8Май

Виды электрических двигателей: Трехфазный асинхронный двигатель

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


Типы и виды электродвигателей — переменного и постоянного тока, коллекторные, асинхронные, прямого привода

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Одним из основных стимулов к широкой электрификации, начавшейся в XX веке, стала возможность легкого преобразования энергии электрического тока в механическую — к тому времени уже был известен коллекторный электродвигатель, изобретенный Якоби еще в первой половине XIX века.

Изобретение асинхронного двигателя переменного тока стало еще большим шагом вперед.

Электромотор лишился механически трущихся и искрящих узлов (щеток и коллектора), превзойдя по бесшумности и ресурсу любой другой существовавший в то время тип привода.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует:

  • перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях;
  • создания вращающегося магнитного поля в самом статоре (классический пример – асинхронный трехфазный двигатель).

Достоинства электродвигателей переоценить трудно. Это:

Крайняя простота.
Электродвигатель состоит из минимального количества узлов, поэтому ломаться в нем практически нечему.
Самостоятельный запуск.
Электродвигателю не нужен пусковой импульс, он начинает вращаться сам при включении питания (исключение – однофазные электродвигатели с пусковой обмоткой, но они практически вышли из употребления). Это позволяет отказаться от холостого хода, включая электромотор только при необходимости.
Отсутствие вибраций.
Так как в электродвигателях энергия магнитного поля непосредственно преобразуется во вращение, при должной балансировке ротора они полностью бесшумны и не создают вибрации.
Легкость управления оборотами и крутящим моментом.
Несмотря на то, что на разных типах электродвигателей это достигается разными способами, управление ими в любом случае достаточно просто и надежно.
Возможность реверса.
На коллекторном двигателе достаточно поменять местами полюса якоря, на трехфазном электромоторе – изменить порядок включения фаз.
Обратимость.
Коллекторные электродвигатели при внешнем приводе начинают работать как электрогенераторы, что позволяет использовать их для рекуперации энергии при торможении электротранспорта.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Виды электродвигателей и их модификации

Модификации электродвигателей

Асинхронные электродвигатели АИР благодаря несложной конструкции, неимения нестационарных контактов и невысокой цене, при высокой ремонтопригодности, востребованы во всех без исключения отраслях промышленности. Поскольку данный тип моторов очень распространен, он имеет достаточно широкий ряд модификаций. Из-за этого часто встает вопрос, какие электродвигатели выбрать под те или иные задачи. Давайте разберемся, какие бывают электродвигатели и какую маркировку они имеют.

Какие бывают электродвигатели

Электродвигатель с повышенным скольжением (С).

Моторы с повышенным скольжением (АИРС) устанавливают на механизмы, которые работают с большими нагрузками, нежели могут выдержать обычные асинхронные эл двигатели. Также их ставят на агрегаты, которые работают в повторно-кратковременном режиме. Для того чтобы обеспечить данные режимы работы в обмотке ротора используют катанку из стали с более высокой сопротивляемостью к деформациям. По сути, они отличаются от стандартных моторов только лишь внутренним строением. Такие двигатели часто применяют на судовом оборудовании.


Двигатель с самовентиляцией и защищенного исполнения (Н).  

Это машины, у которых вентилятор закреплен на собственном валу и при вращении он создает аэродинамическое давление. В данном случае мотор имеет закрытое исполнение с рубчатой поверхностью. Служит это для повышения плоскости охлаждения. Применяются, например, в силовых насосах, используемых при добыче нефти или газа.


Эл двигатель с фазным ротором (К).

Данный мотор можно регулировать с помощью добавления в цепь ротора дополнительных резисторов. Данное исполнение позволяет повысить пусковой момент и пусковые токи. Сопротивление, в большинстве случаев, дополняется с помощью реостатов.  


Встраиваемый электродвигатель (В).

Как ясно из названия,  они предназначены для встраивания в какой-либо механизм. По своим характеристикам не отличаются от двигателей основного исполнения. Применяются в токарных станках, например.


С электромагнитным тормозом (Е).

Как правило, такие двигатели устанавливаются на оборудование, в котором необходима возможность практически мгновенной остановки (станочно-конвейерное оборудование). На самом деле это обычный асинхронный двигатель, в котором предусмотрен электронный тормоз. Возможно исполнение  с ручкой растормаживания (модификация Е2).


Двигатели для привода центробежных моноблочных насосов (Ж).

Отличаются от обычных электродвигателей наличием продленного вала. Делается это для постановки рабочих колес насосов.


Для мотор-редукторов (РЗ).

Конструктивно ничем не отличаются от остальных электродвигателей АИР, за исключением особой формы фланцевого подшипникового щита, которая обеспечивает установку усиленного подшипника и специального рабочего конца вала.


Эл двигатели АИР для станков-качалок (С).

Находят применение на нефтепромысле. Идентичны моторам, на базе которых созданы. Подразумевается их размещение на открытом воздухе.


Для приводов лифтов (Л).

Предназначены для привода лебедок лифтов. Данная модификация двигателей позволяет получить плавность хода всего механизма за счет постоянного момента на валу ротора.


Со встроенными датчиками (Б).

Как ясно из названия – установленные различные датчики для защиты электродвигателя.  Например, температурный датчик: при нагреве двигателя устройства защиты воздействуют на цепь контактора или пускателя и отключают машину. Используются на атомных станциях или других предприятиях,  где чрезвычайно важна безаварийность.


Двигатели с повышенной точностью по установочным размерам (П).

Имеют повышенную точность таких параметров как биение рабочего конца вала  и так далее. Уменьшен сохранившийся дисбаланс роторов двигателей.

Специалисты компании УЭСК помогут сделать правильный выбор


 Электродвигатель АИР характеристики
Тип двигателя Р, кВтНоминальная частота вращения, об/минкпд,*COS ф1п/1нМп/МнМmах/Мн1н, АМасса, кг
АИР56А20,18284068,00,785,02,22,20,523,4
АИР56В20,25284068,00,6985,02,22,20,523,9
АИР56А40,12139063,00,665,02,12,20,443,4
АИР56В40,18139064,00,685,02,12,20,653,9
АИР63А20,37284072,00,865,02,22,20,914,7
АИР63В20,55284075,00,855,02,22,31,315,5
АИР63А40,25139068,00,675,02,12,20,834,7
АИР63В40,37139068,00,75,02,12,21,185,6
АИР63А60,1888056,00,624,01,920,794,6
АИР63В60,2588059,00,624,01,921,045,4
АИР71А20,75284075,00,836,12,22,31,778,7
АИР71В21,1284076,20,846,92,22,32,610,5
АИР71А40,55139071,00,755,22,42,31,578,4
АИР71В40,75139073,00,766,02,32,32,0510
АИР71А60,3788062,00,704,71,92,01,38,4
АИР71В60,5588065,00,724,71,92,11,810
АИР71А80,2564554,00,614,7 1,81,91,19
АИР71В80,2564554,00,614,7 1,81,91,19
АИР80А21,5285078,50,847,02,22,33,4613
АИР80А2ЖУ21,5285078,50,847,02,22,33,4613
АИР80В22,2285581,00,857,02,22,34,8515
АИР80В2ЖУ22,2285581,00,857,02,22,34,8515
АИР80А41,1139076,20,776,02,32,32,8514
АИР80В41,5140078,50,786,02,32,33,7216
АИР80А60,7590569,00,725,32,02,12,314
АИР80В61,190572,00,735,52,02,13,216
АИР80А80,3767562,00,614,01,81,91,4915
АИР80В80,5568063,00,614,01,82,02,1718
АИР90L23,0286082,60,877,52,22,36,3417
АИР90L2ЖУ23,0286082,60,877,52,22,36,3417
АИР90L42,2141080,00,817,02,32,35,117
АИР90L61,592076,00,755,52,02,14,018
АИР90LA80,7568070,00,674,01,82,02,4323
АИР90LB81,168072,00,695,01,82,03,3628
АИР100S24,0288084,20,887,52,22,38,220,5
АИР100S2ЖУ24,0288084,20,887,52,22,38,220,5
АИР100L25,5290085,70,887,52,22,311,128
АИР100L2ЖУ25,5290085,70,887,52,22,311,128
АИР100S43,0141082,60,827,02,32,36,821
АИР100L44,0143584,20,827,02,32,38,837
АИР100L62,293579,00,766,52,02,15,633,5
АИР100L81,569074,00,705,01,82,04,433,5
АИР112M27,5289587,00,887,52,22,314,949
АИР112М2ЖУ27,5289587,00,887,52,22,314,949
АИР112М45,5144085,70,837,02,32,311,745
АИР112MA63,096081,00,736,52,12,17,441
АИР112MB64,086082,00,766,52,12,19,7550
АИР112MA82,271079,00,716,01,82,06,046
АИР112MB83,071080,00,736,01,82,07,853
АИР132M211290088,40,897,52,22,321,254
АИР132М2ЖУ211290088,40,897,52,22,321,254
АИР132S47,5146087,00,847,02,32,315,652
АИР132M411145088,40,847,02,22,322,560
АИР132S65,596084,00,776,52,12,112,956
АИР132M67,597086,00,776,52,02,117,261
АИР132S84,072081,00,736,01,92,010,370
АИР132M85,572083,00,746,01,92,013,686
АИР160S215293089,40,897,52,22,328,6116
АИР160S2ЖУ215293089,40,897,52,22,328,6116
АИР160M218,5293090,00,907,52,02,334,7130
АИР160М2ЖУ218,5293090,00,907,52,02,334,7130
АИР160S415146089,40,857,52,22,330,0125
АИР160S4ЖУ215146089,40,857,52,22,330,0125
АИР160M418,5147090,00,867,52,22,336,3142
АИР160S61197087,50,786,52,02,124,5125
АИР160M61597089,00,817,02,02,131,6155
АИР160S87,572085,50,756,01,92,017,8125
АИР160M81173087,50,756,52,02,025,5150
АИР180S222294090,50,907,52,02,341,0150
АИР180S2ЖУ222294090,50,907,52,02,341,0150
АИР180M230295091,40,907,52,02,355,4170
АИР180М2ЖУ230295091,40,907,52,02,355,4170
АИР180S422147090,50,867,52,22,343,2160
АИР180S4ЖУ222147090,50,867,52,22,343,2160
АИР180M430147091,40,867,22,22,357,6190
АИР180М4ЖУ230147091,40,867,22,22,357,6190
АИР180M618,598090,00,817,02,12,138,6160
АИР180M81573088,00,766,62,02,034,1172
АИР200M237295092,00,887,52,02,367,9230
АИР200М2ЖУ237295092,00,887,52,02,367,9230
АИР200L245296092,50,907,52,02,382,1255
АИР200L2ЖУ245296092,50,907,52,02,382,1255
АИР200M437147592,00,877,22,22,370,2230
АИР200L445147592,50,877,22,22,384,9260
АИР200M62298090,00,837,02,02,144,7195
АИР200L63098091,50,847,02,02,159,3225
АИР200M818,573090,00,766,61,92,041,1210
АИР200L82273090,50,786,61,92,048,9225
АИР225M255297093,00,907,52,02,3100320
АИР225M455148093,00,877,22,22,3103325
АИР225M63798092,00,867,02,12,171,0360
АИР225M83073591,00,796,51,92,063360
АИР250S275297593,60,907,02,02,3135450
АИР250M290297593,90,917,12,02,3160530
АИР250S475148093,60,886,82,22,3138,3450
АИР250M490148093,90,886,82,22,3165,5495
АИР250S64598092,50,867,02,12,086,0465
АИР250M65598092,80,867,02,12,0104520
АИР250S83774091,50,796,61,92,078465
АИР250M84574092,00,796,61,92,094520
АИР280S2110297594,00,917,11,82,2195650
АИР280M2132297594,50,917,11,82,2233700
АИР280S4110148094,50,886,92,12,2201650
АИР280M4132148094,80,886,92,12,2240700
АИР280S67598593,50,866,72,02,0142690
АИР280M69098593,80,866,72,02,0169800
АИР280S85574092,80,816,61,82,0111690
АИР280M87574093,50,816,21,82,0150800
АИР315S2160297594,60,927,11,82,22791170
АИР315M2200297594,80,927,11,82,22481460
АИР315МВ2250297594,80,927,11,82,22481460
АИР315S4160148094,90,896,92,12,22881000
АИР315M4200148094,90,896,92,12,23601200
АИР315S611098594,00,866,72,02,0207880
АИР315М(А)613298594,20,876,72,02,02451050
АИР315MВ616098594,20,876,72,02,03001200
АИР315S89074093,80,826,41,82,0178880
АИР315М(А)811074094,00,826,41,82,02171050
АИР315MВ813274094,00,826,41,82,02601200
АИР355S2250298095,50,926,51.62,3432,31700
АИР355M2315298095,60,927,11,62,25441790
АИР355S4250149095,60,906,21,92,94411700
АИР355M4315148095,60,906,92,12,25561860
АИР355MА620099094,50,886,71,92,02921550
АИР355S616099095,10,886,31,62,82911550
АИР355МВ625099094,90,886,71,92,0454,81934
АИР355L631599094,50,886,71,92,04571700
АИР355S813274094,30,826,41,92,7259,41800
АИР355MА816074093,70,826,41,82,02612000
АИР355MВ820074094,20,826,41,82,03152150
АИР355L813274094,50,826,41,82,03872250

