19Фев

Антикоррозийная обработка кузова – Антикоррозийная обработка автомобиля своими руками. — DRIVE2

Антикор авто

• Подготовка (разборка, мойка, осмотр, сушка, зачистка, маскировка)
• Обработка скрытых полостей нижней части — основания кузова (лонжероны, пороги, усилители пола, швы, полые кронштейны подвески, поперечные балки)
• Обработка днища, колесных арок (покрытие днища, колесных арок, антигравий, «жидкие подкрылки»)
• Обработка скрытых полостей верхней части кузова (двери, стойки, усилители капота, багажника, швы, уплотнители, молдинги)
• Сборка, мойка (контроль покрытия, снятие маскировки, установка снятых деталей, удаление попавших на ЛКП антикоррозионных материалов, финальная мойка кузова, протирка стекол)

 1.  Подготовка 


— Автомобиль устанавливается на подъемник, снимаются колеса,

    

— демонтируются подкрылки, брызговики, защитные кожухи…

    

— Кузов тщательно промывается водой под высоким давлением…

    

    

— затем, наносятся моечные растворы…

    

    
      
   

— выдержав некоторое время, чтобы дать химии поработать, растворы смываются…

         
    

— В процессе антикоррозионной обработки, подготовка это одна из важнейших (и наиболее длительных по времени) составляющих, поэтому мойке уделяется большое внимание.

— Отдельно моются кожухи, подкрылки и т. д.

    

— Затем кузов сушится. Чаше это делается с применением тепловых пушек.

Например, при использовании тепловых пушек мощностью 25 -30 кВт, и потоком воздуха около 3000 куб. м/час, это занимает от 3 до 5 часов. 
Перед сушкой нужно убедиться, что с дренажных отверстий удалены заглушки.

  

  

— в процессе сушки, кузов также продувается сжатым воздухом.

Это делается с целью ускорения процесса сушки, а также что бы выгнать воду из швов, пазух, карманов и дополнительной прочистки труднодоступных мест, которые не промылись при мойке.

  

  

— просушенный кузов тщательно осматривается для определения состояния защитных покрытий и общего состояния кузова (наличие коррозии, деформаций, повреждений, отслоений защитных и декоративных покрытий и т. д.)

…визуально…

    

…, с помощью бороскопа…

   

— Далее укрываются детали, не подлежащие обработке (тормозные механизмы, двигатель, выхлопная система, некоторые элементы подвески…)

При маскировке нужно обратить внимание на датчики АБС, кислородные датчики на выпускной системе, радиаторы, различные электрические разъемы.

  

   

  2. Обработка скрытых полостей основания

  образец схемы обработки (PDF формат)     

Определяются точки обработки (на большинство автомобилей существуют рекомендованные производителем схемы обработки с указанием точек распыления)

  

— Снимаются резиновые, пластиковые заглушки, в некоторых случаях, при невозможности доступа через существующие отверстия, сверлятся дополнительные отверстия, при сверлении необходимо использовать специальные сверла, которые не дают стружки, могущей попасть внутрь детали.


   

— Далее обрабатываются скрытые полости основания кузова (пороги, лонжероны, поперечные балки, полые кронштейны подвески, усилители пола,…).

Антикоррозийная обработка скрытых полостей автомобиля производится, так называемым МЛ-методом: внутрь детали вводится специальная насадка и под давлением распыляются МЛ материалы: проникающие составы, пропитывающие сварные швы и формирующие на внутренней поверхности детали защитную пленку.

    

  

  

   3. Обработка днища и арок колёс   

Далее производится нанесение износоусточивых покрытий, так называемые «жидкие подкрылки», на подверженные абразивному воздействию детали (колесные арки, нижние полки лонжеронов, нижние продольные швы порогов и т. д.)

Основной слой наносится либо распылителем, либо кистью или шпателем, а затем подравнивается распылителем, для получения более гладкой поверхности.

   

    

    

В некоторых случаях, на лицевые поверхности наносят полимерные защитные материалы, так называемый «антигравий»

Далее производится антикоррозийная обработка днища автомобиля. Чаще всего, материалы на днище наносят безвоздушным распылением, под высоким давлением. На большинстве антикор центров, для обработки днища применяют насосы с пневмоприводом, для высоковязких материалов, с коэффициентами гидравлического усиления 26-50 единиц, что позволяет создать давление на выходе (в форсунке распылителя) до 400 атмосфер. 

Иногда, поверхности днища, колесных арок покрывают теми же МЛ-материалами, которыми обрабатываются скрытые полости. Такая обработка очень эффективна, но недолговечна, МЛ составы имеют невысокую механическую прочность и, грубо говоря, «смываются» с днища. Это делается в случаях, когда кузов имеет серьезные коррозионные повреждения (послойная, сквозная коррозия) и есть сомнения, что удастся подготовить поверхности для нанесения полноценных долговременных покрытий.

    

    

    

    

— устанавливаются на место подкрылки, кожухи, брызговики…

    

    

    

— снимается маскировка…

    

— устанавливаются на место колеса…

   

— Машина опускается на пол для проведения антикоррозийной обработки скрытых полостей верха кузова (стойки, двери, усилители капота, багажника, швы и усилители моторного отсека, уплотнители…)
— Из машины вытаскивается все лишнее….

— Для предотвращения попадания материалов на обивки салона, сиденья, переднюю панель, салон укрывается чехлами

    

  4. Обработка скрытых полостей верха кузова

Далее, используя различные насадки (МЛ-метод) обрабатываются полые детали верхней части кузова (двери, стойки, усилители капота, багажника, уплотнители, швы и усилители моторного отсека, молдинги,…)

— усилители капота…

    

    

— коробчатые, полые профили, швы и усилители моторного отсека…

    

   

— уплотнители, молдинги…

   

— усилители крышки багажника…

   

— швы, полые профили, усилители багажного отсека…

  

— стойки, двери, уплотнители…

   

   

 5. Сборка и удаление попавших на кузов антикоррозионных материалов

— Устанавливаются на место снятые заглушки, концевые выключатели, в случае сверления дополнительных отверстий, они закрываются резиновыми пробками.
— Проверяется плотность посадки резиновых уплотнителей проемов дверей, багажника, удаляются оставшиеся маскировочные материалы.
    

   

— кузов протирается специальным раствором от попавших на кузов материалов, возможно удаление, попавших на лакокрасочное покрытие антикоров уайт-спиритом. Не рекомендуется применение сильных растворителей.

   

    

      

— оформляется сертификат, с указанием даты, фамилий мастеров, использованных материалов, периодичностью гарантийных осмотров, рекомендаций.

    

  

6. Эксплуатация автомобиля после обработки

— После обработки желательно не ездить на машине в течение нескольких часов.
— Далее, в течение суток положен щадящий режим эксплуатации.
— Рекомендуется избегать высоких скоростей, езды по грунтовым дорогам, буксования, при проезде луж нужно снижать скорость.

— Два-три дня не рекомендуется мыть машину.
 -Так же после обработки в течение пары недель, желательно, не мыть днище, арки под высоким давлением.


наверх страницы

cоставлено: Антикор.рф, г. Москва.



www.xn--80aqgkhmk.xn--p1ai

Антикоррозийная обработка кузова авто своими руками.

Воздействию агрессивной внешней среды подвержены все элементы автомобиля, но особенно подвержены коррозии металлические детали. В результате воздействия антигололёдных составов, влаги и технических жидкостей образующаяся на металлических элементах коррозия не только портит внешний вид автомобиля, но и приводит к снижению расчётных характеристик узлов и деталей, а в некоторых случаях эксплуатация машины становится невозможной.

Содержание этой статьи

В большинстве случаев заводская антикоррозионная обработка недостаточно защищает кузов и оперенье автомобиля. Даже на престижных моделях антикоррозийное покрытие автомобиля со временем теряет свои свойства, не говоря уже о бюджетных моделях, где о защите кузова думают в последнюю очередь.

Для того чтобы металлические элементы прослужили достаточно долго следует периодически контролировать состояние антикоррозионного покрытия и своевременного его восстанавливать.

Коррозия элементов

Элементы автомобиля в разной степени подвергаются воздействию вредных внешних факторов. Так же коррозионная стойкость во многом зависит от модели автомобиля. О слабости коррозионной стойкости элементов авто можно узнать на форумах в соответствующих разделах обсуждения модели. Наиболее подвержены коррозии следующие элементы автомобиля:

  • Пороги;
  • Крылья;
  • Двери;
  • Днище;
  • Оконные рамки.

Особенно подвержены коррозии места, в которых возможно скопление влаги или активно происходит стирание защитного слоя от песка и грязи.

Современные антикоррозионные материалы позволяют надёжно защитить элементы кузова автомобиля, нужно только правильно их подобрать и нанести в соответствии с инструкцией производителя.

Антикоррозийные материалы

Антикоррозионные материалы условно можно разделить на две основные категории, предназначенные для:

  1. обработки внешних поверхностей;
  2. обработки и заполнения внутренних полостей.

Такие поверхности, как днище, колёсные арки, пороги сильно подвержены воздействию песка и камней, поэтому антикоррозийная защита на эти элементы должна наноситься толстым слоем. В качестве защиты используют специальные мастики на основе битумных смол, полимеров или каучуковых соединений. Помимо антикоррозионной защиты данные составы снижают шумовую нагрузку в салоне автомобиля.

Антикоррозийная обработка днища и колёсных арок этими составами проводится при помощи кисточек или распылением, используя специальное оборудование. Консистенция мастик достаточно густая, поэтому обычно при проведении обработки их разводят до нужной консистенции рекомендованными растворителями, которые после нанесения испаряются.

Разведённой растворителями мастикой элементы следует обрабатывать несколько раз с обязательной сушкой между нанесёнными слоями.

Препараты для защиты внутренних полостей имеют жидкую консистенцию и должны иметь следующие свойства:

  • Хорошую проникающую способность;
  • Нейтрализовывать ржавчину;
  • Хорошие влагоотталкивающие и водовытесняющие характеристики.

В основе таких препаратов лежат восковые или масляные составляющие. Для качественной профессиональной обработки внутренних полостей обязательно потребуется пистолет для антикора и компрессор.

Для самостоятельной обработки антикоррозионными материалами свой выбор следует останавливать на антикоре в баллончиках. Препараты в баллончики находятся под требуемым давлением, а сами они оснащаются приспособлениями для обработки глубоких полостей.

В качестве такого приспособления обычно используется полихлорвиниловая трубка со специальным распылителем на одном конце.

Способы проведения антикоррозийной обработки

Антикоррозийная обработка авто может проводиться в автосервисе или своими руками. Оба способа имеют свои достоинства и недостатки.

Обработка в сервисе

Этот способ антикоррозионной обработки имеет главное достоинство в том, что его будут выполнять профессионалы, ежедневно выполняющие такие работы.

К плюсам также следует отнести наличие у них профессионального оборудования и инструментов, знание особенностей того или иного автомобиля наличие требуемых материалов и короткие сроки выполнения работ.

Главным недостатком является стоимость выполнения работ, в хороших мастерских она просто не может быть дешёвой. Следует учесть, что большинство автосервисов работают с собственными материалами и отнюдь не дешёвыми, а это дополнительные расходы.

Существенным недостатком антикоррозийной обработки автомобиля в автосервисе является невозможность проверить качества выполненных работ и вся надежда на честность работников сервиса.

При выборе автосервиса следует обратить внимание на оборудование, при помощи которого будут проводиться работы. Обязательна мойка и оборудование для продувки и сушки скрытых полостей. Так как наносить антикор на грязные или влажные поверхности бессмысленно. Перед началом работ следует узнать у специалиста, какими материалами и как будет проводиться обработка.

Тектил антикор, видео:

Антикоррозийная обработка автомобиля своими руками

У этого способа главными преимуществами является возможность сэкономить денежные средства на выполнение работ и выбрать антикоррозионные составы по своему усмотрению. Процесс антикоррозийной обработки не слишком трудоёмкий и сложный, а используемые материалы не являются токсичными и не причиняют вреда здоровью.

При выполнении работ своими руками качество антикоррозийной обработки будет зависеть только от вашего умения и навыков. Из существенных недостатков при выборе этого способа обработки следует отметить большие сроки выполнения работ и в большинстве случаев отсутствие необходимого оборудования.

Какая лучше антикорозийка для авто?

От правильного выбора антикора во многом будет зависеть качество проведённых работ. Предлагаемый спектр продукции можно разделить на несколько групп в зависимости от применения и химического состава.

Для внутренних полостей с недостаточным проветриванием требуются эластичные водоотталкивающие материалы. Для наружных поверхностей требуются прочные, мастика должна защищать поверхность даже при попадании песка и камней.

Жидкие антикоры

Невысыхающие составы с масляной основой позволяют качественно заполнить все микротрещины. Составы находятся в постоянной жидкой фазе, что позволяет им покрывать вновь образующиеся дефекты. Данные средства не имеют высокой прочности, поэтому применять их на открытых поверхностях не имеет смысла.

К жидким средствам относятся составы на парафиновой основе, а наносить их можно как на окрашиваемые поверхности, так и на металл. При высыхании на поверхности образуется плёнка защищающая поверхность от высыхания.

Недостатком этих препаратов является малый срок защиты поверхностей. По мере высыхания растворителей и потери эластичности его антикоррозийные свойства теряются.

На смену неплохо зарекомендовавшим себя составам Мовиль и Body приходят более новые качественные препараты, к примеру, Noxudol 750 и Mercasol.

Мастики

Мастики, применяемые для защиты наружных поверхностей, разделяются на:

  • Битумно-каучуковые;
  • Сланцевые;
  • Резинобитумные.

Для защиты от коррозии пола салона, поверхности крыльев, багажника автомобиля обычно применяют битумно-каучуковые мастики. В большинстве случаев её используют для обработки внутренних поверхностей не подверженных воздействию окружающей среды. Допускается применение и на открытых поверхностях, но срок службы такой защиты становится намного меньше.

Сланцевые мастики в основном применяются на наружных поверхностях автомобиля, таких как днище автомобиля или внешних поверхностей колёсных арок. Нанесённый сланцевый антикор после полного высыхания образует твердую пленку, надёжно защищающую обработанные поверхности. Помимо антикоррозионных свойств сланцевые мастики обладают еще и шумоизоляционными качествами, снижая уровень шума в салоне.

Резинобитумные мастики имеют повышенную устойчивость к перепаду температур. Обрабатывать такими мастиками можно как внутренние, так и наружные поверхности автомобиля. Нанесённый слой достаточно эластичный чтобы переносить перепады температур и при этом не потрескается и не отслоится.

Спектр мастик для обработки автомобиля достаточно широк и определиться с тем какой антикор для авто лучше достаточно сложно.

Антикоррозионные грунтовки

Антикоррозийный грунт для авто – достаточно новый элемент для защиты кузова от коррозии, имеет плотную консистенцию и высокую водостойкость. Перед нанесением на поверхность антикоррозийный грунт по металлу соединяется с окислителем, после высыхания образует чрезвычайно твёрдое покрытие.

Наносить грунт следует на голый металл, очищенный и обработанный при помощи обезжиривателей. У нанесенного покрытия отличная прилипаемость к поверхности, поэтому он будет отличной основой для нанесения последующих слоев антикоррозионной защиты.

Обрабатывать можно как внутренние, так и внешние поверхности защищаемого автомобиля, в зависимости от вида обрабатываемой поверхности антикоррозийная краска по металлу может наноситься как при помощи распылителя, так и кисточкой.

Антикор своими руками

Подготовительный этап

Автомобиль тщательно вымыть со специальными шампунями и тщательно высушить, для просушки полостей и труднодоступных мест использовать сжатый воздух или промышленный фен.

Перед тем как сделать антикоррозийную обработку автомобиля самому следует подготовить автомобиль. Для чего следует освободить багажник от всего находящегося в нём, снять всё преграждающее доступ к обрабатываемым поверхностям (защиту колёсных арок, утеплители, шумоизоляцию), в салоне снять обшивку дверей, кресла, заднее сидение и напольное покрытие.

Педали автомобиля лучше защитить от случайного попадания мастики при помощи газет или целлофановых пакетов.

Если автомобиль уже подвергся воздействию коррозии, то такие места следует тщательно зачистить от ржавчины. Для её устранения следует использовать наждачную бумагу или преобразователи ржавчины согласно прилагаемой инструкции. После удаления ржавчины эти места лучше обработать антикоррозионными грунтовками.

Подготавливаем инструменты и антикоррозийные средства для автомобиля. Для облегчения работ автомобиль следует установить на смотровую яму или подъёмник.

Выполнение работ

Работы проводить следует в тёплое время года или в отапливаемом, хорошо проветриваемом помещении. Обрабатывать автомобиль можно начинать с любого участка, главное не допускать необработанных мест.

Из опыта всё же следует начинать с багажника и поверхностей пола в салоне автомобиля. На эти участки мастика наносится достаточно просто и можно проконтролировать, как антикоррозийка приляжет к поверхности.

При обработке особое внимание следует уделять сварным швам, так как они подвергались воздействию сварки и наиболее подвержены коррозии.

Пока обработанные поверхности сохнут можно заняться днищем, а потом и наиболее трудоёмкими в обработке колёсными арками. Для их обработки потребуется снятие колёс автомобиля, в целях безопасности работы следует проводить, поочерёдно снимая колёса.

Антикоррозийная обработка днища, видео:

Автомобиль должен фиксироваться при помощи противооткатных башмаков и устанавливаться на козелки или упоры. Проводим обработку колёсных арок мастикой при помощи кисточки или методом распыления, если имеется соответствующее оборудование.

Пока нанесённая мастика сохнет можно заняться обработкой внутренних поверхностей дверей. Обработку их лучше проводить жидкими составами в баллончиках – это намного быстрее и удобнее.

К тому времени как будет проведена обработка всех дверей, можно будет приступать к повторной обработке поверхностей автомобиля. К этому времени произойдёт застывание мастики, обычно время сушки между слоями составляет 2–4 часа, а окончательного застывания – не менее суток.

После повторной обработки можно приступать к обработке внутренних поверхностей: порогов, усилителей жёсткости и т. д. Для проведения этих работ своими руками следует использовать антикоры в баллончиках со специальными насадками, позволяющими направлять составы в труднодоступные места.

Заключительный этап

Тщательно осматриваем автомобиль и убираем все подтёки и пятна антикора на лакокрасочном покрытии автомобиля. Это лучше сделать пока эти составы полностью не высохли. Для их удаления лучше использовать Уайт спирит или авиационный керосин, они не так агрессивно воздействуют на лакокрасочное покрытие, но хорошо удаляют применяемые составы с поверхности.

Вас заинтересует эта статья — Тосол и антифриз: в чем разница? Что лучше?

Ждём до полного высыхания антикора и устанавливаем на место снятые с автомобиля элементы. При установке на место обивки дверей, не забываем прочищать от засохшего мовиля специальные отверстия для отвода воды.

При удачном стечении обстоятельств на полную антикоррозийную обработку автомобиля потребуется 3–4 суток. Периодически в процессе эксплуатации следует контролировать состояние обработанных поверхностей и при обнаружении нарушении повторить весь процесс заново.

autoot.ru

Что такое антикоррозионная обработка кузова. Как проводится и какие средства используются

ЧТО ТАКОЕ АНТИКОРРОЗИОННАЯ ОБРАБОТКА КУЗОВА АВТОМОБИЛЯ. ОСОБЕННОСТИ, КАК ПРОВОДИТСЯ И КАКИЕ СРЕДСТВА ИСПОЛЬЗУЮТСЯ


Добрый день, сегодня мы узнаем, что называется антикоррозионной обработкой кузова автомобиля, почему и для чего проводится процедура по защите элементов несущего узла транспортного средства, а также, какими особенностями обладает процесс. Расскажем про то, какие средства автохимии рекомендуется использовать для защиты частей кузова от коррозии и ржавчины, почему так важно проводить профилактические меры по уходу за металлическими элементами машины, а также, как часто нужно делать обработку деталей транспортного средства. В заключении поговорим о том, насколько эффективны в борьбе с коррозией и ржавчиной современные защитные препараты и каковы основные этапы обработки кузова автомобиля.


 
Самый главный враг любого автомобиля, а именно его кузова — это коррозия и ржавчина металла. Чтобы предотвратить появление проблем с металлическими деталями кузова машины, необходимо периодически производить антикоррозионную обработку элементов несущего узла, ведь та же коррозия не смотрит и не щадит автомобили, будь то они дешевыми или дорогими по стоимости. Как правило, первые симптомы, которые указывают на проблемы с кузовом и его элементами — это желтый налет на деталях, вздутие лакокрасочного покрытия, а самым запущенным случаем становится гниение детали. Отметим, что даже несмотря на современные технологии, которые призваны защищать и оберегать металлические детали, полностью остановить процесс коррозии с ржавчиной до сих пор не удалось. Благодаря воде, грязи, песку, перепадам температур, механическим повреждениям, а также влиянию химических реагентов дорожных служб на кузов автомобиля, происходит неспешное разрушение металла.
 

ЧТО ТАКОЕ КОРРОЗИЯ И РЖАВЧИНА НА АВТОМОБИЛЕ

 


 

Что из себя представляет антикоррозионная обработка автомобиля? Антикоррозийной обработкой или антикором называется специальная процедура, во время которой элементы кузова, потенциально подверженные механическому воздействию, очищают от грязи и коррозионного налета, а затем покрывают слоем защитного препарата. Антикоррозионная обработка по своим свойствам защищать автомобиль вечно не сможет, поэтому крайне важно производить ее с интервалом в 2-3 года. Что касается новых автомобилей, то 3-5 лет после его покупки в принципе производить защитную обработку не нужно, стоит только делать время от времени осмотр мест подверженных коррозии.

1. Почему нужно делать антикоррозионную обработку кузова. Особенности процедуры

Антикор автомобилю нужен для того, чтобы сохранить на долгое время внешний вид кузова и его элементов от влияния коррозии и ржавчины. Особенно подвержены механическим воздействиям днище, колесные арки и сварные швы кузова, которые на заводе изготовителе покрывают противошумными мастиками, но порой этого недостаточно, чтобы защитить металл от ржавчины. Также заметим, что специальные заводские составы наносятся до окраски кузова и многочисленные резьбовые отверстия с технологическими шпильками прикрываются пленками. Затем когда происходит сборка машины, пленка снимается и происходит оголение участков кузова. Вот поэтому, после покупки автомобиля, необходимо внимательно осматривать состояние покрытия кузова.



Что касается периодичности обработки и объема работ, который нужно проводить, то эти моменты полностью зависят от условий эксплуатации транспортного средства, а также от качества заводской защиты кузова машины и используемых веществ. В любом случае, как мы отмечали ранее, какая бы защита не была сделана на заводе изготовителе, все равно рекомендуется примерно 1 раз 2-3 года проводить детальный осмотр и ревизию антикоррозийного покрытия с целью профилактических мер направленных на устранение возможных повреждений внешнего покрытия.

Подавляющее большинство новых автомобилей, которые реализуются дилерами подвергаются минимальной или средней антикоррозионной обработке элементов кузова, то есть все основные детали довольно неплохо защищены. Как правило, первые 2-3 года эксплуатации новой машины защита кузова не требуется. Однако довольно часто можно слышать от дилера, что защиту нужно все равно делать поверх заводской — эти предложения могут касаться только сверх бюджетных моделей, которые минимально обработаны на заводе или быть обычной перестраховкой. Что касается скрытых полостей машины, то их обработку надо проводить у нового автомобиля, также не чаще 1 раза в 2-3 года.

{banner_yandexblokrtb1}

2. Какие средства и материалы используются для антикора автомобиля

С целью защиты кузова автомобиля и его элементов, не считая всевозможных грунтовок, лаков с эмалями, используются антигравийные вещества, консерванты для скрытых полостей, препараты для днища и специальные составы для внутренних поверхностей арок колес с крыльями. Все эти вещества автомобильной химии имеют одно единственное предназначение — любой ценой предотвратить появление коррозионного налета на автомобильных деталях кузова изготовленных из металла



Антикоррозионные препараты для днища: предназначены для создания прочной, эластичной и толстой пленки на внешней поверхности днища кузова машины. Вещества такого типа всегда наносятся на чистую, загрунтованную и обезжиренную металлическую поверхность. В своем составе препараты антикоррозионной направленности содержат специальный мелкодисперсный порошок на основе алюминия. В роли дополнительных веществ в такие препараты входят ингибиторы, которые замедляют создание коррозионного налета.   

Препараты данной группы при самостоятельном использовании наносятся на металлические детали при помощи обычной кисти. Что касается отечественных антикоррозионных веществ, то самым популярным и недорогим по цене является мастика на битумной основе с наполнителем из резиновой крошки. Кроме защиты кузова от коррозии и ржавчины, мастика призвана улучшать вибрационные и акустические свойства кузова машины. Справочно заметим, что мастику на примере «Брони» зачастую покупают автовладельцы с целью улучшения шумоизоляции кузова и как дополнение для защиты кузова от коррозии.

Антикоррозионные препараты для арок колес: по своим свойствам почти ничем не отличаются от препаратов предназначенных для защиты днища, разница имеется только в способе нанесения вещества на металлическую поверхность и в количестве активных веществ в составе. Справочно заметим, что поверхность колесных арок намного сильней подвержена абразивному износу, чем днище кузова. Самыми опасными врагами колесных арок являются снег, грязь, песок и камни, которые несутся с большой скоростью от покрышек и врезаются в поверхностный слой метала (если отсутствуют локеры). Колесные арки рекомендуется в первую очередь защищать от коррозии, потому что на них оказывается большее механическое воздействие, чем на днище.



Отметим, что частично проблему образования коррозии на колесных арках можно решить при помощи пластиковых подкрылок или локеров, но до конца защитить все равно не получится. Чтобы максимально обезопасить колесную арку от коррозию, многие специалисты по обслуживанию и ремонту транспортных средств рекомендуют покрывать поверхность специальным жидким локером, который является очень прочным, а также эластичным материалом. Жидкие подкрылки на металлическую поверхность желательно наносить в 2-3 слоя, чтобы наиболее надежно предохранить металл колесной арки от абразивных воздействий.

Что касается нового автомобиля, который прошел заводскую обработку днища и колесных арок антикоррозионными препаратами, то нанесение жидких подкрылок на поверхность металла является наиболее предпочтительной защитой на долгий срок эксплуатации транспортного средства, чем установка стандартных пластиковых локеров. Кроме того, в случае ограниченного бюджета, можно для колесных арок использовать тот же препарат, который применяется для днища, однако вещество нужно наносить минимум в 2 слоя. Препараты для днища и арок содержат замедляющие вещества, которые противодействуют коррозии. Вещества для колесных арок также, как для днища могут наносится обычной кистью.

