12Июн

Схема системы питания инжекторного двигателя: Системы питания двигателя 2111 ВАЗ 21083i, 21093i, 21099i

Устройство системы питания инжекторного двигателя Ваз 2110, Ваз 2111, Ваз 2112

Автолюбителю

Ремонт инжектора двигателя, инструкции по замене датчиков системы питания лада 2110, проверка топливной системы двигателя лада 2112, порядок снятия и установки форсунок  своими руками ваз 2111, ваз 2112, ваз 2110. Обслуживание двигателя автомобиля лада 2112. Инструкции по ремонту системы охлаждения, выпуска отработавших газов, питания лада 2111. Особенности 8-ми и 16-ти клапанного двигателя лада 2110. Эксплуатация основных узлов и агрегатов двигателя

Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки
2 – пробка штуцера для контроля давления топлива
3 – рампа форсунок
4 – кронштейн крепления топливных трубок
5 – регулятор давления топлива
6 – адсорбер с электромагнитным клапаном
7 – шланг для отсоса паров бензина из адсорбера
8 – дроссельный узел
9 – двухходовой клапан
10 – гравитационный клапан
11 – предохранительный клапан
12 – сепаратор
13 – шланг сепаратора
14 – пробка топливного бака
15 – наливная труба
16 – шланг наливной трубы
17 – топливный фильтр
18 – топливный бак
19 – электробензонасос
20 – сливной топливопровод
21 – подающий топливопровод

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление — не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – «топливную» и «воздушную». «Воздушная» соединена вакуумным шлангом с ресивером, а «топливная» – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль «газа» разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль «газа», водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.


Система питания инжекторных двигателей

Давление в топливной системе

Топливная рампа и регулятор давления топлива

Замена топливных форсунок

Проверка топливных форсунок

Привод дроссельной заслонки

Дроссельный узел

Регулятор холостого хода

Замена адсорбера

Система управления двигателем

Контроллер и датчик впрыска

Система впрыска

Замена датчика детонации

Датчик кислорода, лямбда зонд

СО потенциометр

Датчик положения дроссельной заслонки (ДПДЗ)

Снятие и установка модуля зажигания

Датчик расхода воздуха

Датчик фаз двигателя

Предохранители и реле системы впрыска


  • Разборка и сборка
  • 8 клапанный
  • 16 клапанный
  • Система охлаждения
  • Система выхлопа
  • Карбюраторная система
  • Инжекторная система
  • Система питания

ВАЗ / 2110, 2111, 2112 / ремонт / двигатель / инжекторная система / Система питания инжекторных двигателей

Содержание Введение………………………………………………………………………….

..3

Министерство образования и науки Российской Федерации

Сыктывкарский лесной институт филиал

Федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

Санкт-Петербургского государственного лесотехнического университета

им. С.М.Кирова

Факультет ЛТФ

Кафедра АиАХ

Лабораторная работа № 1,2

Отчёт

Дисциплина: ТЭА

Тема: Система питания инжекторного двигателя.

Выполнил Артеева Т. П., гр. 141

Проверил Юшков А. Н., к.т.н.

Зав. кафедрой Чудов В. И., к.т.н.

Сыктывкар – 2011

  1. Устройство системы питания инжекторного двигателя…..………………….4

  2. Основные неисправности системы питания.………………………………7

    1. Датчики………………………………………………………………….7

    2. Форсунки………………………………………………………………..9

    3. Бензонасос……………………………………………………………..11

  3. ТО системы питания………….………………..………………………….12

Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный — все форсунки открываются одновременно. Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

  1. Устройство системы питания инжекторного двигателя

Рис.1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление — не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – «топливную» и «воздушную». «Воздушная» соединена вакуумным шлангом с ресивером, а «топливная» – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль «газа» разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль «газа», водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

Система питания двигателя автомобиля

Система питания двигателя автомобиля предназначена для подачи, очистки и хра­не­ния топлива, очистки воздуха, изготовления горючей смеси и пуска ее в цилиндры двигателя. Качество и объем этой смеси при различных рабочих режимах мотора должно быть разным, что также находится в компетенции системы питания двигателя. Так как мы будем рас­смат­ри­вать работу бензиновых моторов, в качестве топлива у нас всегда будет выступать бензин. В зависимости от типа устройства, выполняющего подготовку топливовоздушной смеси, си­ло­вые агрегаты могут быть карбюраторными, инжекторными или оборудованы мо­но­впрыс­ком. Для обеспечения экономичной и надежной работы мотора, бензин должен отличаться достаточной детонационной стойкостью и хорошей испаряемостью.

Детонацией ( см. детонация двигателя ) называется очень быстрое сгорание топлива, похожее на взрыв. Работа мотора с детонацией недопустима, т.к. сопровождается ударной нагрузкой на поршневые пальцы, коренные и шатунные подшипники, местным нагревом составляющих, дымным выпуском, прогоранием клапанов и поршней, увеличением топ­лив­но­го расхода, уменьшением мощности двигателя. На появление детонации также влияют нагрузка и скоростной режим мотора, опережение зажигания, нагарообразование на головке цилиндров и поршне ( см. работа поршня ) . Антидетонационные свойства бензинового топ­ли­ва оцениваются октановой величиной. Бензин сравнивают со смесью следующих топлив: изооктан, гептан. Гептан сильно детонирует – из-за этого для него октановое число условно принимают равное нулю. Второе топливо, изооктан, слабо детонирует – октановое число для него условно принимают в 100 единиц.

Октановым числом топлива является процентное количество изооктана в такой смеси с гептаном, которая по своей детонационной стойкости равноценна применяемому топливу. К примеру, если смесь, состоящая из 24% гептана и 76% изооктана (по объему), по де­то­на­ци­он­ным качествам соответствует проверяемому бензиновому топливу, то октановое число этого бензина будет равно 76. Чем больше октановое число топлива, тем выше его стойкость к детонации.

Система питания карбюраторного двигателя

Начнем с системы питания карбюраторного двигателя. Ранее мы выяснили, что в цилиндр поступает рабочая смесь (или образуется там), а после ее сгорания образовавшиеся там газы выводятся из него наружу. Теперь рассмотрим, как и за счет чего образуется рабочая смесь и куда выводятся продукты сгорания.

Принципиальная схема системы питания карбюраторного двигателя ( см. устройство двигателя автомобиля ) представлена ниже.

Составляющие системы питания карбюраторного двигателя:

  • топливный бак;
  • топливный насос;
  • топливопроводы;
  • фильтры очистки топлива;
  • воздушный фильтр;
  • инжектор или карбюратор.

 

Топливный бак – это металлическая емкость, способная вмещать от 40 до 80 литров, чаще всего монтируется в заднюю часть автомобиля ( см. топливный бак автомобиля ). Бен­зо­бак наполняется топливом через горловину, с предусмотренной трубкой для выхода воздуха в процессе заправки. Некоторые автомобили имеют бензобак, в нижней части которого на­хо­дит­ся сливное отверстие, позволяющее полностью очистить топливный бак от бензина и не­же­ла­тель­ных составляющих – мусора, воды.

