3Июл

Гонит масло через турбину причины: Почему турбина гонит или ест масло — причины

Почему турбина гонит масло?

Подписывайтесь на наши соц.сети!

ПОЛЬЗОВАТЕЛЬСКОЕ СОГЛАШЕНИЕ

Я, субъект персональных данных, в соответствии с Федеральным законом от 27 июля 2006 года № 152 «О персональных данных» предоставляю ООО «Мега групп» (далее — Оператор), расположенному по адресу 115191, г. Москва, Духовской переулок, дом 17, стр. 15, согласие на обработку персональных данных, указанных мной в форме веб-чата и/или в форме заказа обратного звонка на сайте в сети «Интернет», владельцем которого является Оператор.

Состав предоставляемых мной персональных данных является следующим: ФИО, адрес электронной почты и номер телефона.
Целями обработки моих персональных данных являются: обеспечение обмена короткими текстовыми сообщениями в режиме онлайн-диалога и обеспечение функционирования обратного звонка.
Согласие предоставляется на совершение следующих действий (операций) с указанными в настоящем согласии персональными данными: сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, передачу (предоставление, доступ), блокирование, удаление, уничтожение, осуществляемых как с использованием средств автоматизации (автоматизированная обработка), так и без использования таких средств (неавтоматизированная обработка).
Я понимаю и соглашаюсь с тем, что предоставление Оператору какой-либо информации о себе, не являющейся контактной и не относящейся к целям настоящего согласия, а равно предоставление информации, относящейся к государственной, банковской и/или коммерческой тайне, информации о расовой и/или национальной принадлежности, политических взглядах, религиозных или философских убеждениях, состоянии здоровья, интимной жизни запрещено.
В случае принятия мной решения о предоставлении Оператору какой-либо информации (каких-либо данных), я обязуюсь предоставлять исключительно достоверную и актуальную информацию и не вправе вводить Оператора в заблуждение в отношении своей личности, сообщать ложную или недостоверную информацию о себе.
Я понимаю и соглашаюсь с тем, что Оператор не проверяет достоверность персональных данных, предоставляемых мной, и не имеет возможности оценивать мою дееспособность и исходит из того, что я предоставляю достоверные персональные данные и поддерживаю такие данные в актуальном состоянии.
Согласие действует по достижении целей обработки или в случае утраты необходимости в достижении этих целей, если иное не предусмотрено федеральным законом.
Согласие может быть отозвано мною в любое время на основании моего письменного заявления.

Почему турбина гонит масло? Возможные причины и способы решения проблемы

Статистика сообщает о том, что турбированных двигателей становится все больше и больше. И это вполне нормально. Турбированный силовой агрегат несет массу прямых и косвенных бонусов своему владельцу. Наличие компрессора дает возможность рациональней использовать топливо. С помощью турбины можно увеличить мощностные характеристики двигателя без необходимости увеличения объема мотора. Этого достигают посредством подачи сжатого воздуха, нагнетаемого крыльчаткой. Но здесь есть одна проблема – турбина гонит масло, что доставляет массу неудобств и больших денежных трат. Попробуем разобраться в причинах неисправности и способах решения данной проблемы.

Устройство турбокомпрессора

Если говорить простыми словами о сложном, то компрессор имеет примитивнейшую конструкцию. Турбина представляет собой корпус в виде улитки. Внутри корпуса имеется вал с двумя лопастными шестернями. Одна такая шестеренка раскручивается за счет отработанных газов. Другая также вращается, так как посажена на одном валу. Частота вращения вала может быть запредельная – до 250 тысяч оборотов в минуту. Поэтому вал должен работать на качественных подшипниках. Обычно таких подшипников два.

Практика показывает, что на рабочих оборотах турбины ни один существующий сухой подшипник не может выдержать нагрузки в таких условиях. Подшипник заклинивает, а турбина отправляется в ремонт. Инженеры долго думали, как забрать лишнюю температуру и улучшить скольжение. Со всем этим хорошо справляется масло – к валу турбины подведены смазочные каналы для каждого подшипника от картера двигателя. Таким образом, механизм может работать на высоких оборотах, повышается его производительность и надежность.