Антикоррозионные препараты для скрытых полостейпредназначены для скрытых полостей машины, на примере порогов, стоек, лонжеронов, усилителей пола и крышки багажника. Закладывание препарата в скрытые полости осуществляется через технологические прорези на кузове. Препараты для скрытых полостей по своим свойствам являются консервантами, то есть маловязкими веществами, которые по своей консистенции напоминают моторное масло

Препараты для скрытых полостей кузова также, как и ранее описанные защитные вещества функционируют, как ингибиторы коррозии. После нанесения данных препаратов они образуют на половину высыхающую пленку на стенках скрытых полостей. Кроме того, данные вещества обладают высокой проникающей способностью и с вероятностью в 99 процентов попадают во все труднодоступные места, стыки со щелями. Главное свойство этих препаратов вытеснение воды с поверхности металла.  



Если рассматривать отечественных производителей препаратов для скрытых полостей, то наиболее оптимальным по соотношению цены к качеству является «Мовиль«. Это средство изготавливается с 60-х годов 20 века и практически не поменялся по своим химическим свойствам. К сожалению препарат является очень не экологичным, но прекрасно справляется со своими функциями по защите элементов кузова от коррозии. «Мовиль» реализуется в различных фасовках, в виде пасты, аэрозоля и геля, как говорится на любой вкус. Как утверждают специалисты, крайне не рекомендуется к использованию препарат под названием «Ваксоиль«, так как в нем все около 10 процентов сухого остатка, а все остальное является растворителем. Кроме того, стоит заметить, что отсутствие запаха от препарата, как правило, говорит о высокой степени очистки растворителей, но это никак не свидетельствует о высоком качестве и эффективности вещества.

bazliter.ru

Антикоррозийная обработка автомобиля: для чего она нужна

Покупая машину, автолюбитель надеется на максимальный срок эксплуатации транспорта. Для этого он подбирает лучшие средства по уходу, резину, запчасти и прочие мелочи, способные предотвратить появление неисправностей. Одним из лучших изобретений в автомобильной сфере является антикоррозийная обработка. Данный процесс подразумевает покрытие кузова авто специальным средством, предотвращающим образование ржавчины и коррозии поверхности.

Для чего проводится антикоррозийная обработка автомобиля?

Любая металлическая поверхность под воздействием внешних факторов подвергается коррозии. Попадание воды и воздуха на кузов автомобиля чревато ржавлением металла и для устранения проблемы применяется антикоррозионная обработка. Средство не портит внешний вид машины и гарантировано бережет поверхность от разрушения в течение трех-пяти лет.

Спровоцировать деформацию кузова могут неблагоприятные погодные условия (уровень влажности, количество выпадаемых осадков), качество дорожного полотна. Покрытие антикором перекрывает доступ окислителей, защищая кузов от коррозии. Наносить средство нужно не только на пораженные участки, но и на всю поверхность.

Антикоррозийная обработка кузова автомобилей

Естественные причины

Климатические условия и погода – главные причины повреждения кузова автомобиля. Снег, песок, гравий, лед, грязь и другие осадки агрессивно влияют на металлическую поверхность. Более всего страдает днище машины. Из-под колес частицы мусора попадают на покрытие и оказывают разрушительное воздействие. Потому водители часто сталкиваются со следующей проблемой: слой краски отслоился, и под ним образовалась ржавчина (это происходит в результате попадания вовнутрь конденсата).

Усталость металла

Еще одна распространенная причина деформации кузова – усталость металла. При длительной эксплуатации автомобиля поверхность подвергается влиянию различных агрессивных факторов. В результате через несколько лет металл теряет прочность и устойчивость к разрушению, он начинает окисляться и портиться. В таком случае антикоррозийная обработка автомобиля обязательна. Она продлит срок службы машины и поможет защитить ее от дальнейших разрушений.

Финансовая рентабельность

Если запустить кузов авто, то в будущем его ремонт обойдется владельцу очень дорого. Поэтому, с финансовой точки зрения, лучше покрывать поверхность специальным средством один раз в 3-5 лет. Это поможет обезопасить кузов и избежать капитального (затратного) ремонта машины.

Антикоррозийная обработка автомобиля — ответственное и важное мероприятие, в связи с чем, доверяйте эту работу только опытным профессионалам

Защита кузова своими руками

Когда нет возможности сделать обработку кузова в автомастерской, нужно приниматься за дело самостоятельно. Рекомендовано соблюдать следующий алгоритм действий:

  • Для работы выбирается безлюдное место на улице или гараж со специальной ямой.
  • Начинать процесс следует с очищения поверхности. Это можно сделать с помощью горячей воды под сильным напором. Вся грязь и застрявшие частицы должны быть удалены.
  • В специализированных мастерских используется оборудование для сушки кузова, при отсутствии такового, нужно дать высохнуть поверхности.
  • Перед началом работы проводится осмотр днища, колесных арок, порогов и других мест на наличие дефектов.
  • В первую очередь обрабатываются скрытые полости машины.
  • Толщина покрытия должна быть не меньше 250-300 мкм.
  • Нанесенное средство должно хорошо просохнуть, поэтому в первые 24 часа использовать авто не рекомендуется.

Чтобы обработка закончилась успешно и была эффективна, рекомендуется использовать современные качественные средства.

Классификация материалов

Современные материалы по составу делятся на смеси на восковой основе, и на основе битума. Кроме этого, существует следующая классификация средств:

  • Направленные на защиту в труднодоступных местах.
  • Для защиты внешней поверхности.

«Жидкие подкрылки» наносятся методом распыления при помощи сжатого воздуха и «пистолета»

Каждая из них имеет подвиды. Например, первая группа средств бывает двух видов: невысыхающий антикор – прекрасно справляется с микротрещинами, полностью заполняя их; и парафиновые смеси на основе воска – отталкивает сырость и предотвращает окисление кузова, создавая невидимую пленку.

Для защиты верхних поверхностей используют битумную мастику, жидкий пластик и мастику ПВХ на каучуковой основе.

Битумную мастику наносят слоем 0,25-0,4 мм. Материал создает двойной слой, который защищает кузов от ударов камней, песка и другого мусора. Каучуковая мастика известна, как долговечное средство, отличающееся высокой прочностью. Жидкий пластик используют как дополнительное средство против коррозии, так как он имеет низкую устойчивость к повреждениям.

Нанесение защитных материалов на колёсные арки и днище автомобиля

Антикоррозийная обработка автомобиля своими руками требует тщательной подготовки. Существует алгоритм действий, соблюдая который у владельца автомобиля получится качественно нанести антикор:

  • Проводить работы следует при влажности не более 60% и температуре воздуха +10…+25 градусов.
  • Выбранное средство имеет срок годности. Как правило, он составляет не более шести месяцев, поэтому лучше купить свежий антикор.
  • Для покрытия арки и днища машины достаточно будет 4,5 банки. Одного литра материала должно хватить на один квадратный метр поверхности.
  • Нанесение материала должно проводиться медленно и равномерно. Это обеспечит качественное покрытие и позволит избежать появления пузырей.

Нанесение защитных материалов на колёсные арки и днище автомобиля

  • Покрытие наносится исключительно на очищенную поверхность и может составлять от 1 до 3 мм. Обратите внимание, что, высыхая, толщина покрытия уменьшается.
  • Важно предотвратить попадание средства на выхлопную систему, термозащиту, двигатель и другие элементы.

После завершения работ следует повременить с эксплуатацией автомобиля хотя бы первые сутки.

Технология антикоррозийной обработки автомобиля материалами Tectyl

Если владелец авто решил покрыть поверхность антикором, то лучшего материала, чем средства фирмы Tectyl, ему не найти. Компания очень давно работает на авторынке и выпускает высококачественную продукцию. Обработка кузова данным материалам осуществляется следующим образом:

  • Транспортное средство идеально очищается от мусора и грязи, затем полностью высушивается.
  • Обработка машины происходит в трех направлениях: днище, скрытые полости и колесные арки.
  • Благодаря составу материала Tectyl средство равномерно распределяется в объеме пластичного материала, способствуя образованию коллоидного раствора – защитного щита.
  • Обработка труднодоступных внутренних областей производится специальным оборудованием, имеющим вид трубки, которые вводятся вовнутрь и заполняются антикором. Оборудование гибкое, поэтому проникает в самые трудные места. Материал создает облако внутри, которое предотвращает попадание конденсата.

Завершаются работы установкой всех съемных частей и снятием защитных укрытий с необрабатываемых частей.

Технология антикоррозийной обработки автомобиля материалами Tectyl

Нанесение антигравия на скрытые поверхности

Антигравий – это жидкое вещество, в составе которого присутствует смола и битум. Данным средством обрабатываются скрытые поверхности: двери, пороги, то есть места, подверженные пескоструйному воздействию. Обработка осуществляется специальной гибкой насадкой. Распыляемая жидкость бывает серого или черного цвета. После завершения работ рекомендуется покрасить поверхность автокраской нужного цвета. Антигравий имеет резкий запах, который выветривается на протяжении 5-7 дней.

Ошибки, допускаемые при работе с антигравием

Среди главных ошибок, допускаемых новичками, является пропуск участка или толстый слой покрытия. Материал необходимо наносить медленно и равномерно. Пропуски недопустимы! Чтобы автомобиль долго прослужил владельцу и не подвергался коррозии, обрабатывать машину нужно комплексно.

Повторная обработка кузова

Исключить капитальный кузовной ремонт автомобиля можно, систематически обрабатывая поверхность специальным веществом. Как правило, покрытия хватает на 3-5 лет. Всё зависит от качества работы и эффективности материала. Повторная обработка требует приобретения нового средства. Нанесение одинакового вещества не имеет смысла.

Повторная антикоррозийная обработка кузова производится только после зачистки металла. Это делается с применением абразивным шкурок или химическим, электрическим методами.

mensdrive.ru

Антикоррозийная обработка днища автомобиля в ЮВАО Москва

Днище DINITROL ML и Mettalic или 1000

Днище подвержено механическому износу и коррозии из-за попадающих камней, гравия,дорожных реагентов, воздействия влаги, промышленных примесей, которые содержатся в воздухе. Поэтому если при осмотре авто выявляются следы ржавчины, мы рекомендуем делать обработку составом ML. А вот если таких очагов не выявлено или машина новая, используют DINITROL METALLIC.

В AutoGarag процедура реализуется в следующем порядке

  1. Осмотр авто на подъемнике.
  2. Демонтаж подкрыльников, защиты днища и порогов. Снятию подлежит как пластиковая, так и металлическая защита, причем последнюю отсверливают, а по окончании антикоррозийной обработки днища заклепывают.
  3. Мойка и сушка машины с помощью специализированного оборудования.
  4. Обезжиривание поверхностей (детали, которые не будут подвергнуты обработке, закрывают; это касается тормозных суппортов, глушителя, амортизаторов).
  5. Нанесение состава.
  6. Повторная сушка автомобиля.
  7. Установка на место демонтированных элементов, сдача авто клиенту.

Днище и колесные арки – антикоррозийная обработка

Для антикоррозионной обработки днища и колесных арок применяют составы с высокой проникаемостью. Впоследствии они образуют пленку, защищающую поверхность от влаги, грязи, промышленных примесей, которые содержатся в воздухе. В процессе обработки колесных арок демонтируют локеры и подкрылки.

Если под ними выявляются очаги ржавчины, эти участки отдельно обсуждаются с клиентом.

В AutoGarag антикоррозионная обработка днища и колесных арок состоит из стандартных этапов:

  •  Днище и кузовные панели осматривают на подъемнике.
  • Снимают защиту днища, подкрыльники. Если защита металлическая, её отсверливают, а после обработки повторно заклепывают.
  • Авто моют и сушат в специализированной камере.
  • Поверхности, которые подлежат антикоррозионной обработке, обезжиривают, а остальные, в том числе глушитель, тормозные суппорты, амортизаторы, закрывают.
  • Наносят выбранный состав.
  • Машина проходит сушку.
  • Мастера устанавливают снятые элементы и сдают авто клиенту.

При полной антикоррозийной обработке защитные составы наносят на днище, арки и в скрытые полости. Они имеют хорошую адгезию к поверхности, устойчивы к воздействию щелочных и солевых растворов. Подаются в скрытые полости под давлением через технологические отверстия.

Делается это для того, чтобы бороться с щелевой коррозией. Поэтому используемые препараты должны обладать рядом свойств: высокая пенетрация, наличие в составе ингибиторов, которые замедляют коррозию, стойкость к механическим повреждениям.

С учетом вышеупомянутых свойств оптимальными оказались составы DINITROL, нанесение которых в AutoGarag проходит в несколько этапов:
  • Осмотр кузовных поверхностей, сварочных швов на подъемнике.
  • Демонтаж защиты днища, подкрыльников, навесных элементов.
  • Мойка авто (требуется, чтобы удалить частицы грязи, окислы, соли, частицы отслоившегося лака).
  • Сушка в камере.
  • Нанесение составов DINITROL.
  • Сушка после антикоррозионной обработки.
  • Установка предварительно снятых элементов, передача авто клиенту.

Прайс-лист на услугу – антикоррозийная обработка

Легковые автомобили

Днище
DINITROL ML* и Mettalic или 1000

Днище + колесные арки

DINITROL ML* и Metallic или 1000

Скрытые полости
DINITROL ML* и 3641-A-80 или 1000
Полная обработкаЖидкие подкрылки
DINITROL 479
Днище
DINITROL 479
Глушитель
DINITROL 8050
автомобили класса А и В4 000р.7 000р.4 000р.12 000р.10 000р.10 000р.1 500р.
автомобили класса С5 000 р.8 000 р.4 000 р.13 000 р.11 000 р.11 000 р.1 750 р.
автомобили класса D5 500 р.8 000 р.5 000 р.14 000 р.12 000 р.12 000 р.2 000 р.
автомобили класса E6 000 р.9 000 р.5 000 р.16 000 р.13 000 р.13 000 р.2 250 р.
автомобили класса F6 500 р.9 000 р.6 000 р.18 000 р.14 000 р.14 000 р.2 500 р.
автомобили класса M7 000 р.10 000 р.6 000 р.20 000 р.15 000 р.15 000 р.2 750 р.

Кроссоверы и джипы

Днище
DINITROL ML* и Metallic или 1000
Днище + колесные арки DINITROL ML* и Metallic или 1000Скрытые полости
DINITROL ML* и 3641-A-80 или 1000
Полная обработкаЖидкие подкрылки
DINITROL 479
Днище
DINITROL 479
Глушитель
DINITROL 8050
автомобили класса А и В4 000р.8 000р.5 000р.14 000р.11 000р.11 000р.1 500р.
автомобили класса С5 000 р.9 000 р.5 000 р.15 000 р.12 000 р.12 000 р.1 750 р.
автомобили класса D5 500 р.9 000 р.6 000 р.16 000 р.13 000 р.13 000 р.2 000 р.
автомобили класса E6 000 р.10 000 р.6 000 р.18 000 р.14 000 р.14 000 р.2 250 р.
автомобили класса F6 500 р.10 000 р.7 000 р.20 000 р.15 000 р.15 000 р.2 500 р.
автомобили класса M7 000 р.11 000 р.7 000 р.22 000 р.16 000 р.16 000 р.2 750 р.

* Dinitrol ML наноситься только на автомобили со следами коррозии, антикоррозийная обработка

  •  Автомобили класса А и В длина – 3.9 м Сузуки Сплеш, Форд Фиеста, Мазда 2
  •  Автомобили класса С длина 3.9 – 4.3 м Сузуки SX-4 (хетчбек), Субару Импреза (хетчбек), Мазда 3, Форд Фокус (хетчбек)
  •  Автомобили класса D длина 4.3 – 4,6 м Сузуки SX-4 (седан), Субару Импреза (седан, универсал), Сузуки Кизаши, Субару Легаси, Субару Форестер,Форд Фокус (седан, универсал)
  •  Автомобили класса E длина 4.6 – 4.9 м Субару Трибека, Форд Мондео, Мазда 6
  •  Автомобили класса F длина 4.9 + м Форд Эксплорер
  •  Автомобили класса M комерческие автомобили

Антикоррозийная обработка автомобиля:

Выхино-Жулебино, Лефортово, Некрасовка, Рязанский, Капотня, Люблино, Нижегородский, Текстильщики, Кузьминки, Марьино, Печатники, Южнопортовый, Братеево, Борисово, Зябликово, Шипиловская, Зябликово, Орехово-Борисово, Домодедовская, Каширская, Царицыно, Люберцы

Антикоррозийная обработка днища автомобиля Dinitrol 650 BD

Ремонт пластиковых деталей и бамперов автомобиля

autogarag.ru

Антикоррозийная обработка кузова своими руками |

Если данная статья посвящена самостоятельной антикоррозийной обработке кузова автомобиля, то стоит для начала определить: а что такое коррозия? Коррозия в общем определении — это разрушение твердых тел под действием химических, физических и электрохимических реакций на поверхности того или иного предмета при взаимодействии последнего с окружающей средой. Причем под «твердыми предметами» имеется в виду не только металл: дерево, бетон или пластмасса хоть и другие в физическом и химическом плане, но при постоянном воздействии на них агрессивной внешней средой также уверенно разрушаются.

Теперь что касается самого распространенного автомобильного определения коррозии: кузов (как видимая, «красивая» часть, так и менее красивое дно) во время движения (стоянки не исключение) подвергается активному воздействию разрушающих факторов: перепады температуры, вода, град, снег, песок и камни с дороги, ветки с деревьев, дорожная химия, голубиный… Перечислять можно долго, но итог один: всё, что защищает кузов автомобиля от начала неприятного явления «ржавчина» — это слой лака, краски, грунтовки и, по удаче, оцинкованный металл в самом низу. И если все слои защиты пробиты, вода попадает на голый металл, начиная процесс коррозии — в данном случае, окисление и образование рыхлого оксида железа Fe2O3. В отличие от алюминия или меди, где верхний слой окисленного металла предохраняет глубинные слои собой же, ржавчина железа имеет пористую структуру, никак не препятствующая дальнейшему процессу окисления.

Многие ошибочно думают, что процесс этот необратим и если уж ржавчина добралась к Вашему автомобилю — от неё уже не избавиться. Мнение это не верно: уже пораженный металл можно очистить до чистого и затем снова «защитить», а днище в целом стоит всё же подвергнуть антикоррозийной обработке.

Итак, что такое коррозия металла и почему она возникает — разобрались. Как уберечь свой автомобиль от коррозии? Защищают ли автопроизводители новые автомобили? Как часто рекомендуется делать антикоррозийную обработку? Можно ли провести обработку кузова своими руками? На эти и другие вопросы ответы ниже.

Содержание статьи:

Какие автомобили «гниют» чаще — новые или старые?

Несмотря на кажущуюся глупость вопроса, здесь не всё так однозначно. Не все новые автомобили так же хороши, как и старые, но и не далеко не все старые модели дожили до наших дней в хорошем состоянии. Причин обоих вариантов несколько:

  • не все автопроизводители уделяют достойное внимание этому пункту
  • сложность конструкции кузова или технологические ошибки при сборке подвергают риску коррозии те или иные части автомобиля (как новых, так и старых)
  • нанесенный на заводе слой антикоррозийного вещества оказался недостаточным
  • кузов и отдельные элементы конструкции той или иной модели даже именитых производителей может быть тонким и недостаточно обработанным
  • наконец, главный пункт — условия эксплуатации конкретного ТС: в пустыне малая влажность, но много песка, в мегаполисах (особенно зимой) активно используют дорожную химию, + влажность, возможные ДТП и прочее и прочее.

Какие бывают средства для антикоррозийной обработки?

По назначению все средства делятся на два основных пункта: для внешних и для скрытых поверхностей

  • Антикоррозийные средства для внешних поверхностей:
    • Битумная мастика — изготавливается на основе синтетических и битумных смол. Такая мастика одновременно выполняет две основные функции: консервация чистого металла и защита от механических воздействий. Стандартный слой битумной мастики на автомобиле — 250-400 мкм
    • ПВХ — комплекс материалов из ПВХ, наносимые на слой каучука. Чаще всего используется заводским способом и считается самым практичным и долговечным покрытием
    • Жидкий пластик — самый дешевый, но и наименее «удачный» выбор. Низкая степень механической стойкости делает подобные материалы выбором для последующей продажи, когда несведущим покупателям уверенно и с гордостью заявляют, что только что сделали антикоррозийное покрытие.
  • Антикоррозийные материалы для скрытых поверхностей:
    • средства на масляной основе удобны тем, что всё время находятся в жидком состоянии, заполняя собой все микротрещины обработанной поверхности
    • средства на парафиновой основе сделаны с использованием воска. Удобны тем, что после высыхания образуют восковую эластичную пленку, которая остаётся эластичной даже при резких изменениях температуры.

С материалом и фронтом работ ознакомились, стоит вопрос: а можно ли сделать актикоррозийную обработку кузова своими руками? Это вполне реально и вполне безопасно: продающиеся средства не имеют вредных испарений или запаха, не токсичны. Впрочем, банальные меры предосторожности не помешают, в Ваших глазах средствам тоже делать нечего.

Самостоятельное нанесение антикоррозийного покрытия на кузов

Перед началом работ стоит выполнить ряд простых рекомендаций:

  1. Освободить багажник
  2. Убрать все предметы, мешающие удобному доступу к внешней части кузова (коврик багажника, шумоизоляция, подкапотный утеплитель и пр.)
  3. Выступившую ржавчину и пузырек краски удалить (как минимум — сковырнуть отверткой)
  4. Помыть машину (в том числе и труднодоступные места). По этому пункту еще несколько рекомендаций:
    1. температура воды — около 70*
    2. мыть в три этапа:
      1. просто облить машину водой, тереть пока что не нужно
      2. нанести моющие средства
      3. смыть всё обильным количеством воды
    3. После мойки рекомендуется тщательно протереть автомобиль, дополнительно продув и промыв пороги
    4. На всякий случай снимите с машины дворники: некоторые антикор. средства могут разъесть некачественную резину
    5. Сидения рекомендуется накрыть, чтобы не испачкать их случайно
    6. Педали и пол под ними также накройте тряпкой или газетой, чтобы предотвратить попадание на них средства. Причина в том, что все средства довольно скользкие, а зачем нам сколжение подошвы по педалям?

Если вся процедура сделана правильно и с надлежащим качеством материалов, то защитного слоя хватит на 1-3 года спокойной и уверенной езды.

Далее приступаем непосредственно к обработке, в процессе которых могут понадобиться некоторый инструмент: само антикоррозийное средство (логично), дрель и сверло по металлу, кисть, какой-то распылитель-пульверизатор, простой слесарный инструмент, а также вспомогательные материалы в виде ветоши, защиты для сидений и педалей, заглушки для отверстий. Необходимость того или иного инструмента будет расписана ниже, но если смотреть в целом, то чаще всего антикоррозийной обработке автомобиля (как профессиональной, так и сделанной своими руками) подвергается лишь днище, колесные арки и места с повышенной концентрацией влаги (пороги, стойки дверей, сварные швы, загибочные соединения). Соответственно по самостоятельной антикоррозийной обработке автомобиля мы пройдемся в четырех пунктах:
  • днище и колесные арки — в два слоя
  • скрытые участки
  • сварные швы и загибочные соединения
  • внутренние части капота и багажника

Машина помыта, просушена и начисто вытерта? Пройдитесь внимательным взглядом по кузову в поисках дефектов поверхности. Царапины, трещины и сколы краски нужно обработать заранее, иначе смысл от работы в целом сводится к нулю. Мелкие царапины шлифуем, крупные тщательно обрабатываем. Оптимальным будет выпрямление погнутого металла, а царапины и сколы зачищаются, начисто грунтуются, шпаклюются, шлифуются и красятся.

Закончили? Ознакомьтесь с инструкцией, а лишь затем начинаем наносить антикоррозийный состав: важно соблюдение температурных условий, там же указана масса полезных рекомендаций по обработке того или иного участка. Там, где доступ к поверхности обеспечивается легко — обрабатываем распылителем, в труднодоступных местах оптимальным выбором будет ввод средства через заводские крепежные отверстия, а если таковых нет (или деталь не хочется снимать) — пригодится дрель и сверло. Разумеется, это далеко не повод насверлить массу отверстий (которые и сами в будущем не прочь «погнить») в автомобиле: лучше по-максимуму использовать штатные отверстия, а для новых используйте запасенные заглушки.

Антикоррозийная обработка днища автомобиля своими руками

Для удобства обработки автомобиль нужно будет поставить на яму и снять колеса. Запаситесь дополнительным освещением о тщательно осмотрите «фронт работ»: сварные швы, болтовые соединения, детали крепежа и элементы подвески. шаровые опоры, скрытые участки порогов и прочее. Если всё устраивает (или после того, как всё устраивает) — наносим антикоррозийный состав. Для этого чаще всего используется либо кисть, либо пистолет безвоздушного распыления (в комплекте к антикор. составу). Для труднодоступных мест используется специальная гибкая насадка. Как было сказано выше, низ автомобиля лучше обработать два раза — условия эксплуатации днища в разы серьезнее, чем у верха автомобиля.

Антикоррозийная обработка скрытых участков машины

Под скрытыми участками имеется в виду верхнее подкапотное пространство, где уязвивыми местами можно назвать все сварные швы, стыки панелей и деталей, элементы крепежа (кронштейны и усилители), загляните под аккумулятор, вокруг фар и в моторный щит. Под капотом будьте внимательны: не допускайте попадание состава на приводные ремни, радиатор или генератор — в лучшем случае скользкий ремень привода вентилятора приведет к ухудшению охлаждения двигателя, худший вариант с проскальзыванием ремня ГРМ обсуждать тут не будем…

Багажник автомобиля тщательно обрабатываем по шву между боковиной заднего крыла и колесной аркой, также не забываем обработать поперечину рамки заднего стекла по внутренней стороне, не помешает нанесение состава на заднюю сторону фонарей — контакты меньше будут окисляться.

Антикоррозийная обработка салона автомобиля своими руками

На салон много времени Вы не потратите: осмотреть и обработать нужно крепления поперечин и кронштейны сидений, швы внизу дверного проема и сами дверные проёмы по линиям резиновых уплотнителей. В салоне будьте также внимательны, чтобы не испачкать брызгами состава детали интерьера.

При обработке дверей автомобиля внимательным нужно быть с проводкой, механизмами и аудиосистемой внутри дверей — несмотря на то, что контактам и динамикам состав повредить не должен, однако наличие «антикоррозийки» на них штатно не предусмотрено. Как и со скрытыми и труднодоступными элементами, постарайтесь обойтись штатными отверстиями для обработки внутреннего пространства, а если их нет — воспользуйтесь сверлом. При внешней обработке состав нужно распылить на сварной шов по нижнему краю оконного проёма, а при внутренней — обратите внимание на внутренние швы и замок.

По окончанию работ очистите от брызг стекла и зеркала автомобиля специальными моющими средствами, верните на место снятые заранее элементы, можно уже снять все чехлы и газеты, предохранявшие салон. В конце повторно внимательно осмотрите салон: если на приборной панели или обшивке заметили пятно антикора — удалите его сухой тряпкой.

