выбрать сумму транспортного налога. Если Вы хотите сразу же оплатить эту сумму, нужно нажать на кнопку «Продолжить». После этого деньги будут списаны со счета.

16

16

Преимущество сотрудничества со Сбербанком в том, что транспортный налог можно оплатить без комиссии.

WebMoney

Еще один популярный и рабочий способ, как узнать задолженность по транспортному налогу, заключается в использовании сайта WebMoney. Здесь все тоже намного проще, чем на gosuslugi.ru. Пользователю нужно зайти в свой личный кабинет и сделать следующее:

  1. В меню ссылок слева выбираем пункт «Оплата».
  2. Среди появившихся пунктов выбрать «Штрафы и налоги».
  3. В окне с возможными вариантами нажать на «Налоги по ИНН».
  4. В соответствующее поле ввести свой ИНН, и нажать кнопку «Найти».
  5. Дальше в поле «Начисления» будут показаны все налоговые задолженности, которые находятся в реестре. Нажав на нужный можно оплатить нужный транспортный налог.

17

17

Стоит учитывать, что на WebMoney есть комиссия за оплату налогов (в большинстве случаев 2,5%).

 

Остались вопросы?

Проконсультируйтесь у юриста (бесплатно, круглосуточно, без выходных):

8 (800) 350-13-94 Федеральный

8 (499) 938-42-45 Москва и область

8 (812) 425-64-57 СПб и область

Внимание! Юристы не записывают на приём, не проверяют готовность документов, не консультируют по адресам и режимам работы МФЦ, не оказывают техническую поддержку по порталу Госуслуг!

infogosuslugi.ru

О государственных услугах ГИБДД

Поиск по всем разделам

Госавтоинспекция

Участникам движения

Организациям

Сервисы

Новости

Контакты

Госфункции

Социальные кампании

xn--90adear.xn--p1ai

Как легко и просто на госуслугах проверить штрафы ГИБДД?

Трудно найти водителя, которому ни разу не приходили штрафы за нарушение правил дорожного движения. Если сотрудники ГАИ поймали нарушителя «с поличным», то квитанцию ему выпишут на месте. В том случае, если нарушение было зарегистрировано камерами или радарами, то штраф придёт заказным письмом.

Водители называют эти послания «письмами счастья». И поскольку в их доставке задействована почта, то штрафы могут приходить с запозданиями или вовсе потеряться. В таком случае водитель может даже не узнать об имеющейся задолженности и спустя время она перейдёт приставам. Для взыскания суммы они могут заблокировать все счета должника, что повлечёт за собой массу проблем.

Для того, чтобы своевременно проверить наличие штрафов ГИБДД необходимо зайти на сайт государственных услуг www.gosuslugi.ru/10001/1. Для этого нужно выбрать соответствующий пункт меню и ввести все необходимые данные.

Важно! Проверить информацию о штрафах ГИБДД через госуслуги можно только после авторизации на сайте. Для этого необходимо пройти несложную процедуру регистрации и получить доступ ко всем сервисам данного портала.

информация о штрафах ГИБДД через госуслуги

информация о штрафах ГИБДД через госуслуги

Как осуществить проверку?

Получить данные об имеющихся штрафах за нарушения правил дорожного движения можно используя информацию о транспортном средстве и водителе,

информация о транспортном средстве и водителе

информация о транспортном средстве и водителе

а также по номеру квитанции:

штраф по номеру квитанции

штраф по номеру квитанции

Он указан на постановлении, которое выдаётся нарушителю на руки при составлении протокола.

Для того, чтобы провести проверку штрафов ГИБДД, в госуслугах нужно ввести информацию о водителе и номер его водительского удостоверения. Вторым пунктом необходимо указать номер автотранспортного средства и ввести данные из свидетельства регистрации ТС. Далее нажимаем кнопку «Найти штрафы» и получаем ответ.

После минутного ожидания на экране появится результат.

результат проверки наличия штрафов ГИБДД

результат проверки наличия штрафов ГИБДД

Если нарушений нет, то будет показана запись «Штрафов не найдено». Если таковые имеются, то полный список предстанет перед пользователем. При необходимости их можно будет рассортировать по сроку давности.

Стоит запомнить! На портале государственных услуг возможно не только получить информацию о нарушениях правил дорожного движения и узнать величину штрафов, но и оплатить их за пару минут.

Достоинства данного сервиса

Самым главным достоинством является понятность и наглядность сайта. Все действия сопровождаются пошаговой инструкцией, поэтому провести  проверку штрафов ГИБДД на портале госуслуг может даже тот пользователь, который находится с компьютером на «Вы» . Кроме этого, портал госуслуг предоставляет возможность не выходя из дома оплатить штрафы и получить электронную квитанцию о проведении платежа.

При необходимости можно подписаться на предоставление оповещений о новых штрафах. Как только информация о них будет поступать в соответствующую структуру, пользователь будет проинформирован об этом. Можно выбрать один из следующих видов оповещения:

  • при помощи смс на мобильный телефон;
  • письмом на электронную почту;
  • онлайн-сообщение на смартфон через мобильное приложение «Госуслуги».

Данная возможность очень удобна и помогает своевременно узнать обо всех имеющихся задолженностях. Это позволяет в кратчайшие сроки произвести оплату штрафов и избежать негативных последствий за несвоевременную уплату.

Оплата штрафов

Если после получения услуги пользователь узнал о том, что на его имя имеется неоплаченный штраф, он может с лёгкостью его оплатить. Для этого на выбор ему предоставляются несколько вариантов перечисления средств:

  • с банковской карты;
  • мобильный платёж;
  • со счёта онлайн-кошелька.

Каждый плательщик выбирает наиболее удобный ему вариант и заполняет электронную квитанцию. Вся процедура занимает минимум времени, а средства перечисляются адресату в течение нескольких рабочих дней. Более подробно ознакомиться со сроками перевода платежа можно при заполнении платежной ведомости.

Заключение

Трудно найти водителя, который хоть раз бы не сталкивался с необходимостью узнать о наличии у него штрафов за нарушение правил дорожного движения. Раньше такая услуга была доступна только на сайте Госавтоинспекции. Сейчас получить всю необходимую информацию можно при помощи портала государственных услуг.

Для этого достаточно пройти несложную процедуру регистрации и у пользователя появится возможность в режиме онлайн узнать об имеющихся задолженностях по штрафам и оплатить их не выходя из дома. Это значительно упрощает жизнь автовладельцам, поскольку избавляет от лишней беготни и хлопот.

Не нужно стоять в очередях, чтобы получить квитанцию на оплату и произвести перечисление средств за нарушение правил, достаточно зайти на сайт госуслуги gosuslugi.ru, выбрать соответствующий раздел, проверить всю интересующую информацию и при необходимости оплатить долги. Все просто и быстро. Именно это и является отличительной особенностью данного сервиса и привлекает большое количество пользователей по всей России.

Остались вопросы?

Проконсультируйтесь у юриста (бесплатно, круглосуточно, без выходных):

8 (800) 350-13-94 Федеральный

8 (499) 938-42-45 Москва и область

8 (812) 425-64-57 СПб и область

Внимание! Юристы не записывают на приём, не проверяют готовность документов, не консультируют по адресам и режимам работы МФЦ, не оказывают техническую поддержку по порталу Госуслуг!

infogosuslugi.ru

10Сен

Как работает автоматическая коробка передач: виды, принцип работы » АвтоНоватор

виды, принцип работы » АвтоНоватор

И в реальной жизни, и в виртуальном пространстве идёт извечный спор между владельцами автомобилей с автоматами и ручными КПП. Этот спор также бесконечен, как и тот, что первично: яйцо или курица. Не вступая в него, мы попробуем просто напросто восполнить определенные пробелы в знаниях тех начинающих автовладельцев, у которых установлена автоматическая коробка передач.

Какая она, коробка «автомат»?

Помимо того, как пользоваться АКПП, наверное, все же надо иметь представление какая она и как она действует, эта коробка – автомат.

Автоматическая коробка переключения передач, устройство, которое обеспечивает без участия водителя выбор передаточного числа в соответствии с текущими условиями движения. В данном случае педаль акселератора («газа») задает не обороты двигателя, а скорость движения.

История создания и развития АКПП берет начало с 30-х годов прошлого века. С момента появления принцип работы автоматической коробки передач поменялся мало, но был, естественно дополнен. Благодаря чему, и существуют различные виды автоматических коробок передач, которые развились в отдельные направления, т.к. разрабатывались разными автостроителями.

Виды АКПП

  • Бесступенчатая автоматизированная трансмиссия (вариатор).
  • Различные «роботизированные» АКПП с электропневматическими, электронными или электромеханическими исполнительными устройствами. В настоящее время первый тип роботизированной КПП с одним сцеплением, практически снят с производства. Второе поколение этого вида автоматических коробок передач носит название «преселективная КП», известная как Audi S-tronic, Volkswagen DSG, Ford Dualshift, Mitsubishi SST и т.д.

У нас на слуху такие типы АКПП как типтроник и стептроник. Пару слов об этих общепринятых названиях.

Tiptronic – это АКПП имеющая возможность ручного переключения передач. В режиме ручного управления водителем осуществляется ручной выбор передачи путем подталкивания рычага селектора в направлении «+» или «-».

Steptronic – АКПП применяемая в БМВ. Имеет также возможность ручного переключения передач, но скорость переключения увеличена, и сравнима с МКПП. В стептронике рычаг передвигается по положениям P, R, N, и D. Кроме того здесь имеется положение «M/S» (Manual/Sport), которое в режиме «спорт» удерживает передачу до момента достижения максимального количества оборотов, затем происходит повышение передачи.

Как работает автоматическая коробка передач?

Автоматическая гидромеханическая коробка передач в классическом варианте состоит из планетарных редукторов, гидротрасформатора, обгонных и фрикционных муфт, соединительных барабанов и валов.

Не вдаваясь в дебри, тем более ремонт АКПП своими руками делать настоятельно не рекомендуется, принцип работы автоматической КПП отличается тем, что переключение передач происходит за счет взаимодействия планетарных механизмов и гидромеханического привода при помощи электронных исполнительных устройств.

Особенности эксплуатации АКПП уже освещались на страницах сайта. Но мы повторимся.