Даже полностью исправная турбина будет потреблять определенное количество масло. Чем больше водитель будет давить на газ, тем больше потребление. Нормальный расход составляет до 2,5 литра на 10 тысяч километров. Может ли турбина гнать масло в больших объемах? Это зависит от состояния ДВС.

В турбокомпрессоре есть две части – горячая и холодная. Сверху к подшипникам компрессора подведены масляные каналы. Один нужен для горячей части, другой для холодной. Далее масло, смазав подшипники, возвращается в картер. Но герметичны ли подшипники?

Подшипник никак и ни при каких условиях не должен соприкасаться с лопастями, иначе в этом случае турбина гонит масло с одной стороны в коллектор или интеркулер, а с другой стороны — в глушитель. Между подшипником и крыльчаткой установлены запорные кольца. Давлением эти кольца подпирает и масло не уходит в больших объемах.

Главный недостаток турбины

Существующий опыт эксплуатации двигателей с турбинами показывает, что эти силовые агрегаты имеют ряд проблем. Самая главная проблема связана с утечками масла из компрессора. И если турбина гонит масло на каком-то двигателе, то замена ее не всегда помогает полностью решить данную проблему.

Масло течет из компрессора лишь в случае высокого давления. Для того чтобы турбина могла протолкнуть воздух, нужно приложить очень большое усилие. Это усилие и становится причиной того, что масло течет через подшипники скольжения.

Как нормализовать давление?

Для нормализации давления еще при монтаже турбокомпрессора нужно, чтобы соблюдались определенные условия и выполнялись действия.

Так, нужно выяснить, в каком состоянии воздушный фильтр. Если он грязный и забитый, следует поставить новый. Также проверяют чистоту корпуса воздушного фильтра и патрубок. Далее нужно удостовериться, что корпус фильтра и его крышка герметичны. Если это не так, то внутрь турбокомпрессора очень легко может попасть пыль и мусор, что вскоре приведет к выходу агрегата из строя. Вместе с этим прочищают все патрубки, а при сборке следят, чтобы внутрь не попал мусор и посторонние частицы.

Также лучше заменить масло в моторе. Грязь, которая всегда есть в масле, обязательно осядет на поверхности подшипников и через какое-то количество времени компрессор заклинит.

Далеко не все слесаря и автолюбители знают и полностью выполняют все эти операции, в результате турбина гонит масло. Устанавливая компрессор, нужно четко изучить инструкцию. В основном все проблемы из-за износа и нарушений в процессе установки.

Другие причины течи масла

Утечка масла через компрессор – частая проблема. С этим сталкивался практически каждый владелец. Можно выделить следующие причины этого явления:

  • Так, неприятность случается из-за повышенного уровня масла в системе, из-за забитой системы вентиляции картерных газов. С проблемой могут столкнуться владельцы двигателей с сильным износом поршневой группы – внутри мотора высокое давление. Если засорен катализатор, то турбина гонит масло, и это нормально. При забитом маслосливном канале турбины симптомы будут те же.
  • Многие причины связаны с проблемой системы слива масла. В корпус оно подается под давлением. Масло проходит через подающую магистраль, затем оно там смешивается с воздухом и продуктами сгорания. В итоге создается пена, которая затем стекает вниз корпуса «улитки». И только потом попадает в магистраль для слива масла и далее в картер. Если канал слива будет иметь недостаточную ширину или масла в двигателе будет больше, оно будет оставаться в корпусе турбины и течь через уплотнительные элементы.

Уплотнители

Многие зря думают, что уплотнительные детали в компрессоре нужны только для того, чтобы масло не попало в корпус турбины. Это так, но главная задача уплотнения – это дать газам возможность под высоким давлением попасть в картер двигателя. Некоторые производители выпускают компрессоры и вовсе без уплотнительных колец с впускного тракта, но в этом случае масло не течет.