В целом процесс антикоррозийной обработки автомобиля на этом закончен. Новый слой нужно наносить по мере износа старого (по срокам сказать сложнее, тут всё зависит от условий эксплуатации, самого автомобиля и нанесенного состава — может быть и год, и два, и три). Эффективность обработки в итоге зависит от массы факторов: качества состава, соблюдение инструкций нанесения, общее состояние обрабатываемой поверхности и условия последующей эксплуатации. В конце концов, если корпус прогнил насквозь, никакой «антикор» Вам не поможет. Особый акцент для в меру ленивых и не в меру старательных автовладельцев: тонкий слой «антикора» быстро пропадет от простых дорожных камушков, а чересчур толстый — может растрескаться и отвалиться сам. Оптимальный слой состава — 1,5-2 мм, расход при этом составит около 4-5 кг на средний легковой автомобиль.

Еще один важный нюанс: новые детали кузова (в случае замены старых) антикоррозийной заводской обработки не имеют — потратьте время на их обработку перед установкой.

Помните: навсегда остановить коррозию пока не получается, но отсрочить её даже своими руками можно достаточно легко.

На видео ниже наглядно показано, как выполняют антикоррозийную обработку на фирменном СТО.

Антикоррозийная обработка днища автомобиля на СТО

krossovery.info

Антикоррозионная обработка днища автомобиля своими руками

В процессе эксплуатации автомобиля, на корпусе и днище появляется коррозия. Она разрушает металлические конструкции и существенно портит вид машины. Наиболее сильно возникновению ржавчины подвержено днище, так как на него постоянно воздействуют агрессивные среды и влага. Чтобы нижняя часть автомобиля не заржавела, необходимо регулярно проводить антикоррозийную обработку днища своими руками.

Для чего нужна антикоррозийная обработка

Днище, в процессе эксплуатации машины, повреждается дорожным мусором, гравием и песком. Оно покрывается мелкими вмятинами, сколами и царапинами, когда влага попадает на поврежденные места, дно начинает ржаветь. Стоит добавить, что пагубное воздействие на дно автомобиля оказывают реагенты. Со временем, днище прогнивает, теряет свою прочность. Чтобы восстановить проржавевший элемент кузова, потребуется потратить крупную сумму.

Зарубежные автопроизводители проводят мероприятия на заводе по противодействию возникновению и развитию коррозии днища. Отечественные автоконцерны данную операцию не проводят. Чтобы узнать, обработано ли днище автомашины, необходимо отогнать автомобиль на эстакаду или смотровую яму, и внимательно осмотреть нижнюю часть кузова авто.

Виды антикоррозийной обработки кузова автомобиля

Для успешной защиты, нужно знать, чем обработать днище автомобиля от коррозии своими руками. В настоящее время производят две группы средств, позволяющих выполнить эту задачу. Классификация материалов для обработки выглядит следующим образом:

  • Составы для нанесения на внешние поверхности. Основой таких растворов является битумная мастика, ее наносят для защиты покрытия от повреждений, возникновения коррозии. На производстве используют составы на основе каучука и ПВХ. Эти компоненты отличаются долговечностью и эффективностью.
  • Материалы, которые защищают от возникновения ржавчины в скрытых полостях. Смеси на масляной основе подходят для обработки скрытых полостей автомобиля так как после обработки они остаются жидкими. Раствор попадает во все микротрещины. Одним из наиболее популярных средств на основе масла, является Мовиль. Альтернативным вариантом являются материалы на восковой основе, после обработки на поверхности образуется тонкая пленка, устойчивая к воздействию влаги и перепадам температур.

Обработку поверхности нужно проводить обоими типами защитных средств. Только так достигается эффективная защита днища и кузова автомобиля от коррозии.

Нанесение антикоррозионного покрытия

Перед выполнением антикоррозийной обработки кузова автомобиля, проводят ряд подготовительных мероприятий:

  1. Тщательно вымыть автомобиль. Операцию проводят на подъемнике, моют авто горячей водой, подаваемой с давлением 60-100 атмосфер. Важно тщательно очистить отверстия, скрытые полости и карманы – именно здесь собирается огромное количество грязи, вызывающей возникновение коррозии.
  2. После мойки автомобиль должен хорошо высохнуть.
  3. Если на обрабатываемой поверхности видны следы возникновения коррозии, то их нужно обязательно удалить с помощью специальных составов или шкурок с абразивным покрытием. Затем обработать место грунтовкой и приступить к нанесению антикоррозийного состава.

Обработка антикором, должна выполняться своими руками или специалистами каждые 2 года. Благодаря данной операции днище и кузов авто будут практически не подвержены возникновению ржавчины.

Днище и арки колес

Для качественной обработки днища автомобиля от коррозии, используют несколько составов. Следует выполнить подготовку мест для нанесения. После мойки надо убрать ржавчину при помощи металлической щетки или болгарки. Обработанные таким способом места, обезжиривают и покрывают грунтовкой. Для достижения результата, нужно промазывать все технические швы, шаровые опоры, детали подвески, болтовые соединения. Правильное нанесение раствора на легкодоступные места, выполняется с помощью кистей различных размеров. Материал наносится на всю поверхность равномерно, лучше в несколько слоев. В противном случае, плохо обработанный участок заржавеет.

Обработка колесных арок антикором имеет свои нюансы. Перед нанесением вещества, следует обезжирить поверхность, и нанести грунтовку. Далее происходит обработка средствами от возникновения ржавчины. Для достижения более эффективного результата, состав на арочную поверхность можно наносить с помощью пульверизатора, распылителя или краскопульта.

Активная обработка днища автомобиля от коррозии, подразумевает использование большого количества защитных материалов. Для борьбы с появлением ржавчины, выполняют нанесение мастики, антигравия и ингибиторов коррозии.

Салон

Полная антикоррозийная обработка автомобиля своими руками подразумевает покрытие антикором салона. Сначала нужно демонтировать сиденья и убрать с пола коврики. После, газетой или клеенкой соорудить защитные чехлы. Их следует установить на обивку дверей, пластиковые элементы салона, а также на педали автомобиля. Это нужно сделать для того, чтобы антикоррозийный состав не вымазал эти элементы, так как отмыть средство практически невозможно.

Обработке подвергаются кронштейны креплений сидений, дверные проемы, швы внизу дверного проема и крепления поперечин. После нанесения составов, потребуется некоторое время для их высыхания. Брызги антикора удаляются с окон специальными моющими средствами.

Внутренние поверхности креплений поперечин сидений и кронштейнов обрабатываются через технологические отверстия.

Если днище прогнило, обратитесь в автосервис, где вам выполнят ремонт. При наличии необходимого инструмента можно выполнить замену части дна машины своими руками. Проржавевшая часть вырезается и на ее место приваривается новая деталь. Работу удобнее выполнять из салона. После ремонта нужно сделать полную антикоррозийную обработку поверхностей  пола салона и днища.

Внутренние и скрытые полости

Чтобы обезопасить внутренние полости и скрытые участки, используют современные технологии. Обработка труднодоступных мест осуществляется с помощью пульверизаторов, краскопультов или баллончиков с распылителем. На авторынках есть огромный набор насадок, которые позволят очистить и защитить скрытые полости своими руками.

Для защиты от возникновения коррозии, обрабатываются:

  • внутренние полости лонжеронов;
  • полости в кронштейнах;
  • усилители;
  • пороги;
  • поперечины.

Нужно ли производить обработку днища на новом автомобиле

Антикоррозийной защите подвергаются как старые, так и новые автомобили. Даже во время простоя, на кузов и днище машины влияют факторы, вызывающие коррозию. Обработка дна специальными составами положительно сказывается и на виброизоляционных свойствах и уменьшению шума внутри салона при движении авто.

Ржавчину трудно удалить с поверхности автомобиля, она уменьшает прочность металла, и приводит к разрушению узлов и агрегатов. Чтобы защитить днище, салон и скрытые полости от коррозии, каждые два года нужно проводить полную антикоррозийную обработку автомобиля.

infokuzov.ru

19Фев

Выбор компрессора для пневмоинструмента – Инструменты — Выбираем компрессор для пневмоинструмента

Как выбрать компрессор для пневмоинструмента? — Superfb

Каталог

  • Воздушные компрессоры
    • Тип
      • винтовые
      • поршневые
      • спиральные
      • безмасляные
      • масляные
    • Питание
      • дизельные
      • электрические
    • Мобильность
      • передвижные
      • стационарные
    • Привод
      • ременной
      • прямой
    • Назначение
      • промышленные
      • медицинские
      • для покраски
      • для продувки труб
      • для пневмоинструмента
    • Объем ресивера
      • 50 литров
      • 100 литров
      • 200 литров
      • 300 литров
      • 500 литров

    • Производители
      • Chicago Pneumatic (Бельгия)
      • Atlas Copco (Швеция)
      • Ceccato (Италия)
      • Comaro (Италия)
      • Ekomak (Турция)
      • Remeza (Беларусь)
      • Kraftmann (Германия)
      • Abac (Италия)
      • Atmos (Чехия)
      • Berg (Германия)
      • Comprag (Германия)
      • Dali (Китай)
      • Fiac (Италия)
      • Fubag (Германия)
      • Бежецкий (Россия)
      • ЗИФ (Россия)

Основные параметры

Когда выбирается бытовой воздушный компрессор, то главными параметрами, на которые следует обращать свое внимание, являются:

  • рабочее давление;
  • производительность инструмента;
  • номинальная мощность.

Помимо этого весьма существенную роль будут играть такие параметры, как объем ресивера, размеры, вес, а также номинальное напряжение на которое рассчитан инструмент. Будем рассматривать более подробно каждый из этих параметров и поможем выбрать компрессор для дома.

Рабочее давление

Давление чаще всего измеряется в атмосферах, однако нередко при изучении технических характеристик можно встретить значение давления, выраженное в Барах. Это ничего страшного, т.к. единицы измерения идентичные. То есть 1 Бар будет приравниваться к 1 Атмосфере. Рабочим давлением является то, с каким усилием оборудование будет производить сжатия воздуха. На это нужно обращать внимание для определения типа используемого пневмоинструмента.

Вам следует знать, что при работе давление в ресивере будет постоянно меняться. Например, у компрессора для наибольшего рабочего давления в 10 Бар, оно будет изменяться от 6 до 10 Бар. В принципе это не страшно. Главное, чтобы давление соответствовало подключаемому инструменту. Этот момент следует учитывать для того, чтобы подбор оборудования происходил в соответствии с подбором пневмоинструмента. Далее мы рассмотрим соответствие инструмента компрессорному оборудованию.


Производительность

У данного оборудования производительностью называется общая величина сжатого воздуха, которую он может нагнетать в течение 1 минуты. Та величина, которая указывается обычно в паспортах, показывает производительность на входе в оборудование. Она обычно измеряется при температуре 20 °С. Ее величина может изменяться при изменении температуры воздуха. Именно из-за этого при решении вопроса, как правильно выбрать компрессор, необходимо делать выбор в пользу инструмента, обладающего запасом производительности в 30-50% в сравнении с той, которая вам требуется.

Номинальная мощность

Под мощностью понимается общий рабочий потенциал оборудования. Естественно, что чем больше будет мощность мотора, тем лучше он будет справляться со своими задачами.


гда вы разбираетесь, какой компрессор лучше, то стоит знать, что на практике мощность чаще всего меньше расчетной. В процессе эксплуатации всегда возникают потери мощности. Они возникают из-за трения деталей и возникновением дополнительных нагрузок. Поэтому для того, чтобы их компенсировать потребуется дополнительные затраты энергии. Именно для этого во время выбора, вам необходимо учитывать то, что мощность, которая используется, в действительности, будет больше, чем та которая указана каталоге или паспорте завода-изготовителя. Соответственно, выбирать компрессоры для работы необходимо с небольшим запасом (до 30%).

Рабочее напряжение и частота

Рабочее напряжение и частота

Оборудование может быть трехфазным и однофазным. Чаще всего трехфазные модели не будут подходить для использования дома. Трехфазное питание имеется не в каждом доме. Здесь советом будет лишь одно: необходимо подбирать компрессор, который будет соответствовать вашему домашнему напряжению и частоте. Выбор частоты происходит проще, т.к. в России принят единый стандарт частоты – 50 Гц. Однако, будет нелишним при покупке проверить в паспорте рабочее напряжение и частоту для уверенности, что после покупки устройства будет нормально и стабильно исполнять свои обязанности.

Объем ресивера

Ресивером называется металлическая емкость, в которую подается сжатый воздух.


ъем ресивера обозначается в литрах. Здесь стоит знать, что чем больше будет внутренний объем, тем меньшее количество раз инструмент станет отключаться, когда уровень сжатого воздуха будет опускаться до минимальных значений. Однако, с другой стороны, чтобы в полном объеме наполнить ресивер, оборудованию потребуется более длительное время. Объем ресивера может быть от 5 до 500 литров. Но, необходимо учитывать следующий факт: чем будем меньшим объем ресивера, тем быстрее давление будет подниматься до максимума и опускаться к минимуму. Это также значит, что ресивер будет чаще включаться и выключаться. Поэтому, думая над тем, какой компрессор выбрать для гаража, поразмыслите над тем, чтобы приобрести его с ресивером побольше.

Размеры оборудования, а также мобильность будут весьма значимыми при использовании в закрытых сооружениях, например автомастерских. Если вам необходимо выполнять работу, которая потребует от вас постоянные передвижения, а также не слишком большой мощности оборудования, то можно подобрать компрессор , который имеет ручку для перемещения, а также с небольшими размерами (400х230х370 мм). Помощнее могут быть до 2000 мм длиной и 1500 мм высотой. Для их перемещения производители чаще всего снабжают оборудование колесами и специальными ручками.


Уровень шума

Чтобы вы ни делали, этот инструмент всегда будет оставаться шумным инструментом. Иногда это может здорово мешать, так как обычно шум достигает 85 дБ, что сравнимо с шумом от железной дороги. В наше время для снижения сумма производители могут снабжать свои лучшие  модели специальными шумоизоляционными конструкциями, что позволяет снизить уровень шума до 68 дБ. Поэтому во время выбора обращайте внимание на этот параметр.

Выбор компрессора и пневмоинструмента

Когда вы осуществляете выбор компрессора, то не всегда больше будет означать лучше. Все потому, что не для каждой работы потребуется очень большой ресивер и максимальная производительность. Ниже приведём номинальные рабочие значения пневмоинструмента, которые помогут подобрать вам прибор, чтобы он не действовал на износ или, напротив, не использовал энергию зря.

Инструмент

Давление (Бар)

Расход воздуха (л/мин)

Краскопульт


3-6

150-400

Пылесос

6

100-150

Шлифмашина

6-7

180-450

Продувочный пистолет

4

150-250

Пескоструйный пистолет

8

250

Пистолет для накачки шин


3

50

Угловой гайковерт

6-7

85-250

Ударный гайковерт

6-7

400-450

Долото

6,5

220-390

Дрель

6

110-280

Заклепочный пистолет


6-7

100-350

Гвоздезабивной пистолет

6-7

100-350

Ножницы

6,2

200

Используя эту таблицу, вы посчитаете для какого инструмента будет достаточно оборудования, выдающего 8 Бар, а для какого потребуется мощнее. Во время выбора учитывайте происходящие скачки давления, а также утечку в магистралях. Именно поэтому подбирайте аппарат, имеющий запас.

Какой тип выбрать

Когда вы приступаете к выбору компрессора, то для начала вам нужно понять, какую работу вы будете выполнять. Если вы решаете, как выбрать компрессор для покраски, то учитывайте все данные из вышеприведенной таблицы. Не нужно приступать к поискам с формулировкой “хочу самый лучший”, “чтобы был поменьше” или «какой фирмы лучше».

Так, для одних будет принципиальным вопрос мобильности и размеров. В подобных случаях, самыми лучшими будут поршневые коаксиальные компрессоры. Они обладают самыми минимальными размерами. В плане мобильности будут самыми лучшими без масляные компрессоры, не имеющие ресивера.

Все же основной задачей оборудования является обеспечение сжатым воздухом инструмента. Выбор нужно начинать с изучения потребностей вашего инструмента. Здесь вам поможет наша таблица.

Данные о расходовании инструментом воздуха во время работы вы сможете найти в паспорте завода-изготовителя. В процессе выбора нужно обращать внимание на то, чтобы выходное давление из магистрали не было меньшим, чем требуется пневмоинструменту. Приведем пример. Для эксплуатации пневмодрели требуются давления 6-8 Бар. Для нормальной работы вам потребуется оборудование, которое будет обладать рабочим давлением 8-10 Бар. Помните, что будут появляться потери, которые возникают в связи с перепадами давления в системе. Если вы приобретаете агрегат с точно таким же давлением, как у дрели, то во время перепадов компрессор может просто не запустить дрель.

Аналогичная ситуация, в плане потерь, обстоит и с производительностью. В паспорте изготовители, как уже говорилось выше, указывают номинальный параметр на всасывании в воздухозаборник. Однако, когда во время работы воздух протекает через всю систему, он частично трансформируется тепло, а также уходит в потери. Именно поэтому устройство должно подбираться запасом.

Еще одной значимой характеристикой будет интенсивность работы. Вы согласитесь, что для того чтобы выполнять не частые домашние работы, вам не нужно делать выбор в пользу профессиональной модели. В таком случае бытовые и не очень мощные модели будут прекрасно справляться со своими задачами.

Какой компрессор лучше – винтовой или поршневой?

Ниже приведем конкретные примеры оборудования по видам работы. Если вам необходимо работать в быту и выполнять небольшие по объему работы, то вам стоит взять обычный масляный поршневой компрессор. При выборе часто задается вопрос, какой компрессор лучше масляный или безмасляный . В случае с масляным инструмент обладает следующими достоинствами:

  • компактные размеры;
  • ресивер от 24 до 200 л;
  • его производительность 200-500 л/мин;
  • мощность от 1,5 до 2,2 кВ;
  • давление от 8 до 10 Бар;
  • имеет автоматическую смазку деталей;
  • доступная стоимость и качество.

Этот вид оборудования является самым популярным. На рынке имеется огромное разнообразие моделей. Поэтому вы легко сможете найти тот, который подойдет именно вам.

Другим типом компрессора, о котором поговорим, является коаксиальный. Он способен снабдить сжатым воздухом почти любой пневмоинструмент. Он обладает базовым набором достоинств. Однако стоит рассмотреть его недостатки:

  • часто отключается;
  • имеется повышенная вибрация и уровень шума.

Его время работы является основным минусом, т.к. после 5 минут ему необходим перерыв. Это намного будет понижать производительность.

Когда же для вашей работы необходимо оборудование, которое способно действовать на протяжении длительного времени, а также обладать определенной живучестью, то вам подойдет поршневой компрессор, обладающий ременным приводом. По своим размерам они будут больше коаксиальных. Однако благодаря своей конструкции они будут работать более длительное время, а также меньше ломаться. Ниже приведем основные плюсы выбора подобного типа:

  • обладает повышенным ресурсом;
  • встроенная защита от перегрева;
  • производительность от 200 до 2000 л/мин;
  • ресивер от 24 до 500 л;
  • от 10 до 15 Бар;
  • отличная система охлаждения;
  • мощность от 1,5 до 3 кВт;
  • увеличенный масляный картер.

Однако имеются и свои недостатки. Они, подобно коаксиальным, обладают повышенной шумностью, а также в выдаваемом сжатом воздухе присутствуют частицы масла. Однако присутствие масла в сжатом воздухе является обязательным элементом для применения основного количества пневмоинструмента, т.к. они формируют смазку трущихся деталей. Однако, например, при использовании краскопульта, если в воздухе будет масло, то это здорово ухудшит процесс работы. Именно поэтому для проведения покраски, а также для других отдельных видов работ лучше сделать выбор в пользу без масляного компрессора. Он обладает следующими преимуществами:

  • производит сжатый воздух без каких-либо примесей;
  • малый вес и размеры;
  • обладает принудительным охлаждением;
  • легко запускается;
  • объем ресивера от 24 до 500 л;
  • давление 8 Бар;
  • производительность от 180 до 230 л/мин.

Однако, как и любое оборудование, обладает своими недостатками:

  • маленький рабочий ресурс;
  • уменьшенный диапазон применения, т.к. не весь пневмоинструмент способен эксплуатироваться без смазки.

Если вам требуется длительное и бесперебойное использование, то изучите винтовой компрессор. Вы сейчас найдете уже готовые установки. Они будут состоять как из самого компрессора, так и дополнительных конструктивных элементов. Какой тип выбрать винтовой или нет, решать вам.

Подобный тип имеет следующие достоинства:

  • большая производительность;
  • давление от 6 до 15 Бар;
  • мощность от 2,2 до 90 кВт;
  • небольшое энергопотребление;
  • небольшой уровень вибрации и шума;
  • может длительно бесперебойно эксплуатироваться.


superfb.site

КОМПРЕССОР ДЛЯ ГАЙКОВЕРТА — полезные материалы от компании Fiac

Прежде, чем подбирать промышленный компрессор для гайковерта, необходимо определиться с самим пневматическим гайковертом. Важнейшей технической характеристикой пневматического гайковерта является крутящий момент. Величина крутящего момента непосредственным образом влияет на характер тех операций, которые могут выполняться при помощи данного гайковерта, а также на время их выполнения. Очевидно, что чем выше крутящий момент, тем сильнее можно затянуть резьбовое соединение (или, наоборот, отвернуть «прикипевшую» гайку). Но с другой стороны, использование излишне мощного гайковерта может привести к порче резьбового соединения (срыву резьбы). Поэтому очень важно, чтобы крутящий момент соответствовал специфике решаемых задач. 

Если дать численную оценку параметрам крутящего момента, то у пневматических гайковертов он лежит в диапазоне от нескольких десятков до нескольких тысяч Нм. Гайковерт, предназначенный для решения бытовых и полупрофессиональных задач, должен иметь величину крутящего момента от 200 Нм до 600 Нм. Для более серьезной работы необходимы гайковерты, имеющие крутящий момент от 1000 Нм и выше. 

От величины крутящего момента зависит и вторая важная техническая характеристика гайковерта – посадочный размер квадрата (шпинделя). Здесь все просто: чем выше крутящий момент, тем больше размер квадрата. Стандартный ряд размеров квадратов хвостовиков измеряется в дюймах. Наиболее распространены шпиндели, имеющие размер ½, ¾ и 1 дюйм. Как правило, для решения бытовых и полупрофессиональных задач используются гайковерты с квадратом ½ дюйма, а в промышленности с квадратами ¾ и 1 дюйм. 

Можно рассмотреть вопрос выбора размера квадрата шпинделя и с другой стороны. По мнению компаний производителей гайковертов, размер квадрата связан с размером гайки (головки болта), который необходимо отвернуть/завернуть: 
— если размер гайки «под ключ» от 10 до 21 мм, то подойдет гайковерт с квадратом ½ дюйма; 
— если размер гайки «под ключ» от 24 до 36 мм, то подойдет гайковерт с квадратом ¾ дюйма; 
— если размер гайки «под ключ» от 41 мм, то подойдет гайковерт с квадратом 1 дюйм. 

Третьей важной технической характеристикой гайковерта является расход воздуха. Он также в значительной степени зависит от крутящего момента: чем выше момент, тем больше и расход воздуха. У гайковертов с размером   квадрата  ½   дюйма   расход   воздуха   составляет  150-250 л/мин;  у   более  мощных   гайковертов   от  300 л/мин и выше. 


В качестве примера приведем сводную таблицу основных технических характеристик гайковертов одного из известных мировых производителей данной продукции. 

   Наименование продукции   
     Крутящий момент, Нм      Расход воздуха, л/мин    
     Гайковерт ½»      270 – 810      170 – 230
     Гайковерт ¾»      680 – 1600      270 – 340
     Гайковерт 1″      1630 – 4070      800 – 1130

Общие подходы к выбору компрессора 

После выбора гайковерта, приступают к выбору воздушного компрессора. Компрессор, к которому будет подключаться гайковерт, должен соответствовать двум требованиям: 
— обеспечивать требуемое рабочее давление сжатого воздуха; 
— обеспечивать требуемый расход сжатого воздуха. 

Стандартное рабочее давление, необходимое для большинства представленных на рынке гайковертов, составляет 6,2-6,5 бар. Поэтому компрессор, который планируется использовать для работы, должен иметь максимальное рабочее давление 10 бар (или, иными словами, работать в диапазоне давления 8-10 бар). 

Как подобрать компрессор для СТО по производительности? В паспорте гайковерта указан его расход воздуха. Однако в практической работе гайковерт используется не постоянно, а с определенными перерывами. Поэтому у каждого пневматического инструмента (и у гайковерта в том числе) есть свой, так называемый, коэффициент использования. В нашем случае он равен 0,2-0,25. Поэтому если в паспорте гайковерта указано, что его расход воздуха составляет 300 л/мин, то для реальных расчетов надо учитывать величину 60-75 л/мин. 

Если же планируется использовать несколько гайковертов, то необходимо учесть и вероятность их одновременной работы. Она определяется коэффициентом синхронности работы оборудования, значения которого приведены в таблице.

Количество потребителей сжатого воздуха  1 2 3 4 5
    Коэффициент синхронности оборудования   1,0 0,95 0,91 0,87 0,84

Таким образом, рассчитанное ранее значение общего потребления сжатого воздуха нужно умножить на соответствующий коэффициент синхронности. И уже на основании полученной величины выбирать производственный воздушный компрессор. 

Дальнейший порядок выбора компрессора точно такой же, как и при его выборе для подключения любого другого оборудования. Есть два типа компрессоров: поршневые и винтовые. Если величина расхода воздуха до 1000-1200 л/мин, то можно использовать поршневой компрессор; если выше, то лучше использовать винтовой компрессор. 


С другой стороны, выбор типа компрессора зависит и от характера работы: если он одно-или-двухсменный, то вполне подойдет поршневой компрессор; если режим работы круглосуточный, то необходим винтовой компрессор.

Вопросы практической эксплуатации гайковерта 

Первый вопрос, который возникает чаще всего, какое качество сжатого воздуха необходимо для работы пневматического гайковерта? Если на производстве есть возможность использовать для питания гайковерта сухой сжатый воздух – отлично. Если такой возможности нет, то можно обойтись и без рефрижераторного осушителя. В этом случае достаточно установить в пневматическую магистраль фильтр-влагомаслоотделитель со встроенным регулятором давления и лубрикатор. Фильтр-влагомаслоотделитель удалит влагу, регулятор обеспечит требуемое давление сжатого воздуха, а лубрикатор – смазку гайковерта. 

Кстати, если на производстве есть возможность обеспечить гайковерт сухим сжатым воздухом, то перед ним все равно необходимо установить блок подготовки воздуха. В этом случае в его состав входит регулятор давления и лубрикатор. 

Следующий вопрос касается установки блока подготовки воздуха в пневматическую магистраль. Какой бы ни была геометрия пневматической магистрали, существуют два основных способа установки в нее блоков подготовки воздуха: выше основной трубы и ниже основной трубы. 