  • Коробка – автомат перед началом движения требует тщательного прогрева, особенно в зимнее время.
  • Не рекомендуется переводить рычаг селектора на ходу в положения P и R.
  • Нет необходимости включать нейтраль при спуске с горы, экономии топлива (как это считается) не будет, а вот проблемы с торможением, могут возникнуть.
  • Торможение двигателем осуществляется не на всех режимах. Более подробно об эксплуатации в различных режимах производитель дает инструкции в Руководстве. При всей нашей безалаберности, желательно придерживаться этих инструкций. В первую очередь – это безопасность движения, а во вторую, не последнюю – это стоимость ремонта или полной замены нежного и чувствительного агрегата – АКПП

Ну вот, собственно, можно заводить, прогревать и начинать движение.

Удачи вам, любители своего автомобиля.

Оцените статью: Поделитесь с друзьями!

Автоматическая коробка передач (АКПП) — устройство и принцип работы. Гидротрансформатор, планетарный редуктор

Как ни странно, но в настоящее время АКПП (автоматическая коробка переключения передач) набирает популярность у автолюбителей и будущих автовладельцев. (Ваш покорный слуга относится к противникам данного вида коробок). Но об этом ниже.

Итак, АКПП…

Основное назначение АКПП — такое же, как и у механики – прием, преобразование, передача и изменения направления крутящего момента. Различаются автоматы по количеству передач, по способу переключения, по типу сцепления и по типу применяемых актуаторов.

Работу АКПП лучше рассмотреть на конкретном примере, а именно на классической трехступенчатой коробке передач с гидравлическими актуаторами (приводами) и гидротрансформатором. Надо отметить, что существуют и преселективные АКПП.

 

В устройство АКПП входит:

  1. Гидротрансформатор – механизм, обеспечивающий преобразование, передачу крутящего момента, используя рабочую жидкость. Рабочая жидкость для АКПП обычно, готовое трансмиссионное масло для автоматических коробок передач. Но многие автолюбители используют  жидкость для гидравлических приводов большегрузной техники (веретенку), хотя это и неправильно. Веретенка не предназначена для работы в условиях высокой скорости движения шестерен.
  2. Планетарный редуктор – узел, состоящий из «солнечной шестерни», сателлитов, и планетарного водила и коронной шестерни. Планетарка является главным узлом автоматической коробки.
  3. Система гидравлического управления – комплекс механизмов, предназначенных для управления планетарным редуктором.

Для того чтобы более полно объяснить принцип работы АКПП начнем с гидротрансформатора.

 

Гидротрансформатор

Гидротрансформатор служит одновременно сцеплением и гидромуфтой для передачи крутящего момента к планетарному механизму.

Представьте себе две крыльчатки с лопастями, расположенными друг напротив друга на минимальном расстоянии и заключенных в одном корпусе. В нашем случае одна крыльчатка называется насосное колесо, которое соединено жестко с маховиком, вторая крыльчатка называется турбинным колесом и соединено посредством вала с планетарным механизмом. Между лопастными крыльчатками находится рабочая жидкость.

 

Принцип работы гидротрансформатора

 

Во время работы двигателя, при вращении маховика вращается и насосное колесо, его лопасти подхватывают рабочую жидкость и направляют ее на лопасти турбинного колеса, под действием центробежной силы. Соответственно лопасти турбинного колеса приходят в движение, но рабочая жидкость после выполнения работы отлетает от поверхности лопастей и направляется обратно на насосное колесо, тем самым тормозя его. Но не тут то было! Для изменения направления отлетающей рабочей жидкости между колесами располагается реактор, у которого так же имеются лопасти и расположены они под определенным углом. Получается следующее —  жидкость от турбинного колеса возвращаясь через лопасти реактора ударяет вдогонку лопасти насосного колеса, тем самым увеличивая крутящий момент ДВС, потому что сейчас действуют две силы – двигателя и жидкости. Надо отметить, что при начале движения насосного колеса, реактор стоит неподвижно. Так продолжается до тех пор, пока обороты насосного не сравняются с оборотами турбинного колеса и стоящий неподвижно реактор только будет мешать своими лопастям – притормаживать обратное движение рабочей жидкости. Для исключения этого процесса в реакторе находится муфта свободного хода, которая позволяет реактору крутиться со скоростью крыльчаток, этот момент называется точкой сцепления.

Получается, что при достижении номинальных оборотов двигателя, сила от двигателя передается на планетарный механизм через… жидкость. Другими словами гидротрансформатор АКПП превращается в гидромуфту. Значит, крутящий момент уже передался дальше – на планетарный механизм?

Нет! Для того чтобы передать силу от двигателя, необходимо чтобы сработала муфта привода от ведущего вала. Но все по порядку…

 

Планетарный редуктор

Планетарный редуктор состоит из:

  1. планетарных элементов
  2. муфт сцепления и тормозов
  3. ленточных тормозов

Планетарный элемент представляет собой узел из солнечной шестерни, вокруг которой расположены сателлиты, которые в свою очередь крепятся на планетарное водило. Вокруг сателлитов находится коронная шестерня. Вращаясь, планетарный элемент передает крутящий момент на ведомую шестерню.

Муфта сцепления представляет собой набор дисков и пластин, чередующихся друг с другом. Чем-то муфта АКПП представляет собой сцепление мотоцикла. Пластины муфты вращаются одновременно с ведущим валом, а вот диски соединены с элементом планетарного ряда. Для трехступенчатой коробки планетарных рядов два – первой-второй передачи и второй-третьей. Привод в действие муфты обеспечивается сжатием между собой дисков и пластин, этот работу выполняет поршень. Но поршень не может сам двигаться, в действие он приводится гидравлическим давлением.

Ленточный тормоз выполнен в виде обхватывающей пластины одного из элементов планетарного ряда и приводится в действие гидравлическим актуатором.

Для понятия работы всей коробки разберем работу одного планетарного ряда. Представим себе, что затормозилась солнечная шестерня (в центре), значит, в работе остаются коронная и сателлиты на  планетарном водило. В этом случае скорость вращения водило будет меньше, чем скорость коронной шестерни. Если позволить солнечной шестерне вращаться с сателлитами, а затормозить водило, то коронная шестерня изменит направление вращения (задний ход). Если скорости вращения коронной шестерни, водило и солнечной шестерни, будут одинаковые, планетарный ряд будет вращаться как единое целое, то есть, не преобразовывая крутящий момент (прямая передача). После всех преобразований крутящий момент передается на ведомую шестерню и далее на хвостовик коробки. Надо отметить что мы рассматриваем принцип работы автоматической коробки передач у которой ступени расположены на одной оси, такая коробка предназначена для авто с задним приводом и передним расположением двигателя. Для переднеприводных авто, размеры коробки должны быть уменьшены, поэтому как и МКПП вводятся несколько ведомых валов.

Таким образом, затормаживая и отпуская один или несколько элементов вращения можно добиться изменения скорости вращения и изменения направления. Всем этим процессом управляет гидравлическая система управления.

 

Гидравлическая система управления

Гидравлическая система управления состоит из масляного насоса, центробежного регулятора, системы клапанов, исполняющих устройств и масляных каналов. Весь процесс управления зависит от скорости вращения двигателя и нагрузки на колеса. При движении с места масляный насос создает такое давление, при котором обеспечивается алгоритм фиксации элементов планетарного ряда так, что бы крутящий момент на выходе был минимальным, это и есть первая передача (как говорилось выше – затормаживается солнечная шестерня в двух ступенях). Далее при росте оборотов, давление увеличивается и в работу входит вторая ступень на уменьшенных оборотах, первая ступень работает в режиме прямой передачи. Увеличиваем еще обороты двигателя – коробка передач начинает работать вся в режиме прямой передачи.

Как только нагрузка на колеса увеличится, то центробежный регулятор начнет понижать давление от масляного насоса и весь процесс переключения повторится с точностью до наоборот.

При включении пониженных передач на рычаге переключения, выбирается такая комбинация клапанов масляного насоса, при которой включение повышенных передач невозможно.

 

Достоинства и недостатки АКПП

Главным достоинством автоматической коробки передач, конечно, служит комфорт при вождении — дамы просто в восторге! И, бесспорно, с автоматом двигатель не работает в режиме повышенных нагрузок.

Недостатки (и они очевидны) – низкий КПД, полное отсутствие «драйва» при трогании с места, большая цена, а главное – авто с автоматом нельзя завести с «толкача»!

Подводя итоги, скажем, что выбор коробки это дело вкуса и… стиля вождения!

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

Как работает Автоматическая Коробка Передач (АКПП)?

Довольно часто раньше можно было услышать, что автоматическую коробку переключения передач (АКПП) выбирают преимущественно женщины из-за неумения обращения с «механикой». Однако сейчас многие поняли, что АКПП – это удобство и комфорт при вождении. В этой статье мы предлагаем разобраться устройстве автоматической коробки передач.

Так как же устроена автоматическая коробка переключения передач?

Когда двигатель начинает свою работу, его мощность, обороты и крутящий момент минимальны, хотя для того, чтобы начать движение, нужны именно максимальные показатели мощности, оборотов и крутящего момента. Однако при хорошем разгоне максимальной мощности, больших оборотов и крутящего момента не требуется, хотя двигатель как раз и работает во всю мощь в этот момент. Компенсирует подобный недостаток трансмиссия, преобразуя и передавая на колеса в нужный момент определенное передаточное число.

В отличие от механической, автоматическая трансмиссия без участия водителя выбирает соответствующее на данным момент движения передаточное число. Она является своеобразным связующим звеном между двигателем внутреннего сгорания и ведущими колесами. Ведь просто передать крутящий момент и мощность от двигателя к колесам недостаточно, нужно его еще и качественно преобразовать. Эту задачу и выполняет автоматическая трансмиссия.

Устройство автоматической коробки передач конструктивно состоит из (для визуализации сравним здесь АКПП с МКПП):

  • Гидротрансформатора, который в МКПП соответствует сцеплению.
  • Планетарного ряда, соответствующего в МКПП блоку шестерен.
  • Переднего фрикциона, заднего фрикциона, тормозной ленты – позволяют переключать передачи.
  • Управляющего устройства, контролирующего переключение передач в АКПП со встроенной системой управления электронного типа.

Следует отметить, что гидротрансформатор является заменителем привычного в автомобилях с механической коробкой передач сцепления. Именно поэтому в авто с «автоматом» вместо привычных трех педалей есть только педали тормоза и газа. Для движения достаточно зафиксировать рычаг переключения на «drive» и нажать педаль газа.

В чем заключается самое главное отличие АКПП от МКПП?

