8Ноя

Где используются двигатели внутреннего сгорания: Где ещё, кроме автомобилей, применяют двигатели внутреннего сгорания?

Как работает двигатель внутреннего сгорания. ДВС

Двигатель, пожалуй, можно назвать самой важной частью автомобиля. Ведь без двигателя автомобиль не сдвинется с места, но и без колес тоже далеко не уедешь, поэтому не будем делить автомобильные системы по важности, а просто попробуем узнать чуточку больше, об автомобильном двигателе.

Двигатель – это силовая установка, источник энергии автомобиля. Он используется для того чтобы машина могла выполнять свою основную функцию – перевозку грузов и пассажиров, но кроме этого, энергия, вырабатываемая двигателем, используется для обеспечения функционирования всех вспомогательных систем, например для работы кондиционера.

Впрочем, все вспомогательные системы, как правило, работают от электричества, вырабатываемого генератором или забираемой от аккумуляторов. А вот генератор как раз приводится в действие с помощью двигателя, передавая ему механическую энергию вращения вала.

Для обеспечения движения автомобиля так же используется механическая энергия вала двигателя, которая передается от двигателя на колеса через трансмиссию.

То есть, по сути, двигатель нужен для того, чтобы преобразовать какой-либо вид энергии в механическую энергию вращения вала, которая через систему механических связей передается на колеса, заставляя автомобиль двигаться.

Двигатель внутреннего сгорания

Когда мы говорим о двигателе автомобиля, то чаще всего представляем себе двигатель внутреннего сгорания, в качестве топлива для которого используется бензин, дизельное топливо, газ, а в последнее время пробуют и водород.

В двигателе внутреннего сгорания, как несложно догадаться, происходит преобразование энергии, выделяемой при сгорании легковоспламеняющихся веществ в механическую энергию. Конструкции двигателей внутреннего сгорания могут отличаться, бывают поршневые двигатели, роторные и газотурбинные.

Но принцип их работы остается неизменным. Энергия, выделяемая при сгорании топлива, в конечном итоге преобразуется в механическую энергию вращения вала двигателя и через систему механических связей передается на колеса, заставляя их вращаться.

Основной недостаток двигателей внутреннего сгорания их неэкологичность. При сжигании топлива выделяется много вредных веществ. Исключение в этом составляет водород, продуктом горения которого является обыкновенная вода, но проблема с его использованием на сегодняшний день заключается в дороговизне, хотя вероятно, что в будущем это будет основной вид топлива.

Но двигатели внутреннего сгорания – не единственные автомобильные двигатели.

Электро-двигатель

Существуют машины, которые используют в качестве исходной энергии – электричество. Наиболее популярный и близкий к автомобилю вид транспорта, работающий на электричестве – это всем известный троллейбус.

Но полноценным автомобилем его не назовешь, поскольку двигаться троллейбус может только лишь вдоль натянутых проводов, от которых он запитывается электричеством.

Но вы наверняка слышали о машинах, которые называются электромобилями. Электромобили – это автомобили, в которых в качестве силового агрегата используется электродвигатель.

Электродвигатель, как вы понимаете, работает от электрической энергии, которую он получает, как правило, от аккумуляторных батарей.

Электромобили, по сравнению с автомобилями, использующими двигатели внутреннего сгорания, имеют массу преимуществ.

Они экологичны, практически бесшумны (что не всегда плюс), быстро набирают скорость, им не нужна коробка скоростей можно даже обойтись без трансмиссии, если поставить двигатели на каждое из колес. То есть такие автомобили могли бы быть намного дешевле, чем автомобили с ДВС, если бы стали массовыми.

Но есть два существенных момента, которые очень сильно ограничивают применение электродвигателей на современных автомобилях. До сих пор не придумали аккумуляторов, которые бы могли запасти в себе достаточное количество электрической энергии.

То есть запас хода электромобиля сегодня ограничен несколькими десятками километров. Если не включать фары, магнитолу, кондиционер, то можно и до сотни километров проехать, но все равно это очень мало. Примерно в 5-6 раз меньше, чем на одной заправке бензином. Впрочем, над этим разработчики постоянно работают и возможно, что когда вы читаете эти строки, уже существует электромобиль с запасом хода более 500 км.

Но даже малый запас хода был бы не так страшен, если бы не время, требуемое на перезарядку аккумуляторов. Если заправка бензином, дизтопливом или газом занимает 5-10 минут, то аккумуляторы придется заряжать часов 12, а то и сутки.

Поэтому, пока электромобили могут использоваться лишь для непродолжительных поездок по городу, после чего всю ночь на зарядке.

Гибридные силовые агрегаты

Но преимущество электродвигателей над ДВС настолько велико, что желание их использовать хотя бы частично привело к появлению гибридных силовых установок, которые сегодня достаточно активно используются на автомобилях.

Гибридные силовые установки – это объединенные на одном автомобиле двигатель внутреннего сгорания и электродвигатель (как правило, их 4, по одному на каждое колесо). Такие автомобили называют гибридными.

Существуют три схемы гибридных установок.

В первой энергия ДВС используется исключительно для выработки электрической энергии при помощи генератора. А уже от генератора энергия передается на зарядку аккумуляторов и на электродвигатели, обеспечивающие вращение колес.

Но более популярна другая схема. Во второй схеме привод на колеса осуществляется как от ДВС, так и от электродвигателей. ДВС и электродвигатели могут использоваться как самостоятельно, так и вместе.

Третий вариант – это сочетание первого и второго.

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля , необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение .

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

А ты и твой автомобиль готовы к наступившей зиме? Современные гаджеты помогут с комфортом пережить зиму:

Штрафы за пересечение стоп-линии и превышение скорости больше не побеспокоят!

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные , в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
  • инжекторные , в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
  • дизельные , в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Корпус двигателя объединяет в единый организм:

  • блок цилиндров , внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм , который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм , который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси ;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Определимся в терминологии. Такт — это рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз. Цикл — это совокупность тактов, повторяющихся в определённой последовательности. По количеству тактов в пределах одного рабочего цикла ДВС подразделяются на двухтактные (цикл осуществляется за один оборот коленвала и два хода поршня) и четырёхтактные (за два оборота коленвала и четыре ходя поршня). При этом, как в тех, так и в других двигателях, рабочий процесс идёт по следующему плану: впуск; сжатие; сгорание; расширение и выпуск.

Принципы работы ДВС

— Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

Сферами практического применения двухтактных двигателей внутреннего сгорания стали мопеды и мотороллеры; лодочные моторы, газонокосилки, бензопилы и т.п. маломощная техника.

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск . Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие . При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2-1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
  • Такт третий, расширение . Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск . Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры , воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания . Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
  • Включатель, или замок зажигания . Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии . Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр) . Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

— Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник . Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр . Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка . Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
  • Впускной коллектор . Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.

Топливная система, или система питания ДВС, «отвечает» за бесперебойную подачу горючего для образования топливно-воздушной смеси. В состав топливной системы входят:

  • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

— Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла ; удаление продуктов нагара и износа ; защита металла от коррозии . Система смазки ДВС включает в себя:

  • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор , или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

— Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Для настоящего автолюбителя машина — это непросто средство передвижения, а ещё и инструмент свободы. При помощи автомобиля можно достаться в любую точку города, страны или континента. Но наличия прав для настоящего путешественника недостаточно. Ведь до сих пор есть множество мест, где не ловит мобильный, и куда не могут добраться эвакуаторы. В таких случаях при поломке вся ответственность ложится на плечи автомобилиста.

Поэтому каждый водитель должен хоть немного разбираться в устройстве своего автомобиля , и начать нужно именно с двигателя. Безусловно, современные автомобильные компании выпускают множество автомобилей с разными типами моторов, но чаще всего производителями в конструкциях используются двигатели внутреннего сгорания. Они обладают высоким КПД и при этом обеспечивают высокую надёжность работы всей системы.

Внимание! В большинстве научных статей двигатели внутреннего сгорания сокращённо называются ДВС.

Какими бывают ДВС

Перед тем как приступить к подробному изучению устройства ДВС и их принципа работы, рассмотрим, какими бывают двигатели внутреннего сгорания. Сразу нужно сделать одно важное замечание. За более чем 100 лет эволюции учёными было придумано множество разновидностей конструкций, у каждой из которых есть свои преимущества. Поэтому для начала выделим основные критерии, по которым можно различить данные механизмы:

  1. В зависимости от способа создания горючей смеси все ДВС делятся на карбюраторные, газовые и инжекторные устройства. Причём это класс с внешним смесеобразованием. Если же говорить о внутреннем, то — это дизели.
  2. В зависимости от типа топлива ДВС можно разделить на бензиновые, газовые и дизельные.
  3. Охлаждение устройства двигателей может быть двух типов: жидкостным и воздушным.
  4. Цилиндры могут располагаться как друг напротив друга, так и в форме буквы V.
  5. Смесь внутри цилиндров может воспламеняться посредством искры. Так происходит в карбюраторных и инжекторных ДВС или за счёт самовоспламенения.

В большинстве автомобильных журналов и среди профессиональных автоэкспортов принято классифицировать ДВС, на такие типы:

  1. Бензиновый двигатель. Это устройство работает за счёт бензина. Зажигание происходит принудительно при помощи искры, которую генерирует свеча. За дозировку топливно-воздушной смеси отвечают карбюраторные и инжекторные системы. Воспламенение происходит при сжатии.
  2. Дизельные . Двигатели с устройством такого типа работают за счёт сгорания дизельного топлива. Главная разница в сравнении с бензиновыми агрегатами заключается в том, что горючее взрывается благодаря повышению температуры воздуха. Последнее становится возможным из-за роста давления внутри цилиндра.
  3. Газовые системы функционируют при помощи пропан-бутана. Зажигание происходит принудительным образом. Газ с воздухом подаётся в цилиндр. В остальном устройство подобного ДВС аналогично бензиновому мотору.

Именно такая классификация используется чаще всего, указывая на конкретные особенности системы.

Устройство и принцип работы

Устройство двигателя внутреннего сгорания

Лучше всего рассмотреть устройство ДВС на примере одноцилиндрового двигателя. Главной деталью в механизме является цилиндр. В нём находится поршень, который двигается вверх-вниз. При этом есть две контрольные точки его передвижения: верхняя и нижняя. В профессиональной литературе они именуются как ВМТ и НМТ. Расшифровка следующая: верхняя и нижняя мёртвые точки.

Внимание! Поршень также соединяется с валом. Соединительным звеном служит шатун.

Главная задачу шатуна — это преобразование энергии, которая образовывается в результате движения поршня вверх-вниз во вращательное. Результатом подобного преобразования является движение автомобиля в нужное вам направление. Именно за это отвечает устройство ДВС. Также не стоит забывать про бортовую сеть, работа которой становится возможной благодаря энергии, выработанной двигателем.

Маховик крепится к концу вала ДВС. Он обеспечивает стабильность вращения коленчатого вала. Впускной и выпускной клапаны находятся вверху цилиндра, который, в свою очередь, накрывается специальной головкой.

Внимание! Клапаны открывают и закрывают соответствующие каналы в нужное время.

Чтобы клапаны ДВС открылись, на них воздействуют кулачки распредвала.

Происходит это посредством передаточных деталей. Сам вал двигается при помощи шестерней коленчатого вала.

Внимание! Поршень свободно движется внутри цилиндра, застывая на миг то в верхней мёртвой точке, то в нижней.

Чтобы устройство ДВС функционировало в нормальном режиме, горючая смесь должна подаваться в чётко выверенной пропорции. В противном случае возгорание может не произойти. Огромную роль также играет момент, в который происходит подача.

Масло необходимо для того, чтобы предотвратить преждевременный износ деталей в устройстве ДВС. В общем, всё устройство двигателя внутреннего сгорания состоит из таких основных элементов:

  • свечей зажигания,
  • клапанов,
  • поршней,
  • поршневых колец,
  • шатунов,
  • коленвала,
  • картера.

Взаимодействие этих системных элементов позволяет устройству ДВС вырабатывать нужную для передвижения автомобиля энергию.

Принцип работы

Рассмотрим, как работает четырёхтактный ДВС. Чтобы понять принцип его работы, вы должны знать значение понятия такт. Это определённый промежуток времени, за который внутри цилиндра осуществляется нужное для работы устройства действие. Это может быть сжатие или воспламенение.

Такты ДВС образуют рабочий цикл, который, в свою очередь, обеспечивает работу всей системы. В процессе этого цикла тепловая энергия преобразуется в механическую. За счёт этого происходит движение коленчатого вала.

Внимание! Рабочий цикл считается завершённым после того, как коленчатый вал сделает один оборот. Но такое утверждение работает только для двухтактного двигателя.

Здесь нужно сделать одно важное объяснение. Сейчас в автомобилях преимущественно используется устройство четырёхтактного двигателя. Такие системы отличаются большей надёжностью и улучшенной производительностью.

Для совершения четырёхтактного цикла нужно два оборота коленчатого вала. Это четыре движения поршня вверх-вниз. Каждый такт выполняет действия в точной последовательности:

  • впуск,
  • сжатие,
  • расширение,
  • выпуск.

Предпоследний такт также называется рабочим ходом. Про верхнюю и нижнюю мертвые точки вы уже знаете. Но расстояние между ними обозначает ещё один важный параметр. А именно, объём ДВС. Он может колебаться в среднем от 1,5 до 2,5 литра. Измеряется показатель посредством плюсования данных каждого цилиндра.

Во время первого полуоборота поршень с ВМТ перемещается в НМТ. При этом впускной клапан остаётся открытым, в свою очередь, выпускной плотно закрыт. В результате данного процесса в цилиндре образуется разряжение.

Горючая смесь из бензина и воздуха попадает в газопровод ДВС. Там она смешивается с отработанными газами. В результате образуется идеальное для воспламенения вещество, которое поддаётся сжатию на втором акте.

Сжатие происходит тогда, когда цилиндр полностью заполнен рабочей смесью. Коленчатый вал продолжает свой оборот, и поршень перемещается из нижней мёртвой точки в верхнюю.

Внимание! С уменьшением объёма температура смеси внутри цилиндра ДВС растёт.

На третьем такте происходит расширение. Когда сжатия подходит к своему логическому завершению свеча генерирует искру и происходит воспламенение. В дизельном двигателе всё происходит немного по-другому.

Во-первых, вместо свечи установлена специальная форсунка, которая на третьем такте впрыскивает топливо в систему. Во-вторых, внутрь цилиндра закачивается воздух, а не смесь газов.

Принцип работы дизельного ДВС интересен тем, что в нём топливо воспламеняется самостоятельно. Происходит это за счёт повышения температуры воздуха внутри цилиндра. Подобного результата удаётся добиться за счёт сжатия, в результате которого растёт давление и повышается температура.

Когда топливо через форсунку попадает внутрь цилиндра ДВС, температура внутри настолько высока, что возгорание происходит само собой. При использовании бензина подобного результата добиться нельзя. Всё потому что он воспламеняется при гораздо более высокой температуре.

Внимание! В процессе движения поршня от произошедшего внутри микровзрыва деталь ДВС совершает обратный рывок, и коленчатый вал прокручивается.

Последний такт в четырёхтактном ДВС носит название впуск. Он происходит на четвёртом полуобороте. Принцип его действия довольно прост. Выпускной клапан открывается, и все продукты сгорания попадают в него, откуда в выпускной газопровод.

Перед тем как попасть в атмосферу отработанные газы из обычно проходят систему фильтров. Это позволяет минимизировать вред, наносимый экологии. Тем не менее устройство дизельных двигателей всё равно намного более экологично, чем бензиновых.

Устройства, позволяющие увеличить производительность ДВС

С момента изобретения первого ДВС система постоянно совершенствуется. Если вспоминать первые двигатели серийных автомобилей, то они могли разгоняться максимум до 50 миль в час. Современные суперкары без труда преодолевают отметку в 390 километров. Таких результатов учёным удалось добиться за счёт интеграции в устройство двигателя дополнительных систем и некоторых конструкционных изменений.

Большой прирост мощности в своё время дал клапанный механизм, внедрённый в ДВС. Ещё одной ступенью эволюции стало расположение распределительного вала вверху конструкции. Это позволило уменьшить число движущихся элементов и увеличить производительность.