Чем хорош вариант с установкой блока выше трубы? В этом случае вертикальный отвод вверх, к которому затем крепится блок подготовки воздуха, естественным образом препятствует поступлению в блок конденсата. 
Если же блок устанавливается под основной трубой, то в этом случае из трубы делается вертикальный отвод вниз, в который врезается тройник, и из этого тройника через отдельную трубу подключается блок. А чтобы исключить «залив» блока конденсатом, вертикальный отвод от основной трубы продолжают еще ниже, и завершают его краном для удаления конденсата. 

В обоих случаях подключение блока подготовки воздуха к пневматической магистрали производится через запорный шаровой кран. Это позволит в случае необходимости оперативно отключить блок от трубопровода. 

Большинство блоков подготовки воздуха комплектуются Y-образным разъемом, который дает возможность подключать к ним сразу два гайковерта. А чтобы обеспечить качественную смазку гайковерта, длина гибкого шланга не должна превышать 5 метров.
Выбрать компрессор для гайковерта

Возврат к списку

www.fiak.ru

Выбираем компрессор для пневмоинструмента

При работе с пневматическими инструментами рано или поздно встает вопрос о выборе компрессора. Для того, чтобы правильно его подобрать и избежать различного рода проблем с инструментами необходимо знать некоторые технические характеристики. Даже если вы уже приобрели компрессор, знание основных характеристик будет крайне полезным.

Подробнее об основных параметрах

Выбирая компрессор, первым делом необходимо обратить внимание на максимальное давление устройства. Самая распространенная величина — 8 бар, но, при должном желании, можно найти модели, величина которых составляет 10-11 бар. При покупке следует учитывать, что максимальное давление не равно рабочему. Таким образом, покупая компрессор с максимальной величиной в 8 бар, на выходе вы получите 6-7 бар. Этого более чем достаточно для большинства пневматических инструментов. Например, рабочее давление гвоздезабивного пистолета не превышает 6 бар, а для таких устройств, как краскопульты достаточно и 2 бар.

Касательно производительности, параметр, на который следует обратить внимание — производительность на выходе. Ее не указывают в техническом паспорте компрессора, поэтому определить ее придется самостоятельно. Для этого находим в паспорте входную производительность (даже если не указана выходная, входная обязательно должна быть дана) и делим ее на 1.7. Полученная величина и составляет выходную производительность.

Коэффициент возможного использования инструмента — параметр, обязательно указанный в таблице. Если привести в пример полномасштабное производство, то даже там компрессоры не работают без перерыва. При работе с компрессором, предпочтение стоит отдавать более мощным моделям. Они рассчитаны на большее время работы, да и качество обработки будет гораздо выше. Для домашнего использования следует искать компрессоры, с выходной мощностью от 230 литров. Такие устройства рассчитаны на долгую бесперебойную работу и обладают достаточной мощностью.

Расход воздуха — характеристика, показывающая какое количество сжатого воздуха потребляется компрессором в течение минуты. Чем выше значение потребление, тем больше производительность компрессора. Однако, предпочтение стоит отдавать моделям со средним уровнем. Большой расход необходим на крупных производствах или при постоянной работе компрессора, для домашнего использования это пустая трата денег.

Будьте внимательны! Чем больше устройств подключено к компрессору одновременно, тем ниже его мощность. Домашние компрессоры рассчитаны на подключение 2-3 инструментов, в то время, как профессиональные изготавливаются с учетом подключения целых пневмосетей.

Каждый пневматический инструмент поставляется с инструкцией или техническим паспортом, в котором указано точное количество сжатого воздуха и величина рабочего давления, необходимые для корректной работы инструмента. Так, например, пневмогайковерт требует 85 литров сжатого воздуха в минуту и рабочее давление в 6 атмосфер. Если вы планируете подключить больше, чем одно устройство, то следует учитывать следующие факторы:

Напоследок стоит сказать, что предпочтение следует отдавать фирменной и проверенной продукции. Дешевые аналоги фирменных компрессоров отличаются невысокой надежность и долговечностью, а выходное давление в них может быть гораздо ниже заявленного.

  • Чем дольше работает компрессор, тем ниже выходная мощность;
  • Разветвление компрессора на несколько инструментов (создание пневмосети) ведет к значительному понижению давления. Объясняется это тем, что увеличивается время, необходимое для того, чтобы сжатый воздух достиг каждого потребителя;

gngroup.ru

Выбираем компрессор для дома | САМ себе МАСТЕР

Нужна помощь в выборе наилучшего воздушного компрессора для домашнего использования? Так, сейчас много различных типов воздушных компрессоров, и трудно вам определить, какой именно тип или бренд компрессора и для вас лучший?

В этой статье мы рассмотрим  ряд соображений, которые вы должны учитывать, чтобы определить, какой для вас компрессор является наилучшим. Если вы будете использовать его как  промышленный, подключенным к пневматической системе, которая работает с несколькими пневматическими инструментами, советы в этой статье помогут вам, чтобы принять лучшее решение в том, какой вам нужный в воздушный компрессор.

 

Какой продуктивности нужен вам компрессор? То, что вы должны смотреть на производительность накачки в характеристиках различных доступных моделях для определения нужного вам размера. Если вы намерены использовать его регулярно с инструментами, которые нуждаются в большом количестве воздуха, чтобы они работали, то вам нужны модели с мощностью накачки, по крайней мере, более 10 кг/год.

Чтобы определить, какой нужен компрессор, нужно знать необходимый поток воздуха для инструмента. Выберите компрессор большей мощностью в 1,5 раза за необходимую для инструмента. Например, если вы собираетесь запускать ударный гайковерт, которому необходимо 10 кг/год чтобы работал должным образом, то вы должны выбрать воздушный компрессор, который способен генерировать воздушный объем 15 кг/год при давлении 1 атм.

Для чего он будет использоваться? Если вам нужен компрессор только для использования в домашних условиях, чтобы выполнять небольшие задачи, такие как надуть шины, а иногда создать давление для надувного оборудования или запустить пневматические инструменты, которые требуют только короткие потоки воздуха,  то выберите один из небольших доступных портативных моделей.

Конечно, если вы хотите использовать его для больших  работ вокруг вашего дома, особенно если вы собираетесь делать работу, передвигая его, например, работающие пневматические инструменты или краскопульты, то вам нужно выбрать электрический который способен генерировать воздушный объем 150 кг/год.

Как часто вы будете использовать? Если вы собираетесь использовать его иногда, выбирайте модели с электрическим двигателем, хотя бы с напряжением двигателя 220 В, который можно подключить к стандартной розетке. Однако если вы собираетесь использовать часто, по крайней мере, около4 разов в месяц, то выбирайте компрессора с хорошей смазкой маслом, с чугунным насосом, прямым привод от электродвигателя и не меньше чем 30 литровым ресивером.

Для вас, кто, намереваясь использовать компрессор более чем в 4 раза каждый месяц, выбирайте модель с электродвигателем и ременным приводом на железный насос. Будьте готовы для подключения надлежащей проводки. Они имеют, по крайней мере, выход 380В, так что убедитесь, в надлежащем питании.

Как он будет работать? У вас есть несколько вариантов, когда речь идет о том, как ваш компрессор работает. Одни есть, которые работают непосредственно с электроснабжением или те, которые работают на топливе. Если вы намерены использовать вокруг дома или в гараже, мастерской с питанием от электричества наиболее подходящий. Тем не менее, если вы хотите использовать его в поле или по саду, то модель с ДВС будет лучше.

Оба типа являются надежными и могут работать с различными инструментами. Конечно, какой лучший бренд воздушного компрессора, модель и тип действительно сводится к личному выбору.

Сколько вы готовы потратить? В этой жесткой экономики, мы все ищем способы, чтобы сэкономить деньги и покупать хороший качественный воздушный компрессор, который будет работать как можно  долго. Делая свой выбор и принимая советы из этой статьи, вы должны лучшее понимать, как выбрать воздушный компрессор, который будет наилучшим образом удовлетворить ваши потребности. Помните поговорку «Вы получаете то, за что вы платите «.

Как выбрать компрессор для гаража

Как выбрать автомобильный компрессор? Инструкция.

Обзор популярных моделей электрических компрессоров

Очень интересные публикации по этой теме:

camcebemacter.ru

Как выбрать воздушный компрессор для покраски, гаража, дома

Компрессоры для бытовых целей: критерии выбора

Сжатый воздух как энергоноситель имеет ряд очевидных преимуществ. К ним относятся нечувствительность к внешним условиям использования, повышенная (в сравнении с электрическим оборудованием) безопасность, увеличенный моторесурс. Поэтому в хозяйстве домашнего мастера наличие бытового компрессора воспринимается не как экстравагантность, а как техника повседневного применения. Но для этого её следует правильно выбрать.

Поршневой компрессор Fini

Преимущества пневмоинструмента

Большинство конструкций инструмента, предназначенного для работы на сжатом воздухе, отличает высокое качество узлов и деталей, из которых он выполнен. Причина в том, что многие модели относятся, как минимум, к изделиям полупрофессионального типа. Для них характерны высокая надёжность, безотказность в работе, повышенный моторесурс. Это, естественно, оплачивается дороже, но зато мастер, располагающий долговечным и высокофункциональным компрессором, сможет решать и более разнообразный круг задач.

Выбор компрессора необходим для следующего класса инструментов:

  1. пневмогайковёртов. Крутящий момент на выходе которых в большинстве случаев во много раз превосходит аналогичный параметр для гайковёртов с электроприводом. Что благоприятствует успешному проведению ремонтных работ автомобильной техники;
  2. ударных дрелей и перфораторов. Применение такого энергоносителя позволяет заметно увеличить производительность работ, причём опасность перегрузки инструмента (опять же, в сравнении с электрическим) в данном случае отсутствует;
  3. пневмостеплеров, которые применяются при ремонте и восстановлении и мебели. Производительность ремонта и трудозатраты при их использовании существенно снижаются. Аналогичное можно высказать и относительно пневматических заклёпочников.

Компрессоры для гаража решают проблемы покраски или восстановления поверхности автомобиля. В целом потребность в пневматическом инструменте обычно обосновывается большими и постоянными объёмами применения подобного оборудования.

При каких условиях установка компрессора возможна и целесообразна

На выбор компрессора влияние оказывают:

  • свободная площадь в мастерской или гараже. Компрессор любого типа – агрегат достаточно массивный, а правильная прокладка трубопроводов возможна лишь при соблюдении определённых условий;
  • наличие соответствующих финансовых средств, поскольку компрессор – устройство дорогое, причём с ростом его возможностей и технических характеристик цена возрастает;
  • возможности модели, что определяет снижение расхода электроэнергии, особенно при длительном её применении. Соответственно, приобретение компрессора становится безусловно выгодным в случаях, когда пропускная способность электросети недостаточна для использования мощной техники;
  • частое применение таких операций, для которых аналогов оборудования с электроприводом не существует. К ним относятся, в частности, покрасочные работы, нанесение поверхностных покрытий или шиномонтаж;
  • малопригодные для техники, использующей электропривод, внешние условия. Например, эксплуатация во взрывоопасной среде, в которой постоянно содержатся мельчайшие частички пыли. Для оператора, защищённого респиратором, это не столь существенно, как для обычного электродвигателя, который может и не находиться во взрывозащитном корпусе. Те же ограничения касаются и электрооборудования, которое часто работает вне помещений: любые осадки, а также пониженная температура окружающей среды делают невозможным подбор техники с электрическим приводом.

На сайте компании ПрессАэр представлен широкий выбор воздушных компрессоров.

Разновидности компрессоров, пригодных для эксплуатации в быту

Такие машины классифицируют по следующим признакам:

  1. По способу создания повышенного давления энергоносителя. Из наиболее употребительных стоит выделить агрегаты поршневого, ротационного, мембранного и винтового типов.
  2. По использованию масла. Компрессоры (кроме винтовых) могут быть масляными и безмасляными.
  3. По создаваемой степени сжатия. Если давление на выходе не превышает 15…20 кПа, то такие устройства называются воздуходувками, и используются для целей осушения помещений от избыточной влажности или для транспортирования сыпучих веществ на небольшие расстояния. Фактически это те же компрессоры, но с шестерённым рабочим механизмом.

Классификация компрессоров по принципу действия

Поршневые безмасляные компрессоры – наиболее простые из всех вышеперечисленных разновидностей. Они просты в эксплуатации и ремонте, но отличаются повышенным уровнем шума. Это связано с исходным принципом сжатия воздуха: оно происходит вследствие его постоянной подачи поршнями цилиндров, которые совершают непрерывные возвратно-поступательные движения.  Поэтому эксплуатационный ресурс таких машин невелик, и для бытовых исполнений не превышает 1000 моточасов.

Ротационные компрессоры сжимают воздух в результате вращательного движения лопастей, захватывающих воздух из окружающей среды и направляющих его в спиральный зазор, который постепенно суживается. При постоянном расходе это приводит к росту давления. Эксплуатационный ресурс у таких агрегатов несколько выше, но уровень издаваемого шума остаётся практически на таком же уровне, что и у поршневых машин. Такая техника относится к компрессорам масляного типа.

Компрессоры винтового типа считаются наиболее компактными и совершенными. Они отличаются плавно регулируемым расходом энергоносителя, повышенным кпд и моторесурсом, а также заметно меньшим шумом при работе. Однако по цене такие машины – наиболее дорогие. Кроме того, их ремонтопригодность ограничена, ибо конструктивные параметры не позволяют взаимозамену некоторых узлов подобного оборудования, но производимого разными фирмами.

Устройство безмасляного мембранного компрессора

Мембранные безмасляные компрессоры по принципу сжатия подобны агрегатам поршневой конструкции, но роль поршней там выполняют колеблющиеся мембраны. Они не создают больших давлений, но выделяются максимальной компактностью, а также эксплуатационных ресурсом, поскольку не имеют в своей конструкции силовых подвижных элементов. Энергоноситель, перекачиваемый такими машинами, считается наименее загрязнённым посторонними примесями.

Поршневые компрессоры и принципы их выбора

Удельный вес таких устройств – традиционно наибольший. Они включают в себя:

  1. Приводной электродвигатель переменного тока, причём, в зависимости от условий эксплуатации двигатель может иметь либо обычный, либо пыле-, взрывозащитный корпус. Если компрессор установлен в том же помещении, где предполагается выполнение работ, для которых он был приобретён, то подбор двигателя по классу его защиты обязателен. По нормам EN 60034 и EN 60529 это должен быть класс не ниже IP 54 (первая цифра относится к защите от попадания вовнутрь частиц пыли и загрязнений, а вторая – к защите от попадания влаги).
  2. Передачу. Она может осуществляться непосредственно от вала электродвигателя, либо через клиноременную передачу. В первом случае крутящий момент и производительность снижаются, зато повышается компактность компрессора, что следует учесть при подборе агрегата.
  3. Поршневая группа. Она может включать в себя две пары поршней, с V-образной компоновкой рабочих цилиндров. Охлаждаются такие агрегаты хуже, а габариты установки возрастают, но повышаются производительность и расход. Подобную конструкцию имеют и двухступенчатые компрессоры, где сжатие выполняется в две стадии.
  4. Охлаждающий вентилятор, который обычно устанавливается на том же валу, что и колесо ременной передачи. Роль данного узла особенно возрастает для двухцилиндровых исполнений, потому что естественное охлаждение таких конструкций хуже, чем одноцилиндровых.
  5. Ресивер – стальная (хуже – пластмассовая) ёмкость для непродолжительного хранения произведенного агрегатом сжатого воздуха. Правильный подбор ёмкости ресивера – важнейший показатель пригодности компрессора для выполнения возложенных на него задач. Ресивер обеспечивает работу пневмоинструмента при временно отключённом компрессоре, и способствует сглаживанию колебаний давления. Кроме того, в ресивере энергоноситель, нагретый при сжатии, остывает. Ресивер обязательно должен быть оборудован манометром и системой предохранительных клапанов.
  6. Систему управления. Кроме манометра ресивера, к ней относятся датчики и реле давления, регулирующий выходной редуктор, устройства для плавного пуска двигателя, очистные воздушные фильтры. При отсутствии хотя бы одного из перечисленных компонентов, надёжность поршневых компрессоров снижается, и их нецелесообразно использовать для длительной работы на экстремально допустимых режимах.

Поршневой ременной компрессор Remeza

Поршневые компрессоры правильно использовать при периодически возникающей необходимости в таком энергоносителе. Создаваемое ими давление обычно не превышает 60 кПа, а расход воздушного потока, в зависимости от ёмкости ресивера, может колебаться в пределах 300…500 л.

Подробный и поперечный разрезы компрессора

Винтовые компрессоры и принципы их выбора

Устройства этого типа считаются более современными. Кроме традиционных узлов – электродвигателя, всасывающего вентилятора, блоков управления и безопасности, они имеют в своём составе:

  1. Пару винтовых роторов, которые вращаются в своих опорах противоположно друг другу.
  2. Масляного контура, которые обеспечивает очистку и подачу масла в зону сжатия. Кроме масляного бака в него входят и очистные фильтры. Масло охлаждает винтовые роторы, а также обеспечивает сжатие воздуха, который поступает в спиральный зазор между ними.
  3. Сепаратора, предназначенного для качественного отделения масла от сжатого воздуха, поступающего в выходной трубопровод. Очищенное масло направляется в масляный контур
  4. Блока охлаждения, обеспечивающего понижение температуры воздуха, что неизбежно в результате его сжатия.
  5. Системы плавного пуска привода, которая даёт возможность постепенного роста параметров давления и расхода.
Винтовой компрессор в разрезе
Винтовой блок безмаслянного винтового компрессора

Подбор типоразмера таких машин производится:

  • По параметрам надёжности: должно иметься минимально допустимое число приборов и узлов для текущей диагностики и контроля;
  • По расходу и давлению;
  • По наличию входных и выходных фильтров очистки;
  • По внешним условиям эксплуатации. Для компрессоров с масляным контуром, которые должны работать в холодное время года, и вне помещений, масло должно иметь пониженную вязкость (не более 65…70 ISO). При этом важно учесть, что минеральному маслу стоит предпочесть синтетическое, поскольку оно малочувствительно к внешним температурным изменениям.

Схема устройства винтового компрессора

Винтовые компрессоры способны выполнять более широкий круг задач. Они с успехом применяются как компрессоры для гаража. Поэтому, если требуется разобраться с вопросом – как выбрать компрессор для покраски – именно винтовое исполнение предоставит пользователю наибольшие технологические возможности.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Какой компрессор выбрать для пневмоинструмента


Как выбрать компрессор для пневмоинструмента?

Компрессор является обязательным компонентом для большинства моделей пневмоинструмента. Такое оборудование используется и в частном хозяйстве, и в специализированных мастерских. Существует и отдельная категория промышленного оборудования, представители которой также требуют подключения компрессоров. Разнообразие пневматических агрегатов затрудняет выбор дополнительных компонентов, однако при условии правильного оснащения пользователь может рассчитывать на качественный результат в процессе работы. Вопрос о том, как подобрать компрессор для пневмоинструмента, конечно, в первую очередь предполагает упоминание функциональности, надежности и долговечности. Но даже соответствие этим характеристикам не всегда обеспечивает ожидаемый эффект от использования инструмента.

Основные параметры выбора

Опытный мастер оценивает компрессоры по трем основным характеристикам, среди которых уровень давления, производительность и объем ресивера. Что касается первого критерия, то начальный показатель составляет 6 бар. Это минимальное значение давления, которым располагает компрессор для пневмоинструмента, рассчитанного на выполнение несложных бытовых операций. Распространены и модели с уровнем давления в 10-15 бар. Данное оборудование способно работать с более требовательными агрегатами, в том числе из промышленной сферы.

Производительность компрессоров выражается в литрах рабочей смеси, распыленной в течение минуты. Так, для выполнения небольших по масштабу покрасочных мероприятий достаточно 10-50 л/мин. Но этот диапазон может быть расширен до 500 л/мин, если речь идет о применении оборудования в мастерской. Объем, с которым работает компрессор для пневмоинструмента бытового назначения, в среднем составляет 7-10 л. Конечно, существуют и более вместительные ресиверы, но они в массе своей используются в узкоспециализированных сферах.

Какой вид компрессора предпочесть?

Сегментирование компрессоров по видам в зависимости от конструкции также помогает сделать верный выбор для неопытных пользователей. Модели, которые позиционируются как автомобильные, подходят для большинства домашних нужд – от покраски поверхностей до надува резиновых матрасов. Беспроигрышным решением может стать и поршневой агрегат, который используют и рабочие в мастерских, и рядовые владельцы автомобилей. Если же стоит вопрос о том, какой компрессор нужен для пневмоинструмента профессионального назначения, то следует обращать внимание на винтовые и ременные модели. Такие устройства обычно располагают высокими показателями мощности и уровнем поддерживаемого давления.

Габариты и особенности конструкции

Кроме технико-эксплуатационных показателей, важно учитывать и такие характеристики, как мобильность и размеры. Например, если предполагается работа с краскопультом для покраски забора, то следует обращаться к легким и эргономичным устройствам. Пусть даже они обеспечивают минимальный уровень производительности, его с большей вероятностью хватит для простых операций. К таким моделям, в частности, относится коаксиальный компрессор для пневмоинструмента. Выбор в данном направлении может ориентироваться и на безмасляное оборудование, которое и вовсе не имеет ресивера, зато выигрывает в компактности. Если же требуется мощный и производительный компрессор с массивным корпусом, то рекомендуется приобретать модели, снабженные удобными рукоятками и колесиками.

Дополнительная оснастка – что учесть?

Покупка одного лишь компрессора не означает, что подключение к инструменту будет правильно настроено, а работа – качественно выполнена. Техническая организация процесса нередко подразумевает использование специальных шлангов, переходников и фиксаторов. Как показывает практика, даже легкий пневмоинструмент при соединении с компрессором требует использования хомутов с подходящими размерами. Не стоит игнорировать и средства индивидуальной защиты. Если компрессор для пневмоинструмента будет обеспечивать распыление абразивных материалов, то необходимо позаботиться о защитных наушниках, перчатках и очках. Для работы с лакокрасочными составами также рекомендуется приобрести комбинезон, который обеспечит защиту от химически опасных веществ.

Производители компрессоров

Практически каждый изготовитель строительного или промышленного оборудования содержит в линейке компрессоры для разного назначения. Если говорить об отечественных компаниях, работающих в этом направлении, то на первый план выходят «Калибр» и Elitech. Продукция данных брендов, возможно, не всегда способна конкурировать с лучшими иностранными моделями, но по цене это самое выгодное приобретение. Впрочем, вопрос о том, как выбрать компрессор для пневмоинструмента с высоким уровнем качества, следует решать с помощью зарубежной продукции. Ассортимент в этом сегменте достаточно широк, однако наибольшим доверием у специалистов пользуются марки Fubag, Metabo, Senco и другие.

Заключение

Согласно отзывам пользователей, в процессе эксплуатации компрессоров нередко всплывают и малозаметные нюансы в характеристиках оборудования, которые не были учтены при покупке. К таким, например, относят уровень шума и энергопотребление. Если выбирается компрессор для пневмоинструмента с планами на регулярное использование, то будет не лишним учитывать и эти критерии. Кроме того, долгосрочное применение подобного оборудования возможно только при условии надлежащего техобслуживания. Даже если приобретается модель от известной компании уровня Fubag, не стоит возлагать большие надежды на рабочий ресурс компрессора. Все-таки функция пневмоинструмента оказывает серьезное воздействие на технический ресурс применяемого оборудования, поэтому без регулярной замены масла и соблюдения правил эксплуатации не обойтись.

fb.ru

Компрессор для пневмоинструмента: особенности выбора, виды и отзывы :

Компрессор является источником сжатого воздуха для пневмоинструмента. Цели применения устройства могут быть самыми разнообразными. Поэтому важно, чтобы его технические характеристики соответствовали условиям предстоящей работы. Наиболее распространен компрессор для пневмоинструмента.

Типы агрегатов

Многих устраивают компактные модели без ресиверов. Здесь подходит поршневой безмасляный компрессор для пневмоинструмента. Большинству устройств требуется давление не менее 6 атм, а краскопульту подойдет 4 атм. При этом можно настроить редуктор на нужное давление.

В бытовом применении не требуется мощная техника. Запас сжатого воздуха можно создать ресивером, но для его заполнения требуется время. Производительность агрегата и объем накопительного бака подбираются под определенный набор пневмоинструмента для компрессора.

Масляные поршневые компрессоры

Устройства предназначены для непродолжительных включений в автосервисе или в гараже. Они снабжают сжатым воздухом гайковерты, дрели, скобозабивные пистолеты и т. д. Поршневые группы содержат чугунные кольца, которые в процессе работы смазываются маслом, обеспечивающим их нормальную работу. За счет этого увеличивается ресурс, что позволяет аг

www.kakvybratvsjo.ru

Как выбрать компрессор для пневмоинструмента® | Новости Харькова и Украины

Подача сжатого воздуха сегодня широко используется в разных областях промышленности (пищевой, текстильной, металлургической), в медицине, в стоматологии и, конечно же, в быту. Получают сжатый воздух, используя компрессор. По своей конструкции — это механизм, который занимается выработком и подачей воздуха с избыточным давлением. Сила такого давления полностью зависит от типа устройства и его уровня мощности.

Качественная компрессорная техника разного рода отлично сочетается с пневматикой — устройствами, работающими на основе сжатого воздуха.

Что такое пневмоинструмент

Пневматика – разновидность ручных инструментов. Их особенность в том, что работают они не от электрической сети, а от энергии сжатого под давлением воздуха. Воздух поступает через систему шлангов – трубопровод. Труба может быть алюминиевой, медной, металлопластиковой или металлокерамической. Медные трубопроводы считаются самыми выносливыми и долговечными.

Пневматические инструменты бывают:

  • Ударные (отбойник, пневматический молоток, зубило, трамбовка).
  • Вращательные (шуруповерт, гайковерт, шлифовальная машина, дрель, пила).
  • Нагнетательные (краскопульт, пескоструйный пистолет).

Все они отличаются большой производительностью (по сравнению с электрическими аналогами) и долговечностью использования. Строение простое, а, значит, и ремонт – несложный. Стоят недорого, топлива не требуют.

При выборе пневматики нужно правильно оценить объем будущей работы и подсчитать необходимое количество сжатого воздуха. У подобной техники расход воздуха находится в диапазоне – от 100 л в минуту до 400 литров в минуту. Ваша индивидуальная потребность определит, как рабочие параметры пневмоинструмента, так и компрессора. Все рабочие характеристики описаны в техпаспортах. При необходимости можно спросить консультации в опытных специалистов.

Несколько советов, на которые стоит обратить внимание при покупке пневматики:

  • стоит покупать исключительно фирменный пневмоинструмент;
  • перед совершением покупки лучше ознакомиться с отзывами покупателей;
  • проверка наличия гарантии никогда не станет лишней;
  • приобретение оснастки и расходных материалов под определенную модель также необходимо, как и само устройство.

Как вы уже поняли, единственное условие работы пневматики – наличие хорошего компрессора с подходящими параметрами.