В предыдущей статье мы рассмотрели, как устроена механическая коробка переключения передач и выяснили, что переключения передачи происходит при подключении определенной шестерни, а их несколько наборов. Коробка-автомат задействует в своей работе только один набор шестерен для переключения передач, и позволяет это сделать планетарная передача.

Планетарная передача по своим размерам небольшая – как средняя дыня, но она отвечает за передачу всех возможных передаточных чисел, а все остальные части в коробке-автомате только помогают ей успешно справляться с этой сложной задачей. Конструктивно она включает в свой состав солнечные шестерни, вслед за которыми идут сателлиты и коронная шестерня. Они могут фиксироваться в определенном положении, работая на вход или выход – тем самым, определяется передаточное число.

Планетарная передача использует блокировку одних элементов и разблокировку других для переключения передач и состоит всего из одного центрального вала, в то время как МКПП для этого задействует сцепляющиеся между собой шестерни и параллельные валы – в этом преимущество планетарной передачи и автоматической трансмиссии в целом.

Тормозная лента и фрикционы

Благодаря тормозной ленте и фрикционам может выполняться блокировка тех или иных элементов планетарного ряда – а это дает возможность переключать различные передачи. Тормозная лента блокирует элементы планетарной передачи на корпус АКП (она крепится к корпусу), а фрикционы позволяют блокировать составляющие планетарного ряда между собой, предотвращая вращение блокируемых элементов против часовой стрелки. Тормозная лента имеет довольно высокую удерживающую способность и блокирует элементы планетарного ряда за счет эффекта самосжатия.

Гидротрансформатор: демпфер крутильный колебаний, который гасит сильные толчки

Гидротрансформатор имеет в своей конструкции турбину и насос. Между этими лопастными машинами располагается реактор (внешне выглядит, как колесо с лопатками), который является направляющим аппаратом. Он может быть легко блокирован обгонной муфтой или просто вращаться, все зависит от условий движения.

Лопасти центробежного насоса отбрасывают на турбинное колесо масло, потоки которого, собственно, и передают крутящий момент от ДВС к АКПП. Чтобы масло циркулировало непрерывно, предусмотрены специальные зазоры между турбиной и насосом, а их лопастям еще на производстве придается определенная геометрия. Именно тот факт, что крутящий момент передается потоками масла, объясняет отсутствие жесткой связи между самой КПП и движком (в механике первичный вал соединен напрямую с двигателем). Благодаря подобной схеме возможна остановка авто без выключения двигателя.

Однако мы говорили ранее, что просто передать крутящий момент на ведущие колеса недостаточно, необходимо его еще и качественно изменять – с этой задачей справляется реактор. Поскольку он расположен между турбиной и насосом, его лопатки располагаются на пути возвращения масла из турбины в насос. Если ректор неподвижен, то скорость масла, циркулирующего между колесами, увеличивается. И чем больше скорость циркулирующего масла, тем большее воздействие оно оказывает на колесо турбины. Реактор начинает вращаться в то момент, когда начинают сравниваться скорость насоса и обороты турбины, тем самым, снижая кинетическую энергию рабочей жидкости. Этот режим работы реактора принято называть «режимом гидромуфты».

Иногда преобразовывать скорость и крутящий момент просто не нужно (допустим, вы едете по прямой на постоянной скорости), тогда гидротрансформатор блокируется фрикционом. Но как только условия движения меняются (перешли с постоянной скорости по прямой на подъем в гору), гидротрансформатор тут же включается в работу. При уменьшении частоты вращения турбины начнет затормаживаться реактор, вследствие чего циркулирующее масло наберет скорость и автоматически увеличит показатель крутящего момента, который передается на колеса (то есть на вал от турбины). Этого диапазона увеличения хватит для преодоления подъема без необходимости переключения на более низкую передачу.

Каким образом включается передача?

Переключение передач происходит без разрыва мощности – одна выключилась, тут же включается другая. Гидравлический толкатель приводится в движение давлением масла, используемого в гидротрансформаторе, после чего он давит на фрикцион. Показатель давления регулируется электроникой. В этот момент элементы фрикциона (связанные жестко с валом) застопорятся. Вал останавливается, и передача включается.

При переключении рычага АКПП в режим «drive», на центральный вал передается крутящий момент от двигателя. Вал соединяется с солнечной шестерней, в то время как коронная шестерня блокируется фрикционом. Как только будет разблокирована коронная шестерня, она наберет свою мощность при вращении, и передача повысится. Если же электронному устройству пришла команда на понижение передачи, то вал фиксируется фрикционом, в то время как двигатель вращает солнечную шестерню планетарного ряда. В этот момент коронная шестерня теряет свою мощность и передача понижается.

Для наглядной демонстрации устройства автоматической коробки передач, также предлагаем посмотреть видео компании Toyota.

устройство и принцип работы для чайников

Автоматическая коробка передач — это часть трансмиссии, способная регулировать крутящий момент и скорость движения транспортного средства. Это значит, что больше не нужно рассчитывать момент, когда зажимать сцепление и отпускать его, а также переключать скорости вручную.

В данной статье рассмотрим принципы работы механизма.

История создания автоматической коробки передач

Автоматизация трансмиссии исторически происходила в три этапа. Первым попытку сделать авто более самостоятельным предпринял Генри Форд в начале ХХ века. Ford T имел планетарную КП, которая требовала меньше навыков от автолюбителей по переключению скорости, чем обыкновенная механическая.

На следующем этапе в производство поступили автомобили с полуавтоматической трансмиссией. В них автоматизация направлена либо на самостоятельное переключение передач, либо на отказ от использования сцепления, что существенно облегчало вождение транспортного средства.

Знаете ли вы? Такую полуавтоматическую трансмиссию используют до сих пор на скутерах.

Последним этапом к переходу на автоматическую трансмиссию была система, предложенная разработчиками американской компании General Motors. В её основе лежала планетарная модель, ранее использовавшаяся на заводе «Форд», а также гидравлика, которая сама включалась в момент, когда необходимо изменить передачу. Оба принципа лежат в основе современной АКПП.

Устройство узлов и механизмов

Автоматическая коробка передач условно состоит из трёх основных частей:

  1. Механической. В её обязанности входит изменение скорости транспортного средства, а также непосредственное переключение скоростей.
  2. Гидравлической. Данная часть АКПП передаёт крутящий момент между составными частями КП без каких-либо действий водителя.
  3. Электронной. Данная составляющая является мозгом коробки передач, который следит за работой механической и гидравлической систем, а также передаёт сигналы к другим узлам автомобиля.

Составные части автоматической КП:

  • гидротрансформатор. В основе работы транспортного средства лежит двигатель, без которого любые манипуляции невозможны. То же самое можно сказать и про трансмиссию, сердцем которой является гидротрансформатор. Именно он занимается преобразованием и передачей крутящего момента и мощности, необходимых для движения транспортного средства. Гидротрансформатор является полной заменой сцепления. Механизм состоит из турбины и насоса. Чтобы жидкость с наименьшими потерями объёма и энергии перетекала из турбины к насосу, эти два компонента максимально приближены друг к другу. Данная характеристика также объясняет небольшие размеры гидротрансформатора. Более того, существует режим блокировки, который полностью сцепляет турбину и насос, что значительно минимизирует потери;
  • планетарный ряд. Это часть трансмиссии, которая выполняет функции, аналогичные механической КП. Планетарный ряд позволяет передавать крутящий момент от гидротрансформатора к колёсам с помощью трансмиссионной жидкости;
  • тормозная лента, задний и передний фрикцион. Этот узел передаёт импульс двигателю, позволяя изменять передачи. Тормозная лента является элементом КП, позволяющим приостанавливать работу планетарного ряда, приводя ТС в неподвижное состояние.

Знаете ли вы? В СССР первые гидротрансформаторы начали использовать на таких автомобилях, как «Чайка», «Волга», ЗИЛ, а также некоторых других транспортных средствах.

Принцип работы

Любая автоматическая коробка передач работает на основе планетарного редуктора, который состоит из солнечной шестерни и сателлита, объединённых водилом и коронной шестернёй. Этих узлов столько, сколько скоростей имеет автомобиль.

Принцип работы:

  1. Все импульсы на редуктор поступают с помощью двух входов, соединённых с коронной и солнечной шестернями, а передаются через один выход, который обеспечивается вращением водила.
  2. При поступлении импульса на вход к солнечным шестерням они начинают вращаться, что приводит к вращению водила.
  3. Водило, в свою очередь, заставляет двигаться коронную шестерню, что влечёт за собой постоянное увеличение скорости вращения водила на выходе.
  4. Если водителю необходимо перейти к заднему ходу, то солнечные шестерни начнут двигаться в противоположную сторону.
Автоматическая коробка передач не имеет прямой связи между входным и выходным валом. Их объединяет промежуточный вал, на котором в рабочем состоянии замкнуты два пакета фрикционных дисков, соединяющихся с шестернёй.

Знаете ли вы? За последний год в Европе 80% всех купленных автомобилей работают на коробке автомат. На территории стран СНГ покупки автомобилей с автоматической трансмиссией составляют всего 10% от общего числа проданных транспортных средств.

Именно эти диски передают мощность. Фрикционные диски на входе меньшего диаметра, чем на выходе. Это объясняется увеличением мощности вращения во время передачи импульса от входа к выходу.

Плюсы и минусы

Давайте же рассмотрим, с какими плюсами и минусами можно столкнуться при использовании автомобиля с автоматической коробкой передач.

Плюсы:

  • удобство. Больше не нужно отвлекаться на переключение скоростей и использование сцепления. Водитель может быть полностью сконцентрирован на дороге;
  • легче тронуться с места. Ответственной за данный процесс в автоматической трансмиссии является электроника, а не правильное нажатие сцепления или педали газа;
  • узлы автомобиля имеют больший срок службы за счёт контроля электроникой. Очень часто водители, особенно новички, не вовремя переключают скорость, что приводит к нарушению работы двигателя, или задерживают сцепление, или работают и вовсе без него, что приводит к его перегоранию.
Минусы:
  • автомобили с автоматической коробкой передач имеют высокую стоимость. Более того, они также дороже в обслуживании, нежели транспортные средства на механической коробке передач;
  • имеются трудности в непогоду. Основным способом выехать из заноса или грязи является «раскачка», которая невозможна при использовании коробки автомат.

Важно! Во время переключения скоростей с помощью селектора нельзя давить на педаль газа.

Автомобиль с коробкой автомат предназначен для людей, которые ценят комфорт. Чтобы определиться, какой тип трансмиссии необходим именно вам, следует попрактиковаться в вождении и с механической, и с автоматической коробкой передач.