Виды и типы электродвигателей / Публикации / Элек.ру

Электрический двигатель

Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:

  • Неподвижную часть (статор или индуктор).
  • Подвижную часть (ротор или якорь).

В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.

Двигатели постоянного тока

Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:

  • Коллекторные.
  • Бесколлекторные.

В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:

  • Самовозбуждающиеся.
  • С возбуждением от электромагнитов постоянного действия.

Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:

  • Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
  • Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
  • Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.

Двигатели переменного тока

Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.

Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.

Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.

В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:

  • 1-нофазные;
  • 2-хфазные;
  • 3-хфазные;
  • многофазные.

Категория размещения и климатическое исполнение

Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

  • Для помещений с высоким уровнем влажности.
  • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
  • В условиях открытого пространства.
  • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
  • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

  • Все возможные макроклиматические районы (В).
  • Холодный (ХЛ).
  • Все морские районы (ОМ).
  • Сухой тропический (ТС).
  • Общий (О).
  • Умеренный (У).
  • Умеренный морской (М).
  • Влажный тропический (ТВ).

Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

Степень защиты корпуса

Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:

  • Высокий уровень защиты от пыли — IP65, IP66.
  • Защищенные — не ниже IP21, IP22.
  • С защитой от влаги — IP55, IP5.
  • С защитой от брызг и капель — IP23, IP24.
  • Закрытое исполнение — IP44 — IP54.
  • Герметичные — IP67, IP68.

При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.

Общие требования безопасности при монтаже и эксплуатации

При монтаже электрического двигателя необходимо придерживаться следующих требований:

  • Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
  • Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
  • При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
  • Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
  • Строго запрещен монтаж электропривода под напряжением.

В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:

  • Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
  • Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
  • При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
  • Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
  • Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.

Крановые электродвигатели

Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.

В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:

  • Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
  • Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
  • Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
  • Класс нагревостойкости изоляционных материалов не менее F.
  • У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
  • С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
  • Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.

Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:

  • Частые пуски, реверсы и торможения.
  • Регулирование частоты вращения в широком диапазоне значений.
  • Повышенная вибрация и тряски.
  • Повторно-кратковременный режим работы.
  • Воздействие высокой температуры, газа, пыли и пара.
  • Значительная перегрузка во время работы.

Общепромышленные электрические двигатели

Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:

  • Простая конструкция с отсутствием подвижных контактов.
  • Низкая стоимость в сравнении с электрическими машинами других типов.
  • Высокая ремонтопригодность всех главных узлов и рабочих элементов.
  • Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
  • Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.

Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.

Электрические двигатели с электромагнитным тормозом

Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.

Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:

  1. Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
  2. Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
  3. При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
  4. После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.

В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:

  • С горизонтальным валом.
  • С вертикальным валом.

Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.

Источник: Технический отдел ЗАО «КранЭлектроМаш»

Какие бывают двигатели? Типы электродвигателей. Асинхронные двигатели



В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 «мёртвые точки»), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный — двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный — двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин — индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором


Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором


Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором


Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором


Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков,  шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Электрические двигатели: классификация, устройство, принцип работы

Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.

Побочный эффект такой конвертации – выделение тепла.

При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.

Электрические двигатели и их разновидности

Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.

 

Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.

 Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.

По принципу работы электродвигатели переменного тока бывают

  • асинхронными;
  • синхронными.

Подробное сравнение этих видов машин можно почитать тут.

Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.

Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.

Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.

Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.

Максимальная скорость вращения асинхронных установок – 3000 об/мин.

Интересное видео о двигателях смотрите ниже:

Преимущества и недостатки асинхронных двигателей

Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

Короткозамкнутый ротор более распространен.

Такие двигатели обладают следующими преимуществами:

  • относительно одинаковая скорость вращения при разных уровнях нагрузки;
  • не боятся непродолжительных механических перегрузок;
  • простая конструкция;
  • несложная автоматизация и пуск;
  • высокий КПД (коэффициент полезного действия).

Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

  • хороший начальный вращающий момент;
  • нечувствительны к кратковременным перегрузкам механической природы;
  • постоянная скорость работы при наличии нагрузок;
  • малый пусковой ток;
  • с такими двигателями применяют автоматические пусковые устройства;
  • могут в небольших пределах изменять скорость вращения.

К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

Интересное видео об асинхронных электродвигателях смотрите ниже:

Особенности работы синхронных двигателей

Все синхронные двигатели обладают такими преимуществами:

  1. Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
  2. В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
  3. Хорошая сопротивляемость перегрузкам.
  4. Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.

В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:

  • сложная конструкция;
  • затрудненный пуск в ход;
  • довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).

Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.

Типы электродвигателей — Однофазные электродвигатели , электродвигатели постоянного тока, асинхронные двигатели

Электродвигатель – это электрическая машина, служащая для преобразования электрической энергии в механическую энергию. Электродвигатель работает на основе  принципа электромагнитной индукции.

Существует множество видов электродвигателей, различающихся по конструкции, принципу действия, исполнению и другим характеристикам. Различают основные виды электродвигателей:

По типу протекающего тока двигатели различают:

  • Электродвигатели постоянного тока. Широко используют в качестве промышленного оборудования, привода электротранспорта и микропривода исполнительных механизмов.
  • Электродвигатели переменного тока. Нашли широкое применение для приводов всех типов технологического оборудования, автоматических регуляторов, электроинструментов. 

По конструкции электрические машины различают с вертикально и горизонтально расположенным валом. Электродвигатели также классифицируют по мощности, климатическому исполнению, степени защиты, назначению и другим характеристикам.

Со всеми типами электродвигателей вы можете познакомиться на информационном портале по электродвигателям electrodvigatel.com. Здесь вы найдете преимущества и недостатки, того или иного электродвигателя, полный список производителей электродвигателей, а также сможете узнать стоимость на электродвигатели.

Виды электродвигателей

Стоимость электродвигателя в основном зависит от следующих параметров:

  • Габарит (высота оси вращения)
  • Мощность
  • Климатическое исполнение

Стоит отметить, что с увеличением габарита электродвигателя усложняется технология изготовления электрических машин, уменьшается серийность выпуска и, соответственно, меняется экономика и ценообразование двигателей. Чем больше габарит двигателя – тем меньше производителей на рынке.