Виды и типы компрессоров

На сегодня широкое применение получило несколько видов компрессоров:

  1. Роторно-винтовые компрессоры. Такие типы компрессоров очень часто применяются на производстве. Здесь сжатие воздуха проводится при вращении двух винтовых роторов. Они рассчитаны на производство непрерывной подачи сжатого воздуха, что усложняет применение таких агрегатов для разных мелких бытовых целей.
  2. Роторно-пластинчатые компрессоры. В принципе работы таких механизмов лежит выработка сжатого воздуха через изменение полости сжатия;
  3. Поршневые компрессоры. Самые популярные и распространенные. Подойдут и для гаража, и для СТО, и для мелких бытовых работ ( продуть, почистить) Такая установка являет собой устройство объемного действия, которое оснащено поршневой системой сжатия. Он стал одним из тех, которые впервые начали массово применяться на производстве. Но сейчас они получили более широкое применение. Поршневый компрессор создан для работы не только с воздухом, но и жидкостями – маслами, хладагентами и прочими.

Компрессоры также разделяют на одно-, двух- и трехцилиндровые. Количество цилиндров определяет уровень производительности агрегата. Имея разные принципы работы и разный уровень производительности, они отличаются и по времени работы. Если брать рабочий цикл ы один час, то:

  • Одноцилиндровые работают до 50%, то есть – полчаса из часа. 30 минут хватает на продувку, покраску, очищение поверхности от грязи и ржавчины.
  • Двухцилиндровые способны достигать показателя работоспособности 70-75%. То есть — 45 мнут из часового цикла обеспечено.
  • Трехцилиндровые работают почти непрерывно.

Эта особенность необходима для правильного подбора компрессора для пневмоинструмента. Перед покупкой очень важно правильно оценить спектр будущей работы и будущего использования разных агрегатов, чтобы выбрать компрессор, объем которого максимально будет удовлетворять параметры системы.

Что лучше для пневматики – прямой или ременной привод?

Важное значение при выборе компрессора для пневоинструмента имеет внутренне строение его механизма. То есть – способ передачи вращательного момента мотора на поршень насоса. Таких способов существует два, поэтому все поршневые компрессоры могут иметь прямой или ременной привод.

Прямой. Простой по строению, вал кривошипа и электромотор соединены напрямую, муфтой. Такая конструкция стоит недорого и упрощает техобслуживание. Но длительно она работать не может. Поэтому хорошо подходит к шуруповерту и гайковерту. Также можно использовать для краскораспылителя или пескоструйки при покраске или очистке какой-то отдельно детали автомобиля – дверцы, бампера.

Ременной. Состоит из шкивов и ремней, система сложная, а поэтому более надежная и выносливая. Ременные нагнетатели воздуха работают по несколько часов без перерыва, что важно при применении краскопультов, пилящих и шлифующих инструментов.

Основной параметр — это расход воздуха

Если краскопульт работает, а шуруповерт – нет, то это не компрессор плохой, а неверно подобрана его производительность. То есть, для одного прибора (менее мощного) воздуха хватает, для другого (мощнее) – воздуха мало. Поэтому самым важным параметром каждого компрессора для пневмоинструмента является расход воздуха, который измеряется в литрах в минуту. Это количество сжатого газа, под которым агрегат нагнетает сеть за единицу времени.

Как уже сказано выше, разные пневмоинстурменты требуют разное количество воздуха. Такого понятия, как мощность – у пневматики не существует. Вместо нее мощь определяется расходом воздуха.

  • 100-200 литров – маломощные.
  • 200-300 – средняя мощность.
  • 400 литров – самые производительные модели.

Поэтому, подбирая к инструментам компрессор, ориентируйтесь на его показатель расхода воздуха. В поршневых моделях компрессоров эта величина зависит от объема цилиндра и скорости вращения приводного вала. Важно отметить, что реальный уровень производительности компрессора должен быть намного выше, чем требует инструмент.

Как правило, необходимо добавить в запас 30-50%. То есть, если ваш краскораспылитель требует 100 литров воздуха, то компрессор должен выдавать 150, если шуруповерту нужно 200 литров воздуха под давлением, то ищите модель компрессора с производительностью 280-300 литров в минуту.

Почему так происходит? Потому что перепады давления – это неизбежный процесс на любом производстве. Именно по этой причине к пневмоинструменту необходимо выбирать тот компрессор, у которого производительность будет на 30%- 50% больше, чем та, которая заявлена в паспорте пневматики.

Подобрав расход воздуха, можно уже смотреть и другие рабочие параметры компрессора:

  • Давление (оптимальное 8-10 Бар).
  • Мощность.
  • Габариты.
  • Конструкция.
  • Количество цилиндров.
  • Количество коннекторов и т.д.

Отличается ли расход воздуха на входе и выходе?

Все компрессоры имеют один принцип действия. Они набирают необходимый для полноценной работы объем воздуха в ресивер. Потом управляемый автоматической системой компрессор прекращает нагнетание. Электрический двигатель теряет питание, поэтому прекращает вращение, что останавливает движение поршня. При достижении минимально допустимого значения давления в ресивере компрессор возобновляет свою работу, чтобы восполнить расход воздуха.

В силу такого принципа работы каждый компрессор имеет погрешности на входе и выходе воздуха. Обычно разница в одноцилиндровых моделях составляет два Бара. Если этот уровень меньше, то агрегат работает нестабильно. В случае если этот показатель больше установленной в два Бара отметки, то происходит перегрев механизма.

Одноступенчатые агрегаты с двумя цилиндрами имеют защиту от образования взрывоопасной смеси.

Последствия неправильного выбора компрессора для пневматики

Выбор компрессора – очень серьезный шаг в работе с пневмоинструментом.

Основные ошибки, допускаемые покупателями:

  • Покупка модели с большим показателем расхода воздуха, нежели производительность компрессорной установки. В этом случае пневматика просто не работает. Просто компрессор не сможет обеспечить достаточное количество сжатого воздуха для нормального режима работы.
  • Забывают о суммарной мощности. Есть компрессоры с двумя переходниками для подключения, тремя или четырьмя. Не стоит забывать о том, что суммарная мощность подключенных инструментов должна соответствовать этому требованию – она должна быть меньше на 30-50% производительности компрессора.
  • Берут одноцилиндровый или же прямоприводной для непрерывной работы. Если в таком инструменте нет автоматического отключения, то вы просто угробите его непрерывной работой. Если есть, автоматика отключит двигатель и убережет ваш агрегат. А лучше запомните, что многочасовую работу без перерыва обеспечит только двух-трех-цилиндровый прибор с ременным приводом.

Неправильный выбор компрессора для пневмоинструмента ведет за собой сбой в работе каждого из них. Оператор не сможет полностью выполнить свою работу, что приведет к задержке и трате времени на техническое обслуживание. Очень хорошо, когда в нагнетателе есть разгрузочный клапан. Он предотвращает поломки механизма в случае выхода автоматики из строя.

Вывод и рекомендации, что хорошо брать из компрессоров и для каких целей

От правильного выбора компрессора для пневмоинструмента зависит очень много. Производительность компрессора обеспечивает полноценную функциональность и правильное своевременное выполнение разного рода задач. Небольшое и периодическое потребление сжатого воздуха требует применения поршневого компрессора. Винтовые же компрессоры являются более серьезными агрегатами и имеют более серьезные параметры для непрерывного обеспечения пневмоинструментов сжатым воздухом.

Основные рабочие характеристики отмечены в паспорте каждого агрегата, но от этого показателя необходимо отнять хотя бы 40% %, чтобы узнать максимально допустимый уровень суммарного количества производительности подключенных устройств. Минимальное давление компрессора должно превышать необходимое давление для пневмоинструмента. Для мощной пневматики лучше обращать внимание на модели с большим ресивером, ременным приводом, 2-3 цилиндрами.

Узнав основные требования к компрессорам и пневмоинструментам, каждый сможет правильно подобрать такой агрегат для повседневного применения.

Пневматика – разновидность ручных инструментов. Их особенность в том, что работают они не от электрической сети, а от энергии сжатого под давлением воздуха. Воздух поступает через систему шлангов – трубопровод. Труба может быть алюминиевой, медной, металлопластиковой или металлокерамической. Медные трубопроводы считаются самыми выносливыми и долговечными.

atn.ua

19Фев

Что такое стойка автомобиля – Чем отличается стойка от амортизатора, как перестать их путать?

Чем отличается стойка от амортизатора, как перестать их путать?

Добрый день. Из этой статьи вы узнаете, чем стойка отличается от амортизатора, и сможете проводить ликбез продавцам в магазинах автомобильных запчастей (по занятному стечению обстоятельств именно они часто путаются в названиях).

Договоримся о терминах.

 

Амортизатор устройство предназначенное для гашения колебаний и поглощения толчков и ударов подвижных элементов (подвески, колёс), а также непосредственно кузова транспортного средства, посредством превращения механической энергии движения в тепловую.

 

Простейшие амортизаторы были механическими (фрикционными) и служили только для гашения колебаний (демпфирования). Выглядели они вот так:

фрикционный амортизаторфрикционный амортизатор

Со временем были разработаны масляные трубочные амортизаторы. Они оказывают сопротивление перемещению штока благодаря перетеканию жидкости между цилиндрами.

В отличии от механических амортизаторов у гидравлических усилие изменяется пропорционально скорости перемешения (чем быстрее движется шток тем больше нужно усилие для его перемещения).

 

Выглядят гидравлические амортизаторы вот так:

амортизаторыамортизаторы

А вот их анимированый принцип работы:

работа амортизатораработа амортизатора

Важно понимать, что любой амортизатор (масляный, газовый, газомасляный) работает по этому принципу, и отличается только рабочим телом, конструктив их в любом случае остается похожим. т.е. или газ или масло проходить через узкие клапана и за счет этого штоку оказывается сопротивление, естественно жидкость нагревается и тепло отдается атмосфере.

 

 

 

Стойка это целый узел подвески, предназначенный и для ориентации колеса в пространстве, гашения колебаний и подрессоривания кузова.  Если амортизатор представлял из себя, по сути, масляный насос, то стойка объединяет в себе амортизатор, пружину, поворотный кулак и рычаг подвески.

 

Вот так выглядят стойки:

стойкистойки

Возможен вариант, когда стойка не является поворотной (например в задней подвеске), тогда она выглядит вот так:

стойки задниестойки задние

 

 

В чем отличие стойки и амортизатора?

 

Стойка заменяет верхний рычаг, верхнюю шаровую опору, поворотный кулак. Ось стойки имеет больший диаметр, так как задает геометрию работы подвески и положение колеса.  Если автомобиль оборудован пневматической подвеской, то стойка также выполняет роль пружины!

Амортизатор, в отличие от стойки не задает геометрию колеса и не заменяет рычаг подвески и шаровую опору. Он просто гасит колебания направленные вдоль его оси.

 

Таким образом, амортизатор это малая часть стойки.

 

 

Если вам лень читать вот вам отличие стойки и амортизатора в тезисах.

  • Амортизатор это устройство гашения колебаний
  • Амортизатор это малая часть стойки
  • Стойка задает геометрию подвески
  • Стойка заменяет верхний рычаг, шаровую опору, поворотный кулак, а в некоторых случаях еще и пружину.

 

стойки задниестойки задние

На этом у меня сегодня все, Я надеюсь, что теперь вы не будите путать стойку и амортизатор. Если у вас есть вопросы на тему чем стойка отличается от амортизатора, или если вы желаете дополнить статью, сделайте это через форму комментариев.

 

 

С уважением, администратор http://life-with-cars.ru

life-with-cars.ru

что это такое и для чего нужны?

Сначала были рессоры, долго служившие верой и правдой. Но стремительный век технологий дал автомобилям стойки амортизаторов, встретить которые можно в той или иной форме почти у каждой легковушки.

Что это за деталь? Из каких элементов состоит и что о них необходимо знать начинающим водителям?

А это элемент подвески, поглощающей неровности дорог, ухабы и выбоины, тем самым обеспечивая комфорт водителям и пассажирам. Рассмотрим поглубже.

Стойки амортизаторов, амортизаторы, стойки: кто есть кто?

Очень часто автолюбители по неопытности или незнанию путают два ключевых понятия — амортизаторы и стойки амортизаторов, считая, что это одно и то же. В действительности их необходимо разделять и вот почему.

Сам по себе амортизатор (ещё его называют стойкой телескопической) представляет собой деталь, предназначенную для смягчения резкого разжатия пружины и гашения её колебаний.

Стойкой же называют целый комплекс элементов, основными в котором являются пружина и амортизатор.

В задачи стойки входит не только повышение комфорта, но и поддержание управляемости на разных скоростях, а также самое главное — соединение кузова с колесными механизмами.

Чтобы всё вышесказанное было понятнее, рассмотрим более детально конструктив всей стойки. Итак, она состоит из следующих деталей:

  • непосредственно сам амортизатор или, как его ещё называют в технической литературе — стойка телескопическая;
  • пружина —  ключевая деталь конструкции;
  • шток амортизатора с кожухом;
  • ушко крепления;
  • опора стойки верхняя;
  • упорная чашка пружины;
  • подшипник опоры;
  • различные крепёжные элементы.

Основными в этом семействе, как было сказано выше, пружина и амортизатор, которые работают в паре. О них мы расскажем подробнее.

Пружины

Данная деталь, благодаря своей упругости, в первую очередь воспринимает на себя все неровности дороги, коих в нашей стране немало. По сути, главным демпфирующим элементом, который не даёт нам почувствовать своей пятой точкой все прелести ухабов, является именно она.

Но у пружины есть один большой недостаток — после того как она сжалась, к примеру, после наезда на выбоину, она разжимается и продолжает колебаться вверх и вниз, пока вновь не войдёт в состояние равновесия.

Такие колебания вряд ли можно назвать комфортными, ведь они передаются на весь кузов. Кто ездил на автомобиле с неисправными амортизаторами знает, автомобиль раскачивается и становится практически неуправляемым.

Так вот тут в работу и вступает амортизатор. Он, моментально и плавно погасить эти паразитные колебания пружины.

Это дарит не только приятные ощущения людям в машине, но и позитивно отражается на устойчивости авто на дороге и его управляемости в целом.

Амортизаторы

Конструкция этого элемента более сложная, чем у пружины. В самом простом виде он представляет собой цилиндр, заполненный газом или жидкостью, внутри которого ходит поршень.

Несколько слов об амортизаторах, а вернее об их разновидностях. Существуют такие типы:

  • масляные;
  • газовые;
  • газо-масляные.

Первый вид наиболее распространён в силу простоты конструкции. Масляные телескопические стойки отлично подходят для передвижения по городу и не сильно жёсткие.

Газовые амортизаторы, которые, по правде говоря, наполнены и маслом и газом, наиболее жёсткие из всей тройки и в первую очередь подходят для спортивных машин, которым требуется высокая стабильность в поворотах и на скоростях.

Последняя разновидность является чем-то средним по своим характеристикам между первыми и вторыми.

Хотелось бы отметить, что стойки амортизаторов передние, а также стойка амортизатора задняя имеют схожее устройство и выполняют одинаковые функции. Самая распространенная — это стойка типа МакФерсон, о которой вы можете почитать здесь.

Возможные неисправности и ремонт

Как и любая деталь автомобиля, стойки амортизаторов далеко не вечные и могут выходить из строя.

Первыми симптомами, которые говорят нам, что пора бы заехать на автосервис, выступает чрезмерное раскачивание кузова авто, появившаяся валкость в поворотах, нестабильное поведение на дороге.

Ещё одним симптомом, явно указывающим на выход из строя телескопических стоек, является подтекание масла. К сожалению, если специалисты подтвердят на диагностических стендах поломку, восстановление стоек амортизаторов невозможно. Современные конструкции сделаны таким образом, что подлежат исключительно замене.

Ну что ж, коллеги-автолюбители, в этой статье мы попытались охватить различные аспекты, связанные со стойками и даже затронули тему ремонта стоек амортизаторов.

Искренне надеемся, что начинающие водители получили ответы на свои вопросы. На этом разрешите откланяться, ведь пора готовить к публикации очередной материал для вас. А вы пока почитай про подвеску, а именно «Знаешь ли ты какая подвеска у автомобиля Президента?«

auto-ru.ru

Что такое стойки автомобиля: устройство и виды

Здравствуйте, дорогие друзья! Каждый водитель советской закалки знает в идеале устройство любого отечественного автомобиля. Однако, в 2016 году, тот же «Москвич» на проезжей части, смотрится уже не так изящно. Поэтому даже самые злостные не любители чего-то нового, приобретают современное авто, которое имеет массу отличий от машин-ветеранов. Сегодня, мы поговорим о модернизированных амортизаторах, которые определенно удивят бывшего владельца раритета. Если вы именно такой человек, тогда присядьте! Я вас ждал и уже готов дать ответ на вопрос, «что такое стойки автомобиля?», поэтому сразу к делу!

Что из себя представляет автомобильная стойка?

Широкий круг водителей наполнен различными дебатами. Так, большинство шоферов утверждают, что амортизаторы бесполезны. Они говорят мол пружина, вот кто действительно гасит всю вибрацию. Согласен, но скажите знатоки, а кто возьмется погасить вибрацию самой пружины? Я вам отвечу, во всей подвески автомобиля не найдется детали способной выполнить такую задачу лучше стоек. Движение же без них, приведет к жуткой тряске, которая не только доставит определенные проблемы пассажирам транспортного средства, но и затруднит передвижение машины в общем, так как уровень сцепления колес с асфальтом значительно снизится. К тому же амортизатор, кроме поглощения вертикальных нагрузок, контролирует еще и крен кузова по горизонтали.

Стойка – это тот же амортизатор, но в другой оболочке. Соответственно по области применения, их также разделяют на передние и задние. Особого отличия в них нет, целью и тех, и других является эффективное снижение нагрузки на конструкцию автомобиля, исходящую от ям, выбоин, канав и прочих сюрпризов отечественной дороги. Конструкция автомобильной стойки, включает в себя следующие элементы:

  • Корпус (опора), на котором находится крепление;
  • Рабочее вещество;
  • Шток амортизатора, оснащенный кожухом и креплением;
  • Поршень;
  • Клапан отдачи и сжатия;
  • Кольца;
  • Цилиндр;
  • Пружина;
  • Уплотнители.

Причем абсолютно не важно передняя стойка автомобиля или задняя, главные «персонажи» останутся неизменными. Гашение колебаний осуществляется посредством движения поршня на штоке по цилиндру, наполненному рабочим веществом. Таким образом, под весом машины удается превратить кинетическую энергию в более спокойную тепловую.

Основные разновидности


Выбирая амортизаторы, все мы стремимся купить ту модель, которая одновременно повысит как управляемость автомобиля, так и уровень собственного комфорта при передвижении. Однако, нужно понимать все и сразу не бывает, увеличивая один показатель, второй непременно будет уменьшается. Поэтому амортизатор нужно выбирать, отталкиваясь исключительно от своего стиля вождения. Человек, предпочитающий более жесткую подвеску, будет чувствовать дискомфорт на мягком типе и наоборот.

Чтобы подобрать оптимальный вариант, нужно знать какие бывают стойки на автомобиль ведь именно от типа амортизатора зависят итоговые ощущения водителя и пассажиров. По типу используемой рабочей жидкости, разделяют следующие виды стоек на автомобиль:

  • Масляные – отлично подходят для передвижения по ровной дороге, но плохо справляются со своими обязанностями в неблагоприятных условиях. Дело в том, что при интенсивном ходе поршня вырабатываемая тепловая энергия скопляется, это приводит к нагреву масла и снижению эффективности стоек. Оптимальный вариант для городской черты: доступны и устойчивые к действию различных внешних факторов.
  • Газовые – более жесткие в эксплуатации, но зато эксплуатационный срок значительно увеличен в сравнении с масляными амортизаторами. Амортизатор такого типа можно устанавливать в любом положении, хоть лежа. Здесь масло не убежит. Более того, в отличие от своего оппонента охлаждение газовой стойки происходит значительно быстрее, а отсюда, лучшая эффективность и стабильность. Цена, соответственно тоже на порядок выше.

Большинство автолюбителей отдают предпочтение гидравлическим амортизатором, но не каждый знает, что перед установкой, необходимо выгнать воздух из рабочего цилиндра, иначе эффективность от их работы будет равняться нулю. Прокачка стоек автомобиля заключается в принудительном передвижении штока. Для этого, закрепите деталь штоком к вверху и руками вдавите его до тех пор, пока рабочая часть не превысит уровень стакана на несколько сантиметров. В таком положении находимся секунд пять, после чего плавно вытягиваем шток до конца его хода. Повторяем процедуру 3-4 раза, после чего еще 2-3 более ритмичных раза. Если провалы не ощущаются, можно смело монтировать детали непосредственно на транспортное средство.

Стойка стабилизатора

Передняя и задняя стойка автомобиля не единственный подобный механизм в конструкции машины. Не менее важным элементом подвески современного транспортного средства является стойка стабилизатора, которая соединяет между собой кузов и подвеску. Ее предназначение – это снижение крена при поворотах, а также удерживание машины от раскачивания при разгоне и торможении. То есть, данная деталь облегчает управление авто, при этом улучшая и безопасность пассажиров при передвижении.

Стойки стабилизатора автомобиля могут быть: симметричными и несимметричными. Первые – универсальные, то есть подходят на обе стороны подвески. Вторые, же разделяются на левые и правые, учтите это при выб оре. Не забывайте и о том, что габариты детали также могут быть разными.

В завершение

Теперь вы знаете какими бывают стойки автомобиля и как они функционируют. Однако, помните с нашими дорогами эксплуатационный срок, средний показатель которого, составляет 60-80 тысяч километров, уменьшается вдвое. Ах, да и еще одно – ремонт стойки автомобиля не осуществляется по его истечении! У меня же на этом все, до свидания!

С уважением, Максим Марков!

carsmotion.ru

Стойка и амортизатор — в чём разница? — JapanCar

Не знаем, как так получилось, но в головах многих автомобилистов засела мысль о том, что стойка и амортизатор – синонимы. Известно, что ошибочное мнение часто порождают продавцы специализированных магазинов. А также различные автомобильные форумы, где авто «знатоки» уверяют: «стойка и амортизатор – одно и то же». Спешим вас заверить – это не так, впрочем, сейчас все сами поймете.

Что такое амортизатор?

Амортизатор – это масляный насос (если говорить простым языком). В небольших количествах (в процессе вертикального движения подвески) гидравлическая жидкость под давлением перетекает через отверстия. За счет того, что эти отверстия имеют небольшой диаметр, масло не может перетекать быстро. В связи с этим, пружине и подвеске передается замедление движения. Амортизатор усиливает свое сопротивление с увеличением скорости движения подвески. В результате такой взаимосвязи к минимуму сводятся: подпрыгивания кузова на кочках, поперечная раскачка при маневрировании, а также «клевки» машины во время разгона, либо торможения. А вся кинетическая энергия, которою накапливает амортизатор, преобразуется в тепло и просто выводится наружу.

Если амортизатор неисправен…

К слову, такая неисправность чувствуется сразу. Так как значительно снижается эффективность рулевого управления. Кроме этого, при поломке амортизаторов автомобиль плохо «держит» контакт с дорожным полотном, а также утрачивает стабильность во время движения.

Что такое стойка?

Стойка – силовой элемент автомобильной подвески, представляющий целый узел (устройство), соединяющий колеса и кузов. В стойке опора, как правило, совмещается с демпфером (функциональной частью амортизатора) и пружиной.

Главная задача стойки – удерживать вес автомобиля, поддерживать нужную ориентацию колес по отношению к кузову, передавать кузову силы сцепления покрышек с дорожным покрытием. Благодаря прочному корпусу и усиленному штоку, стойка способна принимать значительные боковые нагрузки.

Отличие стойки и амортизатора

Стойка и амортизатор имеют разный способ крепления. Так, стойка заменяет собой верхнюю шаровую и рычаг. Поэтому она крепко фиксируется в нижней части, а вот наверху — в поворотное устройство. Примечательно, что стойка оснащена штоком большого диаметра.

Если говорить об амортизаторах, то их крепление осуществляется через сайлентблоки без поворотного устройства. И в отличие от стойки, амортизатор снабжен штоком малого диаметра.

Кроме этого, стойка и амортизатор получают различные воздействия нагрузок. Так, стойка подвергается разнонаправленным нагрузкам, а вот амортизаторы получают воздействие вдоль его оси.

Примечательно, что амортизатор вполне может выступать в качестве части стойки (но не наоборот).

Также стойка значительно дороже амортизатора.

Если неисправен амортизатор, продолжать движение можно, зачастую это только придаст некоторые неудобства при вождении, но лучше не затягивать и заглянуть в автосервис. А вот если из строя вышла стойка, то продолжать управление автомобилем невозможно.

И совет на будущее: если вдруг в специализированном магазине или в сервисе вас уверяют в том, что стойка и амортизатор – синонимы, задумайтесь – стоит ли доверять свой автомобиль таким «профессионалам».

 

www.japan-car28.ru

Амортизаторы в автомобильной подвеске: как они устроены и как их менять?

Для чего нужен амортизатор?

Для начала «отделим мух от котлет», то есть разберемся в ролях разных элементов подвески. На большинстве современных легковых автомобилей главные упругие элементы – это пружины. 30–40 лет назад эту роль, главным образом, выполняли рессоры, работая «по совместительству» и демпферами. Колебания успешно гасились за счет трения между листами рессор. Подробно касаться недостатков рессор и их типичных проблем не будем, посвятим им отдельный материал, а сейчас просто запомним об их существовании и вернемся к пружинам.

Они установлены между подвеской и кузовом автомобиля и предназначены для гашения ударов на кузов, приходящихся от дороги. Когда колесо накатывается на какое-нибудь препятствие, пружина сжимается, а кузов лишь немного и плавно перемещается вверх, колесо скатывается с препятствия – пружина выпрямляется.

Есть, однако, один неприятный момент. Возьмем для примера игрушку попрыгунчик – каучуковый шарик, который тоже можно отнести к упругим элементам. Ударьте его о землю и засеките время, пока он полностью не прекратит прыгать. Приблизительно также будет прыгать и Ваш автомобиль, если в конструкции его подвески будут только рычаги да пружины. И, в зависимости от жесткости пружин, подвеска будет либо каменная, либо мягкая, как вата, но в том и другом случае об управляемости автомобиля можно даже не вспоминать. Самым страшным для такой подвески является резонанс, при вхождении в который колебания могут разрушить отдельные элементы подвески и ее крепежа.

Проблему решили внедрением в конструкцию подвески амортизатора – элемента, который позволял перемещаться колесу относительно кузова, но исключал раскачку автомобиля. Изначально это были амортизаторы рычажного типа, которые, подобно рессорам, выполняли свою функцию за счет трения. Но не станем останавливаться на анахронизмах, рассмотрим только современные конструкции. На данный момент «мейнстрим» для легковых автомобилей – это телескопические гидравлические амортизаторы. Пневматические и гидропневматические системы, а также амортизаторы переменной жесткости в этот раз брать не будем – это темы для отдельных статей.