Принцип работы автоматической коробки передач: видео

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Автоматическая коробка передач — основные типы, устройство, принцип работы АКПП, особенности эксплуатации и главные неисправности коробки автомат — Словарь автомеханика

АКПП, также именуемая как автомат или тяпка, представляет разновидность трансмиссии авто, позволяющую уменьшить нагрузку на шофера при езде так как выбор передач происходит автоматически, без участия водителя. Данный факт оказывает влияние на все характеристики, которыми обладают автомобили с коробкой автомат.

Преимущества АКПП

  • увеличение комфорта при движении авто и освобождение шофера от контроля сторонних функций;
  • плавное переключение передач и согласование нагрузки на мотор со скоростью и силой нажатия педали;
  • предохранение мотора от любой перегрузки;
  • допуск к частичному или полному ручному управлению трансмиссией.

Типы АКПП

Автоматические коробки современных автомобилей можно поделить на несколько типов, различающихся по системе управления и контроля над эксплуатацией автоматической коробки переключения передач. Первый тип трансмиссии управляется с помощью гидравлического устройства, а второй – электронным распределителем.

Типы автоматической коробки передач

«Внутренности» у обеих трансмиссий идентичны, однако существует несколько различий компоновки, которыми обладает каждая автоматическая коробка.

Все 3 типа автоматических коробок кратко рассмотрим более подробно, чтобы понять их отличие между собой и принцип работы.

Виды АКПП — кратко о главном.

Гидроавтомат — классическая АКПП

Гидравлический тип автоматической коробки передач является самой простой АКПП. Такая коробка исключает прямую связь двигателем и колесами. Крутящий момент в ней передается двумя турбинами и рабочей жидкостью. Вследствие усовершенствования механизма в такой коробке появилось специализированные электронное устройство, которое также смогло добавить такие режимы работы как: «зима», «спорт», экономичная езда.

Одним из главных недостатков, в сравнении с МКПП – это немного больше расход топлива и время на разгон.

Роботизированная АКПП

МТА в народе звучит как робот DSG, конструктивно наиболее схож с механической КПП, но с точки зрения управления — типичная АКПП, которая в следствии эволюции не только снизить потребления топлива, но и ряд других преимуществ естественно со своими нюансами.

Вариаторная трансмиссия

Хотя и считается автоматической коробкой, вариатор и автомат принципиально разные и по устройству и по принципу работы. В такой коробке передач отсутствуют ступени так как нет фиксированного передаточного числа. Водители привыкшие слушать мотор своего автомобиля не могут отслеживать её работу, ведь крутящий момент в коробке вариатор изменяется плавно и тональность двигателя не меняется.


Компоненты АКПП

  • гидротрансформатор, который заменяет сцепление, и не потребует участия и управления со стороны шофера.
  • вместо блока шестерен в АКПП установлен планетарный ряд. Эта часть помогает изменить отношение в АКПП при переключении трансмиссии.
  • передний и задний фрикцион, а также тормозная лента, благодаря которым осуществляется непосредственно переключение передач.
  • последняя и самая важная деталь – устройство управления, которое представляет собой узел из поддона коробки передач, насоса и клапанной коробки, выполняющей функции контроля. Данный компонент передает данные о движении посредством знаков, которые передают сигнал к действию самой АКПП.

Устройство и работа автоматической коробки передач.

Из всех основных компонентов уделим наибольшие внимания гидротрансформатуру коробки.

В состав гидротрансформатора входят:
  1. центробежный насос;
  2. статор;
  3. центростремительная турбина;
  4. насосное колесо;
  5. турбинное колесо;

Статор является направляющим аппаратом, который расположен между данных деталей. С коленчатым валом двигателя связано насосное колесо, а с валом коробки передач — турбинное. У реактора 2 функции. Он может вращаться или блокироваться обгонной муфтой.

Основной задачей гидротрансформатора является гашение сильных толчков, которые передаются трансмиссией к двигателю и в обратном направлении. Данный аппарат увеличивает период эксплуатации данных деталей. При помощи жидкого масла осуществляется передача крутящего момента от двигателя к АКПП.

Для того, чтобы АКПП работала долго и исправно, необходимо регулярно проходить диагностику на станции техобслуживания.

Обращайте внимание на следующие детали:

  • передачи должны переключаться за 1 секунду, максимальное время — 1,5 секунды;
  • оповещение переключений осуществляется легкими толчками;
  • переключение передач должно быть бесшумным.

Как работает автоматическая коробка передач

В гидромеханической АКПП в классическом исполнении переключение передач, происходит за счет взаимодействия планетарных механизмов и гидромеханического привода при помощи электронных устройств.

Как правильно пользоваться классической АКПП?


Особенности эксплуатации АКПП

  • Автоматическую коробку передач нужно хорошо прогревать, прежде чем начать движение (зимой это особенно актуально).
  • При управлении АКПП переводить рычаг селектора переключения в положениях P и R во время движения, настоятельно не рекомендуется.
  • Ненужно включать нейтральную передачу вовремя спуска с горы, якобы экономии топлива, — его все равно не будет, а вот проблемы с торможением, могут возникнуть.
  • Тормозить двигателем можно не на всех режимах КПП. Этот пункт эксплуатации нужно изучить подробно в руководстве по эксплуатации конкретного автомобиля, пренебрежение такой особенности может стоить дорогого ремонта.

Проблемы АКПП и способы устранения

Самыми распространенными проблемами АКПП принято считать:

  • явно выраженный рывок при переключении передачи, а также шум при переводе рычага селектора в другое положение;
  • довольно часто в коробках-автомат происходит разрыв тормозной ленты переднего и заднего фрикциона;
  • выход электро- или гидроблока из строя.

Рекомендуется менять масло в акпп через каждые 35-40 км, либо каждые 2 года, при тяжелых условиях эксплуатации каждые 25 тыс км. пробега.

Чтобы избежать подобных поломок, опытные работники автосервисов рекомендуют чаще прочищать масляный фильтр и рабочую жидкость, ведь большинство водителей не меняют её с момента приобретения авто. При возникновении проблем с автоматической трансмиссией, следует немедленно обратиться в сервисный центр производителя или на станцию технического обслуживания.

После процедуры замены масла необходимо проверить работу двигателя. Сделайте это в несколько этапов:
  1. нажмите на тормоз и переключите АКПП в первое положение, через нескольку секунд во второе и так до последнего;
  2. установите после это нейтральную позицию АКПП;
  3. если уровень масла изменился, необходимо его долить;
  4. протестируйте работу авто на 20-25 километрах по городу и совершите повторный замер уровня.

Уделяйте внимание внешнему виду фильтра и магнита поддона.

Данные детали должны быть чистыми от крупных загрязнений. Единственное что допускается — небольшой налет и пыль. Не припустим также посторонний запах для фильтра.

Связанные термины

Как работает автоматическая коробка и насколько она хороша?

04.04.2019 Автоматическая коробка переключения передач

Если бы коробки передач не существовало, колеса внезапно получили бы весь предоставленный крутящий момент, и это сделало бы передачу непрактичной. В механической коробке передач используются пары передач, то есть передаточные числа. Они регулируют, то есть преобразовывают величину крутящего момента, передаваемого на колеса. 

Простейшая иллюстрация, показывающая принцип работы коробки передач

Выбор отношения происходит через рычаг. Сцепление — это диск, расположенный между коробкой передач и двигателем: он предотвращает остановку двигателя и позволяет автомобилю начинать движение с места, а также облегчает переключение. Вместо этого, как производится автоматическая коробка передач?

 Можно разделить различные системы автоматической трансмиссии на четыре основных типа:

  • автоматическая коробка передач с гидротрансформатором;
  • роботизированная коробка передач;
  • бесступенчатая;
  • коробка передач с двойным сцеплением.

Автоматическая трансмиссия с моментным преобразователем

В автоматической коробке с гидротрансформатором вместо использования передач, крутящий момент передается через гидравлический преобразователь, расположенный между двигателем и коробкой передач. 

Строение АКПП с гидротрансформатором

Это очень сложный механизм, который через серию клапанов вызывает перепад давления определенного масла, и так переключается передача. Гидротрансформатор заменяет сцепление. В прошлом эта система была полностью механической, очень дорогой и тяжелой. Сегодня многие детали были заменены электронной системой, что привело к снижению сложности, стоимости и веса.

Роботизированная автоматическая трансмиссия

Это полуавтоматическая коробка передач: передаточные числа всегда механические, а операции выбора передач и включения — электронные. Водитель выбирает передачу, нажимая рычаг или кнопки; таким образом вырабатывается электрический импульс, который отправляется на блок управления коробкой; он, основываясь на предопределенных программах, решает, какие коэффициенты задействовать.

РКПП — роботизированная коробка передач

Эта коробка передач используется в гоночных автомобилях, потому что она обеспечивает очень быстрое включение; по той же самой причине это также принято в некоторых дорожных моделях, хотя настроено для более сладких изменений.

Автоматическая трансмиссия с непрерывной вариацией

Автоматическая бесступенчатая коробка также называется CVT (ContinuousVariableTransmission). Вместо использования зубчатых колес у нее есть пара шкивов (или роликов, или конусов), вокруг которых наматывается ремень; в зависимости от оборотов двигателя шкивы перемещаются, изменяя диаметр ремня. Это переменное движение определяет передаточное число. 

Автоматическая трансмиссия с непрерывной вариацией

Поскольку это движение непрерывно, существуют бесконечные отношения. Система CVT позволяет двигателю работать постоянно, всегда близко к максимальному крутящему моменту, то есть в ситуации максимальной эффективности. По этой причине имеется лучшая экономия топлива.

Автоматическая трансмиссия с двойным сцеплением

В зависимости от производителя автоматическая коробка передач с двойным сцеплением также называется DSG (коробка передач с прямым переключением передач) или DCT (коробка передач с двойным сцеплением). Это эволюция роботизированной коробки передач. 

Есть два сцепления, одно для четных передаточных чисел, а другое для нечетных, соединенных с двумя передающими валами. Они вращаются в одно и то же время, поэтому отношения всегда готовы, и они зацепляются по два за раз, но только выбранное передается паре. Сцепление полностью автоматическое, с электронным управлением. Таким образом, скорость изменения очень высока.

Автоматическое или механическое переключение, какое лучше?