Также нельзя отрицать полезность современной системы зажигания ДВС. Она обеспечивает максимально возможную стабильность работы. Вначале генерируется заряд, который поступает на распределитель, а с него на одну из свечей.

Внимание! Конечно же, нельзя забыть про систему охлаждения, состоящую из радиатора и насоса. Благодаря ей удаётся предотвратить своевременный перегрев устройства ДВС.

Итоги

Как видите, устройство двигателя внутреннего сгорания не представляет особенной сложности. Для того чтобы его понять не нужно каких-либо специальных знаний — достаточно простого желания. Тем не менее знание принципов работы ДВС точно не будет лишними для каждого водителя.

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют «атмосферник» — основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это — многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания — самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС , а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме «плюсов» имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде — самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья «СО2», который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:

  1. Кривошипно-шатунный механизм (КШМ).
  2. Система впуска.
  3. Топливная система.
  4. Система смазки.
  5. Система зажигания (в бензиновых моторах).
  6. Выпускная система.
  7. Система охлаждения.
  8. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ — преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор — охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством , которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название — четырехтактный двигатель.

  1. Первый такт — впуск.
  2. Второй — сжатие.
  3. Третий — рабочий ход.
  4. Четвертый — выпуск.

Во время первых двух тактов — впуска и рабочего такта, движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта «рабочий ход» смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт «выпуск» , после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!

Двигатели внутреннего сгорания (Инженерная академия, магистратура, очная)

О профессии

Транспортные перевозки играют ключевую роль в развитии экономики стран и регионов. Практически все силовые установки автомобильного, воздушного, водного, железнодорожного и специального транспорта оснащены тепловыми двигателями (в большинстве своем поршневыми). Современные направления двигателестроения связаны с созданием малотоксичных и экономичных двигателей внутреннего сгорания, транспортных средств с гибридными силовыми установками, использованием традиционных и альтернативных топлив.
Выпускники департамента выполняют научно-исследовательские работы любой сложности в области малой энергетики, работают в научно-исследовательских институтах и на заводах двигателестроительной отрасли, занимающихся разработкой новых и модернизацией существующих моделей силовых установок для транспорта и малой энергетики.


Учебный процесс

Учебный процесс в магистратуре направлен на изучение основ создания, исследования, моделирования, производства, эксплуатации двигателя внутреннего сгорания (ДВС) и энергетических установок с ДВС, процессов преобразования энергии в ДВС, комбинированных ДВС и их элементов. Магистр техники и технологий приобретает навыки по принятию обоснованных решений на стадиях выбора, проектирования, создания, испытаний, эксплуатации, обеспечивающих надежную и экономичную работу энергетических установок с ДВС и комбинированных ДВС, навыки использования принятых в отрасли методов расчета, графических пакетов, баз данных для обеспечения надежной эксплуатации энергетических установок. Он способен выполнять расчеты по определению основных показателей экономичности и надежности ДВС и комбинированных ДВС.
Изучаемые специальные дисциплины охватывают основные направления энергетического машиностроения применительно к двигателям внутреннего сгорания: «Математическое моделирование тепловых двигателей», «Современные энергетические технологии», «Патентоведение», «Автоматическое регулирование тепловых двигателей», «Когенерационные установки на базе тепловых двигателей», «Современные компьютерные коммуникационные технологии», «Методы испытаний ПГТ», «Специальные главы теории тепловых двигателей», «Автоматическое регулирование тепловых двигателей», «Системы топливоподачи ДВС», «Проблемы снижения вредных выбросов ДВС», «Современные проблемы науки и производства в энергетическом машиностроении», «Специальные главы теории и конструирования ДВС».


Практика

В результате прохождения ознакомительных, учебных и производственных практик студенты знакомятся с современной техникой, организацией и управлением предприятиями, а также новейшими методами научных исследований. В рамках педагогической практики выпускники получают навыки преподавательской деятельности. Департамент сотрудничает с ведущими российскими вузами, среди которых МГТУ им. Баумана, МАДИ, МЭИ, КАИ, МАИ, МАМИ. Практики организуются на таких предприятиях, как «Мосэнерго», Объединенный институт высоких температур РАН, «Коломенский завод», ТЭЦ-25 и других флагманах теплоэнергетики.


Карьера

Выпускники могут построить успешную карьеру в инновационно-ориентированных высокотехнологичных двигателестроительных, энергетических и машиностроительных компаниях, работать в структурах, занимающихся научной и конструкторской деятельностью, научных и научно-производственных учреждениях и на предприятиях реального сектора экономики.
Полученные студентами в процессе обучения знания позволяют им плодотворно трудиться в сервисных центрах по обслуживанию, ремонту и проектированию автомобилей, тракторов, быстроходных гусеничных машин, специальной колёсной и гусеничной техники и т.д.
После окончания магистратуры есть возможность продолжения учебной и научной деятельности в аспирантуре.

Двигатели внутреннего сгорания (ДВС)

В соответствии с правилами и спортивным кодексом для моделей используются двигатели внутреннего сгорания с рабочим объемом от 1,0 до 25,0 кубических сантиметров. Двигатели внутреннего сгорания по принципу работы подразделяются на два типа: четырехтактные и двухтактные. По способу воспламенения горючей смеси модельные двигатели подразделяются на калильные и компрессионные. В четырехтактном двигателе рабочий процесс в цилиндре совершается за четыре хода поршня и соответствует двум оборотам коленчатого вала. У двухтактных двигателей рабочий процесс совершается за два хода поршня — такта, что соответствует одному обороту коленчатого вала. Основным двигателем, применяемым в авиамодельном спорте, является двухтактный двигатель. Рабочий процесс двухтактного двигателя протекает следующим образом. При движении поршня вверх к верхней мёртвой точке (ВМТ) в кривошипной камере создается давление, благодаря которому рабочая смесь засасывается карбюратором в полость картера. При движении поршня вниз к нижней мёртвой точке (НМТ) смесь в картере сначала сжимается, а затем поступает по перепускным каналам в цилиндр. При следующем ходе поршня вверх, который происходит под действием сил инерции вращающихся масс, рабочая смесь в цилиндре сжимается, одновременно происходит всасывание в кривошипную камеру из картера новой порции рабочей смеси. При движении поршня вверх в положении, близком к (ВМТ), от сжатия рабочая смесь нагревается и воспламеняется от калильной свечи. Образовавшиеся при сгорании газы начинают давить на поршень. При движении последнего открывается выхлопное окно, и газы устремляются наружу. Перемещаясь далее вниз, поршень открывает впускное окно, и в результате разности давления в кривошипной камере и цилиндре горючая смесь поступает в цилиндр, происходит перепуск и продувка, затем сжатие, и цикл повторяется.

Схемы работы двух и четырёхтактного двигателей внутреннего сгорания.

Большое влияние на мощность двигателя, число его оборотов, экономичность и пусковые качества оказывает газораспределение: начало и конец процесса всасывания, перепуска и выхлопа. Всасыванием называется процесс заполнения  картера рабочей смесью (воздуха и топлива). Протекает этот процесс так: поршень при своем движении вверх создает разрежение в кривошипной камере. Через трубку,  называемую всасывающим патрубком, воздух устремляется в кривошипную камеру. Патрубок, по которому воздух из атмосферы поступает в кривошипную камеру, имеет переменное сечение, вследствие чего скорость, а следовательно, и давление по оси потока переменны. В самом малом сечении патрубка, где максимальная скорость потока и минимальное статическое давление, устанавливается жиклер. Под действием разности давления в жиклере и патрубке топливо вытекает во всасывающий патрубок. Протекающий воздух захватывает частицы топлива, распыляет их и уносит в полость кривошипной камеры. Величина отверстия жик­лера, пропускающего горючее, регулируется иглой. А впуск рабочей смеси в картер осуществляется поршнем, валом  или золотником.

Перепуском называется процесс перемещения горючей смеси из кривошипной камеры в цилиндр. Про­дувкой называется процесс заполнения цилиндра свежей порцией горючей смеси и вытеснения сгоревших газов к выхлопному окну.

Выхлопом называется процесс выхода газов из цилиндра.

Фазами газораспределения называют углы поворота коленчатого вала, со­ответствующие процессам: всасывания, продувки и выхлопа. Фазы газораспределения обычно изображают в виде круговой диаграммы. Круговая диаграмма дает представление скольким градусам угла поворота вала двигателя соответствуют процессы газораспределения. 

Основными геометрическими характеристиками двигателя являются рабочий объем V, диаметр цилиндра D, ход поршня Н, их отношение и степень сжатия Е. В двухтактном двигателе рабочий объем используется не полностью и поэтому вводят понятие эффективного рабочего объёма и эффективного рабочего хода. Эффективным рабочим объемом называется объём цилиндра от верхней кромки выхлопного окна до нижней. А соответствующий эффективному рабочему объёму рабочий ход называется эффективным рабочим ходом. При одном и том же рабочем объеме можно варьировать диаметром цилиндра и ходом поршня в зависимости от того, какую внешнюю характеристику двигателя хотим получить. Скоростные авиамодельные двигатели обычно делают с коротким ходом поршня. Объясняется это тем, что скоростной двигатель для получения максимальной мощности и высокого к.п.д. винта эксплуатируется на высоких оборотах. Поэтому применение короткохода дает возможность снизить среднюю скорость поршня и следовательно, снизить потери мощности на трение в рабочей паре двигателя. Кроме того, уменьшается износ. Трение и износ уменьшаются еще и потому,  что с изменением рабочего хода, уменьшается боковая составляющая силы давления сгоревших газов, прижимающая поршень к цилиндру. Но увлекаться уменьшени­ем хода поршня нельзя, так как возрастают нагрузки на шатун и шейку коленчатого вала. Фактором, ограничи­вающим уменьшение хода поршня, является крутящий у момент двигателя, который в рабочем  диапазоне оборотов должен быть равен потребному крутящему моменту вин­та, имеющего наибольший к.п.д. 

Необходимо четко представлять себе, что рабочим объёмом цилиндра называется объем, заключенный между верхней (ВМТ) и нижней (НМТ) мертвыми точками поршня в цилиндре. Когда поршень находится в верхней мертвой точке, весь объём, находящийся над поршнем, называется объемом камеры сгорания. Суммарный объем, получаемый при сложении объема камеры сгорания с рабочим объемом, называется полным объемом цилиндра. Рабочий объем можно определить по геометрической формуле объема цилиндра, а вот объем камеры сгорания — только замером.

РАЗНИЦА МЕЖДУ ДВИГАТЕЛЕМ ВНУТРЕННЕГО И ВНЕШНЕГО СГОРАНИЯ | СРАВНИТЕ РАЗНИЦУ МЕЖДУ ПОХОЖИМИ ТЕРМИНАМИ — ТЕХНОЛОГИЯ

Двигатель внутреннего и внешнего сгорания Двигатель внутреннего сгорания и двигатели внешнего сгорания — это типы тепловых двигателей, в которых в качестве основного источника энергии используется те

Двигатель внутреннего и внешнего сгорания

Двигатель внутреннего сгорания и двигатели внешнего сгорания — это типы тепловых двигателей, в которых в качестве основного источника энергии используется тепловая энергия, производимая путем сгорания. Проще говоря, оба этих типа машин преобразуют тепловую энергию в механическую работу в форме вращения вала, который впоследствии используется для питания любого механизма, от автомобилей до пассажирских самолетов.

Подробнее о двигателе внутреннего сгорания

Двигатель внутреннего сгорания — это тепловой двигатель, в котором процесс сгорания топлива, смешанного с окислителем, происходит в камере сгорания, которая является неотъемлемой частью контура потока рабочего тела.

Основной принцип работы любого двигателя внутреннего сгорания заключается в сжигании топливовоздушной смеси, создании объема газа с высоким давлением и температурой и использовании давления для перемещения компонента, прикрепленного к валу. Механизмы, используемые для достижения этой функциональности, разнообразны, а двигатели специально разработаны и обладают собственными характерными свойствами.

Наиболее распространенным типом двигателей внутреннего сгорания является поршневой двигатель или поршневой двигатель, в котором поршень, соединенный с коленчатым валом, перемещается за счет давления и тепла, генерируемых при сгорании. У них относительно низкое отношение мощности к весу, а поток рабочей жидкости является прерывистым, поэтому они используются для питания относительно небольших мобильных устройств, таких как автомобили, локомотивы или тягачи. Поршневые двигатели термодинамически моделируются либо циклом Отто, либо дизельным циклом.

Газотурбинные двигатели также являются двигателями внутреннего сгорания, но используют газ под высоким давлением для перемещения лопаток турбины, соединенной с валом. Сгорание газотурбинных двигателей является непрерывным и имеет очень высокое отношение мощности к массе; поэтому используется в больших мобильных единицах, таких как реактивные самолеты, коммерческие авиалайнеры и корабли. Газотурбинные двигатели, работающие на воздухе в качестве рабочего тела, моделируются циклом Брайтона. Топливо, используемое во многих двигателях внутреннего сгорания, представляет собой нефтяное топливо разной степени.

Подробнее о двигателе внешнего сгорания

Двигатель внешнего сгорания — это тепловой двигатель, в котором рабочая жидкость доводится до высокой температуры и давления за счет сгорания от внешнего источника тепла через стенку двигателя или теплообменник во внешнем источнике, и процесс сгорания происходит вне цикла потока рабочего тела.

Большинство типов паровых двигателей — это двигатели внешнего сгорания, в которых вода превращается в перегретый пар с помощью внешнего источника тепла, такого как котел, работающий от тепловой энергии, ядерной энергии или сжигания ископаемого топлива. В зависимости от механизма и фазового перехода паровые двигатели термодинамически моделируются циклом Стирлинга (однофазный — перегретый пар) и циклом Ренкина (двухфазный перегретый — пар и насыщенная жидкость).

В чем разница между двигателем внутреннего и внешнего сгорания?

• Процесс сгорания в двигателях внутреннего сгорания является неотъемлемой частью цикла потока жидкости, а тепловая энергия генерируется непосредственно внутри системы.

• В двигателях внешнего сгорания тепловая энергия генерируется за пределами цикла потока рабочего тела и затем передается рабочему телу.

Судовой двигатель СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ —

Судовой двигатель

СУДОВОЙ ДВИГАТЕЛЬ

входит в состав судовой энергетической установки. Судовые двигатели различают  на главные судовые

двигатели (обеспечивающие движение судна) и вспомогательные судовые двигатели (для привода электрогенераторов, насосов, вентиляторов и т. п.). В качестве судового двигателя используют двигатели внутреннего сгорания (ДВС – СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ), паровые турбины, и газовые турбины.  Основными характеристиками судовых двигателей являются: большой ресурс, возможность реверсирования, умеренная трудоёмкость технического обслуживания, проводимого в судовых условиях, использование топлива в основном тяжёлых сортов, отсутствие жёстких ограничений по массе и размерам двигателя.

Чаще всего на судах используются ДВС — судовые дизели, обладающие наибольшей экономичностью из всех типов судовых двигателей. На транспортных, промысловых и вспомогательных судах применяются мало-, средне- и высокооборотные дизели с наддувом. Малооборотные судовые двигатели внутреннего сгорания используются как главные двигатели судов различных типов; их агрегатная мощность составляет 2,2—35 Мвт, число цилиндров 5—12, удельный эффективный расход топлива 210—215 г/ (квт×ч), частота вращения 103—225 об / мин. Среднеоборотные судовые двигатели внутреннего сгорания используются преимущественно в качестве главных двигателей судов среднего размера; их мощность достигает 13,2 Мвт, число цилиндров 6—20, эффективный расход топлива 205—210 г/(квт×ч), частота вращения 300—500 об/мин. Высокооборотные судовые двигатели внутреннего сгорания применяются в основном как главные двигатели на малых судах, а также в качестве вспомогательных двигателей на судах всех типов; их агрегатная мощность до 2 Мвт, число цилиндров 12—16, удельный эффективный расход топлива 215—230 г/(квт×ч), частота вращения свыше 500 об/мин.

Паровые турбины по степени распространённости несколько уступают двс; используются в качестве главных двигателей на крупных танкерах, контейнеровозах, газовозах и других судах, а также на судах с ядерной энергетической установкой (см. Атомный ледокол «Ленин»). Применяются также как вспомогательные двигатели. Мощность паротурбинных установок достигает 80 Мвт, удельный эффективный расход топлива 260—300 г/(квт×ч), частота вращения турбины 3000—4000 об/мин.