Работа телескопического амортизатора

Если максимально упростить, то описать работу амортизатора можно так: есть цилиндр, заполненный маслом, внутри цилиндра перемещается шток с поршнем. В этом поршне имеются клапаны, которые открываются только в одном направлении.

Когда поршень перемещается вниз, открываются одни клапаны и пропускают жидкость в полость над поршнем, если же поршень перемещается вверх, открываются другие клапаны, и жидкость перетекает в полость под поршнем. Гашение колебаний происходит за счет того, что масло не сжимается и имеет определенную вязкость.

Кстати, а зачем нужны вообще клапаны? Может, достаточно было бы отверстий? На самом деле, недостаточно. Одной из важных характеристик амортизатора – его величина жесткости на отбой и сжатие. Другими словами, это сопротивление на штоке амортизатора при его вдавливании или вытягивании из корпуса. Клапаны нужны, чтобы регулировать эту жесткость.

101

За счет разных пропускных характеристик клапанов вдавить шток амортизатора немного легче, чем вытянуть его из амортизатора. Сделано это с расчетом на то, что при наезде на препятствие необходимо не мешать колесу перемещаться вверх, чтобы исключить передачу удара от колеса на кузов. Клапаны в данном случае пропускают больше масла. Но если на пути большая яма, то колесо надо бы попридержать в «поджатом» состоянии, зачем спешить падать в нее? Потому клапаны на «роспуск» амортизатора пропускают меньше масла.

Еще раз: клапаны нужны, чтобы задать определенную жесткость амортизатора в разных направлениях его работы.

Типы конструкций

Конструктивно амортизаторы можно разделить на три основных вида: двухтрубные, двухтрубные с газовым подпором и однотрубные с газовым подпором. Первыми на автомобилях появились двухтрубные гидравлические амортизаторы. В них, как следует из названия, есть две трубы – полости, в одной из них (внутренней) находится поршень с вышеупомянутыми клапанами, другая (наружная) необходима для компенсации объема масла – она заполнена маслом лишь частично, остальное – воздух.

Во время работы амортизатора масло внутри нагревается до высоких температур, от этого расширяется, и, чтобы не выдавило уплотнители штока, жидкость перетекает в наружную полость.

Достоинств у такого типа амортизаторов немного: дешевизна и малое влияние на их работу от вмятин на корпусе. Еще стоит упомянуть хорошую плавность хода автомобиля и относительно малую жесткость таких амортизаторов.

К недостаткам относится перегрев рабочей жидкости, так как корпус – двойной, и охлаждение атмосферным воздухом затруднено. Из-за перегрева велика вероятность вспенивания масла и, как следствие, мгновенная потеря эффективности работы – амортизатор перестает выполнять свою функцию, и автомобиль становится плохо управляемым из-за раскачки.

Следующий минус – это большой вес двухтрубного амортизатора, а также строго определенное расположение при установке – если его перевернуть, вытечет рабочая жидкость. Вес амортизатора влияет на величину неподрессоренной массы (о том, что это такое, расскажем отдельно). Чем больше неподрессоренная масса, тем хуже плавность хода и управляемость автомобиля.

Небольшим усовершенствованием двухтрубных амортизаторов стало наполнение наружной полости газом с небольшим избыточным давлением. Таким образом снизили вероятность вспенивания, так как масло в этом случае «опирается» на газовую подушку.

Совсем другое дело – гидравлические однотрубные газонаполненные амортизаторы. Один цилиндр, заполненный маслом, поршень с односторонними клапанами и небольшая полость, заполненная газом и прикрытая поршнем.

Однотрубный амортизатор лишен всех недостатков двухтрубных. При интенсивной работе жидкость не перегревается, так как отделена от окружающей среды только одной стенкой цилиндра и отлично охлаждается. Также он легче и может устанавливаться хоть вверх, хоть вниз корпусом.

Но законы природы никуда не денешь: где-то выигрываешь, где-то проигрываешь. Поэтому достоинства двухтрубных амортизаторов стали недостатками однотрубных. Последние значительно дороже и весьма чувствительнее к механическим повреждениям корпуса, стало быть, эксплуатация с ними автомобиля пусть не так уж значительно, но дороже.

Установка амортизаторов

Способы установки амортизаторов не изменились с момента их внедрения в автомобили. Так, всегда их верхняя часть крепится к кузову автомобиля или раме, а нижняя – к элементу подвески, будь то рычаг или балка неразрезного моста. От этого и замена данного элемента в подавляющем большинстве случаев не доставляла трудностей: выкрутил нижний болт крепления, выкрутил верхний болт крепления, и все, амортизатор в руках.

С амортизаторами задних подвесок так все и осталось, а вот с передними все чуть сложнее. С появлением переднеприводных автомобилей возник вопрос, куда девать амортизатор, который в основном крепился к нижнему рычагу передней подвески и мешал установке приводного вала.

CMA with 4-cylinder powertrain — 3/4 view

Основных решений этой задачи получилось два. Первый вариант – установка нижней части амортизатора на рычаг через П-образный кронштейн, внутри которого проходил приводной вал. Второй вариант – перенос амортизатора вместе с пружиной в пространство над верхним рычагом подвески. В таком случае нижняя часть амортизатора крепится к верхнему рычагу подвески, и называется вся эта конструкция именем американского инженера Эрла Стили МакФерсона.

МакФерсон разрабатывал этот принципиально новый на тот момент вид подвески для ультрабюджетного концепт-кара Chevrolet Cadet в 1930-е годы. На практике его удалось применить только после войны, уже на Ford Vedette 1948 года для французского рынка. Теперь, когда вы знаете эту короткую захватывающую историю и можете при случае блеснуть эрудицией, переходим к особенностям этой популярной до сих пор конструкции.

МакФерсон объединил амортизатор вместе с пружиной в одну амортизаторную стойку. В этой стойке верхняя часть имеет шарнир с подшипником и опирается на элемент кузова – стакан. Благодаря опорному подшипнику стойка может вращаться вокруг собственной оси. А если установить амортизаторную стойку под определенным углом, то можно задать траекторию перемещения колеса и углы его установки, как, например, развал, угол продольного и поперечного наклона оси поворота (что это, обязательно рассмотрим в будущих публикациях).

Получилось, что при такой установке стойки можно избавиться от направляющего верхнего рычага подвески, тем самым удешевив ее. Поворотный кулак в подвеске крепится к шаровой опоре нижнего рычага и к амортизаторной стойке, вращается вместе с ней же. Стойка стабилизатора поперечной устойчивости в данном случае может крепиться или к нижнему рычагу, или непосредственно к амортизаторной стойке.

Close Up of shock absorbers replacement in a garage

Если рассмотреть способы крепления стойки к поворотному кулаку, то их несколько. Поворотный кулак может крепиться к кронштейну на корпусе стойки. Зачастую – двумя эксцентриковыми болтами с гайками, и они же являются элементами регулировки развала колес. Если развал колес заложен конструктивно, то регулировка не нужна, значит и закрепить стойку можно в кронштейне поворотного кулака. Кронштейн крепления в таком варианте представляет из себя проушину с разрезом, которая стягивается одним болтом. Самым простым вариантом является запрессовка корпуса стойки в поворотный кулак (как у нашего подопытного Chevrolet Lanos). Поставляется все это часто как одна деталь – в сборе c кулаком.

В список недостатков амортизаторной стойки типа МакФерсон можно отнести относительно небольшие ходы подвески и, как следствие, такая конструкция – большая редкость, если не исключение, на настоящих внедорожниках (впрочем, таких машин уже почти не осталось). А причина в том, что при максимальном сжатии пружины стойки очень сильно начинают изменяться углы установки колес, что влечет за собой серьезное ухудшение в управляемости автомобиля и приводит к чрезмерному износу шин.

Амортизаторные стойки могут быть с возможностью замены амортизатора и без нее. В первом варианте корпус стойки с опорой под пружину выполнен отдельно от амортизатора. Во втором – корпус амортизатора есть одновременно корпус стойки, и непосредственно на нем смонтирована нижняя опора пружины. Верхняя же опора пружины крепится к штоку амортизатора. Пружина сверху и снизу воздействует на опоры через резиновые подушки. На штоке амортизатора устанавливают упругий отбойник – резиновую или полиуретановую втулку, которая предотвращает удары деталей подвески при полном сжатии пружины.

Пружина в амортизаторной стойке всегда находится под натягом. Изначально сжатие необходимо для исключения люфтов и зазоров в сборке. Замена стойки на автомобиле – всегда маленькая радость для механика, так как по стоимости работ она довольно недешева.

Пример замены амортизаторов

Итак, перейдем в ремзону, где нас ждет Chevrolet Lanos с его передними разборными амортизационными стойками. Пружины мы оставляем старые, а вот амортизаторы – меняем. Хозяин автомобиля решил, что стандартные двухтрубные амортизаторы передней подвески слишком мягкие, и ему не хватает управляемости. Решением стала установка передних однотрубных газонаполненных амортизаторов.

Приступаем. Отворачиванием гайку крепления приводного вала к ступице колеса, после чего выкручиваем болты крепления и снимаем переднее колесо. Далее, для облегчения откручивания элементов крепления распыляем на соединения шаровой опоры рычага и шарнира наконечника рулевой тяги спасительную WD40.

Удалили шплинт и отвернули гайку крепления шаровой опоры к поворотному кулаку. Отпустили, но не отвернули полностью гайку крепления стабилизатора поперечной устойчивости к стойке стабилизатора (которая на рычаге). После того, как соединение под воздействием WD40 немного откисло, отвернули гайку крепления наконечника рулевой тяги к проушине на амортизаторной стойке.

Бить по пальцу шарнира молотком ни в коем случае нельзя, поэтому здесь понадобится универсальный съемник – с его помощью отсоединяем шарнир наконечника. Так как снимать амортизаторную стойку необходимо в сборе с поворотным кулаком и тормозным диском, то надо снять тормозной суппорт. Операция простейшая: выкрутили верхний и нижний направляющие болты и демонтировали суппорт. Одновременно с этим проинспектировали состояние тормозных колодок (с ними все в порядке). Кстати, даже отсоединить тормозной шланг от суппорта нет надобности.

Далее, отсоединяем нижний рычаг подвески от поворотного кулака. У нас проблем с этим не возникло, но в случае закисания соединения рекомендуется использовать универсальный съемник. Немного оттянув на себя стойку (ее верхнее крепление позволяет это сделать), извлекаем из ступицы колеса приводной вал. При этом необходимо быть очень осторожным, чтобы не повредить пыльник ШРУСа вала.

Перемещаемся из колесной ниши в моторный отсек. Здесь отворачиваем гайки крепления стойки к стакану кузова. Тоже проблем никаких. Единственное назидание: придерживайте стойку, так как отворачивая эти гайки, вы снимаете последнее крепление, соединяющее опору стойки с автомобилем.

Все, деталь в руках. Теперь нам нужно разобрать амортизаторную стойку. Для этого понадобятся настоящий специнструмент и определенные навыки пользования оным. С помощью двух скоб и гаек приспособления сжимаем пружину стойки. Ради бога, не стойте напротив верхней опоры в этот момент, так как бывали случаи срыва приспособления. Пружина, неожиданно получившая свободу действий, может отлететь и если не убить, то сильно травмировать.

После того, как пружину сжали, откручиваем центральную гайку крепления штока амортизатора к верхней опоре стойки. Отвернули гайку, сняли опору и пружину вместе со спецприспособлением. Если бы в стойке амортизатор не был заменяемым, то на этом процесс разборки закончился, но у нас амортизатор отдельно, и он закреплен гайкой. Ее отворачиваем, приложив немалые усилия и утилизируем, так как новая гайка поставляется в комплекте с амортизаторами. Экватор пройден! Можно начинать сборку.

P60625-115605P60625-123652

В трубу корпуса стойки устанавливаем новый амортизатор. Ставим новую гайку и затягиваем. Теперь также предельно осторожно, как и при снятии, крепим на место все еще сжатую стяжкой пружину. Кстати, внимательно проверьте опорные резиновые подушки пружины. Их целостность – залог долговечности стойки в сборе. Если все в порядке, устанавливаем верхнюю опору и подсоединяем к ней шток амортизатора, закрепляем его гайкой. После того, как убедились в надежности крепления штока, медленно и предельно осторожно распускаем специальное приспособление вместе с пружиной. Убеждаемся в том, что пружина на опоры села плотно, без перекосов.

Теперь остается монтировать стойку на место. Здесь нет особых рекомендаций, кроме как быть осторожным. Все-таки стойка в сборе с поворотным кулаком и диском довольно тяжела, потому ее падение на ногу может вызвать незабываемые ощущения.

При подсоединении верхней опоры стойки к стакану кузова следим за правильностью расположения опоры, на ней может быть нанесена стрелка, указывающая на боковую наружную часть автомобиля. Если стрелки нет (это редкость), то нужно запомнить расположения при снятии, а лучше сфотографировать на смартфон.

Итак, стойку установили и затянули гайки ее крепления к стакану. Вставили в ступицу колеса приводной вал. При этом будьте (да-да, снова) предельно осторожным, чтобы не повредить шлицы вала и ступицы. Подсоединяем нижний рычаг и затягиваем гайку крепления шаровой опоры, не забывая шплинтовать соединение. Фиксируем наконечник рулевой тяги и затягиваем гайку крепления.

P60625-133829

Ставим на место тормозной суппорт. Затягиваем его направляющие болты крепления. Устанавливаем и затягиваем гайку крепления приводного вала к ступице колеса. На ней необходимо для фиксации смять с помощью зубила и молотка сминаемый поясок в одном месте. Это исключит самоотворачивание гайки. Колесо на место и… приступаем ко второй стороне. Ведь амортизаторы нужно всегда менять в паре, чтобы не нарушать характеристики управляемости. Описывать этот процесс не будем, оставим мастера в покое.


Как и следовало ожидать, владелец Chevrolet Lanos после замены амортизаторов на однотрубные отметил, что машина стала жестче, зато действительно начала немного острее поворачивать. Но ему понравилось. Оставайтесь с нами – в ближайших публикациях мы продолжим знакомить вас с типичными ремонтными работами на современных машинах.

www.kolesa.ru

устройство, виды, особенности и подбор амортизаторов

Амортизатор – это демпфирующее устройство, которое используется на автомобиле для того, чтобы эффективно поглощать толчки и удары, гасить колебания и т.д.  Также амортизатор (стойка автомобиля) позволяет прижимать колесо к дороге при езде по нервностям, тем самым улучшая сцепные свойства, повышая эффективность торможения, устойчивость автомобиля и т.д.

Сегодня существует несколько видов и типов амортизаторов, которые отличаются не только в зависимости от оси, на которой они стоят (амортизаторы передние или задние амортизаторы), но и в конструктивном плане.

Далее мы рассмотрим, что такое амортизатор и какое устройство амортизатора автомобиля. Так в рамках статьи отдельно сделан акцент на том, какие бывают амортизаторы на авто, виды стоек, чем они отличаются, а также рассмотрены преимущества и недостатки различных типов стоек и т.д.

Читайте в этой статье

Автомобильные амортизаторы задние и передние: что нужно знать

Начнем с того, что сегодня можно выделить несколько типов автомобильных амортизаторов. При этом важно понимать, что они имеют между собой как конструктивные отличия, так и достаточно сильно отличаются в плане эффективности и функциональности. Давайте разбираться.

  • Прежде всего, назначение амортизаторов сводится к тому, чтобы гасить удары и колебания, которые передаются при движении автомобиля на кузов. Амортизаторы или стойки работают в связке с другими упругими элементами подвески автомобиля (например, пружины, сайлентблоки, стабилизаторы устойчивости и т.д.).

Так или иначе, благодаря амортизаторам удается заметно улучшить плавность хода авто, избавиться от раскачки (как продольной, так и поперечной), добиться лучшей управляемости и устойчивости автомобиля на дороге.

  • Теперь перейдем к устройству. Если просто, любой амортизатор работает на сжатие и отбой. Первыми на авто стали широко использоваться гидравлические амортизаторы. При этом поршневые масляные амортизаторы телескопического типа, основанные на принципе жидкостного трения, используются  и сегодня.

С учетом того, что на машинах повсеместно устанавливается телескопический амортизатор, так что остановимся на данном типе более подробно. В двух словах, работает такой амортизатор за счет того, что жидкость (масло) перетекает из одной полости в другую через специальные калиброванные отверстия. Фактически, телескопические стойки работают за счет вытеснения жидкости поршнем через калиброванные отверстия.

В зависимости от того, какое усилие испытывает поршень и в каком режиме работает стойка, жидкость будет вытесняться через отверстия с разным диаметром. Энергия жидкостного трения при работе стойки преобразуется в тепловую, а общий принцип работы позволяет гасить колебания. Причем стойка работает как на сжатие, так и на отбой.

  • Идем далее. Как правило, автолюбители не всегда уделяют внимание типам амортизаторов. При этом важно понимать, что между ними есть существенные отличия. Дело в том, что амортизатор подвески  может быть  не только передним или задним, но и однотрубным, двухтрубным или комбинированным, а также масляным, газовым или газомасляным (стойка газ/масло). 

Получается, если нужно купить задние амортизаторы или передние, а также все 4 стойки на автомобиль, важно учитывать особенности и отличия каждого типа. Более того, если тот или иной тип амортизатора подобран не правильно, это может повлиять на управляемость, а также комфорт при езде на автомобиле.

Виды автомобильных амортизаторов

Как видно, стойка автомобиля является важным элементом в устройстве подвески. Также стойка амортизатора напрямую влияет не только на комфорт, но и на управляемость. По этой причине нужно знать, как правильно подобрать передние амортизаторы или задние стойки с учетом особенностей разных типов подобных устройств.

Итак, телескопические амортизаторы  бывают однотрубными двухтрубными и комбинированными. Также современные версии могут иметь функцию гибкой регулировки амортизатора (адаптивная подвеска).

  • Первым вариантом являются однотрубные или монотрубные амортизаторы. Такие стойки имеют всего лишь один цилиндр, выступающий в качестве корпуса для поршня и штока. Чтобы компенсировать объем штока, отдельно выполнена камера, заполненная газом. Плавающий поршень отделяет газ от жидкости.

В такой стойке давление масла в газонаполненных амортизаторах может доходить до 30 атмосфер. Основным плюсом таких стоек является отличное охлаждение,  сохранение свойств на любой дороге, а также возможность ставить амортизатор под любыми углами. Это возможно благодаря тому, что есть физический барьер между камерой с газом и маслом, что не позволяет им смешиваться.

Что касается минусов, то это сложность изготовления и предельно высокая стоимость. С учетом того, что внутри трубы давление очень высокое, корпус должен быть максимально прочным. Еще следует учитывать, что если в однотрубный амортизатор попадет камень, стенка цилиндра становится кривой и поршень может заклинить. В результате  таких особенностей данные стойки зачастую ставят только на спортивные автомобили.

  • Двухтрубные амортизаторы отличаются от однотрубных тем, что имеют два цилиндра, которые помещены один в другой (внутренний цилиндр имеет масло и поршень, который связан с подвеской через шток).

Внешний цилиндр отчасти заполнен воздухом и выступает в качестве резервуара для компенсации. Этот резервуар нужен для того, чтобы  него перетекала жидкость, вытесняемая штоком. Такая конструкция получается дешевой, отличается приемлемым сроком службы и эффективностью в обычных условиях.

При этом не обошлось и без минусов. Основная проблема заключается в перегреве и вспенивании масла, так как двойные стенки не позволяют маслу хорошо охлаждаться. В сложных условиях масло просто «кипит» в амортизаторе, машину раскачивает, ухудшается управляемость и устойчивость.

  • Газомасляные амортизаторы (комбинированные) являются вариантом, который объединяет в себе плюсы монотрубных и двухтрубных амортизаторов. Конструкция напоминает двухтрубную стойку, а основное отличие состоит в том, что вместо воздуха во внешнем цилиндре закачан газ под давлением.

К преимуществам можно отнести доступную стоимость, компактность, неплохие показатели в разных условиях, эффективное охлаждение и приемлемый срок службы. Что касается минусов, такие комбинированные стойки уступают однотрубным аналогам в плане эффективности, а также хуже по комфорту по сравнению с классическими двухтрубными амортизаторами.

  • Регулируемые амортизаторы позволяют водителю настроить стойку под определенный режим эксплуатации. На современных авто это делает электроника в автоматическом или ручном режиме.

Если коротко, можно выделить два типа таких стоек – электромагнитные на основе электромагнитных перепускных клапанов и амортизаторы с использованием особой магнитореологической жидкости. В первом случае электроника изменяет работу клапанов, что влияет на перепускание жидкости и меняет жесткость амортизатора.

Во втором электромагнитное поле оказывает воздействие на частицы масла возле перепускных отверстий. В результате меняется вязкость самого масла,  опять же, это влияет на перепускание и меняет жесткость амортизатора.

Как первый, так и второй тип  регулируемых стоек имеет высокую стоимость. Также, судя по отзывам владельцев авто в СНГ, можно выделить и сравнительно небольшой ресурс данных амортизаторов при активной езде по разбитым дорогам.

  • Спортивные амортизаторы или усиленные амортизаторы изначально разработаны для работы в тяжелых условиях и при больших нагрузках. Как правило, эти стойки имеют повышенную жесткость для реализации лучшей управляемости автомобиля.

При этом комфорт в данном случае отодвигается на второй план, так как основной задачей таких стоек является максимальная устойчивость машины на дороге, особенно в режиме высоких скоростей и тяжелых режимов.

Еще добавим, что передний амортизатор при езде испытывает большую нагрузку по сравнению с задними стойками. По этой причине  их также делают несколько усиленными. Однако есть и отдельные усиленные амортизаторы, причем как на переднюю, так и на заднюю ось.

Также следует отметить, что двухтрубную конструкцию могут иметь передние и задние амортизаторы, при этом чаще двухтрубные амортизаторы ставят на заднюю ось с учетом меньших нагрузок, а также в целях повышения комфорта.

Неисправности амортизаторов: признаки и симптомы, проверка

С учетом приведенной выше информации можно понять, какие стойки амортизаторов лучше выбрать в том или ином случае. Далее, определившись с типом, следует подобрать производителя, изучить каталог и купить амортизаторы из имеющихся подходящих вариантов для замены.

При этом далеко не все водители знают, когда именно нужно менять стойки машины. От одних автолюбителей можно услышать, что амортизатор передний ходит 50-60 тыс. км., тогда как задний до 100 тыс. км., амортизатор газовый служит дольше масляного на 30-50% и т.п.

В одних случаях рекомендуется просто следить за стойками, обращать внимание на потеки масла, стуки, раскачку и шумы, тогда как в других настоятельно рекомендуется посетить вибростенд или просто сменить амортизаторы по пробегу.  Давайте рассмотрим эти вопросы более подробно.

Прежде всего, существует несколько признаков, которые указывают на то, что стойки амортизатора вышли из строя:

  • раскачка при езде даже по ровной дороге;
  • все неровности жестко передаются на кузов, удары ощутимы на руле;
  • машина кренится в поворотах, не держит траекторию;
  • появились стуки и посторонние шумы при езде в области стоек;
  • снижение эффективности торможения, уводы в одну или другую сторону и т.д.

Обратите внимание, такое поведение авто и появление указанных признаков возможно и по другим причинам. Чтобы точно понять, когда амортизаторы  неисправны или полностью/частично вышли из строя,  нужно начать с их визуального осмотра.

Если видны потеки применительно к масляным и газомасляным амортизаторам, это укажет на то, что амортизатор «потеет» или полностью потек, герметичность потеряна. Если есть такая возможность, для проверки стойки лучше снять с авто и прокачать вручную.

Если такой возможности нет, достаточно открыть капот, упереться в области стойки и нажать на кузов автомобиля над стойкой максимально сильно, после чего резко отпустить.

В случае, когда амортизатор рабочий (хотя бы частично), кузов вернется в начальное положение, причем допускается не более одного или двух колебания.  Если же заметна раскачка (несколько колебаний), тогда амортизатор не выполняет своих функций и кузов качается на пружинах.

На деле, течь масла через уплотнительный сальник амортизатора, которая проявляется в виде масляных потеков, свидетельствует о том, что потеряна герметичность в области уплотнительного сальника штока.

Рекомендуем также прочитать статью о том, что такое опорный подшипник амортизатора. Из этой статьи вы узнаете о назначении опоры стойки, а также какие признаки указывают на то, что опорный подшипник амортизатора вышел из строя, как заменить опорный подшипник и т.д.

Такое может произойти в результате повреждения пыльника амортизатора, после чего грязь попадает на шток. Также может быть деформирован сам шток после езды по плохим дорогам, от ударов и т.д.

В любом случае, даже если амортизатор еще работает, это ненадолго и нужно готовиться  замене, так как имеет место утечка газа и амортизаторной жидкости, демпфирующие свойства амортизатора заметно ухудшены.

Отметим, что на практике передние амортизаторы на отечественных дорогах  на авто среднего класса обычно  выхаживают не более 60-70 тыс. км., после чего их работоспособность начинает ухудшаться.

Бывает так, что даже если стойки сухие на пробегах около 90-100 тыс. км, все равно к такому пробегу их работоспособность сохраняется не более чем на 30-40%. Что касается задних стоек, обычно они ходят на 30-40 тыс. км больше передних.

Полезные советы

Если проанализировать полученную информацию, становится понятно, что при необходимости подобрать тот или иной амортизатор, цена будет отличаться. На стоимость будет влиять сам тип стойки, а также основное назначение (для передней или задней оси). Как правило, стойки амортизатора задние будут дешевле передних амортизаторов, так как они проще в производстве и не требуют дополнительного усиления по сравнению с более нагруженными передними амортизаторами. 

Однако пытаться сильно экономить на замене не стоит. Первое, амортизаторы меняются парами на одной оси. Также при необходимости заменить амортизатор, купить можно как дорогостоящее оригинальное решение или аналог известного бренда, так и более дешевые стойки. При этом следует быть готовым к тому, что бюджетные амортизаторы могут с самого начала работать весьма посредственно, не соответствовать заявленным характеристикам и быстро выйти из строя.

Рекомендуем также прочитать статью о том, что такое стойка стабилизатора. Из этой статьи вы узнаете о назначении стоек стаба, признаках их неисправностей, а также способах устранения неполадок.

Не нужно рассчитывать и на слишком большой срок службы дорогих стоек, так как недостаточно амортизаторы купить от известного производителя по высокой цене. Дело в том, что активная езда по плохим дорогам выведет из строя любой амортизатор намного быстрее ожидаемого срока.  С одной стороны, качественная стойка будет отлично работать, но ресурс амортизаторов может быть ниже ожидаемого.

Еще не рекомендуется экономить на задних стойках. В отдельных случаях попытка поставить спереди амортизаторы высокого или среднего класса, а на заднюю ось бюджетные стойки, приводит к ухудшению управляемости и снижению комфорта. Оптимально ставить стойки одной ценовой категории и одного производителя на переднюю и заднюю ось.