Бензин, залитый в топливный бак автомобиля, проходит предварительно очистку через сетчатый фильтр, который установлен на топливозаборнике внутри бака. В бензобаке также находится датчик уровня топлива (специальный поплавок с реостатом), данные которого отображаются на щитке приборов.

Топливный насос отвечает за подачу топлива в систему впрыска, а также под­дер­жи­ва­ет необходимое рабочее давление в топливной системе ( см. топливный насос двигателя ). Данный механизм устанавливается в топливном баке и оснащен электрическим приводом. В случае необходимости может применяться дополнительный (подкачивающий) насос. В топливном баке вместе с топливным насосом устанавливается специальный датчик уровня топлива. В конструкции датчика лежит потенциометр и поплавок. Перемещение поплавка при изменении наполненности топливного бака приводит к изменению местоположения по­тен­ци­о­мет­ра. В свою очередь, это приводит к увеличению сопротивления в цепи и понижению нап­ря­же­ния на указатель топливного запаса.

Очистка поступающего топлива происходит в топливном фильтре. Современные ав­то­мо­би­ли имеют топливный фильтр со встроенным редукционным клапаном, который регулирует рабочее давление в топливной системе. Все излишки топлива по сливному топливопроводу отводятся от клапана. На силовых агрегатах с непосредственным топливным впрыском редукционный клапан не устанавливается в топливном фильтре.

Чтобы очистить топливо от различных механических примесей, используют фильтры тонкой и грубой очистки. Фильтры-отстойники, предназначенные для грубой очистки, выполняют отделение топлива от крупных механических примесей и воды. Фильтр-отстойник состоит из основного корпуса, фильтрующего элемента и отстойника. Фильтрующий элемент – это конструкция, собранная из тонких пластин, толщиной 0,14 мм. Эти пластины имеют отверстия и выступы величиной 0,05 мм. Комплект пластин установлен на стержень и с помощью пружины прижимается к корпусу. Собранные пластины имеют щели между собой, через которые проходит топливо. Вода и крупные механические примеси скапливаются на дне отстойника и через отверстие пробки удаляются.

Топливный фильтр системы топлива дизельных силовых агрегатов ( см. устройство дизельного двигателя ) имеет немного другую конструкцию, но суть работы остается ана­ло­гич­ной. С определенной периодичностью выполняется замена этого фильтра в сборе или исключительно в его фильтрующей составляющей.

Чтобы очистить топливо от мелких механических примесей, используют фильтры тонкой очистки. Данная разновидность фильтров состоит из основного корпуса, филь­тру­ю­ще­го керамического или сетчатого элемента и стакана-отстойника. Фильтрующий ке­ра­ми­чес­кий элемент – пористый материал, который обеспечивает лабиринтное движение топлива. Крепление фильтра – винт и скоба.

Топливопроводы соединяют приборы всей топливной системы и изготавливаются из латунных, стальных и медных трубок.

В системе питания двигателя топливо циркулирует по топливопроводам. Топ­ли­во­про­во­ды бывают подающие и сливные. В подающем топливопроводе поддерживается пос­то­ян­ное рабочее давление. По сливному топливопроводу все излишки топлива отходят в бак для топлива.

Воздушный фильтр предназначен для очистки от пыли поступающего в карбюратор воздуха. Пыль содержит мельчайшие кристаллики кварца, которые оседают на смазанных деталях, что в дальнейшем приводит к их износу. По способу очистки воздуха, воздушные фильтры делятся на сухие и инерционно-масляные. Инерционно-масляный фильтр в своей конструкции имеет корпус с масляной ванной, фильтрующий элемент, изготовленный из синтетического материала и воздухозаборник.

При работе мотора проходящий через кольцевую щель во внутренней части корпуса воздух соприкасается с масляной поверхностью и резко изменяет траекторию своего движения. В результате этого большие частицы пыли, находящиеся в воздухе, остаются на масляной поверхности. После этого воздух попадает в фильтрующий элемент, в котором происходит его очистка от мельчайших частичек пыли и попадает в карбюратор. Благодаря этой системе воздух проходит двойную очистку. При сильном засорении фильтр про­мы­ва­ет­ся.

Сухой воздушный фильтр состоит из корпуса, фильтрующего элемента из пористого картона и воздухозаборника. В случае необходимости фильтрующий элемент можно за­ме­нить.

Карбюратор ( см. устройство карбюратора ) – прибор, служащий для приготовления горючей смеси из воздуха и легкого жидкого топлива, для питания карбюраторных моторов. Распыляемое топливо в карбюраторе перемешивается с воздухом и затем подается в цилиндры.

Система питания инжекторного двигателя служит для образования топливно-воз­душ­ной смеси с помощью топливного впрыска.

 

 

Работа системы питания двигателя

Если вкратце рассмотреть работу системы питания двигателя, то выглядит она сле­ду­ю­щим образом.

Топливо (в данном случае бензин) за счет разрежения воздуха, создаваемого в системе при движении поршня от ВМТ к НМТ, а также с помощью топливного насоса, поступает в карбюратор автомобиля, проходя через фильтры. Топливный насос подает бензин из бака. Топливные насосы подразделяются на электрические и механические. Механические топ­лив­ные насосы устанавливаются на автомобилях с карбюраторными силовыми агрегатами. Автомобили, оборудованные электронным впрыском, оснащены электрическим насосом. В карбюраторе пары бензина смешиваюется с поступающим воздухом, образуя топливно-воздушную смесь, которая и направляется в цилиндр. После совершения рабочего цикла (сгорания смеси), поршень, двигаясь вверх, выдавливает отработавшие газы через выпускной клапан, которые в конечном итоге выпускаются в атмосферу.

Работа системы питания двигателя с системой впрыска (инжекторной) происходит аналогичным образом.

 

Рабочие режимы системы питания двигателя

 

В зависимости от дорожных условий и целей водитель может использовать разные режимы езды. Им соответствуют и определенные рабочие режимы системы питания двигателя, каждому из которых принадлежит топливно-воздушная смесь особого состава. Для каждого режима работа системы питания двигателя будет иметь свои особенности.

  1. Качество смеси будет богатым при запуске холодного мотора. Потребление воздуха при этом минимальное. В данном режиме возможность движения категорически ис­клю­ча­ет­ся. В противном случае это вызовет повышенное потребление топлива и износ деталей двигателя.
  2. Состав смеси будет достаточно обогащенным при использовании «холостого хода», который применяется во время движения «накатом» или работе включенного мотора в прогретом состоянии.
  3. Состав смеси будет обедненным при передвижении с частичными нагрузками.
  4. Состав смеси также будет обогащенным в режиме полных нагрузок при езде на вы­со­кой скорости.
  5. Состав смести будет обогащенным, максимально приближенным к богатому, при езде в условиях резкого ускорения.