Течь из-за засоренного воздушного фильтра

В процессе эксплуатации автомобиля воздушный фильтр постепенно засоряется. В нем скапливается абразив. Увеличивается сопротивление для прохода воздушного потока и на входе турбины образуется вакуум. На высоких и средних оборотах двигатель работает нормально. За колесом турбины избыточное давление, поэтому масло не течет.

А вот на холостых оборотах и переходных режимах вакуум уже на входе и на выходе. На малых нагрузках масло за счет разряжения поднимается снизу корпуса турбины и затем попадает во впускной коллектор. Это тот же случай, когда турбина гонит масло в интеркулер.

А для устранения неисправности нужно очень мало – достаточно замены воздушного фильтра на новый. Иногда достаточно хорошо продуть старый фильтр.

Засоренный катализатор и турбина

Когда забит катализатор, на выходе выпускных газов также появляется сопротивление. Это приводит к повышенной нагрузке на ротор компрессора. Если и дальше эксплуатировать автомобиль, то это скажется повышенным расходом топлива, снижением динамики и мощности. Также это влечет к износу подшипников в турбине. Вот почему турбина гонит масло.

Интеркулер

В процессе работы компрессора выделяется масса тепла. Это ведет к определенным последствиям. Так, понижается эффективность работы, так как турбине трудней сжимать горячий воздух. И еще за счет повышенных нагрузок интенсивно изнашиваются детали и узлы конструкции. Все это служило главной причиной выхода из строя турбокомпрессора. Чтобы решить эту проблему, был создан интеркулер. Он нужен для понижения температуры воздуха до оптимальной величины. В автомобильной отрасли используется воздушный и жидкостный радиатор.

Турбина и масло в интеркулере

Давайте рассмотрим ситуацию, когда турбина гонит масло в интеркулер. Причины данной неприятности – это все те же дефектные маслопроводы, грязь, поврежденные воздуховоды и фильтры.

Дефект маслопровода

Маслопровод следует оценивать визуально. Он находится в большинстве случаев между турбиной и кратером двигателя. Именно через него масло подается в компрессор. Изготавливают данную трубу из стали, она имеет сложную форму. Деформировать ее достаточно трудно, но можно. Если меняется форма маслопровода, то нарушается нормальная работа турбины. Падает пропускная способность и того количества масла для нормальной и эффективной работы компрессора не хватает. Это ведет к росту давления масла, оно течет в интеркулер.

Загрязненный маслопровод

Чем старше авто, тем больше в нем скрытых дефектов и неполадок. К ним можно отнести и ситуацию, когда турбина дизеля гонит масло. Со временем на внутренней полости маслопровода образуются наслоения, снижающие диаметр канала. Это ведет опять же к росту давления в коллекторе или интеркулере.

Засоренный фильтр

Нередко владельцы авто забывают о воздушных фильтрах – не меняют и не чистят их. А ведь он играет важную роль в работе наддува. Грязный воздух ведет к нарушениям в работе турбины. Если фильтр плохо очищает поступающий воздух, он подает его в недостаточном объеме. В результате гонит масло через турбину прямиком в систему охлаждения.

Поврежденный воздуховод

В корпусе воздуховода могут образовываться трещины. Они способствуют образованию зоны с разряжением. Это приведет к тому, что масло из зоны с высоким давлением будет течь в зону с низким давлением. Затем масло спровоцирует порчу уплотнительных элементов и прокладок. Зона разряжения будет расширяться, и в этом случае масло будет течь, как лавина или цунами.

Некритичные повреждения могут быть исправлены. А если исправить невозможно, тогда нужно срочно менять, так как эксплуатация в таком режиме приведет к необходимости чистки компрессора.

Масло

Мы рассмотрели случаи, когда турбина гонит масло. Причины эти основные. Но виновником может быть и само масло, особенно некачественное. Оно для турбокомпрессорных двигателей должно быть стойким к сгоранию. Есть специальное жаростойкое масло для турбокомпрессоров. Оно не должно гореть. Обычное масло приведет к закоксовке всех каналов для смазки подшипников турбины. Поэтому подбирать смазочные материалы нужно правильно.