Конструкция электродвигателя

Вращающийся электродвигатель состоит из двух главных деталей:

  • статора — неподвижная часть
  • ротора — вращающаяся часть

У большинства двигателей внутри статора располагается ротор. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Электродвигатель в разрезе — 1 статор, 2 ротор, 3 подшипник

 

Условное обозначение электродвигателей

1 – тип электродвигателя:
общепромышленные электродвигатели:
АИ — обозначение серии общепромышленных электродвигателей
Р, С (АИР и АИС) — вариант привязки мощности к установочным размерам, т.е.
АИР (А, 5А, 4А, АД) — электродвигатели, изготавливаемые по ГОСТ
АИС (6А, IMM, RA) — электродвигатели, изготавливаемые по евростандарту DIN (CENELEC)
взрывозащищенные электродвигатели: ВА, АВ, АИМ, АИМР, 2В, 3В и др

2 — электрические модификации:

Электрические модификации

Определение

М

модернизированный электродвигатель: 5АМ

Н

электродвигатель защищенного исполнения с самовентиляцией: 5АН

Ф

электродвигатель защищенного исполнения с принудительным охлаждением: 5АФ

К

электродвигатель с фазным ротором: 5АНК

С

электродвигатель с повышенным скольжением: АС, 4АС  и др.

Е

однофазный электродвигатель 220V: АДМЕ, 5АЕУ

В

встраиваемый электродвигатель: АИРВ 100S2

П

электродвигатель для привода осевых вентиляторов в птицеводческих хозяйствах и т. д.

3 — габарит электродвигателя (высота оси вращения):
габарит электродвигателя равен расстоянию от низа лап до центра вала в миллиметрах 
50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400, 450 и выше

4 — длина сердечника и/или длина станины:

Длина сердечника

Определение

А, В, С

длина сердечника (первая длина, вторая длина, третья длина) 

XK, X, YK, Y

длина сердечника статора высоковольтных двигателей 

S, L, М

установочные размеры по длине станины

 

5 — количество полюсов электродвигателя:
2, 4, 6, 8, 10, 12, 4/2, 6/4, 8/4, 8/6, 12/4, 12/6, 6/4/2, 8/4/2, 8/6/4, 12/8/6/4 и др.

6 — конструктивные модификации электродвигателя:

Модификации электродвигателя

Определение

Л

электродвигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Е

электродвигатель с встроенным электромагнитным тормозом и ручкой расторможения: АИР 100L6 Е2 У3

Е2

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Б

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Ж

электродвигатель со специальным выходным концом вала для моноблочных насосов: АИР 80В2 ЖУ2

П

электродвигатель повышенной точности по установочным размерам: АИР 180М4 ПУ3 

Р3

электродвигатель для мотор-редукторов: АИР 100L6 Р3

С

электродвигатель для станков-качалок: АИР 180М8 СНБУ1 

Н

электродвигатель малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4 

7 — климатическое исполнение электродвигателя:

Категория размещения

Определение

У

умеренного климатического исполнения

Т

тропического исполнения 

УХЛ

умеренно холодного климата 

ХЛ

холодного климата 

ОМ

для судов морского и речного флота

8 — категория размещения: 

Категория размещения

Определение

1

на открытом воздухе

2

на улице под навесом 

3

в помещении 

4

в помещении с искусственно регулируемыми климатическими условиями 

5

в помещении с повышенной влажностью 

9 — степень защиты электродвигателя:
первая цифра: защита от твердых объектов

  вторая цифра: защита от жидкостей

Степень защиты IP

Определение первой цифры  —

защита от твердых объектов

Определение второй цифры  — защита от жидкостей

0

без защиты

без защиты

1

защита от твердых объектов размерами свыше 50мм (например, от случайного касания руками)

защита от вертикально падающей воды (конденсация)

2

защита от твердых объектов размерами свыше 12 мм (например, от случайного касания пальцами)

защита от воды, пдпющей под углом 15º к вертикали

3

защита от твердых объектов размерами свыше 2,5 мм (например, инструментов, проводов)

защита от воды, падающей под углом 60º к вертикали

4

защита от твердых объектов размерами свыше 1мм (например, тонкой проволоки)

защита от водяных брызг со всех сторон

5

защита от пыли (без осаждения опасных материалов)

защита от водяных струй со всех сторон

10 – мощность электродвигателя

11 – обороты электродвигателя

12 — Монтажное исполнение электродвигателя

Двигатели переменного тока

            Двигатели переменного тока подразделяются на две группы: асинхронные и синхронные. Синхронные двигатели в свою очередь делятся на основные исполнения групп двигателей:

  • общепромышленное
  • специальное (крановые, для дробилок, лифтовые и другие)
  • взрывозащищенное. Дальнейшее подразделение — для химической отрасли и рудничные, рудничные специальные.

Асинхронными двигателями (АД) называют машины переменного тока, в которых основное магнитное поле создается переменным током и частота вращения ротора, не связанная жестко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины, используемые главным образом в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели — более дорогие и менее надежные в эксплуатации, чем бесколлекторные.

По количеству фаз двигатели переменного тока подразделяются:

Асинхронные двигатели наиболее распространены в настоящее время, чем другие виды электродвигателей.

Синхронные и асинхронные машины переменного тока обладают свойством обратимости — они могут работать как в режиме генератора, так и в режиме двигателя.

Типы электродвигателей

Электродвигатели теперь более разнообразны и адаптируемы, чем когда-либо прежде. При планировании системы управления движением чрезвычайно важен выбор двигателя. Двигатель должен соответствовать назначению и общим рабочим характеристикам системы. К счастью, существует конструкция двигателя, подходящая для любых мыслимых целей.

К наиболее распространенным электродвигателям, используемым сегодня, относятся:

Бесщеточные двигатели переменного тока

Бесщеточные двигатели переменного тока

являются одними из самых популярных в управлении движением.Они используют индукцию вращающегося магнитного поля, генерируемого в статоре, для вращения как статора, так и ротора с синхронной скоростью. Для работы они полагаются на постоянные электромагниты.

Щеточные двигатели постоянного тока

В щеточном двигателе постоянного тока ориентация щетки на статоре определяет ток. В некоторых моделях решающее значение имеет ориентация щетки относительно сегментов стержня ротора. Коммутатор особенно важен в любой конструкции щеточного двигателя постоянного тока.

Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока

были впервые разработаны для достижения более высоких характеристик в меньшем пространстве, чем щеточные двигатели постоянного тока, и они меньше, чем сопоставимые модели переменного тока.Встроенный контроллер используется для облегчения работы при отсутствии контактного кольца или коммутатора.

Прямой привод

Прямой привод — это высокоэффективная технология с низким уровнем износа, которая заменяет обычные серводвигатели и сопутствующие им трансмиссии. Эти двигатели не только намного проще обслуживать в течение длительного периода времени, но и ускоряются быстрее.

Линейные двигатели

Эти электродвигатели имеют развернутый статор и двигатель, создающий линейную силу по длине устройства.В отличие от цилиндрических моделей, они имеют плоскую активную секцию с двумя торцами. Как правило, они быстрее и точнее вращающихся двигателей.

Серводвигатели

Серводвигатель — это любой двигатель, соединенный с датчиком обратной связи для облегчения позиционирования; Таким образом, серводвигатели являются основой робототехники. Используются как поворотные, так и линейные приводы. Недорогие щеточные двигатели постоянного тока широко распространены, но их заменяют бесщеточные двигатели переменного тока для высокопроизводительных приложений.

Шаговые двигатели

В шаговых двигателях

используется внутренний ротор, управляемый электроникой с помощью внешних магнитов.Ротор может быть изготовлен на постоянных магнитах или из мягкого металла. Когда обмотки находятся под напряжением, зубья ротора выравниваются по магнитному полю. Это позволяет им перемещаться от точки к точке с фиксированным шагом.

Перед тем, как начать работу над какой-либо новой системой, тщательно подумайте о конкурирующих свойствах различных двигателей. Выбор правильного двигателя позволяет лучше начать любой проект.

Готовы узнать больше? Ознакомьтесь с курсом «Основы проектирования электродвигателей», предлагаемым колледжем движения и моторизации MCMA.

Электродвигатели различных типов и их применение

Как мы знаем, электродвигатель играет жизненно важную роль во всех секторах промышленности, а также в широком спектре приложений. На рынке доступно множество типов электродвигателей. Выбор этих двигателей может быть сделан в зависимости от режима работы, напряжения и применения. Каждый двигатель состоит из двух основных частей: обмотки возбуждения и обмотки якоря. Основная функция обмотки возбуждения — создание фиксированного магнитного поля, тогда как обмотка якоря выглядит как проводник, расположенный внутри магнитного поля.Из-за магнитного поля обмотка якоря использует энергию для создания крутящего момента, необходимого для вращения вала двигателя. В настоящее время классификация двигателей постоянного тока может быть сделана на основе соединений обмоток, что означает, как две катушки в двигателе связаны друг с другом.


Типы электродвигателей

Типы электродвигателей доступны в трех основных сегментах, таких как электродвигатели переменного тока, электродвигатели постоянного тока и электродвигатели специального назначения.

типы двигателей

Двигатели постоянного тока

Типы двигателей постоянного тока в основном включают последовательные, шунтирующие, электродвигатели с комбинированной обмоткой и постоянным током постоянного тока.

двигатель постоянного тока
1). Параллельный двигатель постоянного тока
Шунтирующий двигатель постоянного тока

работает от постоянного тока, и обмотки этого электродвигателя, такие как обмотки якоря и обмотки возбуждения, соединены параллельно, что называется шунтом. Этот тип двигателя также называется двигателем постоянного тока с шунтирующей обмоткой, а тип обмотки известен как шунтирующая обмотка. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о работе шунтирующего двигателя постоянного тока и приложениях

.
2). Двигатель с автономным возбуждением

В двигателе с независимым возбуждением соединение статора и ротора может быть выполнено с использованием другого источника питания.Таким образом, двигателем можно управлять с помощью шунта, а обмотку якоря можно усилить для создания магнитного потока.