Газовые турбины в составе судовых двигателей применяются в основном в качестве главных двигателей на военных кораблях, транспортных судах на подводных крыльях и на судах на воздушной подушке. Примером газовых турбин является судовой газотурбинный двигатель. Эксплуатация судовых дизелей— подготовка дизельной установки к действию, пуск дизеля, обслуживание дизеля во время работы, вывод из действия (остановка) дизеля в соответствии с инструкцией завода-изготовителя и Правилами технической эксплуатации (ПТЭ).
РАЗДЕЛ «ОБОРУДОВАНИЕ»    

 


 
«Аппаратдизель», ООО  
Экспорт/импорт оборудования и запасных частей для агрегатов на базе отечественных дизелей размерности 6 ЧН 36/45, 6-8Ч23/30, 6Ч18/22, 3Д6, 4Ч9,5/11, 4Ч12/14 и их ремонтом. Диапазон оборудования базирующегося на этих двигателях: от электростанций больших мощностей 1000 кВт и до судовых установок главных и стационарных.
Роспромснаб  
Филиал ООО «АлтайРОСПРОМСНАБ» занимается материально-техническим снабжением флота.Мы специализируемся на поставке главных и вспомогательных судовых дизелей ЧН 15/18(дизели 3Д6, 3Д12, 7Д6, 7Д12), а также запасных частей к ним. На складе имеются : главные судовые дизели: 3Д6С2; 3Д6Н-235С2; 3Д12А, 3Д12А-1; 3КД12Н-520; 3КД12Н-520Р; ВАЗ-3415. Вспомогательные судовые дизели:7Д6-150; П 7Д6АФ-С2; 7Д12; 7Д12А-1; 1Д6БГС2-301; 1Д12В-300КС2-301.
Двигатель 3Д6, 3Д12, ЯМЗ запасные части  
Предлагаем Вам продукцию ОАО ХК Барнаултрансмаш, Турбомоторный завод : — Промышленные дизели (1Д6Н-250,2Д6Н, 1Д12-400БС,1Д12БС(БМС),2Д12, В2-450,В2-500) применяемые для привода механизмов буровой техники, маневровых тепловозов. — Стационарные дизели (1Д6-150,1Д6БА(БГС), 1Д12В-300), применяемые для привода дизель-генераторов 100-200кВт -Транспортные дизели (Д12А-525,Д12А-525А),применяемые для многоосных тягачей Типа МАЗ-537, 543, 7310, КЗКТ-7428, 74106 — Судовые дизели (3Д6, 3Д12, 7Д6, 7Д12) укомплектованные РРП 150-300 л.с. применяемые как главные и вспомогательные судовые дизели, а также предлагаем весь ассортимент запасных частей ОАО ХК Барнаултрансмаш с хорошим дисконтом. -Судовые дизели ЯМЗ ДРА 90-360 л.с. удовлетворяющих требованиям Российского Речного Регистра.
 
ОПИСАНИЕ ТЕРМИНОВ
Судовой газотурбинный двигатель
CГТД — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.
Основной источник электроэнергии на судах — дизель генератор.

Судовой дизель генератор
СДГ агрегат, состоящий из генератора и дизеля, образованный путём соед. их валов. Осн. достоинства Д.-г. — экономичность и быстрота запуска. Размеры Д.-г. тем меньше, чем больше частота вращения. Однако с ростом частоты вращения падает ресурс дизеля. Поэтому в составе осн. длительно работающих Д.-г. применяются средне-и малооборотные дизели с частотой вращения соотв. 750 и 250 об/мин. Потребление топлива Д.-г. составляет ок. 220-230 г на 1 кВт мощн. в теч. 1ч работы. В качестве генераторов на соврем. судах применяют в большинстве случаев синхронные явнополюсные генераторы с автомат. регуляторами напряжения. Регуляторы в зависимости от отклонения напряжения от установленного значения подают больший или меньший ток в обмотку возбуждения генератора, стабилизируя тем самым напряжение.
Дизель-компрессор судовой
ДКС — уст-во, использующее  хим.энергию топлива для сжатия воздуха и наполнения воздушных баллонов. Представляет собой агрегат, состоящий из одноцилиндрового двухтактного двигателя внутреннего сгорания и поршневого компрессора. Противоположно движущиеся поршни в цилиндре ДВС непосредственно соединены с поршнями компрессора. Д.-к. по конструктивному исполнению и принципу работы близок к свободопоршневому генератору газа. Выпускные газы дизельной части после приведения в действие поршней дизеля и компрессора отводятся в атмосферу. В суд. Д.-к. давление достигает 40 МПа, а их производительность -10 л/мин. Достоинством Д.-к. является независимость его работы от др. суд. оборудования, высокая экономичность расхода энергии на 1л сжатого воздуха и небольшие габариты.  
Если у Вас есть вопросы или Вы хотите стать участником любого из раздела обратитесь к нашим менеджерам: 
«РА Корабел.ру», ООО
тел.+7(812) 458-4452 
сот. +7 (921) 912-0373
[email protected]
skype www.korabel.ru
_____________________
Портал: www.korabel.ru
Журнал: www.korabel.su
Торговая площадка:
www.sudoremont.ru 
Морские сувениры 
https://www.korabel.ru/shop.html 
___________________
https://www.facebook.com/korabel.ru/
https://vk.com/korabelru
https://www.instagram.com/korabel_ru/

Двигатель внутреннего сгорания имеет наибольший кпд

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.

КПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.

Интересно: Существуют некоторые методы повышения КПД бензиновых двигателей внутреннего сгорания:

  1. Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
  2. Свечи зажигания комплектуются отдельными катушками зажигания.
  3. Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Поршневыми двигателями внутреннего сгорания (ДВС) называются двигатели, в которых топливо сжигается в цилиндрах, где возвратно-поступательно двигается поршень.

Несмотря на то, что цикл Карно имеет наивысший КПД, в реальных машинах он не реализуется. Дело в том, что цикл Карно, будучи сильно растянутым в координатах рv, связан с весьма большими значениями удельного объема и давления.

Рис. 43. Цикл Карно в координатах pv

Отношение объема цилиндра к объему камеры сгорания =vc/va (эта величина в поршневых ДВС называется степенью сжатия), работающего по циклу Карно, достигает 400,а давление в точке (а) – = 280 – 300 МПа.

Термодинамических циклы ДВС: цикл с подводом теплоты при постоянном объеме (цикл Отто),состоящий из двух изохор и двух адиабат (a1-b-c1-d-a1) и цикл с подводом теплоты при постоянном давлении (цикл Дизеля), состоящий из изобары a2b, изохоры с1d и двух адиабат bc1 и da2 (a2-b-c1-d- a2). Полученные циклы имеют КПД меньше, чем КПД цикла Карно

Процесс (1–2) в цикле Отто характеризует адиабатное сжатие рабочего тела, процесс (2–3) изохорный подвод теплоты q1, процесс (3–4) — адиабатное расширение и процесс (4–1) — изохорный отвод теплоты q2.

Полезная работа в цикле равна разности подведенной и отведенной теплоты и численно равна площади (1-2-3-4-1). Степень сжатия цикла весьма сильно влияет на КПД цикла. Чем выше степень сжатия, тем выше КПД цикла. Термический КПД цикла

.

Это значит, что КПД цикла Отто растет с увеличением степени сжатия.

Цикл Дизеля состоит из процесса адиабатного сжатия (1–2), изобарного подвода теплоты (2–3), адиабатного расширения (3–4) и изохорного отвода теплоты (4–1) (рис. 46). Степень сжатия в двигателях, работающих по циклу Дизеля, составляет =14 – 18.

Сравним между собой циклы Отто и Дизеля при одинаковых параметрах точек (1) и (4) с помощью диаграммы Тs (рис. 46). Если в этих циклах будет одинаковая степень сжатия ε и одинаковое количество отводимой теплоты q2 , то КПД цикла Отто будет выше КПД цикла Дизеля.

КПД цикла Дизеля, в условиях одинакового максимально возможного давления, больше, чем КПД цикла Отто.

Подачу топлива можно осуществлять так, что одна его часть будет сгорать при постоянном объеме, а другая – при постоянном давлении. Такой цикл называется циклом смешанного сгорания топлива или циклом Тринклера .Цикл со смешенным подводом теплоты занимает по эффективности промежуточное положение между циклами Отто и Дизеля как в условиях сравнения при одинаковой степени сжатия ε, так и при сравнении по условию одинакового максимального давления в цилиндре двигателя.

Рис. 47. Цикл смешанного сгорания в координатах pv (а) и Ts(б)

Выведем уравнение для определения термического КПД смешанного цикла. Количество подводимой теплоты на изохоре (2–3) равно , а в изобарном процессе (3–4) – . Количество отводимой теплоты q2 на изохоре (5–1) по абсолютной величине составляет . Следовательно, термический КПД цикла

.

Из уравнения видно, что КПД цикла со смешанным подводом теплоты растет с увеличением ε и λ и с уменьшением ρ. Если ρ = 1, то цикл со смешанным подводом теплоты превращается в цикл Отто, термический КПД которого находится из соотношения

Если λ = 1, то смешанный цикл превращается в цикл Дизеля, термический КПД которого находится из выражения

.

Изобретение относится к машиностроению, а именно к двигателестроению. Двигатель внутреннего сгорания содержит камеру сгорания, образованную внутренней поверхностью цилиндра и днищами поршней. Поршни разведены на некоторый угол, оптимальная величина которого составляет 35 — 60 o , фиксируются путем зацепления одинаковых шестерен, неподвижно закрепленных на концах коленчатых валов с центральной шестерней-маховиком, приспособленной для стартерного пуска двигателя и отбора мощности ее вала. Изобретение позволяет повысить КПД двигателя внутреннего сгорания. 4 з.п. ф-лы, 3 ил.

Изобретение относится к машиностроению, а точнее к двигателестроению и способу работы.

Может применено всюду, где ныне используются ДВС.

Главный недостаток современных ДВС — низкий КПД.

Для карбюраторных двигателей он составляет 25-30%, для дизельных — 35-40%. Столь низкий КПД объясняется тремя причинами: первая — рабочий такт начинается до прихода поршня в верхнюю мертвую точку (в.м.т.), т.е. с отрицательной работы; вторая — максимум давления в цилиндре при рабочем такте приходится на момент, когда поршень находится вблизи в.м.т., что очень существенно снижает эффективность преобразования тепловой энергии давления в механическую; третья — малой рабочей площадью, используемой для свершения крутящего момента (площадь нижнего днища поршня).

Известен двигатель внутреннего сгорания, камера сгорания которого образована внутренней поверхностью цилиндра и днищами поршней, последние имеют не взаимовстречное движение и они разведены на некоторый угол разбежки (см. пат. США N 3868931, F 02 B 75/04, 1975).

Однако этот двигатель имеет невысокий коэффициент полезного действия (КПД).

Технической задачей изобретения является повышение КПД двигателя.

Поставленная задача решается за счет того, что двигатель содержит камеру сгорания, образованную внутренней поверхностью цилиндра и днищами поршней, последние имеют не взаимовстречное движение, а разведены на некоторый угол (угол разбежки), при этом оптимальная величина его составляет от 35 до 60 градусов и фиксируется путем защепления одинаковых шестерен, неподвижно закрепленных на концах валов, с центральной шестерней-маховиком, приспособленной для пуска двигателя и отбора мощности с ее вала. Кроме того, один из поршней (рабочий), опережающий другой поршень (вспомогательный), имеет удлиненный шатун, величина которого определяется углом разбежки поршней и углом для рабочего поршня. Объем камеры сгорания определяется как соотношением длин шатунов, так и изменением (увеличением) радиуса кривошипа вспомогательного поршня. Двигатель выполнен с увеличенной рабочей площадью за счет увеличения диаметра цилиндра, имеет максимальное сближение поршней, при этом в их днищах выполнены выемки, обеспечивающие необходимую степень сжатия. Рабочий такт в двигателе начинается с положительной работы, определяемой углом положения рабочего поршня при оптимальном угле разбежки поршней, величина которого устанавливается опытным путем для каждого типа двигателя и используемого топлива, обеспечивающим в итоге развития двигателем максимального крутящего момента.

Следует заметить, что при обратном движении оба поршня будут двигаться в одном направлении, причем у рабочего поршня линейная скорость будет возрастать, а у вспомогательного замедляться. Такое взаимное расположение при их максимальном сближении и создает необходимую степень сжатия, величина которой определяется путем соотношения длины шатунов и изменением (увеличением) радиуса кривошипа вспомогательного поршня.

Последнее делается с целью сглаживания линейных скоростей.

Известно, что в замкнутом объеме давление газа во всех направлениях одинаково на единицу площади. Следовательно, чем больше рабочая площадь в двигателе, тем более эффективно будет использоваться тепловая энергия давления. С этой целью в двигателе предусматривается некоторое увеличение диаметра цилиндра при максимально допустимом сближении поршней при рабочем такте с одновременным устройством выемок в днищах поршней с целью обеспечения необходимой степени сжатия. Таким приемом обеспечивается значительное превосходство рабочей площади над нерабочей.

В современных двигателях с одним поршнем в цилиндре начальная фаза рабочего такта, в лучшем случае, начинается при 50% доле рабочей площади с последующим ее уменьшением по мере удаления поршня от в.м.т.

В предлагаемом двигателе уравнение площадей произойдет только тогда, когда расстояние между поршнями составит половину диаметра цилиндра. А это существенно важно, если учесть, что 80% всей работы приходится на 60 градусов поворота коленчатого вала при рабочем такте. Оптимальные размеры цилиндра принимаются опытным путем в зависимости от типа двигателя и вида используемого топлива.

Принципиальная особенность работы двигателя заключается в следующем: наличие угла разбежки поршней позволяет до начала рабочего такта вывести рабочий поршень на некоторый заданный угол, при котором достигается максимальный крутящий момент. Необходимым условием для этого является, чтобы максимум деления в цилиндре совпадал с выходом вспомогательного поршня из в.м. т.

Оптимальная величина угла сдвижки поршней находится в пределах 35-60 градусов.

Повышение КПД в предлагаемом двигателе будет определяться следующими факторами: углом разбежки поршней и углом для рабочего поршня, большей рабочей площадью и более эффективным способом преобразования тепловой энергии давления в механическую. Помимо этого следует отметить, что рабочий такт в новом двигателе будет начинаться с положительной работы, а на достижение необходимой степени сжатия будет затрачиваться меньше энергии по причине одностороннего направления движения поршней.

Данный принцип устройства двигателя и предлагаемый способ работы поршней может быть использован и при внешнем подводе тепловой энергии.

На фиг.1 схематически показан общий вид дизельного двигателя.

Он состоит из цилиндра 1; рабочего 2 и вспомогательного 3 поршней; форсунки 4; шатунов 5 и 6; выхлопных окон 7; продувочных щелей 8; коленчатых валов 9 и 10; одинаковых шестерен 11 и 12; центральной шестерни 13; вала отбора мощности 14.

На фиг. 2, 3 показаны возможные варианты положения поршней в момент начала рабочего такта. Обозначения см. фиг.1.

Из рисунка видно, что угол для рабочего поршня составляет 20 градусов, вспомогательный поршень находится на расстоянии 15 градусов до его прихода в в.м.т. Сумма указанных углов дает угол разбежки поршней — 35 градусов.

Из теории известно, что крутящий момент определяется формулой где P — сила давления поршня; R — радиус кривошипа; — угол поворота кривошипа; — угол поворота шатуна.

(см. «Автомобильные двигатели» под ред. М.С.Ховаха, Москва, «Машиностроение», 1977, стр. 346).

Если допустить, что максимум давления в обычном двигателе соответствует углу в 15 o , то в нашем примере это произойдет при угле в 35 градусов. В этом случае геометрический множитель возрастет в два раза (cм. таблицу 3, стр. 575, «Автомобильные двигатели»). А если учесть, что и произведение также возрастет, то в целом итоговая величина крутящего момента еще больше увеличится.

При максимальном угле разбежки поршней геометрический множитель возрастет многократно, что в итоге превысит 100% значение КПД. Этот парадокс объясняется тем, что его величина для ныне эксплуатируемых двигателей явно завышена.