 

Выбор рабочих условий системы питания двигателя должен быть оправдан пот­реб­ностью движения в определенном режиме.

 

 

Система питания инжекторного двигателя

Так в наше время в автомобилях получила распространение модель инжекторных (впрысковых) двигателей, поэтому нам также необходимо рассмотреть систему питания инжекторного двигателя. Отличительной особенностью инжекторных двигателей стало отсутствие карбюратора, который заменен новыми, современными элементами системы питания двигателя. Преимущество ее еще в том, что водитель, надавливая педаль газа, регулирует только поток воздуха, поступающий в цилиндры, а состав и качество об­ра­зу­ю­щей­ся рабочей смеси контролирует встроенный в систему бортовой компьютер.

Сам принцип работы бортового компьютера системы питания инжекторного дви­га­те­ля представлен ниже.

Здесь изменен сам процесс получения топливно-воздушной смеси. Так, топливный насос вместо механического — стал электрическим и размещен непосредственно в топливном баке автомобиля. Кроме того, он подает топливо в систему сразу под высоким давлением. Топливо поступает в топливную рампу, в которой расположены форсунки. Через них бензин впрыскивается непосредственно в определенный цилиндр в заданное время, где смешивается уже с воздухом. Какое количество топлива нужно подать в конкретный цилиндр и в нужное время — определяет этот самый бортовой компьютер. На это влияет объем поступившего воздуха, температура его и двигателя, скорость вращения коленвала и т.д. Считывая все эти показатели, программа в компьютере вычисляет интервал времени, при котором срабатывает клапан на каждой форсунке, открывающий доступ бензина под давлением в цилиндры двигателя. Так осуществляется автоматически контроль подачи топлива в системе питания инжекторного двигателя. Если ДВС получил название «сердца» автомобиля, то здесь мы столкнулись с его «мозгом».

Плюсы подобных систем очевидны: экономия расхода, снижение токсичности, уве­ли­че­ние срока эксплуатации двигателя и более рациональное его использование в процессе работы. Но есть и минус – это усложнение конструкции самой системы питания инжекторного двигателя за счет увеличения электронных устройств, которые бывают очень «капризны» при перепадах температур, увеличенной влажности и значительных колебаниях при длительной езде по неровной местности (бездорожью). Однако конструкторы и здесь нашли способы минимизировать риск возникновения неисправностей в таких ситуациях.

Устройство системы питания инжекторного двигателя представлено ниже.

Здесь видны синие стрелки, показывающие направление вывода отработавших газов. Таким образом, от устройства системы питания инжекторного двигателя мы дошли до системы выпуска отработавших газов. Что она из себя представляет? Возвращаемся опять к цилиндру двигателя. После совершения рабочего хода поршня наступает такт выпуска при движении поршня от НМТ к ВМТ. При этом открывается выпускной клапан, и газы выводятся из цилиндра. Весь этот процесс сопровождается громким шумом, а сами газы — высокой скоростью вывода, температурой и токсичностью. Для комплексного решения всех этих проблем в автомобиле и предусмотрена система выпуска отработавших газов. Газы из цилиндра через выпускной коллектор попадают в нейтрализатор, выполняющий роль фильтра, а затем в глушитель. В глушителе имеется несколько последовательно соединенных камер с отверстиями. Вся конструкция эта выглядит как змеевик. Поток газов, проходя через камеры, постоянно меняя направление, глушится, то есть уменьшается шум и их температура. После чего через выхлопную трубу автомобиля они выводятся в атмосферу.

В качестве завершения знакомства с системой питания инжекторного двигателя и выпуска отработавших газов стоит упомянуть о таком нюансе. Мы выяснили, что при отсутствии подачи воздуха или топлива двигатель автомобиля не заведется или заглохнет при прерывании подачи одного из компонентов. Но, если перекрыть выпуск отработавших газов – результат будет тот же. Двигатель заглохнет, так как не будет создаваться разряжение воздуха в цилиндре. А значит ни новый поток воздуха, ни топливо поступать в него не будут. Это нашло свое применение в промышленных силовых установках на производстве, когда требуется аварийно остановить работу ДВС. Перекрытие выхлопной трубы надежно это гарантирует.

Caterpillar Inc. Впрыск топлива Электрическая схема Электрические провода и кабели, топливный насос, угол, электрические провода Кабель, дизельное топливо png

PNG теги

  • угол,
  • Кабель электрических проводов,
  • Топливо дизельное,
  • машиностроение,
  • двигатель
  • ,
  • дизель Двигатель,
  • топливный насос,
  • Двигатель внутреннего сгорания,
  • строка,
  • технология,
  • ТНВД,
  • Топливная система,
  • Впрыск топлива,
  • топливо,
  • Форд Power Stroke Engine,
  • схема,
  • Caterpillar Inc,
  • район,
  • Схема подключения,
  • png,
  • прозрачный,
  • скачать бесплатно

Информация PNG

Размеры
1475x1053px
Размер файла
853,81 КБ
Тип MIME
Изображение/png
Скачать этот PNG ( 853. 81KB )

Изменение размера онлайн png

ширина (пкс)

высота (пкс)