3). Двигатель постоянного тока серии

В двигателе постоянного тока обмотки ротора соединены последовательно. Принцип работы этого электродвигателя во многом зависит от простого электромагнитного закона. Этот закон гласит, что всякий раз, когда магнитное поле может быть сформировано вокруг проводника, оно взаимодействует с внешним полем, создавая вращательное движение. Эти двигатели в основном используются в стартерах, которые используются в лифтах и ​​автомобилях.Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о работе двигателей постоянного тока и их применениях

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о ДВИГАТЕЛЕ ПОСТОЯННОГО ТОКА — Основы, типы и применение


4). Двигатель PMDC

Термин PMDC означает «двигатель постоянного тока с постоянными магнитами». Это один из видов двигателей постоянного тока, в который может быть встроен постоянный магнит для создания магнитного поля, необходимого для работы электродвигателя. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о двигателе PMDC: конструкция, работа и применение

5).Составной двигатель постоянного тока

Как правило, составной двигатель постоянного тока представляет собой гибридный компонент последовательного и параллельного двигателей постоянного тока. В этом типе двигателя присутствуют оба поля, такие как последовательный и шунтирующий. В этом типе электродвигателя статор и ротор могут быть соединены друг с другом через соединение последовательных и шунтирующих обмоток. Последовательная обмотка может быть спроектирована с несколькими витками широких медных проводов, что дает небольшой путь сопротивления. Шунтирующая обмотка может быть спроектирована с несколькими обмотками из медного провода для получения полного i / p напряжения.

Двигатели переменного тока

Типы двигателей переменного тока в основном включают синхронные, асинхронные и асинхронные двигатели.

двигатель переменного тока
1). Синхронный двигатель

Работа синхронного двигателя в основном зависит от трехфазного источника питания. Статор электродвигателя генерирует ток возбуждения, который вращается со стабильной скоростью в зависимости от частоты переменного тока. Так же как и ротор, от аналогичной скорости зависит ток статора. Между скоростью тока статора и ротора нет воздушного зазора.Когда уровень точности вращения высок, эти двигатели применимы в автоматизации, робототехнике и т. Д. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах синхронных двигателей и их применениях.

2). Асинхронный двигатель

Электродвигатель, работающий с асинхронной скоростью, известен как асинхронный двигатель, и альтернативное название этого двигателя — асинхронный двигатель. Асинхронный двигатель в основном использует электромагнитную индукцию для изменения энергии с электрической на механическую. По конструкции ротора эти двигатели подразделяются на два типа: с короткозамкнутым ротором и с фазовой обмоткой.Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах и преимуществах асинхронных двигателей

Двигатели специального назначения

К двигателям специального назначения в основном относятся серводвигатели, шаговые двигатели, линейные асинхронные двигатели и т. Д.

электродвигатель специального назначения
1). Шаговый двигатель

Шаговый двигатель может использоваться для обеспечения углового шага вращения в качестве альтернативы стабильному вращению. Мы знаем, что для любого ротора полный угол вращения составляет 180 градусов. Однако в шаговом двигателе полный угол вращения может быть разделен на множество шагов, например, 10 градусов X 18 шагов.Это означает, что за полный цикл оборота ротор совершит ступенчатое движение восемнадцать раз, каждый раз на 10 градусов. Шаговые двигатели применимы в плоттерах, производстве схем, инструментах управления технологическим процессом, генераторах обычных движений и т. Д. Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о типах шаговых двигателей и их применениях

2). Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока были впервые разработаны для достижения превосходных характеристик на меньшем пространстве, чем щеточные двигатели постоянного тока. Эти двигатели меньше по размеру по сравнению с моделями переменного тока.Контроллер встроен в электродвигатель, чтобы облегчить процесс за счет отсутствия коммутатора и контактного кольца. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о бесщеточном двигателе постоянного тока — преимущества, применение и управление

3). Гистерезисный двигатель

Работа гистерезисного двигателя чрезвычайно уникальна. Ротор этого двигателя может быть вызван гистерезисом и вихревым током для создания необходимой задачи. Работа двигателя может зависеть от конструкции, однофазное питание или трехфазное питание.Эти двигатели обеспечивают очень плавный процесс со стабильной скоростью, как и другие синхронные двигатели. Уровень шума этого двигателя довольно мал, по этой причине они применимы во многих сложных приложениях, где бы ни использовался звуконепроницаемый двигатель, например, в аудиоплеере, аудиомагнитофоне и т. Д.

4). Электродвигатель сопротивления

В основном, реактивный двигатель представляет собой однофазный синхронный двигатель, и эта конструкция двигателя аналогична асинхронному двигателю, например, клеточного типа. Ротор в двигателе похож на короткозамкнутый ротор, а статор двигателя включает в себя наборы обмоток, такие как вспомогательная и основная обмотка.Вспомогательная обмотка очень полезна при запуске двигателя. Поскольку они предлагают ровную работу со стабильной скоростью. Эти двигатели обычно используются в приложениях для синхронизации, которые включают генераторы сигналов, записывающие устройства и т. Д.

5). Универсальный мотор

Это особый тип двигателя, и этот двигатель работает от одного источника переменного тока, иначе от источника постоянного тока. Универсальные двигатели имеют последовательную намотку, при этом обмотки возбуждения и якоря соединены последовательно и, таким образом, создают высокий пусковой момент.Эти двигатели в основном предназначены для работы на высоких оборотах свыше 3500 об / мин. Они используют источник переменного тока при низкой скорости и источник постоянного тока аналогичного напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше об универсальном двигателе

.

Итак, речь идет о типах электродвигателей. В настоящее время существуют разные и гибкие. Мотор предназначен для управления движением, это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Вот вам вопрос, что такое моторы особого типа?

12 основных типов двигателей, используемых для промышленных электроприводов

Несколько слов об электрических приводах

Практически все современные промышленные и коммерческие предприятия используют электрический привод вместо механического привода, поскольку он обладает следующими преимуществами:

12 основных типов двигателей, используемых для Промышленные электроприводы (фото из презентации DOE Navigant Master)
  • Он прост по конструкции и требует меньших затрат на обслуживание
  • Его регулировка скорости легкая и плавная
  • Он аккуратный, чистый и не содержит дыма или дымовых газов
  • Его можно установить в любом удобном месте, что обеспечивает большую гибкость в компоновке.
  • Можно дистанционно управлять. жизнь.

Однако системе электропривода присущи два недостатка:

  1. Она останавливается при отключении электроснабжения и
  2. Ее нельзя использовать в удаленных местах, не обслуживаемых электроснабжением.

Однако указанные выше два недостатка можно преодолеть путем установки дизельных генераторов постоянного тока и трехфазных генераторов переменного тока с турбинным приводом, которые могут использоваться либо при отсутствии, либо при отказе от нормального электроснабжения.


Типы двигателей для промышленных электроприводов

Хорошо, давайте кратко рассмотрим двенадцать основных типов двигателей, используемых для различных промышленных электроприводов:

  1. Двигатель серии постоянного тока
  2. Параллельный двигатель постоянного тока
  3. Накопительный составной двигатель
  4. Трехфазный синхронный двигатель
  5. Асинхронный двигатель с короткозамкнутым ротором
  6. Двигатель с двойным короткозамкнутым ротором
  7. Асинхронный двигатель с контактным кольцом
  8. Однофазный синхронный двигатель
  9. Однофазный последовательный двигатель
  10. Отталкивающий двигатель
  11. Запуск конденсатора Асинхронный запуск двигателя
  12. Пуск конденсатора
  13. Запуск двигателя

1.Электродвигатель серии DC

Благодаря высокому пусковому крутящему моменту и переменной скорости он используется для тяжелых приложений , таких как электровозы, сталепрокатные станы, подъемники, подъемники и краны.

Вернуться к Типам двигателей ↑

2. Шунтирующий двигатель постоянного тока

Он имеет средний пусковой момент и почти постоянную скорость.

Параллельный двигатель постоянного тока используется для привода линейных валов с постоянной скоростью, токарных станков, пылесосов, деревообрабатывающих станков, стиральных машин, лифтов, конвейеров, шлифовальных машин, небольших печатных машин и т. Д.

Вернуться к Типам двигателей ↑

3. Накопительный составной двигатель

Накопительный составной двигатель — это двигатель с переменной скоростью и высоким пусковым моментом , который используется для привода компрессоров, центробежных насосов с регулируемым напором, роторных прессы, дисковые пилы, ножницы, элеваторы, непрерывные конвейеры и т. д.

Вернуться к Типам двигателей ↑

4. Трехфазный синхронный двигатель

Поскольку его скорость остается постоянной при переменных нагрузках , Трехфазный синхронный двигатель используется для привода непрерывно работающего оборудования с постоянной скоростью, такого как аммиачные и воздушные компрессоры, мотор-генераторные установки, непрерывные прокатные станы, бумажная и цементная промышленность.

Вернуться к Типам двигателей ↑

5. Асинхронный двигатель с короткозамкнутым ротором

Этот двигатель довольно простой, но прочный и обладает высокой перегрузочной способностью. Он имеет почти постоянную скорость и плохой пусковой крутящий момент.

Асинхронный двигатель

с короткозамкнутым ротором используется для приводов малой и средней мощности , где регулирование скорости не требуется, например, для водяных насосов, трубчатых колодцев, токарных станков, сверл, шлифовальных машин, полировальных машин, строгальных станков по дереву, вентиляторов, воздуходувок, стиральных машин и компрессоров для прачечных. и т.п.

Вернуться к Типам двигателей ↑

6. Двигатель с двойной беличьей клеткой

Он имеет высокий пусковой момент, большую перегрузочную способность и почти постоянную скорость.

Двигатель с двойным короткозамкнутым ротором используется для привода нагрузок, требующих высокого пускового момента, таких как компрессорные насосы, поршневые насосы, большие холодильники, дробилки, расточные станки, текстильное оборудование, краны, пуансоны и токарные станки и т. Д.