Соотношением диаметров шестерен коленчатых валов c центральной шестернью можно в больших пределах изменять передаточное число, что делает двигатель более универсальным и стабильным в работе.

Наиболее технологично простыми выглядят дизельные варианты двигателей. Что же касается двигателей с искровым зажиганием, то в этом случае клапаны и свеча зажигания должны устанавливаться в формкамере, устраиваемой в центральной части цилиндра.

Переход на новый тип двигателей помимо чисто экономических выгод позволит значительно оздоровить и экологическую обстановку, которая ныне приобретает катастрофический характер.

1. Двигатель внутреннего сгорания, содержащий камеру сгорания, образованную внутренней поверхностью цилиндра и днищами поршней, последние имеют не взаимовстречное движение, а разведены на некоторый угол (угол разбежки поршней), отличающийся тем, что оптимальная величина его составляет 35 — 60 o C и фиксируется путем зацепления одинаковых шестерен, неподвижно закрепленных на концах коленчатых валов, с центральной шестерней-маховиком, приспособленной для стартерного пуска двигателя и отбора мощности с ее вала.

2. Двигатель по п.1, отличающийся тем, что один из поршней (рабочий), опережающий в своем движении другой поршень (вспомогательный) имеет удлиненный шатун, величина которого определяется углом разбежки поршней и углом для рабочего поршня.

3. Двигатель по п.1, отличающийся тем, что объем камеры сгорания определяется как соотношением длин шатунов, так и изменением (увеличением) радиуса кривошипа вспомогательного поршня.

4. Двигатель по п.1, отличающийся тем, что он выполнен с увеличенной рабочей площадью за счет увеличения диаметра цилиндра, имеет максимальное сближение поршней, при этом в их днищах выполнены выемки, обеспечивающие степень сжатия.

5. Двигатель по п.1, отличающийся тем, что рабочий такт в нем начинается с положительной работы, определяемой углом положения рабочего поршня при оптимальном угле разбежки поршней, величина которого устанавливается опытным путем для каждого типа двигателя и используемого топлива, обеспечивающим в итоге развития двигателем максимального крутящего момента.

Двигатель

Карбюраторные и дизельные двигатели

В качестве силовой установки на автомобилях используется двигатель внутреннего сгорания.

По виду применяемого топлива двигатели подразделяются на карбюраторные, дизельные и газовые.

Карбюраторные – это двигатели, работающие на жидком топливе (бензине), с принудительным зажиганием. Перед подачей в цилиндры двигателя, топливо перемешивается с воздухом в определенной пропорции с помощью карбюратора.

Дизельные — это двигатели, работающие на жидком топливе (дизельном топливе), с воспламенением от сжатия. Подача топлива осуществляется форсункой, а смешивание с воздухом происходит внутри цилиндра.

Газовые — это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом в карбюраторе. По принципу работы такие двигатели практически не отличаются от карбюраторных (бензиновых). Поэтому в объеме этой книги не имеет смысла подробно останавливаться на рассмотрении газовых установок. Однако, если вы переоборудовали свой автомобиль «на газ», то советую внимательно изучить прилагаемую к оборудованию инструкцию.

При работе двигателя внутреннего сгорания из каждых десяти литров использованного топлива, к сожалению, только около двух идет на полезную работу, а все остальные — на «согревание» окружающей среды. Коэффициент полезного действия ныне выпускаемых двигателей составляет всего около 20%. Но мир пока не придумал более совершенного устройства, которое могло бы долго и надежно работать при более высоком КПД.

Карбюраторные поршневые двигатели.

К основным механизмам и системам карбюраторного поршневого двигателя относятся:

  • кривошипно-шатунный механизм,
  • газораспределительный механизм,
  • система питания,
  • система выпуска отработавших газов,
  • система зажигания,
  • система охлаждения,
  • система смазки.

 

Рис. 6 Одноцилиндровый карбюраторный двигатель внутреннего сгорания

а) «стакан» в «стакане»; б) поперечный разрез

1 — головка цилиндра; 2 — цилиндр; 3 — поршень; 4 — поршневые кольца; 5 — поршневой палец; 6 — шатун; 7 — коленчатый вал; 8 — маховик; 9 — кривошип; 10 — распределительный вал; 11 — кулачок распределительного вала; 12 — рычаг; 13 — клапан; 14 — свеча зажигания 

Для начала, давайте возьмем простейший одноцилиндровый карбюраторный двигатель (рис.6) и разберемся с принципом его работы. Рассмотрим протекающие в нем процессы, и выясним, наконец, откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.

Основной частью одноцилиндрового карбюраторного двигателя (рис. 6), является цилиндр с укрепленной на нем съемной головкой. Если продолжить сравнение элементов автомобиля с предметами, всем известными в быту, то цилиндр вместе с головкой, очень похож на обыкновенный стакан, перевернутый вверх дном.

Внутри цилиндра помещен еще один «стакан», также вверх дном, это — поршень. На поршне в специальных канавках находятся поршневые кольца. Именно они скользят по зеркалу внутренней поверхности цилиндра, и они же не дают возможности газам, образующимся в процессе работы двигателя, прорваться вниз. В тоже время кольца препятствуют попаданию вверх масла, которым смазывается внутренняя поверхность цилиндра. 

С помощью пальца и шатуна, поршень соединен с кривошипом коленчатого вала, который вращается в подшипниках, установленных в картере двигателя. На конце коленчатого вала крепится массивный маховик.

Через впускной клапан в цилиндр поступает горючая смесь (смесь воздуха с бензином), а через выпускной клапан выходят отработавшие газы. Клапаны открываются при набегании кулачков вращающегося распределительного вала на рычаги. При сбегании же кулачков с рычагов, клапаны надежно закрываются под воздействием мощных пружин. Распределительный вал с кулачками приводится во вращение от коленчатого вала двигателя.

В резьбовое отверстие головки цилиндра ввернута свеча зажигания, которая электрической искрой, проскакивающей между ее электродами, воспламеняет рабочую смесь (это горючая смесь перемешанная с остатками выхлопных газов, о чем более подробно рассказано ранее). 

Думаю, что после знакомства с основными деталями одноцилиндрового двигателя, вы уже начали догадываться о том, как он работает. Но давайте все-таки разберемся с тем, как происходит преобразование возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала. Этим в двигателе занимается шатунно-поршневая группа.

Вспомните теплый летний вечер, когда вы катались на велосипеде и даже не задумывались о том, как он перемещается в пространстве. А сейчас давайте посмотрим на действия велосипедиста со стороны. Нажимая на педаль одной ногой, мы поворачиваем ось педалей на пол-оборота, затем помогает вторая нога, нажимая на вторую педаль и… колесо вращается, велосипед едет! Необходимо отметить, что работа двух ног — это пример двухцилиндрового двигателя. Чтобы не чувствовать себя обманутым, можете привязать одну ногу к педали и использовать только ее для нашего эксперимента.

При дальнейшем изучении работы ноги велосипедиста можно увидеть принцип работы шатунно-поршневой группы двигателя. Роль шатуна выполняет голень ноги, поршнем с верхней головкой шатуна является — колено, ну а нижняя головка шатуна на кривошипе – это ступня на педали.

Колено велосипедиста движется только вверх — вниз (как поршень), а ступня с педалью уже по окружности (как кривошип коленчатого вала). Так это и есть преобразование возвратно-поступательного движения во вращательное. В двигателе, взаимодействие деталей шатунно-поршневой группы точно такое же, как и в рассмотренном нами примере с ногой велосипедиста. 

 

Рис. 7 Ход поршня и объемы цилиндра двигателя
а) поршень в нижней мертвой точке
б) поршень в верхней мертвой точке

На рисунке 7 показаны некоторые параметры цилиндра и поршня, которые используются для оценки того или иного двигателя (объемы цилиндра и ход поршня).

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). При езде на велосипеде колено вашей ноги, также как и поршень, периодически будет находиться в крайнем верхнем или крайнем нижнем положениях.

Ходом поршня называется путь, пройденный от одной «мертвой» точки до другой — S.

Объемом камеры сгорания называется объем, расположенный над поршнем, находящимся в ВМТ — Vс.

Рабочим объемом цилиндра называется объем, освобождаемый поршнем при перемещении от ВМТ к НМТ — VР.

Полным объемом цилиндра является сумма объемов камеры сгорания и рабочего объема: Vп = VР + Vс.

Рабочий объем двигателя, это сумма рабочих объемов всех цилиндров и измеряется он в литрах. Пока мы с вами рассматриваем только одноцилиндровый двигатель, а вообще двигатели современных легковых автомобилей имеют, как правило — 4, 6, 8 и даже 12 цилиндров. Соответственно, чем больше рабочий объем — тем более мощным будет двигатель. Измеряется мощность в киловаттах или в лошадиных силах (кВт или л.с.).

Например, рабочий объем двигателя ВАЗ 2105 — 1,3 литра, его мощность 46,8 кВт (63,7 л.с.). А рабочий объем двигателя ВАЗ 21083 — 1,5 литра и его мощность 51,5 кВт (70 л.с.).

 

Рабочий цикл четырехтактного карбюраторного двигателя.

 

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.

Рабочий цикл — это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:

  • четырехтактные — в которых рабочий цикл совершается за четыре хода поршня,
  • двухтактные — в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях отечественного производства применяются четырехтактные двигатели, а на мотоциклах и моторных лодках – двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а вот с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

  • впуск горючей смеси,
  • сжатие рабочей смеси,
  • рабочий ход,
  • выпуск отработавших газов.

Рис. 8 Рабочий цикл четырехтактного карбюраторного двигателя
а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси (рис. 8а).

Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор, о чем мы с вами поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху 1:15 считается оптимальным для обеспечения нормального процесса горения.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Хочется посоветовать читателю, почаще включать свое воображение, сравнивая сложное с простым. Если вам удастся почувствовать, как бы ощутить на себе те процессы, которые протекают в двигателе, да и в автомобиле в целом, то многие из «секретов» машины станут для вас «открытой книгой».

Например, наверняка каждый из вас видел, как медицинская сестра, готовясь сделать укол, набирает шприцем лекарство из ампулы. За счет перемещения поршня шприца, над ним создается разряжение, которое и засасывает из ампулы то, что позже «вольется» в «мягкое место» пациента. Почти то же самое происходит и в цилиндре двигателя в процессе такта впуска.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется – рабочая.

Второй такт — сжатие рабочей смеси (рис. 8б).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке.

Оба клапана плотно закрыты и поэтому рабочая смесь сжимается. Из школьной физики всем известно, что при сжатии газов их температура повышается. Так и здесь. Давление в цилиндре над поршнем в конце такта сжатия достигает 9 — 10 кг/см2, а температура 300 — 400оС.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя, имеющий название – степень сжатия (например 8,5). А что это такое? Надеюсь сейчас это станет понятно.

Степень сжатия показывает во сколько раз полный объем цилиндра больше объема камеры сгорания (Vп/Vс — см. рис.7). У карбюраторных двигателей в конце такта сжатия, объем над поршнем уменьшается в 8 — 10 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. А в сумме, от начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт — рабочий ход (рис. 8в).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал. Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия, рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода, сгорающая смесь начинает активно расширяться. А так как впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход — давить на подвижный поршень. Поршень под действием этого давления, достигающего 40 кг/см2, начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила 2000 кг и более, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент. При такте рабочего хода, температура в цилиндре достигает 2000 градусов и выше.

Коленчатый вал при рабочем ходе поршня делает очередные пол-оборота.

Позднее мы вернемся к этим огромным цифрам, похожим на температуры в доменной печи. А пока следует отметить для себя, что процесс рабочего хода происходит за очень короткий промежуток времени, по сравнению с которым, удивленное «хлопание» ресницами ваших глаз после прочтения этого сюжета, длится целую вечность.

Четвертый такт — выпуск отработавших газов (рис.8г)

При движении поршня от нижней мертвой точки к верхней мертвой точке, открывается выпускной клапан (впускной все еще закрыт) и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя. Вот почему слышен тот сильный грохот, когда по дороге едет автомобиль без глушителя выхлопных газов, но об этом позже. А пока обратим внимание на коленчатый вал двигателя — при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.

А теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается двигателем только в течение одного такта — рабочего хода! Остальные три такта называются подготовительными (выпуск, впуск и сжатие) и совершаются они за счет кинетической энергии маховика, вращающегося по инерции.

Рис. 9 Коленчатый вал двигателя с маховиком
1 — коленчатый вал двигателя; 2 — маховик с зубчатым венцом; 3 — шатунная шейка; 4 — коренная (опорная) шейка; 5 — противовес


Маховик (рис. 9) — это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода, поршень, через шатун и кривошип, раскручивает коленчатый вал двигателя, который и передает запас инерции маховику.

Запасенная в массе маховика инерция позволяет ему, в обратном порядке, через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. То есть, поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска), именно за счет отдаваемой маховиком энергии. Если же двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик конечно тоже помогает.

В далеком детстве у вас наверняка была игрушка, которая называлась «Волчок». Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно также и массивный маховик двигателя — раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Дизельные двигатели

Главной особенностью работы дизельного двигателя является то, что топливо подается форсункой или насос-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей в несколько раз больше, чем у карбюраторных. И так как давление и температура в цилиндре дизельного двигателя очень высоки, то происходит самовоспламенение топлива. А это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.

Рабочий цикл четырехтактного дизельного двигателя.

Первый такт — впуск, служит для наполнения цилиндра двигателя только воздухом.

При движении поршня от верхней мертвой точки к нижней мертвой точке, происходит всасывание воздуха через открытый впускной клапан.

Второй такт — сжатие, необходим для подготовки к самовоспламенению дизельного топлива.

При своем движении к верхней мертвой точке, поршень сжимает воздух в 18 — 22 раза (у карбюраторных в 8 — 10 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см2, а температура поднимается выше 500 градусов.

Третий такт — рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу.

В конце такта сжатия, в камеру сгорания, через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха.

При сгорании дизельного топлива (взрыве), происходит его расширение и увеличение давления. При этом возникает усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал. Во время рабочего хода давление в цилиндре достигает 100 кг/см2, а температура превышает 2000о.

Четвертый такт – выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов.

Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.

При своем последующем движении вниз, поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.

В дизельном двигателе, нагрузки на все механизмы и детали значительно больше, чем в карбюраторном бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости. Однако дизельный двигатель имеет и неоспоримые преимущества — меньший расход топлива, чем у его карбюраторного «брата» (приблизительно на 30%), а также отсутствие системы зажигания, что значительно уменьшает количество возможных неисправностей при эксплуатации.


Кривошипно-шатунный механизм (КШМ).

 

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Ранее рассматривалась работа одноцилиндрового двигателя. Это было необходимо для простоты восприятия протекающих в нем процессов. Однако на большинстве легковых автомобилей, как отечественных, так и зарубежных, устанавливаются четырехцилиндровые двигатели. Конечно, существуют варианты и с другим количеством цилиндров (от двух до восьми), но в объеме этой книги мы с вами ограничимся знакомством именно с четырехцилиндровым двигателем, так как именно он является самым распространенным.

 

Рис. 10 Общий вид четырехцилиндрового двигателя на примере автомобиля ВАЗ 2106 (для увеличения изображения кликните по рисунку)

а) продольный разрез; б) поперечный разрез
1 — блок цилиндров; 2 — головка блока цилиндров; 3 — поддон картера двигателя; 4 — поршни с кольцами и пальцами; 5 — шатуны; 6 — коленчатый вал; 7 — маховик; 8 — распределительный вал; 9 — рычаги; 10 — впускные клапаны; 11 — выпускные клапаны; 12 — пружины клапанов; 13 — впускные и выпускные каналы

У четырехцилиндрового двигателя кривошипно-шатунный механизм состоит из (см. рис. 10):

  • блока цилиндров с картером,
  • головки блока цилиндров,
  • поддона картера двигателя,
  • поршней с кольцами и пальцами,
  • шатунов,
  • коленчатого вала,
  • маховика.

Блок цилиндров объединяет в себе не только уже известные нам цилиндры и шатунно-поршневую группу, но и другие системы двигателя. Он является основой двигателя, в которой есть множество литых каналов и сверлений, подшипников и заглушек. Именно в блоке цилиндров вращается (на подшипниках) коленчатый вал. Во внутренних полостях блока циркулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Большая часть из навесного оборудования двигателя монтируется, опять же, на блоке цилиндров. Нижняя часть блока называется картером.