Определение того, лучше ли автоматическая или механическая коробка передач, зависит, как всегда, от собственных потребностей. Механическая коробка дешевле и, в руках экспертов, позволяет использовать всю мощность, доступную именно тогда, когда ее нужно использовать. 

Большая спортивность и полная свобода для водителя. Недостатком является использование в городе и в пробках, где существует большое неудобство от непрерывного нажатия педали и рычага в течение нескольких метров.
Традиционная автоматическая коробка с гидротрансформатором обеспечивает великолепный комфорт вождения. Недостаток заключается в значительно более высокой стоимости и весе, хотя в последнее время электроника позволила добиться некоторого сокращения.

CVT обеспечивает максимальную экономию топлива и лучший комфорт при вождении, учитывая вес, габариты и не чрезмерные расходы. Основным недостатком является то, что он не допускает спортивного вождения, если не за счет сложных электронных конфигураций, которые значительно увеличивают расходы. Это также шумно.

Роботизированная коробка передач и ее эволюция с двойным сцеплением стоят немного дороже, чем механическая. Они обеспечивают комфорт как классического автоматического, так и скоростного режима, подходящего для спортивного вождения, со временем переключения, которое не может выполнять ни один человек, а также позволяют водителю выбирать передачу и момент ее включения (в определенных пределах).

Как работает АКПП. Этот сложный и популярный «автомат»

Есть модели автомобилей, имеющие только механические коробки переключения передач. У некоторых моделей имеются и модификации с вариаторными трансмиссиями, но вот машин, не имеющих «автоматных» вариантов, с каждым годом становится все меньше.

Одним из основных элементов классической АКПП является планетарная передача. Удивительно, но эта деталь использовалась еще в легендарном Ford model T 1908 года. Правда, в машине, которая «поставила Америку на колеса», передачи включались вручную, а вот двумя годами ранее – в 1906 – все те же американцы из компании Cadillac начали продажи первого в мире автомобиля, оснащенного полностью автоматической трансмиссией. КПП этих машин были трехступенчатыми, а переключение передач осуществлялось при помощи гидравлики, то есть при помощи давления рабочей жидкости. Долгие годы гидравлическое управление применялось повсеместно, но в последнее время за переключение передач отвечают электронные блоки управления.

Условно автоматическую коробку передач можно разделить на две части – собственно планетарную коробку передач и гидротрансформатор. Крутящий момент от двигателя автомобиля передается довольно сложному гидротрансформатору, который преобразует вращение в зависимости от режима движения или вообще может не передавать вращение.

В механической коробке передач в постоянном зацеплении находятся шестерни ведущего, ведомого и промежуточного валов, и нужное передаточное отношение получается при соединении ведомого вала с той или иной парой шестерен, тогда как в «автомате» выбор режима движения реализуется блокированием определенных шестерен планетарных передач. Что же такое – планетарная передача? В состав планетарного редуктора (см. Рис. 1) входит солнечная шестерня (именно она получает преобразованный крутящий момент от гидротрансформатора), соединенные с ней при помощи водила сателлиты (обычно их три или четыре), которые, в свою очередь зацеплены с коронной, или кольцевой, шестерней. На каждом из элементов планетарной передачи имеются фрикционные (реже – ленточные) тормоза, которые позволяют заблокировать ту или иную часть механизма.

Рассмотрим три примера. В первом случае нам нужно получить повышенную передачу. Посмотрим внутрь механизма: кольцевая шестерня зафиксирована, и крутящий момент с солнечной шестерни передается сателлитам, вращающимся с большей скоростью, водило «собирает» вращение сателлитов и вращается со скоростью, большей, чем была первоначально. Передача получается понижающей, если зафиксировать водило – «помогавшие» нам ранее сателлиты вращаются, заставляя двигаться кольцевую шестерню, и вращение это получается медленным. Наконец, узнаем, как получается прямая передача. Здесь все очень просто: при помощи фрикциона между собой фиксируются водило и кольцевая шестерня, и потерь на трение и вращение неактивных элементов нет. Очень важный вопрос: «снятое» с какого из элементов вращение передается на карданный вал, раздаточную коробку или приводы? Если мы блокируем какую-либо часть механизма, то вращение «снимается» с незаблокированной части. Скажем, фрикционы заставляют водило стоять на месте, а колеса получают вращение, «снятое» с кольцевой шестерни. В случае с прямой передачей планетарный редуктор можно мысленно отбросить, роль коробки передач играет гидротрансформатор (о нем – далее). Рассмотренный на рис. 1 планетарный редуктор представляет собой трехступенчатый агрегат, но в большинстве современных автомобилей передач гораздо больше. Для улучшения условий работы двигателя, снижения расхода топлива и получения хорошей динамики в АКПП устанавливают не по одному планетарному редуктору, а чаще всего по два или более, и нередко вторые и третьи планетарные редукторы не имеют понижающих передач. Выходит, что прямая для второго редуктора передача получается более «скоростной», чем повышающая передача первого механизма, а понижающая передача второму редуктору не требуется, так как вращение «снимается» с него не всегда.

Остановимся подробнее на фрикционах – от их работы отчасти и происходит переключение передач. Каждому из нескольких планетарных редукторов современных АКПП требуются пакеты фрикционов – наборы из подвижных и неподвижных тонких металлических колец. Подвижные кольца соединены с вращающимися элементами редуктора, и когда электроника создаст давление жидкости в нужной магистрали «автомата», неподвижные диски соединятся с подвижными, останавливая, например, водило или кольцевую шестерню. Таким образом и происходит автоматическое включение передач. Электронный блок управления коробкой передач отслеживает скорость автомобиля и обороты двигателя, а главными критериями перемены передач являются экономия топлива и поддержание оптимального режима работы мотора. Системы управления современными АКПП могут даже анализировать степень износа пакетов фрикционов и изменять давление для включения той или иной передачи, что существенно повышает ресурс работы «автоматов». При этом электроника фиксирует степень износа элементов, и при прохождении диагностики (это особенно полезно при покупке машины) неисправность коробки передач легко можно увидеть. Для создания давления, необходимого для переключения передач, служит специальный насос, а между магистралями коробки передач жидкость распределяют электромагнитные клапаны. Создаваемое насосом давление очень высоко, и развить его путем буксирования автомобиля невозможно, поэтому «автоматные» автомобили не заведешь «с толкача», так что их владельцам следует особое внимание уделять заряду аккумулятора.

А как же дела со сцеплением? Ведь если двигатель и рассмотренная нами автоматическая коробка передач неразрывно связаны, при включении передачи и остановке автомобиля силовой агрегат непременно заглохнет. Значит, нужно устройство, которое могло бы в определенные моменты разъединять мотор и трансмиссию, и это устройство – гидротрансформатор – входит в состав самой трансмиссии. Механизм состоит из трех основных частей – центробежного насоса, колесо которого жестко соединено с маховиком двигателя, центростремительной турбины (в свою очередь, она передает преобразованное вращение планетарной коробке передач) и расположенного между ними реактора, который позволяет полностью заблокировать передачу крутящего момента.

Насосные и турбинные колеса гидротрансформатора не соединены друг с другом – между ними имеются минимальные зазоры. Вращение передается при помощи масла, которое попадает с лопаток насосного колеса на лопатки колеса турбинного. Форма рабочих поверхностей элементов выполнена так, что даже при отсутствии жесткой связи между колесами рабочая жидкость циркулирует по непрерывному кругу. Конструкция из центробежного насоса и центростремительной турбины позволяет передавать вращение и не выключать передачу при остановке автомобиля, а для изменения крутящего момента служит реактор. Если на турбинном колесе требуется повысить крутящий момент (например, при старте с места), реактор останавливается, такой режим работы называется гидротрансформаторным. Форма лопаток реактора позволяет при возвращении масла из турбинного колеса в насосное создавать дополнительное сопротивление, с каждым разом все увеличивая и увеличивая скорость движения жидкости. Когда скорость «разогнавшегося» турбинного колеса приближается к скорости колеса насосного, реактор тоже начинает вращаться, не создавая помех при движении рабочей жидкости и позволяя поднять КПД «автомата». В таком случае гидротрансформатор работает в режиме гидромуфты.

Такова общая схема работы классической АКПП. Осталось только разобраться, чем режим «D» отличается от режимов «2» или «Sport». В первом случае электроника управляет переключением передач по стандартной программе, а вот режимов, также отвечающих за движение вперед, очень много, и каждый из них рассчитан на определенный стиль вождения (например, уже упомянутый «S») или дорожные условия (например, в режиме «2» автоматическая коробка передач не может переключиться выше второй передачи). Другой известный и популярный у японских автопроизводителей режим – Overdrive. Когда «Овердрайв» включен, «автомат» переключается на повышенную передачу раньше, чем обычно, при этом теряется динамика, но появляется лучшая стабильность движения. А для обгонов и других маневров, в которых требуется максимальная отдача от двигателя, служит Kick-down. Он позволяет в один момент перейти на пониженную передачу, и для его включения требуется резко «ударить» по педали акселератора.

В последнее время производители автоматических трансмиссий стремятся оснастить свои творения максимальным числом передач, это делается для получения более плавного разгона и сокращения расхода топлива. Например, восьмиступенчатая автоматическая коробка передач позволяет сэкономить до 14% горючего по сравнению с шестиступенчатой «сестрой». Но довольно низкий КПД «автоматов» вполне может поставить крест на этом виде коробок передач, и, возможно, довольно скоро большинство автомобилей в мире будут оснащаться вариаторами или роботизированной «механикой».

 

Автор: Юрий Гаврилов
Источник

Как работает автоматическая коробка передач?

Если вам нравится большинство, понимание тонкостей вашего автомобиля похоже на понимание продвинутой ядерной физики. Тем не менее, это именно то, чего хотят производители автомобилей. Они проектируют ваш автомобиль, грузовик или внедорожник так, чтобы он работал оптимально самостоятельно. Таким образом, если все работает правильно, вы даже не заметите, что происходит.

При этом полезно понимать, как именно работают различные системы и компоненты вашего автомобиля, чтобы лучше понимать необходимость регулярного планового обслуживания.Возможно, нет другой системы, более важной для понимания, чем та, которая поддерживает работу вашего автомобиля: вашу трансмиссию.