Двигатель вентилятора с двойным короткозамкнутым ротором — 3 скорости; 110V

Вернуться к типам двигателей ↑

7.Асинхронный двигатель с контактным кольцом

Обладает высоким пусковым моментом и большой перегрузочной способностью. Скорость асинхронного двигателя с контактным кольцом может быть изменена до 50% от его нормальной скорости.

Асинхронный двигатель с контактным кольцом

используется для тех промышленных приводов, которые требуют высокого пускового момента и управления скоростью , таких как лифты, насосы, намоточные машины, печатные машины, линейные валы, элеваторы, компрессоры и т. Д.

Индукционный двигатель с контактным кольцом мощностью 6000 кВт для испытательный стенд компрессора (фото: emz.de)

Вернуться к Типам двигателей ↑

8. Однофазный синхронный двигатель

Из-за своей постоянной скорости однофазный синхронный двигатель используется в телетайпах, часах, всех типах синхронизирующих устройств, записывающих приборах, звукозаписи и воспроизводящие системы.

Синхронный двигатель / однофазный / IP65 (фото предоставлено directindustry.com)

Вернуться к Типам двигателей ↑

9. Однофазный серийный двигатель

Он обладает высоким пусковым моментом, а его скорость можно регулировать в широком диапазоне . Однофазный серийный двигатель обычно используется для привода небольших бытовых приборов, таких как холодильники, пылесосы и т. Д.

Однофазный серийный двигатель 1,0 кВт; 1000 Вт; 230 В

Вернуться к Типам двигателей ↑

10. Отталкивающий двигатель

Обладает высоким пусковым моментом и может регулировать скорость в широких пределах.

К тому же имеет высокую скорость при высоких нагрузках. Отталкивающий двигатель обычно используется для приводов, требующих большого пускового момента и регулируемой, но постоянной скорости, как в машинах для намотки катушек.

Вернуться к Типам двигателей ↑

11. Индукционный двигатель с конденсаторным пуском

Он имеет довольно постоянную скорость и умеренно высокий пусковой крутящий момент. Регулирование скорости невозможно. Асинхронный двигатель с конденсаторным пуском обычно используется для компрессоров, холодильников и небольших переносных подъемников.

Вернуться к Типам двигателей ↑

12. Конденсаторный двигатель запуска и запуска

Его рабочие характеристики аналогичны вышеуказанному двигателю , за исключением того, что он имеет лучший коэффициент мощности и более высокий КПД .Следовательно, электродвигатели с конденсаторным пуском и пуском обычно используются для приводов, требующих бесшумной работы.

Hitachi конденсатор пусковой конденсатор рабочий двигатель

Вернуться к типам двигателей ↑

Ссылка // Справочник ASHRAE: системы отопления, вентиляции и кондиционирования 2004 г.

Типы электродвигателей и их использование

— Реклама —

Знание различных типов электродвигателей всегда полезно из-за широкого использования электродвигателей от бытовых до промышленных.Если у вас есть система кондиционирования воздуха дома или вы используете воздушный компрессор на промышленном предприятии, вы используете электродвигатели. Таким образом, если вы знаете о различных типах электродвигателей, вы сможете лучше понять систему, которой владеете, и лучше контролировать ее работу.

Здесь, в Linquip, мы предоставили вам удобную платформу, чтобы вы могли найти тип электродвигателя, который вам нужен для вашего применения. Кроме того, в этом посте мы пытаемся демистифицировать различные типы электродвигателей для вашей справки.Итак, следите за обновлениями!

Что такое электродвигатели?

Прежде чем узнать о различных типах электродвигателей, лучше начать с вопроса «что такое электродвигатель»? Что ж, самый короткий ответ заключается в том, что электродвигатель или просто двигатель — это электромеханическое устройство, которое получает электрическую энергию и преобразует ее в движение или механическую энергию.

Изображение из проекта по повышению осведомленности о стандартах устройств.

Это движение в основном имеет вращательную форму. Поток электрического тока индуцирует магнитное поле, и в электродвигателе возникает вращательное движение, перпендикулярное направлению тока и магнитного поля.

Применение электродвигателей

Электродвигатели могут использоваться в домашних условиях, например, в электрических приборах, таких как кондиционеры, пылесосы, вентиляторы, кухонные комбайны и т. Д., В которых используется сила вращения электродвигателей в по-своему, или даже в игрушках, таких как игрушечные машинки или модели самолетов с дистанционным управлением или с помощью приложений.

Говоря об электрических моделях транспортных средств, более крупные и сложные версии электродвигателей можно найти в электромобилях и самолетах реальных размеров (ну, эти самолеты все еще изучаются, чтобы стать коммерчески доступными).

И последнее, но не менее важное: некоторые типы электродвигателей широко используются для промышленных применений, таких как промышленные газовые компрессоры, насосы, подъемные транспортные средства, смесители и т. Д.

Способы классификации электродвигателей

Различные типы электродвигателей могут быть классифицируются по-разному. Один из способов классификации основан на их вольерах. У нас есть двигатели Open Drip Proof (ODP), подходящие для чистых, сухих и закрытых помещений, усовершенствованной версией которых являются двигатели с защитой от атмосферных воздействий с конфигурацией корпуса WP1 или WP2.У нас также есть полностью закрытые корпуса с вентиляторным охлаждением (TEFC), полностью закрытые воздушные клапаны (TEAO), полностью закрытые с принудительной вентиляцией (TEFV) и полностью закрытые невентилируемые корпуса (TENV) для различных типов электродвигателей. Существуют также взрывозащищенные (Ex) двигатели, используемые во взрывоопасных зонах с возможностью взрыва из-за присутствия в этой зоне некоторых взрывоопасных жидкостей, пыли и т. Д.

Тем не менее, электродвигатели обычно классифицируют по источнику питания. Существуют двигатели переменного тока или двигатели переменного тока, в которых ток меняет направление с некоторой частотой.Существуют также двигатели постоянного или постоянного тока, которые широко используются в небольших приложениях из-за их легкого регулирования скорости.

Двигатели переменного тока подразделяются на однофазные и трехфазные. Однофазный двигатель может достигать мощности около 3 кВт при питании от однофазного источника питания, что характерно для бытовых и коммерческих приложений. С другой стороны, трехфазный двигатель может производить мощность до 300 кВт. Эти двигатели — идеальный выбор для промышленного применения.

Двигатели переменного тока

Как упоминалось ранее, двигатель переменного тока является одним из типов электродвигателей, в которых используется ток переменного направления. Эти двигатели не так легко регулируются по скорости, как двигатели постоянного тока; однако, с небольшими потерями в мощности, можно использовать двигатели переменного тока с частотно-регулируемыми приводами, чтобы лучше регулировать скорость.

Существует два широко используемых типа двигателей переменного тока и еще один менее распространенный тип:

  • Асинхронные двигатели

Асинхронный или асинхронный двигатель — это механизм, который никогда не работает с синхронной скоростью.Этот двигатель преобразует электрическую энергию в механическую, используя явление электромагнитной индукции. В этих типах электродвигателей магнитное поле вращается в статорах, которые индуцируют ток в роторе, что приводит к вращению двигателя. Поскольку вращение ротора вызывается внешним магнитным полем, эти двигатели возбуждаются извне. Существует два типа асинхронных двигателей в зависимости от конструкции ротора: асинхронные двигатели с короткозамкнутым ротором и асинхронные двигатели с фазной обмоткой.

В синхронных типах электродвигателей происходит прямое приложение магнитного поля к обмоткам ротора, что имеет свои недостатки и преимущества. Такие двигатели с внутренним возбуждением требуют иных требований к защите и управлению, чем асинхронные двигатели.

Существуют также линейные типы электродвигателей, в которых статор и ротор не вращаются, и поэтому они создают линейную силу вместо крутящего момента. Этот тип двигателя обычно используется в раздвижных дверях и приводах.

Асинхронный двигатель

Асинхронный двигатель является одним из типов электродвигателей Elector, которые, вероятно, наиболее широко используются в промышленности. Статор намагничивается из-за его подключения к электросети, затем магнитное поле индуцирует напряжение и, следовательно, ток в обмотках ротора, затем индуцированный ток в роторе создает другое магнитное поле, а затем взаимодействие между этими двумя магнитными полями. создает вращающую силу или крутящий момент, приводящий в движение вал двигателя.

Эти двигатели имеют очень простую конструкцию, прочную конструкцию, низкую цену и простоту обслуживания. Они также имеют широкий диапазон номинальной мощности, как уже было сказано, наиболее широко используемые типы электродвигателей. Тем не менее, регулирование скорости непросто без частотно-регулируемого привода, который заставляет двигатель работать с запаздывающим коэффициентом мощности.

Асинхронный двигатель выпускается двух различных типов: асинхронный двигатель с короткозамкнутым ротором, и асинхронный двигатель с фазным ротором , , как упоминалось ранее.Каждый из этих двигателей также может быть однофазным или трехфазным. Однофазные асинхронные двигатели — менее распространенный тип асинхронных двигателей в промышленности. Сообщается, что трехфазный асинхронный двигатель является одним из типов электродвигателей, которые присвоили себе около 70% доли рынка промышленных асинхронных двигателей.

Двигатель с фазным ротором или электродвигатель с контактным кольцом имеет большее количество витков обмотки, что означает, что он имеет более высокое наведенное напряжение и снижает ток, чем асинхронный электродвигатель с короткозамкнутым ротором.Они также могли производить больший пусковой крутящий момент. С другой стороны, их сложнее производить из-за добавленного количества компонентов по сравнению с асинхронными двигателями с короткозамкнутым ротором, что значительно увеличивает их удельную стоимость, а также затраты на их обслуживание.