 

Головка блока цилиндров является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

Устройство и взаимодействие основных деталей кривошипно-шатунного механизма — шатунно-поршневой группы мы с вами уже разобрали выше, при изучении ног велосипедиста и рабочего цикла двигателя (см. стр. 9-11).

 

Для тех из вас, кто уже вернулся обратно на эту страницу, предлагаю небольшой экскурс в мир цифр. На холостом ходу двигателя, его коленчатый вал вращается со скоростью приблизительно 800 — 900 оборотов в минуту (13 — 15 об/сек). На средней и большой скорости движения автомобиля число оборотов коленчатого вала в минуту составляет уже от 2000 до 4000. А в ходе автомобильных соревнований, у специально подготовленных автомобилей, двигатель «раскручивается» до 12000 об/мин (200 оборотов в секунду) и даже более того. А, что поршни? Они движутся в цилиндре с огромной скоростью! Ведь за один оборот коленчатого вала каждый поршень успевает подняться вверх, «развернуться» и опуститься вниз (или наоборот – сначала вниз, потом вверх). Свой путь от одной мертвой точки до другой, поршни «пролетают» за сотые доли секунды! А если вспомнить еще и об огромных температурах и давлении в цилиндрах в это время! Вот в таких непростых, мягко выражаясь, условиях работает двигатель вашего автомобиля.

Мы с вами разобрались с очень сложным и уникальным процессом, происходящим внутри двигателя с одним цилиндром. Многоцилиндровый двигатель принципиально ни чем не отличается от простейшего одноцилиндрового. Однако, когда цилиндров много, представьте, как они работают и в каких условиях (температуры, давление, трение…), при этом безотказно и продолжительное время, доставляя нам только удовольствие ничего не требуя взамен, кроме лишь «кормления» двигателя бензином и периодического его обслуживания.

Основные неисправности кривошипно-шатунного механизма.

Стуки в двигателе могут быть по причине износа поршневых пальцев, шатунных и коренных подшипников.

Для устранения неисправности необходимо заменить изношенные детали.

Повышенная дымность выхлопных газов и (или) падение компрессии (давление в конце такта сжатия) случается из-за износа поршневых колец, поршней, цилиндров, залегания поршневых колец в канавках поршней.

Для устранения неисправности следует заменить изношенные детали.

Эксплуатация кривошипно-шатунного механизма двигателя.

Правильная эксплуатация двигателя крайне необходима, так как его ремонт достаточно трудоемкий и дорогостоящий процесс. И к кривошипно-шатунному механизму, это относится в первую очередь.

Ресурс работы двигателя — это продолжительность нормальной работы двигателя без его капитального ремонта. Для отечественных автомобилей ресурс двигателя составляет приблизительно 150 — 200 тысяч километров пробега, и несколько больше для иномарок.

Для многих из вас эти цифры покажутся недосягаемо большими, но это не означает, что можно забывать о своевременной смене масел, жидкостей, фильтров и других расходных материалов. Плюс к этому, двигатель также требует периодических регулировок. Необходимо соблюдать сроки обслуживания его механизмов и систем, как этого рекомендует завод–изготовитель вашего автомобиля. А иначе, через удивительно короткий промежуток времени, вам может понадобиться именно капитальный ремонт двигателя.

Факторы, влияющие на продолжительность работы двигателя.

Первый фактор, уменьшающий ресурс двигателя — частые перегрузки автомобиля. Если загрузка салона, багажника и прицепа превышает все разумные пределы, то, двигаясь на такой перегруженной машине продолжительное время, вы рискуете выработать ресурс двигателя ранее вышеуказанного срока.

Водители, полагающие, что металл выдержит все – очень сильно ошибаются. Попробуем «примерить» это утверждение на себя.

Если сумка, с которой вы идете по улице, весит 1,5 — 2 кг, то можно долго не ощущать усталости. А теперь давайте возьмем на прогулку свой любимый телевизор с диагональю 51 см и, «погуляв» по набережным часика этак два, оценим свое состояние. А ведь в отличие от нашего с вами организма, металл претерпевает необратимые изменения.

Вторым фактором, влияющим на срок службы вашего двигателя, является движение с максимально возможной скоростью длительное время.

Если на трехкилометровой дистанции по кроссу, вы будете бежать также быстро, как и на 100 метров, то вам не избежать быстрого уставания и потери сил. Сразу вспоминается фраза из песни В. Высоцкого: «Он на десять тыщ, рванул как на пятьсот… и… спекся!». Последствия для человеческого организма могут быть плачевными. То же самое происходит и с двигателем автомобиля. Жаль, что многие начинают понимать это слишком поздно.

Мы с вами не так далеко ушли от тех «страшно» больших цифр (температуры, давление, скорости…), характеризующих условия, в которых работают механизмы двигателя, чтобы вы успели их забыть. Согласитесь, что количество «взрывов» в цилиндрах, периодичность колебаний температуры и давления за одну секунду, не могут не влиять на продолжительность «жизни» деталей двигателя.

Третий фактор, ускоряющий износ двигателя — экология. Грязный воздух и грязные дороги укорачивают жизнь не только человеку, но и разрушающе действуют на структуру металла, уменьшая ресурс двигателя. Поэтому не забывайте вовремя производить замену фильтров, по мере возможности применяйте чистые масла и бензин, следите за внешним видом двигателя своего автомобиля. Хотя бы пару раз в год, его следует очищать от грязи и мыть с использованием специальных жидкостей.

Заправка двигателей внутреннего сгорания | Давайте поговорим о науке

Сколько видов транспорта вы можете назвать?

Разным транспортным средствам нужны разные источники энергии, чтобы добраться до места назначения. Большинству из них нужно какое-то топливо для двигателей.

Топливо — это материал, который хранит потенциальной энергии . Большинство видов топлива хранят потенциальную энергию в связях между своими молекулами. Это называется химической потенциальной энергией .

Как высвободить энергию, запасенную в топливе? Обычно это включает химическую реакцию, называемую реакцией горения .Другими словами, нужно сжечь топливо.

В реакции горения участвуют топливо и кислород. Большинство видов топлива представляют собой углеводороды или смесь углеводородов. Когда они реагируют с кислородом, они производят диоксида углерода (CO 2 ) и воду (H 2 O).

В результате реакций горения выделяется тепловой энергии . Химические реакции с выделением тепла называются экзотермическими реакциями . В большинстве автомобилей используется двигатель для преобразования тепловой энергии в механическую.Эта энергия передается движущимся частям автомобиля, таким как колеса и пропеллеры. Там она принимает форму кинетической энергии (энергии движения).

Топливо может быть твердым, жидким или газообразным.

  • Древесина и уголь являются примерами твердых веществ, используемых в качестве топлива.

  • Бензин, дизельное топливо и этанол являются примерами жидкостей, используемых в качестве топлива.

  • Пропан, природный газ и водород являются примерами газов, используемых в качестве топлива.

Топливо может быть твердым, жидким или газообразным (© Let’s Talk Science, 2019).

Сегодня в большинстве автомобилей используется жидкое и газообразное топливо. Но в прошлом уголь и дрова использовались для нагрева воды и создания пара. Паровые двигатели в автомобилях, поездах и кораблях использовались для вращения колес и пропеллеров.

Сегодняшние автомобили используют два основных вида топлива:

  • Топливо на нефтяной основе
  • Биотопливо

Ископаемое топливо

Топливо на нефтяной основе более известно как ископаемое топливо . «Нефть» может относиться либо к необработанной сырой нефти, либо к продуктам, полученным из очищенной сырой нефти .

Жидкие виды топлива на углеводородной основе включают бензин, нефтяное дизельное топливо, авиационный бензин, авиационное топливо для реактивных двигателей и судовой мазут.

Газообразное топливо на основе нефти включает природный газ и пропан. Однако газ пропан хранится в жидком виде.

Автомобильный бензин (Mogas)

Бензин — наиболее распространенный вид автомобильного топлива. В некоторых англоязычных странах его также называют бензином.

Бензин — это легковоспламеняющаяся прозрачная жидкость, которая легко воспламеняется. Это смесь углеводородов, очищенных из сырой нефти.Он также содержит такие добавки, как этанол, который является биотопливом.

Знаете ли вы?

Mogas состоит из углеводородных цепей, содержащих 7-11 атомов углерода.

Бензиновые двигатели — это двигатели с искровым зажиганием. Они воспламеняют смесь топлива и воздуха с помощью свечей зажигания .

Бензин используется для заправки автомобилей, пикапов, фургонов, внедорожников, моторных лодок, снегоходов, скутеров и мотоциклов. В прошлом автомобильный бензин содержал свинец.Сегодня вы можете купить только неэтилированный бензин для своей машины.

Нефть Дизель (Дизель, Петродизель)

Дизельное топливо — второй по распространенности вид автомобильного топлива после бензина. Как и бензин, дизельное топливо — это жидкий углеводород, полученный из сырой нефти.

Знаете ли вы?

Дизельное топливо состоит из углеводородных цепей, содержащих 15-18 атомов углерода.

Разрабатываются новые виды дизельного топлива. В их число входит биодизель , который является биотопливом.На нефтяной основе часто называют петродизель , чтобы отличить его от разновидностей на основе растений и животных.

Дизельные двигатели названы в честь немецкого изобретателя Рудольфа Дизеля. Они используют сжатый воздух для воспламенения топлива. В отличие от бензиновых двигателей им не нужна свеча зажигания.

Дизельное топливо используется в легковых автомобилях, пикапах, фургонах, внедорожниках, школьных автобусах, городских автобусах, поездах, моторных лодках и паромах.

Авиационный бензин (Avgas)

Как и автомобильный бензин, avgas представляет собой смесь жидких углеводородов.Но в отличие от бензина, используемого в автомобилях, газ содержит тетраэтилсвинец (TEL). Это токсичное вещество предотвращает проблемы с воспламенением, которые могут нарушить работу двигателя.

Знаете ли вы?

Avgas состоит из углеводородных цепей, содержащих от 4 до 12 атомов углерода.

В бензин часто добавляют красители. Они позволяют легко увидеть, пролилось ли топливо. Авиационный бензин используется в небольших частных и старинных самолетах с поршневыми двигателями. В этих самолетах используются двигатели с искровым зажиганием.

Топливо для авиационных двигателей (топливо для авиационных турбин)

Топливо для авиационных реактивных двигателей — жидкое топливо, аналогичное дизельному. Его можно использовать как в двигателях с воспламенением от сжатия, так и в газотурбинных двигателях. Турбинный двигатель — это двигатель внутреннего сгорания, который вращает турбину.

Авиационное топливо бывает двух видов:

  1. Неэтилированный керосин (Jet A, JP-5, JP-8)

  2. Смешанный нафта-керосин (Jet B, JP-4)

Оба типа содержат короткие углеводороды (12-16 атомов углерода), очищенные из сырой нефти.Однако второй тип используется только при очень низких температурах.

Исследователи работают над созданием реактивного биотоплива на растительной основе. Он будет сделан из таких источников, как водоросли и камелина .

Турбовинтовые самолеты, самолеты и вертолеты используют авиационное топливо для реактивных двигателей.

Образец бункерного топлива. Обратите внимание, какой он толстый и черный (Источник: Glasbruch3007 [CC BY-SA 3.0] через Wikimedia Commons).

Мазут тяжелый (бункерное топливо)

Мазут — густая темная жидкость, состоящая из длинных углеводородных цепей.Содержит два вида топлива:

  • Дистиллятное топливо состоит из углеводородов, которые кипятят и конденсируются во время фракционной перегонки.
  • Остаточное топливо состоит из углеводородов, которые слишком тяжелы для перегонки и попадают в остаток

Остаточное топливо очень густое. Таким образом, добавляются дистилляты, чтобы снизить его вязкость и дать ему возможность течь.

Мазут перед сжиганием необходимо нагреть.Для этого требуется специальное оборудование, которое занимало бы слишком много места на небольших транспортных средствах. Вот почему мазут используется только на очень больших судах.

Мазут также называется бункерным топливом . Это название происходит от контейнеров, в которых нефть хранится на кораблях и в портах.

Сжатый природный газ (CNG)

Природный газ представляет собой смесь углеводородов природного происхождения. Он обнаружен в подземных месторождениях, которые называются месторождениями природного газа .Также встречается возле нефтяных месторождений.

Знаете ли вы?

Природный газ в основном состоит из метана. Метан — это углеводород с одним атомом углерода.

Сжатый природный газ (КПГ) получают путем сжатия природного газа до менее 1% объема, который он занимал бы при стандартном атмосферном давлении. СПГ можно хранить в баллонах. Он используется в автомобилях почти так же, как бензин.

Природный газ в основном используется в автобусах как заменитель бензина, дизельного топлива и пропана.

Грузовик с пропаном (Источник: kozmoat98 через iStockphoto).

Пропан (сжиженный природный газ, автопропан)

Пропан — короткий газообразный углеводород (C 3 H 8 ). Это побочный продукт переработки природного газа и переработки сырой нефти. При хранении под давлением в резервуаре пропан превращается в бесцветную жидкость без запаха.

Знаете ли вы?

Из соображений безопасности в пропан добавляется дурно пахнущая добавка. Иначе вы не почувствуете запаха утечки!

Когда давление сбрасывается, жидкий пропан испаряется и превращается в газ, используемый для сгорания.Как и бензиновые двигатели, в пропановых двигателях для воспламенения топлива используется искра.

Многие люди используют пропан в качестве топлива для своих барбекю. Но он также используется в транспортных средствах автопарка, таких как полицейские машины и такси. Некоторые автомобили работают только на пропане. Другие могут работать как на пропане, так и на бензине. Большинство пропановых автомобилей — это фактически переоборудованные автомобили с бензиновым двигателем.

Биотопливо

Этанол

Этанол — биотопливо. Это разновидность спирта, изготовленного из растений.

Знаете ли вы?

Этанол — это спирт с двумя атомами углерода (C 2 H 5 OH).

В Канаде этанол в основном получают из кукурузы и пшеницы. Исследователи также рассматривают возможность использования целлюлозы из растительных отходов. В бензин часто добавляют этанол и другие спирты. Горящий спирт производит меньше окиси углерода и сажи , чем горящий бензин.

С 2010 года бензин, продаваемый в Канаде, должен содержать в среднем 5% возобновляемых источников. Обычно это этанол.

Все автомобили с бензиновым двигателем, произведенные с начала 1980-х годов, могут использовать бензин, содержащий некоторое количество этанола.Сегодня все основные производители автомобилей разрешают использовать бензин с содержанием этанола до 10%. Бензин, содержащий 5% этанола, называется E5. Бензин, содержащий 10% этанола, называется E10. Транспортные средства с гибким топливом (FFV) могут работать на любой комбинации бензина и этанола с содержанием этанола до 85% (E85).

Биодизель

Биодизель — еще одно биотопливо. Это дизельное топливо, получаемое в результате химической реакции между жиром и алкоголем. Жир может быть растительного или животного происхождения.

Знаете ли вы?

Биодизель состоит из сложных эфиров с 8-20 атомами углерода.

B100 из соевых бобов (Источник: Леандро Марангетти Лоуренсо [CC BY-SA 3.0] через Wikimedia Commons).

Большая часть биодизеля производится из рапса . Но его можно сделать и из другого сырья. Источники растений включают сою, ятрофу, водоросли и отработанное растительное масло. Источники животного происхождения включают говядину и куриный жир.

Любой дизельный двигатель может работать на 100% биодизеле. Однако обычно он составляет от 2% до 20% дизельного топлива. Большинство гарантий на дизельные двигатели позволяют владельцам использовать смеси от B5 (5% биодизеля) до B20 (20% биодизеля).

Сегодня биодизель используется в автомобилях, грузовиках, автобусах и поездах. Ученые даже тестируют биодизель в самолетах. С 2011 года дизельное топливо, продаваемое в Канаде, должно содержать в среднем 2% возобновляемых источников. Другими словами, он должен содержать 2% биодизеля.

Как видите, видов топлива много. Подумайте обо всех типах транспортных средств, которые вы видели на прошлой неделе. Как вы думаете, какое топливо они используют?