Напоследок отметим, что выбор амортизатора  должен быть осознанным, при подборе нужно отдельно учитывать  рассмотренные выше особенности. Также немаловажно принимать во внимание и стиль езды, состояние дорог в регионе, индивидуальные предпочтения, особенности эксплуатации ТС и ряд других параметров. При этом следует приобретать стойки только у проверенных продавцов и правильно устанавливать их на машину.

Причина — на рынке встречается огромное количество низкосортных подделок, а также не все мастера при замене стоек соблюдают обязательные правила и рекомендации (проверка амортизаторов, правильная прокачка амортизаторов перед установкой и т.д.).

Читайте также

krutimotor.ru

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Информация данной статьи будет максимально полезной и информативной для автолюбителей, которые только начинают изучать особенности конструкции автомобиля. Подробно будет освещен вопрос, что такое стойки амортизаторов передние, в чем заключается важность данных элементов и как проводится их замена при износе и поломке.

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Содержание статьи

Устройство передних стоек амортизаторов

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Многие водители ошибочно проводят параллель между такими понятиями, как стойка амортизатора и сам амортизатор. Некоторые из них полагают, что это обычная пружина, или называют стойкой все элементы данной системы, собранные вместе. Чтобы понять, что это ошибочное мнение, стоит более подробно изучить вопрос, что собой представляют стойки, какие присутствуют особенности их устройства.

Стойками амортизационной системы называют элемент, который требуется для соединения таких компонентов, как кузов и колеса автомобиля. Соединяется данная опора с пружиной и демпфером, который, кстати, является основным компонентом амортизатора.

В составе данной конструкции присутствуют следующие элементы:

  1. Цилиндры, внутри которых установлен поршень и специальная гидравлическая жидкость.
  2. Гидравлическая жидкость, которая может быть представлена в виде смеси жидкости и газа, а также определенной смесью газов. Состав необходим для передачи усилий между двумя видами амортизаторов.
  3. Шток. Предназначен для удержания на себе поршня и требуется для передачи серьезных толкающих усилий.
  4. Поршень, имеющий специальный пропускной клапан. Он осуществляет движение во внутренней части цилиндра. Применяется для плавной передачи колебаний.
  5. Сальники, уплотнитель и качественный герметик.
  6. Корпус, предназначенный для размещения во внутренней части разных составных компонентов стойки.
  7. Крепежные элементы, необходимые для соединения основных частей амортизатора с кузовом автомобиля.

Если изучить конструкцию элементов, то можно понять, что передние амортизационные стойки (АС) могут быть оснащены пружинами, а могут не иметь их. Выбор того или иного варианта нужно осуществлять на основе конструктивных особенностей подвески и приемлемого бюджета.

Как и все автомобильные детали, передние стойки амортизаторов со временем изнашиваются, ломаются и приходят в полную негодность. При обнаружении данного явления как можно быстрее должна быть проведена замена амортизатора передней стойки.

Принцип работы передних стоек

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Чтобы разобраться с тем, как функционируют стойки амортизаторов передние транспортного средства, условно мх стоит разделить на два главных конструкционных элемента – пружину и амортизатор. Именно они приводят весь механизм в действие.

Пружина

Главный элемент данной детали предназначен для нивелирования самых разных дефектов современного дорожного покрытия. Также он необходим для снижения активности вибрации, которая в процессе передвижения отражается на кузове. При перемещении по сильно разбитой дороге именно благодаря пружине водитель чувствует только плавное раскачивание автомобиля. пружина забирает на себя самые мощные толчки, то есть полностью их гасит.

Металл, из которого производится пружина, должен обладать оптимальной упругостью. Обычно используется такая сталь, которая оптимально подходит для определенной марки транспортного средства, его веса и общей специализации.

Пружина устанавливается одной стороной в специальной чашке стойки, а другой частью проходит через резиновую проставку, которая, в свою очередь, упирается в кузов.

Амортизатор

Это сама стойка, которая, если сравнивать с той же пружиной, является более сложной деталью по своей конструкции. Вот самые основные конструкционные особенности:

  1. Двухкамерный цилиндр, по которому перемещается поршень, предварительно закрепленный на штоке. Именно он заполняется газом или жидкостью.
  2. Рабочий состав циркулирует во внутренней части обеих камер, на основании чего все стойки, как и стандартные амортизаторы, разделяются на несколько видов.

Основной задачей амортизатора является гашение колебаний, которые исходят от пружины. Процедура амортизации подразумевает под собой серьезное повышение уровня давления, образованного внутренней частью детали. Его снижение осуществляется за счет специальных клапанов, которые располагаются непосредственно на поршне. В зависимости от общего положения элементы автоматически закрываются и открываются так, чтобы эффективно регулировать оказываемые нагрузки.

Предназначение передних стоек

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Любой вид упругого металла, из которого выполнена пружина, в процессе воздействия на на нее того или иного механического фактора образует автоматические остаточные колебания, которые доставляют серьезный дискомфорт пассажирам и водителю. Именно для гашения подобной тряски и колебаний был разработан и повсеместно применяется амортизатор. Он может полностью преобразовать резкие толчки в практически незаметные мягкие колебания.

Амортизационные стойки играют главную роль в строении всей подвески машины. За счет относительно небольшого размера и легкости обслуживания производитель выпускает конструкции по минимальным стоимостным показателям.

Благодаря небольшим габаритам стойки занимают минимально количество свободного пространства. За счет этого можно без проблем размещать дополнительные рычаги и иные конструкционные элементы, которые в состоянии сделать поездку максимально комфортной.

Одновременно с повышением уровня комфорта передняя амортизационная стойка, предназначена для выполнения следующих функций:

  • удержание массы транспортного средства;
  • передача силы сцепления с асфальтовым покрытием на кузов;
  • поддержка оптимального положения кузова по отношению к автомобильным колесам;
  • устранение лишнего крена;
  • принятие на себя серьезных боковых нагрузок.

Цена стоек на порядок выше по сравнению с самими амортизаторами. Причина — в более сложной конструкции, а также в том, что при производстве используются высокого качества материалы.

Разновидности передних стоек

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Все автомобильные стойки функционируют за счет специальной рабочей жидкости. На основании используемого в цилиндре устройства вещества передние стойки амортизатора можно разделить на три основных типа:

  1. Масляные, или гидравлические. Эффективны при передвижении в черте города, а также по загородным проселочным дорогам.
  2. Газовые. Отличаются более высокими показателями жесткости. Это оптимальный вариант для современных спортивных авто. Есть мнение, что газовые конструкции относятся к категории более современных устройств. Но если автомобиль часто перемещается по грунтовым дорогам, данная категория амортизаторов не очень подойдет.
  3. Газомасляные. Как говорят многочисленные отзывы, это оптимальное решение для любого транспортного средства. Здесь присутствуют все положительные характеристики перечисленных выше категорий амортизаторов.

Передние и задние стойки отличаются друг от друга, потому нужно быть внимательными в процессе покупки.

Передние немного выше по длине и имеют меньший диаметр. Поворотные кулаки в конструкциях задних амортизаторов полностью отсутствуют. Кроме того, заменить задние стойки намного сложнее, чем передние.

Срок службы

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Общее время эксплуатации передних амортизаторов, а также периодичность их замены прямо зависит от трех основных факторов:

  • качество детали;
  • уровень соответствия массе транспортного средства;
  • манера перемещения на автомобиле.

По этой причине на одних машинах детали приходится менять раз в 6 месяцев, а на иных конструкции работают на протяжении 7 лет.

Подобная разница во временных периодах службы основана на неправильной эксплуатации автомобилей, а также на неграмотно подобранных основных конструкциях и пружинах. Пренебрежение данными правилами способно привести к тому, что нагрузка не будет распределена равномерно, что автоматически негативно скажется на сроке службы всей амортизационной системы автомобиля.

Признаки наличия неисправностей

Если выйдет из строя правая или левая стойка, это может привести к возникновению аварийной ситуации. Именно по этой причине так важно тщательно следить за своим транспортным средством. Своевременно проведенные ремонтные работы позволят избежать большого количества проблем.

На поломку передних стоек указывают следующие признаки и характерные симптомы:

  • в процесс движения раздается постоянный скрип, стук и щелчки;
  • автомобиль постоянно раскачивается и колеблется из стороны в сторону;
  • машину серьезно заносит на поворотах;
  • для совершения торможения требуется намного больший тормозной путь, чем при исправных амортизаторах;
  • транспортное средство сильно приседает, как только водитель разгоняется или тормозит. Неприятные ощущения при этом присутствуют как сзади, так и спереди;
  • машина очень плохо цепляется за поверхность;
  • резина очень быстро и неравномерно изнашивается;
  • из амортизационной системы вытекает тормозная жидкость;
  • опоры, пружина и шток покрываются разрушительной коррозией;
  • значительное повышение уровня шума в процессе набора скорости. Это говорит о том, что повредились крепежи встроенных втулок;
  • корпус деформируется, отчего поршень не может нормально перемещаться во внутренней части цилиндра;
  • пружины расположены не очень правильно, на основании чего корпус автомобиля начинает качаться в процессе движения.

Подобные явления обычно происходят по причине низкого качества основных элементов стоек, из-за неправильной установки, а также по причине естественного процесса износа и старения встроенных элементов.

Сказать, какие нужно покупать стойки, невозможно. Здесь все зависит от материального достатка и самого транспортного средства. В любом случае не нужно экономить на данных элементах. Стоит купить конструкции, которые характеризуются большим количеством положительных отзывов и выпущены проверенными производителями.

Процесс замены передних стоек

Устройство и виды передних стоек амортизаторов и инструкция по их замене в 13 этапов

Если подшипник, верхняя опора и вся стойка в полной сборке уже отслужили свой срок, выход здесь будет только один – замена передних амортизаторов. Данная операция на передней части авто может быть проведена своими руками.

Если износилась левая или правая стойка, менять потребуется обязательно обе одновременно.

При осуществлении замены нужно опираться на специальное руководство по ремонту. Несмотря на то что существуют определенные различия в конструкции разных марок авто, алгоритм действия во всех случаях схож. Последовательность манипуляций здесь следующая:

  1. Освобождается доступ к верхней опоре стойке. Здесь придется обязательно снять уплотнитель подкапотного отсека.
  2. Снимается заглушка, откручивается крепежная гайка штока АС. Потребуется головка, а также удлинитель с воротком. Проводить данную операцию желательно тогда, когда сама стойка еще не демонтирована.
  3. Стоит ослабить крепеже колес, а затем поддомкратить машину до такого положения, чтобы шины не касались поверхности земли. Здесь обязательно нужно подстраховаться от срыва домкрата.
  4. Осуществляется демонтаж колеса. При помощи металлической щетки требуется очистить все находящиеся там конструкционные элементы. Их желательно обработать WD40 и подождать, чтобы состав подействовал.
  5. Откручивается крепежная гайка от установленного шарнира стабилизатора. Сделать это нужно одновременно с винтом тормозного шланга. Если у автомобиля есть АБС, потребуется снять трубку с проводкой от датчика, который расположен на стойке.
  6. После этого откручивается крепеж кулака. Болты многие специалисты выбивают простым молотком. Стоит знать, что у некоторых автомобилей втулки стоят отдельно. После данной манипуляции стойку уже ничего не держит.
  7. Настало время открутить гайку, удерживающую верхнюю опору на кузове. Передняя стойка амортизатора снимается одновременно с опорой и пружиной.
  8. Потребуются стяжки, которые предназначены для снятия пружины. Здесь нужно будет получить зазор между чашкой и самым крайним витком.
  9. Ранее на штоке гайка уже была ослаблена, теперь ее можно открутить совсем. Только после этого получится снять опору и пружину одновременно с чашечкой.
  10. Если отбойник вместе с пыльниками износились, они тоже должны быть заменены.
  11. Новые передние стойки желательно предварительно серьезно прокачать. Данный процесс осуществляется строго в соответствии с инструкцией производителя.
  12. Требуется заменить прокладки и сальники, так как сальники старые уже не подойдут.
  13. Выполняется обратная сборка.

Если следовать данной инструкции, можно достаточно быстро заменить передние стойки на новые, обеспечив комфорт передвижения авто и обеспечив высокий уровень безопасности. Опора станет прочной, подвеска перестанет раскачиваться и негативно сказываться на общей эксплуатации транспортного средства.

Заключение

Каждый водитель должен понимать, что подвеска и вся амортизационная система в целом прямо сказывается на общем поведении транспортного средства на дороге. Передние стойки – это один из самых основных элементов всего узла, который эффективно стабилизирует автомобиль и требует проводимой время от времени замены. Чтобы избежать непредсказуемого поведения машины на трассе, нужно следить за исправностью стоек и за степенью их износа.

auto-gl.ru

19Фев

Устройство двигателя внутреннего сгорания с картинками: Принцип работы и устройство двигателя

Двигатель внутреннего сгорания — устройство и принцип работы ДВС

Устройство двигателя внутреннего сгорания

Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.

Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:

Схема устройства ДВСУстройство бензинового двигателя внутреннего сгорания
Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Видео: как устроен двигатель внутреннего сгорания

Двигатель внутреннего сгорания: устройство, принцип работы, виды

Люди постоянно пытаются построить экономичный и надёжный мотор. До сих пор идея об изобретении вечного двигателя не даёт покоя многим изобретателям. Неудачные разработки исчезли в веках. Но в результате проб и ошибок появилось несколько типов двигательных установок. Эти механизмы успешно нами эксплуатируются.

Все известные двигатели используют разные виды энергии, которую затем преобразуют в движение. В качестве приводной тяги может служить электроэнергия, вода и тепло. Поэтому они разделяются на следующие типы:

  • электродвигатели;
  • гидравлические машины;
  • тепловые агрегаты.

Тепловые моторы основаны на преобразовании тепловой энергии в работу. В таких машинах применён один из двух способов сгорания топлива: внешний и внутренний.

В школе наверняка всем рассказывали о машинах, работающих на пару. Они как раз и представляют вид тепловых двигателей с внешней камерой сгорания. Первые паровые механизмы были построены ещё в середине XIX века. Сейчас паровые машины практически исчезли из нашей жизни. Они уступили место двигателям внутреннего сгорания (ДВС).

Принципиально ДВС отличаются от паровых машин местом размещения камеры сгорания. В механизмах с внутренним сгоранием эти камеры расположены в самих агрегатах. Такие моторы работают практически во всех транспортных средствах.

В этой статье приведена основная информация о принципе работы различных видов ДВС: газотурбинного, роторного, поршневого. Рассказано, как работает двигательный агрегат с внешней камерой сгорания – двигатель Стирлинга. Описана классификация и устройство двигателей внутреннего сгорания поршневого типа. Объяснено отличие двухтактного двигателя от четырёхтактного.

Двигатель ВАЗ-2110

Принцип работы ДВС

Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.

Двигатель ВАЗ-2110

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

 

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.

Двигатель ВАЗ-2108

Видео: Принцип работы двигателя внутреннего сгорания

Двигатель ВАЗ-2108

 

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Газотурбинный двигатель

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых.  Но по непонятной причине роторные агрегаты используются очень редко.

Роторный двигатель

Видео: Принцип работы роторного двигателя

Поршневой двигатель

Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение.  Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Поршневой двигатель

Видео: Принцип работы дизельного двигателя

Двигатель ВАЗ-2108

 

Двигатель Стирлинга

В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.

Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.

Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.

Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.

Двигатель ВАЗ-2110

Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.

 

Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.

Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.

Двигатель Стирлинга

Видео: Принцип работы двигателя Стирлинга

Двигатель ВАЗ-2108

 

Виды поршневых ДВС

Поршневые моторы классифицируются по типу используемого топлива:

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Двигатель ВАЗ-2108

 

Устройство двигателя внутреннего сгорания: описание основных узлов ДВС

В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.

Кривошипно-шатунный механизм

Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.

Газораспределительная система

ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.

Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.

Кривошипно-шатунный и газораспределительный механизм

Система питания

Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.

Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.

Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных – электрические.

Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.

Система питания двигателя

Зажигание

В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.

В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.

Система зажигания двигателя ВАЗ-2106

Выхлопная система

Вывод газов наружу осуществляется системой выпуска продуктов сгорания – выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.

Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.

Выхлопная система

Система смазки

В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер – специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.

В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.

Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.

Система смазки дизельного двигателя

Системы охлаждения

Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.

Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.

Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.

Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.

Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.

Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.

Система охлаждения двигателя

Двигатель ВАЗ-2108

 

Четырехтактный ДВС

Число тактов работы – одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл – это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления – разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных – топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Принцип работы четырёхтактного двигателя

Видео: Принцип работы четырёхтактного двигателя

Двигатель ВАЗ-2108

 

Двухтактный мотор

В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня. Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.

Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.

Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.

  • Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
  • Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
  • Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
  • Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.

Рабочий цикл осуществляется в течение одного оборота коленвала.

Принцип работы двухтактного двигателя

Двигатель ВАЗ-2108

 

Видео: Принцип работы двухтактного двигателя

Вам также будет интересно почитать:

устройство, принцип работы и классификация

Двигатель внутреннего сгорания.jpg

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает, благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

смесь.png

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.
    ГРМ_1.jpg

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.выхлопы.jpg
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Время.png

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС. 

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.


Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

впуск.jpg

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

такты 2.jpg

Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

Common Rail.jpg

А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.


Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

турбо.jpg

Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
Дизель.jpg

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Устройство двигателя внутреннего сгорания автомобиля

Каждому, водителю интересно и необходимо знать, как устроен автомобиль, что такое ДВС в машине, из чего состоит двигатель автомобиля и каков у ДВС ресурс.

Отличие двигателей внутреннего сгорания от двигателей внешнего сгорания

Содержание статьи

ДВС называется так именно потому, что топливо сжигается внутри рабочего органа (цилиндра), промежуточный теплоноситель, например пар, здесь не нужен, как это организовано в паровозах. Если рассматривать паровой двигатель и двигатель, но уже внутреннего сгорания автомобиля, устройство их сходно, это очевидно (на рисунке справа паровой двигатель, слева – ДВС).

Принцип работы одинаков: на поршень, действует какая-то сила. От этого поршень вынужден двигаться вперед или назад (возвратно-поступательно). Эти движения при помощи специального механизма (кривошипного) преобразуются во вращение (колеса у паровоза и коленчатого вала «коленвала» у автомобиля). В двигателях внешнего сгорания нагревается вода, превращаясь в пар, и уже этот пар совершает полезную работу толкая поршень, а в ДВС мы нагреваем воздух внутри (непосредственно в цилиндре)и он (воздух) двигает поршень. От этого коэффициент полезного действия, у ДВС, конечно, выше.

История создания ДВС

История гласит, что первый работающий двигатель внутреннего сгорания коммерческого использования, то есть выпускаемый для продажи, был разработан французским изобретателем Ленуаром. Его двигатель работал на светильном газе в смеси с воздухом. Причем именно он догадался поджигать эту смесь путем электрической искры. Только в 1864 году документально зафиксирована продажа более 310 таких двигателей. На этом он разбогател. Жан Этьен Ленуар потерял интерес к изобретательству и вскоре(в 1877 году) его моторы были вытеснены более совершенными, на тот момент, двигателями Отто, изобретателя из Германии. Донат Банки (венгерский инженер) в 1893 году произвел настоящую революцию в двигателестроении. Он изобрел карбюратор. С этого момента история не знает бензиновых двигателей без этого устройства. И так продолжалось около 100 лет. На смену ему пришла система непосредственного впрыска, но это уже новейшая история.
Все первые двигатели внутреннего сгорания были только одноцилиндровыми. Увеличение мощности велось путем увеличения диаметра рабочего цилиндра. Только к концу 19-го века появились ДВС с двумя цилиндрами, а в начале 20-го века – четырехцилиндровые. Теперь, повышение мощности производилось уже путем увеличения числа цилиндров. На сегодняшний день можно встретить автомобильный двигатель в 2-мя, 4-мя, 6-ю цилиндрами. Реже 8 и 12. Некоторые спортивные автомобили имеют 24 цилиндра. Расположение цилиндров может быть как рядным, так и V-образным.
Вопреки расхожему мнению ни Готлиб Даймлер, ни Карл Бенц, ни Генри Форд устройство двигателя автомобиля не изменяли кардинально (разве что мелкие доработки), но оказали огромное влияние в автомобилестроение как таковое. Что такое ДВС в авто мы сейчас и рассмотрим.

Общее устройство двигателя внутреннего сгорания

Итак, ДВС состоит из корпуса, в котором все остальные детали монтируются. Чаще всего это блок цилиндров.

На данном рисунке показан один цилиндр без блока. Устройство ДВС направлено на максимально комфортные условия для цилиндров, ведь именно в них производится работа. Цилиндр, это металлическая (чаще всего стальная) труба, в которой двигается поршень. Он обозначен на рисунке цифрой 7. Над цилиндром устанавливается головка цилиндра 1, в которую вмонтированы клапана (5 – впускной и 4 — выпускной), а также свеча зажигания 3 и коромысла 2.
Над клапанами 4 и 5 есть пружины, которые удерживают их в закрытом состоянии. Коромысла при помощи толкателей 14 и распределительного вала 13 открывают клапана в определенный момент (тогда, когда это необходимо). Распределительный вал с кулачками вращается от коленвала 11 через приводные шестерни 12.
Движения поршня 7 преобразуются во вращение коленвала 11 при помощи шатуна 8 и кривошипа. Этим кривошипом служит «колено» на валу (смотри рисунок), именно поэтому вал и называется коленчатым. В связи с тем, что воздействие на поршень происходит не постоянно, а только когда в цилиндре горит топливо. У ДВС есть маховик 9, довольно массивный. Маховик как бы запасает энергию вращения и отдает ее при необходимости.
В любом двигателе много трущихся деталей, для их смазывания используют автомобильное масло. Масло это хранится в картере 10 и специальным насосом подается к трущимся деталям.
Синим цветом, показаны детали кривошипно-шатунного механизма (КШМ). Голубым – смесь топлива и воздуха. Серым – свеча зажигания. Красным – выхлопные газы.

Принцип работы ДВС

Разобрав двигатель внутреннего сгорания, его устройство, необходимо уяснить, как взаимодействуют его детали, как он работает. Знать строение еще не все, а вот как взаимодействуют механизмы, в чем преимущество дизельных автомобилей и в чем их недостатки для начинающих (для чайников) очень важно.
Ничего сложного в этом нет. Пошаговым рассмотрением процессов мы постараемся рассказать, как взаимодействуют между собой основные части двигателя при работе. Из какого материала выполнены механические составляющие ДВС.
Все автомобильные двигатели работают на одном принципе: сжигание бензина или дизельного топлива. Для чего? Для получения необходимой нам энергии, конечно. Двигатели автомобилей, иногда говорят – моторы, могут быть двухтактными и четырехтактными. Тактом считается движение поршня либо вверх, либо вниз. Говорят еще от верхней мертвой точки (ВМТ), до нижней (НМТ). Мертвой эта точка называется потому, что поршень как бы замирает на мгновение и начинает движение в обратную сторону.
Итак, в двухтактном двигателе весь процесс (или цикл) происходит за 2 хода поршня, в четырехтактном – за 4. И совершенно не важно, бензиновый это двигатель, дизельный или работающий на газу.
Как ни странно, рассказывать принцип работы лучше на 4-х тактном бензиновом карбюраторном двигателе.

Первый такт — всасывание.

Поршень идет вниз и затягивает за собой смесь из воздуха и топлива. Эта смесь готовится в отдельном устройстве – в карбюраторе. При этом впускной, его еще называют «всасывающий» клапан, конечно, открыт. На рисунке он показан синим.

Следующий, второй такт – сжатие смеси.

Поршень поднимается вверх от НМТ до ВМТ. При этом растет давление и, естественно, температура над поршнем. Но этой температуры недостаточно, для того, чтобы смесь самовоспламенилась. Для этого служит свеча. Она выдает искру в нужный момент. Обычно это 6…8 угловых градусов не доходя до ВМТ. Для начала понимания процесса можно предположить, что искра зажигает смесь точно в верхней точке.

Третий такт – расширение продуктов сгорания.

При сгорании столь энергоемкого топлива, продуктов сгорания в цилиндре очень мало, а вот усилие появляется только потому, что воздух нагрелся при повышении температуры, а значит, расширился, в нашем случае увеличил давление. Именно это давление и совершает нужную работу. Нужно знать, что нагревая воздух на 273 0С, получаем увеличение давления практически в 2 раза. Температура зависит от того сколько топлива сжечь. Максимальная температура внутри рабочего цилиндра может достигать 2500 0С при работе ДВС на полной мощности.

Четвертый такт последний.

После него опять будет первый. Поршень направляется от НМТ к ВМТ. При этом выпускной клапан открыт. Цилиндр очищается, выбрасывая все что сгорело, и что не сгорело, в атмосферу.
Что касается дизельного двигателя, то все основные детали с карбюраторным практически одинаковы. Ведь и тот и другой, это двигатель внутреннего сгорания. Исключение составляет смесеобразование. В карбюраторном смесь готовится отдельно, в том самом карбюраторе. А вот в дизельном – смесь готовиться непосредственно в цилиндре, перед сжиганием. Топливо (солярка) подается специальным насосом в определенный момент времени. Зажигание смеси происходит от самовоспламенения. Температура внутри цилиндра в дизеле гораздо выше, чем в карбюраторном ДВС. По этой причине детали там детали мощнее и система охлаждения лучше. Необходимо отметить, что, несмотря на высокую температуру внутри цилиндра, рабочая температура двигателя никогда не повышается выше 90…95 0С. Иногда, детали дизельных двигателей делают из более твердого металла, что позволяет снизить массу, но увеличивает цену ДВС. Однако, коэффициент полезного действия (КПД) в дизельном двигателе выше. То есть он более экономичен и дороговизна деталей себя окупает.
У дизельного ДВС ресурс выше, если соблюдать правила эксплуатации. Особенно часто механизмы дизелей выходят из строя из-за плохого топлива.
Схема работы дизельного двигателя представлена на рисунке слева. В третьем такте подача топлива показана в момент ВМТ, хотя это и не совсем так.
Системы ДВС обеспечивающие их работоспособность практически одинаковы: система смазки, топливная система, система охлаждения и система газообмена. Есть еще несколько, но они не относятся к главным.
Глядя на устройство любого двигателя внутреннего сгорания можно подумать, что все детали выполнены из стали. Это далеко не так. Корпуса бывают и чугунные и выполненные из алюминиевого сплава, а вот поршни из чугуна не делают, они либо стальные, либо из высокопрочного алюминиевого сплава. Зная общее устройство данного двигателя внутреннего сгорания и условия работы его деталей, очевидно, что и клапана и головку цилиндра нужно делать прочными, поскольку они должны выдерживать давление внутри цилиндра более 100 атмосфер. А вот поддон, где собирается масло не несет на себе особой механической нагрузки и выполняется из тонкой листовой стали или алюминия.
Характеристики ДВС
Когда говорят об автомобиле, то обычно, в первую очередь отмечают двигатель внутреннего сгорания, не его устройство, а его мощность. Она (мощность) измеряется как обычно (по-старинке) в лошадиных силах или (по-современному) киловаттах. Безусловно, чем больше мощность, тем быстрее автомобиль набирает скорость. И в принципе экономичность тем выше, тем двигатель машины более мощный. Однако, это только тогда, когда двигатель постоянно работает на номинальных (экономически оправданных) оборотах. Но на малых скоростях (при неиспользовании полной мощности) КПД сильно падает и если на номинальных режимах дизельный двигатель имеет 40…42% КПД, то на малых только 7%. Бензиновый двигатель не может похвастаться даже этим. Использование полной мощности позволяет экономить топливо. По этой причине расход топлива на 100 километров в малолитражных автомобилях ниже. Этот показатель может составлять и 5 и даже 4 л/100 км. Расход у мощных внедорожников может составлять и 10 и даже 15 л/100 км.
Еще одним показателем для автомобилей является разгон от 0 км/час до 100 км/час. Конечно, чем мощнее двигатель, тем быстрее разгон автомобиля, но про экономичность при этом говорить вообще не приходится.
Итак, двигатель внутреннего сгорания устройство которого Вы теперь знаете, совсем не кажется сложным. И на вопрос «ДВС – что это такое?» Вы можете ответить «Это то, что я знаю».