  • Короткозамкнутый ротор Асинхронный двигатель изготовлен из параллельно расположенных токопроводящих шин, закороченных на обоих концах закорачивающими кольцами.
    • Однофазные короткозамкнутые асинхронные двигатели имеют одну обмотку статора, и всегда есть какое-то другое устройство, запускающее двигатель.Они идеально подходят для приложений, требующих всего несколько лошадиных сил, например, для бытовой техники. До сих пор они были наиболее широко используемыми для бытовой техники.
    • Трехфазные асинхронные двигатели с короткозамкнутым ротором могут работать с высокими требованиями к мощности; их номинальная мощность может варьироваться от очень небольшой до сотен лошадиных сил. Они тоже самозапускаются. Почти 90% трехфазных асинхронных двигателей, используемых в промышленности, таких как насосы, компрессоры и вентиляторы, относятся к типу с короткозамкнутым ротором.

  • Асинхронный двигатель с фазным ротором имеет распределенную обмотку, которая является двухслойной. Причина названия в том, что ротор этих типов электродвигателей намотан на столько же полюсов, сколько и статор. Из-за более высокой стоимости двигатели с фазным ротором рассматриваются в ситуациях, когда требуется высокий пусковой момент.
    • Однофазные двигатели с фазным ротором подходят для более высоких номинальных мощностей, чем их аналоги с короткозамкнутым ротором.Они могут довольно комфортно стартовать и могут очень хорошо разгоняться. Некоторые машины, превышающие размеры бытовой техники, могут использовать эти типы электродвигателей, например, в сельском хозяйстве, небольших воздушных компрессорах, горнодобывающей промышленности и т.д. моторы используются в промышленности, но имеют хорошие характеристики своих братьев с короткозамкнутым ротором.

см. Здесь видео о том, как работает асинхронный двигатель.

Синхронные двигатели

В отличие от асинхронных двигателей, синхронные двигатели в основном не запускаются автоматически, несмотря на некоторые самовозбуждающие конфигурации, которые можно найти для некоторых небольших приложений. Создание магнитного поля ротора для этих типов электродвигателей не зависит от тока, а скорость вращения синхронного двигателя привязана к частоте сети. Другими словами, вращение вала синхронных типов электродвигателей происходит с синхронизацией скорости с частотой питающего тока.

Что делает их интересными для промышленных предприятий с более высокими требованиями к мощности, так это их высокая эффективность преобразования переменного тока в работу и их способность корректировать коэффициент мощности. Это означает, что они могут работать при единичном коэффициенте мощности, что предполагает равную активную мощность нагрузки с полной мощностью цепи.

Синхронные двигатели переменного тока бывают двух типов: без возбуждения и с возбуждением постоянным током. Синхронные электродвигатели без возбуждения подразделяются на три категории: с постоянным магнитом, реактивным сопротивлением и гистерезисным типом.

Синхронные двигатели без возбуждения

Электродвигатели синхронного типа без возбуждения спроектированы таким образом, чтобы их ротор следовал синхронизированному вращающемуся полю на разных этапах, что создавало бы постоянное поле. Когда ротор синхронных двигателей без возбуждения вращается, он взаимодействует со статором. Взаимодействие между полюсами поля статора и ротором приводит к тому, что ротор становится электромагнитным с северным и южным полюсами. Ротор электродвигателей этих типов обладает высокой удерживающей способностью, что означает, что он обладает высокой способностью удерживать или сопротивляться намагничиванию.

Как уже упоминалось, существует три типа синхронных двигателей без возбуждения, а именно синхронные двигатели с постоянным магнитом, реактивные и гистерезисные синхронные двигатели. Давайте обсудим их далее.

Постоянный магнит

В синхронных типах электродвигателей с постоянными магнитами стальной ротор прикреплен к постоянному магниту, например неодимовому магниту, который обеспечивает непрерывное непрерывное магнитное поле. Это реализуется посредством взаимодействия ротора с вращающимся полем, создаваемым статором, к которому подключен источник переменного тока.Постоянная часть ротора привязана к вращающемуся полю статора, что обеспечивает синхронную скорость вращения ротора. Эта конструкция похожа на бесщеточные двигатели постоянного тока, которые будут рассмотрены позже.

Для запуска этих типов электродвигателей необходим источник переменной частоты, поскольку ротор в этой конструкции представляет собой постоянный магнит, создающий постоянное магнитное поле. Управление скоростью осуществляется с использованием прямого управления крутящим моментом и управления с ориентацией на поле.

Сопротивление

Ротор для реактивных синхронных электродвигателей, не имеющих обмоток, изготовлен из ферромагнитного материала, на котором наведены непостоянные магнитные полюса. Причина названия в том, что он генерирует крутящий момент, используя магнитное сопротивление, то есть которое является мерой сопротивления или сопротивления материала магнитному потоку.

Изображение предоставлено ABB Group

Число полюсов ротора реактивных синхронных двигателей равно числу полюсов статора.Число полюсов всегда четное и обычно равно четырем или шести. Однако количество полюсов ротора меньше количества полюсов статора, чтобы предотвратить колебания крутящего момента. Пульсация крутящего момента — это периодическое увеличение и уменьшение крутящего момента, создаваемого валом двигателя, что не очень хорошо.

Когда ротор статора находится под напряжением, на ротор действует крутящий момент в направлении уменьшения магнитного сопротивления. Этот крутящий момент будет тянуть ближайший к ротору усилие, так что он будет выровнен с полем статора в положение с меньшим сопротивлением.Следовательно, чтобы поддерживать вращение, полюс статора должен постоянно выходить из полюса ротора, вращаясь впереди полюсов ротора.

Гистерезис

Для гистерезисных синхронных двигателей, когда магнитное поле статора вращается, ротор испытывает обратное магнитное поле. Причина этого явления в том, что цилиндрический ротор этих типов электродвигателей изготовлен из материала с высокой коэрцитивной силой. Это означает, что, как только ротор намагничен в каком-либо направлении, вы не сможете легко изменить его направление без приложения большого обратного магнитного поля.

Изображение из Elprocus

Обратное магнитное поле, испытываемое каждым небольшим объемом ротора из-за вращения магнитного поля статора, будет продолжаться до тех пор, пока не будет достигнута синхронная скорость. Это дает нам преимущество синхронных двигателей с гистерезисом, которые могут создавать постоянный крутящий момент до достижения синхронной скорости без пульсаций крутящего момента. Еще один момент, связанный с этими типами двигателей, заключается в том, что, несмотря на то, что обычно имеется короткозамкнутая обмотка для запуска двигателя, двигатель может запускаться самостоятельно из-за того, что движение ротора зависит только от фазовой задержки между статором и магнитным полем ротора. поля.

Синхронные двигатели с возбуждением постоянным током

Ротор этих типов электродвигателей возбуждается с помощью внешнего источника постоянного тока, который создает магнитный поток, необходимый для приведения ротора в движение. Это можно сделать с помощью отдельного источника постоянного тока или источника, напрямую подключенного к валу двигателя.

Вы можете посмотреть видео здесь, чтобы увидеть, как работают синхронные двигатели.

Линейные

Линейные двигатели — это один из типов электродвигателей переменного тока, создающих линейную силу вместо крутящего момента.Они похожи на те, которые уже обсуждались ранее, за исключением того, что их роторы и статоры развернуты. Они широко используются в таких приложениях, как электропоезда, приводы, используемые в раздвижных дверях и т. Д.

Это видео покажет вам, как работают такие двигатели.

Двигатели постоянного тока

В электродвигателях постоянного тока электрическая энергия постоянного тока преобразуется в механическую. Двигатели постоянного тока могут быть с самовозбуждением или с независимым возбуждением. Однако двигатели постоянного тока с самовозбуждением, вероятно, более интересны, если вы можете использовать их в своих приложениях.Электродвигатели постоянного тока

также можно классифицировать в зависимости от того, являются ли они щеточными двигателями постоянного тока (BDC) или бесщеточными двигателями постоянного тока (BLDC). Щеточные двигатели постоянного тока дешевы и просты в разработке и производстве; однако двигатели BLDC сложны и дороги. В целом, небольшие и малочувствительные приложения, такие как электроприборы и автомобильные электрические стеклоподъемники и сиденья, могут использовать двигатели BDC, тогда как приложения, такие как HVAC и охлаждение, автомобильные электродвигатели и другие подобные промышленные системы, будут работать с BLDC.

Щеточный DC

Щеточные электродвигатели постоянного тока имеют внутреннюю коммутацию, что означает, что крутящий момент создается непосредственно из мощности постоянного тока, подаваемой с помощью стационарных постоянных магнитов или электромагнитов и вращающихся электромагнитов.

Достаточно недорогие и очень надежные. Вы можете легко контролировать их скорость, используя простую двухпроводную систему, хотя есть некоторые конструкции с фиксированной скоростью, для которых нет управления скоростью.

У щеточных электродвигателей постоянного тока также могут быть некоторые недостатки, такие как необходимость периодического обслуживания, в частности, связанного с щетками, и малый срок службы для выполнения сложных работ, для которых высоки крутящий момент или скорость. Другой важной проблемой является их ограниченная скорость из-за щеток и генерации электромагнитных помех (EMI) из-за искрения щеток.

Изображение из ZGC Motor
Шунтирующая обмотка

Катушки возбуждения или обмотки электродвигателей постоянного тока с шунтирующей обмоткой и щеткой подключены параллельно якорю; отсюда и название этих типов электродвигателей. В этой конфигурации обмоток подаваемый ток будет распределяться между шунтирующим якорем и обмотками возбуждения. С двигателями BDC с параллельной обмоткой регулировать скорость очень просто.

Когда нагрузка прикладывается к электродвигателям постоянного тока с шунтирующей обмоткой и щеточным электродам, скорость имеет тенденцию к снижению, но в этой ситуации сетевое напряжение будет увеличиваться.Когда сетевое напряжение увеличивается, ток якоря увеличивается, а это означает, что будет генерироваться некоторый дополнительный крутящий момент, который компенсирует снижение скорости из-за приложения нагрузки, что делает эти типы электродвигателей устройствами с постоянной скоростью.