Лицензия

Некоммерческое использование, DMCA Свяжитесь с нами

  • Электрический кабель Электричество Электрические провода и кабели Электротехника, розетка, электроника, электрические провода Кабель, кабель png 1500x1197px 1,41 МБ
  • Впрыск топлива Инжектор Common rail Дизельный двигатель ТНВД, механический, угол, дизельное топливо, транспорт png 1400x1400px 442,78 КБ
  • Электрические провода и кабели Электрический кабель Электричество Электронная схема, ELECTRICO, Электрические провода Кабель, кабель, электричество png 565x535px 211,85 КБ
  • org/ImageObject»> Дизельный генератор Двигатель-генератор Электрический генератор Cummins Дизельный двигатель, двигатель, дизельное топливо, транспорт, промышленность png 1024x745px 768,69 КБ
  • силуэт иллюстрации свечи зажигания, Автомобильная свеча зажигания Opel Моторное масло Впрыск топлива, искра, дизельное топливо, транспортное средство, транспорт png 1200x1200px 51,62 КБ
  • Автоматический переключатель Электрические выключатели Контактор Электрические провода и кабели Схема подключения, электроэнергетическая техника, электрические провода, кабель, реле, электричество png 860x898px 675,66 КБ
  • Схема подключения Комплекты домашней автоматизации Электрические провода и кабели Домашняя проводка, строительство, угол, здание, электрические провода Кабель png 1236x894px 370,55 КБ
  • org/ImageObject»> Гибкий кабель Электрический кабель Электрические провода и кабели Электричество, стальная проволока, электроника, электрические провода Кабель, кабель png 635x635px 166,07 КБ
  • Автоматический выключатель Электрический распределительный щит Электрические выключатели Электричество Электрические провода и кабели, пожаротушение, Электрические провода Кабель, электрическая проводка, электрические выключатели png 1200x1241px 1,09 МБ
  • Дизельный генератор Электрический генератор Cummins Дизельное топливо Caterpillar Inc., Дизельный генератор, дизельное топливо, автозапчасти, двигатель png 1159x1024px 1,45 МБ
  • иллюстрация линии черного провода, электронная схема рабочего стола, схема, угол, текст, прямоугольник png 599x582px 690,18 КБ
  • org/ImageObject»> Дизельный двигатель Впрыск топлива Инжектор Caterpillar Inc., Мекка, поршень, транспорт, автозапчасти png 1000x667px 446,06 КБ
  • Электроэнергия Компьютерные иконки Электричество Электрическая энергия Электрические провода и кабели, символ, угол, треугольник, электрические провода Кабель png 800x800px 14,26 КБ
  • Электрический кабель Электрические провода и кабели Схема подключения Электроника, провода и кабели, электроника, электрические провода Кабель, кабель png 800x765px 660,86 КБ
  • провод с разноцветным покрытием, Электрический кабель Электрические провода и кабели Силовой кабель Электрик, электрический, Электрические провода Кабель, кабель, электричество png 501x525px 137,52 КБ
  • org/ImageObject»> Коммунальная почта, Электрические провода и кабели Электричество Столб электросети Напряжение, столб, угол, электрические провода Кабель, слова Фразы png 853x1280px 575,89 КБ
  • Инжектор Впрыск топлива Бензин, автомобиль, логотип, автомобиль, транспорт png 992x992px 26,85 КБ
  • Провод с покрытием разных цветов, Электрический кабель Электрические провода и кабели Схема подключения Электричество, провода, электроника, электрические провода Кабель, кабель png 1000x513px 387,62 КБ
  • Электричество Электрические провода и кабели Электрический кабель Электротехника, прочее, электроника, электрические провода Кабель, аксессуары png 1000x650px 355,77 КБ
  • org/ImageObject»> Логотип Марка Дизельное топливо Инжектор, автомастерская, текст, сервис, дизельное топливо png 1920x1200px 493,32 КБ
  • Электричество Воздушная линия электропередач Молниезащитный разрядник Опора электросети Электрические провода и кабели, другие, угол, другие, электрические провода Кабель png 417x700px 53,97 КБ
  • Электричество Электрик Blk Electric Inc Вилки и розетки переменного тока, электрические, рука, электрические провода Кабель, электрический подрядчик png 2000x2201px 375,38 КБ
  • электрический ток, Принципиальная схема Печатная плата Электронная схема, технология, угол, текст, электрические провода Кабель png 1051x1500px 698,48 КБ
  • org/ImageObject»> Электрический кабель Электрические провода и кабели Кабель категории 5 Шнур питания, другие, Электрические провода Кабель, кабель, витая пара png 1200x1200px 356,27 КБ
  • Провод Электрический кабель Принципиальная схема Схема подключения Наушники, провод, электроника, электрические провода Кабель, кабель png 1818x666px 285,94 КБ
  • Электрический кабель Электрические провода и кабели Медный проводник, другие, Электрические провода Кабель, другие, кабель png 500x500px 89,02 КБ
  • Электричество Распределительный щит Электрические провода и кабели Компьютерные иконки Автоматический выключатель, инструменты электрика, текст, электрические провода Кабель, знак png 512x512px 15,76 КБ
  • org/ImageObject»> Схема подключения Honda Wave серии Электрические провода и кабели Honda Wave 110i, Honda 70, угол, электрические провода Кабель, план png 4417x3009px 300,3 КБ
  • Y-Δ преобразование Электродвигатель Схема подключения Трехфазная электроэнергия Стартер, другие, электроника, электрические провода Кабель, двигатель png 600x581px 335,3 КБ
  • Шнур питания Электрический кабель Электрические провода и кабели, другие, текст, другие, электрические провода Кабель png 500x500px 9,31 КБ
  • Электрический кабель Электрические провода и кабель Кабельное телевидение Электричество, профильная компания, Электрические провода Кабель, кабель, бизнес png 600x594px 547,54 КБ
  • org/ImageObject»> Символ электричества высокого напряжения, высоковольтный, угол, треугольник, электрические провода Кабель png 1280x1121px 1790,35 КБ
  • Электронная схема Электрическая сеть Цифровая электроника, цифровая классификация, угол, электроника, текст png 1500x970px 280,84 КБ
  • Caterpillar Inc. Дизельный генератор Электрогенератор Cummins Engine-генератор, выработка электроэнергии, двигатель, генератор переменного тока, дизельный двигатель png 970x611px 697,45 КБ
  • Шнур питания Адаптер переменного тока Удлинители для ноутбуков Электрический кабель, Ноутбук, электроника, адаптер, кабель png 1204x800px 679,32 КБ
  • Электротехника Контроллер двигателя Система управления, двигатель, электроника, электрические провода Кабель, инжиниринг png 5665x3403px 6,37 МБ
  • org/ImageObject»> Caterpillar Inc. CNH Global Дизельный двигатель Тяжелая техника, гусеница, животные, транспортное средство, транспорт png 1200x851px 364,43 КБ
  • Caterpillar Inc. Дизельный генератор Cummins Power Generation Электрический генератор, генератор, генератор переменного тока, дизельный двигатель, двигатели perkins png 970x846px 750,81 КБ
  • Форсунка General Motors Впрыск топлива GMC Chevrolet Silverado, Топливная форсунка, угол, Chevrolet Silverado, промышленность png 800x800px 182,49 КБ
  • Электричество Символ Компьютерные иконки Электроэнергия Принципиальная схема, электрическая, угол, электрические провода Кабель, треугольник png 1200x1200px 6,43 КБ
  • org/ImageObject»> Автомобиль Двигатель внутреннего сгорания Моторное масло, горизонтальная линия, транспортное средство, транспорт, автозапчасти png 800x706px 982,7 КБ
  • Двигатель-генератор Электрический генератор Генератор Дизельный генератор Honda, Honda, ремонт, электричество, генератор png 800x800px 488,12 КБ
  • кнопка включения и выключения, символ сетевого переключателя, Hidden Power s, прямоугольник, логотип, электрическая проводка png 2400x2323px 221,24 КБ
  • Автомобильная смазка Моторное масло Двигатель, автомобиль, дизельное топливо, автомобиль, золото png 641x516px 305,56 КБ
  • Электронная схема Электрическая сеть Электричество Электрический ток, схема, угол, электрические провода Кабель, схема png 880x880px 35,65 КБ
  • org/ImageObject»> Электрический кабель Электрические провода и кабели Электричество Электротехника, электротехника, Электрические провода Кабель, кабель, силовой кабель png 2094x1113px 1,83 МБ
  • Вилки и розетки переменного тока Электрические выключатели Схема подключения Электрические провода и кабели Блокировочное реле, розетка, электроника, электрические провода Кабель, электронное устройство png 566x566px 204,36 КБ
  • Электростанция, Электрическая подстанция Электричество Архитектурное проектирование Архитектурное сооружение Электроэнергетика, высокое напряжение, здание, компания, слова Фразы png 1400x721px 1,13 МБ
  • Автоматический выключатель Распределительный щит Электричество Схема подключения Электроэнергия, Электроэнергетическая система, электроника, электричество, трансформатор png 1100x580px 374,33 КБ
  • org/ImageObject»> серая передающая башня над деревьями, передающая вышка Высоковольтная воздушная линия электропередачи Силовой кабель, провод высокого напряжения, угол, здание, слова_фразы png 1024x652px 476,75 КБ

Непосредственный впрыск: определение, функции, компоненты, работа

Так же, как и система непрямого впрыска, непосредственный впрыск представляет собой способ подачи топлива в двигатели внутреннего сгорания. это распространено в бензиновых (бензиновых) двигателях, но теперь используется в дизельных двигателях, чтобы придать одинаковое качество типам двигателей.