Как двигатель внутреннего сгорания повлиял на транспорт? — MVOrganizing

Как двигатель внутреннего сгорания повлиял на транспорт?

Как двигатель внутреннего сгорания повлиял на транспорт? Это сделало производство автомобилей дешевле и эффективнее.Он использовал бензин и масло для создания двигателя большой мощности. Это привело к массовому производству автомобилей и самолетов.

Как двигатель внутреннего сгорания изменил мир?

В то время как двигатели Отто требовали свечей зажигания для сгорания топлива, двигатель Дизеля достигал этого с высокой степенью сжатия. Эти изобретения могли использоваться в автомобилях, локомотивах, кораблях и самолетах и ​​проложили путь массовой мобильности и постоянно растущему обмену людьми и товарами во всем мире.

Почему двигатель внутреннего сгорания более эффективен, чем паровой?

К началу 1900-х годов двигатель внутреннего сгорания заменил паровой двигатель в качестве наиболее широко применяемой энергогенерирующей системы не только из-за его более высокого теплового КПД (отсутствует передача тепла от газов сгорания вторичному рабочему телу, что приводит к потери эффективности), но еще и потому, что это…

Что делал двигатель внутреннего сгорания во время промышленной революции?

Это была эпоха исключительных изменений в технологических продуктах или оборудовании, которые позволили внести изменения в производство, сельское хозяйство, транспорт, связь, банковское дело и многое другое.Двигатель внутреннего сгорания был изобретением, которое позволило приводить в действие автомобили и изменило жизнь в том виде, в каком мы ее знаем.

Какое ключевое влияние оказал двигатель внутреннего сгорания?

Развитие двигателя внутреннего сгорания помогло освободить людей от тяжелейшего ручного труда, сделало возможным создание самолетов и других видов транспорта и помогла произвести революцию в производстве электроэнергии.

Для чего используются двигатели внутреннего сгорания?

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. Затем в качестве выхлопных газов выбрасывается та же смесь топлива и воздуха.

Какие 3 системы главного двигателя?

Системы двигателя

  • Пусковая система.
  • Топливная система.
  • Система зажигания.
  • Система охлаждения.
  • Система смазки.
  • Система впуска.
  • Выхлопная система.
  • Система зарядки.

Какие три типа двигателей внутреннего сгорания?

Наиболее распространенным двигателем внутреннего сгорания является четырехтактный бензиновый двигатель с однородным зарядом и искровым зажиганием.

Как работает двигатель внутреннего сгорания?

В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание.

Какие основные части двигателя внутреннего сгорания?

Самыми основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал.К ним прикреплены другие компоненты, которые повышают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала.

Что означает горение?

Горение, химическая реакция между веществами, обычно включающими кислород, обычно сопровождающаяся выделением тепла и света в виде пламени.

Каков КПД двигателя внутреннего сгорания?

Большинство двигателей внутреннего сгорания невероятно неэффективны при превращении сожженного топлива в полезную энергию.Эффективность, с которой они это делают, измеряется с точки зрения «теплового КПД», и большинство бензиновых двигателей внутреннего сгорания в среднем составляют около 20 процентов теплового КПД.

Какие 3 категории эффективности двигателя?

Соответственно, общий тепловой КПД тормоза двигателя является продуктом сгорания, термодинамики, газообмена и механического КПД.

  • Энергопотери двигателя. Сводка убытков. Топливная энергия. Эффективность горения. Термодинамическая эффективность.Тепловые потери.
  • Эффективность с точки зрения топлива.

Какой двигатель дает большую эффективность?

Дизельные двигатели

Какой тип двигателя наиболее эффективен?

электродвигатель

Почему двигатели такие неэффективные?

Бензиновые двигатели часто выбрасывают более 80% производимой энергии из выхлопной трубы или теряют эту энергию в окружающую среду вокруг двигателя. Причины такой неэффективности двигателей внутреннего сгорания являются следствием законов термодинамики.В процессе сгорания топливо окисляется (сгорает).

Какой самый эффективный тепловой двигатель?

Цикл Карно

Почему машина никогда не может иметь 100% КПД?

Машина не может быть эффективна на 100 процентов, потому что производительность машины всегда меньше, чем затраты. Определенный объем работы, выполняемой на машине, теряется на преодоление трения и подъем некоторых движущихся частей машины.

Эффективен ли двигатель Карно 100?

Для достижения 100% эффективности (η = 1) Q2 должен быть равен 0, что означает, что все тепло от источника преобразуется в работу.Температура раковины означает отрицательную температуру по абсолютной шкале, при которой температура больше единицы.

Может ли тепловой двигатель быть на 100 эффективнее?

Тепловые двигатели часто работают с КПД от 30% до 50% из-за практических ограничений. Тепловые двигатели не могут достичь 100% теплового КПД () согласно Второму закону термодинамики.

Почему не используются двигатели Стирлинга?

Вот краткий ответ: двигатели Стирлинга не подходят для приложений, которым необходимо быстро изменять уровни выходной мощности, например, для автомобилей.Кроме того, они, как правило, тяжелее (и дороже), чем бензиновые или дизельные двигатели аналогичной мощности.

Может ли двигатель Стирлинга питать дом?

Двигатель Стирлинга Microgen вырабатывает переменный ток (50 Гц) и вырабатывает 1 кВт электроэнергии; идеально подходит для использования в домашних условиях.

Используются ли сегодня двигатели Стирлинга?

Сегодня двигатели Стирлинга используются как в игрушках, так и в вентиляторах для дровяной печи, в комбинированных теплоэлектростанциях для предприятий и в двигателях самых бесшумных и смертоносных подводных лодок в море.

Может ли двигатель Стирлинга приводить в движение автомобиль?

Благодаря этому набору выгодных характеристик двигатели Стирлинга подходят для использования в качестве двигателей транспортных средств. небольшой пригородный вагон с теплоаккумулятором / двигателем Стирлинга. Тепловую батарею можно заряжать в течение ночи с помощью недорогой электроэнергии или сжигания природного газа.

Как долго можно эксплуатировать двигатель Стирлинга?

«Это возможно, и вы можете получить около 5 000 часов работы этого двигателя. Но у вас есть механизмы износа, и вы не можете сконструировать такой двигатель, который работал бы вечно.Если вам нужен долгий срок службы, порядка десяти или двадцати лет непрерывной работы, вы должны устранить все механизмы износа ».

Как на самом деле работает двигатель внутреннего сгорания?

Ежегодно около 222 миллионов человек в США ездят на самых разных транспортных средствах. Почти все эти автомобили оснащены двигателем внутреннего сгорания. Однако недавний опрос AA показал, что только 10% водителей действительно могут описать в общих чертах, как работает двигатель внутреннего сгорания.

Если вы только что осознали, что не входите в число этих 10%, не волнуйтесь, мы составили краткое описание удивительного процесса, с помощью которого ваша машина действительно движется.

Основы

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания воспламенение и сгорание топлива происходит внутри самого двигателя.

Затем двигатель частично преобразует энергию сгорания в работу.Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. В конечном счете, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

Различные типы двигателей внутреннего сгорания

Двумя наиболее распространенными типами двигателей внутреннего сгорания являются бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Эти двигатели специально разработаны для работы как с бензином, так и с дизельным двигателем, поэтому использование неправильного топлива в вашем автомобиле может привести к значительному повреждению двигателя.

В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода.

В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Большинство двигателей внутреннего сгорания представляют собой четырехтактные двигатели, что означает, что для завершения цикла требуется четыре хода поршня. Цикл двигателя состоит из четырех различных процессов. Это впуск, сжатие, сгорание, рабочий такт и выпуск.

Разработка двигателя внутреннего сгорания

Двигатель внутреннего сгорания стал результатом ряда постепенных изменений в установленных патентах, а не одним значительным усовершенствованием. Первый коммерчески успешный двигатель внутреннего сгорания был создан Этьеном Ленуаром около 1860 года.

Эксперименты Ленуара с электричеством привели его к разработке первого двигателя внутреннего сгорания, который сжигал смесь угольного газа и воздуха, воспламеняемую системой зажигания «прыгающей искрой» катушки Румкорфа.

То, что мы можем считать первым современным двигателем внутреннего сгорания, было создано в 1876 году Николаусом Отто. Двигатель Отто — это большой стационарный одноцилиндровый четырехтактный двигатель внутреннего сгорания. Изначально двигатели использовались для стационарных установок, поскольку Отто не интересовался транспортом, и в конечном итоге были разработаны для транспортных средств Готтлибом Даймлером.

Отто фактически основал свой двигатель на коммерческом двигателе внутреннего сгорания на жидком топливе 1872 года, изобретенном американцем Джорджем Брайтоном.

В то время как двигатели внутреннего сгорания чаще всего ассоциируются с транспортными средствами, термин двигатель внутреннего сгорания также может применяться к пушкам, ракетам или вообще ко всему, что использует мощность взрыва для генерирования энергии или импульса.

В последние годы преобладанию бензина и дизельного топлива в качестве основного топлива для двигателей транспортных средств бросили вызов более экологичные виды топлива, такие как биодизель, биоэтанол, водород и этил-трет-бутиловый эфир (ЭТБЭ).Многие производители автомобилей также производят гибридные автомобили, которые работают на смеси традиционных видов топлива и электроэнергии, или, в случае таких компаний, как Tesla, полностью электрические автомобили

.

Научитесь водить машину в Неваде сегодня!

Северо-западная автошкола и школа дорожного движения предоставляют жителям Лас-Вегаса уроки вождения и дорожного движения под руководством опытных инструкторов. Все наши инструкторы по вождению прошли проверку биографических данных. Каждый автомобиль одобрен DMV по безопасности, и каждый член семьи Northwest стремится предоставить отличные инструкции для водителей и за рулем.

На Северо-Западе вы можете рассчитывать найти выдающиеся классы, как в кампусе, так и за рулем, которые увлекательны, наполнены фактами, занимательны и нацелены на успех.

Мы не скрываем этого, мы уверены, что Northwest предлагает лучшие уроки вождения в Лас-Вегасе, независимо от вашего возраста и происхождения. Мы гордимся тем, что 98% наших студентов сдают экзамен с первой попытки. Позвоните нам по телефону (702) 403-1592 , чтобы начать свое приключение с одним из наших опытных инструкторов.

Автор:

Рич Генрих

Мастер-инструктор, заслуженный

Как бензиновые двигатели могут выжить в будущем электромобилей

Двигатели внутреннего сгорания не исчезнут полностью в ближайшее время, если вообще когда-нибудь. Определенные транспортные задачи или условия эксплуатации просто не подходят для электрических силовых установок, работающих на батареях или водороде. Полтора века исследований и разработок значительно повысили эффективность двигателей внутреннего сгорания, и у инженеров есть множество дополнительных уловок, которые обещают извлечь из молекулы топлива еще больше работы, производя при этом еще меньше вредных выбросов.Вот лишь некоторые из них, за которыми мы постоянно следим, они перечислены в порядке сложности и стоимости реализации.

Стандарт топлива с октановым числом 98

Простая возможность спроектировать двигатель для работы со сжатием 15: 1 или выше значительно улучшает его термодинамический КПД и удельную мощность, что позволяет дополнительно уменьшить размер двигателя. Для этого требуется топливо с более высоким октановым числом, а исследовательское октановое число (RON) 98 представляет собой золотую середину, выше которой при производстве / переработке топлива требуется больше энергии, что снижает эффективность использования энергии на колесах / выбросов CO2.

Просмотреть все 5 фотографий

Деактивация интеллектуального цилиндра

Размеры двигателей рассчитаны на самые худшие сценарии, такие как ускорение на четверть мили или буксировка тяжелых трейлеров до плотины Дэвис. Деактивация цилиндров повышает эффективность в менее экстремальных дорожных ситуациях, заставляя несколько цилиндров работать с плотностью Дэвиса, в то время как другие ничего не делают. Система динамического управления подачей топлива может отключать любой или все цилиндры в 5,3- и 6,2-литровых двигателях V-8 GM, чтобы повысить экономию топлива EPA почти на 12 процентов. В настоящее время Tula Technologies и Eaton предлагают аналогичные системы для дальнемагистральных дизельных двигателей, в которых выгода за меньшую топливную эффективность (1.5-4,0 процента) приносит огромные дивиденды по NOx за счет поддержания температуры выхлопных газов, необходимой для поддержания работы катализаторов.

Инновационные нагнетатели

Мощность двигателя ограничена количеством воздуха, который он может проглотить, поэтому более века назад были разработаны нагнетатели с приводом от коленчатого вала и турбонагнетатели с приводом от выхлопных газов. Электрические нагнетатели, использующие рекуперативную энергию, в частности, двигатели Volvo Drive E и Mercedes M256; добавление двигателя / генератора к турбонагнетателю устраняет отставание по мощности и позволяет собирать энергию во время движения.Два интересных варианта компрессоров с кривошипно-шатунным приводом — центробежный нагнетатель Torotrak V-Charge, в котором используется бесступенчатый трансмиссионный привод, чтобы быстро подбирать скорость в соответствии с потребностями, и нагнетатель типа Lysholm от Hansen Engine Corp, который имеет окно, которое открывается или закрывается в соответствии с потребностью в воздухе. давление при минимизации потерь для обеспечения турбоэффективности с повышенной отзывчивостью.

Просмотреть все 5 фотографий

Необычные системы зажигания

Поскольку для сгорания топлива требуется время, обычные свечи зажигания загораются, поскольку поршень уже движется вверх, что делает начальное сгорание контрпродуктивным.Схемы одновременного воспламенения большего количества смеси обещают более быстрое сгорание, что позволяет ему в основном происходить при ходе вниз. Форд разработал лазеры ближнего инфракрасного диапазона для зажигания нескольких точек в камере сгорания, но стоимость и надежность остаются проблематичными. Встраиваемая свеча зажигания Transient Plasma впрыскивает пласты низкотемпературной плазмы, которая обещает быстро и холодно воспламенить ультра-обедненные смеси для повышения экономии топлива на 10-15 процентов и значительного снижения выбросов NOx. Даже новая форкамерная система Twin-Combustion от Maserati квалифицируется как ускоритель зажигания.

Переменная степень сжатия

Эта концепция «торт-и-есть-это» обещает высокую степень сжатия для экономного движения с легким дросселем и низкую компрессию, когда турбонаддув находится в режиме наддува. Шатунная штуковина Руба-Голдберга от Nissan изменяет ход двигателя, плавно изменяя степень сжатия от 8: 1 до 14: 1. Нас не впечатлили производительность Nissan / Infiniti VC-Turbo и экономия топлива, и мы задаемся вопросом, может ли эксцентричный шатун FEV быть проще и работать лучше.Давление масла, подаваемое через коленчатый вал, вращает эксцентриковый подшипник в конце поршня, изменяя ход в более узком диапазоне, скажем, с 8: 1 до 12: 1, обещая 5-процентное снижение расхода топлива.

Просмотреть все 5 фото

Воспламенение от сжатия однородным зарядом

Эффективность дизеля по выбросам бензина! Это дихотомическое обещание HCCI, стремящегося спонтанно воспламенять смеси обедненного бензина путем сжатия. У GM, Mercedes и Hyundai были многообещающие программы HCCI, но только Mazda запустила HCCI в производство.Вроде, как бы, что-то вроде. SkyactivX иногда использует свечи зажигания, и все еще считается слишком дорогим для продажи в Северной Америке. Компания Nautilus Engineering предложила концепцию HCCI, которая включает небольшой поршень наверху главного поршня, который входит в свой собственный небольшой цилиндр с более высокой степенью сжатия в верхней части хода, чтобы инициировать воспламенение от сжатия. Однако нам неизвестно о каких-либо OEM-контрактах, заключенных компанией.

Системы утилизации отработанной энергии

Двигатели внутреннего сгорания выделяют много тепла и вибрации; почему бы не использовать его для выработки энергии пара, термоэлектрической или пьезоэлектрической энергии? Предложенная BMW система Turbosteamer и многие другие отказались от нее по причинам стоимости и веса.Твердотельные термоэлектрические генераторы обещают превращать тепло, как правило, от компонентов выхлопных газов, непосредственно в электричество. (Осуществимость производства зависит от повышения эффективности необходимых материалов по сравнению с сегодняшним уровнем примерно в 5 процентов.) И исследователи из Университета Дьюка предлагают использовать пьезоэлектрические кристаллы, подобные кристаллам, расширяющимся под действием напряжения, для приведения в действие прямых топливных форсунок для выработки энергии при вибрации.