Все это означает, что вы, вероятно, захотите рассмотреть такой двигатель, если бы у вас были низкие требования к пусковому крутящему моменту, а также хорошее регулирование скорости.

Серийная обмотка

Если вместо параллельного соединения обмоток якоря и обмоток возбуждения последовательно, а не параллельно, то получится щеточный электродвигатель постоянного тока с последовательной обмоткой.Понятно, что ток в обмотках возбуждения и якоря для этой конструкции будет одинаковым. Им потребуется значительный ток, но крутящий момент, который они создают, очень высок, особенно при запуске.

Однако эта конструкция не очень хороша с регулированием скорости. Причина в том, что, несмотря на повышенное напряжение из-за нагрузки, двигатель будет увеличивать ток для нарастания, но магнитное поле в конечном итоге будет насыщено, что означает, что магнитный поток между якорем и статором не будет расти достаточно быстро, что означает недостаточный крутящий момент. будет сгенерирован, чтобы вернуть скорость к предыдущим условиям.

Можно сказать, что вы могли бы рассмотреть типы электродвигателей, когда вам нужен высокий пусковой крутящий момент, но не слишком заботитесь о регулировании скорости.

Составная обмотка

Что делать, если вам нужен НМТ с высоким пусковым моментом, а также с хорошим контролем скорости? Что ж, для этого тоже есть решение: электродвигатели постоянного тока со сложной обмоткой и щеткой. Двигатели с комбинированной обмоткой — это «гибрид» двигателей постоянного тока с шунтирующей обмоткой и щеточных двигателей с последовательной обмоткой. В этих типах электродвигателей имеется обмотка возбуждения, включенная последовательно с обмоткой якоря, и еще одна обмотка возбуждения, шунтирующая с обмоткой якоря.

Существует конфигурация с коротким шунтом и конфигурация с длинным шунтом для двигателей BDC с комбинированной обмоткой. Если бы поле шунта было только параллельно якорю, это была бы конфигурация с коротким шунтом, но если бы поле шунта было параллельно с последовательностью якоря и последовательного поля, это был бы BDF с составной обмоткой с длинным шунтом.

У вас может быть полярность шунтирующего поля, совпадающая с полярностью последовательного поля, что создает кумулятивную составную обмотку BDC. Это двигатель с высоким пусковым моментом и хорошей регулировкой скорости.У вас также может быть полярность шунтирующего поля, противоположная последовательному полю, что делает дифференциальный двигатель с составной обмоткой.

Постоянный магнит

В щеточном двигателе постоянного тока с постоянными магнитами якорь окружен постоянными магнитами, прикрепленными к внутренней поверхности цилиндрического статора этих типов электродвигателей. Магниты установлены таким образом, чтобы противоположные полюса соседних магнитов были обращены к якорю. Якорь, который является проводником с током, будет поэтому испытывать механическую силу, действующую на него со стороны магнитного поля этой системы постоянных магнитов, и вращаться в его направлении.

Серводвигатель

Серводвигатели на самом деле могут не относиться к одному из типов электродвигателей и, вероятно, представляют собой отдельную категорию, но поскольку в самых простых небольших из них используются двигатели постоянного тока с постоянными магнитами вместе с системой управления с обратной связью, мы решили упомяните их и здесь. Серводвигатели — это механические устройства или приводы, которые очень удобны, когда дело доходит до точного управления положением, скоростью или ускорением. Они состоят из двигателя постоянного тока, датчика положения и контроллера.

Бесщеточный DC

Вы, наверное, заметили, что щетки и их взаимодействие с механическим коммутатором двигателей BDC являются причиной появления бесщеточных электродвигателей постоянного тока. Что ж, щетки изнашиваются и требуют обслуживания и замены, а щетки создают искры, которые опасны для мест, где есть вероятность взрыва.

Бесщеточные двигатели постоянного тока коммутируются с помощью электроники, что обеспечивает им более длительный срок службы, лучшие характеристики скорости по сравнению с крутящим моментом, высокую эффективность, лучший динамический отклик и более высокие изменения скорости, а также бесшумную работу.

Эти типы электродвигателей могут использоваться как для переменных нагрузок, так и для приложений с фиксированной нагрузкой, а также для приложений позиционирования, и они набирают популярность на рынке.

Видео, в котором сравниваются щеточные двигатели постоянного тока с бесщеточными двигателями постоянного тока и критерии выбора между ними, см. Здесь.

Заключение

Таким образом, речь шла о типах электродвигателей. Мы попытались представить простое руководство по этим типам двигателей. В настоящее время существуют разные и гибкие.Назначение двигателя — всякий раз, когда «требуется управление движением», это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Это отличный шанс, если вам нужно больше узнать о типах электродвигателей, не стесняйтесь зарегистрироваться в Linquip. Наши специалисты будут рады получить ваши вопросы и с энтузиазмом на них ответить.

— Реклама —

Электродвигатели — различные типы и применения каждого из них

Двигатель — это удобное устройство, которое вырабатывает механическую энергию из электрической энергии.Сегодня двигатели используются как в жилых, так и в промышленных условиях. Однако выбор двигателя будет зависеть от ваших конкретных потребностей.

Во-первых, различные типы двигателей на рынке делают процесс покупки утомительным. Вы должны выбирать между двигателями переменного тока, двигателями постоянного тока и двигателями специального назначения.

Типы двигателей переменного тока

Асинхронный двигатель переменного тока

Асинхронный двигатель — это наиболее распространенный тип электродвигателя переменного тока на современном рынке.Асинхронный двигатель переменного тока работает с импульсом ниже его синхронной скорости. Здесь электрический ток создает крутящий момент в роторе. Асинхронные двигатели используют электромагнитную индукцию для преобразования энергии из электрической в ​​механическую.

Классификация асинхронных двигателей основана на типе ротора; беличья клетка или контактное кольцо. Асинхронные двигатели отлично подходят для промышленности из-за их допустимой нагрузки.

Конструкция компрессоров, насосов, подъемных механизмов и конвейерных систем входит в число его многочисленных областей применения.

Синхронный двигатель переменного тока

Этот тип двигателя в основном зависит от трехфазного источника питания. Статор генерирует ток возбуждения, в то время как ротор зависит от тока возбуждения для своего вращения. Скорость вращения ротора соответствует частоте подаваемого тока. В этом двигателе импульс не зависит от нагрузки.

Синхронные двигатели переменного тока

находят широкое применение в робототехнике, управлении технологическими процессами и автоматизации. Эти двигатели используются в большинстве оборудования с постоянной скоростью.

Типы двигателей постоянного тока

Матовый электродвигатель постоянного тока

В этом двигателе устройство щеток статора определяет ток. Его крутящий момент создается от источника постоянного тока с помощью электромагнитов. Они дешевы и очень эффективны.

В машинах с высоким пусковым моментом, таких как краны, подъемники и лифты, используются щеточные электродвигатели постоянного тока. Они также применимы для целей с постоянной скоростью, таких как пылесосы и конвейеры.

Бесщеточный двигатель постоянного тока

Эти двигатели обладают высокой производительностью при меньшем размере по сравнению с щеточными двигателями постоянного тока.Они работают с контактными кольцами, коммутаторами или встроенным контроллером.

Их эффективность, улучшенный динамический отклик, бесшумная работа и высокая скорость переключения делают их отличным выбором для большинства отраслей промышленности. Фиксированная нагрузка, переменная нагрузка и положение зависят от этого типа двигателя.

Другие типы двигателей

Серводвигатели

Это двигатели, соединенные с датчиками обратной связи для помощи в позиционировании, что является ключом к робототехнике. Они позволяют точно контролировать угловое положение, ускорение и скорость.Серводвигатели обладают высокой эффективностью и точностью, поэтому используются во вращающихся компонентах машин.

Его приложения включают строительство игрушек, автомобилей, самолетов, бытовой электроники и т. Д.

Шаговый двигатель

Судя по названию, шаговые двигатели работают ступенчато. Он преобразует электрическую энергию в обширные дискретные механические ступени. Поскольку другие двигатели вращаются на 180 градусов, шаговые двигатели могут делать десять шагов по 18 градусов каждый.

В этом случае для завершения оборота потребуется десять электрических импульсов.Они используются в плоттерах, изготовлении схем, инструментах управления технологическим процессом, медицинских сканерах, жидкостных насосах, респираторах, автоматической фокусировке цифровых камер и т. Д.

Гистерезисный двигатель

В гистерезисных двигателях магнитные поля статора и ротора противоположны. После намагничивания ротора вам потребуется мощное обратное магнитное поле, чтобы перевернуть его. Гистерезис и вихревые токи от ротора создают крутящий момент.

Двигатели с гистерезисом

могут генерировать крутящий момент без пульсаций, пока вы не достигнете синхронной скорости.Они используются при изготовлении звуковых проигрывателей, диктофонов и т. Д.


В Mader Electric наша команда экспертов готова помочь вам со всеми вашими потребностями в обслуживании двигателей как в бизнесе, так и в быту. Свяжитесь с нами сегодня с любыми вопросами или проблемами, связанными с электродвигателями, и наши специалисты будут рады помочь вам найти нужные решения.

Электродвигатели: Справочник | Типы двигателей и соображения по выбору

Промышленное применение электродвигателей

Электродвигатели находят применение в разнообразном оборудовании в промышленности. Общепромышленные применения включают:

  • Компрессоры
  • Вентиляторы и нагнетатели
  • Оборудование для тяжелых условий эксплуатации
  • Системы отопления, вентиляции и кондиционирования воздуха
  • Дробилки
  • Насосы
  • Токарные станки

43 Выбор правильного электродвигателя 9 для вашего двигателя7 Тип электродвигателя зависит от используемого оборудования. Например, двигатель должен быть выбран в соответствии с уровнями пусковой мощности подключенной машины и требованиями к выходной мощности.Неправильно подобранный двигатель может вызвать серьезные повреждения машины или привести к остановке и отказу. Доступны многофазные двигатели и двигатели с различными уровнями напряжения, поэтому электромеханики могут легко подобрать промышленное оборудование для соответствующего двигателя.