Ваш двигатель и трансмиссия

Погодите: разве двигатель транспортного средства не обеспечивает свою мощность? Да, есть, но что-то должно иметь возможность рассеивать эту энергию по колесам и контролировать динамику движения вашего автомобиля, включая скорость, расход топлива и обороты. Это работа вашей передачи. Поскольку ваш двигатель генерирует крутящий момент (сила, вызывающая вращение), ваша трансмиссия использует различные передаточные числа, которые регулируют энергию вращения для вращения колес.При включении передач (или при остановке) должен быть какой-то механизм, который отключает трансмиссию от двигателя, чтобы двигатель мог продолжать вращаться. В противном случае ваш двигатель либо заглох бы каждый раз, когда вы останавливали автомобиль, либо вы не смогли бы контролировать свое ускорение.

В механической коробке передач это достигается за счет включения сцепления при каждом переключении передачи. С автоматической коробкой передач переключение передач происходит автоматически. Простота эксплуатации автоматических коробок передач делает их гораздо более привлекательным вариантом для водителей.Действительно, только около 10 процентов автомобилей на американском автомобильном рынке все еще предлагают варианты с механической коробкой передач.

Что такое автомат

Для вас важно спросить себя: «Как работает автоматическая коробка передач?» просто потому, что большинство автомобилей имеют автоматические коробки передач. В автоматической коробке передач вместо сцепления используется преобразователь крутящего момента. Это гидравлическая муфта, в которой используется отдельный насос и турбина, вращающиеся в противоположных направлениях внутри самого преобразователя, что позволяет двигателю вращаться независимо от трансмиссии.

Вместо того, чтобы использовать разные наборы шестерен для блокировки и разблокировки выходных валов трансмиссии, автоматическая трансмиссия использует одну зубчатую передачу для достижения различных передаточных чисел. Сложная гидравлическая система регулирует различные ленты и муфты, которые управляют передачей, а шестеренчатый насос проталкивает трансмиссионную жидкость. Затем регулятор регулирует движение переключающих клапанов, которые подают гидравлическую жидкость для включения различных передач. По мере того, как давление жидкости внутри регулятора увеличивается или уменьшается, он заставляет клапаны переключения закрывать и открывать различные контуры передач.

Понимание того, как работает ваш автомобиль, является важным компонентом его обслуживания. Тем не менее, простое понимание сложности вашей передачи может не приравниваться к знанию того, как правильно ее обслуживать. При возникновении проблем с коробкой передач лучше доверить ремонт нашей команде сертифицированных специалистов ASE в Sun Auto Service. Вместе мы сможем обеспечить бесперебойную работу вашего автомобиля.

Взгляд изнутри на работу автоматической коробки передач

Иногда мы принимаем наши автомобили как должное, забывая обо всей работе, которая выполняется под капотом, чтобы включить автоматическую коробку передач, наиболее распространенную трансмиссию на дорогах сегодня.

Хотя простота автоматической коробки передач произвела революцию в автомобильном мире, научные данные, лежащие в основе ее, не всегда понимаются или оцениваются. Технология, которая позволяет автомобилям с автоматической коробкой передач переключаться между передачами, впечатляет и включает в себя сложный состав компонентов.

Основы АКПП

В автоматических коробках передач используются шестерни для наиболее эффективного использования крутящего момента двигателя, позволяя двигателю работать с соответствующей скоростью, обеспечивая при этом широкий диапазон выходных скоростей для автомобиля. В простейшем случае автоматические трансмиссии функционируют следующим образом:

  • Двигатель соединяется с трансмиссией через раструб
  • В раструбном корпусе находится гидротрансформатор, который заменяет сцепление, используемое в автомобиле с механической коробкой передач.
  • Преобразователь крутящего момента соединяет двигатель с трансмиссией и оказывает давление на трансмиссию. жидкость для передачи информации о скорости
  • Планетарные передачи в трансмиссии создают разные передаточные числа, позволяя транспортному средству переключаться между разными передачами на основе связи от преобразователя крутящего момента.

Описание планетарной передачи

Планетарный редуктор — центральный элемент автоматической коробки передач. Автоматическая трансмиссия состоит из двух планетарных передач, соединенных вместе в один компонент. В состав планетарной передачи входят:

  • Солнечная шестерня в центре
  • Планетарные шестерни, которые вращаются вокруг солнечной шестерни
  • Водило планетарной шестерни, которое соединяет планетарные шестерни
  • Кольцевая шестерня снаружи, которая входит в зацепление с планетарными шестернями.

Составной планетарный ряд, используемый в автоматической коробке передач, состоит из одного зубчатого венца, но двух солнечных шестерен и двух наборов планет. Эти части работают вместе, чтобы позволить автомобилю работать на первой передаче, второй передаче, третьей передаче, повышающей передаче и заднем ходу.

Гидротрансформатор может отправлять необходимую информацию на планетарный ряд, чтобы гарантировать включение соответствующих передач для создания необходимых передаточных чисел.

Роль гидротрансформатора

В то время как планетарный ряд является основным компонентом в создании необходимых передаточных чисел, преобразователь крутящего момента занимает место муфты в механической коробке передач, контролируя связь с планетарной передачей.

Основными компонентами гидротрансформатора являются:

  • Рабочее колесо: Часть корпуса гидротрансформатора (которая соединена с двигателем) и приводит в движение турбину за счет сил вязкости.
  • Турбина: соединена с входным валом трансмиссии.
  • Статор: находится между рабочим колесом и турбиной и сводит к минимуму потери от взбивания. увеличение крутящего момента за счет перенаправления жидкостей.

Двигатель вращает крыльчатку, которая воздействует на трансмиссионную жидкость. Эта сила вращает турбину, которая передает крутящий момент на трансмиссию. Без статора были бы потери на взбивание и накопление тепла.

Эти потери от текучести будут результатом того, что скорость жидкости, возвращающейся из турбины, противодействует вращению рабочего колеса. Статор обеспечивает большую часть скорости жидкости в направлении рабочего колеса, помогая рабочему колесу двигаться, а не препятствуя его движению. Статор может вращаться только в том же направлении, что и рабочее колесо, и обычно включается только тогда, когда автомобиль останавливается или ускоряется.

Некоторые гидротрансформаторы также содержат муфту блокировки. Это устройство блокирует турбину так, чтобы она механически соединялась с крыльчаткой. Это гарантирует передачу крутящего момента двигателя на первичный вал трансмиссии.

Значение клапанов и модуляторов в автоматических трансмиссиях

Чтобы знать, когда переключить передачи, автоматические трансмиссии должны получать сигналы о том, насколько сильно работает двигатель. Для этого служат клапаны и модуляторы.

В автомобилях для давления на дроссельную заслонку используется вакуумный модулятор или трос. Затем дроссельная заслонка будет сообщаться с клапанами переключения передач через давление жидкости. Это давление скажет клапанам переключения, когда нужно переключаться с одной передачи на другую.

Клапаны переключения передач реагируют на различные диапазоны давления; в зависимости от скорости автомобиля соответствующий клапан переключения передач срабатывает, чтобы переключить автомобиль на соответствующий диапазон передач.

Закулисная работа, которую выполняет автоматическая коробка передач, впечатляет.В следующий раз, когда ваш автомобиль переключит передачу безо всяких усилий с вашей стороны, вы сможете оценить сложную работу, выполняемую под капотом.

Вот как работает автоматическая трансмиссия

Вы когда-нибудь задумывались, как ваша трансмиссия умеет переключать передачи? Почему при остановке двигатель не глохнет? Мы здесь, чтобы показать вам, как работают машины. Недавно мы посмотрели на МКПП. На этой неделе обычное время для барахла.

Автоматические коробки передач — это черная магия.Из-за большого количества движущихся частей их очень трудно понять. Давайте немного упростим его, чтобы получить общее представление о том, как все это работает в традиционной системе на основе преобразователя крутящего момента.

Ваш двигатель соединяется с трансмиссией в месте, называемом колоколом. В колокольном корпусе находится гидротрансформатор для автомобилей с автоматической коробкой передач, в отличие от сцепления на автомобилях с механической коробкой передач. Гидротрансформатор — это гидравлическая муфта, работа которой заключается в соединении вашего двигателя с трансмиссией и, следовательно, с вашими ведущими колесами.Трансмиссия содержит планетарные редукторы, которые обеспечивают различное передаточное число. Чтобы лучше понять, как работает вся автоматическая коробка передач, давайте взглянем на преобразователи крутящего момента и планетарные редукторы.

Гидротрансформатор

Прежде всего, гибкая пластина вашего двигателя (в основном маховик для автоматической коробки передач) подключается непосредственно к гидротрансформатору. Когда коленчатый вал вращается, вращается и корпус гидротрансформатора. Задача преобразователя крутящего момента — обеспечить средство для подключения и отключения мощности двигателя от ведомой нагрузки.Гидротрансформатор заменяет сцепление в обычной механической коробке передач. Как работает гидротрансформатор? Что ж, посмотрите видео выше. В нем объясняются основные принципы гидравлической муфты. После того, как вы это увидели, продолжайте читать, чтобы увидеть, чем гидротрансформатор отличается от стандартной гидравлической муфты.

G / O Media может получить комиссию

Основными компонентами преобразователя крутящего момента являются: крыльчатка, турбина, статор и муфта блокировки.Крыльчатка является частью корпуса гидротрансформатора, соединенного с двигателем. Он приводит в движение турбину за счет сил вязкости. Турбина соединена с входным валом трансмиссии. По сути, двигатель вращает крыльчатку, которая передает силу жидкости, которая затем вращает турбину, передавая крутящий момент на трансмиссию.

Трансмиссионная жидкость течет по петле между рабочим колесом и турбиной. Гидравлическая муфта на видео выше страдает от серьезных потерь при взбалтывании (и, как следствие, накопления тепла), поскольку жидкость, возвращающаяся из турбины, имеет компонент своей скорости, который препятствует вращению рабочего колеса.То есть жидкость, возвращающаяся из турбины, работает против вращения рабочего колеса и, таким образом, против двигателя.

Статор находится между рабочим колесом и турбиной. Его цель — минимизировать потери на перемешивание и увеличить выходной крутящий момент за счет перенаправления жидкости по мере ее возврата от турбины к рабочему колесу. Статор направляет жидкость так, чтобы большая часть ее скорости была в направлении крыльчатки, помогая крыльчатке двигаться и, таким образом, увеличивая крутящий момент, создаваемый двигателем. Благодаря этой способности увеличивать крутящий момент мы называем их преобразователями крутящего момента, а не гидравлическими муфтами.

Статор установлен на односторонней муфте. Он может вращаться в одном направлении только тогда, когда турбина и рабочее колесо движутся примерно с одинаковой скоростью (например, при движении по шоссе). Статор либо вращается вместе с рабочим колесом, либо не вращается совсем. Однако статоры не всегда увеличивают крутящий момент. Они обеспечивают больший крутящий момент, когда вы находитесь либо на месте (например, при торможении на стоп-сигнале), либо при ускорении, но не во время движения по шоссе.