Посмотреть все 5 фотографий

Совершенно новые концепции двигателей

Любая радикально новая конструкция двигателя сталкивается с огромной промышленной инерцией.Тем не менее, несколько «лучших мышеловок», похоже, держатся за свои права. Achates Power недавно получила еще один грант в размере 5 миллионов долларов от армии для продолжения разработки своего трехцилиндрового двухтактного двигателя с шестью оппозитными поршнями и двумя коленчатыми валами (показан выше). В 4,9-литровом прототипе с супер- и турбонаддувом мощностью 275 л.с. и 811 фунт-фут, его эффективность, как сообщается, превосходит 6,7-литровый турбодизель Power Stroke в Ford F-Series на 20 процентов. Скудери и Примавис предложили двигатели с раздельным циклом, которые выполняют циклы впуска / сжатия и сгорания / выпуска в отдельных цилиндрах, каждый из которых предназначен для выполнения своих разрозненных задач.Это снижает температуру. Scuderi столкнулся с юридическими проблемами со своими инвесторами, Primavis задумывал свой крошечный двухтактный двигатель в первую очередь как расширитель диапазона, и в последнее время ни один из них не получил много новостей, хотя их научные исследования кажутся обоснованными. Концепция LiquidPiston X-1 представляет собой роторный двигатель «наизнанку Ванкеля» с ротором в форме корпуса Ванкеля, качающимся через неопределенно треугольный корпус с тремя камерами сгорания. Установка сальников на стационарный корпус облегчает их смазку.Он все еще находится в активной разработке как расширитель диапазона. Кроме того, есть еще большие скачки в дизайне, такие как концепция вращающейся турбины внутреннего сгорания Astron Aerospace, которая сочетает в себе работу с разделенным циклом, HCCI, сверхдлинный цикл расширения и другие замечательные идеи. Он также все еще находится в активной разработке, обеспечивая впечатляющую мощность, крутящий момент и эффективность.

Зеленое топливо обещает углеродно-нейтральное сжигание сейчас

Биотопливо: использование зеленой энергии для производства топлива из растений, которые вытягивают CO2 из атмосферы, теоретически не добавляет нового CO2 в нашу «теплицу».«Но использование чистого этанола, сделанного из кукурузы, обычно не считается, потому что земля, на которой выращивалась эта кукуруза, обычно преобразовывала одно и то же количество CO2, независимо от того, стала ли она топливом или кукурузным сиропом с высоким содержанием фруктозы, поэтому чистое сокращение углерода невозможно. заявлено. Биотопливо, изготовленное из целлюлозного сырья, такого как стебли кукурузы, трава мискантуса или новые культуры, посаженные там, где ничего не было или не могло быть выращено / собиралось до того, как засчитывается, и существует множество процессов для преобразования целлюлозных материалов или даже мусора в этанол, метанол. или бутанол.Также идентифицировано несколько процессов превращения водорослей в биодизельное топливо. К сожалению, все они слишком дороги, чтобы конкурировать с дешевым бензином.

Прямое улавливание углерода: Было предложено несколько схем для извлечения CO2 из воздуха и его гидрогенизации с образованием углеводородного топлива. Prometheus Fuels планирует производить бензин из CO2, а сотрудничество Audi / Sunfire намеревается производить дизельное топливо из «голубой нефти», полученной путем использования экологически чистой электроэнергии для соединения углерода CO2 с водородом из воды. Компания Carbon Engineering из Британской Колумбии, Канада, планирует начать промышленное производство к 2022 году.ReactWell LLC надеется объединить процесс преобразования CO2 непосредственно в этанол в Национальной лаборатории Окриджа с собственным процессом преобразования его в био-сырую нефть, которую можно перерабатывать в различные углеводородные топлива.

Двигатели внутреннего сгорания | Анимация, Достоинства, Недостатки

Двигатель — это механическое устройство, которое используется для преобразования одной формы энергии в другую. Тип двигателя, о котором мы собираемся изучить в этой статье, преобразует тепло в работу.

По месту фактического сгорания топлива двигатели можно разделить на два типа.

Один из них — двигатель внутреннего сгорания (ДВС), другой — двигатель внешнего сгорания.

В этой статье мы ограничимся обсуждением двигателей внутреннего сгорания.

Что такое двигатель внутреннего сгорания?

Из названия вполне очевидно, что в двигателях внутреннего сгорания топливо сжигается внутри двигателя. В отличие от двигателей внешнего сгорания, в которых топливо сжигается вне двигателя.

Самый популярный тип двигателя внутреннего сгорания, который мы видим сегодня, — это двигатель, который мы используем в наших автомобилях и мотоциклах.

Мы можем легко заметить, что мы заливаем топливо в эти двигатели, и что топливо сгорает внутри цилиндра. Двигатель преобразует энергию топлива в мощность и выпускает выхлопные газы процесса сгорания.

Анимация работы двигателя внутреннего сгорания

В приведенной выше анимации мы можем легко понять, как работает двигатель внутреннего сгорания.

Здесь синим цветом обозначено топливо, а коричневым цветом обозначены выхлопные газы.

Наиболее распространенными видами внутреннего сгорания являются

  • Газовая турбина открытого цикла
  • Поршневой двигатель внутреннего сгорания
  • Двигатель Ванкеля и т. Д.

Преимущества двигателей внутреннего сгорания

  1. Размер двигателя намного меньше по сравнению с двигателями внешнего сгорания
  2. Отношение мощности к массе высокое
  3. Очень подходит для приложений с малым энергопотреблением
  4. Обычно более портативны, чем их аналоги двигателей внешнего сгорания
  5. Безопаснее работать
  6. Время пуска очень меньше
  7. Более высокий КПД по сравнению с двигателем внешнего сгорания
  8. Нет шансов утечки рабочих жидкостей
  9. Требуется меньше обслуживания
  10. Расход масла меньше по сравнению с двигателями внешнего сгорания
  11. В случае поршневого внутреннего сгорания общая рабочая температура низкая, поскольку пиковая температура достигается только в течение небольшого периода времени (только при детонации топлива).

Недостатки двигателей внутреннего сгорания

  1. Разнообразие видов топлива, которые можно использовать, ограничивается газообразным и жидким топливом очень хорошего качества
  2. Используемое топливо очень дорогое, как бензин или дизельное топливо
  3. Выбросы двигателя в целом выше, чем у двигателя внешнего сгорания
  4. Не подходит для крупномасштабной энергетики
  5. При возвратно-поступательном движении внутреннего сгорания возникает шум из-за детонации топлива

Типы и применение двигателей внутреннего сгорания

  1. Бензиновые двигатели: они используются в автомобильной, морской и авиационной промышленности.
  2. Газовые двигатели
  3. : используются для промышленных целей
  4. Дизельные двигатели
  5. : они используются в автомобильной, железнодорожной, энергетической и морской промышленности.
  6. Газовые турбины
  7. : они используются в энергетике, авиации, промышленных, морских целях.

Источник изображения: Зефирис — собственная работа, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10896588

Категория: Двигатели внутреннего сгорания

Действительно ли двигатель внутреннего сгорания уступит место электромобилям?

Достижение приемлемого уровня инфраструктуры будет играть ключевую роль в конечном итоге для общественности… [+] прием электромобилей. В настоящее время сеть нагнетателей Tesla предлагает лучшие общенациональные зарядные устройства. (Фото Smith Collection / Gado / Getty Images)

Getty Images

Если верить действиям мировых автопроизводителей, двигатель внутреннего сгорания, который приводил в движение автомобили более века, может устареть в течение нескольких десятилетий. Но переход на электромобили (EV), который поначалу материализовался медленно, теперь ускоряется в глобальном масштабе из-за более строгих правительственных нормативов выбросов, падающих затрат, все более позитивного отношения общества к растущему количеству вариантов выбора электромобилей и общественного мнения. об изменении климата.

California заявила на этой неделе, что планирует к 2035 году постепенно отказаться от продаж обычных новых автомобилей с бензиновым двигателем в пользу автомобилей с нулевым уровнем выбросов, которые работают на электричестве. Исполнительный указ губернатора Гэвина Ньюсома, несомненно, столкнется с гигантской судебной тяжбой и, по правде говоря, может сильно зависеть от результатов выборов и формы Верховного суда.

Остальной мир далеко впереди: по крайней мере, 15 стран, включая Францию, Великобританию, Нидерланды и Бельгию, уже запрещают новые бензиновые автомобили, а другие страны принимают строгую политику для ускорения внедрения электромобилей в период с 2030 по 2035 год.«Европа и Китай осознали тот факт, что двигатель внутреннего сгорания не работает», — говорит Арндт Эллингхорст, автомобильный аналитик Bernstein Research. «Теперь похоже, что США просыпаются».

Автопроизводители уже борются за позиции, инвестируя около 200 миллиардов долларов в технологии электромобилей в течение следующих пяти лет, по данным консалтинговой фирмы AlixPartners. Хотя запуск некоторых новых серийных электромобилей был отложен в этом году из-за пандемии коронавируса, к концу 2021 года на рынке появится более двух десятков электромобилей.К ним относятся Ford Mustang E и Rivian R1T, Tesla Cybertruck, Model Y и Roadster. Между тем General Motors обязалась выпустить к 2023 году 20 новых электромобилей, включая модели от Chevrolet, Cadillac, GMC и Buick.

Европейцы также активно участвуют в жизни с такими моделями, как Audi e-Tron, BMW i4 и iX3, Polestar 2, Volvo XC40 Recharge, Porsche Taycan, Macan EV и Mini Cooper SE. В течение следующих шести месяцев японцы начнут продавать Honda e, внедорожник Nissan Ariya, автомобиль для заправки топливом Toyota Mirai и Mazda MX-30, первый электрический внедорожник компании.

В 2019 году объем продаж электромобилей во всем мире превысил 2,1 миллиона единиц, что на 40% больше, чем годом ранее. На электромобили приходилось 2,6% мировых продаж автомобилей и около 1% мирового парка автомобилей в 2019 году.

«Мы должны реально поверить в то, что примерно в 2035 году начнется серьезная дискуссия о запрете двигателей внутреннего сгорания, и не только в Калифорнии», — говорит генеральный директор Volvo Cars Хокан Самуэльссон. Изменение климата никуда не денется, и устранение выбросов от легковых и грузовых автомобилей имеет решающее значение в усилиях по сокращению выбросов CO2.

Градостроители стремятся реконструировать города вокруг людей, а не автомобилей, вкладывая средства в пешеходные районы вместо пригородных автострад и используя электрические технологии. В январе этого года Toyota объявила о планах построить «Woven City», прототип города недалеко от горы Фудзи, который будет представлять собой полностью подключенную экосистему, работающую на водородных топливных элементах и ​​обслуживаемую электромобилями, роботами и дронами. Напротив, Porsche работает над новыми видами транспорта, которые будут сосредоточены на электромобилях в сочетании с интеллектуальными системами управления движением, чтобы избежать заторов на городских дорогах.

Пока этого не произойдет, люди будут продолжать водить машину, — предупреждает сотрудник Брукингса Ади Томер. «Метрополитен Америка на данный момент увяз в вождении, поэтому мы должны немедленно электрифицировать автопарк», — добавляет он.

В США сегодня электрические машины составляют менее 2% автомобилей, а в Калифорнии — лишь 6%. Даже если все остальные штаты последуют примеру Калифорнии к 2035 году, пройдут десятилетия, прежде чем все бензиновые автомобили исчезнут с американских дорог.

Один аналитик считает, что к 2040 году продажи электромобилей вырастут до 58% от продаж новых автомобилей во всем мире, но по-прежнему только 31% от всех автомобилей на дорогах.Тем не менее, инвесторы полны энергии. Акции компаний по производству электромобилей и возобновляемых источников энергии стремительно растут, даже тех, которые еще не производили никаких транспортных средств. Акции малоизвестного SPI Energy, например, взлетели на 4000% недавно после того, как компания объявила о выходе на рынок электромобилей.

Однако даже с многомиллиардными инвестициями и изменяющимся общественным восприятием электромобилей, существуют серьезные препятствия, которые необходимо преодолеть, прежде чем электромобили станут доступными и удобными для всех.К ним относятся недорогие батареи и электромобили по разумной цене, стабильные поставки кобальта и других минералов для создания огромного количества требуемых литий-ионных батарей, больший диапазон и более доступная и быстрая инфраструктура для зарядки.

Как будто бросая вызов автомобильной промышленности, предлагая надежные решения для этих вопросов, Tesla на прошлой неделе изложила дорожную карту для более дешевых аккумуляторов с более высокой плотностью энергии и поставила цель вывести на рынок электромобиль стоимостью 25000 долларов в течение следующих трех лет, автомобиль, который может похвастаться дальностью более 300 миль.Теперь это может просто изменить отрасль.

Руководство по выбору двигателей внутреннего сгорания

: типы, характеристики, применение

Двигатели внутреннего сгорания — это машины, использующие тепло и давление реакции сгорания для выработки механической энергии. Большинство двигателей внутреннего сгорания работают, вызывая контролируемое сжигание топлива и воздуха в камере сгорания. Ожог генерирует тепло и давление, которые прямо или косвенно приводят в движение вал, который действительно работает. Механическая энергия, производимая двигателем внутреннего сгорания, может быть вращательной, колебательной или другой формы в зависимости от конструкции компонентов.Двигатели внутреннего сгорания используются в бесчисленных типах продукции, от автомобилей до крупных промышленных машин.

Типы двигателей внутреннего сгорания

Двигатели внутреннего сгорания классифицируются изначально в зависимости от того, как они сжигают топливо (внутреннее или внешнее). В каждой категории есть несколько различных типов дизайна.

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания — это двигатели внутреннего сгорания, которые сжигают топливо внутри камеры сгорания.

Двухтактные двигатели

Двухтактные двигатели завершают энергетический цикл двумя ходами поршня внутри цилиндра или одним оборотом коленчатого вала. В этих двигателях впускной и выпускной потоки происходят одновременно.

Изображение предоставлено: Procarcare — ALLDATA LLC.

Часто двухтактные двигатели маркируются как более простые по конструкции и имеют более высокое отношение мощности к массе, чем четырехтактные двигатели.Они также считаются менее экономичными и более загрязняющими. Однако есть много исключений из этих обобщений, и производительность сильно варьируется в зависимости от конструкции двигателя. Двухтактные двигатели используются для выработки энергии в самых разных областях, включая небольшие изделия для ландшафтного дизайна (например, бензопилы, триммеры), работу электростанций и большие корабли.

Четырехтактные двигатели

Четырехтактные двигатели завершают энергетический цикл четырьмя тактами поршня внутри цилиндра или двумя оборотами коленчатого вала.В этих двигателях отдельные фазы разделены, а впуск и выпуск происходят отдельно во время цикла мощности.

Кредит изображения: Dieselduck.ca, Мартин Ледук

Учебник

CDX предоставляет отличное видео, которое дополнительно объясняет работу четырехтактного двигателя.

Четырехтактные двигатели часто более экономичны и чище, чем эквивалентные двухтактные, но могут быть тяжелее и сложнее в конструкции.Они являются наиболее распространенным типом двигателей внутреннего сгорания, используемых в самых разных областях, от автомобилей до промышленного оборудования.

Совет по выбору : Теоретически двухтактный двигатель может генерировать вдвое больше мощности, чем четырехтактный двигатель для того же двигателя и того же числа оборотов. На самом деле это почти верно только для очень больших систем, где соотношение мощностей составляет около 1,8: 1. Средний двухтактный двигатель страдает потерями мощности из-за менее полного впуска и выпуска и более короткого эффективного сжатия и рабочего хода, что делает выходную мощность почти эквивалентной.

Роторные двигатели (Ванкеля)

Роторные двигатели

(Ванкеля) работают с ротором и валом вместо поршня. Вращение вала приводит в движение трехсторонний ротор, который приводит в движение топливо через систему. В этих двигателях разные фазы (впуск, сжатие, мощность и выпуск) происходят в разных местах двигателя. Приводной вал вращается один раз при каждом запуске двигателя в конструкции Ванкеля.