Типы электродвигателей

В Gainesville Industrial Electric мы предлагаем широкий выбор электродвигателей от Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric.У каждого двигателя есть уникальные особенности, атрибуты и рекомендуемые области применения. Наши предложения продукции варьируются от дробных однофазных и трехфазных двигателей до больших двигателей среднего и высокого напряжения.


Однофазные двигатели общего назначения

В нашем ассортименте однофазных двигателей общего назначения представлены: Proof Motors


Универсальные трехфазные двигатели

Трехфазные двигатели имеют напряжение 208, 230, 460 или 575.Мы предлагаем следующие трехфазные электродвигатели общего назначения :

  • Двигатели с защитой от капель
  • Двигатели полностью закрытого типа
  • Двигатели для тяжелых условий эксплуатации

Трехфазные двигатели для опасных условий эксплуатации

Трехфазные двигатели спроектированы и изготовлены таким образом, чтобы выдерживать более суровые условия эксплуатации, чем двигатели общего назначения. Несмотря на то, что все эти двигатели подходят для размещения в соответствии с Разделом 1, отдельные модели подходят для местоположений класса I и / или класса II с опасными материалами групп C, D, E, F и / или G.


Washdown Duty, окрашенные двигатели и двигатели из нержавеющей стали

Washdown Duty окрашенные двигатели и двигатели из нержавеющей стали предназначены для тяжелых и сложных условий, таких как пищевая, химическая и автомобильная мойки. Они доступны в одно- и трехфазных моделях до 20 л.с.


Двигатели среднего напряжения

Эти двигатели среднего напряжения работают от 2300 или 4000 вольт. Доступны модели с защитой от атмосферных воздействий, с вентиляторным охлаждением и полностью закрытые.К дополнительным функциям относятся комплекты для переоборудования роликовых подшипников, комплекты WPII и конструкции энергосбережения.


Электродвигатели для насосов

Электромоторы для насосов рассчитаны на мощность, достаточную для привода насоса без перегрузки. У них есть специальные валы для использования с механическими уплотнениями (JM Frame) или набивкой (JP Frame). Эти двигатели применяются в центробежных или моноблочных насосах, струйных насосах и насосах для бассейнов.


Двигатели с инверторным и векторным режимами

Когда приводы с регулируемой частотой (VFD) приводят в движение двигатели, они создают большие скачки напряжения.Двигатели с инверторным и векторным режимами работы могут выдерживать эти всплески и работать без перегрева.


Двигатели постоянного тока с постоянным магнитом

Двигатели постоянного тока используются для немедленного запуска и приложений, где быстрые изменения более важны, чем постепенные или плавные изменения. Двигатели постоянного тока с постоянными магнитами упрощают выполнение этих операций по запуску.


Двигатели для воздушных компрессоров

Двигатели для воздушных компрессоров вырабатывают мощность и высокий крутящий момент, необходимые для привода переносных и стационарных воздушных компрессоров, используемых на таких объектах, как кузовные мастерские и производственные предприятия.


Тормозные двигатели

Тормозные двигатели обычно представляют собой однодисковые двигатели переменного или постоянного тока, которые могут быстро останавливать ведомое движение. Они разработаны таким образом, чтобы делать это безопасно, не вызывая сотрясений и не сокращая срок службы оборудования.


Двигатели для градирни

Эти двигатели обеспечивают питание градирен. Они спроектированы так, чтобы выдерживать суровые жаркие и влажные условия, типичные для градирен. Доступны корпуса TEAO и TEFC, а также одно- и двухскоростные двигатели.


Сельскохозяйственные двигатели / двигатели для работы на ферме

Эти двигатели соответствуют требованиям к высокому крутящему моменту для сельскохозяйственного и сельскохозяйственного оборудования, такого как шнековые приводы и машины для перемешивания зерна.


Двигатели HVAC

Эти двигатели приводят в действие ряд оборудования HVAC, например:

  • Воздуходувки
  • Вентиляторы
  • Горелки на жидком топливе
  • Насосы
  • Вентиляторы

Двигатели с мгновенным реверсированием

Эти двигатели подходят для применений, требующих мгновенного изменения направления движения, например, для открытия, закрытия и подъема шлагбаумов.

. Двигатели Crusher Duty

Эти двигатели для тяжелых условий эксплуатации обладают высоким пусковым моментом и крутящим моментом для пробоя. Измельчители и дробилки обычно выигрывают от этих специальных двигателей из-за их прочной конструкции и высокопрочных компонентов.

Промышленные электродвигатели Решения от GIE

Выбор правильного двигателя для промышленного применения обеспечивает лучшую производительность в течение всего срока службы используемого оборудования. Многие специальные двигатели включают в себя функции безопасности или уникальные варианты мощности для повышения производительности.

В Gainesville Industrial Electric мы с гордостью распространяем высококачественные промышленные электродвигатели от ведущих производителей, таких как Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric. Кроме того, у нас есть мастерская по ремонту двигателей и насосов с полным спектром услуг, где можно легко отремонтировать моторы любой марки.

Чтобы узнать больше о наших продуктах и ​​услугах или для помощи в выборе, поиске или обслуживании электродвигателя, свяжитесь с нами или запросите коммерческое предложение сегодня.

Двигатели переменного и постоянного тока: различия и преимущества

Электродвигатели играют важную роль почти во всех отраслях промышленности. Использование двигателя правильного типа с высококачественными деталями и регулярным обслуживанием обеспечивает бесперебойную работу вашего предприятия и предотвращает повреждение оконечного оборудования из-за износа или скачков напряжения.

Gainesville Industrial Electric может помочь вашей компании выбрать правильные промышленные электродвигатели и детали для ваших приложений.

A Primer on Electric Motors

Электродвигатели — это машины, которые преобразуют электрическую энергию — из накопленной мощности или прямого электрического соединения — в механическую энергию за счет создания вращательной силы.Двумя основными типами электродвигателей являются:

  • Двигатели переменного тока , которые питаются от переменного тока
  • Двигатели постоянного тока , которые питаются от постоянного тока

Как работают электродвигатели

И переменного тока, и Электродвигатели постоянного тока используют электрический ток для создания вращающихся магнитных полей, которые, в свою очередь, создают вращательную механическую силу в якоре, расположенном на роторе или статоре, вокруг вала. В различных конструкциях двигателей используется одна и та же базовая концепция для преобразования электрической энергии в мощные всплески силы и обеспечения динамических уровней скорости или мощности.

Компоненты главного двигателя

Хотя электродвигатели могут отличаться от одной конструкции или типа к другому, многие из них содержат эти деталей и узлов (расположены от центра, направленного наружу):

  • Вал центрального двигателя
  • Обмотки
  • Подшипники (для уменьшения трения и износа)
  • Якорь (расположен на роторе, вращающейся части или статоре, неподвижной части)
  • Щетки (в двигателях постоянного тока)
  • Клеммы
  • Рама и концевые щитки

Типы электродвигателей: AC vs.Двигатели постоянного тока

Двигатели переменного и постоянного тока — это широкие категории двигателей, которые включают меньшие подтипы. Например, асинхронные двигатели, линейные двигатели и синхронные двигатели — это все типы двигателей переменного тока. Двигатели переменного тока также могут включать в себя частотно-регулируемые приводы для управления скоростью и крутящим моментом двигателя, в то время как двигатели постоянного тока доступны в моделях с самовозбуждением и с раздельным возбуждением.

Привод с регулируемой скоростью переменного тока

Двигатель переменного тока по сравнению с двигателем постоянного тока Преимущества

Каждый тип двигателя имеет различные преимущества, которые делают их наиболее подходящими для различных коммерческих и промышленных применений. Двигатели переменного тока , например, гибки и просты в управлении. Некоторые из их других преимуществ включают:

  • Низкие требования к пусковой мощности, которые также защищают компоненты на принимающей стороне
  • Контролируемые уровни пускового тока и ускорения
  • Надстройки VFD или VSD, которые могут контролировать скорость и крутящий момент на разных этапах используйте
  • Высокая прочность и более длительный срок службы
  • Возможности для многофазных конфигураций

Двигатели постоянного тока также обладают собственными преимуществами , такими как:

  • Более простая установка и обслуживание
  • Высокая пусковая мощность и крутящий момент
  • Быстрое время отклика на запуск, остановку и ускорение
  • Наличие нескольких стандартных напряжений

Какой двигатель более мощный: переменного или постоянного тока? Двигатели

переменного тока обычно считаются более мощными, чем двигатели постоянного тока, поскольку они могут создавать более высокий крутящий момент за счет использования более мощного тока.Однако двигатели постоянного тока обычно более эффективны и лучше используют входную энергию. Двигатели переменного и постоянного тока бывают разных размеров и мощностей, которые могут удовлетворить любые отраслевые требования к питанию.

Применение двигателей переменного и постоянного тока

Двигатели переменного и постоянного тока находят применение в технологических процессах и объектах практически во всех отраслях промышленности. Некоторые из наиболее распространенных промышленных применений для двигателей переменного тока включают:

  • Приборы
  • Приводы и системы компрессоров
  • Компьютеры
  • Конвейерные системы
  • Вентиляторы и кондиционеры
  • Гидравлические и ирригационные насосы
  • Транспортное оборудование 22 Распространенные промышленные применения двигателей постоянного тока для двигателей постоянного тока включают:

    • Производство и производственные единицы
    • Оборудование, требующее постоянной мощности, такое как пылесосы, лифты и швейные машины
    • Оборудование для сортировки на складе


    Выбор подходящего электрического Электродвигатель для вашего промышленного применения

    Установка и обслуживание правильных электродвигателей на предприятиях и оборудовании вашей компании является важным шагом к обеспечению бесперебойной работы и производства.