В дополнение к односторонней муфте в статоре, некоторые преобразователи крутящего момента содержат муфту блокировки, работа которой заключается в блокировке турбины с корпусом преобразователя крутящего момента, так что турбина и рабочее колесо механически связаны. Исключение гидравлической муфты и ее замена механическим соединением гарантирует, что весь крутящий момент двигателя передается на входной вал трансмиссии.

Планетарные передачи

Фото из Википедии

Итак, теперь, когда мы выяснили, как двигатель передает мощность на трансмиссию, пришло время выяснить, как в троне он переключает передачи.В обычной трансмиссии переключение передач — это работа составного планетарного ряда. Понять, как работают планетарные передачи, немного сложно, поэтому давайте взглянем на базовую планетарную передачу.

Планетарный ряд (также известный как планетарный ряд) состоит из солнечной шестерни в центре, планетарных шестерен, которые вращаются вокруг солнечной шестерни, водила планетарной передачи, соединяющего планетарные шестерни, и зубчатого колеса снаружи, которое входит в зацепление. с планетарной передачей. Основная идея планетарного редуктора заключается в следующем: с помощью сцепления и тормоза вы можете предотвратить перемещение определенных компонентов.При этом вы можете изменить вход и выход системы и, таким образом, изменить общее передаточное число. Подумайте об этом так: планетарный ряд позволяет вам изменять передаточное число без необходимости включать другие передачи. Все они уже помолвлены. Все, что вам нужно сделать, это использовать муфты и тормоза, чтобы изменить, какие компоненты вращаются, а какие остаются неподвижными.

Конечное передаточное число зависит от того, какой компонент закреплен. Например, если коронная шестерня закреплена, передаточное число будет намного короче, чем если бы солнечная шестерня закреплена.Прекрасно зная о рисках, связанных с составлением здесь уравнения, я все равно добавлю его. Следующее уравнение подскажет вам ваши передаточные числа в зависимости от того, какой компонент зафиксирован, а какой находится в движении. R, C и S представляют коронную шестерню, водило и солнечную шестерню. Омега просто представляет угловую скорость шестерен, а N — количество зубьев.

Принцип работы такой: допустим, мы решили оставить водило планетарной передачи неподвижным и сделать солнечную шестерню нашим входом (таким образом, кольцевая шестерня является нашим выходом). Планеты могут вращаться, но они не могут двигаться, поскольку носитель не может двигаться. Omega_c равно нулю, поэтому левая часть уравнения выше пропала. Это означает, что когда мы вращаем солнечную шестерню, она передает крутящий момент через планетарные шестерни на коронную шестерню. Чтобы выяснить, каким будет передаточное число, мы просто решаем приведенное выше уравнение для Omega_r / Omega_s. Мы получаем -N_s / N_R, то есть передаточное число, когда мы фиксируем водило и делаем кольцевую шестерню нашим выходом, а солнечную шестерню — нашим входом, это просто отношение количества зубьев между солнечной шестерней и кольцевой шестерней.Это отрицательно, поскольку кольцо вращается в направлении, противоположном солнечной шестерне.

Вы также можете заблокировать коронную шестерню и сделать солнечную шестерню своим входом, а вы можете заблокировать солнечную шестерню и сделать водило своим входом. В зависимости от того, что вы заблокируете, вы получите разные передаточные числа, то есть вы получите разные «шестерни». Чтобы получить передаточное число 1: 1, вы просто соединяете компоненты вместе (для этого вам нужно заблокировать только два), так что коленчатый вал вращается с той же скоростью, что и выходной вал трансмиссии.

Итак, как тормоза и сцепления перемещаются для переключения передач? Ну, гидротрансформатор также отвечает за привод насоса трансмиссионной жидкости. Давление жидкости — это то, что приводит в действие муфты и тормоза планетарной передачи. Насос часто представляет собой насос типа «геротер» (шестеренчатый насос), что означает, что ротор вращается в корпусе насоса, и, когда он вращается, он «сцепляется» с корпусом. Эта «сетка» создает камеры, которые меняют объем. Когда объем увеличивается, создается вакуум — это вход насоса.Когда объем уменьшается, жидкость сжимается или перекачивается за счет зацепления шестерен — это выход насоса. Гидравлический блок управления посылает гидравлические сигналы для переключения передач (через ленточные тормоза и сцепления) и блокировки гидротрансформатора.

Обратите внимание, что в большинстве современных автоматических трансмиссий используется составная планетарная передача Ravigneaux. Этот набор передач имеет две солнечные шестерни (малую и большую), два набора планет (внутреннюю и внешнюю) и одно водило. По сути, это две простые планетарные передачи в одной.

Итак, теперь, когда мы рассмотрели гидротрансформаторы и планетарные редукторы, давайте посмотрим на видео ниже, чтобы увидеть, как все это сочетается:

Фото наверху: Vestman

Как работают автоматические коробки передач | Как работает автомобиль

Самый современный автоматические коробки передач иметь набор шестерни называется планетарной или планетарной зубчатой ​​передачей.

А планетарная передача набор состоит из центральной шестерни, называемой солнечная шестерня , внешнее кольцо с внутренняя передача зубы (также известные как фиброзное кольцо или кольцевая шестерня ), и две или три шестерни, известные как планетарные шестерни, которые вращаются между солнечной и коронной шестернями.

привод связан с механизмом, известным как гидротрансформатор , который действует как гидравлический привод между двигатель и коробка передач .

Если солнечная шестерня заблокирована и планеты двигаются планетоносец , выходной сигнал снимается с зубчатого венца, обеспечивая увеличение скорости.

Если коронная шестерня заблокирована, а солнечная шестерня находится в движении, планетарные шестерни передают привод через водило планетарной передачи, и скорость уменьшается.

При подаче мощности на солнечную шестерню и заблокированном водиле планетарной передачи коронная шестерня приводится в движение, но передает движение задним ходом.

Для достижения прямой привод без изменения скорости или направления вращения солнце фиксируется на коронной шестерне, и весь блок вращается как одно целое.

А крутящий момент преобразователь представляет собой гидравлическую муфту, которая действует как сцепление , за исключением того, что диск проходит мимо гидравлический давление .

Преобразователь состоит из трех основных компонентов: крыльчатка , прикрученный к маховик ; турбина, соединенная с коробкой передач Входной вал ; и центральный реактор между ними, который имеет одностороннюю муфту, называемую обгонной муфтой.

Как двигатель скорость увеличивается, центробежная сила воздействуя на гидравлическую жидкость через лопасти рабочего колеса, крутящий момент или усилие поворота передается на турбину.

Центральный реактор преобразует это вращающее усилие, перенаправляя поток жидкости обратно к крыльчатке, чтобы обеспечить более высокий крутящий момент на низких скоростях.

Когда двигатель набирает обороты и развивает большую мощность, потребность в усилении крутящего момента уменьшается, и реактор начинает работать свободно. Преобразователь крутящего момента действует как маховик, соединяющий двигатель с коробкой передач.

На схеме показаны основные компоненты гидротрансформатора — крыльчатка, реактор (или статор ) и турбина.

На меньших диаграммах показано направление движения гидравлической жидкости под центробежным силы .

Такого же эффекта можно добиться блокировкой планетарных шестерен на водиле планетарной передачи.

Большинство автоматических коробок передач имеют три скорости переднего хода и используют два набора планетарных передач.

Последовательности блокировки планетарной зубчатой ​​передачи достигаются за счет воздействия гидравлического давления. тормозить группы или многодисковые муфты.

Ремни стянуты вокруг зубчатого венца, чтобы предотвратить его вращение, а муфты используются для блокировки солнечной шестерни и планет.

Правильная последовательность нарастания и сброса давления контролируется сложной компоновкой гидравлических клапаны в сочетании с датчики которые реагируют на нагрузку двигателя, скорость движения и открытие дроссельной заслонки.

Механизм, связанный с дроссельной заслонкой, известный как кикдаун, используется для переключения вниз для быстрого ускорения. Когда вы нажимаете ускоритель внезапно в полном объеме почти мгновенно включается более низкая передача.

Большинство автоматических коробок передач имеют систему коррекции, позволяющую водителю при необходимости удерживать пониженную передачу.

2.972 Как работает автоматическая коробка передач


ОСНОВНОЕ ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ: Конвертировать мощность двигателя (T x w) и выходная мощность в более широком диапазоне без ручного переключения.

ДИЗАЙН ПАРАМЕТР: Автоматическая коробка передач


ГЕОМЕТРИЯ / СТРУКТУРА:

Поперечное сечение АКПП Трансмиссия

ОБЪЯСНЕНИЕ, КАК ЭТО РАБОТАЕТ / ИСПОЛЬЗУЕТСЯ:

Автоматическую коробку передач можно разделить на две основные части; гидротрансформатор и коробку передач.

Гидротрансформатор приводится в движение коленчатым валом двигателя. Это, в свою очередь, движет остальная часть передачи. Гидротрансформатор не является механизмом с прямым приводом. Это передает мощность от механической к гидравлической и обратно к механической. Это позволяет скользить так что автомобиль может остановиться при торможении, даже если коробка передач все еще включена. Он также поглощает удары от двигателя к приводу. поезд или от трансмиссии к двигателю.Внезапные подергивания встречаются гораздо реже, чем при механическая коробка передач. Доступно более подробное описание принципа работы гидротрансформатора. Вот.

Коробка передач представляет собой серию сцеплений, планетарных передач и тормозов. Привлекая эти компонентов в различных комбинациях, угловая скорость приводного вала может быть варьировалось гораздо больше, чем просто варьируя угловую скорость коленчатого вала. Для Например, когда трансмиссия, смоделированная на предыдущей диаграмме, находится на первой передаче, Муфта переднего привода и тормозная лента несущей второй планетарной передачи включены. Солнечная шестерня Однако тормозная лента и муфта высшей передачи заднего хода не задействованы. Следуя за властью На диаграмме можно увидеть, как бы детали двигались в трансмиссии.