Системы прямого впрыска используются в бензиновых двигателях для повышения эффективности и удельной выходной мощности, а также для снижения выбросов выхлопных газов.

Сегодня вы узнаете об определении прямого впрыска, функциях, схеме, работе, компонентах. вы также узнаете о его преимуществах и недостатках.

Подробнее: Система впрыска топлива в автомобильных двигателях

Содержание

  • 1 Что такое система непосредственного впрыска?
  • 2 Функции системы прямого впрыска
  • 3 Компоненты системы прямого впрыска
      • 3. 0.1 Схема прямого впрыска:
  • 4 Принцип работы
      • 4.0.1 Смотрите видео, чтобы понять, как работает система прямой инъекции:
  • 5.
  • 5.2 Подпишитесь на нашу рассылку новостей
  • 5.3 Недостатки:
  • 5.4 Пожалуйста, поделитесь!

Что такое система прямого впрыска?

Система прямого впрыска — это процесс впрыска топлива, который позволяет впрыскивать топливо непосредственно в верхнюю часть поршня в камере сгорания. Непосредственный впрыск бензина (GDI), также известный как прямой впрыск бензина (PDI), представляет собой систему смесеобразования для двигателей внутреннего сгорания, работающих на бензине (бензине). Топливо впрыскивается непосредственно в камеру сгорания.

Этот прямой бензиновый двигатель был представлен в 1925 году для двигателя грузовика с низкой степенью сжатия. он был довольно популярен на немецких автомобилях с использованием механической системы GDI Bosch в 1950-х годах. он стал более популярным, когда в 1996 году Mitsubishi представила электронную систему GDI. Однако в последние годы эта система получила широкое распространение в автомобильной промышленности.

Принцип непосредственного впрыска впервые применяется на дизельных двигателях. это основной тип системы впрыска топлива, которую использует дизельный двигатель. В простом дизельном двигателе с прямым впрыском топливо впрыскивается в камеру сгорания над поршнем непосредственно. Сжатие воздуха внутри камеры поднимает температуру выше 400 градусов по Цельсию, что затем воспламеняет дизельное топливо сразу же, когда оно распыляется непосредственно в камеру сгорания.

Подробнее: Основные части поршней и их функции

Функции системы прямого впрыска

Ниже приведены функции системы прямого впрыска в автомобильных двигателях

  • Эффективное сжигание топлива
  • Чтобы увеличить мощность
  • Более чистые выбросы и
  • Повышенная экономия топлива.

Подробнее: Об аккумуляторах, используемых в автомобилях

Компоненты системы прямого впрыска

Ниже представлены компоненты топливной системы с прямым впрыском:

  • Форсунки
  • ТНВД
  • Линии высокого давления
  • Насос подачи топлива
  • Топливный фильтр
  • Губернатор
Схема прямого впрыска:

Подробнее: Все, что вам нужно знать об автомобильном масляном фильтре

Принцип работы

Работа системы прямого впрыска менее сложна и понятна. Обычно бензиновые двигатели работают за счет всасывания в цилиндр смеси бензина и воздуха. Эта смесь сжимается поршнем, а затем воспламеняется искрой от свечи зажигания, вызывая взрыв. Этот результирующий взрыв перемещает поршень вниз, создавая мощность.

Традиционно в системе непрямого впрыска топлива бензин и воздух предварительно смешиваются в камере вне цилиндра, известной как впускной коллектор. Теперь в системе прямого впрыска воздух и бензин предварительно не смешиваются. Вместо этого воздух поступает через впускной коллектор, а бензин впрыскивается непосредственно в цилиндр.

В камере сгорания существует способ распределения топлива, известный как «режим заряда». Эта зарядка включает режим гомогенной зарядки и режим расслоенной зарядки. В режиме гомогенного заряда топливо равномерно смешивается с воздухом по всей камере сгорания за счет коллекторного впрыска. Тогда как в режиме послойного заряда вокруг свечи зажигания находится зона с большей плотностью топлива, а вдали от свечи находится более бедная смесь (меньшая плотность топлива).

В системе прямого впрыска используются общие методы создания желаемого распределения топлива по всей камере сгорания. Эти методы впрыска включают распыление, воздушное наведение или впрыскивание через стену.

Посмотрите видео, чтобы понять, как работает система прямого впрыска:

Подробнее: Знакомство с фрикционной и рекуперативной тормозной системой

Преимущества и недостатки системы прямого впрыска

Преимущества:

Ниже перечислены преимущества прямого впрыска в бензиновых двигателях:

  • Низкие эксплуатационные расходы
  • Высокий крутящий момент на низких оборотах
  • Прочность
  • Увеличение срока службы двигателя

Подробнее: Понимание гидравлической тормозной системы

Присоединяйтесь к нашему информационному бюллетеню

Недостатки:

Несмотря на преимущества прямого впрыска, все же существуют некоторые ограничения. ниже приведены недостатки прямого впрыска бензинового двигателя:

  • Более низкие обороты двигателя и BHP
  • Медленная работа
  • Более высокий уровень шума, вибрации и жесткости
  • Более тяжелые компоненты двигателя
  • Нет действия по очистке клапана
  • Производство пиковой мощности при высоких оборотах двигателя ограничено

Подробнее: Принцип работы радиатора отопителя

В заключение следует отметить, что система непосредственного впрыска также является отличным способом впрыска топлива в бензиновые двигатели внутреннего сгорания. в этой статье мы рассмотрели определение, функции, компоненты и работу системы прямого впрыска. также были указаны его преимущества и недостатки.

Надеюсь, вам понравилось чтение. Если да, оставьте комментарий, поделитесь и порекомендуйте этот сайт другим студентам технических специальностей. Спасибо!

Топливные системы для самолетов с неподвижным и вертолетным крылом


Хотя каждый производитель разрабатывает свою собственную топливную систему, основные требования к топливной системе, указанные в начале этого сайта, позволяют получить топливные системы аналогичной конструкции и функций в полевых условиях. В следующих разделах приведены репрезентативные примеры различных топливных систем в каждом классе обсуждаемых самолетов. Другие похожи, но не идентичны. Каждая топливная система самолета должна хранить и подавать в двигатель (двигатели) чистое топливо с таким давлением и расходом, которые позволяют поддерживать работу независимо от условий эксплуатации самолета.