Общее устройство двигателя. Основные механизмы

Видео: Общее устройство двигателя. Основные механизмы

Двигатель внутреннего сгорания — это тепловой двигатель, преобразующий тепловую энергию топлива в механическую работу. В двигателе внутреннего сгорания топливо подается непосредственно внутрь цилиндра, где оно воспламеняется и сгорает, образуя газы, давление которых приводит в движение поршень двигателя.

Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у карбюраторных двигателей) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться. Все двигатели, устанавливаемые на автомобили, состоят из следующих механизмов и систем.

Двигатель автомобиля

Основные механизмы двигателя

Кривошипно-шатунный механизм (КШМ)  преобразует прямолинейное движение поршней во вращательное движение коленчатого вала.

Механизм газораспределения (ГРМ) управляет работой клапанов, что позволяет в определенных положениях поршня впускать воздух или горючую смесь в цилиндры, сжимать их до определенного давления и удалять оттуда отработавшие газы.

Основные системы двигателя

Система питания служит для подачи очищенного топлива и воздуха в цилиндры, а также для отвода продуктов сгорания из цилиндров.

Система питания дизеля обеспечивает подачу дозированных порций топлива в определенный момент в распыленном состоянии в цилиндры двигателя.

Система питания карбюраторного двигателя предназначена для приготовления горючей смеси в карбюраторе.

Система зажигания рабочей смеси в цилиндрах установлена в карбюраторных двигателях. Она служит для воспламенения рабочей смеси в цилиндрах двигателя в определенный момент.

Смазочная система необходима для непрерывной подачи масла к трущимся деталям и отвода теплоты от них.

Система охлаждения предохраняет стенки камеры сгорания от перегрева и поддерживает в цилиндрах нормальный тепловой режим.

Расположение составных частей различных систем двигателей показано на рисунке.

Составные части разных систем двигателей

 

Составные части разных систем двигателей

Рис. Составные части разных систем двигателей: а — карбюраторный двигатель ЗИЛ-508: I — вид справа; II — вид слева; 1 и 15 — масляный и топливный насосы; 2 — выпускной коллектор; 3 — искровая свеча зажигания; 4 и 5 — масляный и воздушный фильтры; 6 — компрессор; 7 — генератор; 8 — карбюратор; 9 — распределитель зажигания; 10 — трубка масломерного щупа; 11 — стартер; 12 — насос гидроусилителя рулевого управления; 13 — бачок насоса гидроусилителя; 14 — вентилятор; 16 — фильтр вентиляции картера; б — дизель Д-245 (вид справа): 1 — турбокомпрессор; 2 — маслоналивная труба; 3 — маслоналивная горловина; 4 — компрессор; 5 — генератор; 6 — поддон картера; 7 — шпилька-фиксатор момента подачи топлива; 8 — выпускной трубопровод; 9 — центробежный маслоочиститель; 10 — маслоизмерительный щуп

Принцип работы и устройство двигателя автомобиля. Техническое обслуживание двигателя автомобиля :: SYL.ru

Большинство водителей понятия не имеют, каким является устройство двигателя автомобиля. А знать это необходимо, ведь не зря при обучении во многих автошколах ученикам рассказывают принцип работы ДВС. Иметь представление о работе двигателя должен каждый водитель, ведь эти знания могут пригодиться в дороге.

устройство двигателя автомобиля

Конечно, существуют разные типы и марки двигателей автомобилей, работа которых отличается между собой в мелочах (системы впрыскивания топлива, расположение цилиндров и т. д.). Однако основной принцип для всех типов ДВС остается неизменным.

Устройство ДВС всегда уместно рассматривать на примере работы одного цилиндра. Хотя чаще всего легковые автомобили имеют 4, 6, 8 цилиндров. В любом случае, главная деталь мотора – это цилиндр. В нем располагается поршень, который может двигаться вверх-вниз. При этом существуют 2 границы его передвижения – верхняя и нижняя. Профессионалы их называют ВМТ и НМТ (верхняя и нижняя мертвые точки).

Сам поршень соединен с шатуном, а шатун – с коленчатым валом. При движении поршня вверх-вниз шатун передает нагрузку на коленчатый вал, и тот вращается. Нагрузки от вала передаются на колеса, в результате чего автомобиль начинает движение.

как работает двигатель

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой этого сложного механизма. Делается это с помощью бензина, дизельного топлива или газа. Капля топлива, воспламеняющаяся в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение. Затем поршень по инерции возвращается в верхнюю границу, где снова происходит взрыв бензина и такой цикл повторяется постоянно, пока водитель не заглушит мотор.

Так выглядит устройство двигателя автомобиля. Однако это лишь теория. Давайте рассмотрим более детально циклы работы мотора.

Четырехтактный цикл

Практически все двигатели работают по 4-тактному циклу:

  1. Впуск топлива.
  2. Сжатие топлива.
  3. Сгорание.
  4. Вывод отработанных газов за пределы камеры сгорания.

Схема

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

двигатели автомобилей ваз

На этой схеме четко показаны основные элементы:

A – Распределительный вал.

B – Крышка клапанов.

C – Выпускной клапан, через который отводятся газы из камеры сгорания.

D – Выхлопное отверстие.

E – Головка цилиндра.

F – Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

G – Блок мотора.

H – Маслосборник.

I – Поддон, куда стекает все масло.

J – Свеча зажигания, образующая искру для поджога топливной смеси.

K – Впускной клапан, через который в камеру сгорания попадает топливная смесь.

L – Впускное отверстие.

M – Поршень, который движется вверх-вниз.

N – Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O – Подшипник шатуна.

P – Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами). Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня. Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и «жор» масла.

системы двигателя автомобиляЭто основные элементы конструкции, которые имеют место во всех двигателях внутреннего сгорания. На самом деле элементов намного больше, но тонкостей мы касаться не будем.

Как работает двигатель?

Начнем с начального положения поршня – он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.

Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

марки двигателей автомобилей

На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.

В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.

техническое обслуживание двигателя автомобиля

Отличие в бензиновых моторах

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. То есть на третьем цикле поршень поднимается вверх, сильно сжимает топливную смесь, и та взрывается естественным образом под действием давления.

Альтернатива ДВС

Отметим, что в последнее время на рынке появляются электрокары – автомобили с электрическими двигателями. Там принцип работы мотора совершенно другой, т. к. источником энергии является не бензин, а электричество в аккумуляторных батареях. Но пока что автомобильный рынок принадлежит автомобилям с ДВС, а электрические двигатели не могут похвастаться высокой эффективностью.

Несколько слов в заключение

Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов «пробегают» миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.

Устройство двигателя автомобиля

Для того, чтобы понять принцип работы двигателя, нужно иметь некоторые представления о самом двигателе и его строении.

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.

 

Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.

Технические характеристики двигателя. При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.

Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.

Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

ISO — 27.020 — Двигатели внутреннего сгорания

ISO 683-15: 1976

Стали термообработанные, легированные и самонарезающиеся. Часть 15. Клапанные стали для двигателей внутреннего сгорания

95,99 ISO / TC 17 / SC 4

ISO 683-15: 1992

Стали термообработанные, легированные и самонарезающиеся. Часть 15. Клапанные стали для двигателей внутреннего сгорания

90.93 ISO / TC 17 / SC 4
95,99 ISO / TC 64

ISO 1204: 1972

Двигатели внутреннего сгорания поршневые. Обозначение направления вращения

95.99 ISO / TC 70

ISO 1204: 1990

Двигатели внутреннего сгорания поршневые. Обозначение направления вращения и цилиндров и клапанов в головках цилиндров, а также определение рядных правосторонних и левосторонних двигателей и местоположений на двигателе

90.93 ISO / TC 70

ISO 1205: 1972

Двигатели внутреннего сгорания поршневые. Обозначение цилиндров

95.99 ISO / TC 70

ISO 2261: 1972

Двигатели внутреннего сгорания поршневые. Ручные устройства управления. Стандартное направление движения

95.99 ISO / TC 70

ISO 2261: 1994

Двигатели внутреннего сгорания поршневые. Ручные устройства управления. Стандартное направление движения

90.93 ISO / TC 70

ISO 2276: 1972

Двигатели внутреннего сгорания поршневые. Определение правосторонних и левосторонних моноблочных двигателей

95.99 ISO / TC 70

ISO 2710-1: 2000

Двигатели внутреннего сгорания поршневые. Словарь. Часть 1. Условия проектирования и эксплуатации двигателя

95.99 ISO / TC 70

ISO 2710-1: 2017

Двигатели внутреннего сгорания поршневые. Словарь. Часть 1. Условия проектирования и эксплуатации двигателя

60.60 ISO / TC 70

ISO 2710-2: 1999

Двигатели внутреннего сгорания поршневые. Словарь. Часть 2. Условия технического обслуживания двигателя

95.99 ISO / TC 70

ISO 2710-2: 2019

Двигатели внутреннего сгорания поршневые. Словарь. Часть 2. Условия технического обслуживания двигателя

60.60 ISO / TC 70

ISO 2710: 1978

Двигатели внутреннего сгорания поршневые. Словарь

95.99 ISO / TC 70
95,99 ISO / TC 70

ISO 3046-1: 1981

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 1. Стандартные эталонные условия и декларации мощности, расхода топлива и расхода смазочного масла

95.99 ISO / TC 70

ISO 3046-1: 1986

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 1. Стандартные эталонные условия и декларации мощности, расхода топлива и расхода смазочного масла

95.99 ISO / TC 70

ISO 3046-1: 1986 / Amd 1: 1987

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 1. Стандартные эталонные условия и декларации мощности, расхода топлива и расхода смазочного масла. Поправка 1

95.99 ISO / TC 70

ISO 3046-1: 1995

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 1. Стандартные эталонные условия, декларации мощности, расхода топлива и смазочного масла и методы испытаний

95.99 ISO / TC 70

ISO 3046-1: 2002

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 1. Заявления о мощности, расходе топлива и смазочного масла и методах испытаний. Дополнительные требования к двигателям общего назначения

90.92 ISO / TC 70

ISO 3046-2: 1977

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 2. Методы испытаний

95.99 ISO / TC 70

ISO 3046-2: 1987

Взаимные двигатели внутреннего сгорания. Эксплуатационные характеристики. Часть 2. Методы испытаний

95.99 ISO / TC 70

ISO 3046-3: 1979

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 3. Контрольные измерения

95.99 ISO / TC 70

ISO 3046-3: 1989

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 3. Контрольные измерения

95.99 ISO / TC 70

ISO 3046-3: 2006

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 3. Контрольные измерения

90.93 ISO / TC 70

ISO 3046-4: 1978

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 4. Регулирование скорости

95.99 ISO / TC 70

ISO 3046-4: 1997

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 4. Регулирование скорости

95.99 ISO / TC 70

ISO 3046-4: 2009

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 4. Регулирование скорости

90.60 ISO / TC 70

ISO 3046-5: 1978

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 5. Крутильные колебания

95.99 ISO / TC 70

ISO 3046-5: 2001

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 5. Крутильные колебания

90.93 ISO / TC 70

ISO 3046-6: 1982

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 6. Защита от превышения скорости

95.99 ISO / TC 70

ISO 3046-6: 1990

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 6. Защита от превышения скорости

95.99 ISO / TC 70

ISO 3046-6: 2020

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 6. Защита от превышения скорости

60.60 ISO / TC 70

ISO 3046-7: 1987

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 7. Коды мощности двигателя

95.99 ISO / TC 70

ISO 3046-7: 1995

Двигатели внутреннего сгорания поршневые. Эксплуатационные характеристики. Часть 7. Коды мощности двигателя

95.99 ISO / TC 70

ISO 3249: 1975

Двигатели внутреннего сгорания поршневые. Определения мест на двигателе

95.99 ISO / TC 70

ISO 4548-1: 1982

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 1. Падение давления / характеристики потока

95.99 ISO / TC 70 / SC 7

ISO 4548-1: 1982 / Cor 1: 1990

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 1. Падение давления / характеристики потока. Техническое исправление 1

95.99 ISO / TC 70 / SC 7

ISO 4548-1: 1997

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 1. Дифференциальные характеристики давление / расход

90.93 ISO / TC 70 / SC 7

ISO 4548-2: 1982

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 2. Характеристики элементов байпасного элемента

95.99 ISO / TC 70 / SC 7

ISO 4548-2: 1982 / Cor 1: 1990

Методы испытаний полнопоточных фильтров смазочных масел для двигателей внутреннего сгорания. Часть 2. Характеристики элементов байпасного элемента. Техническое исправление 1

95.99 ISO / TC 70 / SC 7

ISO 4548-2: 1997

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 2. Характеристики перепускного клапана элемента

90.93 ISO / TC 70 / SC 7

ISO 4548-3: 1982

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 3. Устойчивость к высокому перепаду давления и повышенной температуре

95.99 ISO / TC 70 / SC 7

ISO 4548-3: 1982 / Cor 1: 1990

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 3. Устойчивость к высокому перепаду давления и повышенной температуре. Техническое исправление 1

95.99 ISO / TC 70 / SC 7

ISO 4548-3: 1997

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 3. Стойкость к высокому перепаду давления и повышенной температуре

90.93 ISO / TC 70 / SC 7

ISO 4548-4: 1997

Методы испытаний полнопоточных фильтров смазочных масел для двигателей внутреннего сгорания. Часть 4. Начальная эффективность удержания частиц, срок службы и совокупная эффективность (гравиметрический метод)

90.93 ISO / TC 70 / SC 7

ISO 4548-5: 1990

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 5. Имитация холодного запуска и испытание на долговечность гидравлического импульса

95.99 ISO / TC 70 / SC 7

ISO 4548-5: 2013

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 5. Испытание на имитацию холодного запуска и долговечность гидравлического импульса

95.99 ISO / TC 70 / SC 7

ISO 4548-5: 2020

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 5. Испытание на гидравлический импульс

60.60 ISO / TC 70 / SC 7

ISO 4548-6: 1985

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 6. Испытание на статическое давление разрыва

95.99 ISO / TC 70 / SC 7

ISO 4548-6: 1985 / Cor 1: 1990

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 6. Испытание на статическое давление разрыва. Техническое исправление 1

95.99 ISO / TC 70 / SC 7

ISO 4548-6: 2012

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 6. Испытание на статическое давление разрыва

90.92 ISO / TC 70 / SC 7

ISO / DIS 4548-6

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 6. Испытание на статическое давление разрыва

40.00 ISO / TC 70 / SC 7

ISO 4548-7: 1990

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 7. Испытание на усталостную вибрацию

95.99 ISO / TC 70 / SC 7

ISO 4548-7: 2012

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 7. Испытание на усталостную вибрацию

90.93 ISO / TC 70 / SC 7

ISO 4548-8: 1989

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 8. Испытание впускного антидренажного клапана

95.99 ISO / TC 70 / SC 7

ISO 4548-8: 1989 / Cor 1: 1990

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 8. Испытание впускного антидренажного клапана. Техническое исправление 1

95.99 ISO / TC 70 / SC 7

ISO 4548-9: 1995

Методы испытаний полнопоточных масляных фильтров для двигателей внутреннего сгорания. Часть 9. Испытания впускного и выпускного клапанов против слива

.
Пластмассовые детали для двигателей внутреннего сгорания — ScienceDaily

Усилия по производству более легких транспортных средств обязательно включают в себя детали двигателя, такие как корпус цилиндра, который может потерять до 20 процентов своего веса, если он будет сделан из армированного волокном пластика, а не из алюминия — без дополнительных затрат. Такие литые детали подходят даже для массового производства.

Очевидно, что автомобили должны стать легче, чтобы уменьшить расход топлива. Для большинства автомобильных дизайнеров это главным образом означает части кузова, но система трансмиссии, которая включает двигатель, также учитывает большую часть веса транспортного средства.До сих пор автопроизводители полагались на алюминий, чтобы уменьшить вес компонентов двигателя, таких как блок цилиндров. В будущем производители автомобилей смогут добиться дальнейшего снижения веса, разработав блоки цилиндров, в которых определенные детали изготовлены из армированных волокном пластиков. Экспериментальный двигатель, разработанный проектной группой Fraunhofer для новых систем привода (NAS), которая является частью Института химической технологии Фраунгофера в сотрудничестве с SBHPP, подразделением высокопроизводительных пластмасс Sumitomo Bakelite Co.ООО, Япония, демонстрирует этот принцип.

«Мы использовали армированный волокнами композитный материал для изготовления корпуса цилиндра для одноцилиндрового исследовательского двигателя», — сообщает доктор Ларс-Фредрик Берг, руководитель проекта и руководитель исследовательской области «Легкая конструкция силового агрегата» проекта Fraunhofer. Группа для новых систем привода. «Корпус цилиндра весит примерно на 20 процентов меньше, чем эквивалентный алюминиевый компонент, и стоит столько же». Это кажется очевидным решением, но для его решения потребовалось немало технических проблем, поскольку используемые материалы должны выдерживать экстремальные температуры, высокое давление и вибрации без нанесения ущерба.То, что пластмассы обладали этими качествами, было признано еще в 1980-х годах, но в то время было возможно производить детали этого типа только в небольшом объеме и прилагая большие усилия в виде ручного труда — бесполезного для автомобильная промышленность, в которой блоки цилиндров производятся серийно в миллионах единиц.

Итак, что сделали исследователи, чтобы гарантировать, что их двигатель будет достаточно надежным? «Сначала мы рассмотрели конструкцию двигателя и определили области, подверженные высоким тепловым и механическим нагрузкам.Здесь мы используем металлические вставки для усиления их износостойкости », — объясняет Берг. Одним из примеров является гильза цилиндра, внутри которой поршень перемещается вверх и вниз миллионы раз в течение срока службы автомобиля. Исследователи также изменили геометрию этих деталей, чтобы убедитесь, что пластик подвергается как можно меньшему нагреву.

Фенольная смола, армированная стекловолокном

Характеристики пластика также играют важную роль. Он должен быть достаточно твердым и жестким, а также устойчивым к воздействию масла, бензина и гликоля в охлаждающей воде.Он также должен демонстрировать хорошую адгезию к металлическим вставкам и не иметь более высокого коэффициента теплового расширения, чем металл, иначе вставки отделятся от подложки. Команда Берга использует фенольный композит, армированный стекловолокном, разработанный SBHPP, который отвечает всем этим требованиям и содержит 55 процентов волокон и 45 процентов смолы. Более легкая, но более дорогая альтернатива — использовать композит, армированный углеродным волокном, — выбор зависит от того, хочет ли автопроизводитель оптимизировать двигатель с точки зрения затрат или веса.

Исследователи производят эти компоненты из гранулированных термореактивных пластмасс, используя процесс литья под давлением. Расплавленный композитный материал, в котором стеклянные волокна уже смешаны со смолой, затвердевает в форме, в которую он был впрыснут. Ученые проанализировали процесс с помощью компьютерного моделирования, чтобы определить лучший метод впрыска материала с целью оптимизации производительности готового продукта. Процесс совместим со сценариями массового производства, а производственные затраты значительно ниже, чем у алюминиевых деталей двигателя, не в последнюю очередь потому, что исключаются многочисленные операции отделки.

Прототип этого двигателя будет представлен в этом году на Ганноверской выставке Messe, которая состоится 13-17 апреля (выставка в павильоне 2, стенд C16). Тестовые запуски нового двигателя были успешно завершены. «Мы доказали, что он способен работать с теми же характеристиками, что и обычные двигатели», — говорит Берг. Кроме того, он обещает предложить дополнительные преимущества, такие как более низкий уровень шума при работе, по сравнению с двигателями, опирающимися исключительно на металлические детали. Исходные данные также указывают на то, что количество тепла, излучаемого в окружающую среду, ниже, чем количество, выделяемое двигателями на основе алюминия.Ученые намерены продолжить свои исследования, разработав многоцилиндровый двигатель на основе пластмассы, включая подшипники коленчатого вала.

История Источник:

Материалы предоставлены Fraunhofer-Gesellschaft . Примечание: содержимое может быть отредактировано по стилю и длине.

,
4 Различия между современными и старыми автомобильными двигателями

Задумывались ли вы когда-нибудь, в чем разница между старыми и новыми автомобильными двигателями? Как и в случае с любой технологией, эффективность и сложность постепенно улучшаются, как и следовало ожидать. Как оказалось довольно много.

Несмотря на то, что базовая концепция остается относительно неизменной, современные автомобили со временем претерпели ряд небольших улучшений. В следующей статье мы сосредоточимся на 4 интересных примерах.

Давайте посмотрим под капотами времени, не так ли?

Если это не сломано, не чините это

Основные принципы самых первых автомобилей все еще используются сегодня. Одно из главных отличий заключается в том, что современные автомобили являются результатом необходимости повышения мощности двигателей и, в конечном итоге, эффективности использования топлива. Частично это было давление рынка со стороны потребителей, а также более крупные рыночные силы.

Может быть полезно подумать об аналогии между волком и собакой. Они имеют одно и то же наследие, имеют схожие характеристики, но в современном пригороде было бы непросто, а другой процветал бы.

Прежде чем мы начнем, мы дадим краткий обзор того, как работает двигатель внутреннего сгорания.

4 Differences Between Modern and Older Car Engines Герой Александрийского раннего парового двигателя. Источник: Research Gate

Двигатель внутреннего сгорания, по сути, берет такой источник топлива, как бензин, смешивает его с воздухом, сжимает и зажигает его. Это вызывает серию небольших взрывов, которые, в свою очередь, приводят в движение поршни вверх и вниз. Эти поршни прикреплены к коленчатому валу, который переводит возвратно-поступательное линейное движение поршней во вращательное движение, поворачивая коленчатый вал.Коленчатый вал, в свою очередь, передает это движение через трансмиссию, которая передает мощность на колеса автомобиля. Просто верно?

Ну, это намного сложнее, чем вы ожидаете.

Вот простое объяснение основ:

Интересно, что преобразование возвратно-поступательного усилия во вращательное усилие не является чем-то новым. Очень ранний паровой двигатель был разработан героем Александрии в 1-м веке нашей эры (на фото выше).

Предполагается, что даже более старые устройства коленчатого вала были созданы во времена династии Хань в Китае.

1. Современные двигатели более эффективны

Сжигание топлива, как и бензина, не особенно эффективно. Из всей потенциальной химической энергии в нем около , 14-30%, превращается в энергию, которая фактически движет автомобиль. Остальное теряется на холостом ходу, паразитных потерях, жаре и трении.

Современные двигатели прошли долгий путь, чтобы выделять как можно больше энергии из топлива.Например, технология прямого впрыска не позволяет предварительно смешивать топливо и воздух до достижения цилиндра, как старые двигатели. Скорее, топливо впрыскивается непосредственно в цилиндры. Это дает около 1% улучшения .

Турбокомпрессоры используют выхлопной газ для питания турбины, которая выталкивает дополнительный воздух (то есть больше кислорода) в цилиндры для дальнейшего повышения эффективности до 8% . Изменение фаз газораспределения и деактивация цилиндров дополнительно повышают эффективность, позволяя двигателю использовать столько топлива, сколько ему действительно нужно.

2. Максимальная мощность

Как однажды сказал Джереми Кларксон: «В настоящее время все дело в MPG, а не в MPH», или, возможно, это был не он.

Современные автомобили лучше экономят топливо, они также намного мощнее.

Например, Chevrolet Malibu 1983 года имел 3,8-литровый V-6 двигатель мог извергать 110 лошадиных сил . Для сравнения, версия 2005 года имела 2,2-литровый рядный четырехцилиндровый двигатель мощностью 144 лошадиных сил. Не слишком потертый.

3. Размер это все, или это?

Этот привод, без каламбура, для повышения эффективности двигателей также со временем уменьшил свои размеры. Это не совпадение. Производители автомобилей узнали, что вам не нужно делать что-то большее, чтобы сделать его более мощным.

Все, что вам нужно сделать, это заставить объект работать умнее. Та же самая технология, которая сделала двигатели более эффективными, имела побочный эффект от их уменьшения.

Грузовики Ford F-серии являются отличным примером.F-150 имел две версии в 2011 году. 3,5-литровый V-6 двигатель, который генерирует 365 лошадиных сил и 5,0-литровый V-8 , который генерирует 360 лошадиных сил .

Хорошо, вы могли бы сказать, но разве не было 6,2-литрового V-8 , который давал 411 лошадиных сил р? Почему, да, но факт, что V-6 двигатель может почти конкурировать с большим V-8 по мощности, говорит о многом.

4. Уход от старого

Современные двигатели также являются результатом постепенной замены механических частей на электронные.Это связано с тем, что электрические детали, как правило, менее подвержены износу, как механические.

Они также требуют менее частой настройки, как таковой. Такие детали, как насосы, все чаще заменяются электронными, а не их аналоговыми предками.

Карбюраторы заменены на корпуса дроссельной заслонки и электронные системы впрыска топлива. Распределители и крышки были заменены независимыми катушками зажигания, контролируемыми ЭБУ. Кроме того, датчики контролируют все, более или менее.

Вы также можете утверждать, что новые автомобили менее безопасны.

Последнее слово

Хотя на базовом уровне современные и старые автомобильные двигатели работают по одному и тому же принципу, современные двигатели претерпели много постепенных улучшений с течением времени. Основной движущей силой была борьба за эффективность, а не за власть. Хороший набор побочных эффектов привел к тому, что современные двигатели стали относительно более мощными и в целом меньше. Постоянно растущая зависимость от электронных систем управления и мониторинга постепенно заменяет аналоговые, в лучшую или в худшую сторону.

В целом современные автомобильные двигатели более эффективны, меньше, относительно мощнее, умнее и менее подвержены неизбежным механическим повреждениям. С другой стороны, ремонт и обслуживание теперь являются более высококвалифицированным и трудоемким делом. Если цена за повышение эффективности — это увеличение принятия сложности, только вы можете быть судьей.

Через: Team-BHP, HowStuffWorks

.