Какое бы масло ни было, оно изнашивается и теряет свои свойства. Образуется нагар и закоксовка каналов. Это также ведет к тому, что компрессор гонит масло.

Грязный интеркулер и последствия

Если в интеркулере будет масло, то качество охлаждения воздуха для наддува снизится. Это приведет к перегревам турбины.

Заключение

Это еще не приговор, если турбина дизель гонит масло. Причины неполадки устранить можно недорого и сравнительно просто. Главное — сделать это вовремя. И тогда машина будет радовать и дарить эмоции.

Как работают газотурбинные электростанции

Управление Управление ископаемой энергией и выбросами углерода

Изображение

Турбины внутреннего сгорания (газовые), устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном состоят из трех основных секций:

  • нагнетает его и подает в камеру сгорания со скоростью сотни миль в час.
  • Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом. Смесь сгорает при температуре более 2000 градусов по Фаренгейту. В результате сгорания образуется высокотемпературный поток газа под высоким давлением, который входит и расширяется через секцию турбины.
  • Турбина представляет собой сложную систему чередующихся стационарных и вращающихся лопастей с аэродинамическим профилем. Когда горячий дымовой газ расширяется через турбину, он вращает вращающиеся лопасти. Вращающиеся лопасти выполняют двойную функцию: они приводят в действие компрессор, чтобы накачать больше сжатого воздуха в секцию сгорания, и вращают генератор для производства электроэнергии.

Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давления (обычно ниже 20) и, как правило, имеют большие физические размеры. Степень сжатия – это отношение давления нагнетания компрессора к давлению воздуха на входе. Авиационные двигатели произошли от реактивных двигателей, как следует из названия, и работают при очень высокой степени сжатия (обычно более 30). Авиационные двигатели, как правило, очень компактны и полезны там, где требуется меньшая выходная мощность. Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы для достижения низкого уровня выбросов загрязняющих веществ, таких как NOx.

Одним из ключевых факторов эффективности отношения топлива к мощности турбины является температура, при которой она работает. Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной работе. Газ, протекающий через турбину типичной электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только до 1500–1700 градусов по Фаренгейту. Следовательно, воздух из компрессора может использоваться для охлаждения. ключевые компоненты турбины, снижая предельную тепловую эффективность.

Одним из главных достижений программы Министерства энергетики США по созданию усовершенствованных турбин стало преодоление прежних ограничений по температуре турбины за счет сочетания инновационных технологий охлаждения и передовых материалов. Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе в турбину до 2600 градусов по Фаренгейту, что почти на 300 градусов выше, чем в предыдущих турбинах, и достичь эффективности до 60 процентов.

Другим способом повышения эффективности является установка рекуператора или парогенератора-утилизатора (HRSG) для извлечения энергии из выхлопных газов турбины. Рекуператор улавливает отработанное тепло в выхлопной системе турбины для предварительного нагрева нагнетаемого компрессором воздуха перед его подачей в камеру сгорания. Котел-утилизатор вырабатывает пар, улавливая тепло выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, конфигурация которых называется комбинированным циклом.

Газовая турбина простого цикла может достигать эффективности преобразования энергии в диапазоне от 20 до 35 процентов. Благодаря более высоким температурам, достигнутым в программе турбин Министерства энергетики, будущие электростанции с комбинированным циклом, работающие на водороде и сингазе, вероятно, достигнут эффективности 60 процентов или более. Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может достигать 80 процентов.

 

Чтобы получить энергию ветра, вам нужна нефть

Утрехт, город с населением 350 000 человек, в основном передвигающийся на велосипедах, расположенный к югу от Амстердама, стал испытательным полигоном для методов двунаправленной зарядки, которые вызывают живой интерес автопроизводителей, инженеров, городских менеджеров и энергетических компаний во всем мире. Эта инициатива реализуется в условиях, когда обычные граждане хотят путешествовать, не вызывая выбросов, и все больше осознают ценность возобновляемых источников энергии и энергетической безопасности.