Топливные системы для малых однодвигательных самолетов

Топливные системы для малых однодвигательных самолетов различаются в зависимости от таких факторов, как расположение бака и способ дозирования топлива в двигатель. Топливная система высокоплана может быть спроектирована иначе, чем на низкоплане. Авиационный двигатель с карбюратором имеет другую топливную систему, чем двигатель с впрыском топлива.

Системы гравитационной подачи

Широко распространены высокопланы с топливным баком в каждом крыле. С баками над двигателем для подачи топлива используется сила тяжести. Простая топливная система с гравитационной подачей показана на рис. 1.9.0069
Рис. 1. Самотечная топливная система одномоторного высокоплана — простейшая авиационная топливная система на топливе по мере опустошения бака. Два бака также вентилируются друг к другу, чтобы обеспечить одинаковое давление, когда оба бака питают двигатель. Единственный экранированный выход на каждом баке питает линии, которые соединяются либо с клапаном отсечки топлива, либо с многопозиционным селекторным клапаном. Запорный клапан имеет два положения: топливо включено и топливо выключено. Если установлен, селекторный клапан обеспечивает четыре возможности: отключение подачи топлива в двигатель; подача топлива только из правого крыльевого бака; подача топлива только из левого топливного бака; подача топлива в двигатель из обоих баков одновременно.

После запорного клапана или селекторного клапана топливо проходит через главный фильтр системы. Это часто имеет функцию слива для удаления осадка и воды. Оттуда она поступает в карбюратор или в подкачивающий насос для запуска двигателя. Самотечная система подачи топлива без топливного насоса является простейшей топливной системой самолета.

Насосные системы подачи

Однопоршневые самолеты с низкорасположенным и среднерасположенным крылом не могут использовать самотечные топливные системы, поскольку топливные баки не расположены над двигателем. Вместо этого для перемещения топлива из баков в двигатель используется один или несколько насосов. Обычная топливная система этого типа показана на рис. 2. Каждый бак имеет линию от экранированного выпускного отверстия до селекторного клапана. Однако топливо не может забираться из обоих баков одновременно; если топливо закончилось в одном баке, насос будет забирать воздух из этого бака вместо топлива из полного бака. Поскольку топливо не забирается из обоих баков одновременно, нет необходимости соединять вентиляционные пространства баков вместе.

6 клапана (ЛЕВЫЙ, ПРАВЫЙ или ВЫКЛ.), топливо проходит через главный сетчатый фильтр, где оно может подавать праймер двигателя. Затем он поступает вниз по течению к топливным насосам. Обычно один электрический и один топливный насос с приводом от двигателя располагаются параллельно. Они забирают топливо из бака(ов) и подают его в карбюратор. Два насоса обеспечивают резервирование. Топливный насос с приводом от двигателя действует как первичный насос. Электрический насос может подавать топливо, если другой выйдет из строя.

Электрический насос также обеспечивает давление топлива при запуске и используется для предотвращения паровых пробок во время полета на большой высоте.

Высокоплан с системой впрыска топлива

Некоторые высокопроизводительные одномоторные самолеты авиации общего назначения оснащены топливной системой с впрыском топлива, а не карбюратором. Он сочетает в себе гравитационный поток с использованием топливного насоса (насосов). Примером может служить система Teledyne-Continental. [Рис. 3]

Рис. 2. Самолет с одним поршневым двигателем и топливными баками, расположенными в крыльях под двигателем, использует насосы для забора топлива из баков и подачи его к двигателю
Рис. 3. Топливная система Teledyne-Continental с впрыском топлива, используемая на высокопроизводительных одномоторных самолетах

ПРИМЕЧАНИЕ. Системы впрыска топлива распыляют топливо под давлением в двигатель впуск или непосредственно в цилиндры. Топливо без примеси воздуха необходимо для обеспечения размеренного, непрерывного распыления и плавной работы двигателя.

Топливо, нагнетаемое насосом с приводом от двигателя, измеряется в зависимости от оборотов двигателя в системе Teledyne-Continental. Сначала он подается из топливных баков самотеком в два меньших по размеру аккумулирующих или резервуарных бака. Эти баки, по одному на каждый крыльевой бак, содержат жидкое топливо и имеют относительно небольшое воздушное пространство. Они подают топливо через трехходовой селекторный клапан (ЛЕВЫЙ, ПРАВЫЙ или ВЫКЛ). Селекторный клапан также действует одновременно как отвод воздуха, который отделяется от топлива в топливном насосе с приводом от двигателя и возвращается к клапану. Он направляет воздух в вентиляционное пространство над топливом в выбранном расширительном баке.

Дополнительный электрический топливный насос подает топливо через селекторный клапан. Он проталкивает топливо через сетчатый фильтр, делая его доступным для подкачивающего насоса и топливного насоса с приводом от двигателя. Этот насос обычно используется для запуска и в качестве резервного на случай отказа насоса с приводом от двигателя. Он управляется переключателем в кабине, и его не нужно включать, чтобы топливный насос с приводом от двигателя мог получить доступ к топливу.

Топливный насос с приводом от двигателя всасывает топливо под давлением из насоса с электроприводом или из расширительных баков, если электрический насос не работает. Он подает больший, чем необходимо, объем топлива под давлением к регулятору подачи топлива. Избыточное топливо возвращается к насосу, который перекачивает его через селекторный клапан в соответствующий резервуар. Пары топлива также возвращаются в баки насосом. Блок управления подачей топлива дозирует топливо в соответствии с частотой вращения двигателя и входными сигналами управления смесью из кабины.

Регулятор подачи топлива подает топливо в распределительный коллектор, который разделяет его и обеспечивает равномерный и последовательный поток топлива для отдельных топливных форсунок в каждом цилиндре. [Рисунок 4] Индикатор расхода топлива, отсоединенный от распределительного коллектора, обеспечивает обратную связь в кабине. Он измеряет давление топлива, но отображается на циферблате, откалиброванном в галлонах в час.

Рис. 3. Топливная система Teledyne-Continental с впрыском топлива, используемая на высокопроизводительных одномоторных самолетах с высоким расположением крыла


Малые многодвигательные (поршневые) топливные системы

Низкоплан

Топливная система на малом многодвигательном самолете более сложна, чем на однодвигательном самолете, но содержит много одинаковых компонентов. элементы. Пример системы, используемой на низкоплане, показан на рис. 5. Основные топливные баки расположены в законцовках крыла, а вспомогательные баки — в конструкции крыла. Подкачивающий насос расположен на выходе из каждого основного бака. Это создает давление во всей топливной системе от бака до форсунок, исключая возможность паровой пробки. Двигатель может работать только с работающим подкачивающим насосом в случае отказа ТНВД с приводом от двигателя. Как правило, подкачивающие насосы используются для заливки и запуска двигателя.