Кредит изображения: Википедия — Y_tambe

Двигатели

Ванкеля часто легче и проще по конструкции, чем аналогичные поршневые двигатели.Кроме того, они обычно более надежны (из-за уменьшения количества движущихся частей) и имеют более высокое отношение мощности к весу. Однако они страдают от менее эффективного уплотнения, что снижает их эффективность и срок службы. Эти двигатели используются в основном в гоночных автомобилях и спортивных автомобилях, где надежность и легкость считаются более важными, чем эффективность и срок службы двигателя.

Турбинные двигатели

Турбинные двигатели — это двигатели внутреннего сгорания, в которых продукты сгорания направляются в турбину внутри двигателя.Газовый поток вращает лопатки турбины, которая вырабатывает энергию или выполняет другую механическую работу. Они меньше, чем большинство аналогичных поршневых двигателей, и имеют очень высокое отношение мощности к массе. У них также меньше движущихся частей, меньше вибрации и отводится значительное количество отработанного тепла в выхлопных газах, что может быть использовано для других целей отопления. Однако у них также есть затраты, более длительное время запуска и более низкая эффективность на холостом ходу. Чаще всего они используются для питания военно-морских судов.

Реактивные двигатели — это подмножество газотурбинных двигателей, оптимизированных для создания тяги. Для выполнения работы горячие газы, генерируемые источником сгорания, продвигаются через сопло с высокой скоростью. Они используются в качестве силовых установок для самолетов.

Двигатели внешнего сгорания

Двигатели внешнего сгорания — это двигатели внутреннего сгорания, которые сжигают свое топливо извне и используют это тепло для перемещения внутренней жидкости, которая выполняет эту работу.

Двигатели Стирлинга

Двигатели Стирлинга — это однофазные двигатели внешнего сгорания, в которых в качестве рабочего тела используется воздух, гелий или водород. Каждый двигатель Стирлинга имеет герметичный цилиндр, одна часть которого горячая, а другая холодная. Рабочий газ внутри двигателя перемещается механизмом с горячей стороны на холодную. Когда газ находится на горячей стороне, он расширяется и толкает поршень вверх. Когда он возвращается на холодную сторону, он сжимается.Правильно спроектированные двигатели Стирлинга имеют два импульса мощности на оборот, что может обеспечить их очень плавную работу. Двигатели Стирлинга могут достигать гораздо более высокого КПД, чем обычные двигатели внутреннего сгорания, и производить меньше шума и вибрации во время работы. Однако они не могут запускаться мгновенно, как двигатели IC, что делает их менее полезными для таких приложений, как автомобили и самолеты. Чаще всего они используются для систем отопления, охлаждения и подводной энергетики.

Двигатель Стирлинга — Изображение предоставлено: MIT

Паровые двигатели

Паровые двигатели — это двухфазные внешние двигатели, в которых в качестве рабочего тела используется вода (в жидкой и парообразной форме).Паровые двигатели также могут использовать источники тепла, не связанные с сжиганием, такие как солнечная энергия, ядерная энергия или геотермальная энергия для нагрева пара. Современные паровые двигатели используются в основном в виде турбин для выработки электроэнергии.

Типы топлива

Двигатели внутреннего сгорания также различаются в зависимости от типа топлива, которое они сжигают.

  • Бензин — жидкое топливо, полученное из нефти (сырой нефти). Сорта бензина различаются в зависимости от октанового числа (премиум или этилированный или этилированный).обычный или «неэтилированный»). Бензин с более высоким октановым числом может выдерживать большее сжатие перед сгоранием и необходим в некоторых двигателях, рассчитанных на более высокую степень сжатия, чтобы предотвратить детонацию (неконтролируемое сгорание в цилиндре). Бензиновые двигатели также называют двигателями с искровым зажиганием, что означает, что топливо сжигается за счет образования искры от свечи зажигания в цилиндре.
  • Дизель — жидкое топливо, состоящее из длинных углеводородов, полученных из сырой нефти. Дизель имеет высокую плотность энергии и, следовательно, имеет лучшую экономию топлива (более чем на 33% более эффективен), чем бензин, но горит более грязно.Дизельное топливо со сверхнизким содержанием серы (ULSD) является стандартом для дизельного топлива с низким содержанием серы; большинство используемых сегодня марок дизельного топлива относятся к ULSD. Дизельные двигатели — это двигатели с воспламенением от сжатия, то есть топливо сжигается с использованием сжатого воздуха (высокого давления) для повышения температуры выше точки самовоспламенения (самовоспламенения) топлива. Поскольку в них не используется источник зажигания (искра), дизельные двигатели часто требуют прогрева в очень холодных условиях перед использованием. Дизельные двигатели также обеспечивают больший крутящий момент, чем бензиновые.

  • Сжиженный пропан (LPG) представляет собой смесь пропана и бутана, которая при стандартных условиях является газом, но может храниться и превращаться в жидкость при более высоком давлении. Его можно использовать в двигателях внутреннего сгорания в качестве альтернативы бензину (бензину) или дизельному топливу, который горит более чисто, но имеет более низкую плотность энергии (что означает более высокое использование эквивалентного топлива). Некоторые двигатели не подходят для сжиженного нефтяного газа, поскольку он обеспечивает меньшую смазку, чем другие стандартные виды топлива, что вызывает чрезмерный износ клапанов в цилиндрах.

  • Сжатый природный газ (КПГ) представляет собой смесь метана и других углеводородов, хранящуюся в виде газа высокого давления. Природный газ — это относительно чистое горючее с меньшей удельной энергоемкостью, чем бензин и дизельное топливо. Двигатели, работающие на природном газе, аналогичны стандартным бензиновым или дизельным двигателям; но они содержат соединители, которые подают природный газ из баллонов для хранения, и включают регуляторы для снижения давления. Как и СНГ, КПГ не обеспечивает такое же количество смазки, как стандартное жидкое топливо, и двигатели должны проектироваться и обслуживаться соответствующим образом, чтобы предотвратить износ клапанов.

  • Этанол — это спирт, полученный в результате ферментации и дистилляции крахмальных культур, таких как кукуруза, или из целлюлозной биомассы, такой как просо. Часто этанол смешивают с бензином в количестве до девяти или десяти процентов (E10), хотя некоторые двигатели могут быть спроектированы для сжигания смесей с чистотой до 85% этанола (E85). Этанол имеет немного более низкое энергосодержание, чем бензин, что приводит к более высокому расходу условного топлива. Однако этанол выделяет меньше загрязняющих веществ, чем бензин, а также имеет большую устойчивость к детонации двигателя, чем бензин.

  • Реактивное топливо представляет собой смесь различных углеводородов. Он используется специально для газотурбинных двигателей и реактивных двигателей, используемых в авиации. Смеси различаются в зависимости от свойств, требуемых для продукта. В турбинных и дизельных двигателях, используемых в самолетах, используется реактивное топливо на основе керосина, а в самолетах с поршневыми двигателями или двигателями Ванкеля используется так называемый авгаз (авиационный бензин).

Другие виды топлива, которые могут использоваться для питания определенных типов двигателей, включают растительное масло, водород, бутан и древесину (посредством газификации).

Технические характеристики

Наиболее важными характеристиками, которые следует учитывать при выборе двигателей внутреннего сгорания, являются крутящий момент, мощность в лошадиных силах и число оборотов в минуту (частота вращения вала), которые являются взаимозависимыми. Для двигателей внутреннего сгорания также важно учитывать рабочий объем и количество цилиндров.

  • Крутящий момент (τ) — это мера силы вращения, создаваемой на валу двигателя во время рабочего хода, выраженная в единицах измерения расстояния-силы (фут-фунт, дюйм-фунт, м-Н и т. Д.)). Он определяет величину физической нагрузки, которую может создать двигатель. Спецификация крутящего момента обычно является показателем максимального номинального крутящего момента двигателя в соответствии со стандартами SAE. Крутящий момент измеряет способность двигателя выдерживать нагрузки и ускоряться и, возможно, является лучшим показателем его характеристик. Двигатели создают полезный крутящий момент только в ограниченном диапазоне частот вращения (обсуждается ниже). Оптимальное использование крутящего момента двигателя часто в значительной степени зависит от передачи трансмиссии соответствующей системы.

Совет по выбору: Важно проверить стандарты, которые производитель использует для измерения крутящего момента. Рекламируемые рейтинги, не основанные на определенных стандартах, могут быть обманчивыми и неточными.

  • об / мин или частота вращения вала — это скорость вращения вала, диска или ротора в двигателе, измеряемая в об / мин (оборотов в минуту). Поскольку скорость и крутящий момент взаимозависимы, номинальные обороты двигателей часто определяют скорость, при которой достигается максимальный крутящий момент.Автомобильные двигатели обычно работают со скоростью около 2500 об / мин. Остановка происходит, когда двигатели работают ниже минимальной скорости, и при работе выше рекомендованного максимума может произойти повреждение или отказ. Двигатели, работающие на более низких скоростях, могут работать дольше, чем эквивалентные двигатели на более высоких скоростях, поскольку они выполняют меньше циклов и со временем изнашиваются меньше. В автомобилях обороты измеряются тахометром.

  • Мощность (л.с.) — это производная спецификация, которая указывает производительность двигателя.В частности, он определяет скорость передачи энергии в двигателе. Как и крутящий момент, номинальная мощность в лошадиных силах дается в диапазоне различных оборотов двигателя. Мощность в лошадиных силах зависит от частоты вращения и крутящего момента двигателя по уравнению:

л.с. = (τ × об / мин) ÷ 5252

где:

л.с. — это

лошадиных сил

τ — крутящий момент в фут-фунтах

об / мин — частота вращения в об / мин

5252 — коэффициент преобразования единиц измерения.

Вот упрощенный пример того, как будут выглядеть кривые крутящего момента и мощности для небольшого двигателя внутреннего сгорания:

Кривые мощности и крутящего момента двигателя. Кредит изображения: Woodbank Communications Ltd

Мощность и крутящий момент увеличиваются с увеличением числа оборотов двигателя и достигают пика, когда начинают действовать физические ограничения. Эти ограничения включают размер / форму впускного и выпускного трактов, эффективность смешивания топлива, скорость распространения пламени, трение и механическую прочность компонентов.

  • Рабочий объем — это объем, перемещаемый всеми поршнями в двигателе внутреннего сгорания за один ход.Обычно он измеряется в кубических сантиметрах (cc), кубических дюймах (CID). Рабочий объем — это основная часть конструкции двигателя, которая определяет, сколько топлива может быть впрыснуто или смешано в цилиндре во время каждого энергетического цикла. Это существенно влияет на максимальную мощность, которую может производить двигатель.

  • Число цилиндров описывает количество цилиндров сгорания в двигателе внутреннего сгорания. Количество цилиндров в двигателе напрямую влияет на количество производимой мощности, поскольку большее количество цилиндров означает больше сгорания топлива и больше рабочих ходов.В результате двигатели с большим количеством цилиндров будут потреблять больше топлива, чем двигатели с меньшим количеством цилиндров.

Другие характеристики двигателя

Помимо основных технических характеристик, покупателям предлагается рассмотреть ряд других технических характеристик и параметров двигателя.

  • Расход топлива — Расход топлива определяет количество израсходованного топлива. Как и крутящий момент и мощность в лошадиных силах, расход топлива изменяется в зависимости от частоты вращения двигателя.Производители часто указывают его как диапазон значений на кривой производительности.

  • Эффективность двигателя — Энергоэффективность описывает количество энергии топлива, используемого двигателем для выполнения полезной работы. Для бензиновых двигателей максимальный КПД обычно находится в диапазоне 25-30%, поскольку 70-75% теряется в виде неиспользованной тепловой энергии. Более эффективные двигатели будут иметь лучшую экономию топлива (т.е. меньший общий расход топлива).

  • Выбросы — Газообразные выбросы загрязняющих веществ и твердых частиц выбрасываются в потоки выхлопных газов двигателей внутреннего сгорания после сгорания топлива.Состав выхлопных газов важно учитывать при соблюдении стандартов и требований по загрязнению и выбросам. Факторы, влияющие на выбросы выхлопных газов, включают состав топлива и условия сгорания (например, соотношение воздух-топливо, полностью ли сгорает топливо).

  • Вес — Вес двигателя важен с точки зрения портативности и размещения. Более легкие двигатели идеально подходят для приложений, в которых приводная система должна быть портативной или включать транспортировку, поскольку более тяжелые системы требуют большего крутящего момента для перемещения.Для стационарных приложений вес часто не является проблемой.

  • Размеры — Размеры двигателя должны соответствовать требованиям соответствующей системы или среды. Размеры включают ширину, длину и высоту двигателя.

  • Степень сжатия — Отношение максимального объема камеры сгорания двигателя к минимальному объему. Он определяет степень сжатия в камере.Высокая степень сжатия приводит к лучшему смешиванию топлива с воздухом и зажиганию, что приводит к увеличению мощности и повышению общей эффективности двигателя. Однако более высокая степень сжатия делает двигатели более восприимчивыми к детонации при использовании топлива с более низким октановым числом, что может снизить эффективность или вызвать повреждение.

Параметры двигателя

Существует ряд параметров, определяющих различные требования к двигателю, которые необходимо учитывать при выборе.

  • Требования к воздуху — Качество или состав воздуха, используемого в двигателе для смешивания с топливом во время сгорания.Хотя большинство двигателей работают с использованием стандартного окружающего воздуха, в некоторых средах может потребоваться использование фильтров для удаления твердых частиц или нежелательных газов из воздуха.

  • Требования к охлаждению — Двигателям требуется охлаждение для отвода тепла, образующегося во время работы. Двигатели внутреннего сгорания охлаждаются воздухом или жидкостью. Двигатели с воздушным охлаждением могут работать в более широком диапазоне температур, чем некоторые двигатели с жидкостным охлаждением, поскольку воздух не подвержен замерзанию или кипению.Однако системы с жидкостным охлаждением часто более гибки в отношении потребностей в охлаждении различных частей двигателя, уменьшая горячие точки и большие перепады температур. Сегодня большинство двигателей внутреннего сгорания имеют жидкостное охлаждение.

  • Требования к маслу — Двигатели требуют смазки для предотвращения чрезмерного износа движущихся частей во время работы. Масло используется для обеспечения этой смазки, помещается либо в независимую систему, либо непосредственно смешивается с сжигаемым топливом. Разным двигателям для правильной работы и обслуживания требуются разные сорта масла и смазки.Кроме того, поскольку смазочные материалы со временем загрязняются и разлагаются, их необходимо регулярно заменять после определенного количества циклов или часов работы.

Характеристики

Двигатели внутреннего сгорания

имеют ряд различных характеристик, которые могут быть важны для рассмотрения в процессе выбора.

  • Карбюраторные двигатели — это двигатели с карбюраторами, предназначенные для смешивания воздушно-топливной смеси в камере сгорания.Карбюраторы используют всасывание, создаваемое всасываемым воздухом, проходящим через трубку Вентури, для втягивания топлива в воздушный поток. По сравнению с топливными форсунками карбюраторы намного проще регулировать, ремонтировать и восстанавливать. Они также стоят дешевле, чем системы впрыска топлива, и более надежны.

  • Двигатели с впрыском топлива — это двигатели с топливными форсунками, предназначенные для подачи топлива в камеру сгорания. Топливные форсунки распыляют топливо на капли в камере, продавливая его через сопло под высоким давлением.Они полагаются на компьютеры, которые постоянно изменяют соотношение воздуха и топлива для оптимизации. По сравнению с карбюраторами топливные форсунки более точные и эффективные, а также менее загрязняющие окружающую среду.

  • Двигатели с турбонаддувом — это двигатели с турбонаддувом, предназначенные для повышения эффективности двигателя внутреннего сгорания. Турбокомпрессоры чаще всего встречаются вместе с бензиновыми и дизельными двигателями внутреннего сгорания.

  • Гибкое топливо или многотопливные двигатели разработаны для совместимости с несколькими различными типами или смесями топлива.Например, двигатель с искровым зажиганием для автомобиля может работать на различных смесях бензина с содержанием этанола до 85% или может иметь добавленные компоненты для сжигания сжатого природного газа.

Стандарты

API RP 7C-11F — Рекомендуемая практика по установке, техническому обслуживанию и эксплуатации двигателей внутреннего сгорания.