«Мы хотели перемен, — говорит Элко Эеренберг, один из заместителей мэра Утрехта и олдермен по вопросам развития, образования и общественного здравоохранения. Часть изменений связана с расширением городской сети зарядки электромобилей. «Мы хотим предсказать, где нам нужно построить следующую электрическую зарядную станцию».

Так что это хороший момент, чтобы подумать о том, где впервые появились концепции «автомобиль-сеть», и увидеть в Утрехте, как далеко они продвинулись.

Прошло 25 900 13 лет с тех пор, как эксперт по энергетике и окружающей среде Делавэрского университета Уиллетт Кемптон и экономист по энергетике из колледжа Грин-Маунтин Стив Летендре описали то, что они видели как «зарождающееся взаимодействие между электромобилями и системой электроснабжения». Этот дуэт вместе с Тимоти Липманом из Калифорнийского университета в Беркли и Алеком Бруксом из AC Propulsion заложил основу для передачи энергии от транспортного средства к сети.

Инвертор преобразует переменный ток в постоянный ток при зарядке автомобиля и обратно при подаче электроэнергии в сеть. Это хорошо для сетки. Еще предстоит ясно показать, почему это хорошо для водителя.

Их первоначальная идея заключалась в том, что автомобили в гараже будут иметь двустороннее компьютерное подключение к электросети, которая сможет получать питание от автомобиля, а также обеспечивать его питанием. Кемптон и Летендре Статья 1997 года в журнале Transportation Research описывает, как энергия аккумуляторов от электромобилей в домах людей будет питать сеть во время аварийной ситуации или отключения электроэнергии. С уличными зарядными устройствами вам даже не понадобится дом.

В двунаправленной зарядке используется инвертор размером с житницу, расположенный либо в специальном зарядном устройстве, либо на борту автомобиля. Инвертор преобразует переменный ток в постоянный ток при зарядке автомобиля и обратно при подаче электроэнергии в сеть. Это хорошо для сетки. Еще предстоит ясно показать, почему это хорошо для водителя.

Это животрепещущий вопрос. Владельцы автомобилей могут заработать немного денег, возвращая немного энергии в сеть в подходящее время, или могут сэкономить на своих счетах за электроэнергию, или могут таким образом косвенно субсидировать эксплуатацию своих автомобилей. Но с того момента, как Кемптон и Летендре изложили концепцию, потенциальные пользователи также опасались потерять деньги из-за износа батареи. То есть, не приведет ли циклирование батареи к преждевременному износу самого сердца автомобиля? Эти нерешенные вопросы сделали неясным, приживутся ли когда-нибудь технологии «автомобиль-сеть».

Наблюдатели за рынком стали свидетелями целой череды моментов, когда технология «автомобиль-сеть» практически достигла цели. В 2011 году в Соединенных Штатах Университет Делавэра и базирующаяся в Нью-Джерси коммунальная компания NRG Energy подписали технологическая лицензия на первое коммерческое развертывание технологии «автомобиль-сеть». Их исследовательское партнерство длилось четыре года.

В последние годы наблюдается всплеск этих пилотных проектов в Европе и США, а также в Китае, Японии и Южной Корее. В Соединенном Королевстве эксперименты в настоящее время происходит в загородных домах с использованием внешних настенных зарядных устройств, измеряемых для предоставления владельцам транспортных средств кредита на их счета за коммунальные услуги в обмен на загрузку аккумулятора в часы пик. Другие испытания включают коммерческие автопарки, набор фургонов в Копенгагене, два электрических школьных автобуса в Иллинойсе и пять в Нью-Йорке.

Однако эти пилотные программы так и остались пилотными. Ни одна из них не превратилась в крупномасштабную систему. Это может скоро измениться. Опасения по поводу износа аккумуляторов ослабевают. В прошлом году Хета Ганди и Эндрю Уайт из Университет Рочестера смоделировал экономику перехода от транспортного средства к сети и обнаружил, что затраты на износ аккумуляторов минимальны. Ганди и Уайт также отметили, что капитальные затраты на батареи со временем заметно снизились: с более чем 1000 долларов США за киловатт-час в 2010 году до примерно 140 долларов США в 2020 году.