Рис. 5. Топливная система низкорасположенного двухдвигательного легкого самолета Правый селекторный клапан получает топливо из основного бака по обеим сторонам самолета и направляет его к правому двигателю. Левый селекторный клапан также получает топливо из основного бака и направляет его к левому двигателю. Это позволяет при желании подавать топливо с одной стороны самолета на противоположный двигатель. Селекторные клапаны также могут направлять топливо из вспомогательного бака в двигатель на той же стороне. Перекачка топлива из вспомогательных баков невозможна. Из выхода селекторного клапана топливо поступает в сетчатый фильтр. На некоторых самолетах сетчатый фильтр встроен в блок селекторного клапана. Из сетчатого фильтра топливо поступает к топливному насосу с приводом от двигателя.

Топливный насос с приводом от двигателя представляет собой узел, который также содержит сепаратор паров и клапан регулировки давления с регулировочным винтом. Сепаратор паров помогает удалить воздух из топлива. Он возвращает небольшое количество топлива и любых присутствующих паров обратно в основной топливный бак. Насос подает топливо под давлением к регулятору подачи топлива. Регулятор подачи топлива, по одному на каждый двигатель, реагирует на настройки управления дроссельной заслонкой и смесью из кабины и подает необходимое количество топлива в топливный коллектор. Коллектор разделяет топливо и направляет его к форсункам в каждом цилиндре. Между выпускным отверстием блока управления подачей топлива и коллектором расположен манометр для контроля давления, подаваемого на форсунку, которое указывает мощность двигателя.


High-Wing Twin

Упрощенная система на высокоплане с двумя двигателями, сочетающая гравитационную подачу с электрическим топливным насосом, показана на рис. 6. Непосредственно за селекторными клапанами расположены топливные фильтры и затем электрический топливный насос для каждого двигателя. Этот насос всасывает топливо из выбранного бака и под давлением подает его на вход узла дозатора впрыска топлива. Дозатор для каждого двигателя обеспечивает надлежащую подачу топлива в распределительный коллектор, питающий форсунки.

Рисунок 6. Простая топливная система с высоким уровнем топлива для впрыска для света. с поршневыми радиальными двигателями больше не производятся. Однако многие из них все еще находятся в эксплуатации. В основном они карбюраторные и имеют много общего с системами легких самолетов, которые обсуждались ранее.

На рис. 7 показана топливная система самолета DC-3. Селекторный клапан для каждого двигателя позволяет насосу с приводом от двигателя подавать топливо из основного бака или вспомогательного бака. Топливо проходит через сетчатый фильтр, прежде чем попасть в насос, откуда оно подается в двигатель. Выход насоса может питать любой двигатель за счет использования линии поперечной подачи с клапанами, управляемыми в кабине. Вихревой насос с ручным управлением, расположенный перед сетчатым фильтром, используется для заполнения системы перед запуском. Трубопроводы паров топлива проходят от нагнетательного карбюратора к вентиляционному пространству в основном и вспомогательном баках. Датчики давления топлива отсоединены от карбюратора для индикации мощности.

Рис. 7. Топливная система DC-3 Сигнальная лампа давления топлива, загорающаяся после топливного насоса с приводом от двигателя, предупреждает экипаж в случае падения давления топлива.

Не все большие старые самолеты имеют эту топливную систему. Это всего лишь пример. Другие самолеты имеют схожие характеристики и обладают собственными уникальными особенностями. То же самое справедливо и для небольших самолетов с поршневым двигателем. Есть много систем, которые имеют общие черты с описанными выше, но они также в чем-то отличаются. Всегда сверяйтесь с данными производителя при работе с топливными системами самолетов и следуйте всем инструкциям по обслуживанию и ремонту. Топливная система самолета обеспечивает жизненную силу для работы двигателя и должна обслуживаться с максимальной осмотрительностью.

Топливные системы реактивных транспортных самолетов

Топливные системы реактивных самолетов большой транспортной категории сложны и имеют некоторые особенности и компоненты, которых нет в топливных системах самолетов с поршневыми двигателями. Как правило, они содержат больше резервов и обеспечивают многочисленные варианты, из которых экипаж может выбирать при управлении топливной загрузкой самолета. Такие функции, как бортовой ВСУ, система дозаправки топливом под давлением в одной точке и системы сброса топлива, которые не нужны на небольших самолетах, усложняют топливную систему авиалайнера.

Топливные системы реактивного транспорта можно рассматривать как несколько следующих топливных подсистем:

  1. Хранение
  2. Вентиляция
  3. Распределение
  4. Подача
  5. Топливные системы очень похожи на транспортные самолеты. Встроенные топливные баки являются нормой, при этом большая часть конструкции каждого крыла герметизирована, что позволяет использовать его в качестве топливного бака. Также распространены баки центроплана или фюзеляжа. Они могут быть герметичной конструкции или типа мочевого пузыря. Реактивные транспортные самолеты несут на борту десятки тысяч фунтов топлива. На рис. 8 показана схема конфигурации топливного бака Boeing 777 с указанием вместимости баков.

    Рис. 8. Расположение и емкость топливных баков Boeing 777 Например, авиакомпании, рассчитывающие использовать самолет на трансокеанских рейсах, могут заказать самолет с дополнительными баками большой дальности. Эти дополнительные баки, обычно расположенные в фюзеляжной части самолета, могут изменить логистику управления подачей топлива, а также усложнить топливную систему.

    В дополнение к основным и вспомогательным топливным бакам на реактивных транспортных средствах также можно найти расширительные баки. Эти обычно пустые баки, расположенные в конструкции крыла за пределами основных крыльевых баков, используются для перелива топлива. Обратный клапан позволяет одностороннему сливу топлива обратно в основные баки. Уравнительные баки также используются для вентиляции топливной системы.

    Топливные системы транспортной категории требуют вентиляции, аналогичной топливным системам поршневых двигателей самолетов. Существует ряд вентиляционных трубок и каналов, которые соединяют все резервуары с вентиляционным пространством в уравнительных резервуарах (если они есть) или с вентиляционным отверстием за бортом. Вентиляция должна быть настроена таким образом, чтобы обеспечить сброс топлива независимо от положения самолета или количества топлива на борту. Иногда это требует установки различных обратных клапанов, поплавковых клапанов и нескольких вентиляционных отверстий в одном и том же резервуаре. Рисунок 9показана система выпуска топлива Boeing 737.


    Подсистема распределения топлива для самолетов транспортной категории состоит из компонентов заправки топливом под давлением, компонентов слива топлива, системы перекачки и системы сброса или сброса топлива. Одноточечная заправка под давлением на заправочной станции, доступная для рамповых заправщиков, позволяет заправлять все топливные баки самолета одним соединением топливного шланга. Расположение передней и задней кромки крыла является общим для этих станций. На рис. 10 показана заправочная станция авиалайнера с прикрепленной заправочной установкой.