Включение и выключение компонентов коробки передач контролируется другим подсистема. Эта подсистема состоит из клапанов переключения передач, корпуса клапана, масляного насоса и губернатор. Этот регулятор соединен с выходным валом и дроссельной заслонкой в автомобиль.Чем быстрее вращается приводной вал, тем быстрее вращается регулятор. Губернатор использует центробежную силу для направления масла из масляного насоса через клапаны переключения передач в соответствующие муфты и тормозные ленты. При ускорении клапаны переключения передач выдвигаются. направление масла через корпус клапана к механизмам переключения передач в коробка передач. Когда вы замедляетесь, происходит обратное.


ДОМИНАНТНАЯ ФИЗИКА:

Переменная

Описание

Метрические единицы

Английские единицы

P дюйм

Мощность от коленчатого вала

Вт

Мощность

P из

Выходная мощность на приводной вал

Вт

Мощность

P убыток

Потери мощности

Вт

Мощность

w

Скорость вращения вала

рад / с

об / мин

Гидротрансформатор получает питание от вращающегося коленчатого вала:

P кривошип = T кривошип x ш кривошип As функция времени

Используя рабочее колесо, он передает мощность трансмиссионной жидкости. Жидкость затем передает мощность обратно через турбину. На данный момент мощность передается механически через комбинации муфт и планетарных шестерен и в итоге к ведущему валу. Часть власти снова передана трансмиссионная жидкость гидравлическим насосом. Эта сила используется для «запуска» автоматическая коробка передач. То есть он используется для переключения передач.

Мощность также рассеивается в трансмиссии за счет кулоновского трения и вязкости. диссипация.Эта мощность будет обозначена как P , потеря .

P потери = f (трение, вязкость, переключение передач …)

Мощность, которая затем может быть получена:

P на выходе = (T на выходе x w на выходе ) = P на выходе — P потери = (T в x w в ) — P потери


ОГРАНИЧИТЕЛЬНАЯ ФИЗИКА:

Производительность / использование трансмиссии ограничено:

Эффективность:

КПД трансмиссии определяется как P из / P в =

ч. В КПД снижается в течение срока службы трансмиссии по мере износа деталей и трансмиссионная жидкость собирает грязь. Эффективность также меняется во время каждой операции. Поскольку трансмиссионная жидкость нагревается, вязкость понижается. Это становится более эффективным в том, что уменьшается сопротивление шестерен, а жидкость течет к сцеплениям и тормозам. Это также означает, что через гидротрансформатор передается меньшая мощность, и это приводит к меньшему эффективность. Общее изменение эффективности — это сумма двух влияний.

Трансмиссионная жидкость:

Трансмиссионная жидкость — это ключ к тому, почему работает автоматическая трансмиссия. Как и все жидкости, трансмиссионная жидкость имеет определенные характеристики, которые ограничивают / определяют передачу мощности в передаче.

Ограничения по размеру:

АКПП должна соответствовать определенному указанному месту. Первоначально это было такой же объем, как и для механической коробки передач. Это ограничение объема ограничивает размер и количество деталей внутри трансмиссии и, таким образом, ограничивает количество и / или размер используемых шестерен и механизмов.


УЧАСТКИ / ГРАФИКИ / ТАБЛИЦЫ:

Не отправлено


ГДЕ НАЙТИ АВТОМАТИЧЕСКИЕ ТРАНСМИССИИ:

Вы можете найти автоматические коробки передач в основном в автомобилях, хотя некоторые автобусы и другие более крупные транспортные средства тоже используют их.


ССЫЛКИ / ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ:

http://www.innerbody.com

http://howthingswork.virginia.edu

http://www.womenmotorist.com


Что такое трансмиссия и как она работает?

1) UTI является образовательным учреждением и не может гарантировать работу или зарплату.

2) Для получения важной информации об образовательном долге, заработках и показателях завершения студентов, которые посещали эту программу, а также для ознакомления с применимым раскрытием информации о доходах, посетите сайт www. uti.edu/disclosures.

3) Методология опроса: OnePoll опросил 2000 американцев в возрасте от 18 до 35 лет в Калифорнии, Аризоне, Техасе, Иллинойсе, Флориде, Северной Каролине, Нью-Джерси и Пенсильвании в октябре 2020 года. 2 Проводятся оплачиваемые производителем программы повышения квалификации UTI от имени производителей, определяющих критерии и условия приемки. Эти программы не являются частью аккредитации UTI. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.Для получения важной информации о долги за образование, заработки и показатели завершения студентов, посещавших эту программу, можно найти на сайте www.uti.edu/disclosures.

6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробные сведения о программе для получения информации о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2016-2026), www.bls.gov, просмотренных 24 октября 2017 года. Прогнозируемое количество годовых Вакансии, по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200.Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и право сотрудников на участие в программе остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия. Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся Группой специального обучения UTI от имени производителей, которые определяют критерии и условия приемки.Эти программы не являются частью аккредитации UTI.

16) Не все программы аккредитованы ASE Education Foundation.

21) GI Bill® является зарегистрированным товарным знаком Министерства по делам ветеранов США (VA). Дополнительная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за служение» доступен всем ветеранам, имеющим право на участие, во всех университетских городках. Программа Yellow Ribbon одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня. Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые прошли факультативные занятия, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата техников и механиков по обслуживанию автомобилей в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г.Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, сервисный писатель, смог инспектор и менеджер по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные за май 2018 г. , штат Массачусетс, США, 10 сентября) 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сервисные техники и механики, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 доллара и 14,03 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотр в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, занятых в качестве ремонтников автомобилей и связанных с ними (49-3021) в Содружестве Массачусетс, составляет от 31 360 до 34 590 долларов США. ( Массачусетс, данные за май 2018 г. , данные за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве дизельных техников . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о заработной плате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетс: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов США (Массачусетс по труду и развитию рабочей силы, данные за май 2018 г. , просмотр за 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: Министерство труда США оценивает почасовую заработную плату в размере 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов, соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих механиками моторных лодок и техниками по обслуживанию (49-3051) в Содружестве Массачусетс. составляет от 31 280 до 43 390 долларов (данные за май 2018 г., Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. , Механика моторных лодок и Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или зарплату.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператора ЧПУ, ученика. слесарь и инспектор по обработанным деталям. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г. , данные за май 2018 г., данные за 10 сентября 2020).Информация о заработной плате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

40) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое количество годовых вакансий по классификации должностей: Механики автобусов и грузовиков и специалисты по дизельным двигателям, 24 500 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.

41) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. Прогнозируемое количество годовых вакансий по классификации должностей: Автомеханики и механики, 61 700. Вакансии включают вакансии, связанные с ростом и чистым замещением.

42) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое количество годовых вакансий по классификации должностей: сварщики, резаки, паяльщики и паяльщики, 43 400 человек.Вакансии включают вакансии, связанные с ростом и чистым замещением.

48) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Для получения важной информации об образовательном долге, доходах и показателях завершения студентов, посещавших эту программу, посетите сайт www. uti.edu/disclosures.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета высшего образования штата Иллинойс.

Как работает автоматическая коробка передач?

Ничто так не отпугивает потенциальных механиков, как автоматическая коробка передач. Набор шестерен, сцеплений, соленоидов и других компонентов каким-то образом автоматически выбирает лучшее передаточное число в зависимости от условий движения. В результате вы получаете максимальную экономию топлива и управляемость.

  • Что происходит внутри этого современного чуда?
  • Как можно работать на холостом ходу без движения автомобиля?
  • Как он переключает передачи?

Разрез гидротрансформатора АКПП.

В большинстве автоматических трансмиссий преобразователь крутящего момента соединяет двигатель с трансмиссией. Это механическое устройство, похожее на гигантский пончик с ребрами, статором, крыльчаткой и другими компонентами.

Когда вы нажимаете педаль газа, вращается половина гидротрансформатора, соединенная с двигателем. Трансмиссионная жидкость внутри гидротрансформатора, в свою очередь, вращается и начинает раскручивать половину гидротрансформатора, соединенного с трансмиссией. Таким образом, жидкость внутри преобразователя крутящего момента передает вращающую силу двигателя на трансмиссию.

Для иллюстрации представьте, что у вас есть пара электрических вентиляторов. Расположите их так, чтобы они смотрели друг на друга. Когда вы включаете один вентилятор, он начинает вращать другой вентилятор. Это потому, что воздух вокруг вентилятора передает энергию стационарному вентилятору. Вот как вы можете соединить их вместе, не используя механическое соединение. Именно так ваш двигатель может работать на холостом ходу без движения автомобиля — двигателю на холостом ходу не хватает мощности, чтобы вращать гидротрансформатор с силой, достаточной для вращения входного вала трансмиссии.

Давайте переключим передачи

Итак, вы прижали акселератор к полу. Половина гидротрансформатора, соединенная с двигателем, теперь вращается с достаточной силой, чтобы повернуть половину, соединенную с трансмиссией. Вы уходите.

Двигатель набирает обороты, пора переключать передачи.

Компьютер автомобиля сообщает трансмиссии, когда следует переключить передачу, в зависимости от частоты вращения двигателя, нагрузки двигателя и других факторов. Когда это происходит, соленоидные клапаны внутри трансмиссии активируют разные муфты для выбора разных передач.

Иллюстрация планетарной передачи.

В большинстве автоматических трансмиссий используются планетарные передачи. В их состав входит солнечная шестерня, вокруг которой вращаются планетарные шестерни. Кольцевая шестерня скрепляет их все вместе.

Современные трансмиссии, которые могут обеспечивать до 10 передаточных чисел, содержат несколько планетарных передач. Сложно, как именно они работают вместе. Однако основная идея заключается в том, что вы можете использовать муфты, чтобы позволить одним компонентам вращаться, а другие удерживать в неподвижном состоянии, тем самым изменяя общее передаточное число. Трансмиссионная жидкость, которая сжимается с помощью насоса внутри гидротрансформатора, приводит в действие муфты, удерживающие шестерни в неподвижном состоянии. Компьютер определяет, какие муфты включать и в какое время выбирать соответствующую передачу. В зависимости от передачи, которую выбирает компьютер, коронная шестерня может быть заблокирована, когда мощность проходит через солнечную шестерню, или наоборот.

Чистая качественная жидкость

Как видите, трансмиссионная жидкость не только защищает от износа. Он также действует как гидравлическая жидкость для включения сцепления.Кроме того, он управляет трением в муфтах, обеспечивая четкое и уверенное переключение передач. Если жидкость разрушается из-за сильного нагрева, может образоваться вредный осадок и отложения. Это может привести к потускнению пластин сцепления или блокировке узких каналов для жидкости внутри трансмиссии. Разложенная жидкость также может привести к заеданию клапанов и снижению фрикционных свойств.