По мере того, как технология перехода от транспортного средства к сети становится доступной, Утрехт становится одним из первых мест, где ее полностью внедряют.

Ключевой силой изменений, происходящих в этом продуваемом всеми ветрами голландском городе, является не тенденция мирового рынка или зрелость инженерных решений. Это мотивированные люди, которые также оказываются в нужном месте в нужное время.

Один из них — Робин Берг, основавший компанию под названием We Drive Solar из его дома в Утрехте в 2016 году. Он превратился в оператора по совместному использованию автомобилей с 225 электромобилями различных марок и моделей — в основном Renault Zoes, а также Tesla Model 3s, Hyundai Konas и Hyundai Ioniq 5s. Попутно привлекая партнеров, Берг наметил способы обеспечить двунаправленную зарядку для парка We Drive Solar. Сейчас в его компании 27 автомобилей с возможностью двунаправленного движения, и ожидается, что в ближайшие месяцы будет добавлено еще 150.

В 2019 году король Нидерландов Виллем-Александр руководил установкой двунаправленной зарядной станции в Утрехте. Здесь король [в центре] показан вместе с Робином Бергом [слева], основателем We Drive Solar, и Жеромом Панно [справа], генеральным менеджером Renault в Бельгии, Нидерландах и Люксембурге. Патрик ван Катвейк/Getty Images

Собрать этот флот было непросто. Два двунаправленных Renault Zoe We Drive Solar — это прототипы, которые Берг получил в партнерстве с французским автопроизводителем. Серийные Zoe, способные к двунаправленной зарядке, еще не вышли. В апреле прошлого года Hyundai поставила We Drive Solar 25 двунаправленных дальнобойных Ioniq 5. Это серийные автомобили с модифицированным программным обеспечением, которые Hyundai выпускает в небольшом количестве. Компания планирует внедрить эту технологию в стандартную комплектацию будущей модели.

1500 абонентов We Drive Solar не должны беспокоиться об износе аккумуляторов — если это проблема компании, то Берг так не думает. «Мы никогда не доходим до краев аккумулятора», — говорит он, имея в виду, что аккумулятор никогда не заряжается до достаточно высокого или низкого уровня, чтобы существенно сократить срок его службы.

We Drive Solar — это не бесплатный сервис, который можно забрать из приложения и доставить туда, куда вы хотите. Для автомобилей предусмотрены специальные парковочные места. Абоненты бронируют свои автомобили, забирают и сдают их в одном и том же месте и ездят на них, куда хотят. В тот день, когда я был у Берга, две его машины направлялись в швейцарские Альпы, а одна направлялась в Норвегию. Берг хочет, чтобы его клиенты рассматривали определенные автомобили (и связанные с ними парковочные места) как свои собственные и регулярно пользовались одним и тем же транспортным средством, обретая чувство собственности на то, чем они вообще не владеют.

То, что Берг сделал решительный шаг в сфере совместного использования электромобилей и, в частности, в сетевых технологиях, таких как двунаправленная зарядка, неудивительно. В начале 2000-х он основал местного поставщика услуг под названием LomboXnet, установив антенны Wi-Fi в пределах прямой видимости на шпиле церкви и на крыше одного из самых высоких отелей города. Когда интернет-трафик начал переполнять его радиосеть, он проложил оптоволоконный кабель.

В 2007 году Берг получил контракт на установку солнечных батарей на крыше местной школы с идеей создания микросети. Сейчас он управляет 10 000 панелями на крышах школ по всему городу. В его шкафу в прихожей стоит коллекция счетчиков электроэнергии, которые отслеживают солнечную энергию, частично поступающую в аккумуляторы электромобилей его компании — отсюда и название компании We Drive Solar.

Берг не узнал о двунаправленной зарядке через Кемптона или кого-либо из первых чемпионов технологии «автомобиль-сеть». Он услышал об этом из-за Катастрофа на АЭС Фукусима десять лет назад. В то время у него был Nissan Leaf, и он читал о том, как эти автомобили обеспечивали аварийное электроснабжение в районе Фукусимы.