    Рисунок 10. Центральная напорная заправочная станция на самолетах транспортной категории позволяет заправлять все топливные баки из одной позиции

    на заправочной станции и краны к бакам, которые необходимо заполнить, открыты. Эти клапаны называются заправочными клапанами или заправочными клапанами в зависимости от предпочтений производителя. Различные автоматические запорные системы были разработаны для закрытия заправочных клапанов баков до того, как баки переполнятся или будут повреждены. Датчики на панели заправки позволяют заправщику следить за ходом работ.

    Иногда для осмотра или ремонта требуется слить топливо из самолета. Используется одна и та же заправочная станция, и шланг от бензовоза подключается к той же емкости, которая используется для заправки самолета. Чтобы топливо могло выйти из самолета, открывается сливной клапан. Топливо можно откачивать из самолета с помощью подкачивающих насосов, расположенных в баках, которые необходимо опорожнить, или насос в заправщике можно использовать для выкачивания топлива из баков. Контроль над работой обеспечивается за счет расположения различных запорных и перепускных клапанов, а также клапана слива топлива таким образом, чтобы топливо поступало из бака на заправочную станцию ​​и в грузовик.

    Система перекачки топлива представляет собой ряд трубопроводов и клапанов, позволяющих перекачивать топливо из одного бака в другой на борту самолета. Топливные подкачивающие насосы в баке перемещают топливо в коллектор, и, открывая топливный клапан (или заправочный клапан) нужного бака, топливо перекачивается. Не все реактивные транспортные средства имеют такую ​​возможность перекачки топлива. Благодаря использованию коллектора подачи топлива и клапанов поперечной подачи некоторые самолеты просто позволяют двигателям работать на топливе из любого бака в качестве средства управления местонахождением топлива.

    На рис. 11 показана схема топливной системы самолета DC-10. Специальные подкачивающие насосы перекачивают топливо в перекачивающий коллектор. При открытии топливного клапана на одном из баков топливо переливается в этот бак. Перепускной коллектор и подкачивающие насосы также используются для сброса топлива за борт путем открытия соответствующих клапанов сброса при работающем подкачивающем насосе (насосах). Кроме того, перепускная система может обеспечивать подачу топлива в двигатели, если обычная подача топлива в двигатель выходит из строя.

    Рис. 11. Системы распределения топлива, компоненты и органы управления в кабине авиалайнера DC-10. Примечание. Компоненты и трубопроводы системы перекачки топлива используются для завершения системы сброса топлива, системы дозаправки/слива топлива, резервной системы подачи топлива и системы хранения топлива.

    система распределения топлива. Это сердце топливной системы, так как он подает топливо в двигатели. Реактивные транспортные самолеты подают топливо в двигатели через топливные насосы в баках, обычно по два на бак. Они перекачивают топливо под давлением через запорный клапан для каждого двигателя. Коллектор или соединительная трубка обычно позволяют любому баку снабжать любой двигатель за счет использования перекрестных клапанов. Байпасы подкачивающего насоса пропускают топливо в случае отказа насоса. Обратите внимание, что двигатели рассчитаны на работу без каких-либо подкачивающих насосов. Но запорный клапан каждого двигателя должен быть открыт, чтобы пропускать поток к двигателям из баков.

    Большинство систем подачи топлива для реактивных транспортных средств или топливных систем двигателей имеют средства для нагрева топлива, обычно за счет обмена с горячим воздухом или горячим маслом, отводимым от двигателя. На рис. 12 показан масляный радиатор с охлаждением топлива (FCOC) двигателя Rolls Royce RB21 1, который не только нагревает топливо, но и охлаждает моторное масло.

    Рис. 12. Реактивные транспортные самолеты летают на больших высотах, где температура может достигать –50 °F. Большинство из них имеют подогреватели топлива где-то в топливной системе, чтобы предотвратить обледенение топлива. Этот маслоохладитель с охлаждением топлива на турбовентиляторном двигателе RB211 одновременно нагревает топливо и охлаждает масло

    Системы индикации топлива на реактивных транспортных самолетах отслеживают множество параметров, некоторые из которых обычно не встречаются на самолетах авиации общего назначения. Бизнес-реактивные самолеты обладают многими из этих особенностей. Индикаторы истинного расхода топлива для каждого двигателя используются в качестве основного средства контроля подачи топлива в двигатели. Датчик температуры топлива является обычным явлением, как и сигнальные лампы перепуска топливного фильтра. Датчик температуры обычно располагается в основном топливном баке. Индикатор расположен на панели приборов или выводится на многофункциональный дисплей (МФД). Это позволяет экипажу контролировать температуру топлива во время полета на большой высоте в экстремально холодных условиях. Топливные фильтры имеют байпасы, которые позволяют топливу течь вокруг фильтров, если они засорены. Когда это происходит, в кабине загораются световые индикаторы.

    Сигнальные лампы низкого давления топлива также распространены на реактивных транспортных самолетах. Датчики для них расположены на линии выхода подкачивающего насоса. Они указывают на возможную неисправность подкачивающего насоса.

    Датчики количества топлива являются важным элементом всех самолетов. Показания существуют для всех баков на самолетах транспортной категории. Часто в них используется система индикации количества топлива емкостного типа и сумматор топлива, как описано в разделе «Индикаторы топливной системы».

    Расположение топливных приборов зависит от типа дисплеев кабины пилотов, используемых на самолете.

    Топливные системы для вертолетов

    Топливные системы для вертолетов различаются. Они могут быть простыми или сложными в зависимости от самолета. Всегда консультируйтесь с руководствами производителя для описания топливной системы, эксплуатации и инструкций по техническому обслуживанию.

    Как правило, вертолет имеет только один или два топливных бака, расположенных рядом с центром тяжести (ЦТ) самолета, то есть рядом с мачтой несущего винта. Таким образом, бак или баки обычно располагаются в хвостовой части фюзеляжа или рядом с ней. Некоторые топливные баки вертолетов установлены над двигателем, что позволяет подавать топливо самотеком. Другие используют топливные насосы и системы подачи под давлением.

    Принципиально топливные системы вертолетов мало чем отличаются от топливных систем самолетов. Системы самотечной подачи имеют вентилируемые топливные баки с выпускным сетчатым фильтром и запорным клапаном. Топливо поступает из бака через основной фильтр в карбюратор. [Рисунок 13]

    на рис. 14. Два встроенных в бак электрических подкачивающих насоса подают топливо через запорный клапан, а не через селекторный клапан, поскольку имеется только один топливный бак. Он проходит через фильтр планера к фильтру двигателя, а затем к топливному насосу с приводом от двигателя. Топливный бак вентилируется и содержит сливной клапан поддона с электроприводом. Манометр используется для контроля выходного давления подкачивающего насоса, а дифференциальные реле давления предупреждают об ограничениях топливного фильтра. Количество топлива определяется с помощью двух датчиков уровня топлива в баке с датчиками.

    Рис. 14. Топливная система с подачей под давлением на легком газотурбинном вертолете самолет. Они могут иметь несколько топливных баков, системы поперечной подачи и дозаправку под давлением.