«Хорошо, это интересная технология», — вспоминает Берг. «Есть ли способ масштабировать его здесь?» Nissan согласился отправить ему двунаправленное зарядное устройство, и Берг позвонил градостроителям Утрехта, сказав, что хочет проложить для него кабель. Это привело к большему количеству контактов, в том числе в компании, управляющей местной низковольтной сетью, Стедин. После того, как он установил свое зарядное устройство, инженеры Стедина захотели узнать, почему его счетчик иногда работал в обратном направлении. Позже Ирэн тен Дам из Утрехтского агентства регионального развития узнала об его эксперименте и была заинтригована, став сторонником двунаправленной зарядки.

Берг и люди, работающие в городе, которым нравилось то, что он делал, привлекли новых партнеров, в том числе Стедина, разработчиков программного обеспечения и производителя зарядных станций. К 2019 году Виллем-Александр, король Нидерландов, руководил установкой двунаправленной зарядной станции в Утрехте. «Как для города, так и для сетевого оператора самое замечательное то, что они всегда ищут способы масштабирования», — говорит Берг. Они не просто хотят сделать проект и сделать отчет о нем, говорит он. Они действительно хотят перейти к следующему шагу.

Следующие шаги выполняются все быстрее. В настоящее время в Утрехте имеется 800 двунаправленных зарядных устройств, разработанных и изготовленных голландской инженерной фирмой NieuweWeme. Скоро городу понадобится гораздо больше.

Количество зарядных станций в Утрехте резко возросло за последнее десятилетие.

«Люди покупают все больше и больше электромобилей, — говорит Иренберг, олдермен. Городские власти заметили всплеск таких покупок в последние годы только для того, чтобы услышать жалобы от жителей Утрехта на то, что им пришлось пройти долгий процесс подачи заявок, чтобы установить зарядное устройство там, где они могли бы его использовать. Эеренберг, ученый-компьютерщик по образованию, все еще работает над тем, чтобы развязать эти узлы. Он понимает, что город должен двигаться быстрее, если он хочет выполнить требование правительства Нидерландов о том, чтобы через восемь лет все новые автомобили были с нулевым уровнем выбросов.

Количество энергии, используемой для зарядки электромобилей в Утрехте, резко возросло в последние годы.

Несмотря на то, что аналогичные предписания по увеличению количества автомобилей с нулевым уровнем выбросов на дорогах в Нью-Йорке и Калифорнии в прошлом не срабатывали, сейчас потребность в электрификации автомобилей возрастает. И городские власти Утрехта хотят опередить спрос на более экологичные транспортные решения. Это город, который только что построил центральный подземный гараж на 12 500 велосипедов и потратил годы на то, чтобы прорыть автостраду, проходящую через центр города, и заменить ее каналом во имя чистого воздуха и здорового городского образа жизни.

Движущей силой этих изменений является Маттейс Кок, городской менеджер по энергопереходу. Он провел меня — естественно, на велосипеде — по новой зеленой инфраструктуре Утрехта, указав на некоторые недавние дополнения, такие как стационарная батарея, предназначенная для хранения солнечной энергии от множества панелей, которые планируется установить в местном жилом комплексе.

На этой карте Утрехта показана городская инфраструктура для зарядки электромобилей. Оранжевые точки — расположение существующих зарядных станций; красные точки обозначают разрабатываемые зарядные станции. Зеленые точки — возможные места для будущих зарядных станций.

«Вот почему мы все это делаем», — говорит Кок, отходя от своего велосипеда и указывая на кирпичный сарай, в котором находится трансформатор мощностью 400 киловатт. Эти трансформаторы являются последним звеном в цепи, которая идет от электростанции к высоковольтным проводам, к подстанциям среднего напряжения, к низковольтным трансформаторам и кухням людей.

В обычном городе таких трансформаторов тысячи. Но если слишком много электромобилей в одном районе нуждаются в зарядке, такие трансформаторы могут легко перегрузиться. Двунаправленная зарядка обещает облегчить такие проблемы.

Кок работает с другими в городском правительстве над сбором данных и созданием карт, разделяющих город на районы. Каждый из них аннотирован данными о населении, типах домохозяйств, транспортных средств и других данных. Вместе с нанятой группой по анализу данных и при участии обычных граждан они разработали алгоритм, основанный на политике, чтобы помочь выбрать лучшие места для новых зарядных станций. Город также включил стимулы для развертывания двунаправленных зарядных устройств в свои 10-летние контракты с операторами зарядных станций для транспортных средств. Итак, в этих зарядках пошли.

Эксперты ожидают, что двунаправленная зарядка будет особенно хорошо работать для транспортных средств, которые являются частью автопарка, движение которого предсказуемо. В таких случаях оператор может легко запрограммировать, когда заряжать и разряжать автомобильный аккумулятор.

We Drive Solar зарабатывает кредит, отправляя энергию аккумуляторов из своего парка в местную сеть в периоды пикового спроса и подзаряжая аккумуляторы автомобилей в непиковые часы. Если это так хорошо, водители не теряют запас хода, который им может понадобиться, когда они забирают свои машины. И эти ежедневные сделки по энергоснабжению помогают снизить цены для абонентов.

Поощрение схем совместного использования автомобилей, таких как We Drive Solar, нравится властям Утрехта из-за проблем с парковкой — хронической болезни, характерной для большинства растущих городов. Огромная строительная площадка недалеко от центра Утрехта скоро добавит 10 000 новых квартир. Дополнительное жилье приветствуется, но дополнительных 10 000 автомобилей не будет. Планировщики хотят, чтобы это соотношение было больше похоже на одну машину на каждые 10 домохозяйств, и количество выделенных общественных парковок в новых районах будет отражать эту цель.

Некоторые автомобили We Drive Solar, в том числе Hyundai Ioniq 5, поддерживают двунаправленную зарядку. We Drive Solar

Прогнозы крупномасштабной электрификации транспорта в Европе обескураживают. Согласно отчету Eurelectric/Deloitte, к 2030 году в Европе может быть от 50 до 70 миллионов электромобилей, для чего потребуется несколько миллионов новых точек зарядки, двунаправленных или иных. Для поддержки этих новых станций распределительным сетям потребуются сотни миллиардов евро инвестиций.

За утро до того, как Эеренберг сел со мной в мэрии, чтобы объяснить алгоритм планирования Утрехтской зарядной станции, на Украине разразилась война. Цены на энергоносители в настоящее время напрягают многие домохозяйства до предела. Бензин достиг 6 долларов за галлон (если не больше) в некоторых местах в Соединенных Штатах. В середине июня в Германии водителю скромного VW Golf пришлось заплатить около 100 евро (более 100 долларов США) за заправку бака. В Великобритании счета за коммунальные услуги выросли в среднем более чем на 50 процентов 1 апреля.

Война перевернула энергетическую политику на европейском континенте и во всем мире, сосредоточив внимание людей на энергетической независимости и безопасности и укрепив уже начатую политику, такую ​​как создание зон без выбросов в центрах городов и замена обычных автомобилей электрическими. те. Часто неясно, как лучше осуществить необходимые изменения, но моделирование может помочь.

Нико Бринкель, работающий над докторской диссертацией в Лаборатория интеграции фотогальваники Вильфрида ван Сарка в Утрехтском университете фокусирует свои модели на местном уровне. В Согласно своим расчетам, в Утрехте и его окрестностях укрепление низковольтной сети стоит около 17 000 евро за трансформатор и около 100 000 евро за километр сменного кабеля. «Если мы перейдем к полностью электрической системе, если мы добавим много энергии ветра, много солнечной энергии, много тепловых насосов, много электромобилей…», — его голос затихает. «Наша сеть не была предназначена для этого».

Но электрическая инфраструктура должна не отставать. Одно из исследований Бринкеля предполагает, что если бы большая часть зарядных устройств для электромобилей была двунаправленной, такие расходы можно было бы распределить более управляемым образом. «В идеале, я думаю, было бы лучше, если бы всех новых зарядных устройств были двунаправленными», — говорит он. «Дополнительные расходы не так уж велики».